• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sched/mm.h>
30 #include <linux/swiotlb.h>
31 #include <linux/sysfs.h>
32 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
33 
34 #include "base.h"
35 #include "power/power.h"
36 
37 #ifdef CONFIG_SYSFS_DEPRECATED
38 #ifdef CONFIG_SYSFS_DEPRECATED_V2
39 long sysfs_deprecated = 1;
40 #else
41 long sysfs_deprecated = 0;
42 #endif
sysfs_deprecated_setup(char * arg)43 static int __init sysfs_deprecated_setup(char *arg)
44 {
45 	return kstrtol(arg, 10, &sysfs_deprecated);
46 }
47 early_param("sysfs.deprecated", sysfs_deprecated_setup);
48 #endif
49 
50 /* Device links support. */
51 static LIST_HEAD(deferred_sync);
52 static unsigned int defer_sync_state_count = 1;
53 static DEFINE_MUTEX(fwnode_link_lock);
54 static bool fw_devlink_is_permissive(void);
55 static bool fw_devlink_drv_reg_done;
56 
57 /**
58  * fwnode_link_add - Create a link between two fwnode_handles.
59  * @con: Consumer end of the link.
60  * @sup: Supplier end of the link.
61  *
62  * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
63  * represents the detail that the firmware lists @sup fwnode as supplying a
64  * resource to @con.
65  *
66  * The driver core will use the fwnode link to create a device link between the
67  * two device objects corresponding to @con and @sup when they are created. The
68  * driver core will automatically delete the fwnode link between @con and @sup
69  * after doing that.
70  *
71  * Attempts to create duplicate links between the same pair of fwnode handles
72  * are ignored and there is no reference counting.
73  */
fwnode_link_add(struct fwnode_handle * con,struct fwnode_handle * sup)74 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
75 {
76 	struct fwnode_link *link;
77 	int ret = 0;
78 
79 	mutex_lock(&fwnode_link_lock);
80 
81 	list_for_each_entry(link, &sup->consumers, s_hook)
82 		if (link->consumer == con)
83 			goto out;
84 
85 	link = kzalloc(sizeof(*link), GFP_KERNEL);
86 	if (!link) {
87 		ret = -ENOMEM;
88 		goto out;
89 	}
90 
91 	link->supplier = sup;
92 	INIT_LIST_HEAD(&link->s_hook);
93 	link->consumer = con;
94 	INIT_LIST_HEAD(&link->c_hook);
95 
96 	list_add(&link->s_hook, &sup->consumers);
97 	list_add(&link->c_hook, &con->suppliers);
98 	pr_debug("%pfwP Linked as a fwnode consumer to %pfwP\n",
99 		 con, sup);
100 out:
101 	mutex_unlock(&fwnode_link_lock);
102 
103 	return ret;
104 }
105 
106 /**
107  * __fwnode_link_del - Delete a link between two fwnode_handles.
108  * @link: the fwnode_link to be deleted
109  *
110  * The fwnode_link_lock needs to be held when this function is called.
111  */
__fwnode_link_del(struct fwnode_link * link)112 static void __fwnode_link_del(struct fwnode_link *link)
113 {
114 	pr_debug("%pfwP Dropping the fwnode link to %pfwP\n",
115 		 link->consumer, link->supplier);
116 	list_del(&link->s_hook);
117 	list_del(&link->c_hook);
118 	kfree(link);
119 }
120 
121 /**
122  * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
123  * @fwnode: fwnode whose supplier links need to be deleted
124  *
125  * Deletes all supplier links connecting directly to @fwnode.
126  */
fwnode_links_purge_suppliers(struct fwnode_handle * fwnode)127 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
128 {
129 	struct fwnode_link *link, *tmp;
130 
131 	mutex_lock(&fwnode_link_lock);
132 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
133 		__fwnode_link_del(link);
134 	mutex_unlock(&fwnode_link_lock);
135 }
136 
137 /**
138  * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
139  * @fwnode: fwnode whose consumer links need to be deleted
140  *
141  * Deletes all consumer links connecting directly to @fwnode.
142  */
fwnode_links_purge_consumers(struct fwnode_handle * fwnode)143 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
144 {
145 	struct fwnode_link *link, *tmp;
146 
147 	mutex_lock(&fwnode_link_lock);
148 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
149 		__fwnode_link_del(link);
150 	mutex_unlock(&fwnode_link_lock);
151 }
152 
153 /**
154  * fwnode_links_purge - Delete all links connected to a fwnode_handle.
155  * @fwnode: fwnode whose links needs to be deleted
156  *
157  * Deletes all links connecting directly to a fwnode.
158  */
fwnode_links_purge(struct fwnode_handle * fwnode)159 void fwnode_links_purge(struct fwnode_handle *fwnode)
160 {
161 	fwnode_links_purge_suppliers(fwnode);
162 	fwnode_links_purge_consumers(fwnode);
163 }
164 
fw_devlink_purge_absent_suppliers(struct fwnode_handle * fwnode)165 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
166 {
167 	struct fwnode_handle *child;
168 
169 	/* Don't purge consumer links of an added child */
170 	if (fwnode->dev)
171 		return;
172 
173 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
174 	fwnode_links_purge_consumers(fwnode);
175 
176 	fwnode_for_each_available_child_node(fwnode, child)
177 		fw_devlink_purge_absent_suppliers(child);
178 }
179 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
180 
181 #ifdef CONFIG_SRCU
182 static DEFINE_MUTEX(device_links_lock);
183 DEFINE_STATIC_SRCU(device_links_srcu);
184 
device_links_write_lock(void)185 static inline void device_links_write_lock(void)
186 {
187 	mutex_lock(&device_links_lock);
188 }
189 
device_links_write_unlock(void)190 static inline void device_links_write_unlock(void)
191 {
192 	mutex_unlock(&device_links_lock);
193 }
194 
device_links_read_lock(void)195 int device_links_read_lock(void) __acquires(&device_links_srcu)
196 {
197 	return srcu_read_lock(&device_links_srcu);
198 }
199 
device_links_read_unlock(int idx)200 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
201 {
202 	srcu_read_unlock(&device_links_srcu, idx);
203 }
204 
device_links_read_lock_held(void)205 int device_links_read_lock_held(void)
206 {
207 	return srcu_read_lock_held(&device_links_srcu);
208 }
209 
device_link_synchronize_removal(void)210 static void device_link_synchronize_removal(void)
211 {
212 	synchronize_srcu(&device_links_srcu);
213 }
214 
device_link_remove_from_lists(struct device_link * link)215 static void device_link_remove_from_lists(struct device_link *link)
216 {
217 	list_del_rcu(&link->s_node);
218 	list_del_rcu(&link->c_node);
219 }
220 #else /* !CONFIG_SRCU */
221 static DECLARE_RWSEM(device_links_lock);
222 
device_links_write_lock(void)223 static inline void device_links_write_lock(void)
224 {
225 	down_write(&device_links_lock);
226 }
227 
device_links_write_unlock(void)228 static inline void device_links_write_unlock(void)
229 {
230 	up_write(&device_links_lock);
231 }
232 
device_links_read_lock(void)233 int device_links_read_lock(void)
234 {
235 	down_read(&device_links_lock);
236 	return 0;
237 }
238 
device_links_read_unlock(int not_used)239 void device_links_read_unlock(int not_used)
240 {
241 	up_read(&device_links_lock);
242 }
243 
244 #ifdef CONFIG_DEBUG_LOCK_ALLOC
device_links_read_lock_held(void)245 int device_links_read_lock_held(void)
246 {
247 	return lockdep_is_held(&device_links_lock);
248 }
249 #endif
250 
device_link_synchronize_removal(void)251 static inline void device_link_synchronize_removal(void)
252 {
253 }
254 
device_link_remove_from_lists(struct device_link * link)255 static void device_link_remove_from_lists(struct device_link *link)
256 {
257 	list_del(&link->s_node);
258 	list_del(&link->c_node);
259 }
260 #endif /* !CONFIG_SRCU */
261 
device_is_ancestor(struct device * dev,struct device * target)262 static bool device_is_ancestor(struct device *dev, struct device *target)
263 {
264 	while (target->parent) {
265 		target = target->parent;
266 		if (dev == target)
267 			return true;
268 	}
269 	return false;
270 }
271 
272 /**
273  * device_is_dependent - Check if one device depends on another one
274  * @dev: Device to check dependencies for.
275  * @target: Device to check against.
276  *
277  * Check if @target depends on @dev or any device dependent on it (its child or
278  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
279  */
device_is_dependent(struct device * dev,void * target)280 int device_is_dependent(struct device *dev, void *target)
281 {
282 	struct device_link *link;
283 	int ret;
284 
285 	/*
286 	 * The "ancestors" check is needed to catch the case when the target
287 	 * device has not been completely initialized yet and it is still
288 	 * missing from the list of children of its parent device.
289 	 */
290 	if (dev == target || device_is_ancestor(dev, target))
291 		return 1;
292 
293 	ret = device_for_each_child(dev, target, device_is_dependent);
294 	if (ret)
295 		return ret;
296 
297 	list_for_each_entry(link, &dev->links.consumers, s_node) {
298 		if ((link->flags & ~DL_FLAG_INFERRED) ==
299 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
300 			continue;
301 
302 		if (link->consumer == target)
303 			return 1;
304 
305 		ret = device_is_dependent(link->consumer, target);
306 		if (ret)
307 			break;
308 	}
309 	return ret;
310 }
311 
device_link_init_status(struct device_link * link,struct device * consumer,struct device * supplier)312 static void device_link_init_status(struct device_link *link,
313 				    struct device *consumer,
314 				    struct device *supplier)
315 {
316 	switch (supplier->links.status) {
317 	case DL_DEV_PROBING:
318 		switch (consumer->links.status) {
319 		case DL_DEV_PROBING:
320 			/*
321 			 * A consumer driver can create a link to a supplier
322 			 * that has not completed its probing yet as long as it
323 			 * knows that the supplier is already functional (for
324 			 * example, it has just acquired some resources from the
325 			 * supplier).
326 			 */
327 			link->status = DL_STATE_CONSUMER_PROBE;
328 			break;
329 		default:
330 			link->status = DL_STATE_DORMANT;
331 			break;
332 		}
333 		break;
334 	case DL_DEV_DRIVER_BOUND:
335 		switch (consumer->links.status) {
336 		case DL_DEV_PROBING:
337 			link->status = DL_STATE_CONSUMER_PROBE;
338 			break;
339 		case DL_DEV_DRIVER_BOUND:
340 			link->status = DL_STATE_ACTIVE;
341 			break;
342 		default:
343 			link->status = DL_STATE_AVAILABLE;
344 			break;
345 		}
346 		break;
347 	case DL_DEV_UNBINDING:
348 		link->status = DL_STATE_SUPPLIER_UNBIND;
349 		break;
350 	default:
351 		link->status = DL_STATE_DORMANT;
352 		break;
353 	}
354 }
355 
device_reorder_to_tail(struct device * dev,void * not_used)356 static int device_reorder_to_tail(struct device *dev, void *not_used)
357 {
358 	struct device_link *link;
359 
360 	/*
361 	 * Devices that have not been registered yet will be put to the ends
362 	 * of the lists during the registration, so skip them here.
363 	 */
364 	if (device_is_registered(dev))
365 		devices_kset_move_last(dev);
366 
367 	if (device_pm_initialized(dev))
368 		device_pm_move_last(dev);
369 
370 	device_for_each_child(dev, NULL, device_reorder_to_tail);
371 	list_for_each_entry(link, &dev->links.consumers, s_node) {
372 		if ((link->flags & ~DL_FLAG_INFERRED) ==
373 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
374 			continue;
375 		device_reorder_to_tail(link->consumer, NULL);
376 	}
377 
378 	return 0;
379 }
380 
381 /**
382  * device_pm_move_to_tail - Move set of devices to the end of device lists
383  * @dev: Device to move
384  *
385  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
386  *
387  * It moves the @dev along with all of its children and all of its consumers
388  * to the ends of the device_kset and dpm_list, recursively.
389  */
device_pm_move_to_tail(struct device * dev)390 void device_pm_move_to_tail(struct device *dev)
391 {
392 	int idx;
393 
394 	idx = device_links_read_lock();
395 	device_pm_lock();
396 	device_reorder_to_tail(dev, NULL);
397 	device_pm_unlock();
398 	device_links_read_unlock(idx);
399 }
400 
401 #define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
402 
status_show(struct device * dev,struct device_attribute * attr,char * buf)403 static ssize_t status_show(struct device *dev,
404 			   struct device_attribute *attr, char *buf)
405 {
406 	const char *output;
407 
408 	switch (to_devlink(dev)->status) {
409 	case DL_STATE_NONE:
410 		output = "not tracked";
411 		break;
412 	case DL_STATE_DORMANT:
413 		output = "dormant";
414 		break;
415 	case DL_STATE_AVAILABLE:
416 		output = "available";
417 		break;
418 	case DL_STATE_CONSUMER_PROBE:
419 		output = "consumer probing";
420 		break;
421 	case DL_STATE_ACTIVE:
422 		output = "active";
423 		break;
424 	case DL_STATE_SUPPLIER_UNBIND:
425 		output = "supplier unbinding";
426 		break;
427 	default:
428 		output = "unknown";
429 		break;
430 	}
431 
432 	return sysfs_emit(buf, "%s\n", output);
433 }
434 static DEVICE_ATTR_RO(status);
435 
auto_remove_on_show(struct device * dev,struct device_attribute * attr,char * buf)436 static ssize_t auto_remove_on_show(struct device *dev,
437 				   struct device_attribute *attr, char *buf)
438 {
439 	struct device_link *link = to_devlink(dev);
440 	const char *output;
441 
442 	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
443 		output = "supplier unbind";
444 	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
445 		output = "consumer unbind";
446 	else
447 		output = "never";
448 
449 	return sysfs_emit(buf, "%s\n", output);
450 }
451 static DEVICE_ATTR_RO(auto_remove_on);
452 
runtime_pm_show(struct device * dev,struct device_attribute * attr,char * buf)453 static ssize_t runtime_pm_show(struct device *dev,
454 			       struct device_attribute *attr, char *buf)
455 {
456 	struct device_link *link = to_devlink(dev);
457 
458 	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
459 }
460 static DEVICE_ATTR_RO(runtime_pm);
461 
sync_state_only_show(struct device * dev,struct device_attribute * attr,char * buf)462 static ssize_t sync_state_only_show(struct device *dev,
463 				    struct device_attribute *attr, char *buf)
464 {
465 	struct device_link *link = to_devlink(dev);
466 
467 	return sysfs_emit(buf, "%d\n",
468 			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
469 }
470 static DEVICE_ATTR_RO(sync_state_only);
471 
472 static struct attribute *devlink_attrs[] = {
473 	&dev_attr_status.attr,
474 	&dev_attr_auto_remove_on.attr,
475 	&dev_attr_runtime_pm.attr,
476 	&dev_attr_sync_state_only.attr,
477 	NULL,
478 };
479 ATTRIBUTE_GROUPS(devlink);
480 
device_link_release_fn(struct work_struct * work)481 static void device_link_release_fn(struct work_struct *work)
482 {
483 	struct device_link *link = container_of(work, struct device_link, rm_work);
484 
485 	/* Ensure that all references to the link object have been dropped. */
486 	device_link_synchronize_removal();
487 
488 	pm_runtime_release_supplier(link);
489 	pm_request_idle(link->supplier);
490 
491 	/*
492 	 * If supplier_preactivated is set, the link has been dropped between
493 	 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
494 	 * in __driver_probe_device().  In that case, drop the supplier's
495 	 * PM-runtime usage counter to remove the reference taken by
496 	 * pm_runtime_get_suppliers().
497 	 */
498 	if (link->supplier_preactivated)
499 		pm_runtime_put_noidle(link->supplier);
500 
501 	put_device(link->consumer);
502 	put_device(link->supplier);
503 	kfree(link);
504 }
505 
devlink_dev_release(struct device * dev)506 static void devlink_dev_release(struct device *dev)
507 {
508 	struct device_link *link = to_devlink(dev);
509 
510 	INIT_WORK(&link->rm_work, device_link_release_fn);
511 	/*
512 	 * It may take a while to complete this work because of the SRCU
513 	 * synchronization in device_link_release_fn() and if the consumer or
514 	 * supplier devices get deleted when it runs, so put it into the "long"
515 	 * workqueue.
516 	 */
517 	queue_work(system_long_wq, &link->rm_work);
518 }
519 
520 static struct class devlink_class = {
521 	.name = "devlink",
522 	.owner = THIS_MODULE,
523 	.dev_groups = devlink_groups,
524 	.dev_release = devlink_dev_release,
525 };
526 
devlink_add_symlinks(struct device * dev,struct class_interface * class_intf)527 static int devlink_add_symlinks(struct device *dev,
528 				struct class_interface *class_intf)
529 {
530 	int ret;
531 	size_t len;
532 	struct device_link *link = to_devlink(dev);
533 	struct device *sup = link->supplier;
534 	struct device *con = link->consumer;
535 	char *buf;
536 
537 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
538 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
539 	len += strlen(":");
540 	len += strlen("supplier:") + 1;
541 	buf = kzalloc(len, GFP_KERNEL);
542 	if (!buf)
543 		return -ENOMEM;
544 
545 	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
546 	if (ret)
547 		goto out;
548 
549 	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
550 	if (ret)
551 		goto err_con;
552 
553 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
554 	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
555 	if (ret)
556 		goto err_con_dev;
557 
558 	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
559 	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
560 	if (ret)
561 		goto err_sup_dev;
562 
563 	goto out;
564 
565 err_sup_dev:
566 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
567 	sysfs_remove_link(&sup->kobj, buf);
568 err_con_dev:
569 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
570 err_con:
571 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
572 out:
573 	kfree(buf);
574 	return ret;
575 }
576 
devlink_remove_symlinks(struct device * dev,struct class_interface * class_intf)577 static void devlink_remove_symlinks(struct device *dev,
578 				   struct class_interface *class_intf)
579 {
580 	struct device_link *link = to_devlink(dev);
581 	size_t len;
582 	struct device *sup = link->supplier;
583 	struct device *con = link->consumer;
584 	char *buf;
585 
586 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
587 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
588 
589 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
590 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
591 	len += strlen(":");
592 	len += strlen("supplier:") + 1;
593 	buf = kzalloc(len, GFP_KERNEL);
594 	if (!buf) {
595 		WARN(1, "Unable to properly free device link symlinks!\n");
596 		return;
597 	}
598 
599 	if (device_is_registered(con)) {
600 		snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
601 		sysfs_remove_link(&con->kobj, buf);
602 	}
603 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
604 	sysfs_remove_link(&sup->kobj, buf);
605 	kfree(buf);
606 }
607 
608 static struct class_interface devlink_class_intf = {
609 	.class = &devlink_class,
610 	.add_dev = devlink_add_symlinks,
611 	.remove_dev = devlink_remove_symlinks,
612 };
613 
devlink_class_init(void)614 static int __init devlink_class_init(void)
615 {
616 	int ret;
617 
618 	ret = class_register(&devlink_class);
619 	if (ret)
620 		return ret;
621 
622 	ret = class_interface_register(&devlink_class_intf);
623 	if (ret)
624 		class_unregister(&devlink_class);
625 
626 	return ret;
627 }
628 postcore_initcall(devlink_class_init);
629 
630 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
631 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
632 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
633 			       DL_FLAG_SYNC_STATE_ONLY | \
634 			       DL_FLAG_INFERRED)
635 
636 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
637 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
638 
639 /**
640  * device_link_add - Create a link between two devices.
641  * @consumer: Consumer end of the link.
642  * @supplier: Supplier end of the link.
643  * @flags: Link flags.
644  *
645  * The caller is responsible for the proper synchronization of the link creation
646  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
647  * runtime PM framework to take the link into account.  Second, if the
648  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
649  * be forced into the active meta state and reference-counted upon the creation
650  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
651  * ignored.
652  *
653  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
654  * expected to release the link returned by it directly with the help of either
655  * device_link_del() or device_link_remove().
656  *
657  * If that flag is not set, however, the caller of this function is handing the
658  * management of the link over to the driver core entirely and its return value
659  * can only be used to check whether or not the link is present.  In that case,
660  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
661  * flags can be used to indicate to the driver core when the link can be safely
662  * deleted.  Namely, setting one of them in @flags indicates to the driver core
663  * that the link is not going to be used (by the given caller of this function)
664  * after unbinding the consumer or supplier driver, respectively, from its
665  * device, so the link can be deleted at that point.  If none of them is set,
666  * the link will be maintained until one of the devices pointed to by it (either
667  * the consumer or the supplier) is unregistered.
668  *
669  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
670  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
671  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
672  * be used to request the driver core to automatically probe for a consumer
673  * driver after successfully binding a driver to the supplier device.
674  *
675  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
676  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
677  * the same time is invalid and will cause NULL to be returned upfront.
678  * However, if a device link between the given @consumer and @supplier pair
679  * exists already when this function is called for them, the existing link will
680  * be returned regardless of its current type and status (the link's flags may
681  * be modified then).  The caller of this function is then expected to treat
682  * the link as though it has just been created, so (in particular) if
683  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
684  * explicitly when not needed any more (as stated above).
685  *
686  * A side effect of the link creation is re-ordering of dpm_list and the
687  * devices_kset list by moving the consumer device and all devices depending
688  * on it to the ends of these lists (that does not happen to devices that have
689  * not been registered when this function is called).
690  *
691  * The supplier device is required to be registered when this function is called
692  * and NULL will be returned if that is not the case.  The consumer device need
693  * not be registered, however.
694  */
device_link_add(struct device * consumer,struct device * supplier,u32 flags)695 struct device_link *device_link_add(struct device *consumer,
696 				    struct device *supplier, u32 flags)
697 {
698 	struct device_link *link;
699 
700 	if (!consumer || !supplier || consumer == supplier ||
701 	    flags & ~DL_ADD_VALID_FLAGS ||
702 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
703 	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
704 	     (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) ||
705 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
706 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
707 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
708 		return NULL;
709 
710 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
711 		if (pm_runtime_get_sync(supplier) < 0) {
712 			pm_runtime_put_noidle(supplier);
713 			return NULL;
714 		}
715 	}
716 
717 	if (!(flags & DL_FLAG_STATELESS))
718 		flags |= DL_FLAG_MANAGED;
719 
720 	device_links_write_lock();
721 	device_pm_lock();
722 
723 	/*
724 	 * If the supplier has not been fully registered yet or there is a
725 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
726 	 * the supplier already in the graph, return NULL. If the link is a
727 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
728 	 * because it only affects sync_state() callbacks.
729 	 */
730 	if (!device_pm_initialized(supplier)
731 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
732 		  device_is_dependent(consumer, supplier))) {
733 		link = NULL;
734 		goto out;
735 	}
736 
737 	/*
738 	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
739 	 * So, only create it if the consumer hasn't probed yet.
740 	 */
741 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
742 	    consumer->links.status != DL_DEV_NO_DRIVER &&
743 	    consumer->links.status != DL_DEV_PROBING) {
744 		link = NULL;
745 		goto out;
746 	}
747 
748 	/*
749 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
750 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
751 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
752 	 */
753 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
754 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
755 
756 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
757 		if (link->consumer != consumer)
758 			continue;
759 
760 		if (link->flags & DL_FLAG_INFERRED &&
761 		    !(flags & DL_FLAG_INFERRED))
762 			link->flags &= ~DL_FLAG_INFERRED;
763 
764 		if (flags & DL_FLAG_PM_RUNTIME) {
765 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
766 				pm_runtime_new_link(consumer);
767 				link->flags |= DL_FLAG_PM_RUNTIME;
768 			}
769 			if (flags & DL_FLAG_RPM_ACTIVE)
770 				refcount_inc(&link->rpm_active);
771 		}
772 
773 		if (flags & DL_FLAG_STATELESS) {
774 			kref_get(&link->kref);
775 			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
776 			    !(link->flags & DL_FLAG_STATELESS)) {
777 				link->flags |= DL_FLAG_STATELESS;
778 				goto reorder;
779 			} else {
780 				link->flags |= DL_FLAG_STATELESS;
781 				goto out;
782 			}
783 		}
784 
785 		/*
786 		 * If the life time of the link following from the new flags is
787 		 * longer than indicated by the flags of the existing link,
788 		 * update the existing link to stay around longer.
789 		 */
790 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
791 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
792 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
793 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
794 			}
795 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
796 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
797 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
798 		}
799 		if (!(link->flags & DL_FLAG_MANAGED)) {
800 			kref_get(&link->kref);
801 			link->flags |= DL_FLAG_MANAGED;
802 			device_link_init_status(link, consumer, supplier);
803 		}
804 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
805 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
806 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
807 			goto reorder;
808 		}
809 
810 		goto out;
811 	}
812 
813 	link = kzalloc(sizeof(*link), GFP_KERNEL);
814 	if (!link)
815 		goto out;
816 
817 	refcount_set(&link->rpm_active, 1);
818 
819 	get_device(supplier);
820 	link->supplier = supplier;
821 	INIT_LIST_HEAD(&link->s_node);
822 	get_device(consumer);
823 	link->consumer = consumer;
824 	INIT_LIST_HEAD(&link->c_node);
825 	link->flags = flags;
826 	kref_init(&link->kref);
827 
828 	link->link_dev.class = &devlink_class;
829 	device_set_pm_not_required(&link->link_dev);
830 	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
831 		     dev_bus_name(supplier), dev_name(supplier),
832 		     dev_bus_name(consumer), dev_name(consumer));
833 	if (device_register(&link->link_dev)) {
834 		put_device(&link->link_dev);
835 		link = NULL;
836 		goto out;
837 	}
838 
839 	if (flags & DL_FLAG_PM_RUNTIME) {
840 		if (flags & DL_FLAG_RPM_ACTIVE)
841 			refcount_inc(&link->rpm_active);
842 
843 		pm_runtime_new_link(consumer);
844 	}
845 
846 	/* Determine the initial link state. */
847 	if (flags & DL_FLAG_STATELESS)
848 		link->status = DL_STATE_NONE;
849 	else
850 		device_link_init_status(link, consumer, supplier);
851 
852 	/*
853 	 * Some callers expect the link creation during consumer driver probe to
854 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
855 	 */
856 	if (link->status == DL_STATE_CONSUMER_PROBE &&
857 	    flags & DL_FLAG_PM_RUNTIME)
858 		pm_runtime_resume(supplier);
859 
860 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
861 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
862 
863 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
864 		dev_dbg(consumer,
865 			"Linked as a sync state only consumer to %s\n",
866 			dev_name(supplier));
867 		goto out;
868 	}
869 
870 reorder:
871 	/*
872 	 * Move the consumer and all of the devices depending on it to the end
873 	 * of dpm_list and the devices_kset list.
874 	 *
875 	 * It is necessary to hold dpm_list locked throughout all that or else
876 	 * we may end up suspending with a wrong ordering of it.
877 	 */
878 	device_reorder_to_tail(consumer, NULL);
879 
880 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
881 
882 out:
883 	device_pm_unlock();
884 	device_links_write_unlock();
885 
886 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
887 		pm_runtime_put(supplier);
888 
889 	return link;
890 }
891 EXPORT_SYMBOL_GPL(device_link_add);
892 
__device_link_del(struct kref * kref)893 static void __device_link_del(struct kref *kref)
894 {
895 	struct device_link *link = container_of(kref, struct device_link, kref);
896 
897 	dev_dbg(link->consumer, "Dropping the link to %s\n",
898 		dev_name(link->supplier));
899 
900 	pm_runtime_drop_link(link);
901 
902 	device_link_remove_from_lists(link);
903 	device_unregister(&link->link_dev);
904 }
905 
device_link_put_kref(struct device_link * link)906 static void device_link_put_kref(struct device_link *link)
907 {
908 	if (link->flags & DL_FLAG_STATELESS)
909 		kref_put(&link->kref, __device_link_del);
910 	else if (!device_is_registered(link->consumer))
911 		__device_link_del(&link->kref);
912 	else
913 		WARN(1, "Unable to drop a managed device link reference\n");
914 }
915 
916 /**
917  * device_link_del - Delete a stateless link between two devices.
918  * @link: Device link to delete.
919  *
920  * The caller must ensure proper synchronization of this function with runtime
921  * PM.  If the link was added multiple times, it needs to be deleted as often.
922  * Care is required for hotplugged devices:  Their links are purged on removal
923  * and calling device_link_del() is then no longer allowed.
924  */
device_link_del(struct device_link * link)925 void device_link_del(struct device_link *link)
926 {
927 	device_links_write_lock();
928 	device_link_put_kref(link);
929 	device_links_write_unlock();
930 }
931 EXPORT_SYMBOL_GPL(device_link_del);
932 
933 /**
934  * device_link_remove - Delete a stateless link between two devices.
935  * @consumer: Consumer end of the link.
936  * @supplier: Supplier end of the link.
937  *
938  * The caller must ensure proper synchronization of this function with runtime
939  * PM.
940  */
device_link_remove(void * consumer,struct device * supplier)941 void device_link_remove(void *consumer, struct device *supplier)
942 {
943 	struct device_link *link;
944 
945 	if (WARN_ON(consumer == supplier))
946 		return;
947 
948 	device_links_write_lock();
949 
950 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
951 		if (link->consumer == consumer) {
952 			device_link_put_kref(link);
953 			break;
954 		}
955 	}
956 
957 	device_links_write_unlock();
958 }
959 EXPORT_SYMBOL_GPL(device_link_remove);
960 
device_links_missing_supplier(struct device * dev)961 static void device_links_missing_supplier(struct device *dev)
962 {
963 	struct device_link *link;
964 
965 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
966 		if (link->status != DL_STATE_CONSUMER_PROBE)
967 			continue;
968 
969 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
970 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
971 		} else {
972 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
973 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
974 		}
975 	}
976 }
977 
978 /**
979  * device_links_check_suppliers - Check presence of supplier drivers.
980  * @dev: Consumer device.
981  *
982  * Check links from this device to any suppliers.  Walk the list of the device's
983  * links to suppliers and see if all of them are available.  If not, simply
984  * return -EPROBE_DEFER.
985  *
986  * We need to guarantee that the supplier will not go away after the check has
987  * been positive here.  It only can go away in __device_release_driver() and
988  * that function  checks the device's links to consumers.  This means we need to
989  * mark the link as "consumer probe in progress" to make the supplier removal
990  * wait for us to complete (or bad things may happen).
991  *
992  * Links without the DL_FLAG_MANAGED flag set are ignored.
993  */
device_links_check_suppliers(struct device * dev)994 int device_links_check_suppliers(struct device *dev)
995 {
996 	struct device_link *link;
997 	int ret = 0;
998 	struct fwnode_handle *sup_fw;
999 
1000 	/*
1001 	 * Device waiting for supplier to become available is not allowed to
1002 	 * probe.
1003 	 */
1004 	mutex_lock(&fwnode_link_lock);
1005 	if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) &&
1006 	    !fw_devlink_is_permissive()) {
1007 		sup_fw = list_first_entry(&dev->fwnode->suppliers,
1008 					  struct fwnode_link,
1009 					  c_hook)->supplier;
1010 		dev_err_probe(dev, -EPROBE_DEFER, "wait for supplier %pfwP\n",
1011 			      sup_fw);
1012 		mutex_unlock(&fwnode_link_lock);
1013 		return -EPROBE_DEFER;
1014 	}
1015 	mutex_unlock(&fwnode_link_lock);
1016 
1017 	device_links_write_lock();
1018 
1019 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1020 		if (!(link->flags & DL_FLAG_MANAGED))
1021 			continue;
1022 
1023 		if (link->status != DL_STATE_AVAILABLE &&
1024 		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1025 			device_links_missing_supplier(dev);
1026 			dev_err_probe(dev, -EPROBE_DEFER,
1027 				      "supplier %s not ready\n",
1028 				      dev_name(link->supplier));
1029 			ret = -EPROBE_DEFER;
1030 			break;
1031 		}
1032 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1033 	}
1034 	dev->links.status = DL_DEV_PROBING;
1035 
1036 	device_links_write_unlock();
1037 	return ret;
1038 }
1039 
1040 /**
1041  * __device_links_queue_sync_state - Queue a device for sync_state() callback
1042  * @dev: Device to call sync_state() on
1043  * @list: List head to queue the @dev on
1044  *
1045  * Queues a device for a sync_state() callback when the device links write lock
1046  * isn't held. This allows the sync_state() execution flow to use device links
1047  * APIs.  The caller must ensure this function is called with
1048  * device_links_write_lock() held.
1049  *
1050  * This function does a get_device() to make sure the device is not freed while
1051  * on this list.
1052  *
1053  * So the caller must also ensure that device_links_flush_sync_list() is called
1054  * as soon as the caller releases device_links_write_lock().  This is necessary
1055  * to make sure the sync_state() is called in a timely fashion and the
1056  * put_device() is called on this device.
1057  */
__device_links_queue_sync_state(struct device * dev,struct list_head * list)1058 static void __device_links_queue_sync_state(struct device *dev,
1059 					    struct list_head *list)
1060 {
1061 	struct device_link *link;
1062 
1063 	if (!dev_has_sync_state(dev))
1064 		return;
1065 	if (dev->state_synced)
1066 		return;
1067 
1068 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1069 		if (!(link->flags & DL_FLAG_MANAGED))
1070 			continue;
1071 		if (link->status != DL_STATE_ACTIVE)
1072 			return;
1073 	}
1074 
1075 	/*
1076 	 * Set the flag here to avoid adding the same device to a list more
1077 	 * than once. This can happen if new consumers get added to the device
1078 	 * and probed before the list is flushed.
1079 	 */
1080 	dev->state_synced = true;
1081 
1082 	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1083 		return;
1084 
1085 	get_device(dev);
1086 	list_add_tail(&dev->links.defer_sync, list);
1087 }
1088 
1089 /**
1090  * device_links_flush_sync_list - Call sync_state() on a list of devices
1091  * @list: List of devices to call sync_state() on
1092  * @dont_lock_dev: Device for which lock is already held by the caller
1093  *
1094  * Calls sync_state() on all the devices that have been queued for it. This
1095  * function is used in conjunction with __device_links_queue_sync_state(). The
1096  * @dont_lock_dev parameter is useful when this function is called from a
1097  * context where a device lock is already held.
1098  */
device_links_flush_sync_list(struct list_head * list,struct device * dont_lock_dev)1099 static void device_links_flush_sync_list(struct list_head *list,
1100 					 struct device *dont_lock_dev)
1101 {
1102 	struct device *dev, *tmp;
1103 
1104 	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1105 		list_del_init(&dev->links.defer_sync);
1106 
1107 		if (dev != dont_lock_dev)
1108 			device_lock(dev);
1109 
1110 		if (dev->bus->sync_state)
1111 			dev->bus->sync_state(dev);
1112 		else if (dev->driver && dev->driver->sync_state)
1113 			dev->driver->sync_state(dev);
1114 
1115 		if (dev != dont_lock_dev)
1116 			device_unlock(dev);
1117 
1118 		put_device(dev);
1119 	}
1120 }
1121 
device_links_supplier_sync_state_pause(void)1122 void device_links_supplier_sync_state_pause(void)
1123 {
1124 	device_links_write_lock();
1125 	defer_sync_state_count++;
1126 	device_links_write_unlock();
1127 }
1128 
device_links_supplier_sync_state_resume(void)1129 void device_links_supplier_sync_state_resume(void)
1130 {
1131 	struct device *dev, *tmp;
1132 	LIST_HEAD(sync_list);
1133 
1134 	device_links_write_lock();
1135 	if (!defer_sync_state_count) {
1136 		WARN(true, "Unmatched sync_state pause/resume!");
1137 		goto out;
1138 	}
1139 	defer_sync_state_count--;
1140 	if (defer_sync_state_count)
1141 		goto out;
1142 
1143 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1144 		/*
1145 		 * Delete from deferred_sync list before queuing it to
1146 		 * sync_list because defer_sync is used for both lists.
1147 		 */
1148 		list_del_init(&dev->links.defer_sync);
1149 		__device_links_queue_sync_state(dev, &sync_list);
1150 	}
1151 out:
1152 	device_links_write_unlock();
1153 
1154 	device_links_flush_sync_list(&sync_list, NULL);
1155 }
1156 
sync_state_resume_initcall(void)1157 static int sync_state_resume_initcall(void)
1158 {
1159 	device_links_supplier_sync_state_resume();
1160 	return 0;
1161 }
1162 late_initcall(sync_state_resume_initcall);
1163 
__device_links_supplier_defer_sync(struct device * sup)1164 static void __device_links_supplier_defer_sync(struct device *sup)
1165 {
1166 	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1167 		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1168 }
1169 
device_link_drop_managed(struct device_link * link)1170 static void device_link_drop_managed(struct device_link *link)
1171 {
1172 	link->flags &= ~DL_FLAG_MANAGED;
1173 	WRITE_ONCE(link->status, DL_STATE_NONE);
1174 	kref_put(&link->kref, __device_link_del);
1175 }
1176 
waiting_for_supplier_show(struct device * dev,struct device_attribute * attr,char * buf)1177 static ssize_t waiting_for_supplier_show(struct device *dev,
1178 					 struct device_attribute *attr,
1179 					 char *buf)
1180 {
1181 	bool val;
1182 
1183 	device_lock(dev);
1184 	val = !list_empty(&dev->fwnode->suppliers);
1185 	device_unlock(dev);
1186 	return sysfs_emit(buf, "%u\n", val);
1187 }
1188 static DEVICE_ATTR_RO(waiting_for_supplier);
1189 
1190 /**
1191  * device_links_force_bind - Prepares device to be force bound
1192  * @dev: Consumer device.
1193  *
1194  * device_bind_driver() force binds a device to a driver without calling any
1195  * driver probe functions. So the consumer really isn't going to wait for any
1196  * supplier before it's bound to the driver. We still want the device link
1197  * states to be sensible when this happens.
1198  *
1199  * In preparation for device_bind_driver(), this function goes through each
1200  * supplier device links and checks if the supplier is bound. If it is, then
1201  * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1202  * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1203  */
device_links_force_bind(struct device * dev)1204 void device_links_force_bind(struct device *dev)
1205 {
1206 	struct device_link *link, *ln;
1207 
1208 	device_links_write_lock();
1209 
1210 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1211 		if (!(link->flags & DL_FLAG_MANAGED))
1212 			continue;
1213 
1214 		if (link->status != DL_STATE_AVAILABLE) {
1215 			device_link_drop_managed(link);
1216 			continue;
1217 		}
1218 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1219 	}
1220 	dev->links.status = DL_DEV_PROBING;
1221 
1222 	device_links_write_unlock();
1223 }
1224 
1225 /**
1226  * device_links_driver_bound - Update device links after probing its driver.
1227  * @dev: Device to update the links for.
1228  *
1229  * The probe has been successful, so update links from this device to any
1230  * consumers by changing their status to "available".
1231  *
1232  * Also change the status of @dev's links to suppliers to "active".
1233  *
1234  * Links without the DL_FLAG_MANAGED flag set are ignored.
1235  */
device_links_driver_bound(struct device * dev)1236 void device_links_driver_bound(struct device *dev)
1237 {
1238 	struct device_link *link, *ln;
1239 	LIST_HEAD(sync_list);
1240 
1241 	/*
1242 	 * If a device binds successfully, it's expected to have created all
1243 	 * the device links it needs to or make new device links as it needs
1244 	 * them. So, fw_devlink no longer needs to create device links to any
1245 	 * of the device's suppliers.
1246 	 *
1247 	 * Also, if a child firmware node of this bound device is not added as
1248 	 * a device by now, assume it is never going to be added and make sure
1249 	 * other devices don't defer probe indefinitely by waiting for such a
1250 	 * child device.
1251 	 */
1252 	if (dev->fwnode && dev->fwnode->dev == dev) {
1253 		struct fwnode_handle *child;
1254 		fwnode_links_purge_suppliers(dev->fwnode);
1255 		fwnode_for_each_available_child_node(dev->fwnode, child)
1256 			fw_devlink_purge_absent_suppliers(child);
1257 	}
1258 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1259 
1260 	device_links_write_lock();
1261 
1262 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1263 		if (!(link->flags & DL_FLAG_MANAGED))
1264 			continue;
1265 
1266 		/*
1267 		 * Links created during consumer probe may be in the "consumer
1268 		 * probe" state to start with if the supplier is still probing
1269 		 * when they are created and they may become "active" if the
1270 		 * consumer probe returns first.  Skip them here.
1271 		 */
1272 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1273 		    link->status == DL_STATE_ACTIVE)
1274 			continue;
1275 
1276 		WARN_ON(link->status != DL_STATE_DORMANT);
1277 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1278 
1279 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1280 			driver_deferred_probe_add(link->consumer);
1281 	}
1282 
1283 	if (defer_sync_state_count)
1284 		__device_links_supplier_defer_sync(dev);
1285 	else
1286 		__device_links_queue_sync_state(dev, &sync_list);
1287 
1288 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1289 		struct device *supplier;
1290 
1291 		if (!(link->flags & DL_FLAG_MANAGED))
1292 			continue;
1293 
1294 		supplier = link->supplier;
1295 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1296 			/*
1297 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1298 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1299 			 * save to drop the managed link completely.
1300 			 */
1301 			device_link_drop_managed(link);
1302 		} else {
1303 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1304 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1305 		}
1306 
1307 		/*
1308 		 * This needs to be done even for the deleted
1309 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1310 		 * device link that was preventing the supplier from getting a
1311 		 * sync_state() call.
1312 		 */
1313 		if (defer_sync_state_count)
1314 			__device_links_supplier_defer_sync(supplier);
1315 		else
1316 			__device_links_queue_sync_state(supplier, &sync_list);
1317 	}
1318 
1319 	dev->links.status = DL_DEV_DRIVER_BOUND;
1320 
1321 	device_links_write_unlock();
1322 
1323 	device_links_flush_sync_list(&sync_list, dev);
1324 }
1325 
1326 /**
1327  * __device_links_no_driver - Update links of a device without a driver.
1328  * @dev: Device without a drvier.
1329  *
1330  * Delete all non-persistent links from this device to any suppliers.
1331  *
1332  * Persistent links stay around, but their status is changed to "available",
1333  * unless they already are in the "supplier unbind in progress" state in which
1334  * case they need not be updated.
1335  *
1336  * Links without the DL_FLAG_MANAGED flag set are ignored.
1337  */
__device_links_no_driver(struct device * dev)1338 static void __device_links_no_driver(struct device *dev)
1339 {
1340 	struct device_link *link, *ln;
1341 
1342 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1343 		if (!(link->flags & DL_FLAG_MANAGED))
1344 			continue;
1345 
1346 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1347 			device_link_drop_managed(link);
1348 			continue;
1349 		}
1350 
1351 		if (link->status != DL_STATE_CONSUMER_PROBE &&
1352 		    link->status != DL_STATE_ACTIVE)
1353 			continue;
1354 
1355 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1356 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1357 		} else {
1358 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1359 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1360 		}
1361 	}
1362 
1363 	dev->links.status = DL_DEV_NO_DRIVER;
1364 }
1365 
1366 /**
1367  * device_links_no_driver - Update links after failing driver probe.
1368  * @dev: Device whose driver has just failed to probe.
1369  *
1370  * Clean up leftover links to consumers for @dev and invoke
1371  * %__device_links_no_driver() to update links to suppliers for it as
1372  * appropriate.
1373  *
1374  * Links without the DL_FLAG_MANAGED flag set are ignored.
1375  */
device_links_no_driver(struct device * dev)1376 void device_links_no_driver(struct device *dev)
1377 {
1378 	struct device_link *link;
1379 
1380 	device_links_write_lock();
1381 
1382 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1383 		if (!(link->flags & DL_FLAG_MANAGED))
1384 			continue;
1385 
1386 		/*
1387 		 * The probe has failed, so if the status of the link is
1388 		 * "consumer probe" or "active", it must have been added by
1389 		 * a probing consumer while this device was still probing.
1390 		 * Change its state to "dormant", as it represents a valid
1391 		 * relationship, but it is not functionally meaningful.
1392 		 */
1393 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1394 		    link->status == DL_STATE_ACTIVE)
1395 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1396 	}
1397 
1398 	__device_links_no_driver(dev);
1399 
1400 	device_links_write_unlock();
1401 }
1402 
1403 /**
1404  * device_links_driver_cleanup - Update links after driver removal.
1405  * @dev: Device whose driver has just gone away.
1406  *
1407  * Update links to consumers for @dev by changing their status to "dormant" and
1408  * invoke %__device_links_no_driver() to update links to suppliers for it as
1409  * appropriate.
1410  *
1411  * Links without the DL_FLAG_MANAGED flag set are ignored.
1412  */
device_links_driver_cleanup(struct device * dev)1413 void device_links_driver_cleanup(struct device *dev)
1414 {
1415 	struct device_link *link, *ln;
1416 
1417 	device_links_write_lock();
1418 
1419 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1420 		if (!(link->flags & DL_FLAG_MANAGED))
1421 			continue;
1422 
1423 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1424 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1425 
1426 		/*
1427 		 * autoremove the links between this @dev and its consumer
1428 		 * devices that are not active, i.e. where the link state
1429 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1430 		 */
1431 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1432 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1433 			device_link_drop_managed(link);
1434 
1435 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1436 	}
1437 
1438 	list_del_init(&dev->links.defer_sync);
1439 	__device_links_no_driver(dev);
1440 
1441 	device_links_write_unlock();
1442 }
1443 
1444 /**
1445  * device_links_busy - Check if there are any busy links to consumers.
1446  * @dev: Device to check.
1447  *
1448  * Check each consumer of the device and return 'true' if its link's status
1449  * is one of "consumer probe" or "active" (meaning that the given consumer is
1450  * probing right now or its driver is present).  Otherwise, change the link
1451  * state to "supplier unbind" to prevent the consumer from being probed
1452  * successfully going forward.
1453  *
1454  * Return 'false' if there are no probing or active consumers.
1455  *
1456  * Links without the DL_FLAG_MANAGED flag set are ignored.
1457  */
device_links_busy(struct device * dev)1458 bool device_links_busy(struct device *dev)
1459 {
1460 	struct device_link *link;
1461 	bool ret = false;
1462 
1463 	device_links_write_lock();
1464 
1465 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1466 		if (!(link->flags & DL_FLAG_MANAGED))
1467 			continue;
1468 
1469 		if (link->status == DL_STATE_CONSUMER_PROBE
1470 		    || link->status == DL_STATE_ACTIVE) {
1471 			ret = true;
1472 			break;
1473 		}
1474 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1475 	}
1476 
1477 	dev->links.status = DL_DEV_UNBINDING;
1478 
1479 	device_links_write_unlock();
1480 	return ret;
1481 }
1482 
1483 /**
1484  * device_links_unbind_consumers - Force unbind consumers of the given device.
1485  * @dev: Device to unbind the consumers of.
1486  *
1487  * Walk the list of links to consumers for @dev and if any of them is in the
1488  * "consumer probe" state, wait for all device probes in progress to complete
1489  * and start over.
1490  *
1491  * If that's not the case, change the status of the link to "supplier unbind"
1492  * and check if the link was in the "active" state.  If so, force the consumer
1493  * driver to unbind and start over (the consumer will not re-probe as we have
1494  * changed the state of the link already).
1495  *
1496  * Links without the DL_FLAG_MANAGED flag set are ignored.
1497  */
device_links_unbind_consumers(struct device * dev)1498 void device_links_unbind_consumers(struct device *dev)
1499 {
1500 	struct device_link *link;
1501 
1502  start:
1503 	device_links_write_lock();
1504 
1505 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1506 		enum device_link_state status;
1507 
1508 		if (!(link->flags & DL_FLAG_MANAGED) ||
1509 		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1510 			continue;
1511 
1512 		status = link->status;
1513 		if (status == DL_STATE_CONSUMER_PROBE) {
1514 			device_links_write_unlock();
1515 
1516 			wait_for_device_probe();
1517 			goto start;
1518 		}
1519 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1520 		if (status == DL_STATE_ACTIVE) {
1521 			struct device *consumer = link->consumer;
1522 
1523 			get_device(consumer);
1524 
1525 			device_links_write_unlock();
1526 
1527 			device_release_driver_internal(consumer, NULL,
1528 						       consumer->parent);
1529 			put_device(consumer);
1530 			goto start;
1531 		}
1532 	}
1533 
1534 	device_links_write_unlock();
1535 }
1536 
1537 /**
1538  * device_links_purge - Delete existing links to other devices.
1539  * @dev: Target device.
1540  */
device_links_purge(struct device * dev)1541 static void device_links_purge(struct device *dev)
1542 {
1543 	struct device_link *link, *ln;
1544 
1545 	if (dev->class == &devlink_class)
1546 		return;
1547 
1548 	/*
1549 	 * Delete all of the remaining links from this device to any other
1550 	 * devices (either consumers or suppliers).
1551 	 */
1552 	device_links_write_lock();
1553 
1554 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1555 		WARN_ON(link->status == DL_STATE_ACTIVE);
1556 		__device_link_del(&link->kref);
1557 	}
1558 
1559 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1560 		WARN_ON(link->status != DL_STATE_DORMANT &&
1561 			link->status != DL_STATE_NONE);
1562 		__device_link_del(&link->kref);
1563 	}
1564 
1565 	device_links_write_unlock();
1566 }
1567 
1568 #define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1569 					 DL_FLAG_SYNC_STATE_ONLY)
1570 #define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1571 					 DL_FLAG_AUTOPROBE_CONSUMER)
1572 #define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1573 					 DL_FLAG_PM_RUNTIME)
1574 
1575 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
fw_devlink_setup(char * arg)1576 static int __init fw_devlink_setup(char *arg)
1577 {
1578 	if (!arg)
1579 		return -EINVAL;
1580 
1581 	if (strcmp(arg, "off") == 0) {
1582 		fw_devlink_flags = 0;
1583 	} else if (strcmp(arg, "permissive") == 0) {
1584 		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1585 	} else if (strcmp(arg, "on") == 0) {
1586 		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1587 	} else if (strcmp(arg, "rpm") == 0) {
1588 		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1589 	}
1590 	return 0;
1591 }
1592 early_param("fw_devlink", fw_devlink_setup);
1593 
1594 static bool fw_devlink_strict = true;
fw_devlink_strict_setup(char * arg)1595 static int __init fw_devlink_strict_setup(char *arg)
1596 {
1597 	return strtobool(arg, &fw_devlink_strict);
1598 }
1599 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1600 
fw_devlink_get_flags(void)1601 u32 fw_devlink_get_flags(void)
1602 {
1603 	return fw_devlink_flags;
1604 }
1605 
fw_devlink_is_permissive(void)1606 static bool fw_devlink_is_permissive(void)
1607 {
1608 	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1609 }
1610 
fw_devlink_is_strict(void)1611 bool fw_devlink_is_strict(void)
1612 {
1613 	return fw_devlink_strict && !fw_devlink_is_permissive();
1614 }
1615 
fw_devlink_parse_fwnode(struct fwnode_handle * fwnode)1616 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1617 {
1618 	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1619 		return;
1620 
1621 	fwnode_call_int_op(fwnode, add_links);
1622 	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1623 }
1624 
fw_devlink_parse_fwtree(struct fwnode_handle * fwnode)1625 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1626 {
1627 	struct fwnode_handle *child = NULL;
1628 
1629 	fw_devlink_parse_fwnode(fwnode);
1630 
1631 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1632 		fw_devlink_parse_fwtree(child);
1633 }
1634 
fw_devlink_relax_link(struct device_link * link)1635 static void fw_devlink_relax_link(struct device_link *link)
1636 {
1637 	if (!(link->flags & DL_FLAG_INFERRED))
1638 		return;
1639 
1640 	if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE))
1641 		return;
1642 
1643 	pm_runtime_drop_link(link);
1644 	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1645 	dev_dbg(link->consumer, "Relaxing link with %s\n",
1646 		dev_name(link->supplier));
1647 }
1648 
fw_devlink_no_driver(struct device * dev,void * data)1649 static int fw_devlink_no_driver(struct device *dev, void *data)
1650 {
1651 	struct device_link *link = to_devlink(dev);
1652 
1653 	if (!link->supplier->can_match)
1654 		fw_devlink_relax_link(link);
1655 
1656 	return 0;
1657 }
1658 
fw_devlink_drivers_done(void)1659 void fw_devlink_drivers_done(void)
1660 {
1661 	fw_devlink_drv_reg_done = true;
1662 	device_links_write_lock();
1663 	class_for_each_device(&devlink_class, NULL, NULL,
1664 			      fw_devlink_no_driver);
1665 	device_links_write_unlock();
1666 }
1667 
fw_devlink_unblock_consumers(struct device * dev)1668 static void fw_devlink_unblock_consumers(struct device *dev)
1669 {
1670 	struct device_link *link;
1671 
1672 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1673 		return;
1674 
1675 	device_links_write_lock();
1676 	list_for_each_entry(link, &dev->links.consumers, s_node)
1677 		fw_devlink_relax_link(link);
1678 	device_links_write_unlock();
1679 }
1680 
1681 /**
1682  * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links
1683  * @con: Device to check dependencies for.
1684  * @sup: Device to check against.
1685  *
1686  * Check if @sup depends on @con or any device dependent on it (its child or
1687  * its consumer etc).  When such a cyclic dependency is found, convert all
1688  * device links created solely by fw_devlink into SYNC_STATE_ONLY device links.
1689  * This is the equivalent of doing fw_devlink=permissive just between the
1690  * devices in the cycle. We need to do this because, at this point, fw_devlink
1691  * can't tell which of these dependencies is not a real dependency.
1692  *
1693  * Return 1 if a cycle is found. Otherwise, return 0.
1694  */
fw_devlink_relax_cycle(struct device * con,void * sup)1695 static int fw_devlink_relax_cycle(struct device *con, void *sup)
1696 {
1697 	struct device_link *link;
1698 	int ret;
1699 
1700 	if (con == sup)
1701 		return 1;
1702 
1703 	ret = device_for_each_child(con, sup, fw_devlink_relax_cycle);
1704 	if (ret)
1705 		return ret;
1706 
1707 	list_for_each_entry(link, &con->links.consumers, s_node) {
1708 		if ((link->flags & ~DL_FLAG_INFERRED) ==
1709 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
1710 			continue;
1711 
1712 		if (!fw_devlink_relax_cycle(link->consumer, sup))
1713 			continue;
1714 
1715 		ret = 1;
1716 
1717 		fw_devlink_relax_link(link);
1718 	}
1719 	return ret;
1720 }
1721 
1722 /**
1723  * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
1724  * @con: consumer device for the device link
1725  * @sup_handle: fwnode handle of supplier
1726  * @flags: devlink flags
1727  *
1728  * This function will try to create a device link between the consumer device
1729  * @con and the supplier device represented by @sup_handle.
1730  *
1731  * The supplier has to be provided as a fwnode because incorrect cycles in
1732  * fwnode links can sometimes cause the supplier device to never be created.
1733  * This function detects such cases and returns an error if it cannot create a
1734  * device link from the consumer to a missing supplier.
1735  *
1736  * Returns,
1737  * 0 on successfully creating a device link
1738  * -EINVAL if the device link cannot be created as expected
1739  * -EAGAIN if the device link cannot be created right now, but it may be
1740  *  possible to do that in the future
1741  */
fw_devlink_create_devlink(struct device * con,struct fwnode_handle * sup_handle,u32 flags)1742 static int fw_devlink_create_devlink(struct device *con,
1743 				     struct fwnode_handle *sup_handle, u32 flags)
1744 {
1745 	struct device *sup_dev;
1746 	int ret = 0;
1747 
1748 	/*
1749 	 * In some cases, a device P might also be a supplier to its child node
1750 	 * C. However, this would defer the probe of C until the probe of P
1751 	 * completes successfully. This is perfectly fine in the device driver
1752 	 * model. device_add() doesn't guarantee probe completion of the device
1753 	 * by the time it returns.
1754 	 *
1755 	 * However, there are a few drivers that assume C will finish probing
1756 	 * as soon as it's added and before P finishes probing. So, we provide
1757 	 * a flag to let fw_devlink know not to delay the probe of C until the
1758 	 * probe of P completes successfully.
1759 	 *
1760 	 * When such a flag is set, we can't create device links where P is the
1761 	 * supplier of C as that would delay the probe of C.
1762 	 */
1763 	if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
1764 	    fwnode_is_ancestor_of(sup_handle, con->fwnode))
1765 		return -EINVAL;
1766 
1767 	sup_dev = get_dev_from_fwnode(sup_handle);
1768 	if (sup_dev) {
1769 		/*
1770 		 * If it's one of those drivers that don't actually bind to
1771 		 * their device using driver core, then don't wait on this
1772 		 * supplier device indefinitely.
1773 		 */
1774 		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
1775 		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
1776 			ret = -EINVAL;
1777 			goto out;
1778 		}
1779 
1780 		/*
1781 		 * If this fails, it is due to cycles in device links.  Just
1782 		 * give up on this link and treat it as invalid.
1783 		 */
1784 		if (!device_link_add(con, sup_dev, flags) &&
1785 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
1786 			dev_info(con, "Fixing up cyclic dependency with %s\n",
1787 				 dev_name(sup_dev));
1788 			device_links_write_lock();
1789 			fw_devlink_relax_cycle(con, sup_dev);
1790 			device_links_write_unlock();
1791 			device_link_add(con, sup_dev,
1792 					FW_DEVLINK_FLAGS_PERMISSIVE);
1793 			ret = -EINVAL;
1794 		}
1795 
1796 		goto out;
1797 	}
1798 
1799 	/* Supplier that's already initialized without a struct device. */
1800 	if (sup_handle->flags & FWNODE_FLAG_INITIALIZED)
1801 		return -EINVAL;
1802 
1803 	/*
1804 	 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1805 	 * cycles. So cycle detection isn't necessary and shouldn't be
1806 	 * done.
1807 	 */
1808 	if (flags & DL_FLAG_SYNC_STATE_ONLY)
1809 		return -EAGAIN;
1810 
1811 	/*
1812 	 * If we can't find the supplier device from its fwnode, it might be
1813 	 * due to a cyclic dependency between fwnodes. Some of these cycles can
1814 	 * be broken by applying logic. Check for these types of cycles and
1815 	 * break them so that devices in the cycle probe properly.
1816 	 *
1817 	 * If the supplier's parent is dependent on the consumer, then the
1818 	 * consumer and supplier have a cyclic dependency. Since fw_devlink
1819 	 * can't tell which of the inferred dependencies are incorrect, don't
1820 	 * enforce probe ordering between any of the devices in this cyclic
1821 	 * dependency. Do this by relaxing all the fw_devlink device links in
1822 	 * this cycle and by treating the fwnode link between the consumer and
1823 	 * the supplier as an invalid dependency.
1824 	 */
1825 	sup_dev = fwnode_get_next_parent_dev(sup_handle);
1826 	if (sup_dev && device_is_dependent(con, sup_dev)) {
1827 		dev_info(con, "Fixing up cyclic dependency with %pfwP (%s)\n",
1828 			 sup_handle, dev_name(sup_dev));
1829 		device_links_write_lock();
1830 		fw_devlink_relax_cycle(con, sup_dev);
1831 		device_links_write_unlock();
1832 		ret = -EINVAL;
1833 	} else {
1834 		/*
1835 		 * Can't check for cycles or no cycles. So let's try
1836 		 * again later.
1837 		 */
1838 		ret = -EAGAIN;
1839 	}
1840 
1841 out:
1842 	put_device(sup_dev);
1843 	return ret;
1844 }
1845 
1846 /**
1847  * __fw_devlink_link_to_consumers - Create device links to consumers of a device
1848  * @dev: Device that needs to be linked to its consumers
1849  *
1850  * This function looks at all the consumer fwnodes of @dev and creates device
1851  * links between the consumer device and @dev (supplier).
1852  *
1853  * If the consumer device has not been added yet, then this function creates a
1854  * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
1855  * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
1856  * sync_state() callback before the real consumer device gets to be added and
1857  * then probed.
1858  *
1859  * Once device links are created from the real consumer to @dev (supplier), the
1860  * fwnode links are deleted.
1861  */
__fw_devlink_link_to_consumers(struct device * dev)1862 static void __fw_devlink_link_to_consumers(struct device *dev)
1863 {
1864 	struct fwnode_handle *fwnode = dev->fwnode;
1865 	struct fwnode_link *link, *tmp;
1866 
1867 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
1868 		u32 dl_flags = fw_devlink_get_flags();
1869 		struct device *con_dev;
1870 		bool own_link = true;
1871 		int ret;
1872 
1873 		con_dev = get_dev_from_fwnode(link->consumer);
1874 		/*
1875 		 * If consumer device is not available yet, make a "proxy"
1876 		 * SYNC_STATE_ONLY link from the consumer's parent device to
1877 		 * the supplier device. This is necessary to make sure the
1878 		 * supplier doesn't get a sync_state() callback before the real
1879 		 * consumer can create a device link to the supplier.
1880 		 *
1881 		 * This proxy link step is needed to handle the case where the
1882 		 * consumer's parent device is added before the supplier.
1883 		 */
1884 		if (!con_dev) {
1885 			con_dev = fwnode_get_next_parent_dev(link->consumer);
1886 			/*
1887 			 * However, if the consumer's parent device is also the
1888 			 * parent of the supplier, don't create a
1889 			 * consumer-supplier link from the parent to its child
1890 			 * device. Such a dependency is impossible.
1891 			 */
1892 			if (con_dev &&
1893 			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
1894 				put_device(con_dev);
1895 				con_dev = NULL;
1896 			} else {
1897 				own_link = false;
1898 				dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1899 			}
1900 		}
1901 
1902 		if (!con_dev)
1903 			continue;
1904 
1905 		ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags);
1906 		put_device(con_dev);
1907 		if (!own_link || ret == -EAGAIN)
1908 			continue;
1909 
1910 		__fwnode_link_del(link);
1911 	}
1912 }
1913 
1914 /**
1915  * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
1916  * @dev: The consumer device that needs to be linked to its suppliers
1917  * @fwnode: Root of the fwnode tree that is used to create device links
1918  *
1919  * This function looks at all the supplier fwnodes of fwnode tree rooted at
1920  * @fwnode and creates device links between @dev (consumer) and all the
1921  * supplier devices of the entire fwnode tree at @fwnode.
1922  *
1923  * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
1924  * and the real suppliers of @dev. Once these device links are created, the
1925  * fwnode links are deleted. When such device links are successfully created,
1926  * this function is called recursively on those supplier devices. This is
1927  * needed to detect and break some invalid cycles in fwnode links.  See
1928  * fw_devlink_create_devlink() for more details.
1929  *
1930  * In addition, it also looks at all the suppliers of the entire fwnode tree
1931  * because some of the child devices of @dev that have not been added yet
1932  * (because @dev hasn't probed) might already have their suppliers added to
1933  * driver core. So, this function creates SYNC_STATE_ONLY device links between
1934  * @dev (consumer) and these suppliers to make sure they don't execute their
1935  * sync_state() callbacks before these child devices have a chance to create
1936  * their device links. The fwnode links that correspond to the child devices
1937  * aren't delete because they are needed later to create the device links
1938  * between the real consumer and supplier devices.
1939  */
__fw_devlink_link_to_suppliers(struct device * dev,struct fwnode_handle * fwnode)1940 static void __fw_devlink_link_to_suppliers(struct device *dev,
1941 					   struct fwnode_handle *fwnode)
1942 {
1943 	bool own_link = (dev->fwnode == fwnode);
1944 	struct fwnode_link *link, *tmp;
1945 	struct fwnode_handle *child = NULL;
1946 	u32 dl_flags;
1947 
1948 	if (own_link)
1949 		dl_flags = fw_devlink_get_flags();
1950 	else
1951 		dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1952 
1953 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
1954 		int ret;
1955 		struct device *sup_dev;
1956 		struct fwnode_handle *sup = link->supplier;
1957 
1958 		ret = fw_devlink_create_devlink(dev, sup, dl_flags);
1959 		if (!own_link || ret == -EAGAIN)
1960 			continue;
1961 
1962 		__fwnode_link_del(link);
1963 
1964 		/* If no device link was created, nothing more to do. */
1965 		if (ret)
1966 			continue;
1967 
1968 		/*
1969 		 * If a device link was successfully created to a supplier, we
1970 		 * now need to try and link the supplier to all its suppliers.
1971 		 *
1972 		 * This is needed to detect and delete false dependencies in
1973 		 * fwnode links that haven't been converted to a device link
1974 		 * yet. See comments in fw_devlink_create_devlink() for more
1975 		 * details on the false dependency.
1976 		 *
1977 		 * Without deleting these false dependencies, some devices will
1978 		 * never probe because they'll keep waiting for their false
1979 		 * dependency fwnode links to be converted to device links.
1980 		 */
1981 		sup_dev = get_dev_from_fwnode(sup);
1982 		__fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode);
1983 		put_device(sup_dev);
1984 	}
1985 
1986 	/*
1987 	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
1988 	 * all the descendants. This proxy link step is needed to handle the
1989 	 * case where the supplier is added before the consumer's parent device
1990 	 * (@dev).
1991 	 */
1992 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1993 		__fw_devlink_link_to_suppliers(dev, child);
1994 }
1995 
fw_devlink_link_device(struct device * dev)1996 static void fw_devlink_link_device(struct device *dev)
1997 {
1998 	struct fwnode_handle *fwnode = dev->fwnode;
1999 
2000 	if (!fw_devlink_flags)
2001 		return;
2002 
2003 	fw_devlink_parse_fwtree(fwnode);
2004 
2005 	mutex_lock(&fwnode_link_lock);
2006 	__fw_devlink_link_to_consumers(dev);
2007 	__fw_devlink_link_to_suppliers(dev, fwnode);
2008 	mutex_unlock(&fwnode_link_lock);
2009 }
2010 
2011 /* Device links support end. */
2012 
2013 int (*platform_notify)(struct device *dev) = NULL;
2014 int (*platform_notify_remove)(struct device *dev) = NULL;
2015 static struct kobject *dev_kobj;
2016 struct kobject *sysfs_dev_char_kobj;
2017 struct kobject *sysfs_dev_block_kobj;
2018 
2019 static DEFINE_MUTEX(device_hotplug_lock);
2020 
lock_device_hotplug(void)2021 void lock_device_hotplug(void)
2022 {
2023 	mutex_lock(&device_hotplug_lock);
2024 }
2025 
unlock_device_hotplug(void)2026 void unlock_device_hotplug(void)
2027 {
2028 	mutex_unlock(&device_hotplug_lock);
2029 }
2030 
lock_device_hotplug_sysfs(void)2031 int lock_device_hotplug_sysfs(void)
2032 {
2033 	if (mutex_trylock(&device_hotplug_lock))
2034 		return 0;
2035 
2036 	/* Avoid busy looping (5 ms of sleep should do). */
2037 	msleep(5);
2038 	return restart_syscall();
2039 }
2040 
2041 #ifdef CONFIG_BLOCK
device_is_not_partition(struct device * dev)2042 static inline int device_is_not_partition(struct device *dev)
2043 {
2044 	return !(dev->type == &part_type);
2045 }
2046 #else
device_is_not_partition(struct device * dev)2047 static inline int device_is_not_partition(struct device *dev)
2048 {
2049 	return 1;
2050 }
2051 #endif
2052 
device_platform_notify(struct device * dev)2053 static void device_platform_notify(struct device *dev)
2054 {
2055 	acpi_device_notify(dev);
2056 
2057 	software_node_notify(dev);
2058 
2059 	if (platform_notify)
2060 		platform_notify(dev);
2061 }
2062 
device_platform_notify_remove(struct device * dev)2063 static void device_platform_notify_remove(struct device *dev)
2064 {
2065 	acpi_device_notify_remove(dev);
2066 
2067 	software_node_notify_remove(dev);
2068 
2069 	if (platform_notify_remove)
2070 		platform_notify_remove(dev);
2071 }
2072 
2073 /**
2074  * dev_driver_string - Return a device's driver name, if at all possible
2075  * @dev: struct device to get the name of
2076  *
2077  * Will return the device's driver's name if it is bound to a device.  If
2078  * the device is not bound to a driver, it will return the name of the bus
2079  * it is attached to.  If it is not attached to a bus either, an empty
2080  * string will be returned.
2081  */
dev_driver_string(const struct device * dev)2082 const char *dev_driver_string(const struct device *dev)
2083 {
2084 	struct device_driver *drv;
2085 
2086 	/* dev->driver can change to NULL underneath us because of unbinding,
2087 	 * so be careful about accessing it.  dev->bus and dev->class should
2088 	 * never change once they are set, so they don't need special care.
2089 	 */
2090 	drv = READ_ONCE(dev->driver);
2091 	return drv ? drv->name : dev_bus_name(dev);
2092 }
2093 EXPORT_SYMBOL(dev_driver_string);
2094 
2095 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2096 
dev_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)2097 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2098 			     char *buf)
2099 {
2100 	struct device_attribute *dev_attr = to_dev_attr(attr);
2101 	struct device *dev = kobj_to_dev(kobj);
2102 	ssize_t ret = -EIO;
2103 
2104 	if (dev_attr->show)
2105 		ret = dev_attr->show(dev, dev_attr, buf);
2106 	if (ret >= (ssize_t)PAGE_SIZE) {
2107 		printk("dev_attr_show: %pS returned bad count\n",
2108 				dev_attr->show);
2109 	}
2110 	return ret;
2111 }
2112 
dev_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)2113 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2114 			      const char *buf, size_t count)
2115 {
2116 	struct device_attribute *dev_attr = to_dev_attr(attr);
2117 	struct device *dev = kobj_to_dev(kobj);
2118 	ssize_t ret = -EIO;
2119 
2120 	if (dev_attr->store)
2121 		ret = dev_attr->store(dev, dev_attr, buf, count);
2122 	return ret;
2123 }
2124 
2125 static const struct sysfs_ops dev_sysfs_ops = {
2126 	.show	= dev_attr_show,
2127 	.store	= dev_attr_store,
2128 };
2129 
2130 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2131 
device_store_ulong(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2132 ssize_t device_store_ulong(struct device *dev,
2133 			   struct device_attribute *attr,
2134 			   const char *buf, size_t size)
2135 {
2136 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2137 	int ret;
2138 	unsigned long new;
2139 
2140 	ret = kstrtoul(buf, 0, &new);
2141 	if (ret)
2142 		return ret;
2143 	*(unsigned long *)(ea->var) = new;
2144 	/* Always return full write size even if we didn't consume all */
2145 	return size;
2146 }
2147 EXPORT_SYMBOL_GPL(device_store_ulong);
2148 
device_show_ulong(struct device * dev,struct device_attribute * attr,char * buf)2149 ssize_t device_show_ulong(struct device *dev,
2150 			  struct device_attribute *attr,
2151 			  char *buf)
2152 {
2153 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2154 	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2155 }
2156 EXPORT_SYMBOL_GPL(device_show_ulong);
2157 
device_store_int(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2158 ssize_t device_store_int(struct device *dev,
2159 			 struct device_attribute *attr,
2160 			 const char *buf, size_t size)
2161 {
2162 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2163 	int ret;
2164 	long new;
2165 
2166 	ret = kstrtol(buf, 0, &new);
2167 	if (ret)
2168 		return ret;
2169 
2170 	if (new > INT_MAX || new < INT_MIN)
2171 		return -EINVAL;
2172 	*(int *)(ea->var) = new;
2173 	/* Always return full write size even if we didn't consume all */
2174 	return size;
2175 }
2176 EXPORT_SYMBOL_GPL(device_store_int);
2177 
device_show_int(struct device * dev,struct device_attribute * attr,char * buf)2178 ssize_t device_show_int(struct device *dev,
2179 			struct device_attribute *attr,
2180 			char *buf)
2181 {
2182 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2183 
2184 	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2185 }
2186 EXPORT_SYMBOL_GPL(device_show_int);
2187 
device_store_bool(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2188 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2189 			  const char *buf, size_t size)
2190 {
2191 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2192 
2193 	if (strtobool(buf, ea->var) < 0)
2194 		return -EINVAL;
2195 
2196 	return size;
2197 }
2198 EXPORT_SYMBOL_GPL(device_store_bool);
2199 
device_show_bool(struct device * dev,struct device_attribute * attr,char * buf)2200 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2201 			 char *buf)
2202 {
2203 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2204 
2205 	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2206 }
2207 EXPORT_SYMBOL_GPL(device_show_bool);
2208 
2209 /**
2210  * device_release - free device structure.
2211  * @kobj: device's kobject.
2212  *
2213  * This is called once the reference count for the object
2214  * reaches 0. We forward the call to the device's release
2215  * method, which should handle actually freeing the structure.
2216  */
device_release(struct kobject * kobj)2217 static void device_release(struct kobject *kobj)
2218 {
2219 	struct device *dev = kobj_to_dev(kobj);
2220 	struct device_private *p = dev->p;
2221 
2222 	/*
2223 	 * Some platform devices are driven without driver attached
2224 	 * and managed resources may have been acquired.  Make sure
2225 	 * all resources are released.
2226 	 *
2227 	 * Drivers still can add resources into device after device
2228 	 * is deleted but alive, so release devres here to avoid
2229 	 * possible memory leak.
2230 	 */
2231 	devres_release_all(dev);
2232 
2233 	kfree(dev->dma_range_map);
2234 
2235 	if (dev->release)
2236 		dev->release(dev);
2237 	else if (dev->type && dev->type->release)
2238 		dev->type->release(dev);
2239 	else if (dev->class && dev->class->dev_release)
2240 		dev->class->dev_release(dev);
2241 	else
2242 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2243 			dev_name(dev));
2244 	kfree(p);
2245 }
2246 
device_namespace(struct kobject * kobj)2247 static const void *device_namespace(struct kobject *kobj)
2248 {
2249 	struct device *dev = kobj_to_dev(kobj);
2250 	const void *ns = NULL;
2251 
2252 	if (dev->class && dev->class->ns_type)
2253 		ns = dev->class->namespace(dev);
2254 
2255 	return ns;
2256 }
2257 
device_get_ownership(struct kobject * kobj,kuid_t * uid,kgid_t * gid)2258 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2259 {
2260 	struct device *dev = kobj_to_dev(kobj);
2261 
2262 	if (dev->class && dev->class->get_ownership)
2263 		dev->class->get_ownership(dev, uid, gid);
2264 }
2265 
2266 static struct kobj_type device_ktype = {
2267 	.release	= device_release,
2268 	.sysfs_ops	= &dev_sysfs_ops,
2269 	.namespace	= device_namespace,
2270 	.get_ownership	= device_get_ownership,
2271 };
2272 
2273 
dev_uevent_filter(struct kset * kset,struct kobject * kobj)2274 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
2275 {
2276 	struct kobj_type *ktype = get_ktype(kobj);
2277 
2278 	if (ktype == &device_ktype) {
2279 		struct device *dev = kobj_to_dev(kobj);
2280 		if (dev->bus)
2281 			return 1;
2282 		if (dev->class)
2283 			return 1;
2284 	}
2285 	return 0;
2286 }
2287 
dev_uevent_name(struct kset * kset,struct kobject * kobj)2288 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
2289 {
2290 	struct device *dev = kobj_to_dev(kobj);
2291 
2292 	if (dev->bus)
2293 		return dev->bus->name;
2294 	if (dev->class)
2295 		return dev->class->name;
2296 	return NULL;
2297 }
2298 
dev_uevent(struct kset * kset,struct kobject * kobj,struct kobj_uevent_env * env)2299 static int dev_uevent(struct kset *kset, struct kobject *kobj,
2300 		      struct kobj_uevent_env *env)
2301 {
2302 	struct device *dev = kobj_to_dev(kobj);
2303 	int retval = 0;
2304 
2305 	/* add device node properties if present */
2306 	if (MAJOR(dev->devt)) {
2307 		const char *tmp;
2308 		const char *name;
2309 		umode_t mode = 0;
2310 		kuid_t uid = GLOBAL_ROOT_UID;
2311 		kgid_t gid = GLOBAL_ROOT_GID;
2312 
2313 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2314 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2315 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2316 		if (name) {
2317 			add_uevent_var(env, "DEVNAME=%s", name);
2318 			if (mode)
2319 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2320 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2321 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2322 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2323 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2324 			kfree(tmp);
2325 		}
2326 	}
2327 
2328 	if (dev->type && dev->type->name)
2329 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2330 
2331 	if (dev->driver)
2332 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2333 
2334 	/* Add common DT information about the device */
2335 	of_device_uevent(dev, env);
2336 
2337 	/* have the bus specific function add its stuff */
2338 	if (dev->bus && dev->bus->uevent) {
2339 		retval = dev->bus->uevent(dev, env);
2340 		if (retval)
2341 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2342 				 dev_name(dev), __func__, retval);
2343 	}
2344 
2345 	/* have the class specific function add its stuff */
2346 	if (dev->class && dev->class->dev_uevent) {
2347 		retval = dev->class->dev_uevent(dev, env);
2348 		if (retval)
2349 			pr_debug("device: '%s': %s: class uevent() "
2350 				 "returned %d\n", dev_name(dev),
2351 				 __func__, retval);
2352 	}
2353 
2354 	/* have the device type specific function add its stuff */
2355 	if (dev->type && dev->type->uevent) {
2356 		retval = dev->type->uevent(dev, env);
2357 		if (retval)
2358 			pr_debug("device: '%s': %s: dev_type uevent() "
2359 				 "returned %d\n", dev_name(dev),
2360 				 __func__, retval);
2361 	}
2362 
2363 	return retval;
2364 }
2365 
2366 static const struct kset_uevent_ops device_uevent_ops = {
2367 	.filter =	dev_uevent_filter,
2368 	.name =		dev_uevent_name,
2369 	.uevent =	dev_uevent,
2370 };
2371 
uevent_show(struct device * dev,struct device_attribute * attr,char * buf)2372 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2373 			   char *buf)
2374 {
2375 	struct kobject *top_kobj;
2376 	struct kset *kset;
2377 	struct kobj_uevent_env *env = NULL;
2378 	int i;
2379 	int len = 0;
2380 	int retval;
2381 
2382 	/* search the kset, the device belongs to */
2383 	top_kobj = &dev->kobj;
2384 	while (!top_kobj->kset && top_kobj->parent)
2385 		top_kobj = top_kobj->parent;
2386 	if (!top_kobj->kset)
2387 		goto out;
2388 
2389 	kset = top_kobj->kset;
2390 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2391 		goto out;
2392 
2393 	/* respect filter */
2394 	if (kset->uevent_ops && kset->uevent_ops->filter)
2395 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
2396 			goto out;
2397 
2398 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2399 	if (!env)
2400 		return -ENOMEM;
2401 
2402 	/* let the kset specific function add its keys */
2403 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
2404 	if (retval)
2405 		goto out;
2406 
2407 	/* copy keys to file */
2408 	for (i = 0; i < env->envp_idx; i++)
2409 		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2410 out:
2411 	kfree(env);
2412 	return len;
2413 }
2414 
uevent_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2415 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2416 			    const char *buf, size_t count)
2417 {
2418 	int rc;
2419 
2420 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2421 
2422 	if (rc) {
2423 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
2424 		return rc;
2425 	}
2426 
2427 	return count;
2428 }
2429 static DEVICE_ATTR_RW(uevent);
2430 
online_show(struct device * dev,struct device_attribute * attr,char * buf)2431 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2432 			   char *buf)
2433 {
2434 	bool val;
2435 
2436 	device_lock(dev);
2437 	val = !dev->offline;
2438 	device_unlock(dev);
2439 	return sysfs_emit(buf, "%u\n", val);
2440 }
2441 
online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2442 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2443 			    const char *buf, size_t count)
2444 {
2445 	bool val;
2446 	int ret;
2447 
2448 	ret = strtobool(buf, &val);
2449 	if (ret < 0)
2450 		return ret;
2451 
2452 	ret = lock_device_hotplug_sysfs();
2453 	if (ret)
2454 		return ret;
2455 
2456 	ret = val ? device_online(dev) : device_offline(dev);
2457 	unlock_device_hotplug();
2458 	return ret < 0 ? ret : count;
2459 }
2460 static DEVICE_ATTR_RW(online);
2461 
removable_show(struct device * dev,struct device_attribute * attr,char * buf)2462 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2463 			      char *buf)
2464 {
2465 	const char *loc;
2466 
2467 	switch (dev->removable) {
2468 	case DEVICE_REMOVABLE:
2469 		loc = "removable";
2470 		break;
2471 	case DEVICE_FIXED:
2472 		loc = "fixed";
2473 		break;
2474 	default:
2475 		loc = "unknown";
2476 	}
2477 	return sysfs_emit(buf, "%s\n", loc);
2478 }
2479 static DEVICE_ATTR_RO(removable);
2480 
device_add_groups(struct device * dev,const struct attribute_group ** groups)2481 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2482 {
2483 	return sysfs_create_groups(&dev->kobj, groups);
2484 }
2485 EXPORT_SYMBOL_GPL(device_add_groups);
2486 
device_remove_groups(struct device * dev,const struct attribute_group ** groups)2487 void device_remove_groups(struct device *dev,
2488 			  const struct attribute_group **groups)
2489 {
2490 	sysfs_remove_groups(&dev->kobj, groups);
2491 }
2492 EXPORT_SYMBOL_GPL(device_remove_groups);
2493 
2494 union device_attr_group_devres {
2495 	const struct attribute_group *group;
2496 	const struct attribute_group **groups;
2497 };
2498 
devm_attr_group_match(struct device * dev,void * res,void * data)2499 static int devm_attr_group_match(struct device *dev, void *res, void *data)
2500 {
2501 	return ((union device_attr_group_devres *)res)->group == data;
2502 }
2503 
devm_attr_group_remove(struct device * dev,void * res)2504 static void devm_attr_group_remove(struct device *dev, void *res)
2505 {
2506 	union device_attr_group_devres *devres = res;
2507 	const struct attribute_group *group = devres->group;
2508 
2509 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2510 	sysfs_remove_group(&dev->kobj, group);
2511 }
2512 
devm_attr_groups_remove(struct device * dev,void * res)2513 static void devm_attr_groups_remove(struct device *dev, void *res)
2514 {
2515 	union device_attr_group_devres *devres = res;
2516 	const struct attribute_group **groups = devres->groups;
2517 
2518 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2519 	sysfs_remove_groups(&dev->kobj, groups);
2520 }
2521 
2522 /**
2523  * devm_device_add_group - given a device, create a managed attribute group
2524  * @dev:	The device to create the group for
2525  * @grp:	The attribute group to create
2526  *
2527  * This function creates a group for the first time.  It will explicitly
2528  * warn and error if any of the attribute files being created already exist.
2529  *
2530  * Returns 0 on success or error code on failure.
2531  */
devm_device_add_group(struct device * dev,const struct attribute_group * grp)2532 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2533 {
2534 	union device_attr_group_devres *devres;
2535 	int error;
2536 
2537 	devres = devres_alloc(devm_attr_group_remove,
2538 			      sizeof(*devres), GFP_KERNEL);
2539 	if (!devres)
2540 		return -ENOMEM;
2541 
2542 	error = sysfs_create_group(&dev->kobj, grp);
2543 	if (error) {
2544 		devres_free(devres);
2545 		return error;
2546 	}
2547 
2548 	devres->group = grp;
2549 	devres_add(dev, devres);
2550 	return 0;
2551 }
2552 EXPORT_SYMBOL_GPL(devm_device_add_group);
2553 
2554 /**
2555  * devm_device_remove_group: remove a managed group from a device
2556  * @dev:	device to remove the group from
2557  * @grp:	group to remove
2558  *
2559  * This function removes a group of attributes from a device. The attributes
2560  * previously have to have been created for this group, otherwise it will fail.
2561  */
devm_device_remove_group(struct device * dev,const struct attribute_group * grp)2562 void devm_device_remove_group(struct device *dev,
2563 			      const struct attribute_group *grp)
2564 {
2565 	WARN_ON(devres_release(dev, devm_attr_group_remove,
2566 			       devm_attr_group_match,
2567 			       /* cast away const */ (void *)grp));
2568 }
2569 EXPORT_SYMBOL_GPL(devm_device_remove_group);
2570 
2571 /**
2572  * devm_device_add_groups - create a bunch of managed attribute groups
2573  * @dev:	The device to create the group for
2574  * @groups:	The attribute groups to create, NULL terminated
2575  *
2576  * This function creates a bunch of managed attribute groups.  If an error
2577  * occurs when creating a group, all previously created groups will be
2578  * removed, unwinding everything back to the original state when this
2579  * function was called.  It will explicitly warn and error if any of the
2580  * attribute files being created already exist.
2581  *
2582  * Returns 0 on success or error code from sysfs_create_group on failure.
2583  */
devm_device_add_groups(struct device * dev,const struct attribute_group ** groups)2584 int devm_device_add_groups(struct device *dev,
2585 			   const struct attribute_group **groups)
2586 {
2587 	union device_attr_group_devres *devres;
2588 	int error;
2589 
2590 	devres = devres_alloc(devm_attr_groups_remove,
2591 			      sizeof(*devres), GFP_KERNEL);
2592 	if (!devres)
2593 		return -ENOMEM;
2594 
2595 	error = sysfs_create_groups(&dev->kobj, groups);
2596 	if (error) {
2597 		devres_free(devres);
2598 		return error;
2599 	}
2600 
2601 	devres->groups = groups;
2602 	devres_add(dev, devres);
2603 	return 0;
2604 }
2605 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2606 
2607 /**
2608  * devm_device_remove_groups - remove a list of managed groups
2609  *
2610  * @dev:	The device for the groups to be removed from
2611  * @groups:	NULL terminated list of groups to be removed
2612  *
2613  * If groups is not NULL, remove the specified groups from the device.
2614  */
devm_device_remove_groups(struct device * dev,const struct attribute_group ** groups)2615 void devm_device_remove_groups(struct device *dev,
2616 			       const struct attribute_group **groups)
2617 {
2618 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
2619 			       devm_attr_group_match,
2620 			       /* cast away const */ (void *)groups));
2621 }
2622 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2623 
device_add_attrs(struct device * dev)2624 static int device_add_attrs(struct device *dev)
2625 {
2626 	struct class *class = dev->class;
2627 	const struct device_type *type = dev->type;
2628 	int error;
2629 
2630 	if (class) {
2631 		error = device_add_groups(dev, class->dev_groups);
2632 		if (error)
2633 			return error;
2634 	}
2635 
2636 	if (type) {
2637 		error = device_add_groups(dev, type->groups);
2638 		if (error)
2639 			goto err_remove_class_groups;
2640 	}
2641 
2642 	error = device_add_groups(dev, dev->groups);
2643 	if (error)
2644 		goto err_remove_type_groups;
2645 
2646 	if (device_supports_offline(dev) && !dev->offline_disabled) {
2647 		error = device_create_file(dev, &dev_attr_online);
2648 		if (error)
2649 			goto err_remove_dev_groups;
2650 	}
2651 
2652 	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2653 		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2654 		if (error)
2655 			goto err_remove_dev_online;
2656 	}
2657 
2658 	if (dev_removable_is_valid(dev)) {
2659 		error = device_create_file(dev, &dev_attr_removable);
2660 		if (error)
2661 			goto err_remove_dev_waiting_for_supplier;
2662 	}
2663 
2664 	return 0;
2665 
2666  err_remove_dev_waiting_for_supplier:
2667 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2668  err_remove_dev_online:
2669 	device_remove_file(dev, &dev_attr_online);
2670  err_remove_dev_groups:
2671 	device_remove_groups(dev, dev->groups);
2672  err_remove_type_groups:
2673 	if (type)
2674 		device_remove_groups(dev, type->groups);
2675  err_remove_class_groups:
2676 	if (class)
2677 		device_remove_groups(dev, class->dev_groups);
2678 
2679 	return error;
2680 }
2681 
device_remove_attrs(struct device * dev)2682 static void device_remove_attrs(struct device *dev)
2683 {
2684 	struct class *class = dev->class;
2685 	const struct device_type *type = dev->type;
2686 
2687 	device_remove_file(dev, &dev_attr_removable);
2688 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2689 	device_remove_file(dev, &dev_attr_online);
2690 	device_remove_groups(dev, dev->groups);
2691 
2692 	if (type)
2693 		device_remove_groups(dev, type->groups);
2694 
2695 	if (class)
2696 		device_remove_groups(dev, class->dev_groups);
2697 }
2698 
dev_show(struct device * dev,struct device_attribute * attr,char * buf)2699 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2700 			char *buf)
2701 {
2702 	return print_dev_t(buf, dev->devt);
2703 }
2704 static DEVICE_ATTR_RO(dev);
2705 
2706 /* /sys/devices/ */
2707 struct kset *devices_kset;
2708 
2709 /**
2710  * devices_kset_move_before - Move device in the devices_kset's list.
2711  * @deva: Device to move.
2712  * @devb: Device @deva should come before.
2713  */
devices_kset_move_before(struct device * deva,struct device * devb)2714 static void devices_kset_move_before(struct device *deva, struct device *devb)
2715 {
2716 	if (!devices_kset)
2717 		return;
2718 	pr_debug("devices_kset: Moving %s before %s\n",
2719 		 dev_name(deva), dev_name(devb));
2720 	spin_lock(&devices_kset->list_lock);
2721 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2722 	spin_unlock(&devices_kset->list_lock);
2723 }
2724 
2725 /**
2726  * devices_kset_move_after - Move device in the devices_kset's list.
2727  * @deva: Device to move
2728  * @devb: Device @deva should come after.
2729  */
devices_kset_move_after(struct device * deva,struct device * devb)2730 static void devices_kset_move_after(struct device *deva, struct device *devb)
2731 {
2732 	if (!devices_kset)
2733 		return;
2734 	pr_debug("devices_kset: Moving %s after %s\n",
2735 		 dev_name(deva), dev_name(devb));
2736 	spin_lock(&devices_kset->list_lock);
2737 	list_move(&deva->kobj.entry, &devb->kobj.entry);
2738 	spin_unlock(&devices_kset->list_lock);
2739 }
2740 
2741 /**
2742  * devices_kset_move_last - move the device to the end of devices_kset's list.
2743  * @dev: device to move
2744  */
devices_kset_move_last(struct device * dev)2745 void devices_kset_move_last(struct device *dev)
2746 {
2747 	if (!devices_kset)
2748 		return;
2749 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2750 	spin_lock(&devices_kset->list_lock);
2751 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2752 	spin_unlock(&devices_kset->list_lock);
2753 }
2754 
2755 /**
2756  * device_create_file - create sysfs attribute file for device.
2757  * @dev: device.
2758  * @attr: device attribute descriptor.
2759  */
device_create_file(struct device * dev,const struct device_attribute * attr)2760 int device_create_file(struct device *dev,
2761 		       const struct device_attribute *attr)
2762 {
2763 	int error = 0;
2764 
2765 	if (dev) {
2766 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2767 			"Attribute %s: write permission without 'store'\n",
2768 			attr->attr.name);
2769 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2770 			"Attribute %s: read permission without 'show'\n",
2771 			attr->attr.name);
2772 		error = sysfs_create_file(&dev->kobj, &attr->attr);
2773 	}
2774 
2775 	return error;
2776 }
2777 EXPORT_SYMBOL_GPL(device_create_file);
2778 
2779 /**
2780  * device_remove_file - remove sysfs attribute file.
2781  * @dev: device.
2782  * @attr: device attribute descriptor.
2783  */
device_remove_file(struct device * dev,const struct device_attribute * attr)2784 void device_remove_file(struct device *dev,
2785 			const struct device_attribute *attr)
2786 {
2787 	if (dev)
2788 		sysfs_remove_file(&dev->kobj, &attr->attr);
2789 }
2790 EXPORT_SYMBOL_GPL(device_remove_file);
2791 
2792 /**
2793  * device_remove_file_self - remove sysfs attribute file from its own method.
2794  * @dev: device.
2795  * @attr: device attribute descriptor.
2796  *
2797  * See kernfs_remove_self() for details.
2798  */
device_remove_file_self(struct device * dev,const struct device_attribute * attr)2799 bool device_remove_file_self(struct device *dev,
2800 			     const struct device_attribute *attr)
2801 {
2802 	if (dev)
2803 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2804 	else
2805 		return false;
2806 }
2807 EXPORT_SYMBOL_GPL(device_remove_file_self);
2808 
2809 /**
2810  * device_create_bin_file - create sysfs binary attribute file for device.
2811  * @dev: device.
2812  * @attr: device binary attribute descriptor.
2813  */
device_create_bin_file(struct device * dev,const struct bin_attribute * attr)2814 int device_create_bin_file(struct device *dev,
2815 			   const struct bin_attribute *attr)
2816 {
2817 	int error = -EINVAL;
2818 	if (dev)
2819 		error = sysfs_create_bin_file(&dev->kobj, attr);
2820 	return error;
2821 }
2822 EXPORT_SYMBOL_GPL(device_create_bin_file);
2823 
2824 /**
2825  * device_remove_bin_file - remove sysfs binary attribute file
2826  * @dev: device.
2827  * @attr: device binary attribute descriptor.
2828  */
device_remove_bin_file(struct device * dev,const struct bin_attribute * attr)2829 void device_remove_bin_file(struct device *dev,
2830 			    const struct bin_attribute *attr)
2831 {
2832 	if (dev)
2833 		sysfs_remove_bin_file(&dev->kobj, attr);
2834 }
2835 EXPORT_SYMBOL_GPL(device_remove_bin_file);
2836 
klist_children_get(struct klist_node * n)2837 static void klist_children_get(struct klist_node *n)
2838 {
2839 	struct device_private *p = to_device_private_parent(n);
2840 	struct device *dev = p->device;
2841 
2842 	get_device(dev);
2843 }
2844 
klist_children_put(struct klist_node * n)2845 static void klist_children_put(struct klist_node *n)
2846 {
2847 	struct device_private *p = to_device_private_parent(n);
2848 	struct device *dev = p->device;
2849 
2850 	put_device(dev);
2851 }
2852 
2853 /**
2854  * device_initialize - init device structure.
2855  * @dev: device.
2856  *
2857  * This prepares the device for use by other layers by initializing
2858  * its fields.
2859  * It is the first half of device_register(), if called by
2860  * that function, though it can also be called separately, so one
2861  * may use @dev's fields. In particular, get_device()/put_device()
2862  * may be used for reference counting of @dev after calling this
2863  * function.
2864  *
2865  * All fields in @dev must be initialized by the caller to 0, except
2866  * for those explicitly set to some other value.  The simplest
2867  * approach is to use kzalloc() to allocate the structure containing
2868  * @dev.
2869  *
2870  * NOTE: Use put_device() to give up your reference instead of freeing
2871  * @dev directly once you have called this function.
2872  */
device_initialize(struct device * dev)2873 void device_initialize(struct device *dev)
2874 {
2875 	dev->kobj.kset = devices_kset;
2876 	kobject_init(&dev->kobj, &device_ktype);
2877 	INIT_LIST_HEAD(&dev->dma_pools);
2878 	mutex_init(&dev->mutex);
2879 #ifdef CONFIG_PROVE_LOCKING
2880 	mutex_init(&dev->lockdep_mutex);
2881 #endif
2882 	lockdep_set_novalidate_class(&dev->mutex);
2883 	spin_lock_init(&dev->devres_lock);
2884 	INIT_LIST_HEAD(&dev->devres_head);
2885 	device_pm_init(dev);
2886 	set_dev_node(dev, -1);
2887 #ifdef CONFIG_GENERIC_MSI_IRQ
2888 	raw_spin_lock_init(&dev->msi_lock);
2889 	INIT_LIST_HEAD(&dev->msi_list);
2890 #endif
2891 	INIT_LIST_HEAD(&dev->links.consumers);
2892 	INIT_LIST_HEAD(&dev->links.suppliers);
2893 	INIT_LIST_HEAD(&dev->links.defer_sync);
2894 	dev->links.status = DL_DEV_NO_DRIVER;
2895 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
2896     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
2897     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
2898 	dev->dma_coherent = dma_default_coherent;
2899 #endif
2900 #ifdef CONFIG_SWIOTLB
2901 	dev->dma_io_tlb_mem = &io_tlb_default_mem;
2902 #endif
2903 }
2904 EXPORT_SYMBOL_GPL(device_initialize);
2905 
virtual_device_parent(struct device * dev)2906 struct kobject *virtual_device_parent(struct device *dev)
2907 {
2908 	static struct kobject *virtual_dir = NULL;
2909 
2910 	if (!virtual_dir)
2911 		virtual_dir = kobject_create_and_add("virtual",
2912 						     &devices_kset->kobj);
2913 
2914 	return virtual_dir;
2915 }
2916 
2917 struct class_dir {
2918 	struct kobject kobj;
2919 	struct class *class;
2920 };
2921 
2922 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2923 
class_dir_release(struct kobject * kobj)2924 static void class_dir_release(struct kobject *kobj)
2925 {
2926 	struct class_dir *dir = to_class_dir(kobj);
2927 	kfree(dir);
2928 }
2929 
2930 static const
class_dir_child_ns_type(struct kobject * kobj)2931 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2932 {
2933 	struct class_dir *dir = to_class_dir(kobj);
2934 	return dir->class->ns_type;
2935 }
2936 
2937 static struct kobj_type class_dir_ktype = {
2938 	.release	= class_dir_release,
2939 	.sysfs_ops	= &kobj_sysfs_ops,
2940 	.child_ns_type	= class_dir_child_ns_type
2941 };
2942 
2943 static struct kobject *
class_dir_create_and_add(struct class * class,struct kobject * parent_kobj)2944 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2945 {
2946 	struct class_dir *dir;
2947 	int retval;
2948 
2949 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2950 	if (!dir)
2951 		return ERR_PTR(-ENOMEM);
2952 
2953 	dir->class = class;
2954 	kobject_init(&dir->kobj, &class_dir_ktype);
2955 
2956 	dir->kobj.kset = &class->p->glue_dirs;
2957 
2958 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2959 	if (retval < 0) {
2960 		kobject_put(&dir->kobj);
2961 		return ERR_PTR(retval);
2962 	}
2963 	return &dir->kobj;
2964 }
2965 
2966 static DEFINE_MUTEX(gdp_mutex);
2967 
get_device_parent(struct device * dev,struct device * parent)2968 static struct kobject *get_device_parent(struct device *dev,
2969 					 struct device *parent)
2970 {
2971 	if (dev->class) {
2972 		struct kobject *kobj = NULL;
2973 		struct kobject *parent_kobj;
2974 		struct kobject *k;
2975 
2976 #ifdef CONFIG_BLOCK
2977 		/* block disks show up in /sys/block */
2978 		if (sysfs_deprecated && dev->class == &block_class) {
2979 			if (parent && parent->class == &block_class)
2980 				return &parent->kobj;
2981 			return &block_class.p->subsys.kobj;
2982 		}
2983 #endif
2984 
2985 		/*
2986 		 * If we have no parent, we live in "virtual".
2987 		 * Class-devices with a non class-device as parent, live
2988 		 * in a "glue" directory to prevent namespace collisions.
2989 		 */
2990 		if (parent == NULL)
2991 			parent_kobj = virtual_device_parent(dev);
2992 		else if (parent->class && !dev->class->ns_type)
2993 			return &parent->kobj;
2994 		else
2995 			parent_kobj = &parent->kobj;
2996 
2997 		mutex_lock(&gdp_mutex);
2998 
2999 		/* find our class-directory at the parent and reference it */
3000 		spin_lock(&dev->class->p->glue_dirs.list_lock);
3001 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
3002 			if (k->parent == parent_kobj) {
3003 				kobj = kobject_get(k);
3004 				break;
3005 			}
3006 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
3007 		if (kobj) {
3008 			mutex_unlock(&gdp_mutex);
3009 			return kobj;
3010 		}
3011 
3012 		/* or create a new class-directory at the parent device */
3013 		k = class_dir_create_and_add(dev->class, parent_kobj);
3014 		/* do not emit an uevent for this simple "glue" directory */
3015 		mutex_unlock(&gdp_mutex);
3016 		return k;
3017 	}
3018 
3019 	/* subsystems can specify a default root directory for their devices */
3020 	if (!parent && dev->bus && dev->bus->dev_root)
3021 		return &dev->bus->dev_root->kobj;
3022 
3023 	if (parent)
3024 		return &parent->kobj;
3025 	return NULL;
3026 }
3027 
live_in_glue_dir(struct kobject * kobj,struct device * dev)3028 static inline bool live_in_glue_dir(struct kobject *kobj,
3029 				    struct device *dev)
3030 {
3031 	if (!kobj || !dev->class ||
3032 	    kobj->kset != &dev->class->p->glue_dirs)
3033 		return false;
3034 	return true;
3035 }
3036 
get_glue_dir(struct device * dev)3037 static inline struct kobject *get_glue_dir(struct device *dev)
3038 {
3039 	return dev->kobj.parent;
3040 }
3041 
3042 /*
3043  * make sure cleaning up dir as the last step, we need to make
3044  * sure .release handler of kobject is run with holding the
3045  * global lock
3046  */
cleanup_glue_dir(struct device * dev,struct kobject * glue_dir)3047 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3048 {
3049 	unsigned int ref;
3050 
3051 	/* see if we live in a "glue" directory */
3052 	if (!live_in_glue_dir(glue_dir, dev))
3053 		return;
3054 
3055 	mutex_lock(&gdp_mutex);
3056 	/**
3057 	 * There is a race condition between removing glue directory
3058 	 * and adding a new device under the glue directory.
3059 	 *
3060 	 * CPU1:                                         CPU2:
3061 	 *
3062 	 * device_add()
3063 	 *   get_device_parent()
3064 	 *     class_dir_create_and_add()
3065 	 *       kobject_add_internal()
3066 	 *         create_dir()    // create glue_dir
3067 	 *
3068 	 *                                               device_add()
3069 	 *                                                 get_device_parent()
3070 	 *                                                   kobject_get() // get glue_dir
3071 	 *
3072 	 * device_del()
3073 	 *   cleanup_glue_dir()
3074 	 *     kobject_del(glue_dir)
3075 	 *
3076 	 *                                               kobject_add()
3077 	 *                                                 kobject_add_internal()
3078 	 *                                                   create_dir() // in glue_dir
3079 	 *                                                     sysfs_create_dir_ns()
3080 	 *                                                       kernfs_create_dir_ns(sd)
3081 	 *
3082 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
3083 	 *       sysfs_put()        // free glue_dir->sd
3084 	 *
3085 	 *                                                         // sd is freed
3086 	 *                                                         kernfs_new_node(sd)
3087 	 *                                                           kernfs_get(glue_dir)
3088 	 *                                                           kernfs_add_one()
3089 	 *                                                           kernfs_put()
3090 	 *
3091 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3092 	 * a new device under glue dir, the glue_dir kobject reference count
3093 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3094 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3095 	 * and sysfs_put(). This result in glue_dir->sd is freed.
3096 	 *
3097 	 * Then the CPU2 will see a stale "empty" but still potentially used
3098 	 * glue dir around in kernfs_new_node().
3099 	 *
3100 	 * In order to avoid this happening, we also should make sure that
3101 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3102 	 * for glue_dir kobj is 1.
3103 	 */
3104 	ref = kref_read(&glue_dir->kref);
3105 	if (!kobject_has_children(glue_dir) && !--ref)
3106 		kobject_del(glue_dir);
3107 	kobject_put(glue_dir);
3108 	mutex_unlock(&gdp_mutex);
3109 }
3110 
device_add_class_symlinks(struct device * dev)3111 static int device_add_class_symlinks(struct device *dev)
3112 {
3113 	struct device_node *of_node = dev_of_node(dev);
3114 	int error;
3115 
3116 	if (of_node) {
3117 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3118 		if (error)
3119 			dev_warn(dev, "Error %d creating of_node link\n",error);
3120 		/* An error here doesn't warrant bringing down the device */
3121 	}
3122 
3123 	if (!dev->class)
3124 		return 0;
3125 
3126 	error = sysfs_create_link(&dev->kobj,
3127 				  &dev->class->p->subsys.kobj,
3128 				  "subsystem");
3129 	if (error)
3130 		goto out_devnode;
3131 
3132 	if (dev->parent && device_is_not_partition(dev)) {
3133 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3134 					  "device");
3135 		if (error)
3136 			goto out_subsys;
3137 	}
3138 
3139 #ifdef CONFIG_BLOCK
3140 	/* /sys/block has directories and does not need symlinks */
3141 	if (sysfs_deprecated && dev->class == &block_class)
3142 		return 0;
3143 #endif
3144 
3145 	/* link in the class directory pointing to the device */
3146 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
3147 				  &dev->kobj, dev_name(dev));
3148 	if (error)
3149 		goto out_device;
3150 
3151 	return 0;
3152 
3153 out_device:
3154 	sysfs_remove_link(&dev->kobj, "device");
3155 
3156 out_subsys:
3157 	sysfs_remove_link(&dev->kobj, "subsystem");
3158 out_devnode:
3159 	sysfs_remove_link(&dev->kobj, "of_node");
3160 	return error;
3161 }
3162 
device_remove_class_symlinks(struct device * dev)3163 static void device_remove_class_symlinks(struct device *dev)
3164 {
3165 	if (dev_of_node(dev))
3166 		sysfs_remove_link(&dev->kobj, "of_node");
3167 
3168 	if (!dev->class)
3169 		return;
3170 
3171 	if (dev->parent && device_is_not_partition(dev))
3172 		sysfs_remove_link(&dev->kobj, "device");
3173 	sysfs_remove_link(&dev->kobj, "subsystem");
3174 #ifdef CONFIG_BLOCK
3175 	if (sysfs_deprecated && dev->class == &block_class)
3176 		return;
3177 #endif
3178 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3179 }
3180 
3181 /**
3182  * dev_set_name - set a device name
3183  * @dev: device
3184  * @fmt: format string for the device's name
3185  */
dev_set_name(struct device * dev,const char * fmt,...)3186 int dev_set_name(struct device *dev, const char *fmt, ...)
3187 {
3188 	va_list vargs;
3189 	int err;
3190 
3191 	va_start(vargs, fmt);
3192 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3193 	va_end(vargs);
3194 	return err;
3195 }
3196 EXPORT_SYMBOL_GPL(dev_set_name);
3197 
3198 /**
3199  * device_to_dev_kobj - select a /sys/dev/ directory for the device
3200  * @dev: device
3201  *
3202  * By default we select char/ for new entries.  Setting class->dev_obj
3203  * to NULL prevents an entry from being created.  class->dev_kobj must
3204  * be set (or cleared) before any devices are registered to the class
3205  * otherwise device_create_sys_dev_entry() and
3206  * device_remove_sys_dev_entry() will disagree about the presence of
3207  * the link.
3208  */
device_to_dev_kobj(struct device * dev)3209 static struct kobject *device_to_dev_kobj(struct device *dev)
3210 {
3211 	struct kobject *kobj;
3212 
3213 	if (dev->class)
3214 		kobj = dev->class->dev_kobj;
3215 	else
3216 		kobj = sysfs_dev_char_kobj;
3217 
3218 	return kobj;
3219 }
3220 
device_create_sys_dev_entry(struct device * dev)3221 static int device_create_sys_dev_entry(struct device *dev)
3222 {
3223 	struct kobject *kobj = device_to_dev_kobj(dev);
3224 	int error = 0;
3225 	char devt_str[15];
3226 
3227 	if (kobj) {
3228 		format_dev_t(devt_str, dev->devt);
3229 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3230 	}
3231 
3232 	return error;
3233 }
3234 
device_remove_sys_dev_entry(struct device * dev)3235 static void device_remove_sys_dev_entry(struct device *dev)
3236 {
3237 	struct kobject *kobj = device_to_dev_kobj(dev);
3238 	char devt_str[15];
3239 
3240 	if (kobj) {
3241 		format_dev_t(devt_str, dev->devt);
3242 		sysfs_remove_link(kobj, devt_str);
3243 	}
3244 }
3245 
device_private_init(struct device * dev)3246 static int device_private_init(struct device *dev)
3247 {
3248 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3249 	if (!dev->p)
3250 		return -ENOMEM;
3251 	dev->p->device = dev;
3252 	klist_init(&dev->p->klist_children, klist_children_get,
3253 		   klist_children_put);
3254 	INIT_LIST_HEAD(&dev->p->deferred_probe);
3255 	return 0;
3256 }
3257 
3258 /**
3259  * device_add - add device to device hierarchy.
3260  * @dev: device.
3261  *
3262  * This is part 2 of device_register(), though may be called
3263  * separately _iff_ device_initialize() has been called separately.
3264  *
3265  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3266  * to the global and sibling lists for the device, then
3267  * adds it to the other relevant subsystems of the driver model.
3268  *
3269  * Do not call this routine or device_register() more than once for
3270  * any device structure.  The driver model core is not designed to work
3271  * with devices that get unregistered and then spring back to life.
3272  * (Among other things, it's very hard to guarantee that all references
3273  * to the previous incarnation of @dev have been dropped.)  Allocate
3274  * and register a fresh new struct device instead.
3275  *
3276  * NOTE: _Never_ directly free @dev after calling this function, even
3277  * if it returned an error! Always use put_device() to give up your
3278  * reference instead.
3279  *
3280  * Rule of thumb is: if device_add() succeeds, you should call
3281  * device_del() when you want to get rid of it. If device_add() has
3282  * *not* succeeded, use *only* put_device() to drop the reference
3283  * count.
3284  */
device_add(struct device * dev)3285 int device_add(struct device *dev)
3286 {
3287 	struct device *parent;
3288 	struct kobject *kobj;
3289 	struct class_interface *class_intf;
3290 	int error = -EINVAL;
3291 	struct kobject *glue_dir = NULL;
3292 
3293 	dev = get_device(dev);
3294 	if (!dev)
3295 		goto done;
3296 
3297 	if (!dev->p) {
3298 		error = device_private_init(dev);
3299 		if (error)
3300 			goto done;
3301 	}
3302 
3303 	/*
3304 	 * for statically allocated devices, which should all be converted
3305 	 * some day, we need to initialize the name. We prevent reading back
3306 	 * the name, and force the use of dev_name()
3307 	 */
3308 	if (dev->init_name) {
3309 		dev_set_name(dev, "%s", dev->init_name);
3310 		dev->init_name = NULL;
3311 	}
3312 
3313 	/* subsystems can specify simple device enumeration */
3314 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3315 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3316 
3317 	if (!dev_name(dev)) {
3318 		error = -EINVAL;
3319 		goto name_error;
3320 	}
3321 
3322 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3323 
3324 	parent = get_device(dev->parent);
3325 	kobj = get_device_parent(dev, parent);
3326 	if (IS_ERR(kobj)) {
3327 		error = PTR_ERR(kobj);
3328 		goto parent_error;
3329 	}
3330 	if (kobj)
3331 		dev->kobj.parent = kobj;
3332 
3333 	/* use parent numa_node */
3334 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3335 		set_dev_node(dev, dev_to_node(parent));
3336 
3337 	/* first, register with generic layer. */
3338 	/* we require the name to be set before, and pass NULL */
3339 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3340 	if (error) {
3341 		glue_dir = kobj;
3342 		goto Error;
3343 	}
3344 
3345 	/* notify platform of device entry */
3346 	device_platform_notify(dev);
3347 
3348 	error = device_create_file(dev, &dev_attr_uevent);
3349 	if (error)
3350 		goto attrError;
3351 
3352 	error = device_add_class_symlinks(dev);
3353 	if (error)
3354 		goto SymlinkError;
3355 	error = device_add_attrs(dev);
3356 	if (error)
3357 		goto AttrsError;
3358 	error = bus_add_device(dev);
3359 	if (error)
3360 		goto BusError;
3361 	error = dpm_sysfs_add(dev);
3362 	if (error)
3363 		goto DPMError;
3364 	device_pm_add(dev);
3365 
3366 	if (MAJOR(dev->devt)) {
3367 		error = device_create_file(dev, &dev_attr_dev);
3368 		if (error)
3369 			goto DevAttrError;
3370 
3371 		error = device_create_sys_dev_entry(dev);
3372 		if (error)
3373 			goto SysEntryError;
3374 
3375 		devtmpfs_create_node(dev);
3376 	}
3377 
3378 	/* Notify clients of device addition.  This call must come
3379 	 * after dpm_sysfs_add() and before kobject_uevent().
3380 	 */
3381 	if (dev->bus)
3382 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3383 					     BUS_NOTIFY_ADD_DEVICE, dev);
3384 
3385 	kobject_uevent(&dev->kobj, KOBJ_ADD);
3386 
3387 	/*
3388 	 * Check if any of the other devices (consumers) have been waiting for
3389 	 * this device (supplier) to be added so that they can create a device
3390 	 * link to it.
3391 	 *
3392 	 * This needs to happen after device_pm_add() because device_link_add()
3393 	 * requires the supplier be registered before it's called.
3394 	 *
3395 	 * But this also needs to happen before bus_probe_device() to make sure
3396 	 * waiting consumers can link to it before the driver is bound to the
3397 	 * device and the driver sync_state callback is called for this device.
3398 	 */
3399 	if (dev->fwnode && !dev->fwnode->dev) {
3400 		dev->fwnode->dev = dev;
3401 		fw_devlink_link_device(dev);
3402 	}
3403 
3404 	bus_probe_device(dev);
3405 
3406 	/*
3407 	 * If all driver registration is done and a newly added device doesn't
3408 	 * match with any driver, don't block its consumers from probing in
3409 	 * case the consumer device is able to operate without this supplier.
3410 	 */
3411 	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3412 		fw_devlink_unblock_consumers(dev);
3413 
3414 	if (parent)
3415 		klist_add_tail(&dev->p->knode_parent,
3416 			       &parent->p->klist_children);
3417 
3418 	if (dev->class) {
3419 		mutex_lock(&dev->class->p->mutex);
3420 		/* tie the class to the device */
3421 		klist_add_tail(&dev->p->knode_class,
3422 			       &dev->class->p->klist_devices);
3423 
3424 		/* notify any interfaces that the device is here */
3425 		list_for_each_entry(class_intf,
3426 				    &dev->class->p->interfaces, node)
3427 			if (class_intf->add_dev)
3428 				class_intf->add_dev(dev, class_intf);
3429 		mutex_unlock(&dev->class->p->mutex);
3430 	}
3431 done:
3432 	put_device(dev);
3433 	return error;
3434  SysEntryError:
3435 	if (MAJOR(dev->devt))
3436 		device_remove_file(dev, &dev_attr_dev);
3437  DevAttrError:
3438 	device_pm_remove(dev);
3439 	dpm_sysfs_remove(dev);
3440  DPMError:
3441 	dev->driver = NULL;
3442 	bus_remove_device(dev);
3443  BusError:
3444 	device_remove_attrs(dev);
3445  AttrsError:
3446 	device_remove_class_symlinks(dev);
3447  SymlinkError:
3448 	device_remove_file(dev, &dev_attr_uevent);
3449  attrError:
3450 	device_platform_notify_remove(dev);
3451 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3452 	glue_dir = get_glue_dir(dev);
3453 	kobject_del(&dev->kobj);
3454  Error:
3455 	cleanup_glue_dir(dev, glue_dir);
3456 parent_error:
3457 	put_device(parent);
3458 name_error:
3459 	kfree(dev->p);
3460 	dev->p = NULL;
3461 	goto done;
3462 }
3463 EXPORT_SYMBOL_GPL(device_add);
3464 
3465 /**
3466  * device_register - register a device with the system.
3467  * @dev: pointer to the device structure
3468  *
3469  * This happens in two clean steps - initialize the device
3470  * and add it to the system. The two steps can be called
3471  * separately, but this is the easiest and most common.
3472  * I.e. you should only call the two helpers separately if
3473  * have a clearly defined need to use and refcount the device
3474  * before it is added to the hierarchy.
3475  *
3476  * For more information, see the kerneldoc for device_initialize()
3477  * and device_add().
3478  *
3479  * NOTE: _Never_ directly free @dev after calling this function, even
3480  * if it returned an error! Always use put_device() to give up the
3481  * reference initialized in this function instead.
3482  */
device_register(struct device * dev)3483 int device_register(struct device *dev)
3484 {
3485 	device_initialize(dev);
3486 	return device_add(dev);
3487 }
3488 EXPORT_SYMBOL_GPL(device_register);
3489 
3490 /**
3491  * get_device - increment reference count for device.
3492  * @dev: device.
3493  *
3494  * This simply forwards the call to kobject_get(), though
3495  * we do take care to provide for the case that we get a NULL
3496  * pointer passed in.
3497  */
get_device(struct device * dev)3498 struct device *get_device(struct device *dev)
3499 {
3500 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3501 }
3502 EXPORT_SYMBOL_GPL(get_device);
3503 
3504 /**
3505  * put_device - decrement reference count.
3506  * @dev: device in question.
3507  */
put_device(struct device * dev)3508 void put_device(struct device *dev)
3509 {
3510 	/* might_sleep(); */
3511 	if (dev)
3512 		kobject_put(&dev->kobj);
3513 }
3514 EXPORT_SYMBOL_GPL(put_device);
3515 
kill_device(struct device * dev)3516 bool kill_device(struct device *dev)
3517 {
3518 	/*
3519 	 * Require the device lock and set the "dead" flag to guarantee that
3520 	 * the update behavior is consistent with the other bitfields near
3521 	 * it and that we cannot have an asynchronous probe routine trying
3522 	 * to run while we are tearing out the bus/class/sysfs from
3523 	 * underneath the device.
3524 	 */
3525 	device_lock_assert(dev);
3526 
3527 	if (dev->p->dead)
3528 		return false;
3529 	dev->p->dead = true;
3530 	return true;
3531 }
3532 EXPORT_SYMBOL_GPL(kill_device);
3533 
3534 /**
3535  * device_del - delete device from system.
3536  * @dev: device.
3537  *
3538  * This is the first part of the device unregistration
3539  * sequence. This removes the device from the lists we control
3540  * from here, has it removed from the other driver model
3541  * subsystems it was added to in device_add(), and removes it
3542  * from the kobject hierarchy.
3543  *
3544  * NOTE: this should be called manually _iff_ device_add() was
3545  * also called manually.
3546  */
device_del(struct device * dev)3547 void device_del(struct device *dev)
3548 {
3549 	struct device *parent = dev->parent;
3550 	struct kobject *glue_dir = NULL;
3551 	struct class_interface *class_intf;
3552 	unsigned int noio_flag;
3553 
3554 	device_lock(dev);
3555 	kill_device(dev);
3556 	device_unlock(dev);
3557 
3558 	if (dev->fwnode && dev->fwnode->dev == dev)
3559 		dev->fwnode->dev = NULL;
3560 
3561 	/* Notify clients of device removal.  This call must come
3562 	 * before dpm_sysfs_remove().
3563 	 */
3564 	noio_flag = memalloc_noio_save();
3565 	if (dev->bus)
3566 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3567 					     BUS_NOTIFY_DEL_DEVICE, dev);
3568 
3569 	dpm_sysfs_remove(dev);
3570 	if (parent)
3571 		klist_del(&dev->p->knode_parent);
3572 	if (MAJOR(dev->devt)) {
3573 		devtmpfs_delete_node(dev);
3574 		device_remove_sys_dev_entry(dev);
3575 		device_remove_file(dev, &dev_attr_dev);
3576 	}
3577 	if (dev->class) {
3578 		device_remove_class_symlinks(dev);
3579 
3580 		mutex_lock(&dev->class->p->mutex);
3581 		/* notify any interfaces that the device is now gone */
3582 		list_for_each_entry(class_intf,
3583 				    &dev->class->p->interfaces, node)
3584 			if (class_intf->remove_dev)
3585 				class_intf->remove_dev(dev, class_intf);
3586 		/* remove the device from the class list */
3587 		klist_del(&dev->p->knode_class);
3588 		mutex_unlock(&dev->class->p->mutex);
3589 	}
3590 	device_remove_file(dev, &dev_attr_uevent);
3591 	device_remove_attrs(dev);
3592 	bus_remove_device(dev);
3593 	device_pm_remove(dev);
3594 	driver_deferred_probe_del(dev);
3595 	device_platform_notify_remove(dev);
3596 	device_remove_properties(dev);
3597 	device_links_purge(dev);
3598 
3599 	if (dev->bus)
3600 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3601 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
3602 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3603 	glue_dir = get_glue_dir(dev);
3604 	kobject_del(&dev->kobj);
3605 	cleanup_glue_dir(dev, glue_dir);
3606 	memalloc_noio_restore(noio_flag);
3607 	put_device(parent);
3608 }
3609 EXPORT_SYMBOL_GPL(device_del);
3610 
3611 /**
3612  * device_unregister - unregister device from system.
3613  * @dev: device going away.
3614  *
3615  * We do this in two parts, like we do device_register(). First,
3616  * we remove it from all the subsystems with device_del(), then
3617  * we decrement the reference count via put_device(). If that
3618  * is the final reference count, the device will be cleaned up
3619  * via device_release() above. Otherwise, the structure will
3620  * stick around until the final reference to the device is dropped.
3621  */
device_unregister(struct device * dev)3622 void device_unregister(struct device *dev)
3623 {
3624 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3625 	device_del(dev);
3626 	put_device(dev);
3627 }
3628 EXPORT_SYMBOL_GPL(device_unregister);
3629 
prev_device(struct klist_iter * i)3630 static struct device *prev_device(struct klist_iter *i)
3631 {
3632 	struct klist_node *n = klist_prev(i);
3633 	struct device *dev = NULL;
3634 	struct device_private *p;
3635 
3636 	if (n) {
3637 		p = to_device_private_parent(n);
3638 		dev = p->device;
3639 	}
3640 	return dev;
3641 }
3642 
next_device(struct klist_iter * i)3643 static struct device *next_device(struct klist_iter *i)
3644 {
3645 	struct klist_node *n = klist_next(i);
3646 	struct device *dev = NULL;
3647 	struct device_private *p;
3648 
3649 	if (n) {
3650 		p = to_device_private_parent(n);
3651 		dev = p->device;
3652 	}
3653 	return dev;
3654 }
3655 
3656 /**
3657  * device_get_devnode - path of device node file
3658  * @dev: device
3659  * @mode: returned file access mode
3660  * @uid: returned file owner
3661  * @gid: returned file group
3662  * @tmp: possibly allocated string
3663  *
3664  * Return the relative path of a possible device node.
3665  * Non-default names may need to allocate a memory to compose
3666  * a name. This memory is returned in tmp and needs to be
3667  * freed by the caller.
3668  */
device_get_devnode(struct device * dev,umode_t * mode,kuid_t * uid,kgid_t * gid,const char ** tmp)3669 const char *device_get_devnode(struct device *dev,
3670 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3671 			       const char **tmp)
3672 {
3673 	char *s;
3674 
3675 	*tmp = NULL;
3676 
3677 	/* the device type may provide a specific name */
3678 	if (dev->type && dev->type->devnode)
3679 		*tmp = dev->type->devnode(dev, mode, uid, gid);
3680 	if (*tmp)
3681 		return *tmp;
3682 
3683 	/* the class may provide a specific name */
3684 	if (dev->class && dev->class->devnode)
3685 		*tmp = dev->class->devnode(dev, mode);
3686 	if (*tmp)
3687 		return *tmp;
3688 
3689 	/* return name without allocation, tmp == NULL */
3690 	if (strchr(dev_name(dev), '!') == NULL)
3691 		return dev_name(dev);
3692 
3693 	/* replace '!' in the name with '/' */
3694 	s = kstrdup(dev_name(dev), GFP_KERNEL);
3695 	if (!s)
3696 		return NULL;
3697 	strreplace(s, '!', '/');
3698 	return *tmp = s;
3699 }
3700 
3701 /**
3702  * device_for_each_child - device child iterator.
3703  * @parent: parent struct device.
3704  * @fn: function to be called for each device.
3705  * @data: data for the callback.
3706  *
3707  * Iterate over @parent's child devices, and call @fn for each,
3708  * passing it @data.
3709  *
3710  * We check the return of @fn each time. If it returns anything
3711  * other than 0, we break out and return that value.
3712  */
device_for_each_child(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))3713 int device_for_each_child(struct device *parent, void *data,
3714 			  int (*fn)(struct device *dev, void *data))
3715 {
3716 	struct klist_iter i;
3717 	struct device *child;
3718 	int error = 0;
3719 
3720 	if (!parent->p)
3721 		return 0;
3722 
3723 	klist_iter_init(&parent->p->klist_children, &i);
3724 	while (!error && (child = next_device(&i)))
3725 		error = fn(child, data);
3726 	klist_iter_exit(&i);
3727 	return error;
3728 }
3729 EXPORT_SYMBOL_GPL(device_for_each_child);
3730 
3731 /**
3732  * device_for_each_child_reverse - device child iterator in reversed order.
3733  * @parent: parent struct device.
3734  * @fn: function to be called for each device.
3735  * @data: data for the callback.
3736  *
3737  * Iterate over @parent's child devices, and call @fn for each,
3738  * passing it @data.
3739  *
3740  * We check the return of @fn each time. If it returns anything
3741  * other than 0, we break out and return that value.
3742  */
device_for_each_child_reverse(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))3743 int device_for_each_child_reverse(struct device *parent, void *data,
3744 				  int (*fn)(struct device *dev, void *data))
3745 {
3746 	struct klist_iter i;
3747 	struct device *child;
3748 	int error = 0;
3749 
3750 	if (!parent->p)
3751 		return 0;
3752 
3753 	klist_iter_init(&parent->p->klist_children, &i);
3754 	while ((child = prev_device(&i)) && !error)
3755 		error = fn(child, data);
3756 	klist_iter_exit(&i);
3757 	return error;
3758 }
3759 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3760 
3761 /**
3762  * device_find_child - device iterator for locating a particular device.
3763  * @parent: parent struct device
3764  * @match: Callback function to check device
3765  * @data: Data to pass to match function
3766  *
3767  * This is similar to the device_for_each_child() function above, but it
3768  * returns a reference to a device that is 'found' for later use, as
3769  * determined by the @match callback.
3770  *
3771  * The callback should return 0 if the device doesn't match and non-zero
3772  * if it does.  If the callback returns non-zero and a reference to the
3773  * current device can be obtained, this function will return to the caller
3774  * and not iterate over any more devices.
3775  *
3776  * NOTE: you will need to drop the reference with put_device() after use.
3777  */
device_find_child(struct device * parent,void * data,int (* match)(struct device * dev,void * data))3778 struct device *device_find_child(struct device *parent, void *data,
3779 				 int (*match)(struct device *dev, void *data))
3780 {
3781 	struct klist_iter i;
3782 	struct device *child;
3783 
3784 	if (!parent)
3785 		return NULL;
3786 
3787 	klist_iter_init(&parent->p->klist_children, &i);
3788 	while ((child = next_device(&i)))
3789 		if (match(child, data) && get_device(child))
3790 			break;
3791 	klist_iter_exit(&i);
3792 	return child;
3793 }
3794 EXPORT_SYMBOL_GPL(device_find_child);
3795 
3796 /**
3797  * device_find_child_by_name - device iterator for locating a child device.
3798  * @parent: parent struct device
3799  * @name: name of the child device
3800  *
3801  * This is similar to the device_find_child() function above, but it
3802  * returns a reference to a device that has the name @name.
3803  *
3804  * NOTE: you will need to drop the reference with put_device() after use.
3805  */
device_find_child_by_name(struct device * parent,const char * name)3806 struct device *device_find_child_by_name(struct device *parent,
3807 					 const char *name)
3808 {
3809 	struct klist_iter i;
3810 	struct device *child;
3811 
3812 	if (!parent)
3813 		return NULL;
3814 
3815 	klist_iter_init(&parent->p->klist_children, &i);
3816 	while ((child = next_device(&i)))
3817 		if (sysfs_streq(dev_name(child), name) && get_device(child))
3818 			break;
3819 	klist_iter_exit(&i);
3820 	return child;
3821 }
3822 EXPORT_SYMBOL_GPL(device_find_child_by_name);
3823 
devices_init(void)3824 int __init devices_init(void)
3825 {
3826 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3827 	if (!devices_kset)
3828 		return -ENOMEM;
3829 	dev_kobj = kobject_create_and_add("dev", NULL);
3830 	if (!dev_kobj)
3831 		goto dev_kobj_err;
3832 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3833 	if (!sysfs_dev_block_kobj)
3834 		goto block_kobj_err;
3835 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3836 	if (!sysfs_dev_char_kobj)
3837 		goto char_kobj_err;
3838 
3839 	return 0;
3840 
3841  char_kobj_err:
3842 	kobject_put(sysfs_dev_block_kobj);
3843  block_kobj_err:
3844 	kobject_put(dev_kobj);
3845  dev_kobj_err:
3846 	kset_unregister(devices_kset);
3847 	return -ENOMEM;
3848 }
3849 
device_check_offline(struct device * dev,void * not_used)3850 static int device_check_offline(struct device *dev, void *not_used)
3851 {
3852 	int ret;
3853 
3854 	ret = device_for_each_child(dev, NULL, device_check_offline);
3855 	if (ret)
3856 		return ret;
3857 
3858 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3859 }
3860 
3861 /**
3862  * device_offline - Prepare the device for hot-removal.
3863  * @dev: Device to be put offline.
3864  *
3865  * Execute the device bus type's .offline() callback, if present, to prepare
3866  * the device for a subsequent hot-removal.  If that succeeds, the device must
3867  * not be used until either it is removed or its bus type's .online() callback
3868  * is executed.
3869  *
3870  * Call under device_hotplug_lock.
3871  */
device_offline(struct device * dev)3872 int device_offline(struct device *dev)
3873 {
3874 	int ret;
3875 
3876 	if (dev->offline_disabled)
3877 		return -EPERM;
3878 
3879 	ret = device_for_each_child(dev, NULL, device_check_offline);
3880 	if (ret)
3881 		return ret;
3882 
3883 	device_lock(dev);
3884 	if (device_supports_offline(dev)) {
3885 		if (dev->offline) {
3886 			ret = 1;
3887 		} else {
3888 			ret = dev->bus->offline(dev);
3889 			if (!ret) {
3890 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3891 				dev->offline = true;
3892 			}
3893 		}
3894 	}
3895 	device_unlock(dev);
3896 
3897 	return ret;
3898 }
3899 
3900 /**
3901  * device_online - Put the device back online after successful device_offline().
3902  * @dev: Device to be put back online.
3903  *
3904  * If device_offline() has been successfully executed for @dev, but the device
3905  * has not been removed subsequently, execute its bus type's .online() callback
3906  * to indicate that the device can be used again.
3907  *
3908  * Call under device_hotplug_lock.
3909  */
device_online(struct device * dev)3910 int device_online(struct device *dev)
3911 {
3912 	int ret = 0;
3913 
3914 	device_lock(dev);
3915 	if (device_supports_offline(dev)) {
3916 		if (dev->offline) {
3917 			ret = dev->bus->online(dev);
3918 			if (!ret) {
3919 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3920 				dev->offline = false;
3921 			}
3922 		} else {
3923 			ret = 1;
3924 		}
3925 	}
3926 	device_unlock(dev);
3927 
3928 	return ret;
3929 }
3930 
3931 struct root_device {
3932 	struct device dev;
3933 	struct module *owner;
3934 };
3935 
to_root_device(struct device * d)3936 static inline struct root_device *to_root_device(struct device *d)
3937 {
3938 	return container_of(d, struct root_device, dev);
3939 }
3940 
root_device_release(struct device * dev)3941 static void root_device_release(struct device *dev)
3942 {
3943 	kfree(to_root_device(dev));
3944 }
3945 
3946 /**
3947  * __root_device_register - allocate and register a root device
3948  * @name: root device name
3949  * @owner: owner module of the root device, usually THIS_MODULE
3950  *
3951  * This function allocates a root device and registers it
3952  * using device_register(). In order to free the returned
3953  * device, use root_device_unregister().
3954  *
3955  * Root devices are dummy devices which allow other devices
3956  * to be grouped under /sys/devices. Use this function to
3957  * allocate a root device and then use it as the parent of
3958  * any device which should appear under /sys/devices/{name}
3959  *
3960  * The /sys/devices/{name} directory will also contain a
3961  * 'module' symlink which points to the @owner directory
3962  * in sysfs.
3963  *
3964  * Returns &struct device pointer on success, or ERR_PTR() on error.
3965  *
3966  * Note: You probably want to use root_device_register().
3967  */
__root_device_register(const char * name,struct module * owner)3968 struct device *__root_device_register(const char *name, struct module *owner)
3969 {
3970 	struct root_device *root;
3971 	int err = -ENOMEM;
3972 
3973 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3974 	if (!root)
3975 		return ERR_PTR(err);
3976 
3977 	err = dev_set_name(&root->dev, "%s", name);
3978 	if (err) {
3979 		kfree(root);
3980 		return ERR_PTR(err);
3981 	}
3982 
3983 	root->dev.release = root_device_release;
3984 
3985 	err = device_register(&root->dev);
3986 	if (err) {
3987 		put_device(&root->dev);
3988 		return ERR_PTR(err);
3989 	}
3990 
3991 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
3992 	if (owner) {
3993 		struct module_kobject *mk = &owner->mkobj;
3994 
3995 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3996 		if (err) {
3997 			device_unregister(&root->dev);
3998 			return ERR_PTR(err);
3999 		}
4000 		root->owner = owner;
4001 	}
4002 #endif
4003 
4004 	return &root->dev;
4005 }
4006 EXPORT_SYMBOL_GPL(__root_device_register);
4007 
4008 /**
4009  * root_device_unregister - unregister and free a root device
4010  * @dev: device going away
4011  *
4012  * This function unregisters and cleans up a device that was created by
4013  * root_device_register().
4014  */
root_device_unregister(struct device * dev)4015 void root_device_unregister(struct device *dev)
4016 {
4017 	struct root_device *root = to_root_device(dev);
4018 
4019 	if (root->owner)
4020 		sysfs_remove_link(&root->dev.kobj, "module");
4021 
4022 	device_unregister(dev);
4023 }
4024 EXPORT_SYMBOL_GPL(root_device_unregister);
4025 
4026 
device_create_release(struct device * dev)4027 static void device_create_release(struct device *dev)
4028 {
4029 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4030 	kfree(dev);
4031 }
4032 
4033 static __printf(6, 0) struct device *
device_create_groups_vargs(struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,va_list args)4034 device_create_groups_vargs(struct class *class, struct device *parent,
4035 			   dev_t devt, void *drvdata,
4036 			   const struct attribute_group **groups,
4037 			   const char *fmt, va_list args)
4038 {
4039 	struct device *dev = NULL;
4040 	int retval = -ENODEV;
4041 
4042 	if (class == NULL || IS_ERR(class))
4043 		goto error;
4044 
4045 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4046 	if (!dev) {
4047 		retval = -ENOMEM;
4048 		goto error;
4049 	}
4050 
4051 	device_initialize(dev);
4052 	dev->devt = devt;
4053 	dev->class = class;
4054 	dev->parent = parent;
4055 	dev->groups = groups;
4056 	dev->release = device_create_release;
4057 	dev_set_drvdata(dev, drvdata);
4058 
4059 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4060 	if (retval)
4061 		goto error;
4062 
4063 	retval = device_add(dev);
4064 	if (retval)
4065 		goto error;
4066 
4067 	return dev;
4068 
4069 error:
4070 	put_device(dev);
4071 	return ERR_PTR(retval);
4072 }
4073 
4074 /**
4075  * device_create - creates a device and registers it with sysfs
4076  * @class: pointer to the struct class that this device should be registered to
4077  * @parent: pointer to the parent struct device of this new device, if any
4078  * @devt: the dev_t for the char device to be added
4079  * @drvdata: the data to be added to the device for callbacks
4080  * @fmt: string for the device's name
4081  *
4082  * This function can be used by char device classes.  A struct device
4083  * will be created in sysfs, registered to the specified class.
4084  *
4085  * A "dev" file will be created, showing the dev_t for the device, if
4086  * the dev_t is not 0,0.
4087  * If a pointer to a parent struct device is passed in, the newly created
4088  * struct device will be a child of that device in sysfs.
4089  * The pointer to the struct device will be returned from the call.
4090  * Any further sysfs files that might be required can be created using this
4091  * pointer.
4092  *
4093  * Returns &struct device pointer on success, or ERR_PTR() on error.
4094  *
4095  * Note: the struct class passed to this function must have previously
4096  * been created with a call to class_create().
4097  */
device_create(struct class * class,struct device * parent,dev_t devt,void * drvdata,const char * fmt,...)4098 struct device *device_create(struct class *class, struct device *parent,
4099 			     dev_t devt, void *drvdata, const char *fmt, ...)
4100 {
4101 	va_list vargs;
4102 	struct device *dev;
4103 
4104 	va_start(vargs, fmt);
4105 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4106 					  fmt, vargs);
4107 	va_end(vargs);
4108 	return dev;
4109 }
4110 EXPORT_SYMBOL_GPL(device_create);
4111 
4112 /**
4113  * device_create_with_groups - creates a device and registers it with sysfs
4114  * @class: pointer to the struct class that this device should be registered to
4115  * @parent: pointer to the parent struct device of this new device, if any
4116  * @devt: the dev_t for the char device to be added
4117  * @drvdata: the data to be added to the device for callbacks
4118  * @groups: NULL-terminated list of attribute groups to be created
4119  * @fmt: string for the device's name
4120  *
4121  * This function can be used by char device classes.  A struct device
4122  * will be created in sysfs, registered to the specified class.
4123  * Additional attributes specified in the groups parameter will also
4124  * be created automatically.
4125  *
4126  * A "dev" file will be created, showing the dev_t for the device, if
4127  * the dev_t is not 0,0.
4128  * If a pointer to a parent struct device is passed in, the newly created
4129  * struct device will be a child of that device in sysfs.
4130  * The pointer to the struct device will be returned from the call.
4131  * Any further sysfs files that might be required can be created using this
4132  * pointer.
4133  *
4134  * Returns &struct device pointer on success, or ERR_PTR() on error.
4135  *
4136  * Note: the struct class passed to this function must have previously
4137  * been created with a call to class_create().
4138  */
device_create_with_groups(struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,...)4139 struct device *device_create_with_groups(struct class *class,
4140 					 struct device *parent, dev_t devt,
4141 					 void *drvdata,
4142 					 const struct attribute_group **groups,
4143 					 const char *fmt, ...)
4144 {
4145 	va_list vargs;
4146 	struct device *dev;
4147 
4148 	va_start(vargs, fmt);
4149 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4150 					 fmt, vargs);
4151 	va_end(vargs);
4152 	return dev;
4153 }
4154 EXPORT_SYMBOL_GPL(device_create_with_groups);
4155 
4156 /**
4157  * device_destroy - removes a device that was created with device_create()
4158  * @class: pointer to the struct class that this device was registered with
4159  * @devt: the dev_t of the device that was previously registered
4160  *
4161  * This call unregisters and cleans up a device that was created with a
4162  * call to device_create().
4163  */
device_destroy(struct class * class,dev_t devt)4164 void device_destroy(struct class *class, dev_t devt)
4165 {
4166 	struct device *dev;
4167 
4168 	dev = class_find_device_by_devt(class, devt);
4169 	if (dev) {
4170 		put_device(dev);
4171 		device_unregister(dev);
4172 	}
4173 }
4174 EXPORT_SYMBOL_GPL(device_destroy);
4175 
4176 /**
4177  * device_rename - renames a device
4178  * @dev: the pointer to the struct device to be renamed
4179  * @new_name: the new name of the device
4180  *
4181  * It is the responsibility of the caller to provide mutual
4182  * exclusion between two different calls of device_rename
4183  * on the same device to ensure that new_name is valid and
4184  * won't conflict with other devices.
4185  *
4186  * Note: Don't call this function.  Currently, the networking layer calls this
4187  * function, but that will change.  The following text from Kay Sievers offers
4188  * some insight:
4189  *
4190  * Renaming devices is racy at many levels, symlinks and other stuff are not
4191  * replaced atomically, and you get a "move" uevent, but it's not easy to
4192  * connect the event to the old and new device. Device nodes are not renamed at
4193  * all, there isn't even support for that in the kernel now.
4194  *
4195  * In the meantime, during renaming, your target name might be taken by another
4196  * driver, creating conflicts. Or the old name is taken directly after you
4197  * renamed it -- then you get events for the same DEVPATH, before you even see
4198  * the "move" event. It's just a mess, and nothing new should ever rely on
4199  * kernel device renaming. Besides that, it's not even implemented now for
4200  * other things than (driver-core wise very simple) network devices.
4201  *
4202  * We are currently about to change network renaming in udev to completely
4203  * disallow renaming of devices in the same namespace as the kernel uses,
4204  * because we can't solve the problems properly, that arise with swapping names
4205  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4206  * be allowed to some other name than eth[0-9]*, for the aforementioned
4207  * reasons.
4208  *
4209  * Make up a "real" name in the driver before you register anything, or add
4210  * some other attributes for userspace to find the device, or use udev to add
4211  * symlinks -- but never rename kernel devices later, it's a complete mess. We
4212  * don't even want to get into that and try to implement the missing pieces in
4213  * the core. We really have other pieces to fix in the driver core mess. :)
4214  */
device_rename(struct device * dev,const char * new_name)4215 int device_rename(struct device *dev, const char *new_name)
4216 {
4217 	struct kobject *kobj = &dev->kobj;
4218 	char *old_device_name = NULL;
4219 	int error;
4220 
4221 	dev = get_device(dev);
4222 	if (!dev)
4223 		return -EINVAL;
4224 
4225 	dev_dbg(dev, "renaming to %s\n", new_name);
4226 
4227 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4228 	if (!old_device_name) {
4229 		error = -ENOMEM;
4230 		goto out;
4231 	}
4232 
4233 	if (dev->class) {
4234 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4235 					     kobj, old_device_name,
4236 					     new_name, kobject_namespace(kobj));
4237 		if (error)
4238 			goto out;
4239 	}
4240 
4241 	error = kobject_rename(kobj, new_name);
4242 	if (error)
4243 		goto out;
4244 
4245 out:
4246 	put_device(dev);
4247 
4248 	kfree(old_device_name);
4249 
4250 	return error;
4251 }
4252 EXPORT_SYMBOL_GPL(device_rename);
4253 
device_move_class_links(struct device * dev,struct device * old_parent,struct device * new_parent)4254 static int device_move_class_links(struct device *dev,
4255 				   struct device *old_parent,
4256 				   struct device *new_parent)
4257 {
4258 	int error = 0;
4259 
4260 	if (old_parent)
4261 		sysfs_remove_link(&dev->kobj, "device");
4262 	if (new_parent)
4263 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4264 					  "device");
4265 	return error;
4266 }
4267 
4268 /**
4269  * device_move - moves a device to a new parent
4270  * @dev: the pointer to the struct device to be moved
4271  * @new_parent: the new parent of the device (can be NULL)
4272  * @dpm_order: how to reorder the dpm_list
4273  */
device_move(struct device * dev,struct device * new_parent,enum dpm_order dpm_order)4274 int device_move(struct device *dev, struct device *new_parent,
4275 		enum dpm_order dpm_order)
4276 {
4277 	int error;
4278 	struct device *old_parent;
4279 	struct kobject *new_parent_kobj;
4280 
4281 	dev = get_device(dev);
4282 	if (!dev)
4283 		return -EINVAL;
4284 
4285 	device_pm_lock();
4286 	new_parent = get_device(new_parent);
4287 	new_parent_kobj = get_device_parent(dev, new_parent);
4288 	if (IS_ERR(new_parent_kobj)) {
4289 		error = PTR_ERR(new_parent_kobj);
4290 		put_device(new_parent);
4291 		goto out;
4292 	}
4293 
4294 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4295 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4296 	error = kobject_move(&dev->kobj, new_parent_kobj);
4297 	if (error) {
4298 		cleanup_glue_dir(dev, new_parent_kobj);
4299 		put_device(new_parent);
4300 		goto out;
4301 	}
4302 	old_parent = dev->parent;
4303 	dev->parent = new_parent;
4304 	if (old_parent)
4305 		klist_remove(&dev->p->knode_parent);
4306 	if (new_parent) {
4307 		klist_add_tail(&dev->p->knode_parent,
4308 			       &new_parent->p->klist_children);
4309 		set_dev_node(dev, dev_to_node(new_parent));
4310 	}
4311 
4312 	if (dev->class) {
4313 		error = device_move_class_links(dev, old_parent, new_parent);
4314 		if (error) {
4315 			/* We ignore errors on cleanup since we're hosed anyway... */
4316 			device_move_class_links(dev, new_parent, old_parent);
4317 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4318 				if (new_parent)
4319 					klist_remove(&dev->p->knode_parent);
4320 				dev->parent = old_parent;
4321 				if (old_parent) {
4322 					klist_add_tail(&dev->p->knode_parent,
4323 						       &old_parent->p->klist_children);
4324 					set_dev_node(dev, dev_to_node(old_parent));
4325 				}
4326 			}
4327 			cleanup_glue_dir(dev, new_parent_kobj);
4328 			put_device(new_parent);
4329 			goto out;
4330 		}
4331 	}
4332 	switch (dpm_order) {
4333 	case DPM_ORDER_NONE:
4334 		break;
4335 	case DPM_ORDER_DEV_AFTER_PARENT:
4336 		device_pm_move_after(dev, new_parent);
4337 		devices_kset_move_after(dev, new_parent);
4338 		break;
4339 	case DPM_ORDER_PARENT_BEFORE_DEV:
4340 		device_pm_move_before(new_parent, dev);
4341 		devices_kset_move_before(new_parent, dev);
4342 		break;
4343 	case DPM_ORDER_DEV_LAST:
4344 		device_pm_move_last(dev);
4345 		devices_kset_move_last(dev);
4346 		break;
4347 	}
4348 
4349 	put_device(old_parent);
4350 out:
4351 	device_pm_unlock();
4352 	put_device(dev);
4353 	return error;
4354 }
4355 EXPORT_SYMBOL_GPL(device_move);
4356 
device_attrs_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)4357 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4358 				     kgid_t kgid)
4359 {
4360 	struct kobject *kobj = &dev->kobj;
4361 	struct class *class = dev->class;
4362 	const struct device_type *type = dev->type;
4363 	int error;
4364 
4365 	if (class) {
4366 		/*
4367 		 * Change the device groups of the device class for @dev to
4368 		 * @kuid/@kgid.
4369 		 */
4370 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4371 						  kgid);
4372 		if (error)
4373 			return error;
4374 	}
4375 
4376 	if (type) {
4377 		/*
4378 		 * Change the device groups of the device type for @dev to
4379 		 * @kuid/@kgid.
4380 		 */
4381 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4382 						  kgid);
4383 		if (error)
4384 			return error;
4385 	}
4386 
4387 	/* Change the device groups of @dev to @kuid/@kgid. */
4388 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4389 	if (error)
4390 		return error;
4391 
4392 	if (device_supports_offline(dev) && !dev->offline_disabled) {
4393 		/* Change online device attributes of @dev to @kuid/@kgid. */
4394 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4395 						kuid, kgid);
4396 		if (error)
4397 			return error;
4398 	}
4399 
4400 	return 0;
4401 }
4402 
4403 /**
4404  * device_change_owner - change the owner of an existing device.
4405  * @dev: device.
4406  * @kuid: new owner's kuid
4407  * @kgid: new owner's kgid
4408  *
4409  * This changes the owner of @dev and its corresponding sysfs entries to
4410  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4411  * core.
4412  *
4413  * Returns 0 on success or error code on failure.
4414  */
device_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)4415 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4416 {
4417 	int error;
4418 	struct kobject *kobj = &dev->kobj;
4419 
4420 	dev = get_device(dev);
4421 	if (!dev)
4422 		return -EINVAL;
4423 
4424 	/*
4425 	 * Change the kobject and the default attributes and groups of the
4426 	 * ktype associated with it to @kuid/@kgid.
4427 	 */
4428 	error = sysfs_change_owner(kobj, kuid, kgid);
4429 	if (error)
4430 		goto out;
4431 
4432 	/*
4433 	 * Change the uevent file for @dev to the new owner. The uevent file
4434 	 * was created in a separate step when @dev got added and we mirror
4435 	 * that step here.
4436 	 */
4437 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4438 					kgid);
4439 	if (error)
4440 		goto out;
4441 
4442 	/*
4443 	 * Change the device groups, the device groups associated with the
4444 	 * device class, and the groups associated with the device type of @dev
4445 	 * to @kuid/@kgid.
4446 	 */
4447 	error = device_attrs_change_owner(dev, kuid, kgid);
4448 	if (error)
4449 		goto out;
4450 
4451 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4452 	if (error)
4453 		goto out;
4454 
4455 #ifdef CONFIG_BLOCK
4456 	if (sysfs_deprecated && dev->class == &block_class)
4457 		goto out;
4458 #endif
4459 
4460 	/*
4461 	 * Change the owner of the symlink located in the class directory of
4462 	 * the device class associated with @dev which points to the actual
4463 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4464 	 * symlink shows the same permissions as its target.
4465 	 */
4466 	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4467 					dev_name(dev), kuid, kgid);
4468 	if (error)
4469 		goto out;
4470 
4471 out:
4472 	put_device(dev);
4473 	return error;
4474 }
4475 EXPORT_SYMBOL_GPL(device_change_owner);
4476 
4477 /**
4478  * device_shutdown - call ->shutdown() on each device to shutdown.
4479  */
device_shutdown(void)4480 void device_shutdown(void)
4481 {
4482 	struct device *dev, *parent;
4483 
4484 	wait_for_device_probe();
4485 	device_block_probing();
4486 
4487 	cpufreq_suspend();
4488 
4489 	spin_lock(&devices_kset->list_lock);
4490 	/*
4491 	 * Walk the devices list backward, shutting down each in turn.
4492 	 * Beware that device unplug events may also start pulling
4493 	 * devices offline, even as the system is shutting down.
4494 	 */
4495 	while (!list_empty(&devices_kset->list)) {
4496 		dev = list_entry(devices_kset->list.prev, struct device,
4497 				kobj.entry);
4498 
4499 		/*
4500 		 * hold reference count of device's parent to
4501 		 * prevent it from being freed because parent's
4502 		 * lock is to be held
4503 		 */
4504 		parent = get_device(dev->parent);
4505 		get_device(dev);
4506 		/*
4507 		 * Make sure the device is off the kset list, in the
4508 		 * event that dev->*->shutdown() doesn't remove it.
4509 		 */
4510 		list_del_init(&dev->kobj.entry);
4511 		spin_unlock(&devices_kset->list_lock);
4512 
4513 		/* hold lock to avoid race with probe/release */
4514 		if (parent)
4515 			device_lock(parent);
4516 		device_lock(dev);
4517 
4518 		/* Don't allow any more runtime suspends */
4519 		pm_runtime_get_noresume(dev);
4520 		pm_runtime_barrier(dev);
4521 
4522 		if (dev->class && dev->class->shutdown_pre) {
4523 			if (initcall_debug)
4524 				dev_info(dev, "shutdown_pre\n");
4525 			dev->class->shutdown_pre(dev);
4526 		}
4527 		if (dev->bus && dev->bus->shutdown) {
4528 			if (initcall_debug)
4529 				dev_info(dev, "shutdown\n");
4530 			dev->bus->shutdown(dev);
4531 		} else if (dev->driver && dev->driver->shutdown) {
4532 			if (initcall_debug)
4533 				dev_info(dev, "shutdown\n");
4534 			dev->driver->shutdown(dev);
4535 		}
4536 
4537 		device_unlock(dev);
4538 		if (parent)
4539 			device_unlock(parent);
4540 
4541 		put_device(dev);
4542 		put_device(parent);
4543 
4544 		spin_lock(&devices_kset->list_lock);
4545 	}
4546 	spin_unlock(&devices_kset->list_lock);
4547 }
4548 
4549 /*
4550  * Device logging functions
4551  */
4552 
4553 #ifdef CONFIG_PRINTK
4554 static void
set_dev_info(const struct device * dev,struct dev_printk_info * dev_info)4555 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4556 {
4557 	const char *subsys;
4558 
4559 	memset(dev_info, 0, sizeof(*dev_info));
4560 
4561 	if (dev->class)
4562 		subsys = dev->class->name;
4563 	else if (dev->bus)
4564 		subsys = dev->bus->name;
4565 	else
4566 		return;
4567 
4568 	strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4569 
4570 	/*
4571 	 * Add device identifier DEVICE=:
4572 	 *   b12:8         block dev_t
4573 	 *   c127:3        char dev_t
4574 	 *   n8            netdev ifindex
4575 	 *   +sound:card0  subsystem:devname
4576 	 */
4577 	if (MAJOR(dev->devt)) {
4578 		char c;
4579 
4580 		if (strcmp(subsys, "block") == 0)
4581 			c = 'b';
4582 		else
4583 			c = 'c';
4584 
4585 		snprintf(dev_info->device, sizeof(dev_info->device),
4586 			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4587 	} else if (strcmp(subsys, "net") == 0) {
4588 		struct net_device *net = to_net_dev(dev);
4589 
4590 		snprintf(dev_info->device, sizeof(dev_info->device),
4591 			 "n%u", net->ifindex);
4592 	} else {
4593 		snprintf(dev_info->device, sizeof(dev_info->device),
4594 			 "+%s:%s", subsys, dev_name(dev));
4595 	}
4596 }
4597 
dev_vprintk_emit(int level,const struct device * dev,const char * fmt,va_list args)4598 int dev_vprintk_emit(int level, const struct device *dev,
4599 		     const char *fmt, va_list args)
4600 {
4601 	struct dev_printk_info dev_info;
4602 
4603 	set_dev_info(dev, &dev_info);
4604 
4605 	return vprintk_emit(0, level, &dev_info, fmt, args);
4606 }
4607 EXPORT_SYMBOL(dev_vprintk_emit);
4608 
dev_printk_emit(int level,const struct device * dev,const char * fmt,...)4609 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4610 {
4611 	va_list args;
4612 	int r;
4613 
4614 	va_start(args, fmt);
4615 
4616 	r = dev_vprintk_emit(level, dev, fmt, args);
4617 
4618 	va_end(args);
4619 
4620 	return r;
4621 }
4622 EXPORT_SYMBOL(dev_printk_emit);
4623 
__dev_printk(const char * level,const struct device * dev,struct va_format * vaf)4624 static void __dev_printk(const char *level, const struct device *dev,
4625 			struct va_format *vaf)
4626 {
4627 	if (dev)
4628 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4629 				dev_driver_string(dev), dev_name(dev), vaf);
4630 	else
4631 		printk("%s(NULL device *): %pV", level, vaf);
4632 }
4633 
_dev_printk(const char * level,const struct device * dev,const char * fmt,...)4634 void _dev_printk(const char *level, const struct device *dev,
4635 		 const char *fmt, ...)
4636 {
4637 	struct va_format vaf;
4638 	va_list args;
4639 
4640 	va_start(args, fmt);
4641 
4642 	vaf.fmt = fmt;
4643 	vaf.va = &args;
4644 
4645 	__dev_printk(level, dev, &vaf);
4646 
4647 	va_end(args);
4648 }
4649 EXPORT_SYMBOL(_dev_printk);
4650 
4651 #define define_dev_printk_level(func, kern_level)		\
4652 void func(const struct device *dev, const char *fmt, ...)	\
4653 {								\
4654 	struct va_format vaf;					\
4655 	va_list args;						\
4656 								\
4657 	va_start(args, fmt);					\
4658 								\
4659 	vaf.fmt = fmt;						\
4660 	vaf.va = &args;						\
4661 								\
4662 	__dev_printk(kern_level, dev, &vaf);			\
4663 								\
4664 	va_end(args);						\
4665 }								\
4666 EXPORT_SYMBOL(func);
4667 
4668 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4669 define_dev_printk_level(_dev_alert, KERN_ALERT);
4670 define_dev_printk_level(_dev_crit, KERN_CRIT);
4671 define_dev_printk_level(_dev_err, KERN_ERR);
4672 define_dev_printk_level(_dev_warn, KERN_WARNING);
4673 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4674 define_dev_printk_level(_dev_info, KERN_INFO);
4675 
4676 #endif
4677 
4678 /**
4679  * dev_err_probe - probe error check and log helper
4680  * @dev: the pointer to the struct device
4681  * @err: error value to test
4682  * @fmt: printf-style format string
4683  * @...: arguments as specified in the format string
4684  *
4685  * This helper implements common pattern present in probe functions for error
4686  * checking: print debug or error message depending if the error value is
4687  * -EPROBE_DEFER and propagate error upwards.
4688  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4689  * checked later by reading devices_deferred debugfs attribute.
4690  * It replaces code sequence::
4691  *
4692  * 	if (err != -EPROBE_DEFER)
4693  * 		dev_err(dev, ...);
4694  * 	else
4695  * 		dev_dbg(dev, ...);
4696  * 	return err;
4697  *
4698  * with::
4699  *
4700  * 	return dev_err_probe(dev, err, ...);
4701  *
4702  * Returns @err.
4703  *
4704  */
dev_err_probe(const struct device * dev,int err,const char * fmt,...)4705 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4706 {
4707 	struct va_format vaf;
4708 	va_list args;
4709 
4710 	va_start(args, fmt);
4711 	vaf.fmt = fmt;
4712 	vaf.va = &args;
4713 
4714 	if (err != -EPROBE_DEFER) {
4715 		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4716 	} else {
4717 		device_set_deferred_probe_reason(dev, &vaf);
4718 		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4719 	}
4720 
4721 	va_end(args);
4722 
4723 	return err;
4724 }
4725 EXPORT_SYMBOL_GPL(dev_err_probe);
4726 
fwnode_is_primary(struct fwnode_handle * fwnode)4727 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4728 {
4729 	return fwnode && !IS_ERR(fwnode->secondary);
4730 }
4731 
4732 /**
4733  * set_primary_fwnode - Change the primary firmware node of a given device.
4734  * @dev: Device to handle.
4735  * @fwnode: New primary firmware node of the device.
4736  *
4737  * Set the device's firmware node pointer to @fwnode, but if a secondary
4738  * firmware node of the device is present, preserve it.
4739  *
4740  * Valid fwnode cases are:
4741  *  - primary --> secondary --> -ENODEV
4742  *  - primary --> NULL
4743  *  - secondary --> -ENODEV
4744  *  - NULL
4745  */
set_primary_fwnode(struct device * dev,struct fwnode_handle * fwnode)4746 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4747 {
4748 	struct device *parent = dev->parent;
4749 	struct fwnode_handle *fn = dev->fwnode;
4750 
4751 	if (fwnode) {
4752 		if (fwnode_is_primary(fn))
4753 			fn = fn->secondary;
4754 
4755 		if (fn) {
4756 			WARN_ON(fwnode->secondary);
4757 			fwnode->secondary = fn;
4758 		}
4759 		dev->fwnode = fwnode;
4760 	} else {
4761 		if (fwnode_is_primary(fn)) {
4762 			dev->fwnode = fn->secondary;
4763 			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
4764 			if (!(parent && fn == parent->fwnode))
4765 				fn->secondary = NULL;
4766 		} else {
4767 			dev->fwnode = NULL;
4768 		}
4769 	}
4770 }
4771 EXPORT_SYMBOL_GPL(set_primary_fwnode);
4772 
4773 /**
4774  * set_secondary_fwnode - Change the secondary firmware node of a given device.
4775  * @dev: Device to handle.
4776  * @fwnode: New secondary firmware node of the device.
4777  *
4778  * If a primary firmware node of the device is present, set its secondary
4779  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4780  * @fwnode.
4781  */
set_secondary_fwnode(struct device * dev,struct fwnode_handle * fwnode)4782 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4783 {
4784 	if (fwnode)
4785 		fwnode->secondary = ERR_PTR(-ENODEV);
4786 
4787 	if (fwnode_is_primary(dev->fwnode))
4788 		dev->fwnode->secondary = fwnode;
4789 	else
4790 		dev->fwnode = fwnode;
4791 }
4792 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4793 
4794 /**
4795  * device_set_of_node_from_dev - reuse device-tree node of another device
4796  * @dev: device whose device-tree node is being set
4797  * @dev2: device whose device-tree node is being reused
4798  *
4799  * Takes another reference to the new device-tree node after first dropping
4800  * any reference held to the old node.
4801  */
device_set_of_node_from_dev(struct device * dev,const struct device * dev2)4802 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4803 {
4804 	of_node_put(dev->of_node);
4805 	dev->of_node = of_node_get(dev2->of_node);
4806 	dev->of_node_reused = true;
4807 }
4808 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4809 
device_set_node(struct device * dev,struct fwnode_handle * fwnode)4810 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
4811 {
4812 	dev->fwnode = fwnode;
4813 	dev->of_node = to_of_node(fwnode);
4814 }
4815 EXPORT_SYMBOL_GPL(device_set_node);
4816 
device_match_name(struct device * dev,const void * name)4817 int device_match_name(struct device *dev, const void *name)
4818 {
4819 	return sysfs_streq(dev_name(dev), name);
4820 }
4821 EXPORT_SYMBOL_GPL(device_match_name);
4822 
device_match_of_node(struct device * dev,const void * np)4823 int device_match_of_node(struct device *dev, const void *np)
4824 {
4825 	return dev->of_node == np;
4826 }
4827 EXPORT_SYMBOL_GPL(device_match_of_node);
4828 
device_match_fwnode(struct device * dev,const void * fwnode)4829 int device_match_fwnode(struct device *dev, const void *fwnode)
4830 {
4831 	return dev_fwnode(dev) == fwnode;
4832 }
4833 EXPORT_SYMBOL_GPL(device_match_fwnode);
4834 
device_match_devt(struct device * dev,const void * pdevt)4835 int device_match_devt(struct device *dev, const void *pdevt)
4836 {
4837 	return dev->devt == *(dev_t *)pdevt;
4838 }
4839 EXPORT_SYMBOL_GPL(device_match_devt);
4840 
device_match_acpi_dev(struct device * dev,const void * adev)4841 int device_match_acpi_dev(struct device *dev, const void *adev)
4842 {
4843 	return ACPI_COMPANION(dev) == adev;
4844 }
4845 EXPORT_SYMBOL(device_match_acpi_dev);
4846 
device_match_any(struct device * dev,const void * unused)4847 int device_match_any(struct device *dev, const void *unused)
4848 {
4849 	return 1;
4850 }
4851 EXPORT_SYMBOL_GPL(device_match_any);
4852