• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 #include "dm-ima.h"
12 
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/blkpg.h>
19 #include <linux/bio.h>
20 #include <linux/mempool.h>
21 #include <linux/dax.h>
22 #include <linux/slab.h>
23 #include <linux/idr.h>
24 #include <linux/uio.h>
25 #include <linux/hdreg.h>
26 #include <linux/delay.h>
27 #include <linux/wait.h>
28 #include <linux/pr.h>
29 #include <linux/refcount.h>
30 #include <linux/part_stat.h>
31 #include <linux/blk-crypto.h>
32 #include <linux/keyslot-manager.h>
33 #include <trace/hooks/dm.h>
34 #define DM_MSG_PREFIX "core"
35 
36 /*
37  * Cookies are numeric values sent with CHANGE and REMOVE
38  * uevents while resuming, removing or renaming the device.
39  */
40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
41 #define DM_COOKIE_LENGTH 24
42 
43 static const char *_name = DM_NAME;
44 
45 static unsigned int major = 0;
46 static unsigned int _major = 0;
47 
48 static DEFINE_IDR(_minor_idr);
49 
50 static DEFINE_SPINLOCK(_minor_lock);
51 
52 static void do_deferred_remove(struct work_struct *w);
53 
54 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
55 
56 static struct workqueue_struct *deferred_remove_workqueue;
57 
58 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
59 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
60 
dm_issue_global_event(void)61 void dm_issue_global_event(void)
62 {
63 	atomic_inc(&dm_global_event_nr);
64 	wake_up(&dm_global_eventq);
65 }
66 
67 /*
68  * One of these is allocated (on-stack) per original bio.
69  */
70 struct clone_info {
71 	struct dm_table *map;
72 	struct bio *bio;
73 	struct dm_io *io;
74 	sector_t sector;
75 	unsigned sector_count;
76 };
77 
78 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone))
79 #define DM_IO_BIO_OFFSET \
80 	(offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio))
81 
dm_per_bio_data(struct bio * bio,size_t data_size)82 void *dm_per_bio_data(struct bio *bio, size_t data_size)
83 {
84 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
85 	if (!tio->inside_dm_io)
86 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
87 	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
88 }
89 EXPORT_SYMBOL_GPL(dm_per_bio_data);
90 
dm_bio_from_per_bio_data(void * data,size_t data_size)91 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
92 {
93 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
94 	if (io->magic == DM_IO_MAGIC)
95 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
96 	BUG_ON(io->magic != DM_TIO_MAGIC);
97 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
98 }
99 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
100 
dm_bio_get_target_bio_nr(const struct bio * bio)101 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
102 {
103 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
104 }
105 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
106 
107 #define MINOR_ALLOCED ((void *)-1)
108 
109 #define DM_NUMA_NODE NUMA_NO_NODE
110 static int dm_numa_node = DM_NUMA_NODE;
111 
112 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
113 static int swap_bios = DEFAULT_SWAP_BIOS;
get_swap_bios(void)114 static int get_swap_bios(void)
115 {
116 	int latch = READ_ONCE(swap_bios);
117 	if (unlikely(latch <= 0))
118 		latch = DEFAULT_SWAP_BIOS;
119 	return latch;
120 }
121 
122 /*
123  * For mempools pre-allocation at the table loading time.
124  */
125 struct dm_md_mempools {
126 	struct bio_set bs;
127 	struct bio_set io_bs;
128 };
129 
130 struct table_device {
131 	struct list_head list;
132 	refcount_t count;
133 	struct dm_dev dm_dev;
134 };
135 
136 /*
137  * Bio-based DM's mempools' reserved IOs set by the user.
138  */
139 #define RESERVED_BIO_BASED_IOS		16
140 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
141 
__dm_get_module_param_int(int * module_param,int min,int max)142 static int __dm_get_module_param_int(int *module_param, int min, int max)
143 {
144 	int param = READ_ONCE(*module_param);
145 	int modified_param = 0;
146 	bool modified = true;
147 
148 	if (param < min)
149 		modified_param = min;
150 	else if (param > max)
151 		modified_param = max;
152 	else
153 		modified = false;
154 
155 	if (modified) {
156 		(void)cmpxchg(module_param, param, modified_param);
157 		param = modified_param;
158 	}
159 
160 	return param;
161 }
162 
__dm_get_module_param(unsigned * module_param,unsigned def,unsigned max)163 unsigned __dm_get_module_param(unsigned *module_param,
164 			       unsigned def, unsigned max)
165 {
166 	unsigned param = READ_ONCE(*module_param);
167 	unsigned modified_param = 0;
168 
169 	if (!param)
170 		modified_param = def;
171 	else if (param > max)
172 		modified_param = max;
173 
174 	if (modified_param) {
175 		(void)cmpxchg(module_param, param, modified_param);
176 		param = modified_param;
177 	}
178 
179 	return param;
180 }
181 
dm_get_reserved_bio_based_ios(void)182 unsigned dm_get_reserved_bio_based_ios(void)
183 {
184 	return __dm_get_module_param(&reserved_bio_based_ios,
185 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
186 }
187 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
188 
dm_get_numa_node(void)189 static unsigned dm_get_numa_node(void)
190 {
191 	return __dm_get_module_param_int(&dm_numa_node,
192 					 DM_NUMA_NODE, num_online_nodes() - 1);
193 }
194 
local_init(void)195 static int __init local_init(void)
196 {
197 	int r;
198 
199 	r = dm_uevent_init();
200 	if (r)
201 		return r;
202 
203 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
204 	if (!deferred_remove_workqueue) {
205 		r = -ENOMEM;
206 		goto out_uevent_exit;
207 	}
208 
209 	_major = major;
210 	r = register_blkdev(_major, _name);
211 	if (r < 0)
212 		goto out_free_workqueue;
213 
214 	if (!_major)
215 		_major = r;
216 
217 	return 0;
218 
219 out_free_workqueue:
220 	destroy_workqueue(deferred_remove_workqueue);
221 out_uevent_exit:
222 	dm_uevent_exit();
223 
224 	return r;
225 }
226 
local_exit(void)227 static void local_exit(void)
228 {
229 	destroy_workqueue(deferred_remove_workqueue);
230 
231 	unregister_blkdev(_major, _name);
232 	dm_uevent_exit();
233 
234 	_major = 0;
235 
236 	DMINFO("cleaned up");
237 }
238 
239 static int (*_inits[])(void) __initdata = {
240 	local_init,
241 	dm_target_init,
242 	dm_linear_init,
243 	dm_stripe_init,
244 	dm_io_init,
245 	dm_kcopyd_init,
246 	dm_interface_init,
247 	dm_statistics_init,
248 };
249 
250 static void (*_exits[])(void) = {
251 	local_exit,
252 	dm_target_exit,
253 	dm_linear_exit,
254 	dm_stripe_exit,
255 	dm_io_exit,
256 	dm_kcopyd_exit,
257 	dm_interface_exit,
258 	dm_statistics_exit,
259 };
260 
dm_init(void)261 static int __init dm_init(void)
262 {
263 	const int count = ARRAY_SIZE(_inits);
264 	int r, i;
265 
266 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
267 	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
268 	       " Duplicate IMA measurements will not be recorded in the IMA log.");
269 #endif
270 
271 	for (i = 0; i < count; i++) {
272 		r = _inits[i]();
273 		if (r)
274 			goto bad;
275 	}
276 
277 	return 0;
278 bad:
279 	while (i--)
280 		_exits[i]();
281 
282 	return r;
283 }
284 
dm_exit(void)285 static void __exit dm_exit(void)
286 {
287 	int i = ARRAY_SIZE(_exits);
288 
289 	while (i--)
290 		_exits[i]();
291 
292 	/*
293 	 * Should be empty by this point.
294 	 */
295 	idr_destroy(&_minor_idr);
296 }
297 
298 /*
299  * Block device functions
300  */
dm_deleting_md(struct mapped_device * md)301 int dm_deleting_md(struct mapped_device *md)
302 {
303 	return test_bit(DMF_DELETING, &md->flags);
304 }
305 
dm_blk_open(struct block_device * bdev,fmode_t mode)306 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
307 {
308 	struct mapped_device *md;
309 
310 	spin_lock(&_minor_lock);
311 
312 	md = bdev->bd_disk->private_data;
313 	if (!md)
314 		goto out;
315 
316 	if (test_bit(DMF_FREEING, &md->flags) ||
317 	    dm_deleting_md(md)) {
318 		md = NULL;
319 		goto out;
320 	}
321 
322 	dm_get(md);
323 	atomic_inc(&md->open_count);
324 out:
325 	spin_unlock(&_minor_lock);
326 
327 	return md ? 0 : -ENXIO;
328 }
329 
dm_blk_close(struct gendisk * disk,fmode_t mode)330 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
331 {
332 	struct mapped_device *md;
333 
334 	spin_lock(&_minor_lock);
335 
336 	md = disk->private_data;
337 	if (WARN_ON(!md))
338 		goto out;
339 
340 	if (atomic_dec_and_test(&md->open_count) &&
341 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
342 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
343 
344 	dm_put(md);
345 out:
346 	spin_unlock(&_minor_lock);
347 }
348 
dm_open_count(struct mapped_device * md)349 int dm_open_count(struct mapped_device *md)
350 {
351 	return atomic_read(&md->open_count);
352 }
353 
354 /*
355  * Guarantees nothing is using the device before it's deleted.
356  */
dm_lock_for_deletion(struct mapped_device * md,bool mark_deferred,bool only_deferred)357 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
358 {
359 	int r = 0;
360 
361 	spin_lock(&_minor_lock);
362 
363 	if (dm_open_count(md)) {
364 		r = -EBUSY;
365 		if (mark_deferred)
366 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
367 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
368 		r = -EEXIST;
369 	else
370 		set_bit(DMF_DELETING, &md->flags);
371 
372 	spin_unlock(&_minor_lock);
373 
374 	return r;
375 }
376 
dm_cancel_deferred_remove(struct mapped_device * md)377 int dm_cancel_deferred_remove(struct mapped_device *md)
378 {
379 	int r = 0;
380 
381 	spin_lock(&_minor_lock);
382 
383 	if (test_bit(DMF_DELETING, &md->flags))
384 		r = -EBUSY;
385 	else
386 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
387 
388 	spin_unlock(&_minor_lock);
389 
390 	return r;
391 }
392 
do_deferred_remove(struct work_struct * w)393 static void do_deferred_remove(struct work_struct *w)
394 {
395 	dm_deferred_remove();
396 }
397 
dm_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)398 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
399 {
400 	struct mapped_device *md = bdev->bd_disk->private_data;
401 
402 	return dm_get_geometry(md, geo);
403 }
404 
dm_prepare_ioctl(struct mapped_device * md,int * srcu_idx,struct block_device ** bdev)405 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
406 			    struct block_device **bdev)
407 {
408 	struct dm_target *tgt;
409 	struct dm_table *map;
410 	int r;
411 
412 retry:
413 	r = -ENOTTY;
414 	map = dm_get_live_table(md, srcu_idx);
415 	if (!map || !dm_table_get_size(map))
416 		return r;
417 
418 	/* We only support devices that have a single target */
419 	if (dm_table_get_num_targets(map) != 1)
420 		return r;
421 
422 	tgt = dm_table_get_target(map, 0);
423 	if (!tgt->type->prepare_ioctl)
424 		return r;
425 
426 	if (dm_suspended_md(md))
427 		return -EAGAIN;
428 
429 	r = tgt->type->prepare_ioctl(tgt, bdev);
430 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
431 		dm_put_live_table(md, *srcu_idx);
432 		msleep(10);
433 		goto retry;
434 	}
435 
436 	return r;
437 }
438 
dm_unprepare_ioctl(struct mapped_device * md,int srcu_idx)439 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
440 {
441 	dm_put_live_table(md, srcu_idx);
442 }
443 
dm_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)444 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
445 			unsigned int cmd, unsigned long arg)
446 {
447 	struct mapped_device *md = bdev->bd_disk->private_data;
448 	int r, srcu_idx;
449 
450 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
451 	if (r < 0)
452 		goto out;
453 
454 	if (r > 0) {
455 		/*
456 		 * Target determined this ioctl is being issued against a
457 		 * subset of the parent bdev; require extra privileges.
458 		 */
459 		if (!capable(CAP_SYS_RAWIO)) {
460 			DMDEBUG_LIMIT(
461 	"%s: sending ioctl %x to DM device without required privilege.",
462 				current->comm, cmd);
463 			r = -ENOIOCTLCMD;
464 			goto out;
465 		}
466 	}
467 
468 	if (!bdev->bd_disk->fops->ioctl)
469 		r = -ENOTTY;
470 	else
471 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
472 out:
473 	dm_unprepare_ioctl(md, srcu_idx);
474 	return r;
475 }
476 
dm_start_time_ns_from_clone(struct bio * bio)477 u64 dm_start_time_ns_from_clone(struct bio *bio)
478 {
479 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
480 	struct dm_io *io = tio->io;
481 
482 	return jiffies_to_nsecs(io->start_time);
483 }
484 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
485 
bio_is_flush_with_data(struct bio * bio)486 static bool bio_is_flush_with_data(struct bio *bio)
487 {
488 	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
489 }
490 
dm_io_acct(bool end,struct mapped_device * md,struct bio * bio,unsigned long start_time,struct dm_stats_aux * stats_aux)491 static void dm_io_acct(bool end, struct mapped_device *md, struct bio *bio,
492 		       unsigned long start_time, struct dm_stats_aux *stats_aux)
493 {
494 	bool is_flush_with_data;
495 	unsigned int bi_size;
496 
497 	/* If REQ_PREFLUSH set save any payload but do not account it */
498 	is_flush_with_data = bio_is_flush_with_data(bio);
499 	if (is_flush_with_data) {
500 		bi_size = bio->bi_iter.bi_size;
501 		bio->bi_iter.bi_size = 0;
502 	}
503 
504 	if (!end)
505 		bio_start_io_acct_time(bio, start_time);
506 	else
507 		bio_end_io_acct(bio, start_time);
508 
509 	if (unlikely(dm_stats_used(&md->stats)))
510 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
511 				    bio->bi_iter.bi_sector, bio_sectors(bio),
512 				    end, start_time, stats_aux);
513 
514 	/* Restore bio's payload so it does get accounted upon requeue */
515 	if (is_flush_with_data)
516 		bio->bi_iter.bi_size = bi_size;
517 }
518 
start_io_acct(struct dm_io * io)519 static void start_io_acct(struct dm_io *io)
520 {
521 	dm_io_acct(false, io->md, io->orig_bio, io->start_time, &io->stats_aux);
522 }
523 
end_io_acct(struct mapped_device * md,struct bio * bio,unsigned long start_time,struct dm_stats_aux * stats_aux)524 static void end_io_acct(struct mapped_device *md, struct bio *bio,
525 			unsigned long start_time, struct dm_stats_aux *stats_aux)
526 {
527 	dm_io_acct(true, md, bio, start_time, stats_aux);
528 }
529 
alloc_io(struct mapped_device * md,struct bio * bio)530 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
531 {
532 	struct dm_io *io;
533 	struct dm_target_io *tio;
534 	struct bio *clone;
535 
536 	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
537 	if (!clone)
538 		return NULL;
539 
540 	tio = container_of(clone, struct dm_target_io, clone);
541 	tio->inside_dm_io = true;
542 	tio->io = NULL;
543 
544 	io = container_of(tio, struct dm_io, tio);
545 	io->magic = DM_IO_MAGIC;
546 	io->status = 0;
547 	atomic_set(&io->io_count, 1);
548 	this_cpu_inc(*md->pending_io);
549 	io->orig_bio = bio;
550 	io->md = md;
551 	spin_lock_init(&io->endio_lock);
552 
553 	io->start_time = jiffies;
554 
555 	dm_stats_record_start(&md->stats, &io->stats_aux);
556 
557 	return io;
558 }
559 
free_io(struct mapped_device * md,struct dm_io * io)560 static void free_io(struct mapped_device *md, struct dm_io *io)
561 {
562 	bio_put(&io->tio.clone);
563 }
564 
alloc_tio(struct clone_info * ci,struct dm_target * ti,unsigned target_bio_nr,gfp_t gfp_mask)565 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
566 				      unsigned target_bio_nr, gfp_t gfp_mask)
567 {
568 	struct dm_target_io *tio;
569 
570 	if (!ci->io->tio.io) {
571 		/* the dm_target_io embedded in ci->io is available */
572 		tio = &ci->io->tio;
573 	} else {
574 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
575 		if (!clone)
576 			return NULL;
577 
578 		tio = container_of(clone, struct dm_target_io, clone);
579 		tio->inside_dm_io = false;
580 	}
581 
582 	tio->magic = DM_TIO_MAGIC;
583 	tio->io = ci->io;
584 	tio->ti = ti;
585 	tio->target_bio_nr = target_bio_nr;
586 
587 	return tio;
588 }
589 
free_tio(struct dm_target_io * tio)590 static void free_tio(struct dm_target_io *tio)
591 {
592 	if (tio->inside_dm_io)
593 		return;
594 	bio_put(&tio->clone);
595 }
596 
597 /*
598  * Add the bio to the list of deferred io.
599  */
queue_io(struct mapped_device * md,struct bio * bio)600 static void queue_io(struct mapped_device *md, struct bio *bio)
601 {
602 	unsigned long flags;
603 
604 	spin_lock_irqsave(&md->deferred_lock, flags);
605 	bio_list_add(&md->deferred, bio);
606 	spin_unlock_irqrestore(&md->deferred_lock, flags);
607 	queue_work(md->wq, &md->work);
608 }
609 
610 /*
611  * Everyone (including functions in this file), should use this
612  * function to access the md->map field, and make sure they call
613  * dm_put_live_table() when finished.
614  */
dm_get_live_table(struct mapped_device * md,int * srcu_idx)615 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
616 {
617 	*srcu_idx = srcu_read_lock(&md->io_barrier);
618 
619 	return srcu_dereference(md->map, &md->io_barrier);
620 }
621 
dm_put_live_table(struct mapped_device * md,int srcu_idx)622 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
623 {
624 	srcu_read_unlock(&md->io_barrier, srcu_idx);
625 }
626 
dm_sync_table(struct mapped_device * md)627 void dm_sync_table(struct mapped_device *md)
628 {
629 	synchronize_srcu(&md->io_barrier);
630 	synchronize_rcu_expedited();
631 }
632 
633 /*
634  * A fast alternative to dm_get_live_table/dm_put_live_table.
635  * The caller must not block between these two functions.
636  */
dm_get_live_table_fast(struct mapped_device * md)637 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
638 {
639 	rcu_read_lock();
640 	return rcu_dereference(md->map);
641 }
642 
dm_put_live_table_fast(struct mapped_device * md)643 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
644 {
645 	rcu_read_unlock();
646 }
647 
648 static char *_dm_claim_ptr = "I belong to device-mapper";
649 
650 /*
651  * Open a table device so we can use it as a map destination.
652  */
open_table_device(struct table_device * td,dev_t dev,struct mapped_device * md)653 static int open_table_device(struct table_device *td, dev_t dev,
654 			     struct mapped_device *md)
655 {
656 	struct block_device *bdev;
657 
658 	int r;
659 
660 	BUG_ON(td->dm_dev.bdev);
661 
662 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
663 	if (IS_ERR(bdev))
664 		return PTR_ERR(bdev);
665 
666 	r = bd_link_disk_holder(bdev, dm_disk(md));
667 	if (r) {
668 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
669 		return r;
670 	}
671 
672 	td->dm_dev.bdev = bdev;
673 	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev);
674 	return 0;
675 }
676 
677 /*
678  * Close a table device that we've been using.
679  */
close_table_device(struct table_device * td,struct mapped_device * md)680 static void close_table_device(struct table_device *td, struct mapped_device *md)
681 {
682 	if (!td->dm_dev.bdev)
683 		return;
684 
685 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
686 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
687 	put_dax(td->dm_dev.dax_dev);
688 	td->dm_dev.bdev = NULL;
689 	td->dm_dev.dax_dev = NULL;
690 }
691 
find_table_device(struct list_head * l,dev_t dev,fmode_t mode)692 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
693 					      fmode_t mode)
694 {
695 	struct table_device *td;
696 
697 	list_for_each_entry(td, l, list)
698 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
699 			return td;
700 
701 	return NULL;
702 }
703 
dm_get_table_device(struct mapped_device * md,dev_t dev,fmode_t mode,struct dm_dev ** result)704 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
705 			struct dm_dev **result)
706 {
707 	int r;
708 	struct table_device *td;
709 
710 	mutex_lock(&md->table_devices_lock);
711 	td = find_table_device(&md->table_devices, dev, mode);
712 	if (!td) {
713 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
714 		if (!td) {
715 			mutex_unlock(&md->table_devices_lock);
716 			return -ENOMEM;
717 		}
718 
719 		td->dm_dev.mode = mode;
720 		td->dm_dev.bdev = NULL;
721 
722 		if ((r = open_table_device(td, dev, md))) {
723 			mutex_unlock(&md->table_devices_lock);
724 			kfree(td);
725 			return r;
726 		}
727 
728 		format_dev_t(td->dm_dev.name, dev);
729 
730 		refcount_set(&td->count, 1);
731 		list_add(&td->list, &md->table_devices);
732 	} else {
733 		refcount_inc(&td->count);
734 	}
735 	mutex_unlock(&md->table_devices_lock);
736 
737 	*result = &td->dm_dev;
738 	return 0;
739 }
740 
dm_put_table_device(struct mapped_device * md,struct dm_dev * d)741 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
742 {
743 	struct table_device *td = container_of(d, struct table_device, dm_dev);
744 
745 	mutex_lock(&md->table_devices_lock);
746 	if (refcount_dec_and_test(&td->count)) {
747 		close_table_device(td, md);
748 		list_del(&td->list);
749 		kfree(td);
750 	}
751 	mutex_unlock(&md->table_devices_lock);
752 }
753 
free_table_devices(struct list_head * devices)754 static void free_table_devices(struct list_head *devices)
755 {
756 	struct list_head *tmp, *next;
757 
758 	list_for_each_safe(tmp, next, devices) {
759 		struct table_device *td = list_entry(tmp, struct table_device, list);
760 
761 		DMWARN("dm_destroy: %s still exists with %d references",
762 		       td->dm_dev.name, refcount_read(&td->count));
763 		kfree(td);
764 	}
765 }
766 
767 /*
768  * Get the geometry associated with a dm device
769  */
dm_get_geometry(struct mapped_device * md,struct hd_geometry * geo)770 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
771 {
772 	*geo = md->geometry;
773 
774 	return 0;
775 }
776 
777 /*
778  * Set the geometry of a device.
779  */
dm_set_geometry(struct mapped_device * md,struct hd_geometry * geo)780 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
781 {
782 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
783 
784 	if (geo->start > sz) {
785 		DMWARN("Start sector is beyond the geometry limits.");
786 		return -EINVAL;
787 	}
788 
789 	md->geometry = *geo;
790 
791 	return 0;
792 }
793 
__noflush_suspending(struct mapped_device * md)794 static int __noflush_suspending(struct mapped_device *md)
795 {
796 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
797 }
798 
799 /*
800  * Decrements the number of outstanding ios that a bio has been
801  * cloned into, completing the original io if necc.
802  */
dm_io_dec_pending(struct dm_io * io,blk_status_t error)803 void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
804 {
805 	unsigned long flags;
806 	blk_status_t io_error;
807 	struct bio *bio;
808 	struct mapped_device *md = io->md;
809 	unsigned long start_time = 0;
810 	struct dm_stats_aux stats_aux;
811 
812 	/* Push-back supersedes any I/O errors */
813 	if (unlikely(error)) {
814 		spin_lock_irqsave(&io->endio_lock, flags);
815 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
816 			io->status = error;
817 		spin_unlock_irqrestore(&io->endio_lock, flags);
818 	}
819 
820 	if (atomic_dec_and_test(&io->io_count)) {
821 		bio = io->orig_bio;
822 		if (io->status == BLK_STS_DM_REQUEUE) {
823 			/*
824 			 * Target requested pushing back the I/O.
825 			 */
826 			spin_lock_irqsave(&md->deferred_lock, flags);
827 			if (__noflush_suspending(md) &&
828 			    !WARN_ON_ONCE(dm_is_zone_write(md, bio))) {
829 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
830 				bio_list_add_head(&md->deferred, bio);
831 			} else {
832 				/*
833 				 * noflush suspend was interrupted or this is
834 				 * a write to a zoned target.
835 				 */
836 				io->status = BLK_STS_IOERR;
837 			}
838 			spin_unlock_irqrestore(&md->deferred_lock, flags);
839 		}
840 
841 		io_error = io->status;
842 		start_time = io->start_time;
843 		stats_aux = io->stats_aux;
844 		free_io(md, io);
845 		end_io_acct(md, bio, start_time, &stats_aux);
846 		smp_wmb();
847 		this_cpu_dec(*md->pending_io);
848 
849 		/* nudge anyone waiting on suspend queue */
850 		if (unlikely(wq_has_sleeper(&md->wait)))
851 			wake_up(&md->wait);
852 
853 		if (io_error == BLK_STS_DM_REQUEUE)
854 			return;
855 
856 		if (bio_is_flush_with_data(bio)) {
857 			/*
858 			 * Preflush done for flush with data, reissue
859 			 * without REQ_PREFLUSH.
860 			 */
861 			bio->bi_opf &= ~REQ_PREFLUSH;
862 			queue_io(md, bio);
863 		} else {
864 			/* done with normal IO or empty flush */
865 			if (io_error)
866 				bio->bi_status = io_error;
867 			bio_endio(bio);
868 		}
869 	}
870 }
871 
disable_discard(struct mapped_device * md)872 void disable_discard(struct mapped_device *md)
873 {
874 	struct queue_limits *limits = dm_get_queue_limits(md);
875 
876 	/* device doesn't really support DISCARD, disable it */
877 	limits->max_discard_sectors = 0;
878 	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
879 }
880 
disable_write_same(struct mapped_device * md)881 void disable_write_same(struct mapped_device *md)
882 {
883 	struct queue_limits *limits = dm_get_queue_limits(md);
884 
885 	/* device doesn't really support WRITE SAME, disable it */
886 	limits->max_write_same_sectors = 0;
887 }
888 
disable_write_zeroes(struct mapped_device * md)889 void disable_write_zeroes(struct mapped_device *md)
890 {
891 	struct queue_limits *limits = dm_get_queue_limits(md);
892 
893 	/* device doesn't really support WRITE ZEROES, disable it */
894 	limits->max_write_zeroes_sectors = 0;
895 }
896 
swap_bios_limit(struct dm_target * ti,struct bio * bio)897 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
898 {
899 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
900 }
901 
clone_endio(struct bio * bio)902 static void clone_endio(struct bio *bio)
903 {
904 	blk_status_t error = bio->bi_status;
905 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
906 	struct dm_io *io = tio->io;
907 	struct mapped_device *md = tio->io->md;
908 	dm_endio_fn endio = tio->ti->type->end_io;
909 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
910 
911 	if (unlikely(error == BLK_STS_TARGET)) {
912 		if (bio_op(bio) == REQ_OP_DISCARD &&
913 		    !q->limits.max_discard_sectors)
914 			disable_discard(md);
915 		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
916 			 !q->limits.max_write_same_sectors)
917 			disable_write_same(md);
918 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
919 			 !q->limits.max_write_zeroes_sectors)
920 			disable_write_zeroes(md);
921 	}
922 
923 	if (blk_queue_is_zoned(q))
924 		dm_zone_endio(io, bio);
925 
926 	if (endio) {
927 		int r = endio(tio->ti, bio, &error);
928 		switch (r) {
929 		case DM_ENDIO_REQUEUE:
930 			/*
931 			 * Requeuing writes to a sequential zone of a zoned
932 			 * target will break the sequential write pattern:
933 			 * fail such IO.
934 			 */
935 			if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
936 				error = BLK_STS_IOERR;
937 			else
938 				error = BLK_STS_DM_REQUEUE;
939 			fallthrough;
940 		case DM_ENDIO_DONE:
941 			break;
942 		case DM_ENDIO_INCOMPLETE:
943 			/* The target will handle the io */
944 			return;
945 		default:
946 			DMWARN("unimplemented target endio return value: %d", r);
947 			BUG();
948 		}
949 	}
950 
951 	if (unlikely(swap_bios_limit(tio->ti, bio))) {
952 		struct mapped_device *md = io->md;
953 		up(&md->swap_bios_semaphore);
954 	}
955 
956 	free_tio(tio);
957 	dm_io_dec_pending(io, error);
958 }
959 
960 /*
961  * Return maximum size of I/O possible at the supplied sector up to the current
962  * target boundary.
963  */
max_io_len_target_boundary(struct dm_target * ti,sector_t target_offset)964 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
965 						  sector_t target_offset)
966 {
967 	return ti->len - target_offset;
968 }
969 
max_io_len(struct dm_target * ti,sector_t sector)970 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
971 {
972 	sector_t target_offset = dm_target_offset(ti, sector);
973 	sector_t len = max_io_len_target_boundary(ti, target_offset);
974 	sector_t max_len;
975 
976 	/*
977 	 * Does the target need to split IO even further?
978 	 * - varied (per target) IO splitting is a tenet of DM; this
979 	 *   explains why stacked chunk_sectors based splitting via
980 	 *   blk_max_size_offset() isn't possible here. So pass in
981 	 *   ti->max_io_len to override stacked chunk_sectors.
982 	 */
983 	if (ti->max_io_len) {
984 		max_len = blk_max_size_offset(ti->table->md->queue,
985 					      target_offset, ti->max_io_len);
986 		if (len > max_len)
987 			len = max_len;
988 	}
989 
990 	return len;
991 }
992 
dm_set_target_max_io_len(struct dm_target * ti,sector_t len)993 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
994 {
995 	if (len > UINT_MAX) {
996 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
997 		      (unsigned long long)len, UINT_MAX);
998 		ti->error = "Maximum size of target IO is too large";
999 		return -EINVAL;
1000 	}
1001 
1002 	ti->max_io_len = (uint32_t) len;
1003 
1004 	return 0;
1005 }
1006 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1007 
dm_dax_get_live_target(struct mapped_device * md,sector_t sector,int * srcu_idx)1008 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1009 						sector_t sector, int *srcu_idx)
1010 	__acquires(md->io_barrier)
1011 {
1012 	struct dm_table *map;
1013 	struct dm_target *ti;
1014 
1015 	map = dm_get_live_table(md, srcu_idx);
1016 	if (!map)
1017 		return NULL;
1018 
1019 	ti = dm_table_find_target(map, sector);
1020 	if (!ti)
1021 		return NULL;
1022 
1023 	return ti;
1024 }
1025 
dm_dax_direct_access(struct dax_device * dax_dev,pgoff_t pgoff,long nr_pages,void ** kaddr,pfn_t * pfn)1026 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1027 				 long nr_pages, void **kaddr, pfn_t *pfn)
1028 {
1029 	struct mapped_device *md = dax_get_private(dax_dev);
1030 	sector_t sector = pgoff * PAGE_SECTORS;
1031 	struct dm_target *ti;
1032 	long len, ret = -EIO;
1033 	int srcu_idx;
1034 
1035 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1036 
1037 	if (!ti)
1038 		goto out;
1039 	if (!ti->type->direct_access)
1040 		goto out;
1041 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1042 	if (len < 1)
1043 		goto out;
1044 	nr_pages = min(len, nr_pages);
1045 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1046 
1047  out:
1048 	dm_put_live_table(md, srcu_idx);
1049 
1050 	return ret;
1051 }
1052 
dm_dax_supported(struct dax_device * dax_dev,struct block_device * bdev,int blocksize,sector_t start,sector_t len)1053 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1054 		int blocksize, sector_t start, sector_t len)
1055 {
1056 	struct mapped_device *md = dax_get_private(dax_dev);
1057 	struct dm_table *map;
1058 	bool ret = false;
1059 	int srcu_idx;
1060 
1061 	map = dm_get_live_table(md, &srcu_idx);
1062 	if (!map)
1063 		goto out;
1064 
1065 	ret = dm_table_supports_dax(map, device_not_dax_capable, &blocksize);
1066 
1067 out:
1068 	dm_put_live_table(md, srcu_idx);
1069 
1070 	return ret;
1071 }
1072 
dm_dax_copy_from_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1073 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1074 				    void *addr, size_t bytes, struct iov_iter *i)
1075 {
1076 	struct mapped_device *md = dax_get_private(dax_dev);
1077 	sector_t sector = pgoff * PAGE_SECTORS;
1078 	struct dm_target *ti;
1079 	long ret = 0;
1080 	int srcu_idx;
1081 
1082 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1083 
1084 	if (!ti)
1085 		goto out;
1086 	if (!ti->type->dax_copy_from_iter) {
1087 		ret = copy_from_iter(addr, bytes, i);
1088 		goto out;
1089 	}
1090 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1091  out:
1092 	dm_put_live_table(md, srcu_idx);
1093 
1094 	return ret;
1095 }
1096 
dm_dax_copy_to_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1097 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1098 		void *addr, size_t bytes, struct iov_iter *i)
1099 {
1100 	struct mapped_device *md = dax_get_private(dax_dev);
1101 	sector_t sector = pgoff * PAGE_SECTORS;
1102 	struct dm_target *ti;
1103 	long ret = 0;
1104 	int srcu_idx;
1105 
1106 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1107 
1108 	if (!ti)
1109 		goto out;
1110 	if (!ti->type->dax_copy_to_iter) {
1111 		ret = copy_to_iter(addr, bytes, i);
1112 		goto out;
1113 	}
1114 	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1115  out:
1116 	dm_put_live_table(md, srcu_idx);
1117 
1118 	return ret;
1119 }
1120 
dm_dax_zero_page_range(struct dax_device * dax_dev,pgoff_t pgoff,size_t nr_pages)1121 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1122 				  size_t nr_pages)
1123 {
1124 	struct mapped_device *md = dax_get_private(dax_dev);
1125 	sector_t sector = pgoff * PAGE_SECTORS;
1126 	struct dm_target *ti;
1127 	int ret = -EIO;
1128 	int srcu_idx;
1129 
1130 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1131 
1132 	if (!ti)
1133 		goto out;
1134 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1135 		/*
1136 		 * ->zero_page_range() is mandatory dax operation. If we are
1137 		 *  here, something is wrong.
1138 		 */
1139 		goto out;
1140 	}
1141 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1142  out:
1143 	dm_put_live_table(md, srcu_idx);
1144 
1145 	return ret;
1146 }
1147 
1148 /*
1149  * A target may call dm_accept_partial_bio only from the map routine.  It is
1150  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1151  * operations and REQ_OP_ZONE_APPEND (zone append writes).
1152  *
1153  * dm_accept_partial_bio informs the dm that the target only wants to process
1154  * additional n_sectors sectors of the bio and the rest of the data should be
1155  * sent in a next bio.
1156  *
1157  * A diagram that explains the arithmetics:
1158  * +--------------------+---------------+-------+
1159  * |         1          |       2       |   3   |
1160  * +--------------------+---------------+-------+
1161  *
1162  * <-------------- *tio->len_ptr --------------->
1163  *                      <------- bi_size ------->
1164  *                      <-- n_sectors -->
1165  *
1166  * Region 1 was already iterated over with bio_advance or similar function.
1167  *	(it may be empty if the target doesn't use bio_advance)
1168  * Region 2 is the remaining bio size that the target wants to process.
1169  *	(it may be empty if region 1 is non-empty, although there is no reason
1170  *	 to make it empty)
1171  * The target requires that region 3 is to be sent in the next bio.
1172  *
1173  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1174  * the partially processed part (the sum of regions 1+2) must be the same for all
1175  * copies of the bio.
1176  */
dm_accept_partial_bio(struct bio * bio,unsigned n_sectors)1177 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1178 {
1179 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1180 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1181 
1182 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1183 	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1184 	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1185 	BUG_ON(bi_size > *tio->len_ptr);
1186 	BUG_ON(n_sectors > bi_size);
1187 
1188 	*tio->len_ptr -= bi_size - n_sectors;
1189 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1190 }
1191 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1192 
__set_swap_bios_limit(struct mapped_device * md,int latch)1193 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1194 {
1195 	mutex_lock(&md->swap_bios_lock);
1196 	while (latch < md->swap_bios) {
1197 		cond_resched();
1198 		down(&md->swap_bios_semaphore);
1199 		md->swap_bios--;
1200 	}
1201 	while (latch > md->swap_bios) {
1202 		cond_resched();
1203 		up(&md->swap_bios_semaphore);
1204 		md->swap_bios++;
1205 	}
1206 	mutex_unlock(&md->swap_bios_lock);
1207 }
1208 
__map_bio(struct dm_target_io * tio)1209 static blk_qc_t __map_bio(struct dm_target_io *tio)
1210 {
1211 	int r;
1212 	sector_t sector;
1213 	struct bio *clone = &tio->clone;
1214 	struct dm_io *io = tio->io;
1215 	struct dm_target *ti = tio->ti;
1216 	blk_qc_t ret = BLK_QC_T_NONE;
1217 
1218 	clone->bi_end_io = clone_endio;
1219 
1220 	/*
1221 	 * Map the clone.  If r == 0 we don't need to do
1222 	 * anything, the target has assumed ownership of
1223 	 * this io.
1224 	 */
1225 	dm_io_inc_pending(io);
1226 	sector = clone->bi_iter.bi_sector;
1227 
1228 	if (unlikely(swap_bios_limit(ti, clone))) {
1229 		struct mapped_device *md = io->md;
1230 		int latch = get_swap_bios();
1231 		if (unlikely(latch != md->swap_bios))
1232 			__set_swap_bios_limit(md, latch);
1233 		down(&md->swap_bios_semaphore);
1234 	}
1235 
1236 	/*
1237 	 * Check if the IO needs a special mapping due to zone append emulation
1238 	 * on zoned target. In this case, dm_zone_map_bio() calls the target
1239 	 * map operation.
1240 	 */
1241 	if (dm_emulate_zone_append(io->md))
1242 		r = dm_zone_map_bio(tio);
1243 	else
1244 		r = ti->type->map(ti, clone);
1245 
1246 	switch (r) {
1247 	case DM_MAPIO_SUBMITTED:
1248 		break;
1249 	case DM_MAPIO_REMAPPED:
1250 		/* the bio has been remapped so dispatch it */
1251 		trace_block_bio_remap(clone, bio_dev(io->orig_bio), sector);
1252 		ret = submit_bio_noacct(clone);
1253 		break;
1254 	case DM_MAPIO_KILL:
1255 		if (unlikely(swap_bios_limit(ti, clone))) {
1256 			struct mapped_device *md = io->md;
1257 			up(&md->swap_bios_semaphore);
1258 		}
1259 		free_tio(tio);
1260 		dm_io_dec_pending(io, BLK_STS_IOERR);
1261 		break;
1262 	case DM_MAPIO_REQUEUE:
1263 		if (unlikely(swap_bios_limit(ti, clone))) {
1264 			struct mapped_device *md = io->md;
1265 			up(&md->swap_bios_semaphore);
1266 		}
1267 		free_tio(tio);
1268 		dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1269 		break;
1270 	default:
1271 		DMWARN("unimplemented target map return value: %d", r);
1272 		BUG();
1273 	}
1274 
1275 	return ret;
1276 }
1277 
bio_setup_sector(struct bio * bio,sector_t sector,unsigned len)1278 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1279 {
1280 	bio->bi_iter.bi_sector = sector;
1281 	bio->bi_iter.bi_size = to_bytes(len);
1282 }
1283 
1284 /*
1285  * Creates a bio that consists of range of complete bvecs.
1286  */
clone_bio(struct dm_target_io * tio,struct bio * bio,sector_t sector,unsigned len)1287 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1288 		     sector_t sector, unsigned len)
1289 {
1290 	struct bio *clone = &tio->clone;
1291 	int r;
1292 
1293 	__bio_clone_fast(clone, bio);
1294 	trace_android_vh_dm_update_clone_bio(clone, bio);
1295 	r = bio_crypt_clone(clone, bio, GFP_NOIO);
1296 	if (r < 0)
1297 		return r;
1298 
1299 	if (bio_integrity(bio)) {
1300 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1301 			     !dm_target_passes_integrity(tio->ti->type))) {
1302 			DMWARN("%s: the target %s doesn't support integrity data.",
1303 				dm_device_name(tio->io->md),
1304 				tio->ti->type->name);
1305 			return -EIO;
1306 		}
1307 
1308 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1309 		if (r < 0)
1310 			return r;
1311 	}
1312 
1313 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1314 	clone->bi_iter.bi_size = to_bytes(len);
1315 
1316 	if (bio_integrity(bio))
1317 		bio_integrity_trim(clone);
1318 
1319 	return 0;
1320 }
1321 
alloc_multiple_bios(struct bio_list * blist,struct clone_info * ci,struct dm_target * ti,unsigned num_bios)1322 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1323 				struct dm_target *ti, unsigned num_bios)
1324 {
1325 	struct dm_target_io *tio;
1326 	int try;
1327 
1328 	if (!num_bios)
1329 		return;
1330 
1331 	if (num_bios == 1) {
1332 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1333 		bio_list_add(blist, &tio->clone);
1334 		return;
1335 	}
1336 
1337 	for (try = 0; try < 2; try++) {
1338 		int bio_nr;
1339 		struct bio *bio;
1340 
1341 		if (try)
1342 			mutex_lock(&ci->io->md->table_devices_lock);
1343 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1344 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1345 			if (!tio)
1346 				break;
1347 
1348 			bio_list_add(blist, &tio->clone);
1349 		}
1350 		if (try)
1351 			mutex_unlock(&ci->io->md->table_devices_lock);
1352 		if (bio_nr == num_bios)
1353 			return;
1354 
1355 		while ((bio = bio_list_pop(blist))) {
1356 			tio = container_of(bio, struct dm_target_io, clone);
1357 			free_tio(tio);
1358 		}
1359 	}
1360 }
1361 
__clone_and_map_simple_bio(struct clone_info * ci,struct dm_target_io * tio,unsigned * len)1362 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1363 					   struct dm_target_io *tio, unsigned *len)
1364 {
1365 	struct bio *clone = &tio->clone;
1366 
1367 	tio->len_ptr = len;
1368 
1369 	__bio_clone_fast(clone, ci->bio);
1370 	if (len)
1371 		bio_setup_sector(clone, ci->sector, *len);
1372 
1373 	return __map_bio(tio);
1374 }
1375 
__send_duplicate_bios(struct clone_info * ci,struct dm_target * ti,unsigned num_bios,unsigned * len)1376 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1377 				  unsigned num_bios, unsigned *len)
1378 {
1379 	struct bio_list blist = BIO_EMPTY_LIST;
1380 	struct bio *bio;
1381 	struct dm_target_io *tio;
1382 
1383 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1384 
1385 	while ((bio = bio_list_pop(&blist))) {
1386 		tio = container_of(bio, struct dm_target_io, clone);
1387 		(void) __clone_and_map_simple_bio(ci, tio, len);
1388 	}
1389 }
1390 
__send_empty_flush(struct clone_info * ci)1391 static int __send_empty_flush(struct clone_info *ci)
1392 {
1393 	unsigned target_nr = 0;
1394 	struct dm_target *ti;
1395 	struct bio flush_bio;
1396 
1397 	/*
1398 	 * Use an on-stack bio for this, it's safe since we don't
1399 	 * need to reference it after submit. It's just used as
1400 	 * the basis for the clone(s).
1401 	 */
1402 	bio_init(&flush_bio, NULL, 0);
1403 	flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1404 	bio_set_dev(&flush_bio, ci->io->md->disk->part0);
1405 
1406 	ci->bio = &flush_bio;
1407 	ci->sector_count = 0;
1408 
1409 	BUG_ON(bio_has_data(ci->bio));
1410 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1411 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1412 
1413 	bio_uninit(ci->bio);
1414 	return 0;
1415 }
1416 
__clone_and_map_data_bio(struct clone_info * ci,struct dm_target * ti,sector_t sector,unsigned * len)1417 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1418 				    sector_t sector, unsigned *len)
1419 {
1420 	struct bio *bio = ci->bio;
1421 	struct dm_target_io *tio;
1422 	int r;
1423 
1424 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1425 	tio->len_ptr = len;
1426 	r = clone_bio(tio, bio, sector, *len);
1427 	if (r < 0) {
1428 		free_tio(tio);
1429 		return r;
1430 	}
1431 	(void) __map_bio(tio);
1432 
1433 	return 0;
1434 }
1435 
__send_changing_extent_only(struct clone_info * ci,struct dm_target * ti,unsigned num_bios)1436 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1437 				       unsigned num_bios)
1438 {
1439 	unsigned len;
1440 
1441 	/*
1442 	 * Even though the device advertised support for this type of
1443 	 * request, that does not mean every target supports it, and
1444 	 * reconfiguration might also have changed that since the
1445 	 * check was performed.
1446 	 */
1447 	if (!num_bios)
1448 		return -EOPNOTSUPP;
1449 
1450 	len = min_t(sector_t, ci->sector_count,
1451 		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1452 
1453 	__send_duplicate_bios(ci, ti, num_bios, &len);
1454 
1455 	ci->sector += len;
1456 	ci->sector_count -= len;
1457 
1458 	return 0;
1459 }
1460 
is_abnormal_io(struct bio * bio)1461 static bool is_abnormal_io(struct bio *bio)
1462 {
1463 	bool r = false;
1464 
1465 	switch (bio_op(bio)) {
1466 	case REQ_OP_DISCARD:
1467 	case REQ_OP_SECURE_ERASE:
1468 	case REQ_OP_WRITE_SAME:
1469 	case REQ_OP_WRITE_ZEROES:
1470 		r = true;
1471 		break;
1472 	}
1473 
1474 	return r;
1475 }
1476 
__process_abnormal_io(struct clone_info * ci,struct dm_target * ti,int * result)1477 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1478 				  int *result)
1479 {
1480 	struct bio *bio = ci->bio;
1481 	unsigned num_bios = 0;
1482 
1483 	switch (bio_op(bio)) {
1484 	case REQ_OP_DISCARD:
1485 		num_bios = ti->num_discard_bios;
1486 		break;
1487 	case REQ_OP_SECURE_ERASE:
1488 		num_bios = ti->num_secure_erase_bios;
1489 		break;
1490 	case REQ_OP_WRITE_SAME:
1491 		num_bios = ti->num_write_same_bios;
1492 		break;
1493 	case REQ_OP_WRITE_ZEROES:
1494 		num_bios = ti->num_write_zeroes_bios;
1495 		break;
1496 	default:
1497 		return false;
1498 	}
1499 
1500 	*result = __send_changing_extent_only(ci, ti, num_bios);
1501 	return true;
1502 }
1503 
1504 /*
1505  * Select the correct strategy for processing a non-flush bio.
1506  */
__split_and_process_non_flush(struct clone_info * ci)1507 static int __split_and_process_non_flush(struct clone_info *ci)
1508 {
1509 	struct dm_target *ti;
1510 	unsigned len;
1511 	int r;
1512 
1513 	ti = dm_table_find_target(ci->map, ci->sector);
1514 	if (!ti)
1515 		return -EIO;
1516 
1517 	if (__process_abnormal_io(ci, ti, &r))
1518 		return r;
1519 
1520 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1521 
1522 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1523 	if (r < 0)
1524 		return r;
1525 
1526 	ci->sector += len;
1527 	ci->sector_count -= len;
1528 
1529 	return 0;
1530 }
1531 
init_clone_info(struct clone_info * ci,struct mapped_device * md,struct dm_table * map,struct bio * bio)1532 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1533 			    struct dm_table *map, struct bio *bio)
1534 {
1535 	ci->map = map;
1536 	ci->io = alloc_io(md, bio);
1537 	ci->sector = bio->bi_iter.bi_sector;
1538 }
1539 
1540 /*
1541  * Entry point to split a bio into clones and submit them to the targets.
1542  */
__split_and_process_bio(struct mapped_device * md,struct dm_table * map,struct bio * bio)1543 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1544 					struct dm_table *map, struct bio *bio)
1545 {
1546 	struct clone_info ci;
1547 	blk_qc_t ret = BLK_QC_T_NONE;
1548 	int error = 0;
1549 
1550 	init_clone_info(&ci, md, map, bio);
1551 
1552 	if (bio->bi_opf & REQ_PREFLUSH) {
1553 		error = __send_empty_flush(&ci);
1554 		/* dm_io_dec_pending submits any data associated with flush */
1555 	} else if (op_is_zone_mgmt(bio_op(bio))) {
1556 		ci.bio = bio;
1557 		ci.sector_count = 0;
1558 		error = __split_and_process_non_flush(&ci);
1559 	} else {
1560 		ci.bio = bio;
1561 		ci.sector_count = bio_sectors(bio);
1562 		error = __split_and_process_non_flush(&ci);
1563 		if (ci.sector_count && !error) {
1564 			/*
1565 			 * Remainder must be passed to submit_bio_noacct()
1566 			 * so that it gets handled *after* bios already submitted
1567 			 * have been completely processed.
1568 			 * We take a clone of the original to store in
1569 			 * ci.io->orig_bio to be used by end_io_acct() and
1570 			 * for dec_pending to use for completion handling.
1571 			 */
1572 			struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1573 						  GFP_NOIO, &md->queue->bio_split);
1574 			ci.io->orig_bio = b;
1575 
1576 			bio_chain(b, bio);
1577 			trace_block_split(b, bio->bi_iter.bi_sector);
1578 			ret = submit_bio_noacct(bio);
1579 		}
1580 	}
1581 	start_io_acct(ci.io);
1582 
1583 	/* drop the extra reference count */
1584 	dm_io_dec_pending(ci.io, errno_to_blk_status(error));
1585 	return ret;
1586 }
1587 
dm_submit_bio(struct bio * bio)1588 static blk_qc_t dm_submit_bio(struct bio *bio)
1589 {
1590 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1591 	blk_qc_t ret = BLK_QC_T_NONE;
1592 	int srcu_idx;
1593 	struct dm_table *map;
1594 
1595 	map = dm_get_live_table(md, &srcu_idx);
1596 
1597 	/* If suspended, or map not yet available, queue this IO for later */
1598 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1599 	    unlikely(!map)) {
1600 		if (bio->bi_opf & REQ_NOWAIT)
1601 			bio_wouldblock_error(bio);
1602 		else if (bio->bi_opf & REQ_RAHEAD)
1603 			bio_io_error(bio);
1604 		else
1605 			queue_io(md, bio);
1606 		goto out;
1607 	}
1608 
1609 	/*
1610 	 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1611 	 * otherwise associated queue_limits won't be imposed.
1612 	 */
1613 	if (is_abnormal_io(bio))
1614 		blk_queue_split(&bio);
1615 
1616 	ret = __split_and_process_bio(md, map, bio);
1617 out:
1618 	dm_put_live_table(md, srcu_idx);
1619 	return ret;
1620 }
1621 
1622 /*-----------------------------------------------------------------
1623  * An IDR is used to keep track of allocated minor numbers.
1624  *---------------------------------------------------------------*/
free_minor(int minor)1625 static void free_minor(int minor)
1626 {
1627 	spin_lock(&_minor_lock);
1628 	idr_remove(&_minor_idr, minor);
1629 	spin_unlock(&_minor_lock);
1630 }
1631 
1632 /*
1633  * See if the device with a specific minor # is free.
1634  */
specific_minor(int minor)1635 static int specific_minor(int minor)
1636 {
1637 	int r;
1638 
1639 	if (minor >= (1 << MINORBITS))
1640 		return -EINVAL;
1641 
1642 	idr_preload(GFP_KERNEL);
1643 	spin_lock(&_minor_lock);
1644 
1645 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1646 
1647 	spin_unlock(&_minor_lock);
1648 	idr_preload_end();
1649 	if (r < 0)
1650 		return r == -ENOSPC ? -EBUSY : r;
1651 	return 0;
1652 }
1653 
next_free_minor(int * minor)1654 static int next_free_minor(int *minor)
1655 {
1656 	int r;
1657 
1658 	idr_preload(GFP_KERNEL);
1659 	spin_lock(&_minor_lock);
1660 
1661 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1662 
1663 	spin_unlock(&_minor_lock);
1664 	idr_preload_end();
1665 	if (r < 0)
1666 		return r;
1667 	*minor = r;
1668 	return 0;
1669 }
1670 
1671 static const struct block_device_operations dm_blk_dops;
1672 static const struct block_device_operations dm_rq_blk_dops;
1673 static const struct dax_operations dm_dax_ops;
1674 
1675 static void dm_wq_work(struct work_struct *work);
1676 
1677 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
dm_queue_destroy_keyslot_manager(struct request_queue * q)1678 static void dm_queue_destroy_keyslot_manager(struct request_queue *q)
1679 {
1680 	dm_destroy_keyslot_manager(q->ksm);
1681 }
1682 
1683 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1684 
dm_queue_destroy_keyslot_manager(struct request_queue * q)1685 static inline void dm_queue_destroy_keyslot_manager(struct request_queue *q)
1686 {
1687 }
1688 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1689 
cleanup_mapped_device(struct mapped_device * md)1690 static void cleanup_mapped_device(struct mapped_device *md)
1691 {
1692 	if (md->wq)
1693 		destroy_workqueue(md->wq);
1694 	bioset_exit(&md->bs);
1695 	bioset_exit(&md->io_bs);
1696 
1697 	if (md->dax_dev) {
1698 		kill_dax(md->dax_dev);
1699 		put_dax(md->dax_dev);
1700 		md->dax_dev = NULL;
1701 	}
1702 
1703 	dm_cleanup_zoned_dev(md);
1704 	if (md->disk) {
1705 		spin_lock(&_minor_lock);
1706 		md->disk->private_data = NULL;
1707 		spin_unlock(&_minor_lock);
1708 		if (dm_get_md_type(md) != DM_TYPE_NONE) {
1709 			dm_sysfs_exit(md);
1710 			del_gendisk(md->disk);
1711 		}
1712 		dm_queue_destroy_keyslot_manager(md->queue);
1713 		blk_cleanup_disk(md->disk);
1714 	}
1715 
1716 	if (md->pending_io) {
1717 		free_percpu(md->pending_io);
1718 		md->pending_io = NULL;
1719 	}
1720 
1721 	cleanup_srcu_struct(&md->io_barrier);
1722 
1723 	mutex_destroy(&md->suspend_lock);
1724 	mutex_destroy(&md->type_lock);
1725 	mutex_destroy(&md->table_devices_lock);
1726 	mutex_destroy(&md->swap_bios_lock);
1727 
1728 	dm_mq_cleanup_mapped_device(md);
1729 }
1730 
1731 /*
1732  * Allocate and initialise a blank device with a given minor.
1733  */
alloc_dev(int minor)1734 static struct mapped_device *alloc_dev(int minor)
1735 {
1736 	int r, numa_node_id = dm_get_numa_node();
1737 	struct mapped_device *md;
1738 	void *old_md;
1739 
1740 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1741 	if (!md) {
1742 		DMWARN("unable to allocate device, out of memory.");
1743 		return NULL;
1744 	}
1745 
1746 	if (!try_module_get(THIS_MODULE))
1747 		goto bad_module_get;
1748 
1749 	/* get a minor number for the dev */
1750 	if (minor == DM_ANY_MINOR)
1751 		r = next_free_minor(&minor);
1752 	else
1753 		r = specific_minor(minor);
1754 	if (r < 0)
1755 		goto bad_minor;
1756 
1757 	r = init_srcu_struct(&md->io_barrier);
1758 	if (r < 0)
1759 		goto bad_io_barrier;
1760 
1761 	md->numa_node_id = numa_node_id;
1762 	md->init_tio_pdu = false;
1763 	md->type = DM_TYPE_NONE;
1764 	mutex_init(&md->suspend_lock);
1765 	mutex_init(&md->type_lock);
1766 	mutex_init(&md->table_devices_lock);
1767 	spin_lock_init(&md->deferred_lock);
1768 	atomic_set(&md->holders, 1);
1769 	atomic_set(&md->open_count, 0);
1770 	atomic_set(&md->event_nr, 0);
1771 	atomic_set(&md->uevent_seq, 0);
1772 	INIT_LIST_HEAD(&md->uevent_list);
1773 	INIT_LIST_HEAD(&md->table_devices);
1774 	spin_lock_init(&md->uevent_lock);
1775 
1776 	/*
1777 	 * default to bio-based until DM table is loaded and md->type
1778 	 * established. If request-based table is loaded: blk-mq will
1779 	 * override accordingly.
1780 	 */
1781 	md->disk = blk_alloc_disk(md->numa_node_id);
1782 	if (!md->disk)
1783 		goto bad;
1784 	md->queue = md->disk->queue;
1785 
1786 	init_waitqueue_head(&md->wait);
1787 	INIT_WORK(&md->work, dm_wq_work);
1788 	init_waitqueue_head(&md->eventq);
1789 	init_completion(&md->kobj_holder.completion);
1790 
1791 	md->swap_bios = get_swap_bios();
1792 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
1793 	mutex_init(&md->swap_bios_lock);
1794 
1795 	md->disk->major = _major;
1796 	md->disk->first_minor = minor;
1797 	md->disk->minors = 1;
1798 	md->disk->fops = &dm_blk_dops;
1799 	md->disk->private_data = md;
1800 	sprintf(md->disk->disk_name, "dm-%d", minor);
1801 
1802 	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1803 		md->dax_dev = alloc_dax(md, md->disk->disk_name,
1804 					&dm_dax_ops, 0);
1805 		if (IS_ERR(md->dax_dev)) {
1806 			md->dax_dev = NULL;
1807 			goto bad;
1808 		}
1809 	}
1810 
1811 	format_dev_t(md->name, MKDEV(_major, minor));
1812 
1813 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1814 	if (!md->wq)
1815 		goto bad;
1816 
1817 	md->pending_io = alloc_percpu(unsigned long);
1818 	if (!md->pending_io)
1819 		goto bad;
1820 
1821 	r = dm_stats_init(&md->stats);
1822 	if (r < 0)
1823 		goto bad;
1824 
1825 	/* Populate the mapping, nobody knows we exist yet */
1826 	spin_lock(&_minor_lock);
1827 	old_md = idr_replace(&_minor_idr, md, minor);
1828 	spin_unlock(&_minor_lock);
1829 
1830 	BUG_ON(old_md != MINOR_ALLOCED);
1831 
1832 	return md;
1833 
1834 bad:
1835 	cleanup_mapped_device(md);
1836 bad_io_barrier:
1837 	free_minor(minor);
1838 bad_minor:
1839 	module_put(THIS_MODULE);
1840 bad_module_get:
1841 	kvfree(md);
1842 	return NULL;
1843 }
1844 
1845 static void unlock_fs(struct mapped_device *md);
1846 
free_dev(struct mapped_device * md)1847 static void free_dev(struct mapped_device *md)
1848 {
1849 	int minor = MINOR(disk_devt(md->disk));
1850 
1851 	unlock_fs(md);
1852 
1853 	cleanup_mapped_device(md);
1854 
1855 	free_table_devices(&md->table_devices);
1856 	dm_stats_cleanup(&md->stats);
1857 	free_minor(minor);
1858 
1859 	module_put(THIS_MODULE);
1860 	kvfree(md);
1861 }
1862 
__bind_mempools(struct mapped_device * md,struct dm_table * t)1863 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1864 {
1865 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1866 	int ret = 0;
1867 
1868 	if (dm_table_bio_based(t)) {
1869 		/*
1870 		 * The md may already have mempools that need changing.
1871 		 * If so, reload bioset because front_pad may have changed
1872 		 * because a different table was loaded.
1873 		 */
1874 		bioset_exit(&md->bs);
1875 		bioset_exit(&md->io_bs);
1876 
1877 	} else if (bioset_initialized(&md->bs)) {
1878 		/*
1879 		 * There's no need to reload with request-based dm
1880 		 * because the size of front_pad doesn't change.
1881 		 * Note for future: If you are to reload bioset,
1882 		 * prep-ed requests in the queue may refer
1883 		 * to bio from the old bioset, so you must walk
1884 		 * through the queue to unprep.
1885 		 */
1886 		goto out;
1887 	}
1888 
1889 	BUG_ON(!p ||
1890 	       bioset_initialized(&md->bs) ||
1891 	       bioset_initialized(&md->io_bs));
1892 
1893 	ret = bioset_init_from_src(&md->bs, &p->bs);
1894 	if (ret)
1895 		goto out;
1896 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1897 	if (ret)
1898 		bioset_exit(&md->bs);
1899 out:
1900 	/* mempool bind completed, no longer need any mempools in the table */
1901 	dm_table_free_md_mempools(t);
1902 	return ret;
1903 }
1904 
1905 /*
1906  * Bind a table to the device.
1907  */
event_callback(void * context)1908 static void event_callback(void *context)
1909 {
1910 	unsigned long flags;
1911 	LIST_HEAD(uevents);
1912 	struct mapped_device *md = (struct mapped_device *) context;
1913 
1914 	spin_lock_irqsave(&md->uevent_lock, flags);
1915 	list_splice_init(&md->uevent_list, &uevents);
1916 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1917 
1918 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1919 
1920 	atomic_inc(&md->event_nr);
1921 	wake_up(&md->eventq);
1922 	dm_issue_global_event();
1923 }
1924 
1925 /*
1926  * Returns old map, which caller must destroy.
1927  */
__bind(struct mapped_device * md,struct dm_table * t,struct queue_limits * limits)1928 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1929 			       struct queue_limits *limits)
1930 {
1931 	struct dm_table *old_map;
1932 	struct request_queue *q = md->queue;
1933 	bool request_based = dm_table_request_based(t);
1934 	sector_t size;
1935 	int ret;
1936 
1937 	lockdep_assert_held(&md->suspend_lock);
1938 
1939 	size = dm_table_get_size(t);
1940 
1941 	/*
1942 	 * Wipe any geometry if the size of the table changed.
1943 	 */
1944 	if (size != dm_get_size(md))
1945 		memset(&md->geometry, 0, sizeof(md->geometry));
1946 
1947 	set_capacity(md->disk, size);
1948 
1949 	dm_table_event_callback(t, event_callback, md);
1950 
1951 	/*
1952 	 * The queue hasn't been stopped yet, if the old table type wasn't
1953 	 * for request-based during suspension.  So stop it to prevent
1954 	 * I/O mapping before resume.
1955 	 * This must be done before setting the queue restrictions,
1956 	 * because request-based dm may be run just after the setting.
1957 	 */
1958 	if (request_based)
1959 		dm_stop_queue(q);
1960 
1961 	if (request_based) {
1962 		/*
1963 		 * Leverage the fact that request-based DM targets are
1964 		 * immutable singletons - used to optimize dm_mq_queue_rq.
1965 		 */
1966 		md->immutable_target = dm_table_get_immutable_target(t);
1967 	}
1968 
1969 	ret = __bind_mempools(md, t);
1970 	if (ret) {
1971 		old_map = ERR_PTR(ret);
1972 		goto out;
1973 	}
1974 
1975 	ret = dm_table_set_restrictions(t, q, limits);
1976 	if (ret) {
1977 		old_map = ERR_PTR(ret);
1978 		goto out;
1979 	}
1980 
1981 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1982 	rcu_assign_pointer(md->map, (void *)t);
1983 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
1984 
1985 	if (old_map)
1986 		dm_sync_table(md);
1987 
1988 out:
1989 	return old_map;
1990 }
1991 
1992 /*
1993  * Returns unbound table for the caller to free.
1994  */
__unbind(struct mapped_device * md)1995 static struct dm_table *__unbind(struct mapped_device *md)
1996 {
1997 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
1998 
1999 	if (!map)
2000 		return NULL;
2001 
2002 	dm_table_event_callback(map, NULL, NULL);
2003 	RCU_INIT_POINTER(md->map, NULL);
2004 	dm_sync_table(md);
2005 
2006 	return map;
2007 }
2008 
2009 /*
2010  * Constructor for a new device.
2011  */
dm_create(int minor,struct mapped_device ** result)2012 int dm_create(int minor, struct mapped_device **result)
2013 {
2014 	struct mapped_device *md;
2015 
2016 	md = alloc_dev(minor);
2017 	if (!md)
2018 		return -ENXIO;
2019 
2020 	dm_ima_reset_data(md);
2021 
2022 	*result = md;
2023 	return 0;
2024 }
2025 
2026 /*
2027  * Functions to manage md->type.
2028  * All are required to hold md->type_lock.
2029  */
dm_lock_md_type(struct mapped_device * md)2030 void dm_lock_md_type(struct mapped_device *md)
2031 {
2032 	mutex_lock(&md->type_lock);
2033 }
2034 
dm_unlock_md_type(struct mapped_device * md)2035 void dm_unlock_md_type(struct mapped_device *md)
2036 {
2037 	mutex_unlock(&md->type_lock);
2038 }
2039 
dm_set_md_type(struct mapped_device * md,enum dm_queue_mode type)2040 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2041 {
2042 	BUG_ON(!mutex_is_locked(&md->type_lock));
2043 	md->type = type;
2044 }
2045 
dm_get_md_type(struct mapped_device * md)2046 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2047 {
2048 	return md->type;
2049 }
2050 
dm_get_immutable_target_type(struct mapped_device * md)2051 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2052 {
2053 	return md->immutable_target_type;
2054 }
2055 
2056 /*
2057  * The queue_limits are only valid as long as you have a reference
2058  * count on 'md'.
2059  */
dm_get_queue_limits(struct mapped_device * md)2060 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2061 {
2062 	BUG_ON(!atomic_read(&md->holders));
2063 	return &md->queue->limits;
2064 }
2065 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2066 
2067 /*
2068  * Setup the DM device's queue based on md's type
2069  */
dm_setup_md_queue(struct mapped_device * md,struct dm_table * t)2070 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2071 {
2072 	enum dm_queue_mode type = dm_table_get_type(t);
2073 	struct queue_limits limits;
2074 	int r;
2075 
2076 	switch (type) {
2077 	case DM_TYPE_REQUEST_BASED:
2078 		md->disk->fops = &dm_rq_blk_dops;
2079 		r = dm_mq_init_request_queue(md, t);
2080 		if (r) {
2081 			DMERR("Cannot initialize queue for request-based dm mapped device");
2082 			return r;
2083 		}
2084 		break;
2085 	case DM_TYPE_BIO_BASED:
2086 	case DM_TYPE_DAX_BIO_BASED:
2087 		break;
2088 	case DM_TYPE_NONE:
2089 		WARN_ON_ONCE(true);
2090 		break;
2091 	}
2092 
2093 	r = dm_calculate_queue_limits(t, &limits);
2094 	if (r) {
2095 		DMERR("Cannot calculate initial queue limits");
2096 		return r;
2097 	}
2098 	r = dm_table_set_restrictions(t, md->queue, &limits);
2099 	if (r)
2100 		return r;
2101 
2102 	add_disk(md->disk);
2103 
2104 	r = dm_sysfs_init(md);
2105 	if (r) {
2106 		del_gendisk(md->disk);
2107 		return r;
2108 	}
2109 	md->type = type;
2110 	return 0;
2111 }
2112 
dm_get_md(dev_t dev)2113 struct mapped_device *dm_get_md(dev_t dev)
2114 {
2115 	struct mapped_device *md;
2116 	unsigned minor = MINOR(dev);
2117 
2118 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2119 		return NULL;
2120 
2121 	spin_lock(&_minor_lock);
2122 
2123 	md = idr_find(&_minor_idr, minor);
2124 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2125 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2126 		md = NULL;
2127 		goto out;
2128 	}
2129 	dm_get(md);
2130 out:
2131 	spin_unlock(&_minor_lock);
2132 
2133 	return md;
2134 }
2135 EXPORT_SYMBOL_GPL(dm_get_md);
2136 
dm_get_mdptr(struct mapped_device * md)2137 void *dm_get_mdptr(struct mapped_device *md)
2138 {
2139 	return md->interface_ptr;
2140 }
2141 
dm_set_mdptr(struct mapped_device * md,void * ptr)2142 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2143 {
2144 	md->interface_ptr = ptr;
2145 }
2146 
dm_get(struct mapped_device * md)2147 void dm_get(struct mapped_device *md)
2148 {
2149 	atomic_inc(&md->holders);
2150 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2151 }
2152 
dm_hold(struct mapped_device * md)2153 int dm_hold(struct mapped_device *md)
2154 {
2155 	spin_lock(&_minor_lock);
2156 	if (test_bit(DMF_FREEING, &md->flags)) {
2157 		spin_unlock(&_minor_lock);
2158 		return -EBUSY;
2159 	}
2160 	dm_get(md);
2161 	spin_unlock(&_minor_lock);
2162 	return 0;
2163 }
2164 EXPORT_SYMBOL_GPL(dm_hold);
2165 
dm_device_name(struct mapped_device * md)2166 const char *dm_device_name(struct mapped_device *md)
2167 {
2168 	return md->name;
2169 }
2170 EXPORT_SYMBOL_GPL(dm_device_name);
2171 
__dm_destroy(struct mapped_device * md,bool wait)2172 static void __dm_destroy(struct mapped_device *md, bool wait)
2173 {
2174 	struct dm_table *map;
2175 	int srcu_idx;
2176 
2177 	might_sleep();
2178 
2179 	spin_lock(&_minor_lock);
2180 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2181 	set_bit(DMF_FREEING, &md->flags);
2182 	spin_unlock(&_minor_lock);
2183 
2184 	blk_mark_disk_dead(md->disk);
2185 
2186 	/*
2187 	 * Take suspend_lock so that presuspend and postsuspend methods
2188 	 * do not race with internal suspend.
2189 	 */
2190 	mutex_lock(&md->suspend_lock);
2191 	map = dm_get_live_table(md, &srcu_idx);
2192 	if (!dm_suspended_md(md)) {
2193 		dm_table_presuspend_targets(map);
2194 		set_bit(DMF_SUSPENDED, &md->flags);
2195 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2196 		dm_table_postsuspend_targets(map);
2197 	}
2198 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2199 	dm_put_live_table(md, srcu_idx);
2200 	mutex_unlock(&md->suspend_lock);
2201 
2202 	/*
2203 	 * Rare, but there may be I/O requests still going to complete,
2204 	 * for example.  Wait for all references to disappear.
2205 	 * No one should increment the reference count of the mapped_device,
2206 	 * after the mapped_device state becomes DMF_FREEING.
2207 	 */
2208 	if (wait)
2209 		while (atomic_read(&md->holders))
2210 			msleep(1);
2211 	else if (atomic_read(&md->holders))
2212 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2213 		       dm_device_name(md), atomic_read(&md->holders));
2214 
2215 	dm_table_destroy(__unbind(md));
2216 	free_dev(md);
2217 }
2218 
dm_destroy(struct mapped_device * md)2219 void dm_destroy(struct mapped_device *md)
2220 {
2221 	__dm_destroy(md, true);
2222 }
2223 
dm_destroy_immediate(struct mapped_device * md)2224 void dm_destroy_immediate(struct mapped_device *md)
2225 {
2226 	__dm_destroy(md, false);
2227 }
2228 
dm_put(struct mapped_device * md)2229 void dm_put(struct mapped_device *md)
2230 {
2231 	atomic_dec(&md->holders);
2232 }
2233 EXPORT_SYMBOL_GPL(dm_put);
2234 
dm_in_flight_bios(struct mapped_device * md)2235 static bool dm_in_flight_bios(struct mapped_device *md)
2236 {
2237 	int cpu;
2238 	unsigned long sum = 0;
2239 
2240 	for_each_possible_cpu(cpu)
2241 		sum += *per_cpu_ptr(md->pending_io, cpu);
2242 
2243 	return sum != 0;
2244 }
2245 
dm_wait_for_bios_completion(struct mapped_device * md,unsigned int task_state)2246 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2247 {
2248 	int r = 0;
2249 	DEFINE_WAIT(wait);
2250 
2251 	while (true) {
2252 		prepare_to_wait(&md->wait, &wait, task_state);
2253 
2254 		if (!dm_in_flight_bios(md))
2255 			break;
2256 
2257 		if (signal_pending_state(task_state, current)) {
2258 			r = -EINTR;
2259 			break;
2260 		}
2261 
2262 		io_schedule();
2263 	}
2264 	finish_wait(&md->wait, &wait);
2265 
2266 	smp_rmb();
2267 
2268 	return r;
2269 }
2270 
dm_wait_for_completion(struct mapped_device * md,unsigned int task_state)2271 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2272 {
2273 	int r = 0;
2274 
2275 	if (!queue_is_mq(md->queue))
2276 		return dm_wait_for_bios_completion(md, task_state);
2277 
2278 	while (true) {
2279 		if (!blk_mq_queue_inflight(md->queue))
2280 			break;
2281 
2282 		if (signal_pending_state(task_state, current)) {
2283 			r = -EINTR;
2284 			break;
2285 		}
2286 
2287 		msleep(5);
2288 	}
2289 
2290 	return r;
2291 }
2292 
2293 /*
2294  * Process the deferred bios
2295  */
dm_wq_work(struct work_struct * work)2296 static void dm_wq_work(struct work_struct *work)
2297 {
2298 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2299 	struct bio *bio;
2300 
2301 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2302 		spin_lock_irq(&md->deferred_lock);
2303 		bio = bio_list_pop(&md->deferred);
2304 		spin_unlock_irq(&md->deferred_lock);
2305 
2306 		if (!bio)
2307 			break;
2308 
2309 		submit_bio_noacct(bio);
2310 		cond_resched();
2311 	}
2312 }
2313 
dm_queue_flush(struct mapped_device * md)2314 static void dm_queue_flush(struct mapped_device *md)
2315 {
2316 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2317 	smp_mb__after_atomic();
2318 	queue_work(md->wq, &md->work);
2319 }
2320 
2321 /*
2322  * Swap in a new table, returning the old one for the caller to destroy.
2323  */
dm_swap_table(struct mapped_device * md,struct dm_table * table)2324 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2325 {
2326 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2327 	struct queue_limits limits;
2328 	int r;
2329 
2330 	mutex_lock(&md->suspend_lock);
2331 
2332 	/* device must be suspended */
2333 	if (!dm_suspended_md(md))
2334 		goto out;
2335 
2336 	/*
2337 	 * If the new table has no data devices, retain the existing limits.
2338 	 * This helps multipath with queue_if_no_path if all paths disappear,
2339 	 * then new I/O is queued based on these limits, and then some paths
2340 	 * reappear.
2341 	 */
2342 	if (dm_table_has_no_data_devices(table)) {
2343 		live_map = dm_get_live_table_fast(md);
2344 		if (live_map)
2345 			limits = md->queue->limits;
2346 		dm_put_live_table_fast(md);
2347 	}
2348 
2349 	if (!live_map) {
2350 		r = dm_calculate_queue_limits(table, &limits);
2351 		if (r) {
2352 			map = ERR_PTR(r);
2353 			goto out;
2354 		}
2355 	}
2356 
2357 	map = __bind(md, table, &limits);
2358 	dm_issue_global_event();
2359 
2360 out:
2361 	mutex_unlock(&md->suspend_lock);
2362 	return map;
2363 }
2364 
2365 /*
2366  * Functions to lock and unlock any filesystem running on the
2367  * device.
2368  */
lock_fs(struct mapped_device * md)2369 static int lock_fs(struct mapped_device *md)
2370 {
2371 	int r;
2372 
2373 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2374 
2375 	r = freeze_bdev(md->disk->part0);
2376 	if (!r)
2377 		set_bit(DMF_FROZEN, &md->flags);
2378 	return r;
2379 }
2380 
unlock_fs(struct mapped_device * md)2381 static void unlock_fs(struct mapped_device *md)
2382 {
2383 	if (!test_bit(DMF_FROZEN, &md->flags))
2384 		return;
2385 	thaw_bdev(md->disk->part0);
2386 	clear_bit(DMF_FROZEN, &md->flags);
2387 }
2388 
2389 /*
2390  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2391  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2392  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2393  *
2394  * If __dm_suspend returns 0, the device is completely quiescent
2395  * now. There is no request-processing activity. All new requests
2396  * are being added to md->deferred list.
2397  */
__dm_suspend(struct mapped_device * md,struct dm_table * map,unsigned suspend_flags,unsigned int task_state,int dmf_suspended_flag)2398 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2399 			unsigned suspend_flags, unsigned int task_state,
2400 			int dmf_suspended_flag)
2401 {
2402 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2403 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2404 	int r;
2405 
2406 	lockdep_assert_held(&md->suspend_lock);
2407 
2408 	/*
2409 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2410 	 * This flag is cleared before dm_suspend returns.
2411 	 */
2412 	if (noflush)
2413 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2414 	else
2415 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2416 
2417 	/*
2418 	 * This gets reverted if there's an error later and the targets
2419 	 * provide the .presuspend_undo hook.
2420 	 */
2421 	dm_table_presuspend_targets(map);
2422 
2423 	/*
2424 	 * Flush I/O to the device.
2425 	 * Any I/O submitted after lock_fs() may not be flushed.
2426 	 * noflush takes precedence over do_lockfs.
2427 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2428 	 */
2429 	if (!noflush && do_lockfs) {
2430 		r = lock_fs(md);
2431 		if (r) {
2432 			dm_table_presuspend_undo_targets(map);
2433 			return r;
2434 		}
2435 	}
2436 
2437 	/*
2438 	 * Here we must make sure that no processes are submitting requests
2439 	 * to target drivers i.e. no one may be executing
2440 	 * __split_and_process_bio from dm_submit_bio.
2441 	 *
2442 	 * To get all processes out of __split_and_process_bio in dm_submit_bio,
2443 	 * we take the write lock. To prevent any process from reentering
2444 	 * __split_and_process_bio from dm_submit_bio and quiesce the thread
2445 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2446 	 * flush_workqueue(md->wq).
2447 	 */
2448 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2449 	if (map)
2450 		synchronize_srcu(&md->io_barrier);
2451 
2452 	/*
2453 	 * Stop md->queue before flushing md->wq in case request-based
2454 	 * dm defers requests to md->wq from md->queue.
2455 	 */
2456 	if (dm_request_based(md))
2457 		dm_stop_queue(md->queue);
2458 
2459 	flush_workqueue(md->wq);
2460 
2461 	/*
2462 	 * At this point no more requests are entering target request routines.
2463 	 * We call dm_wait_for_completion to wait for all existing requests
2464 	 * to finish.
2465 	 */
2466 	r = dm_wait_for_completion(md, task_state);
2467 	if (!r)
2468 		set_bit(dmf_suspended_flag, &md->flags);
2469 
2470 	if (noflush)
2471 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2472 	if (map)
2473 		synchronize_srcu(&md->io_barrier);
2474 
2475 	/* were we interrupted ? */
2476 	if (r < 0) {
2477 		dm_queue_flush(md);
2478 
2479 		if (dm_request_based(md))
2480 			dm_start_queue(md->queue);
2481 
2482 		unlock_fs(md);
2483 		dm_table_presuspend_undo_targets(map);
2484 		/* pushback list is already flushed, so skip flush */
2485 	}
2486 
2487 	return r;
2488 }
2489 
2490 /*
2491  * We need to be able to change a mapping table under a mounted
2492  * filesystem.  For example we might want to move some data in
2493  * the background.  Before the table can be swapped with
2494  * dm_bind_table, dm_suspend must be called to flush any in
2495  * flight bios and ensure that any further io gets deferred.
2496  */
2497 /*
2498  * Suspend mechanism in request-based dm.
2499  *
2500  * 1. Flush all I/Os by lock_fs() if needed.
2501  * 2. Stop dispatching any I/O by stopping the request_queue.
2502  * 3. Wait for all in-flight I/Os to be completed or requeued.
2503  *
2504  * To abort suspend, start the request_queue.
2505  */
dm_suspend(struct mapped_device * md,unsigned suspend_flags)2506 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2507 {
2508 	struct dm_table *map = NULL;
2509 	int r = 0;
2510 
2511 retry:
2512 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2513 
2514 	if (dm_suspended_md(md)) {
2515 		r = -EINVAL;
2516 		goto out_unlock;
2517 	}
2518 
2519 	if (dm_suspended_internally_md(md)) {
2520 		/* already internally suspended, wait for internal resume */
2521 		mutex_unlock(&md->suspend_lock);
2522 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2523 		if (r)
2524 			return r;
2525 		goto retry;
2526 	}
2527 
2528 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2529 	if (!map) {
2530 		/* avoid deadlock with fs/namespace.c:do_mount() */
2531 		suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
2532 	}
2533 
2534 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2535 	if (r)
2536 		goto out_unlock;
2537 
2538 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2539 	dm_table_postsuspend_targets(map);
2540 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2541 
2542 out_unlock:
2543 	mutex_unlock(&md->suspend_lock);
2544 	return r;
2545 }
2546 
__dm_resume(struct mapped_device * md,struct dm_table * map)2547 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2548 {
2549 	if (map) {
2550 		int r = dm_table_resume_targets(map);
2551 		if (r)
2552 			return r;
2553 	}
2554 
2555 	dm_queue_flush(md);
2556 
2557 	/*
2558 	 * Flushing deferred I/Os must be done after targets are resumed
2559 	 * so that mapping of targets can work correctly.
2560 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2561 	 */
2562 	if (dm_request_based(md))
2563 		dm_start_queue(md->queue);
2564 
2565 	unlock_fs(md);
2566 
2567 	return 0;
2568 }
2569 
dm_resume(struct mapped_device * md)2570 int dm_resume(struct mapped_device *md)
2571 {
2572 	int r;
2573 	struct dm_table *map = NULL;
2574 
2575 retry:
2576 	r = -EINVAL;
2577 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2578 
2579 	if (!dm_suspended_md(md))
2580 		goto out;
2581 
2582 	if (dm_suspended_internally_md(md)) {
2583 		/* already internally suspended, wait for internal resume */
2584 		mutex_unlock(&md->suspend_lock);
2585 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2586 		if (r)
2587 			return r;
2588 		goto retry;
2589 	}
2590 
2591 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2592 	if (!map || !dm_table_get_size(map))
2593 		goto out;
2594 
2595 	r = __dm_resume(md, map);
2596 	if (r)
2597 		goto out;
2598 
2599 	clear_bit(DMF_SUSPENDED, &md->flags);
2600 out:
2601 	mutex_unlock(&md->suspend_lock);
2602 
2603 	return r;
2604 }
2605 
2606 /*
2607  * Internal suspend/resume works like userspace-driven suspend. It waits
2608  * until all bios finish and prevents issuing new bios to the target drivers.
2609  * It may be used only from the kernel.
2610  */
2611 
__dm_internal_suspend(struct mapped_device * md,unsigned suspend_flags)2612 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2613 {
2614 	struct dm_table *map = NULL;
2615 
2616 	lockdep_assert_held(&md->suspend_lock);
2617 
2618 	if (md->internal_suspend_count++)
2619 		return; /* nested internal suspend */
2620 
2621 	if (dm_suspended_md(md)) {
2622 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2623 		return; /* nest suspend */
2624 	}
2625 
2626 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2627 
2628 	/*
2629 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2630 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2631 	 * would require changing .presuspend to return an error -- avoid this
2632 	 * until there is a need for more elaborate variants of internal suspend.
2633 	 */
2634 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2635 			    DMF_SUSPENDED_INTERNALLY);
2636 
2637 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2638 	dm_table_postsuspend_targets(map);
2639 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2640 }
2641 
__dm_internal_resume(struct mapped_device * md)2642 static void __dm_internal_resume(struct mapped_device *md)
2643 {
2644 	BUG_ON(!md->internal_suspend_count);
2645 
2646 	if (--md->internal_suspend_count)
2647 		return; /* resume from nested internal suspend */
2648 
2649 	if (dm_suspended_md(md))
2650 		goto done; /* resume from nested suspend */
2651 
2652 	/*
2653 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2654 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2655 	 */
2656 	(void) __dm_resume(md, NULL);
2657 
2658 done:
2659 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2660 	smp_mb__after_atomic();
2661 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2662 }
2663 
dm_internal_suspend_noflush(struct mapped_device * md)2664 void dm_internal_suspend_noflush(struct mapped_device *md)
2665 {
2666 	mutex_lock(&md->suspend_lock);
2667 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2668 	mutex_unlock(&md->suspend_lock);
2669 }
2670 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2671 
dm_internal_resume(struct mapped_device * md)2672 void dm_internal_resume(struct mapped_device *md)
2673 {
2674 	mutex_lock(&md->suspend_lock);
2675 	__dm_internal_resume(md);
2676 	mutex_unlock(&md->suspend_lock);
2677 }
2678 EXPORT_SYMBOL_GPL(dm_internal_resume);
2679 
2680 /*
2681  * Fast variants of internal suspend/resume hold md->suspend_lock,
2682  * which prevents interaction with userspace-driven suspend.
2683  */
2684 
dm_internal_suspend_fast(struct mapped_device * md)2685 void dm_internal_suspend_fast(struct mapped_device *md)
2686 {
2687 	mutex_lock(&md->suspend_lock);
2688 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2689 		return;
2690 
2691 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2692 	synchronize_srcu(&md->io_barrier);
2693 	flush_workqueue(md->wq);
2694 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2695 }
2696 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2697 
dm_internal_resume_fast(struct mapped_device * md)2698 void dm_internal_resume_fast(struct mapped_device *md)
2699 {
2700 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2701 		goto done;
2702 
2703 	dm_queue_flush(md);
2704 
2705 done:
2706 	mutex_unlock(&md->suspend_lock);
2707 }
2708 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2709 
2710 /*-----------------------------------------------------------------
2711  * Event notification.
2712  *---------------------------------------------------------------*/
dm_kobject_uevent(struct mapped_device * md,enum kobject_action action,unsigned cookie,bool need_resize_uevent)2713 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2714 		      unsigned cookie, bool need_resize_uevent)
2715 {
2716 	int r;
2717 	unsigned noio_flag;
2718 	char udev_cookie[DM_COOKIE_LENGTH];
2719 	char *envp[3] = { NULL, NULL, NULL };
2720 	char **envpp = envp;
2721 	if (cookie) {
2722 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2723 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2724 		*envpp++ = udev_cookie;
2725 	}
2726 	if (need_resize_uevent) {
2727 		*envpp++ = "RESIZE=1";
2728 	}
2729 
2730 	noio_flag = memalloc_noio_save();
2731 
2732 	r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
2733 
2734 	memalloc_noio_restore(noio_flag);
2735 
2736 	return r;
2737 }
2738 
dm_next_uevent_seq(struct mapped_device * md)2739 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2740 {
2741 	return atomic_add_return(1, &md->uevent_seq);
2742 }
2743 
dm_get_event_nr(struct mapped_device * md)2744 uint32_t dm_get_event_nr(struct mapped_device *md)
2745 {
2746 	return atomic_read(&md->event_nr);
2747 }
2748 
dm_wait_event(struct mapped_device * md,int event_nr)2749 int dm_wait_event(struct mapped_device *md, int event_nr)
2750 {
2751 	return wait_event_interruptible(md->eventq,
2752 			(event_nr != atomic_read(&md->event_nr)));
2753 }
2754 
dm_uevent_add(struct mapped_device * md,struct list_head * elist)2755 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2756 {
2757 	unsigned long flags;
2758 
2759 	spin_lock_irqsave(&md->uevent_lock, flags);
2760 	list_add(elist, &md->uevent_list);
2761 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2762 }
2763 
2764 /*
2765  * The gendisk is only valid as long as you have a reference
2766  * count on 'md'.
2767  */
dm_disk(struct mapped_device * md)2768 struct gendisk *dm_disk(struct mapped_device *md)
2769 {
2770 	return md->disk;
2771 }
2772 EXPORT_SYMBOL_GPL(dm_disk);
2773 
dm_kobject(struct mapped_device * md)2774 struct kobject *dm_kobject(struct mapped_device *md)
2775 {
2776 	return &md->kobj_holder.kobj;
2777 }
2778 
dm_get_from_kobject(struct kobject * kobj)2779 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2780 {
2781 	struct mapped_device *md;
2782 
2783 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2784 
2785 	spin_lock(&_minor_lock);
2786 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2787 		md = NULL;
2788 		goto out;
2789 	}
2790 	dm_get(md);
2791 out:
2792 	spin_unlock(&_minor_lock);
2793 
2794 	return md;
2795 }
2796 
dm_suspended_md(struct mapped_device * md)2797 int dm_suspended_md(struct mapped_device *md)
2798 {
2799 	return test_bit(DMF_SUSPENDED, &md->flags);
2800 }
2801 
dm_post_suspending_md(struct mapped_device * md)2802 static int dm_post_suspending_md(struct mapped_device *md)
2803 {
2804 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2805 }
2806 
dm_suspended_internally_md(struct mapped_device * md)2807 int dm_suspended_internally_md(struct mapped_device *md)
2808 {
2809 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2810 }
2811 
dm_test_deferred_remove_flag(struct mapped_device * md)2812 int dm_test_deferred_remove_flag(struct mapped_device *md)
2813 {
2814 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2815 }
2816 
dm_suspended(struct dm_target * ti)2817 int dm_suspended(struct dm_target *ti)
2818 {
2819 	return dm_suspended_md(ti->table->md);
2820 }
2821 EXPORT_SYMBOL_GPL(dm_suspended);
2822 
dm_post_suspending(struct dm_target * ti)2823 int dm_post_suspending(struct dm_target *ti)
2824 {
2825 	return dm_post_suspending_md(ti->table->md);
2826 }
2827 EXPORT_SYMBOL_GPL(dm_post_suspending);
2828 
dm_noflush_suspending(struct dm_target * ti)2829 int dm_noflush_suspending(struct dm_target *ti)
2830 {
2831 	return __noflush_suspending(ti->table->md);
2832 }
2833 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2834 
dm_alloc_md_mempools(struct mapped_device * md,enum dm_queue_mode type,unsigned integrity,unsigned per_io_data_size,unsigned min_pool_size)2835 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2836 					    unsigned integrity, unsigned per_io_data_size,
2837 					    unsigned min_pool_size)
2838 {
2839 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2840 	unsigned int pool_size = 0;
2841 	unsigned int front_pad, io_front_pad;
2842 	int ret;
2843 
2844 	if (!pools)
2845 		return NULL;
2846 
2847 	switch (type) {
2848 	case DM_TYPE_BIO_BASED:
2849 	case DM_TYPE_DAX_BIO_BASED:
2850 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2851 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
2852 		io_front_pad = roundup(per_io_data_size,  __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
2853 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2854 		if (ret)
2855 			goto out;
2856 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2857 			goto out;
2858 		break;
2859 	case DM_TYPE_REQUEST_BASED:
2860 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2861 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2862 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2863 		break;
2864 	default:
2865 		BUG();
2866 	}
2867 
2868 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2869 	if (ret)
2870 		goto out;
2871 
2872 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2873 		goto out;
2874 
2875 	return pools;
2876 
2877 out:
2878 	dm_free_md_mempools(pools);
2879 
2880 	return NULL;
2881 }
2882 
dm_free_md_mempools(struct dm_md_mempools * pools)2883 void dm_free_md_mempools(struct dm_md_mempools *pools)
2884 {
2885 	if (!pools)
2886 		return;
2887 
2888 	bioset_exit(&pools->bs);
2889 	bioset_exit(&pools->io_bs);
2890 
2891 	kfree(pools);
2892 }
2893 
2894 struct dm_pr {
2895 	u64	old_key;
2896 	u64	new_key;
2897 	u32	flags;
2898 	bool	fail_early;
2899 };
2900 
dm_call_pr(struct block_device * bdev,iterate_devices_callout_fn fn,void * data)2901 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2902 		      void *data)
2903 {
2904 	struct mapped_device *md = bdev->bd_disk->private_data;
2905 	struct dm_table *table;
2906 	struct dm_target *ti;
2907 	int ret = -ENOTTY, srcu_idx;
2908 
2909 	table = dm_get_live_table(md, &srcu_idx);
2910 	if (!table || !dm_table_get_size(table))
2911 		goto out;
2912 
2913 	/* We only support devices that have a single target */
2914 	if (dm_table_get_num_targets(table) != 1)
2915 		goto out;
2916 	ti = dm_table_get_target(table, 0);
2917 
2918 	if (dm_suspended_md(md)) {
2919 		ret = -EAGAIN;
2920 		goto out;
2921 	}
2922 
2923 	ret = -EINVAL;
2924 	if (!ti->type->iterate_devices)
2925 		goto out;
2926 
2927 	ret = ti->type->iterate_devices(ti, fn, data);
2928 out:
2929 	dm_put_live_table(md, srcu_idx);
2930 	return ret;
2931 }
2932 
2933 /*
2934  * For register / unregister we need to manually call out to every path.
2935  */
__dm_pr_register(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)2936 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2937 			    sector_t start, sector_t len, void *data)
2938 {
2939 	struct dm_pr *pr = data;
2940 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2941 
2942 	if (!ops || !ops->pr_register)
2943 		return -EOPNOTSUPP;
2944 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2945 }
2946 
dm_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)2947 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2948 			  u32 flags)
2949 {
2950 	struct dm_pr pr = {
2951 		.old_key	= old_key,
2952 		.new_key	= new_key,
2953 		.flags		= flags,
2954 		.fail_early	= true,
2955 	};
2956 	int ret;
2957 
2958 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2959 	if (ret && new_key) {
2960 		/* unregister all paths if we failed to register any path */
2961 		pr.old_key = new_key;
2962 		pr.new_key = 0;
2963 		pr.flags = 0;
2964 		pr.fail_early = false;
2965 		dm_call_pr(bdev, __dm_pr_register, &pr);
2966 	}
2967 
2968 	return ret;
2969 }
2970 
dm_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)2971 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2972 			 u32 flags)
2973 {
2974 	struct mapped_device *md = bdev->bd_disk->private_data;
2975 	const struct pr_ops *ops;
2976 	int r, srcu_idx;
2977 
2978 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2979 	if (r < 0)
2980 		goto out;
2981 
2982 	ops = bdev->bd_disk->fops->pr_ops;
2983 	if (ops && ops->pr_reserve)
2984 		r = ops->pr_reserve(bdev, key, type, flags);
2985 	else
2986 		r = -EOPNOTSUPP;
2987 out:
2988 	dm_unprepare_ioctl(md, srcu_idx);
2989 	return r;
2990 }
2991 
dm_pr_release(struct block_device * bdev,u64 key,enum pr_type type)2992 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2993 {
2994 	struct mapped_device *md = bdev->bd_disk->private_data;
2995 	const struct pr_ops *ops;
2996 	int r, srcu_idx;
2997 
2998 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2999 	if (r < 0)
3000 		goto out;
3001 
3002 	ops = bdev->bd_disk->fops->pr_ops;
3003 	if (ops && ops->pr_release)
3004 		r = ops->pr_release(bdev, key, type);
3005 	else
3006 		r = -EOPNOTSUPP;
3007 out:
3008 	dm_unprepare_ioctl(md, srcu_idx);
3009 	return r;
3010 }
3011 
dm_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)3012 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3013 			 enum pr_type type, bool abort)
3014 {
3015 	struct mapped_device *md = bdev->bd_disk->private_data;
3016 	const struct pr_ops *ops;
3017 	int r, srcu_idx;
3018 
3019 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3020 	if (r < 0)
3021 		goto out;
3022 
3023 	ops = bdev->bd_disk->fops->pr_ops;
3024 	if (ops && ops->pr_preempt)
3025 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3026 	else
3027 		r = -EOPNOTSUPP;
3028 out:
3029 	dm_unprepare_ioctl(md, srcu_idx);
3030 	return r;
3031 }
3032 
dm_pr_clear(struct block_device * bdev,u64 key)3033 static int dm_pr_clear(struct block_device *bdev, u64 key)
3034 {
3035 	struct mapped_device *md = bdev->bd_disk->private_data;
3036 	const struct pr_ops *ops;
3037 	int r, srcu_idx;
3038 
3039 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3040 	if (r < 0)
3041 		goto out;
3042 
3043 	ops = bdev->bd_disk->fops->pr_ops;
3044 	if (ops && ops->pr_clear)
3045 		r = ops->pr_clear(bdev, key);
3046 	else
3047 		r = -EOPNOTSUPP;
3048 out:
3049 	dm_unprepare_ioctl(md, srcu_idx);
3050 	return r;
3051 }
3052 
3053 static const struct pr_ops dm_pr_ops = {
3054 	.pr_register	= dm_pr_register,
3055 	.pr_reserve	= dm_pr_reserve,
3056 	.pr_release	= dm_pr_release,
3057 	.pr_preempt	= dm_pr_preempt,
3058 	.pr_clear	= dm_pr_clear,
3059 };
3060 
3061 static const struct block_device_operations dm_blk_dops = {
3062 	.submit_bio = dm_submit_bio,
3063 	.open = dm_blk_open,
3064 	.release = dm_blk_close,
3065 	.ioctl = dm_blk_ioctl,
3066 	.getgeo = dm_blk_getgeo,
3067 	.report_zones = dm_blk_report_zones,
3068 	.pr_ops = &dm_pr_ops,
3069 	.owner = THIS_MODULE
3070 };
3071 
3072 static const struct block_device_operations dm_rq_blk_dops = {
3073 	.open = dm_blk_open,
3074 	.release = dm_blk_close,
3075 	.ioctl = dm_blk_ioctl,
3076 	.getgeo = dm_blk_getgeo,
3077 	.pr_ops = &dm_pr_ops,
3078 	.owner = THIS_MODULE
3079 };
3080 
3081 static const struct dax_operations dm_dax_ops = {
3082 	.direct_access = dm_dax_direct_access,
3083 	.dax_supported = dm_dax_supported,
3084 	.copy_from_iter = dm_dax_copy_from_iter,
3085 	.copy_to_iter = dm_dax_copy_to_iter,
3086 	.zero_page_range = dm_dax_zero_page_range,
3087 };
3088 
3089 /*
3090  * module hooks
3091  */
3092 module_init(dm_init);
3093 module_exit(dm_exit);
3094 
3095 module_param(major, uint, 0);
3096 MODULE_PARM_DESC(major, "The major number of the device mapper");
3097 
3098 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3099 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3100 
3101 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3102 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3103 
3104 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3105 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3106 
3107 MODULE_DESCRIPTION(DM_NAME " driver");
3108 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3109 MODULE_LICENSE("GPL");
3110