1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/export.h>
19 #include <linux/pm_domain.h>
20 #include <linux/regulator/consumer.h>
21
22 #include "opp.h"
23
24 /*
25 * The root of the list of all opp-tables. All opp_table structures branch off
26 * from here, with each opp_table containing the list of opps it supports in
27 * various states of availability.
28 */
29 LIST_HEAD(opp_tables);
30
31 /* OPP tables with uninitialized required OPPs */
32 LIST_HEAD(lazy_opp_tables);
33
34 /* Lock to allow exclusive modification to the device and opp lists */
35 DEFINE_MUTEX(opp_table_lock);
36 /* Flag indicating that opp_tables list is being updated at the moment */
37 static bool opp_tables_busy;
38
_find_opp_dev(const struct device * dev,struct opp_table * opp_table)39 static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
40 {
41 struct opp_device *opp_dev;
42 bool found = false;
43
44 mutex_lock(&opp_table->lock);
45 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
46 if (opp_dev->dev == dev) {
47 found = true;
48 break;
49 }
50
51 mutex_unlock(&opp_table->lock);
52 return found;
53 }
54
_find_opp_table_unlocked(struct device * dev)55 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
56 {
57 struct opp_table *opp_table;
58
59 list_for_each_entry(opp_table, &opp_tables, node) {
60 if (_find_opp_dev(dev, opp_table)) {
61 _get_opp_table_kref(opp_table);
62 return opp_table;
63 }
64 }
65
66 return ERR_PTR(-ENODEV);
67 }
68
69 /**
70 * _find_opp_table() - find opp_table struct using device pointer
71 * @dev: device pointer used to lookup OPP table
72 *
73 * Search OPP table for one containing matching device.
74 *
75 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
76 * -EINVAL based on type of error.
77 *
78 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
79 */
_find_opp_table(struct device * dev)80 struct opp_table *_find_opp_table(struct device *dev)
81 {
82 struct opp_table *opp_table;
83
84 if (IS_ERR_OR_NULL(dev)) {
85 pr_err("%s: Invalid parameters\n", __func__);
86 return ERR_PTR(-EINVAL);
87 }
88
89 mutex_lock(&opp_table_lock);
90 opp_table = _find_opp_table_unlocked(dev);
91 mutex_unlock(&opp_table_lock);
92
93 return opp_table;
94 }
95
96 /**
97 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
98 * @opp: opp for which voltage has to be returned for
99 *
100 * Return: voltage in micro volt corresponding to the opp, else
101 * return 0
102 *
103 * This is useful only for devices with single power supply.
104 */
dev_pm_opp_get_voltage(struct dev_pm_opp * opp)105 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
106 {
107 if (IS_ERR_OR_NULL(opp)) {
108 pr_err("%s: Invalid parameters\n", __func__);
109 return 0;
110 }
111
112 return opp->supplies[0].u_volt;
113 }
114 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
115
116 /**
117 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
118 * @opp: opp for which frequency has to be returned for
119 *
120 * Return: frequency in hertz corresponding to the opp, else
121 * return 0
122 */
dev_pm_opp_get_freq(struct dev_pm_opp * opp)123 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
124 {
125 if (IS_ERR_OR_NULL(opp)) {
126 pr_err("%s: Invalid parameters\n", __func__);
127 return 0;
128 }
129
130 return opp->rate;
131 }
132 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
133
134 /**
135 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
136 * @opp: opp for which level value has to be returned for
137 *
138 * Return: level read from device tree corresponding to the opp, else
139 * return 0.
140 */
dev_pm_opp_get_level(struct dev_pm_opp * opp)141 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
142 {
143 if (IS_ERR_OR_NULL(opp) || !opp->available) {
144 pr_err("%s: Invalid parameters\n", __func__);
145 return 0;
146 }
147
148 return opp->level;
149 }
150 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
151
152 /**
153 * dev_pm_opp_get_required_pstate() - Gets the required performance state
154 * corresponding to an available opp
155 * @opp: opp for which performance state has to be returned for
156 * @index: index of the required opp
157 *
158 * Return: performance state read from device tree corresponding to the
159 * required opp, else return 0.
160 */
dev_pm_opp_get_required_pstate(struct dev_pm_opp * opp,unsigned int index)161 unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
162 unsigned int index)
163 {
164 if (IS_ERR_OR_NULL(opp) || !opp->available ||
165 index >= opp->opp_table->required_opp_count) {
166 pr_err("%s: Invalid parameters\n", __func__);
167 return 0;
168 }
169
170 /* required-opps not fully initialized yet */
171 if (lazy_linking_pending(opp->opp_table))
172 return 0;
173
174 return opp->required_opps[index]->pstate;
175 }
176 EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
177
178 /**
179 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
180 * @opp: opp for which turbo mode is being verified
181 *
182 * Turbo OPPs are not for normal use, and can be enabled (under certain
183 * conditions) for short duration of times to finish high throughput work
184 * quickly. Running on them for longer times may overheat the chip.
185 *
186 * Return: true if opp is turbo opp, else false.
187 */
dev_pm_opp_is_turbo(struct dev_pm_opp * opp)188 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
189 {
190 if (IS_ERR_OR_NULL(opp) || !opp->available) {
191 pr_err("%s: Invalid parameters\n", __func__);
192 return false;
193 }
194
195 return opp->turbo;
196 }
197 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
198
199 /**
200 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
201 * @dev: device for which we do this operation
202 *
203 * Return: This function returns the max clock latency in nanoseconds.
204 */
dev_pm_opp_get_max_clock_latency(struct device * dev)205 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
206 {
207 struct opp_table *opp_table;
208 unsigned long clock_latency_ns;
209
210 opp_table = _find_opp_table(dev);
211 if (IS_ERR(opp_table))
212 return 0;
213
214 clock_latency_ns = opp_table->clock_latency_ns_max;
215
216 dev_pm_opp_put_opp_table(opp_table);
217
218 return clock_latency_ns;
219 }
220 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
221
222 /**
223 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
224 * @dev: device for which we do this operation
225 *
226 * Return: This function returns the max voltage latency in nanoseconds.
227 */
dev_pm_opp_get_max_volt_latency(struct device * dev)228 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
229 {
230 struct opp_table *opp_table;
231 struct dev_pm_opp *opp;
232 struct regulator *reg;
233 unsigned long latency_ns = 0;
234 int ret, i, count;
235 struct {
236 unsigned long min;
237 unsigned long max;
238 } *uV;
239
240 opp_table = _find_opp_table(dev);
241 if (IS_ERR(opp_table))
242 return 0;
243
244 /* Regulator may not be required for the device */
245 if (!opp_table->regulators)
246 goto put_opp_table;
247
248 count = opp_table->regulator_count;
249
250 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
251 if (!uV)
252 goto put_opp_table;
253
254 mutex_lock(&opp_table->lock);
255
256 for (i = 0; i < count; i++) {
257 uV[i].min = ~0;
258 uV[i].max = 0;
259
260 list_for_each_entry(opp, &opp_table->opp_list, node) {
261 if (!opp->available)
262 continue;
263
264 if (opp->supplies[i].u_volt_min < uV[i].min)
265 uV[i].min = opp->supplies[i].u_volt_min;
266 if (opp->supplies[i].u_volt_max > uV[i].max)
267 uV[i].max = opp->supplies[i].u_volt_max;
268 }
269 }
270
271 mutex_unlock(&opp_table->lock);
272
273 /*
274 * The caller needs to ensure that opp_table (and hence the regulator)
275 * isn't freed, while we are executing this routine.
276 */
277 for (i = 0; i < count; i++) {
278 reg = opp_table->regulators[i];
279 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
280 if (ret > 0)
281 latency_ns += ret * 1000;
282 }
283
284 kfree(uV);
285 put_opp_table:
286 dev_pm_opp_put_opp_table(opp_table);
287
288 return latency_ns;
289 }
290 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
291
292 /**
293 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
294 * nanoseconds
295 * @dev: device for which we do this operation
296 *
297 * Return: This function returns the max transition latency, in nanoseconds, to
298 * switch from one OPP to other.
299 */
dev_pm_opp_get_max_transition_latency(struct device * dev)300 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
301 {
302 return dev_pm_opp_get_max_volt_latency(dev) +
303 dev_pm_opp_get_max_clock_latency(dev);
304 }
305 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
306
307 /**
308 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
309 * @dev: device for which we do this operation
310 *
311 * Return: This function returns the frequency of the OPP marked as suspend_opp
312 * if one is available, else returns 0;
313 */
dev_pm_opp_get_suspend_opp_freq(struct device * dev)314 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
315 {
316 struct opp_table *opp_table;
317 unsigned long freq = 0;
318
319 opp_table = _find_opp_table(dev);
320 if (IS_ERR(opp_table))
321 return 0;
322
323 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
324 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
325
326 dev_pm_opp_put_opp_table(opp_table);
327
328 return freq;
329 }
330 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
331
_get_opp_count(struct opp_table * opp_table)332 int _get_opp_count(struct opp_table *opp_table)
333 {
334 struct dev_pm_opp *opp;
335 int count = 0;
336
337 mutex_lock(&opp_table->lock);
338
339 list_for_each_entry(opp, &opp_table->opp_list, node) {
340 if (opp->available)
341 count++;
342 }
343
344 mutex_unlock(&opp_table->lock);
345
346 return count;
347 }
348
349 /**
350 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
351 * @dev: device for which we do this operation
352 *
353 * Return: This function returns the number of available opps if there are any,
354 * else returns 0 if none or the corresponding error value.
355 */
dev_pm_opp_get_opp_count(struct device * dev)356 int dev_pm_opp_get_opp_count(struct device *dev)
357 {
358 struct opp_table *opp_table;
359 int count;
360
361 opp_table = _find_opp_table(dev);
362 if (IS_ERR(opp_table)) {
363 count = PTR_ERR(opp_table);
364 dev_dbg(dev, "%s: OPP table not found (%d)\n",
365 __func__, count);
366 return count;
367 }
368
369 count = _get_opp_count(opp_table);
370 dev_pm_opp_put_opp_table(opp_table);
371
372 return count;
373 }
374 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
375
376 /**
377 * dev_pm_opp_find_freq_exact() - search for an exact frequency
378 * @dev: device for which we do this operation
379 * @freq: frequency to search for
380 * @available: true/false - match for available opp
381 *
382 * Return: Searches for exact match in the opp table and returns pointer to the
383 * matching opp if found, else returns ERR_PTR in case of error and should
384 * be handled using IS_ERR. Error return values can be:
385 * EINVAL: for bad pointer
386 * ERANGE: no match found for search
387 * ENODEV: if device not found in list of registered devices
388 *
389 * Note: available is a modifier for the search. if available=true, then the
390 * match is for exact matching frequency and is available in the stored OPP
391 * table. if false, the match is for exact frequency which is not available.
392 *
393 * This provides a mechanism to enable an opp which is not available currently
394 * or the opposite as well.
395 *
396 * The callers are required to call dev_pm_opp_put() for the returned OPP after
397 * use.
398 */
dev_pm_opp_find_freq_exact(struct device * dev,unsigned long freq,bool available)399 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
400 unsigned long freq,
401 bool available)
402 {
403 struct opp_table *opp_table;
404 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
405
406 opp_table = _find_opp_table(dev);
407 if (IS_ERR(opp_table)) {
408 int r = PTR_ERR(opp_table);
409
410 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
411 return ERR_PTR(r);
412 }
413
414 mutex_lock(&opp_table->lock);
415
416 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
417 if (temp_opp->available == available &&
418 temp_opp->rate == freq) {
419 opp = temp_opp;
420
421 /* Increment the reference count of OPP */
422 dev_pm_opp_get(opp);
423 break;
424 }
425 }
426
427 mutex_unlock(&opp_table->lock);
428 dev_pm_opp_put_opp_table(opp_table);
429
430 return opp;
431 }
432 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
433
434 /**
435 * dev_pm_opp_find_level_exact() - search for an exact level
436 * @dev: device for which we do this operation
437 * @level: level to search for
438 *
439 * Return: Searches for exact match in the opp table and returns pointer to the
440 * matching opp if found, else returns ERR_PTR in case of error and should
441 * be handled using IS_ERR. Error return values can be:
442 * EINVAL: for bad pointer
443 * ERANGE: no match found for search
444 * ENODEV: if device not found in list of registered devices
445 *
446 * The callers are required to call dev_pm_opp_put() for the returned OPP after
447 * use.
448 */
dev_pm_opp_find_level_exact(struct device * dev,unsigned int level)449 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
450 unsigned int level)
451 {
452 struct opp_table *opp_table;
453 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
454
455 opp_table = _find_opp_table(dev);
456 if (IS_ERR(opp_table)) {
457 int r = PTR_ERR(opp_table);
458
459 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
460 return ERR_PTR(r);
461 }
462
463 mutex_lock(&opp_table->lock);
464
465 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
466 if (temp_opp->level == level) {
467 opp = temp_opp;
468
469 /* Increment the reference count of OPP */
470 dev_pm_opp_get(opp);
471 break;
472 }
473 }
474
475 mutex_unlock(&opp_table->lock);
476 dev_pm_opp_put_opp_table(opp_table);
477
478 return opp;
479 }
480 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
481
482 /**
483 * dev_pm_opp_find_level_ceil() - search for an rounded up level
484 * @dev: device for which we do this operation
485 * @level: level to search for
486 *
487 * Return: Searches for rounded up match in the opp table and returns pointer
488 * to the matching opp if found, else returns ERR_PTR in case of error and
489 * should be handled using IS_ERR. Error return values can be:
490 * EINVAL: for bad pointer
491 * ERANGE: no match found for search
492 * ENODEV: if device not found in list of registered devices
493 *
494 * The callers are required to call dev_pm_opp_put() for the returned OPP after
495 * use.
496 */
dev_pm_opp_find_level_ceil(struct device * dev,unsigned int * level)497 struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
498 unsigned int *level)
499 {
500 struct opp_table *opp_table;
501 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
502
503 opp_table = _find_opp_table(dev);
504 if (IS_ERR(opp_table)) {
505 int r = PTR_ERR(opp_table);
506
507 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
508 return ERR_PTR(r);
509 }
510
511 mutex_lock(&opp_table->lock);
512
513 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
514 if (temp_opp->available && temp_opp->level >= *level) {
515 opp = temp_opp;
516 *level = opp->level;
517
518 /* Increment the reference count of OPP */
519 dev_pm_opp_get(opp);
520 break;
521 }
522 }
523
524 mutex_unlock(&opp_table->lock);
525 dev_pm_opp_put_opp_table(opp_table);
526
527 return opp;
528 }
529 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
530
_find_freq_ceil(struct opp_table * opp_table,unsigned long * freq)531 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
532 unsigned long *freq)
533 {
534 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
535
536 mutex_lock(&opp_table->lock);
537
538 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
539 if (temp_opp->available && temp_opp->rate >= *freq) {
540 opp = temp_opp;
541 *freq = opp->rate;
542
543 /* Increment the reference count of OPP */
544 dev_pm_opp_get(opp);
545 break;
546 }
547 }
548
549 mutex_unlock(&opp_table->lock);
550
551 return opp;
552 }
553
554 /**
555 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
556 * @dev: device for which we do this operation
557 * @freq: Start frequency
558 *
559 * Search for the matching ceil *available* OPP from a starting freq
560 * for a device.
561 *
562 * Return: matching *opp and refreshes *freq accordingly, else returns
563 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
564 * values can be:
565 * EINVAL: for bad pointer
566 * ERANGE: no match found for search
567 * ENODEV: if device not found in list of registered devices
568 *
569 * The callers are required to call dev_pm_opp_put() for the returned OPP after
570 * use.
571 */
dev_pm_opp_find_freq_ceil(struct device * dev,unsigned long * freq)572 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
573 unsigned long *freq)
574 {
575 struct opp_table *opp_table;
576 struct dev_pm_opp *opp;
577
578 if (!dev || !freq) {
579 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
580 return ERR_PTR(-EINVAL);
581 }
582
583 opp_table = _find_opp_table(dev);
584 if (IS_ERR(opp_table))
585 return ERR_CAST(opp_table);
586
587 opp = _find_freq_ceil(opp_table, freq);
588
589 dev_pm_opp_put_opp_table(opp_table);
590
591 return opp;
592 }
593 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
594
595 /**
596 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
597 * @dev: device for which we do this operation
598 * @freq: Start frequency
599 *
600 * Search for the matching floor *available* OPP from a starting freq
601 * for a device.
602 *
603 * Return: matching *opp and refreshes *freq accordingly, else returns
604 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
605 * values can be:
606 * EINVAL: for bad pointer
607 * ERANGE: no match found for search
608 * ENODEV: if device not found in list of registered devices
609 *
610 * The callers are required to call dev_pm_opp_put() for the returned OPP after
611 * use.
612 */
dev_pm_opp_find_freq_floor(struct device * dev,unsigned long * freq)613 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
614 unsigned long *freq)
615 {
616 struct opp_table *opp_table;
617 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
618
619 if (!dev || !freq) {
620 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
621 return ERR_PTR(-EINVAL);
622 }
623
624 opp_table = _find_opp_table(dev);
625 if (IS_ERR(opp_table))
626 return ERR_CAST(opp_table);
627
628 mutex_lock(&opp_table->lock);
629
630 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
631 if (temp_opp->available) {
632 /* go to the next node, before choosing prev */
633 if (temp_opp->rate > *freq)
634 break;
635 else
636 opp = temp_opp;
637 }
638 }
639
640 /* Increment the reference count of OPP */
641 if (!IS_ERR(opp))
642 dev_pm_opp_get(opp);
643 mutex_unlock(&opp_table->lock);
644 dev_pm_opp_put_opp_table(opp_table);
645
646 if (!IS_ERR(opp))
647 *freq = opp->rate;
648
649 return opp;
650 }
651 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
652
653 /**
654 * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
655 * target voltage.
656 * @dev: Device for which we do this operation.
657 * @u_volt: Target voltage.
658 *
659 * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
660 *
661 * Return: matching *opp, else returns ERR_PTR in case of error which should be
662 * handled using IS_ERR.
663 *
664 * Error return values can be:
665 * EINVAL: bad parameters
666 *
667 * The callers are required to call dev_pm_opp_put() for the returned OPP after
668 * use.
669 */
dev_pm_opp_find_freq_ceil_by_volt(struct device * dev,unsigned long u_volt)670 struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
671 unsigned long u_volt)
672 {
673 struct opp_table *opp_table;
674 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
675
676 if (!dev || !u_volt) {
677 dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
678 u_volt);
679 return ERR_PTR(-EINVAL);
680 }
681
682 opp_table = _find_opp_table(dev);
683 if (IS_ERR(opp_table))
684 return ERR_CAST(opp_table);
685
686 mutex_lock(&opp_table->lock);
687
688 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
689 if (temp_opp->available) {
690 if (temp_opp->supplies[0].u_volt > u_volt)
691 break;
692 opp = temp_opp;
693 }
694 }
695
696 /* Increment the reference count of OPP */
697 if (!IS_ERR(opp))
698 dev_pm_opp_get(opp);
699
700 mutex_unlock(&opp_table->lock);
701 dev_pm_opp_put_opp_table(opp_table);
702
703 return opp;
704 }
705 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
706
_set_opp_voltage(struct device * dev,struct regulator * reg,struct dev_pm_opp_supply * supply)707 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
708 struct dev_pm_opp_supply *supply)
709 {
710 int ret;
711
712 /* Regulator not available for device */
713 if (IS_ERR(reg)) {
714 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
715 PTR_ERR(reg));
716 return 0;
717 }
718
719 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
720 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
721
722 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
723 supply->u_volt, supply->u_volt_max);
724 if (ret)
725 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
726 __func__, supply->u_volt_min, supply->u_volt,
727 supply->u_volt_max, ret);
728
729 return ret;
730 }
731
_generic_set_opp_clk_only(struct device * dev,struct clk * clk,unsigned long freq)732 static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
733 unsigned long freq)
734 {
735 int ret;
736
737 /* We may reach here for devices which don't change frequency */
738 if (IS_ERR(clk))
739 return 0;
740
741 ret = clk_set_rate(clk, freq);
742 if (ret) {
743 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
744 ret);
745 }
746
747 return ret;
748 }
749
_generic_set_opp_regulator(struct opp_table * opp_table,struct device * dev,struct dev_pm_opp * opp,unsigned long freq,int scaling_down)750 static int _generic_set_opp_regulator(struct opp_table *opp_table,
751 struct device *dev,
752 struct dev_pm_opp *opp,
753 unsigned long freq,
754 int scaling_down)
755 {
756 struct regulator *reg = opp_table->regulators[0];
757 struct dev_pm_opp *old_opp = opp_table->current_opp;
758 int ret;
759
760 /* This function only supports single regulator per device */
761 if (WARN_ON(opp_table->regulator_count > 1)) {
762 dev_err(dev, "multiple regulators are not supported\n");
763 return -EINVAL;
764 }
765
766 /* Scaling up? Scale voltage before frequency */
767 if (!scaling_down) {
768 ret = _set_opp_voltage(dev, reg, opp->supplies);
769 if (ret)
770 goto restore_voltage;
771 }
772
773 /* Change frequency */
774 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
775 if (ret)
776 goto restore_voltage;
777
778 /* Scaling down? Scale voltage after frequency */
779 if (scaling_down) {
780 ret = _set_opp_voltage(dev, reg, opp->supplies);
781 if (ret)
782 goto restore_freq;
783 }
784
785 /*
786 * Enable the regulator after setting its voltages, otherwise it breaks
787 * some boot-enabled regulators.
788 */
789 if (unlikely(!opp_table->enabled)) {
790 ret = regulator_enable(reg);
791 if (ret < 0)
792 dev_warn(dev, "Failed to enable regulator: %d", ret);
793 }
794
795 return 0;
796
797 restore_freq:
798 if (_generic_set_opp_clk_only(dev, opp_table->clk, old_opp->rate))
799 dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
800 __func__, old_opp->rate);
801 restore_voltage:
802 /* This shouldn't harm even if the voltages weren't updated earlier */
803 _set_opp_voltage(dev, reg, old_opp->supplies);
804
805 return ret;
806 }
807
_set_opp_bw(const struct opp_table * opp_table,struct dev_pm_opp * opp,struct device * dev)808 static int _set_opp_bw(const struct opp_table *opp_table,
809 struct dev_pm_opp *opp, struct device *dev)
810 {
811 u32 avg, peak;
812 int i, ret;
813
814 if (!opp_table->paths)
815 return 0;
816
817 for (i = 0; i < opp_table->path_count; i++) {
818 if (!opp) {
819 avg = 0;
820 peak = 0;
821 } else {
822 avg = opp->bandwidth[i].avg;
823 peak = opp->bandwidth[i].peak;
824 }
825 ret = icc_set_bw(opp_table->paths[i], avg, peak);
826 if (ret) {
827 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
828 opp ? "set" : "remove", i, ret);
829 return ret;
830 }
831 }
832
833 return 0;
834 }
835
_set_opp_custom(const struct opp_table * opp_table,struct device * dev,struct dev_pm_opp * opp,unsigned long freq)836 static int _set_opp_custom(const struct opp_table *opp_table,
837 struct device *dev, struct dev_pm_opp *opp,
838 unsigned long freq)
839 {
840 struct dev_pm_set_opp_data *data = opp_table->set_opp_data;
841 struct dev_pm_opp *old_opp = opp_table->current_opp;
842 int size;
843
844 /*
845 * We support this only if dev_pm_opp_set_regulators() was called
846 * earlier.
847 */
848 if (opp_table->sod_supplies) {
849 size = sizeof(*old_opp->supplies) * opp_table->regulator_count;
850 memcpy(data->old_opp.supplies, old_opp->supplies, size);
851 memcpy(data->new_opp.supplies, opp->supplies, size);
852 data->regulator_count = opp_table->regulator_count;
853 } else {
854 data->regulator_count = 0;
855 }
856
857 data->regulators = opp_table->regulators;
858 data->clk = opp_table->clk;
859 data->dev = dev;
860 data->old_opp.rate = old_opp->rate;
861 data->new_opp.rate = freq;
862
863 return opp_table->set_opp(data);
864 }
865
_set_required_opp(struct device * dev,struct device * pd_dev,struct dev_pm_opp * opp,int i)866 static int _set_required_opp(struct device *dev, struct device *pd_dev,
867 struct dev_pm_opp *opp, int i)
868 {
869 unsigned int pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
870 int ret;
871
872 if (!pd_dev)
873 return 0;
874
875 ret = dev_pm_genpd_set_performance_state(pd_dev, pstate);
876 if (ret) {
877 dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
878 dev_name(pd_dev), pstate, ret);
879 }
880
881 return ret;
882 }
883
884 /* This is only called for PM domain for now */
_set_required_opps(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,bool up)885 static int _set_required_opps(struct device *dev,
886 struct opp_table *opp_table,
887 struct dev_pm_opp *opp, bool up)
888 {
889 struct opp_table **required_opp_tables = opp_table->required_opp_tables;
890 struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
891 int i, ret = 0;
892
893 if (!required_opp_tables)
894 return 0;
895
896 /* required-opps not fully initialized yet */
897 if (lazy_linking_pending(opp_table))
898 return -EBUSY;
899
900 /*
901 * We only support genpd's OPPs in the "required-opps" for now, as we
902 * don't know much about other use cases. Error out if the required OPP
903 * doesn't belong to a genpd.
904 */
905 if (unlikely(!required_opp_tables[0]->is_genpd)) {
906 dev_err(dev, "required-opps don't belong to a genpd\n");
907 return -ENOENT;
908 }
909
910 /* Single genpd case */
911 if (!genpd_virt_devs)
912 return _set_required_opp(dev, dev, opp, 0);
913
914 /* Multiple genpd case */
915
916 /*
917 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
918 * after it is freed from another thread.
919 */
920 mutex_lock(&opp_table->genpd_virt_dev_lock);
921
922 /* Scaling up? Set required OPPs in normal order, else reverse */
923 if (up) {
924 for (i = 0; i < opp_table->required_opp_count; i++) {
925 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
926 if (ret)
927 break;
928 }
929 } else {
930 for (i = opp_table->required_opp_count - 1; i >= 0; i--) {
931 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
932 if (ret)
933 break;
934 }
935 }
936
937 mutex_unlock(&opp_table->genpd_virt_dev_lock);
938
939 return ret;
940 }
941
_find_current_opp(struct device * dev,struct opp_table * opp_table)942 static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
943 {
944 struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
945 unsigned long freq;
946
947 if (!IS_ERR(opp_table->clk)) {
948 freq = clk_get_rate(opp_table->clk);
949 opp = _find_freq_ceil(opp_table, &freq);
950 }
951
952 /*
953 * Unable to find the current OPP ? Pick the first from the list since
954 * it is in ascending order, otherwise rest of the code will need to
955 * make special checks to validate current_opp.
956 */
957 if (IS_ERR(opp)) {
958 mutex_lock(&opp_table->lock);
959 opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
960 dev_pm_opp_get(opp);
961 mutex_unlock(&opp_table->lock);
962 }
963
964 opp_table->current_opp = opp;
965 }
966
_disable_opp_table(struct device * dev,struct opp_table * opp_table)967 static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
968 {
969 int ret;
970
971 if (!opp_table->enabled)
972 return 0;
973
974 /*
975 * Some drivers need to support cases where some platforms may
976 * have OPP table for the device, while others don't and
977 * opp_set_rate() just needs to behave like clk_set_rate().
978 */
979 if (!_get_opp_count(opp_table))
980 return 0;
981
982 ret = _set_opp_bw(opp_table, NULL, dev);
983 if (ret)
984 return ret;
985
986 if (opp_table->regulators)
987 regulator_disable(opp_table->regulators[0]);
988
989 ret = _set_required_opps(dev, opp_table, NULL, false);
990
991 opp_table->enabled = false;
992 return ret;
993 }
994
_set_opp(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,unsigned long freq)995 static int _set_opp(struct device *dev, struct opp_table *opp_table,
996 struct dev_pm_opp *opp, unsigned long freq)
997 {
998 struct dev_pm_opp *old_opp;
999 int scaling_down, ret;
1000
1001 if (unlikely(!opp))
1002 return _disable_opp_table(dev, opp_table);
1003
1004 /* Find the currently set OPP if we don't know already */
1005 if (unlikely(!opp_table->current_opp))
1006 _find_current_opp(dev, opp_table);
1007
1008 old_opp = opp_table->current_opp;
1009
1010 /* Return early if nothing to do */
1011 if (old_opp == opp && opp_table->current_rate == freq &&
1012 opp_table->enabled) {
1013 dev_dbg(dev, "%s: OPPs are same, nothing to do\n", __func__);
1014 return 0;
1015 }
1016
1017 dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1018 __func__, opp_table->current_rate, freq, old_opp->level,
1019 opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1020 opp->bandwidth ? opp->bandwidth[0].peak : 0);
1021
1022 scaling_down = _opp_compare_key(old_opp, opp);
1023 if (scaling_down == -1)
1024 scaling_down = 0;
1025
1026 /* Scaling up? Configure required OPPs before frequency */
1027 if (!scaling_down) {
1028 ret = _set_required_opps(dev, opp_table, opp, true);
1029 if (ret) {
1030 dev_err(dev, "Failed to set required opps: %d\n", ret);
1031 return ret;
1032 }
1033
1034 ret = _set_opp_bw(opp_table, opp, dev);
1035 if (ret) {
1036 dev_err(dev, "Failed to set bw: %d\n", ret);
1037 return ret;
1038 }
1039 }
1040
1041 if (opp_table->set_opp) {
1042 ret = _set_opp_custom(opp_table, dev, opp, freq);
1043 } else if (opp_table->regulators) {
1044 ret = _generic_set_opp_regulator(opp_table, dev, opp, freq,
1045 scaling_down);
1046 } else {
1047 /* Only frequency scaling */
1048 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
1049 }
1050
1051 if (ret)
1052 return ret;
1053
1054 /* Scaling down? Configure required OPPs after frequency */
1055 if (scaling_down) {
1056 ret = _set_opp_bw(opp_table, opp, dev);
1057 if (ret) {
1058 dev_err(dev, "Failed to set bw: %d\n", ret);
1059 return ret;
1060 }
1061
1062 ret = _set_required_opps(dev, opp_table, opp, false);
1063 if (ret) {
1064 dev_err(dev, "Failed to set required opps: %d\n", ret);
1065 return ret;
1066 }
1067 }
1068
1069 opp_table->enabled = true;
1070 dev_pm_opp_put(old_opp);
1071
1072 /* Make sure current_opp doesn't get freed */
1073 dev_pm_opp_get(opp);
1074 opp_table->current_opp = opp;
1075 opp_table->current_rate = freq;
1076
1077 return ret;
1078 }
1079
1080 /**
1081 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1082 * @dev: device for which we do this operation
1083 * @target_freq: frequency to achieve
1084 *
1085 * This configures the power-supplies to the levels specified by the OPP
1086 * corresponding to the target_freq, and programs the clock to a value <=
1087 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1088 * provided by the opp, should have already rounded to the target OPP's
1089 * frequency.
1090 */
dev_pm_opp_set_rate(struct device * dev,unsigned long target_freq)1091 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1092 {
1093 struct opp_table *opp_table;
1094 unsigned long freq = 0, temp_freq;
1095 struct dev_pm_opp *opp = NULL;
1096 int ret;
1097
1098 opp_table = _find_opp_table(dev);
1099 if (IS_ERR(opp_table)) {
1100 dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1101 return PTR_ERR(opp_table);
1102 }
1103
1104 if (target_freq) {
1105 /*
1106 * For IO devices which require an OPP on some platforms/SoCs
1107 * while just needing to scale the clock on some others
1108 * we look for empty OPP tables with just a clock handle and
1109 * scale only the clk. This makes dev_pm_opp_set_rate()
1110 * equivalent to a clk_set_rate()
1111 */
1112 if (!_get_opp_count(opp_table)) {
1113 ret = _generic_set_opp_clk_only(dev, opp_table->clk, target_freq);
1114 goto put_opp_table;
1115 }
1116
1117 freq = clk_round_rate(opp_table->clk, target_freq);
1118 if ((long)freq <= 0)
1119 freq = target_freq;
1120
1121 /*
1122 * The clock driver may support finer resolution of the
1123 * frequencies than the OPP table, don't update the frequency we
1124 * pass to clk_set_rate() here.
1125 */
1126 temp_freq = freq;
1127 opp = _find_freq_ceil(opp_table, &temp_freq);
1128 if (IS_ERR(opp)) {
1129 ret = PTR_ERR(opp);
1130 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1131 __func__, freq, ret);
1132 goto put_opp_table;
1133 }
1134 }
1135
1136 ret = _set_opp(dev, opp_table, opp, freq);
1137
1138 if (target_freq)
1139 dev_pm_opp_put(opp);
1140 put_opp_table:
1141 dev_pm_opp_put_opp_table(opp_table);
1142 return ret;
1143 }
1144 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1145
1146 /**
1147 * dev_pm_opp_set_opp() - Configure device for OPP
1148 * @dev: device for which we do this operation
1149 * @opp: OPP to set to
1150 *
1151 * This configures the device based on the properties of the OPP passed to this
1152 * routine.
1153 *
1154 * Return: 0 on success, a negative error number otherwise.
1155 */
dev_pm_opp_set_opp(struct device * dev,struct dev_pm_opp * opp)1156 int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1157 {
1158 struct opp_table *opp_table;
1159 int ret;
1160
1161 opp_table = _find_opp_table(dev);
1162 if (IS_ERR(opp_table)) {
1163 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1164 return PTR_ERR(opp_table);
1165 }
1166
1167 ret = _set_opp(dev, opp_table, opp, opp ? opp->rate : 0);
1168 dev_pm_opp_put_opp_table(opp_table);
1169
1170 return ret;
1171 }
1172 EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1173
1174 /* OPP-dev Helpers */
_remove_opp_dev(struct opp_device * opp_dev,struct opp_table * opp_table)1175 static void _remove_opp_dev(struct opp_device *opp_dev,
1176 struct opp_table *opp_table)
1177 {
1178 opp_debug_unregister(opp_dev, opp_table);
1179 list_del(&opp_dev->node);
1180 kfree(opp_dev);
1181 }
1182
_add_opp_dev(const struct device * dev,struct opp_table * opp_table)1183 struct opp_device *_add_opp_dev(const struct device *dev,
1184 struct opp_table *opp_table)
1185 {
1186 struct opp_device *opp_dev;
1187
1188 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1189 if (!opp_dev)
1190 return NULL;
1191
1192 /* Initialize opp-dev */
1193 opp_dev->dev = dev;
1194
1195 mutex_lock(&opp_table->lock);
1196 list_add(&opp_dev->node, &opp_table->dev_list);
1197 mutex_unlock(&opp_table->lock);
1198
1199 /* Create debugfs entries for the opp_table */
1200 opp_debug_register(opp_dev, opp_table);
1201
1202 return opp_dev;
1203 }
1204
_allocate_opp_table(struct device * dev,int index)1205 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1206 {
1207 struct opp_table *opp_table;
1208 struct opp_device *opp_dev;
1209 int ret;
1210
1211 /*
1212 * Allocate a new OPP table. In the infrequent case where a new
1213 * device is needed to be added, we pay this penalty.
1214 */
1215 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1216 if (!opp_table)
1217 return ERR_PTR(-ENOMEM);
1218
1219 mutex_init(&opp_table->lock);
1220 mutex_init(&opp_table->genpd_virt_dev_lock);
1221 INIT_LIST_HEAD(&opp_table->dev_list);
1222 INIT_LIST_HEAD(&opp_table->lazy);
1223
1224 /* Mark regulator count uninitialized */
1225 opp_table->regulator_count = -1;
1226
1227 opp_dev = _add_opp_dev(dev, opp_table);
1228 if (!opp_dev) {
1229 ret = -ENOMEM;
1230 goto err;
1231 }
1232
1233 _of_init_opp_table(opp_table, dev, index);
1234
1235 /* Find interconnect path(s) for the device */
1236 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1237 if (ret) {
1238 if (ret == -EPROBE_DEFER)
1239 goto remove_opp_dev;
1240
1241 dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1242 __func__, ret);
1243 }
1244
1245 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1246 INIT_LIST_HEAD(&opp_table->opp_list);
1247 kref_init(&opp_table->kref);
1248
1249 return opp_table;
1250
1251 remove_opp_dev:
1252 _of_clear_opp_table(opp_table);
1253 _remove_opp_dev(opp_dev, opp_table);
1254 mutex_destroy(&opp_table->genpd_virt_dev_lock);
1255 mutex_destroy(&opp_table->lock);
1256 err:
1257 kfree(opp_table);
1258 return ERR_PTR(ret);
1259 }
1260
_get_opp_table_kref(struct opp_table * opp_table)1261 void _get_opp_table_kref(struct opp_table *opp_table)
1262 {
1263 kref_get(&opp_table->kref);
1264 }
1265
_update_opp_table_clk(struct device * dev,struct opp_table * opp_table,bool getclk)1266 static struct opp_table *_update_opp_table_clk(struct device *dev,
1267 struct opp_table *opp_table,
1268 bool getclk)
1269 {
1270 int ret;
1271
1272 /*
1273 * Return early if we don't need to get clk or we have already tried it
1274 * earlier.
1275 */
1276 if (!getclk || IS_ERR(opp_table) || opp_table->clk)
1277 return opp_table;
1278
1279 /* Find clk for the device */
1280 opp_table->clk = clk_get(dev, NULL);
1281
1282 ret = PTR_ERR_OR_ZERO(opp_table->clk);
1283 if (!ret)
1284 return opp_table;
1285
1286 if (ret == -ENOENT) {
1287 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1288 return opp_table;
1289 }
1290
1291 dev_pm_opp_put_opp_table(opp_table);
1292 dev_err_probe(dev, ret, "Couldn't find clock\n");
1293
1294 return ERR_PTR(ret);
1295 }
1296
1297 /*
1298 * We need to make sure that the OPP table for a device doesn't get added twice,
1299 * if this routine gets called in parallel with the same device pointer.
1300 *
1301 * The simplest way to enforce that is to perform everything (find existing
1302 * table and if not found, create a new one) under the opp_table_lock, so only
1303 * one creator gets access to the same. But that expands the critical section
1304 * under the lock and may end up causing circular dependencies with frameworks
1305 * like debugfs, interconnect or clock framework as they may be direct or
1306 * indirect users of OPP core.
1307 *
1308 * And for that reason we have to go for a bit tricky implementation here, which
1309 * uses the opp_tables_busy flag to indicate if another creator is in the middle
1310 * of adding an OPP table and others should wait for it to finish.
1311 */
_add_opp_table_indexed(struct device * dev,int index,bool getclk)1312 struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1313 bool getclk)
1314 {
1315 struct opp_table *opp_table;
1316
1317 again:
1318 mutex_lock(&opp_table_lock);
1319
1320 opp_table = _find_opp_table_unlocked(dev);
1321 if (!IS_ERR(opp_table))
1322 goto unlock;
1323
1324 /*
1325 * The opp_tables list or an OPP table's dev_list is getting updated by
1326 * another user, wait for it to finish.
1327 */
1328 if (unlikely(opp_tables_busy)) {
1329 mutex_unlock(&opp_table_lock);
1330 cpu_relax();
1331 goto again;
1332 }
1333
1334 opp_tables_busy = true;
1335 opp_table = _managed_opp(dev, index);
1336
1337 /* Drop the lock to reduce the size of critical section */
1338 mutex_unlock(&opp_table_lock);
1339
1340 if (opp_table) {
1341 if (!_add_opp_dev(dev, opp_table)) {
1342 dev_pm_opp_put_opp_table(opp_table);
1343 opp_table = ERR_PTR(-ENOMEM);
1344 }
1345
1346 mutex_lock(&opp_table_lock);
1347 } else {
1348 opp_table = _allocate_opp_table(dev, index);
1349
1350 mutex_lock(&opp_table_lock);
1351 if (!IS_ERR(opp_table))
1352 list_add(&opp_table->node, &opp_tables);
1353 }
1354
1355 opp_tables_busy = false;
1356
1357 unlock:
1358 mutex_unlock(&opp_table_lock);
1359
1360 return _update_opp_table_clk(dev, opp_table, getclk);
1361 }
1362
_add_opp_table(struct device * dev,bool getclk)1363 static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1364 {
1365 return _add_opp_table_indexed(dev, 0, getclk);
1366 }
1367
dev_pm_opp_get_opp_table(struct device * dev)1368 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1369 {
1370 return _find_opp_table(dev);
1371 }
1372 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1373
_opp_table_kref_release(struct kref * kref)1374 static void _opp_table_kref_release(struct kref *kref)
1375 {
1376 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1377 struct opp_device *opp_dev, *temp;
1378 int i;
1379
1380 /* Drop the lock as soon as we can */
1381 list_del(&opp_table->node);
1382 mutex_unlock(&opp_table_lock);
1383
1384 if (opp_table->current_opp)
1385 dev_pm_opp_put(opp_table->current_opp);
1386
1387 _of_clear_opp_table(opp_table);
1388
1389 /* Release clk */
1390 if (!IS_ERR(opp_table->clk))
1391 clk_put(opp_table->clk);
1392
1393 if (opp_table->paths) {
1394 for (i = 0; i < opp_table->path_count; i++)
1395 icc_put(opp_table->paths[i]);
1396 kfree(opp_table->paths);
1397 }
1398
1399 WARN_ON(!list_empty(&opp_table->opp_list));
1400
1401 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1402 /*
1403 * The OPP table is getting removed, drop the performance state
1404 * constraints.
1405 */
1406 if (opp_table->genpd_performance_state)
1407 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1408
1409 _remove_opp_dev(opp_dev, opp_table);
1410 }
1411
1412 mutex_destroy(&opp_table->genpd_virt_dev_lock);
1413 mutex_destroy(&opp_table->lock);
1414 kfree(opp_table);
1415 }
1416
dev_pm_opp_put_opp_table(struct opp_table * opp_table)1417 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1418 {
1419 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1420 &opp_table_lock);
1421 }
1422 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1423
_opp_free(struct dev_pm_opp * opp)1424 void _opp_free(struct dev_pm_opp *opp)
1425 {
1426 kfree(opp);
1427 }
1428
_opp_kref_release(struct kref * kref)1429 static void _opp_kref_release(struct kref *kref)
1430 {
1431 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1432 struct opp_table *opp_table = opp->opp_table;
1433
1434 list_del(&opp->node);
1435 mutex_unlock(&opp_table->lock);
1436
1437 /*
1438 * Notify the changes in the availability of the operable
1439 * frequency/voltage list.
1440 */
1441 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1442 _of_opp_free_required_opps(opp_table, opp);
1443 opp_debug_remove_one(opp);
1444 kfree(opp);
1445 }
1446
dev_pm_opp_get(struct dev_pm_opp * opp)1447 void dev_pm_opp_get(struct dev_pm_opp *opp)
1448 {
1449 kref_get(&opp->kref);
1450 }
1451
dev_pm_opp_put(struct dev_pm_opp * opp)1452 void dev_pm_opp_put(struct dev_pm_opp *opp)
1453 {
1454 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1455 }
1456 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1457
1458 /**
1459 * dev_pm_opp_remove() - Remove an OPP from OPP table
1460 * @dev: device for which we do this operation
1461 * @freq: OPP to remove with matching 'freq'
1462 *
1463 * This function removes an opp from the opp table.
1464 */
dev_pm_opp_remove(struct device * dev,unsigned long freq)1465 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1466 {
1467 struct dev_pm_opp *opp;
1468 struct opp_table *opp_table;
1469 bool found = false;
1470
1471 opp_table = _find_opp_table(dev);
1472 if (IS_ERR(opp_table))
1473 return;
1474
1475 mutex_lock(&opp_table->lock);
1476
1477 list_for_each_entry(opp, &opp_table->opp_list, node) {
1478 if (opp->rate == freq) {
1479 found = true;
1480 break;
1481 }
1482 }
1483
1484 mutex_unlock(&opp_table->lock);
1485
1486 if (found) {
1487 dev_pm_opp_put(opp);
1488
1489 /* Drop the reference taken by dev_pm_opp_add() */
1490 dev_pm_opp_put_opp_table(opp_table);
1491 } else {
1492 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1493 __func__, freq);
1494 }
1495
1496 /* Drop the reference taken by _find_opp_table() */
1497 dev_pm_opp_put_opp_table(opp_table);
1498 }
1499 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1500
_opp_get_next(struct opp_table * opp_table,bool dynamic)1501 static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1502 bool dynamic)
1503 {
1504 struct dev_pm_opp *opp = NULL, *temp;
1505
1506 mutex_lock(&opp_table->lock);
1507 list_for_each_entry(temp, &opp_table->opp_list, node) {
1508 /*
1509 * Refcount must be dropped only once for each OPP by OPP core,
1510 * do that with help of "removed" flag.
1511 */
1512 if (!temp->removed && dynamic == temp->dynamic) {
1513 opp = temp;
1514 break;
1515 }
1516 }
1517
1518 mutex_unlock(&opp_table->lock);
1519 return opp;
1520 }
1521
1522 /*
1523 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1524 * happen lock less to avoid circular dependency issues. This routine must be
1525 * called without the opp_table->lock held.
1526 */
_opp_remove_all(struct opp_table * opp_table,bool dynamic)1527 static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1528 {
1529 struct dev_pm_opp *opp;
1530
1531 while ((opp = _opp_get_next(opp_table, dynamic))) {
1532 opp->removed = true;
1533 dev_pm_opp_put(opp);
1534
1535 /* Drop the references taken by dev_pm_opp_add() */
1536 if (dynamic)
1537 dev_pm_opp_put_opp_table(opp_table);
1538 }
1539 }
1540
_opp_remove_all_static(struct opp_table * opp_table)1541 bool _opp_remove_all_static(struct opp_table *opp_table)
1542 {
1543 mutex_lock(&opp_table->lock);
1544
1545 if (!opp_table->parsed_static_opps) {
1546 mutex_unlock(&opp_table->lock);
1547 return false;
1548 }
1549
1550 if (--opp_table->parsed_static_opps) {
1551 mutex_unlock(&opp_table->lock);
1552 return true;
1553 }
1554
1555 mutex_unlock(&opp_table->lock);
1556
1557 _opp_remove_all(opp_table, false);
1558 return true;
1559 }
1560
1561 /**
1562 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1563 * @dev: device for which we do this operation
1564 *
1565 * This function removes all dynamically created OPPs from the opp table.
1566 */
dev_pm_opp_remove_all_dynamic(struct device * dev)1567 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1568 {
1569 struct opp_table *opp_table;
1570
1571 opp_table = _find_opp_table(dev);
1572 if (IS_ERR(opp_table))
1573 return;
1574
1575 _opp_remove_all(opp_table, true);
1576
1577 /* Drop the reference taken by _find_opp_table() */
1578 dev_pm_opp_put_opp_table(opp_table);
1579 }
1580 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1581
_opp_allocate(struct opp_table * table)1582 struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1583 {
1584 struct dev_pm_opp *opp;
1585 int supply_count, supply_size, icc_size;
1586
1587 /* Allocate space for at least one supply */
1588 supply_count = table->regulator_count > 0 ? table->regulator_count : 1;
1589 supply_size = sizeof(*opp->supplies) * supply_count;
1590 icc_size = sizeof(*opp->bandwidth) * table->path_count;
1591
1592 /* allocate new OPP node and supplies structures */
1593 opp = kzalloc(sizeof(*opp) + supply_size + icc_size, GFP_KERNEL);
1594
1595 if (!opp)
1596 return NULL;
1597
1598 /* Put the supplies at the end of the OPP structure as an empty array */
1599 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1600 if (icc_size)
1601 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->supplies + supply_count);
1602 INIT_LIST_HEAD(&opp->node);
1603
1604 return opp;
1605 }
1606
_opp_supported_by_regulators(struct dev_pm_opp * opp,struct opp_table * opp_table)1607 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1608 struct opp_table *opp_table)
1609 {
1610 struct regulator *reg;
1611 int i;
1612
1613 if (!opp_table->regulators)
1614 return true;
1615
1616 for (i = 0; i < opp_table->regulator_count; i++) {
1617 reg = opp_table->regulators[i];
1618
1619 if (!regulator_is_supported_voltage(reg,
1620 opp->supplies[i].u_volt_min,
1621 opp->supplies[i].u_volt_max)) {
1622 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1623 __func__, opp->supplies[i].u_volt_min,
1624 opp->supplies[i].u_volt_max);
1625 return false;
1626 }
1627 }
1628
1629 return true;
1630 }
1631
_opp_compare_key(struct dev_pm_opp * opp1,struct dev_pm_opp * opp2)1632 int _opp_compare_key(struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1633 {
1634 if (opp1->rate != opp2->rate)
1635 return opp1->rate < opp2->rate ? -1 : 1;
1636 if (opp1->bandwidth && opp2->bandwidth &&
1637 opp1->bandwidth[0].peak != opp2->bandwidth[0].peak)
1638 return opp1->bandwidth[0].peak < opp2->bandwidth[0].peak ? -1 : 1;
1639 if (opp1->level != opp2->level)
1640 return opp1->level < opp2->level ? -1 : 1;
1641 return 0;
1642 }
1643
_opp_is_duplicate(struct device * dev,struct dev_pm_opp * new_opp,struct opp_table * opp_table,struct list_head ** head)1644 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1645 struct opp_table *opp_table,
1646 struct list_head **head)
1647 {
1648 struct dev_pm_opp *opp;
1649 int opp_cmp;
1650
1651 /*
1652 * Insert new OPP in order of increasing frequency and discard if
1653 * already present.
1654 *
1655 * Need to use &opp_table->opp_list in the condition part of the 'for'
1656 * loop, don't replace it with head otherwise it will become an infinite
1657 * loop.
1658 */
1659 list_for_each_entry(opp, &opp_table->opp_list, node) {
1660 opp_cmp = _opp_compare_key(new_opp, opp);
1661 if (opp_cmp > 0) {
1662 *head = &opp->node;
1663 continue;
1664 }
1665
1666 if (opp_cmp < 0)
1667 return 0;
1668
1669 /* Duplicate OPPs */
1670 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1671 __func__, opp->rate, opp->supplies[0].u_volt,
1672 opp->available, new_opp->rate,
1673 new_opp->supplies[0].u_volt, new_opp->available);
1674
1675 /* Should we compare voltages for all regulators here ? */
1676 return opp->available &&
1677 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1678 }
1679
1680 return 0;
1681 }
1682
_required_opps_available(struct dev_pm_opp * opp,int count)1683 void _required_opps_available(struct dev_pm_opp *opp, int count)
1684 {
1685 int i;
1686
1687 for (i = 0; i < count; i++) {
1688 if (opp->required_opps[i]->available)
1689 continue;
1690
1691 opp->available = false;
1692 pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1693 __func__, opp->required_opps[i]->np, opp->rate);
1694 return;
1695 }
1696 }
1697
1698 /*
1699 * Returns:
1700 * 0: On success. And appropriate error message for duplicate OPPs.
1701 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1702 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1703 * sure we don't print error messages unnecessarily if different parts of
1704 * kernel try to initialize the OPP table.
1705 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1706 * should be considered an error by the callers of _opp_add().
1707 */
_opp_add(struct device * dev,struct dev_pm_opp * new_opp,struct opp_table * opp_table,bool rate_not_available)1708 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1709 struct opp_table *opp_table, bool rate_not_available)
1710 {
1711 struct list_head *head;
1712 int ret;
1713
1714 mutex_lock(&opp_table->lock);
1715 head = &opp_table->opp_list;
1716
1717 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1718 if (ret) {
1719 mutex_unlock(&opp_table->lock);
1720 return ret;
1721 }
1722
1723 list_add(&new_opp->node, head);
1724 mutex_unlock(&opp_table->lock);
1725
1726 new_opp->opp_table = opp_table;
1727 kref_init(&new_opp->kref);
1728
1729 opp_debug_create_one(new_opp, opp_table);
1730
1731 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1732 new_opp->available = false;
1733 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1734 __func__, new_opp->rate);
1735 }
1736
1737 /* required-opps not fully initialized yet */
1738 if (lazy_linking_pending(opp_table))
1739 return 0;
1740
1741 _required_opps_available(new_opp, opp_table->required_opp_count);
1742
1743 return 0;
1744 }
1745
1746 /**
1747 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1748 * @opp_table: OPP table
1749 * @dev: device for which we do this operation
1750 * @freq: Frequency in Hz for this OPP
1751 * @u_volt: Voltage in uVolts for this OPP
1752 * @dynamic: Dynamically added OPPs.
1753 *
1754 * This function adds an opp definition to the opp table and returns status.
1755 * The opp is made available by default and it can be controlled using
1756 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1757 *
1758 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1759 * and freed by dev_pm_opp_of_remove_table.
1760 *
1761 * Return:
1762 * 0 On success OR
1763 * Duplicate OPPs (both freq and volt are same) and opp->available
1764 * -EEXIST Freq are same and volt are different OR
1765 * Duplicate OPPs (both freq and volt are same) and !opp->available
1766 * -ENOMEM Memory allocation failure
1767 */
_opp_add_v1(struct opp_table * opp_table,struct device * dev,unsigned long freq,long u_volt,bool dynamic)1768 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1769 unsigned long freq, long u_volt, bool dynamic)
1770 {
1771 struct dev_pm_opp *new_opp;
1772 unsigned long tol;
1773 int ret;
1774
1775 new_opp = _opp_allocate(opp_table);
1776 if (!new_opp)
1777 return -ENOMEM;
1778
1779 /* populate the opp table */
1780 new_opp->rate = freq;
1781 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1782 new_opp->supplies[0].u_volt = u_volt;
1783 new_opp->supplies[0].u_volt_min = u_volt - tol;
1784 new_opp->supplies[0].u_volt_max = u_volt + tol;
1785 new_opp->available = true;
1786 new_opp->dynamic = dynamic;
1787
1788 ret = _opp_add(dev, new_opp, opp_table, false);
1789 if (ret) {
1790 /* Don't return error for duplicate OPPs */
1791 if (ret == -EBUSY)
1792 ret = 0;
1793 goto free_opp;
1794 }
1795
1796 /*
1797 * Notify the changes in the availability of the operable
1798 * frequency/voltage list.
1799 */
1800 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1801 return 0;
1802
1803 free_opp:
1804 _opp_free(new_opp);
1805
1806 return ret;
1807 }
1808
1809 /**
1810 * dev_pm_opp_set_supported_hw() - Set supported platforms
1811 * @dev: Device for which supported-hw has to be set.
1812 * @versions: Array of hierarchy of versions to match.
1813 * @count: Number of elements in the array.
1814 *
1815 * This is required only for the V2 bindings, and it enables a platform to
1816 * specify the hierarchy of versions it supports. OPP layer will then enable
1817 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1818 * property.
1819 */
dev_pm_opp_set_supported_hw(struct device * dev,const u32 * versions,unsigned int count)1820 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1821 const u32 *versions, unsigned int count)
1822 {
1823 struct opp_table *opp_table;
1824
1825 opp_table = _add_opp_table(dev, false);
1826 if (IS_ERR(opp_table))
1827 return opp_table;
1828
1829 /* Make sure there are no concurrent readers while updating opp_table */
1830 WARN_ON(!list_empty(&opp_table->opp_list));
1831
1832 /* Another CPU that shares the OPP table has set the property ? */
1833 if (opp_table->supported_hw)
1834 return opp_table;
1835
1836 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1837 GFP_KERNEL);
1838 if (!opp_table->supported_hw) {
1839 dev_pm_opp_put_opp_table(opp_table);
1840 return ERR_PTR(-ENOMEM);
1841 }
1842
1843 opp_table->supported_hw_count = count;
1844
1845 return opp_table;
1846 }
1847 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1848
1849 /**
1850 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1851 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1852 *
1853 * This is required only for the V2 bindings, and is called for a matching
1854 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1855 * will not be freed.
1856 */
dev_pm_opp_put_supported_hw(struct opp_table * opp_table)1857 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1858 {
1859 if (unlikely(!opp_table))
1860 return;
1861
1862 kfree(opp_table->supported_hw);
1863 opp_table->supported_hw = NULL;
1864 opp_table->supported_hw_count = 0;
1865
1866 dev_pm_opp_put_opp_table(opp_table);
1867 }
1868 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1869
devm_pm_opp_supported_hw_release(void * data)1870 static void devm_pm_opp_supported_hw_release(void *data)
1871 {
1872 dev_pm_opp_put_supported_hw(data);
1873 }
1874
1875 /**
1876 * devm_pm_opp_set_supported_hw() - Set supported platforms
1877 * @dev: Device for which supported-hw has to be set.
1878 * @versions: Array of hierarchy of versions to match.
1879 * @count: Number of elements in the array.
1880 *
1881 * This is a resource-managed variant of dev_pm_opp_set_supported_hw().
1882 *
1883 * Return: 0 on success and errorno otherwise.
1884 */
devm_pm_opp_set_supported_hw(struct device * dev,const u32 * versions,unsigned int count)1885 int devm_pm_opp_set_supported_hw(struct device *dev, const u32 *versions,
1886 unsigned int count)
1887 {
1888 struct opp_table *opp_table;
1889
1890 opp_table = dev_pm_opp_set_supported_hw(dev, versions, count);
1891 if (IS_ERR(opp_table))
1892 return PTR_ERR(opp_table);
1893
1894 return devm_add_action_or_reset(dev, devm_pm_opp_supported_hw_release,
1895 opp_table);
1896 }
1897 EXPORT_SYMBOL_GPL(devm_pm_opp_set_supported_hw);
1898
1899 /**
1900 * dev_pm_opp_set_prop_name() - Set prop-extn name
1901 * @dev: Device for which the prop-name has to be set.
1902 * @name: name to postfix to properties.
1903 *
1904 * This is required only for the V2 bindings, and it enables a platform to
1905 * specify the extn to be used for certain property names. The properties to
1906 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1907 * should postfix the property name with -<name> while looking for them.
1908 */
dev_pm_opp_set_prop_name(struct device * dev,const char * name)1909 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1910 {
1911 struct opp_table *opp_table;
1912
1913 opp_table = _add_opp_table(dev, false);
1914 if (IS_ERR(opp_table))
1915 return opp_table;
1916
1917 /* Make sure there are no concurrent readers while updating opp_table */
1918 WARN_ON(!list_empty(&opp_table->opp_list));
1919
1920 /* Another CPU that shares the OPP table has set the property ? */
1921 if (opp_table->prop_name)
1922 return opp_table;
1923
1924 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1925 if (!opp_table->prop_name) {
1926 dev_pm_opp_put_opp_table(opp_table);
1927 return ERR_PTR(-ENOMEM);
1928 }
1929
1930 return opp_table;
1931 }
1932 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1933
1934 /**
1935 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1936 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1937 *
1938 * This is required only for the V2 bindings, and is called for a matching
1939 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1940 * will not be freed.
1941 */
dev_pm_opp_put_prop_name(struct opp_table * opp_table)1942 void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1943 {
1944 if (unlikely(!opp_table))
1945 return;
1946
1947 kfree(opp_table->prop_name);
1948 opp_table->prop_name = NULL;
1949
1950 dev_pm_opp_put_opp_table(opp_table);
1951 }
1952 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1953
1954 /**
1955 * dev_pm_opp_set_regulators() - Set regulator names for the device
1956 * @dev: Device for which regulator name is being set.
1957 * @names: Array of pointers to the names of the regulator.
1958 * @count: Number of regulators.
1959 *
1960 * In order to support OPP switching, OPP layer needs to know the name of the
1961 * device's regulators, as the core would be required to switch voltages as
1962 * well.
1963 *
1964 * This must be called before any OPPs are initialized for the device.
1965 */
dev_pm_opp_set_regulators(struct device * dev,const char * const names[],unsigned int count)1966 struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1967 const char * const names[],
1968 unsigned int count)
1969 {
1970 struct dev_pm_opp_supply *supplies;
1971 struct opp_table *opp_table;
1972 struct regulator *reg;
1973 int ret, i;
1974
1975 opp_table = _add_opp_table(dev, false);
1976 if (IS_ERR(opp_table))
1977 return opp_table;
1978
1979 /* This should be called before OPPs are initialized */
1980 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1981 ret = -EBUSY;
1982 goto err;
1983 }
1984
1985 /* Another CPU that shares the OPP table has set the regulators ? */
1986 if (opp_table->regulators)
1987 return opp_table;
1988
1989 opp_table->regulators = kmalloc_array(count,
1990 sizeof(*opp_table->regulators),
1991 GFP_KERNEL);
1992 if (!opp_table->regulators) {
1993 ret = -ENOMEM;
1994 goto err;
1995 }
1996
1997 for (i = 0; i < count; i++) {
1998 reg = regulator_get_optional(dev, names[i]);
1999 if (IS_ERR(reg)) {
2000 ret = PTR_ERR(reg);
2001 if (ret != -EPROBE_DEFER)
2002 dev_err(dev, "%s: no regulator (%s) found: %d\n",
2003 __func__, names[i], ret);
2004 goto free_regulators;
2005 }
2006
2007 opp_table->regulators[i] = reg;
2008 }
2009
2010 opp_table->regulator_count = count;
2011
2012 supplies = kmalloc_array(count * 2, sizeof(*supplies), GFP_KERNEL);
2013 if (!supplies) {
2014 ret = -ENOMEM;
2015 goto free_regulators;
2016 }
2017
2018 mutex_lock(&opp_table->lock);
2019 opp_table->sod_supplies = supplies;
2020 if (opp_table->set_opp_data) {
2021 opp_table->set_opp_data->old_opp.supplies = supplies;
2022 opp_table->set_opp_data->new_opp.supplies = supplies + count;
2023 }
2024 mutex_unlock(&opp_table->lock);
2025
2026 return opp_table;
2027
2028 free_regulators:
2029 while (i != 0)
2030 regulator_put(opp_table->regulators[--i]);
2031
2032 kfree(opp_table->regulators);
2033 opp_table->regulators = NULL;
2034 opp_table->regulator_count = -1;
2035 err:
2036 dev_pm_opp_put_opp_table(opp_table);
2037
2038 return ERR_PTR(ret);
2039 }
2040 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
2041
2042 /**
2043 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
2044 * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
2045 */
dev_pm_opp_put_regulators(struct opp_table * opp_table)2046 void dev_pm_opp_put_regulators(struct opp_table *opp_table)
2047 {
2048 int i;
2049
2050 if (unlikely(!opp_table))
2051 return;
2052
2053 if (!opp_table->regulators)
2054 goto put_opp_table;
2055
2056 if (opp_table->enabled) {
2057 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2058 regulator_disable(opp_table->regulators[i]);
2059 }
2060
2061 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2062 regulator_put(opp_table->regulators[i]);
2063
2064 mutex_lock(&opp_table->lock);
2065 if (opp_table->set_opp_data) {
2066 opp_table->set_opp_data->old_opp.supplies = NULL;
2067 opp_table->set_opp_data->new_opp.supplies = NULL;
2068 }
2069
2070 kfree(opp_table->sod_supplies);
2071 opp_table->sod_supplies = NULL;
2072 mutex_unlock(&opp_table->lock);
2073
2074 kfree(opp_table->regulators);
2075 opp_table->regulators = NULL;
2076 opp_table->regulator_count = -1;
2077
2078 put_opp_table:
2079 dev_pm_opp_put_opp_table(opp_table);
2080 }
2081 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
2082
devm_pm_opp_regulators_release(void * data)2083 static void devm_pm_opp_regulators_release(void *data)
2084 {
2085 dev_pm_opp_put_regulators(data);
2086 }
2087
2088 /**
2089 * devm_pm_opp_set_regulators() - Set regulator names for the device
2090 * @dev: Device for which regulator name is being set.
2091 * @names: Array of pointers to the names of the regulator.
2092 * @count: Number of regulators.
2093 *
2094 * This is a resource-managed variant of dev_pm_opp_set_regulators().
2095 *
2096 * Return: 0 on success and errorno otherwise.
2097 */
devm_pm_opp_set_regulators(struct device * dev,const char * const names[],unsigned int count)2098 int devm_pm_opp_set_regulators(struct device *dev,
2099 const char * const names[],
2100 unsigned int count)
2101 {
2102 struct opp_table *opp_table;
2103
2104 opp_table = dev_pm_opp_set_regulators(dev, names, count);
2105 if (IS_ERR(opp_table))
2106 return PTR_ERR(opp_table);
2107
2108 return devm_add_action_or_reset(dev, devm_pm_opp_regulators_release,
2109 opp_table);
2110 }
2111 EXPORT_SYMBOL_GPL(devm_pm_opp_set_regulators);
2112
2113 /**
2114 * dev_pm_opp_set_clkname() - Set clk name for the device
2115 * @dev: Device for which clk name is being set.
2116 * @name: Clk name.
2117 *
2118 * In order to support OPP switching, OPP layer needs to get pointer to the
2119 * clock for the device. Simple cases work fine without using this routine (i.e.
2120 * by passing connection-id as NULL), but for a device with multiple clocks
2121 * available, the OPP core needs to know the exact name of the clk to use.
2122 *
2123 * This must be called before any OPPs are initialized for the device.
2124 */
dev_pm_opp_set_clkname(struct device * dev,const char * name)2125 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
2126 {
2127 struct opp_table *opp_table;
2128 int ret;
2129
2130 opp_table = _add_opp_table(dev, false);
2131 if (IS_ERR(opp_table))
2132 return opp_table;
2133
2134 /* This should be called before OPPs are initialized */
2135 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2136 ret = -EBUSY;
2137 goto err;
2138 }
2139
2140 /* clk shouldn't be initialized at this point */
2141 if (WARN_ON(opp_table->clk)) {
2142 ret = -EBUSY;
2143 goto err;
2144 }
2145
2146 /* Find clk for the device */
2147 opp_table->clk = clk_get(dev, name);
2148 if (IS_ERR(opp_table->clk)) {
2149 ret = PTR_ERR(opp_table->clk);
2150 if (ret != -EPROBE_DEFER) {
2151 dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
2152 ret);
2153 }
2154 goto err;
2155 }
2156
2157 return opp_table;
2158
2159 err:
2160 dev_pm_opp_put_opp_table(opp_table);
2161
2162 return ERR_PTR(ret);
2163 }
2164 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
2165
2166 /**
2167 * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
2168 * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
2169 */
dev_pm_opp_put_clkname(struct opp_table * opp_table)2170 void dev_pm_opp_put_clkname(struct opp_table *opp_table)
2171 {
2172 if (unlikely(!opp_table))
2173 return;
2174
2175 clk_put(opp_table->clk);
2176 opp_table->clk = ERR_PTR(-EINVAL);
2177
2178 dev_pm_opp_put_opp_table(opp_table);
2179 }
2180 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
2181
devm_pm_opp_clkname_release(void * data)2182 static void devm_pm_opp_clkname_release(void *data)
2183 {
2184 dev_pm_opp_put_clkname(data);
2185 }
2186
2187 /**
2188 * devm_pm_opp_set_clkname() - Set clk name for the device
2189 * @dev: Device for which clk name is being set.
2190 * @name: Clk name.
2191 *
2192 * This is a resource-managed variant of dev_pm_opp_set_clkname().
2193 *
2194 * Return: 0 on success and errorno otherwise.
2195 */
devm_pm_opp_set_clkname(struct device * dev,const char * name)2196 int devm_pm_opp_set_clkname(struct device *dev, const char *name)
2197 {
2198 struct opp_table *opp_table;
2199
2200 opp_table = dev_pm_opp_set_clkname(dev, name);
2201 if (IS_ERR(opp_table))
2202 return PTR_ERR(opp_table);
2203
2204 return devm_add_action_or_reset(dev, devm_pm_opp_clkname_release,
2205 opp_table);
2206 }
2207 EXPORT_SYMBOL_GPL(devm_pm_opp_set_clkname);
2208
2209 /**
2210 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
2211 * @dev: Device for which the helper is getting registered.
2212 * @set_opp: Custom set OPP helper.
2213 *
2214 * This is useful to support complex platforms (like platforms with multiple
2215 * regulators per device), instead of the generic OPP set rate helper.
2216 *
2217 * This must be called before any OPPs are initialized for the device.
2218 */
dev_pm_opp_register_set_opp_helper(struct device * dev,int (* set_opp)(struct dev_pm_set_opp_data * data))2219 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
2220 int (*set_opp)(struct dev_pm_set_opp_data *data))
2221 {
2222 struct dev_pm_set_opp_data *data;
2223 struct opp_table *opp_table;
2224
2225 if (!set_opp)
2226 return ERR_PTR(-EINVAL);
2227
2228 opp_table = _add_opp_table(dev, false);
2229 if (IS_ERR(opp_table))
2230 return opp_table;
2231
2232 /* This should be called before OPPs are initialized */
2233 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2234 dev_pm_opp_put_opp_table(opp_table);
2235 return ERR_PTR(-EBUSY);
2236 }
2237
2238 /* Another CPU that shares the OPP table has set the helper ? */
2239 if (opp_table->set_opp)
2240 return opp_table;
2241
2242 data = kzalloc(sizeof(*data), GFP_KERNEL);
2243 if (!data)
2244 return ERR_PTR(-ENOMEM);
2245
2246 mutex_lock(&opp_table->lock);
2247 opp_table->set_opp_data = data;
2248 if (opp_table->sod_supplies) {
2249 data->old_opp.supplies = opp_table->sod_supplies;
2250 data->new_opp.supplies = opp_table->sod_supplies +
2251 opp_table->regulator_count;
2252 }
2253 mutex_unlock(&opp_table->lock);
2254
2255 opp_table->set_opp = set_opp;
2256
2257 return opp_table;
2258 }
2259 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
2260
2261 /**
2262 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
2263 * set_opp helper
2264 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
2265 *
2266 * Release resources blocked for platform specific set_opp helper.
2267 */
dev_pm_opp_unregister_set_opp_helper(struct opp_table * opp_table)2268 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
2269 {
2270 if (unlikely(!opp_table))
2271 return;
2272
2273 opp_table->set_opp = NULL;
2274
2275 mutex_lock(&opp_table->lock);
2276 kfree(opp_table->set_opp_data);
2277 opp_table->set_opp_data = NULL;
2278 mutex_unlock(&opp_table->lock);
2279
2280 dev_pm_opp_put_opp_table(opp_table);
2281 }
2282 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
2283
devm_pm_opp_unregister_set_opp_helper(void * data)2284 static void devm_pm_opp_unregister_set_opp_helper(void *data)
2285 {
2286 dev_pm_opp_unregister_set_opp_helper(data);
2287 }
2288
2289 /**
2290 * devm_pm_opp_register_set_opp_helper() - Register custom set OPP helper
2291 * @dev: Device for which the helper is getting registered.
2292 * @set_opp: Custom set OPP helper.
2293 *
2294 * This is a resource-managed version of dev_pm_opp_register_set_opp_helper().
2295 *
2296 * Return: 0 on success and errorno otherwise.
2297 */
devm_pm_opp_register_set_opp_helper(struct device * dev,int (* set_opp)(struct dev_pm_set_opp_data * data))2298 int devm_pm_opp_register_set_opp_helper(struct device *dev,
2299 int (*set_opp)(struct dev_pm_set_opp_data *data))
2300 {
2301 struct opp_table *opp_table;
2302
2303 opp_table = dev_pm_opp_register_set_opp_helper(dev, set_opp);
2304 if (IS_ERR(opp_table))
2305 return PTR_ERR(opp_table);
2306
2307 return devm_add_action_or_reset(dev, devm_pm_opp_unregister_set_opp_helper,
2308 opp_table);
2309 }
2310 EXPORT_SYMBOL_GPL(devm_pm_opp_register_set_opp_helper);
2311
_opp_detach_genpd(struct opp_table * opp_table)2312 static void _opp_detach_genpd(struct opp_table *opp_table)
2313 {
2314 int index;
2315
2316 if (!opp_table->genpd_virt_devs)
2317 return;
2318
2319 for (index = 0; index < opp_table->required_opp_count; index++) {
2320 if (!opp_table->genpd_virt_devs[index])
2321 continue;
2322
2323 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
2324 opp_table->genpd_virt_devs[index] = NULL;
2325 }
2326
2327 kfree(opp_table->genpd_virt_devs);
2328 opp_table->genpd_virt_devs = NULL;
2329 }
2330
2331 /**
2332 * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
2333 * @dev: Consumer device for which the genpd is getting attached.
2334 * @names: Null terminated array of pointers containing names of genpd to attach.
2335 * @virt_devs: Pointer to return the array of virtual devices.
2336 *
2337 * Multiple generic power domains for a device are supported with the help of
2338 * virtual genpd devices, which are created for each consumer device - genpd
2339 * pair. These are the device structures which are attached to the power domain
2340 * and are required by the OPP core to set the performance state of the genpd.
2341 * The same API also works for the case where single genpd is available and so
2342 * we don't need to support that separately.
2343 *
2344 * This helper will normally be called by the consumer driver of the device
2345 * "dev", as only that has details of the genpd names.
2346 *
2347 * This helper needs to be called once with a list of all genpd to attach.
2348 * Otherwise the original device structure will be used instead by the OPP core.
2349 *
2350 * The order of entries in the names array must match the order in which
2351 * "required-opps" are added in DT.
2352 */
dev_pm_opp_attach_genpd(struct device * dev,const char ** names,struct device *** virt_devs)2353 struct opp_table *dev_pm_opp_attach_genpd(struct device *dev,
2354 const char **names, struct device ***virt_devs)
2355 {
2356 struct opp_table *opp_table;
2357 struct device *virt_dev;
2358 int index = 0, ret = -EINVAL;
2359 const char **name = names;
2360
2361 opp_table = _add_opp_table(dev, false);
2362 if (IS_ERR(opp_table))
2363 return opp_table;
2364
2365 if (opp_table->genpd_virt_devs)
2366 return opp_table;
2367
2368 /*
2369 * If the genpd's OPP table isn't already initialized, parsing of the
2370 * required-opps fail for dev. We should retry this after genpd's OPP
2371 * table is added.
2372 */
2373 if (!opp_table->required_opp_count) {
2374 ret = -EPROBE_DEFER;
2375 goto put_table;
2376 }
2377
2378 mutex_lock(&opp_table->genpd_virt_dev_lock);
2379
2380 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2381 sizeof(*opp_table->genpd_virt_devs),
2382 GFP_KERNEL);
2383 if (!opp_table->genpd_virt_devs)
2384 goto unlock;
2385
2386 while (*name) {
2387 if (index >= opp_table->required_opp_count) {
2388 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2389 *name, opp_table->required_opp_count, index);
2390 goto err;
2391 }
2392
2393 virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2394 if (IS_ERR_OR_NULL(virt_dev)) {
2395 ret = virt_dev ? PTR_ERR(virt_dev) : -ENODEV;
2396 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2397 goto err;
2398 }
2399
2400 opp_table->genpd_virt_devs[index] = virt_dev;
2401 index++;
2402 name++;
2403 }
2404
2405 if (virt_devs)
2406 *virt_devs = opp_table->genpd_virt_devs;
2407 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2408
2409 return opp_table;
2410
2411 err:
2412 _opp_detach_genpd(opp_table);
2413 unlock:
2414 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2415
2416 put_table:
2417 dev_pm_opp_put_opp_table(opp_table);
2418
2419 return ERR_PTR(ret);
2420 }
2421 EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
2422
2423 /**
2424 * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
2425 * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
2426 *
2427 * This detaches the genpd(s), resets the virtual device pointers, and puts the
2428 * OPP table.
2429 */
dev_pm_opp_detach_genpd(struct opp_table * opp_table)2430 void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
2431 {
2432 if (unlikely(!opp_table))
2433 return;
2434
2435 /*
2436 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2437 * used in parallel.
2438 */
2439 mutex_lock(&opp_table->genpd_virt_dev_lock);
2440 _opp_detach_genpd(opp_table);
2441 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2442
2443 dev_pm_opp_put_opp_table(opp_table);
2444 }
2445 EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
2446
devm_pm_opp_detach_genpd(void * data)2447 static void devm_pm_opp_detach_genpd(void *data)
2448 {
2449 dev_pm_opp_detach_genpd(data);
2450 }
2451
2452 /**
2453 * devm_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual
2454 * device pointer
2455 * @dev: Consumer device for which the genpd is getting attached.
2456 * @names: Null terminated array of pointers containing names of genpd to attach.
2457 * @virt_devs: Pointer to return the array of virtual devices.
2458 *
2459 * This is a resource-managed version of dev_pm_opp_attach_genpd().
2460 *
2461 * Return: 0 on success and errorno otherwise.
2462 */
devm_pm_opp_attach_genpd(struct device * dev,const char ** names,struct device *** virt_devs)2463 int devm_pm_opp_attach_genpd(struct device *dev, const char **names,
2464 struct device ***virt_devs)
2465 {
2466 struct opp_table *opp_table;
2467
2468 opp_table = dev_pm_opp_attach_genpd(dev, names, virt_devs);
2469 if (IS_ERR(opp_table))
2470 return PTR_ERR(opp_table);
2471
2472 return devm_add_action_or_reset(dev, devm_pm_opp_detach_genpd,
2473 opp_table);
2474 }
2475 EXPORT_SYMBOL_GPL(devm_pm_opp_attach_genpd);
2476
2477 /**
2478 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2479 * @src_table: OPP table which has @dst_table as one of its required OPP table.
2480 * @dst_table: Required OPP table of the @src_table.
2481 * @src_opp: OPP from the @src_table.
2482 *
2483 * This function returns the OPP (present in @dst_table) pointed out by the
2484 * "required-opps" property of the @src_opp (present in @src_table).
2485 *
2486 * The callers are required to call dev_pm_opp_put() for the returned OPP after
2487 * use.
2488 *
2489 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2490 */
dev_pm_opp_xlate_required_opp(struct opp_table * src_table,struct opp_table * dst_table,struct dev_pm_opp * src_opp)2491 struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2492 struct opp_table *dst_table,
2493 struct dev_pm_opp *src_opp)
2494 {
2495 struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2496 int i;
2497
2498 if (!src_table || !dst_table || !src_opp ||
2499 !src_table->required_opp_tables)
2500 return ERR_PTR(-EINVAL);
2501
2502 /* required-opps not fully initialized yet */
2503 if (lazy_linking_pending(src_table))
2504 return ERR_PTR(-EBUSY);
2505
2506 for (i = 0; i < src_table->required_opp_count; i++) {
2507 if (src_table->required_opp_tables[i] == dst_table) {
2508 mutex_lock(&src_table->lock);
2509
2510 list_for_each_entry(opp, &src_table->opp_list, node) {
2511 if (opp == src_opp) {
2512 dest_opp = opp->required_opps[i];
2513 dev_pm_opp_get(dest_opp);
2514 break;
2515 }
2516 }
2517
2518 mutex_unlock(&src_table->lock);
2519 break;
2520 }
2521 }
2522
2523 if (IS_ERR(dest_opp)) {
2524 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2525 src_table, dst_table);
2526 }
2527
2528 return dest_opp;
2529 }
2530 EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2531
2532 /**
2533 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2534 * @src_table: OPP table which has dst_table as one of its required OPP table.
2535 * @dst_table: Required OPP table of the src_table.
2536 * @pstate: Current performance state of the src_table.
2537 *
2538 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2539 * "required-opps" property of the OPP (present in @src_table) which has
2540 * performance state set to @pstate.
2541 *
2542 * Return: Zero or positive performance state on success, otherwise negative
2543 * value on errors.
2544 */
dev_pm_opp_xlate_performance_state(struct opp_table * src_table,struct opp_table * dst_table,unsigned int pstate)2545 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2546 struct opp_table *dst_table,
2547 unsigned int pstate)
2548 {
2549 struct dev_pm_opp *opp;
2550 int dest_pstate = -EINVAL;
2551 int i;
2552
2553 /*
2554 * Normally the src_table will have the "required_opps" property set to
2555 * point to one of the OPPs in the dst_table, but in some cases the
2556 * genpd and its master have one to one mapping of performance states
2557 * and so none of them have the "required-opps" property set. Return the
2558 * pstate of the src_table as it is in such cases.
2559 */
2560 if (!src_table || !src_table->required_opp_count)
2561 return pstate;
2562
2563 /* required-opps not fully initialized yet */
2564 if (lazy_linking_pending(src_table))
2565 return -EBUSY;
2566
2567 for (i = 0; i < src_table->required_opp_count; i++) {
2568 if (src_table->required_opp_tables[i]->np == dst_table->np)
2569 break;
2570 }
2571
2572 if (unlikely(i == src_table->required_opp_count)) {
2573 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2574 __func__, src_table, dst_table);
2575 return -EINVAL;
2576 }
2577
2578 mutex_lock(&src_table->lock);
2579
2580 list_for_each_entry(opp, &src_table->opp_list, node) {
2581 if (opp->pstate == pstate) {
2582 dest_pstate = opp->required_opps[i]->pstate;
2583 goto unlock;
2584 }
2585 }
2586
2587 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2588 dst_table);
2589
2590 unlock:
2591 mutex_unlock(&src_table->lock);
2592
2593 return dest_pstate;
2594 }
2595
2596 /**
2597 * dev_pm_opp_add() - Add an OPP table from a table definitions
2598 * @dev: device for which we do this operation
2599 * @freq: Frequency in Hz for this OPP
2600 * @u_volt: Voltage in uVolts for this OPP
2601 *
2602 * This function adds an opp definition to the opp table and returns status.
2603 * The opp is made available by default and it can be controlled using
2604 * dev_pm_opp_enable/disable functions.
2605 *
2606 * Return:
2607 * 0 On success OR
2608 * Duplicate OPPs (both freq and volt are same) and opp->available
2609 * -EEXIST Freq are same and volt are different OR
2610 * Duplicate OPPs (both freq and volt are same) and !opp->available
2611 * -ENOMEM Memory allocation failure
2612 */
dev_pm_opp_add(struct device * dev,unsigned long freq,unsigned long u_volt)2613 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2614 {
2615 struct opp_table *opp_table;
2616 int ret;
2617
2618 opp_table = _add_opp_table(dev, true);
2619 if (IS_ERR(opp_table))
2620 return PTR_ERR(opp_table);
2621
2622 /* Fix regulator count for dynamic OPPs */
2623 opp_table->regulator_count = 1;
2624
2625 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2626 if (ret)
2627 dev_pm_opp_put_opp_table(opp_table);
2628
2629 return ret;
2630 }
2631 EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2632
2633 /**
2634 * _opp_set_availability() - helper to set the availability of an opp
2635 * @dev: device for which we do this operation
2636 * @freq: OPP frequency to modify availability
2637 * @availability_req: availability status requested for this opp
2638 *
2639 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2640 * which is isolated here.
2641 *
2642 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2643 * copy operation, returns 0 if no modification was done OR modification was
2644 * successful.
2645 */
_opp_set_availability(struct device * dev,unsigned long freq,bool availability_req)2646 static int _opp_set_availability(struct device *dev, unsigned long freq,
2647 bool availability_req)
2648 {
2649 struct opp_table *opp_table;
2650 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2651 int r = 0;
2652
2653 /* Find the opp_table */
2654 opp_table = _find_opp_table(dev);
2655 if (IS_ERR(opp_table)) {
2656 r = PTR_ERR(opp_table);
2657 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2658 return r;
2659 }
2660
2661 mutex_lock(&opp_table->lock);
2662
2663 /* Do we have the frequency? */
2664 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2665 if (tmp_opp->rate == freq) {
2666 opp = tmp_opp;
2667 break;
2668 }
2669 }
2670
2671 if (IS_ERR(opp)) {
2672 r = PTR_ERR(opp);
2673 goto unlock;
2674 }
2675
2676 /* Is update really needed? */
2677 if (opp->available == availability_req)
2678 goto unlock;
2679
2680 opp->available = availability_req;
2681
2682 dev_pm_opp_get(opp);
2683 mutex_unlock(&opp_table->lock);
2684
2685 /* Notify the change of the OPP availability */
2686 if (availability_req)
2687 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2688 opp);
2689 else
2690 blocking_notifier_call_chain(&opp_table->head,
2691 OPP_EVENT_DISABLE, opp);
2692
2693 dev_pm_opp_put(opp);
2694 goto put_table;
2695
2696 unlock:
2697 mutex_unlock(&opp_table->lock);
2698 put_table:
2699 dev_pm_opp_put_opp_table(opp_table);
2700 return r;
2701 }
2702
2703 /**
2704 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2705 * @dev: device for which we do this operation
2706 * @freq: OPP frequency to adjust voltage of
2707 * @u_volt: new OPP target voltage
2708 * @u_volt_min: new OPP min voltage
2709 * @u_volt_max: new OPP max voltage
2710 *
2711 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2712 * copy operation, returns 0 if no modifcation was done OR modification was
2713 * successful.
2714 */
dev_pm_opp_adjust_voltage(struct device * dev,unsigned long freq,unsigned long u_volt,unsigned long u_volt_min,unsigned long u_volt_max)2715 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2716 unsigned long u_volt, unsigned long u_volt_min,
2717 unsigned long u_volt_max)
2718
2719 {
2720 struct opp_table *opp_table;
2721 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2722 int r = 0;
2723
2724 /* Find the opp_table */
2725 opp_table = _find_opp_table(dev);
2726 if (IS_ERR(opp_table)) {
2727 r = PTR_ERR(opp_table);
2728 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2729 return r;
2730 }
2731
2732 mutex_lock(&opp_table->lock);
2733
2734 /* Do we have the frequency? */
2735 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2736 if (tmp_opp->rate == freq) {
2737 opp = tmp_opp;
2738 break;
2739 }
2740 }
2741
2742 if (IS_ERR(opp)) {
2743 r = PTR_ERR(opp);
2744 goto adjust_unlock;
2745 }
2746
2747 /* Is update really needed? */
2748 if (opp->supplies->u_volt == u_volt)
2749 goto adjust_unlock;
2750
2751 opp->supplies->u_volt = u_volt;
2752 opp->supplies->u_volt_min = u_volt_min;
2753 opp->supplies->u_volt_max = u_volt_max;
2754
2755 dev_pm_opp_get(opp);
2756 mutex_unlock(&opp_table->lock);
2757
2758 /* Notify the voltage change of the OPP */
2759 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2760 opp);
2761
2762 dev_pm_opp_put(opp);
2763 goto adjust_put_table;
2764
2765 adjust_unlock:
2766 mutex_unlock(&opp_table->lock);
2767 adjust_put_table:
2768 dev_pm_opp_put_opp_table(opp_table);
2769 return r;
2770 }
2771 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2772
2773 /**
2774 * dev_pm_opp_enable() - Enable a specific OPP
2775 * @dev: device for which we do this operation
2776 * @freq: OPP frequency to enable
2777 *
2778 * Enables a provided opp. If the operation is valid, this returns 0, else the
2779 * corresponding error value. It is meant to be used for users an OPP available
2780 * after being temporarily made unavailable with dev_pm_opp_disable.
2781 *
2782 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2783 * copy operation, returns 0 if no modification was done OR modification was
2784 * successful.
2785 */
dev_pm_opp_enable(struct device * dev,unsigned long freq)2786 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2787 {
2788 return _opp_set_availability(dev, freq, true);
2789 }
2790 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2791
2792 /**
2793 * dev_pm_opp_disable() - Disable a specific OPP
2794 * @dev: device for which we do this operation
2795 * @freq: OPP frequency to disable
2796 *
2797 * Disables a provided opp. If the operation is valid, this returns
2798 * 0, else the corresponding error value. It is meant to be a temporary
2799 * control by users to make this OPP not available until the circumstances are
2800 * right to make it available again (with a call to dev_pm_opp_enable).
2801 *
2802 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2803 * copy operation, returns 0 if no modification was done OR modification was
2804 * successful.
2805 */
dev_pm_opp_disable(struct device * dev,unsigned long freq)2806 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2807 {
2808 return _opp_set_availability(dev, freq, false);
2809 }
2810 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2811
2812 /**
2813 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2814 * @dev: Device for which notifier needs to be registered
2815 * @nb: Notifier block to be registered
2816 *
2817 * Return: 0 on success or a negative error value.
2818 */
dev_pm_opp_register_notifier(struct device * dev,struct notifier_block * nb)2819 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2820 {
2821 struct opp_table *opp_table;
2822 int ret;
2823
2824 opp_table = _find_opp_table(dev);
2825 if (IS_ERR(opp_table))
2826 return PTR_ERR(opp_table);
2827
2828 ret = blocking_notifier_chain_register(&opp_table->head, nb);
2829
2830 dev_pm_opp_put_opp_table(opp_table);
2831
2832 return ret;
2833 }
2834 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2835
2836 /**
2837 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2838 * @dev: Device for which notifier needs to be unregistered
2839 * @nb: Notifier block to be unregistered
2840 *
2841 * Return: 0 on success or a negative error value.
2842 */
dev_pm_opp_unregister_notifier(struct device * dev,struct notifier_block * nb)2843 int dev_pm_opp_unregister_notifier(struct device *dev,
2844 struct notifier_block *nb)
2845 {
2846 struct opp_table *opp_table;
2847 int ret;
2848
2849 opp_table = _find_opp_table(dev);
2850 if (IS_ERR(opp_table))
2851 return PTR_ERR(opp_table);
2852
2853 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2854
2855 dev_pm_opp_put_opp_table(opp_table);
2856
2857 return ret;
2858 }
2859 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2860
2861 /**
2862 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2863 * @dev: device pointer used to lookup OPP table.
2864 *
2865 * Free both OPPs created using static entries present in DT and the
2866 * dynamically added entries.
2867 */
dev_pm_opp_remove_table(struct device * dev)2868 void dev_pm_opp_remove_table(struct device *dev)
2869 {
2870 struct opp_table *opp_table;
2871
2872 /* Check for existing table for 'dev' */
2873 opp_table = _find_opp_table(dev);
2874 if (IS_ERR(opp_table)) {
2875 int error = PTR_ERR(opp_table);
2876
2877 if (error != -ENODEV)
2878 WARN(1, "%s: opp_table: %d\n",
2879 IS_ERR_OR_NULL(dev) ?
2880 "Invalid device" : dev_name(dev),
2881 error);
2882 return;
2883 }
2884
2885 /*
2886 * Drop the extra reference only if the OPP table was successfully added
2887 * with dev_pm_opp_of_add_table() earlier.
2888 **/
2889 if (_opp_remove_all_static(opp_table))
2890 dev_pm_opp_put_opp_table(opp_table);
2891
2892 /* Drop reference taken by _find_opp_table() */
2893 dev_pm_opp_put_opp_table(opp_table);
2894 }
2895 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
2896
2897 /**
2898 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
2899 * @dev: device for which we do this operation
2900 *
2901 * Sync voltage state of the OPP table regulators.
2902 *
2903 * Return: 0 on success or a negative error value.
2904 */
dev_pm_opp_sync_regulators(struct device * dev)2905 int dev_pm_opp_sync_regulators(struct device *dev)
2906 {
2907 struct opp_table *opp_table;
2908 struct regulator *reg;
2909 int i, ret = 0;
2910
2911 /* Device may not have OPP table */
2912 opp_table = _find_opp_table(dev);
2913 if (IS_ERR(opp_table))
2914 return 0;
2915
2916 /* Regulator may not be required for the device */
2917 if (unlikely(!opp_table->regulators))
2918 goto put_table;
2919
2920 /* Nothing to sync if voltage wasn't changed */
2921 if (!opp_table->enabled)
2922 goto put_table;
2923
2924 for (i = 0; i < opp_table->regulator_count; i++) {
2925 reg = opp_table->regulators[i];
2926 ret = regulator_sync_voltage(reg);
2927 if (ret)
2928 break;
2929 }
2930 put_table:
2931 /* Drop reference taken by _find_opp_table() */
2932 dev_pm_opp_put_opp_table(opp_table);
2933
2934 return ret;
2935 }
2936 EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
2937