• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
24 
25 #define DM_MSG_PREFIX "table"
26 
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30 
31 /*
32  * Similar to ceiling(log_size(n))
33  */
int_log(unsigned int n,unsigned int base)34 static unsigned int int_log(unsigned int n, unsigned int base)
35 {
36 	int result = 0;
37 
38 	while (n > 1) {
39 		n = dm_div_up(n, base);
40 		result++;
41 	}
42 
43 	return result;
44 }
45 
46 /*
47  * Calculate the index of the child node of the n'th node k'th key.
48  */
get_child(unsigned int n,unsigned int k)49 static inline unsigned int get_child(unsigned int n, unsigned int k)
50 {
51 	return (n * CHILDREN_PER_NODE) + k;
52 }
53 
54 /*
55  * Return the n'th node of level l from table t.
56  */
get_node(struct dm_table * t,unsigned int l,unsigned int n)57 static inline sector_t *get_node(struct dm_table *t,
58 				 unsigned int l, unsigned int n)
59 {
60 	return t->index[l] + (n * KEYS_PER_NODE);
61 }
62 
63 /*
64  * Return the highest key that you could lookup from the n'th
65  * node on level l of the btree.
66  */
high(struct dm_table * t,unsigned int l,unsigned int n)67 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
68 {
69 	for (; l < t->depth - 1; l++)
70 		n = get_child(n, CHILDREN_PER_NODE - 1);
71 
72 	if (n >= t->counts[l])
73 		return (sector_t) - 1;
74 
75 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
76 }
77 
78 /*
79  * Fills in a level of the btree based on the highs of the level
80  * below it.
81  */
setup_btree_index(unsigned int l,struct dm_table * t)82 static int setup_btree_index(unsigned int l, struct dm_table *t)
83 {
84 	unsigned int n, k;
85 	sector_t *node;
86 
87 	for (n = 0U; n < t->counts[l]; n++) {
88 		node = get_node(t, l, n);
89 
90 		for (k = 0U; k < KEYS_PER_NODE; k++)
91 			node[k] = high(t, l + 1, get_child(n, k));
92 	}
93 
94 	return 0;
95 }
96 
97 /*
98  * highs, and targets are managed as dynamic arrays during a
99  * table load.
100  */
alloc_targets(struct dm_table * t,unsigned int num)101 static int alloc_targets(struct dm_table *t, unsigned int num)
102 {
103 	sector_t *n_highs;
104 	struct dm_target *n_targets;
105 
106 	/*
107 	 * Allocate both the target array and offset array at once.
108 	 */
109 	n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
110 			   GFP_KERNEL);
111 	if (!n_highs)
112 		return -ENOMEM;
113 
114 	n_targets = (struct dm_target *) (n_highs + num);
115 
116 	memset(n_highs, -1, sizeof(*n_highs) * num);
117 	kvfree(t->highs);
118 
119 	t->num_allocated = num;
120 	t->highs = n_highs;
121 	t->targets = n_targets;
122 
123 	return 0;
124 }
125 
dm_table_create(struct dm_table ** result,fmode_t mode,unsigned num_targets,struct mapped_device * md)126 int dm_table_create(struct dm_table **result, fmode_t mode,
127 		    unsigned num_targets, struct mapped_device *md)
128 {
129 	struct dm_table *t;
130 
131 	if (num_targets > DM_MAX_TARGETS)
132 		return -EOVERFLOW;
133 
134 	t = kzalloc(sizeof(*t), GFP_KERNEL);
135 
136 	if (!t)
137 		return -ENOMEM;
138 
139 	INIT_LIST_HEAD(&t->devices);
140 
141 	if (!num_targets)
142 		num_targets = KEYS_PER_NODE;
143 
144 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
145 
146 	if (!num_targets) {
147 		kfree(t);
148 		return -EOVERFLOW;
149 	}
150 
151 	if (alloc_targets(t, num_targets)) {
152 		kfree(t);
153 		return -ENOMEM;
154 	}
155 
156 	t->type = DM_TYPE_NONE;
157 	t->mode = mode;
158 	t->md = md;
159 	*result = t;
160 	return 0;
161 }
162 
free_devices(struct list_head * devices,struct mapped_device * md)163 static void free_devices(struct list_head *devices, struct mapped_device *md)
164 {
165 	struct list_head *tmp, *next;
166 
167 	list_for_each_safe(tmp, next, devices) {
168 		struct dm_dev_internal *dd =
169 		    list_entry(tmp, struct dm_dev_internal, list);
170 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
171 		       dm_device_name(md), dd->dm_dev->name);
172 		dm_put_table_device(md, dd->dm_dev);
173 		kfree(dd);
174 	}
175 }
176 
177 static void dm_table_destroy_keyslot_manager(struct dm_table *t);
178 
dm_table_destroy(struct dm_table * t)179 void dm_table_destroy(struct dm_table *t)
180 {
181 	unsigned int i;
182 
183 	if (!t)
184 		return;
185 
186 	/* free the indexes */
187 	if (t->depth >= 2)
188 		kvfree(t->index[t->depth - 2]);
189 
190 	/* free the targets */
191 	for (i = 0; i < t->num_targets; i++) {
192 		struct dm_target *tgt = t->targets + i;
193 
194 		if (tgt->type->dtr)
195 			tgt->type->dtr(tgt);
196 
197 		dm_put_target_type(tgt->type);
198 	}
199 
200 	kvfree(t->highs);
201 
202 	/* free the device list */
203 	free_devices(&t->devices, t->md);
204 
205 	dm_free_md_mempools(t->mempools);
206 
207 	dm_table_destroy_keyslot_manager(t);
208 
209 	kfree(t);
210 }
211 
212 /*
213  * See if we've already got a device in the list.
214  */
find_device(struct list_head * l,dev_t dev)215 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
216 {
217 	struct dm_dev_internal *dd;
218 
219 	list_for_each_entry (dd, l, list)
220 		if (dd->dm_dev->bdev->bd_dev == dev)
221 			return dd;
222 
223 	return NULL;
224 }
225 
226 /*
227  * If possible, this checks an area of a destination device is invalid.
228  */
device_area_is_invalid(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)229 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
230 				  sector_t start, sector_t len, void *data)
231 {
232 	struct queue_limits *limits = data;
233 	struct block_device *bdev = dev->bdev;
234 	sector_t dev_size =
235 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
236 	unsigned short logical_block_size_sectors =
237 		limits->logical_block_size >> SECTOR_SHIFT;
238 	char b[BDEVNAME_SIZE];
239 
240 	if (!dev_size)
241 		return 0;
242 
243 	if ((start >= dev_size) || (start + len > dev_size)) {
244 		DMWARN("%s: %s too small for target: "
245 		       "start=%llu, len=%llu, dev_size=%llu",
246 		       dm_device_name(ti->table->md), bdevname(bdev, b),
247 		       (unsigned long long)start,
248 		       (unsigned long long)len,
249 		       (unsigned long long)dev_size);
250 		return 1;
251 	}
252 
253 	/*
254 	 * If the target is mapped to zoned block device(s), check
255 	 * that the zones are not partially mapped.
256 	 */
257 	if (bdev_is_zoned(bdev)) {
258 		unsigned int zone_sectors = bdev_zone_sectors(bdev);
259 
260 		if (start & (zone_sectors - 1)) {
261 			DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
262 			       dm_device_name(ti->table->md),
263 			       (unsigned long long)start,
264 			       zone_sectors, bdevname(bdev, b));
265 			return 1;
266 		}
267 
268 		/*
269 		 * Note: The last zone of a zoned block device may be smaller
270 		 * than other zones. So for a target mapping the end of a
271 		 * zoned block device with such a zone, len would not be zone
272 		 * aligned. We do not allow such last smaller zone to be part
273 		 * of the mapping here to ensure that mappings with multiple
274 		 * devices do not end up with a smaller zone in the middle of
275 		 * the sector range.
276 		 */
277 		if (len & (zone_sectors - 1)) {
278 			DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
279 			       dm_device_name(ti->table->md),
280 			       (unsigned long long)len,
281 			       zone_sectors, bdevname(bdev, b));
282 			return 1;
283 		}
284 	}
285 
286 	if (logical_block_size_sectors <= 1)
287 		return 0;
288 
289 	if (start & (logical_block_size_sectors - 1)) {
290 		DMWARN("%s: start=%llu not aligned to h/w "
291 		       "logical block size %u of %s",
292 		       dm_device_name(ti->table->md),
293 		       (unsigned long long)start,
294 		       limits->logical_block_size, bdevname(bdev, b));
295 		return 1;
296 	}
297 
298 	if (len & (logical_block_size_sectors - 1)) {
299 		DMWARN("%s: len=%llu not aligned to h/w "
300 		       "logical block size %u of %s",
301 		       dm_device_name(ti->table->md),
302 		       (unsigned long long)len,
303 		       limits->logical_block_size, bdevname(bdev, b));
304 		return 1;
305 	}
306 
307 	return 0;
308 }
309 
310 /*
311  * This upgrades the mode on an already open dm_dev, being
312  * careful to leave things as they were if we fail to reopen the
313  * device and not to touch the existing bdev field in case
314  * it is accessed concurrently.
315  */
upgrade_mode(struct dm_dev_internal * dd,fmode_t new_mode,struct mapped_device * md)316 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
317 			struct mapped_device *md)
318 {
319 	int r;
320 	struct dm_dev *old_dev, *new_dev;
321 
322 	old_dev = dd->dm_dev;
323 
324 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
325 				dd->dm_dev->mode | new_mode, &new_dev);
326 	if (r)
327 		return r;
328 
329 	dd->dm_dev = new_dev;
330 	dm_put_table_device(md, old_dev);
331 
332 	return 0;
333 }
334 
335 /*
336  * Convert the path to a device
337  */
dm_get_dev_t(const char * path)338 dev_t dm_get_dev_t(const char *path)
339 {
340 	dev_t dev;
341 
342 	if (lookup_bdev(path, &dev))
343 		dev = name_to_dev_t(path);
344 	return dev;
345 }
346 EXPORT_SYMBOL_GPL(dm_get_dev_t);
347 
348 /*
349  * Add a device to the list, or just increment the usage count if
350  * it's already present.
351  */
dm_get_device(struct dm_target * ti,const char * path,fmode_t mode,struct dm_dev ** result)352 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
353 		  struct dm_dev **result)
354 {
355 	int r;
356 	dev_t dev;
357 	unsigned int major, minor;
358 	char dummy;
359 	struct dm_dev_internal *dd;
360 	struct dm_table *t = ti->table;
361 
362 	BUG_ON(!t);
363 
364 	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
365 		/* Extract the major/minor numbers */
366 		dev = MKDEV(major, minor);
367 		if (MAJOR(dev) != major || MINOR(dev) != minor)
368 			return -EOVERFLOW;
369 	} else {
370 		dev = dm_get_dev_t(path);
371 		if (!dev)
372 			return -ENODEV;
373 	}
374 
375 	dd = find_device(&t->devices, dev);
376 	if (!dd) {
377 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
378 		if (!dd)
379 			return -ENOMEM;
380 
381 		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
382 			kfree(dd);
383 			return r;
384 		}
385 
386 		refcount_set(&dd->count, 1);
387 		list_add(&dd->list, &t->devices);
388 		goto out;
389 
390 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
391 		r = upgrade_mode(dd, mode, t->md);
392 		if (r)
393 			return r;
394 	}
395 	refcount_inc(&dd->count);
396 out:
397 	*result = dd->dm_dev;
398 	return 0;
399 }
400 EXPORT_SYMBOL(dm_get_device);
401 
dm_set_device_limits(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)402 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
403 				sector_t start, sector_t len, void *data)
404 {
405 	struct queue_limits *limits = data;
406 	struct block_device *bdev = dev->bdev;
407 	struct request_queue *q = bdev_get_queue(bdev);
408 	char b[BDEVNAME_SIZE];
409 
410 	if (unlikely(!q)) {
411 		DMWARN("%s: Cannot set limits for nonexistent device %s",
412 		       dm_device_name(ti->table->md), bdevname(bdev, b));
413 		return 0;
414 	}
415 
416 	if (blk_stack_limits(limits, &q->limits,
417 			get_start_sect(bdev) + start) < 0)
418 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
419 		       "physical_block_size=%u, logical_block_size=%u, "
420 		       "alignment_offset=%u, start=%llu",
421 		       dm_device_name(ti->table->md), bdevname(bdev, b),
422 		       q->limits.physical_block_size,
423 		       q->limits.logical_block_size,
424 		       q->limits.alignment_offset,
425 		       (unsigned long long) start << SECTOR_SHIFT);
426 	return 0;
427 }
428 
429 /*
430  * Decrement a device's use count and remove it if necessary.
431  */
dm_put_device(struct dm_target * ti,struct dm_dev * d)432 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
433 {
434 	int found = 0;
435 	struct list_head *devices = &ti->table->devices;
436 	struct dm_dev_internal *dd;
437 
438 	list_for_each_entry(dd, devices, list) {
439 		if (dd->dm_dev == d) {
440 			found = 1;
441 			break;
442 		}
443 	}
444 	if (!found) {
445 		DMWARN("%s: device %s not in table devices list",
446 		       dm_device_name(ti->table->md), d->name);
447 		return;
448 	}
449 	if (refcount_dec_and_test(&dd->count)) {
450 		dm_put_table_device(ti->table->md, d);
451 		list_del(&dd->list);
452 		kfree(dd);
453 	}
454 }
455 EXPORT_SYMBOL(dm_put_device);
456 
457 /*
458  * Checks to see if the target joins onto the end of the table.
459  */
adjoin(struct dm_table * table,struct dm_target * ti)460 static int adjoin(struct dm_table *table, struct dm_target *ti)
461 {
462 	struct dm_target *prev;
463 
464 	if (!table->num_targets)
465 		return !ti->begin;
466 
467 	prev = &table->targets[table->num_targets - 1];
468 	return (ti->begin == (prev->begin + prev->len));
469 }
470 
471 /*
472  * Used to dynamically allocate the arg array.
473  *
474  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
475  * process messages even if some device is suspended. These messages have a
476  * small fixed number of arguments.
477  *
478  * On the other hand, dm-switch needs to process bulk data using messages and
479  * excessive use of GFP_NOIO could cause trouble.
480  */
realloc_argv(unsigned * size,char ** old_argv)481 static char **realloc_argv(unsigned *size, char **old_argv)
482 {
483 	char **argv;
484 	unsigned new_size;
485 	gfp_t gfp;
486 
487 	if (*size) {
488 		new_size = *size * 2;
489 		gfp = GFP_KERNEL;
490 	} else {
491 		new_size = 8;
492 		gfp = GFP_NOIO;
493 	}
494 	argv = kmalloc_array(new_size, sizeof(*argv), gfp);
495 	if (argv && old_argv) {
496 		memcpy(argv, old_argv, *size * sizeof(*argv));
497 		*size = new_size;
498 	}
499 
500 	kfree(old_argv);
501 	return argv;
502 }
503 
504 /*
505  * Destructively splits up the argument list to pass to ctr.
506  */
dm_split_args(int * argc,char *** argvp,char * input)507 int dm_split_args(int *argc, char ***argvp, char *input)
508 {
509 	char *start, *end = input, *out, **argv = NULL;
510 	unsigned array_size = 0;
511 
512 	*argc = 0;
513 
514 	if (!input) {
515 		*argvp = NULL;
516 		return 0;
517 	}
518 
519 	argv = realloc_argv(&array_size, argv);
520 	if (!argv)
521 		return -ENOMEM;
522 
523 	while (1) {
524 		/* Skip whitespace */
525 		start = skip_spaces(end);
526 
527 		if (!*start)
528 			break;	/* success, we hit the end */
529 
530 		/* 'out' is used to remove any back-quotes */
531 		end = out = start;
532 		while (*end) {
533 			/* Everything apart from '\0' can be quoted */
534 			if (*end == '\\' && *(end + 1)) {
535 				*out++ = *(end + 1);
536 				end += 2;
537 				continue;
538 			}
539 
540 			if (isspace(*end))
541 				break;	/* end of token */
542 
543 			*out++ = *end++;
544 		}
545 
546 		/* have we already filled the array ? */
547 		if ((*argc + 1) > array_size) {
548 			argv = realloc_argv(&array_size, argv);
549 			if (!argv)
550 				return -ENOMEM;
551 		}
552 
553 		/* we know this is whitespace */
554 		if (*end)
555 			end++;
556 
557 		/* terminate the string and put it in the array */
558 		*out = '\0';
559 		argv[*argc] = start;
560 		(*argc)++;
561 	}
562 
563 	*argvp = argv;
564 	return 0;
565 }
566 
567 /*
568  * Impose necessary and sufficient conditions on a devices's table such
569  * that any incoming bio which respects its logical_block_size can be
570  * processed successfully.  If it falls across the boundary between
571  * two or more targets, the size of each piece it gets split into must
572  * be compatible with the logical_block_size of the target processing it.
573  */
validate_hardware_logical_block_alignment(struct dm_table * table,struct queue_limits * limits)574 static int validate_hardware_logical_block_alignment(struct dm_table *table,
575 						 struct queue_limits *limits)
576 {
577 	/*
578 	 * This function uses arithmetic modulo the logical_block_size
579 	 * (in units of 512-byte sectors).
580 	 */
581 	unsigned short device_logical_block_size_sects =
582 		limits->logical_block_size >> SECTOR_SHIFT;
583 
584 	/*
585 	 * Offset of the start of the next table entry, mod logical_block_size.
586 	 */
587 	unsigned short next_target_start = 0;
588 
589 	/*
590 	 * Given an aligned bio that extends beyond the end of a
591 	 * target, how many sectors must the next target handle?
592 	 */
593 	unsigned short remaining = 0;
594 
595 	struct dm_target *ti;
596 	struct queue_limits ti_limits;
597 	unsigned i;
598 
599 	/*
600 	 * Check each entry in the table in turn.
601 	 */
602 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
603 		ti = dm_table_get_target(table, i);
604 
605 		blk_set_stacking_limits(&ti_limits);
606 
607 		/* combine all target devices' limits */
608 		if (ti->type->iterate_devices)
609 			ti->type->iterate_devices(ti, dm_set_device_limits,
610 						  &ti_limits);
611 
612 		/*
613 		 * If the remaining sectors fall entirely within this
614 		 * table entry are they compatible with its logical_block_size?
615 		 */
616 		if (remaining < ti->len &&
617 		    remaining & ((ti_limits.logical_block_size >>
618 				  SECTOR_SHIFT) - 1))
619 			break;	/* Error */
620 
621 		next_target_start =
622 		    (unsigned short) ((next_target_start + ti->len) &
623 				      (device_logical_block_size_sects - 1));
624 		remaining = next_target_start ?
625 		    device_logical_block_size_sects - next_target_start : 0;
626 	}
627 
628 	if (remaining) {
629 		DMWARN("%s: table line %u (start sect %llu len %llu) "
630 		       "not aligned to h/w logical block size %u",
631 		       dm_device_name(table->md), i,
632 		       (unsigned long long) ti->begin,
633 		       (unsigned long long) ti->len,
634 		       limits->logical_block_size);
635 		return -EINVAL;
636 	}
637 
638 	return 0;
639 }
640 
dm_table_add_target(struct dm_table * t,const char * type,sector_t start,sector_t len,char * params)641 int dm_table_add_target(struct dm_table *t, const char *type,
642 			sector_t start, sector_t len, char *params)
643 {
644 	int r = -EINVAL, argc;
645 	char **argv;
646 	struct dm_target *tgt;
647 
648 	if (t->singleton) {
649 		DMERR("%s: target type %s must appear alone in table",
650 		      dm_device_name(t->md), t->targets->type->name);
651 		return -EINVAL;
652 	}
653 
654 	BUG_ON(t->num_targets >= t->num_allocated);
655 
656 	tgt = t->targets + t->num_targets;
657 	memset(tgt, 0, sizeof(*tgt));
658 
659 	if (!len) {
660 		DMERR("%s: zero-length target", dm_device_name(t->md));
661 		return -EINVAL;
662 	}
663 
664 	tgt->type = dm_get_target_type(type);
665 	if (!tgt->type) {
666 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
667 		return -EINVAL;
668 	}
669 
670 	if (dm_target_needs_singleton(tgt->type)) {
671 		if (t->num_targets) {
672 			tgt->error = "singleton target type must appear alone in table";
673 			goto bad;
674 		}
675 		t->singleton = true;
676 	}
677 
678 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
679 		tgt->error = "target type may not be included in a read-only table";
680 		goto bad;
681 	}
682 
683 	if (t->immutable_target_type) {
684 		if (t->immutable_target_type != tgt->type) {
685 			tgt->error = "immutable target type cannot be mixed with other target types";
686 			goto bad;
687 		}
688 	} else if (dm_target_is_immutable(tgt->type)) {
689 		if (t->num_targets) {
690 			tgt->error = "immutable target type cannot be mixed with other target types";
691 			goto bad;
692 		}
693 		t->immutable_target_type = tgt->type;
694 	}
695 
696 	if (dm_target_has_integrity(tgt->type))
697 		t->integrity_added = 1;
698 
699 	tgt->table = t;
700 	tgt->begin = start;
701 	tgt->len = len;
702 	tgt->error = "Unknown error";
703 
704 	/*
705 	 * Does this target adjoin the previous one ?
706 	 */
707 	if (!adjoin(t, tgt)) {
708 		tgt->error = "Gap in table";
709 		goto bad;
710 	}
711 
712 	r = dm_split_args(&argc, &argv, params);
713 	if (r) {
714 		tgt->error = "couldn't split parameters (insufficient memory)";
715 		goto bad;
716 	}
717 
718 	r = tgt->type->ctr(tgt, argc, argv);
719 	kfree(argv);
720 	if (r)
721 		goto bad;
722 
723 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
724 
725 	if (!tgt->num_discard_bios && tgt->discards_supported)
726 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
727 		       dm_device_name(t->md), type);
728 
729 	return 0;
730 
731  bad:
732 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
733 	dm_put_target_type(tgt->type);
734 	return r;
735 }
736 
737 /*
738  * Target argument parsing helpers.
739  */
validate_next_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error,unsigned grouped)740 static int validate_next_arg(const struct dm_arg *arg,
741 			     struct dm_arg_set *arg_set,
742 			     unsigned *value, char **error, unsigned grouped)
743 {
744 	const char *arg_str = dm_shift_arg(arg_set);
745 	char dummy;
746 
747 	if (!arg_str ||
748 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
749 	    (*value < arg->min) ||
750 	    (*value > arg->max) ||
751 	    (grouped && arg_set->argc < *value)) {
752 		*error = arg->error;
753 		return -EINVAL;
754 	}
755 
756 	return 0;
757 }
758 
dm_read_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)759 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
760 		unsigned *value, char **error)
761 {
762 	return validate_next_arg(arg, arg_set, value, error, 0);
763 }
764 EXPORT_SYMBOL(dm_read_arg);
765 
dm_read_arg_group(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)766 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
767 		      unsigned *value, char **error)
768 {
769 	return validate_next_arg(arg, arg_set, value, error, 1);
770 }
771 EXPORT_SYMBOL(dm_read_arg_group);
772 
dm_shift_arg(struct dm_arg_set * as)773 const char *dm_shift_arg(struct dm_arg_set *as)
774 {
775 	char *r;
776 
777 	if (as->argc) {
778 		as->argc--;
779 		r = *as->argv;
780 		as->argv++;
781 		return r;
782 	}
783 
784 	return NULL;
785 }
786 EXPORT_SYMBOL(dm_shift_arg);
787 
dm_consume_args(struct dm_arg_set * as,unsigned num_args)788 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
789 {
790 	BUG_ON(as->argc < num_args);
791 	as->argc -= num_args;
792 	as->argv += num_args;
793 }
794 EXPORT_SYMBOL(dm_consume_args);
795 
__table_type_bio_based(enum dm_queue_mode table_type)796 static bool __table_type_bio_based(enum dm_queue_mode table_type)
797 {
798 	return (table_type == DM_TYPE_BIO_BASED ||
799 		table_type == DM_TYPE_DAX_BIO_BASED);
800 }
801 
__table_type_request_based(enum dm_queue_mode table_type)802 static bool __table_type_request_based(enum dm_queue_mode table_type)
803 {
804 	return table_type == DM_TYPE_REQUEST_BASED;
805 }
806 
dm_table_set_type(struct dm_table * t,enum dm_queue_mode type)807 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
808 {
809 	t->type = type;
810 }
811 EXPORT_SYMBOL_GPL(dm_table_set_type);
812 
813 /* validate the dax capability of the target device span */
device_not_dax_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)814 int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
815 			sector_t start, sector_t len, void *data)
816 {
817 	int blocksize = *(int *) data;
818 
819 	return !dax_supported(dev->dax_dev, dev->bdev, blocksize, start, len);
820 }
821 
822 /* Check devices support synchronous DAX */
device_not_dax_synchronous_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)823 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
824 					      sector_t start, sector_t len, void *data)
825 {
826 	return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
827 }
828 
dm_table_supports_dax(struct dm_table * t,iterate_devices_callout_fn iterate_fn,int * blocksize)829 bool dm_table_supports_dax(struct dm_table *t,
830 			   iterate_devices_callout_fn iterate_fn, int *blocksize)
831 {
832 	struct dm_target *ti;
833 	unsigned i;
834 
835 	/* Ensure that all targets support DAX. */
836 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
837 		ti = dm_table_get_target(t, i);
838 
839 		if (!ti->type->direct_access)
840 			return false;
841 
842 		if (!ti->type->iterate_devices ||
843 		    ti->type->iterate_devices(ti, iterate_fn, blocksize))
844 			return false;
845 	}
846 
847 	return true;
848 }
849 
device_is_rq_stackable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)850 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
851 				  sector_t start, sector_t len, void *data)
852 {
853 	struct block_device *bdev = dev->bdev;
854 	struct request_queue *q = bdev_get_queue(bdev);
855 
856 	/* request-based cannot stack on partitions! */
857 	if (bdev_is_partition(bdev))
858 		return false;
859 
860 	return queue_is_mq(q);
861 }
862 
dm_table_determine_type(struct dm_table * t)863 static int dm_table_determine_type(struct dm_table *t)
864 {
865 	unsigned i;
866 	unsigned bio_based = 0, request_based = 0, hybrid = 0;
867 	struct dm_target *tgt;
868 	struct list_head *devices = dm_table_get_devices(t);
869 	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
870 	int page_size = PAGE_SIZE;
871 
872 	if (t->type != DM_TYPE_NONE) {
873 		/* target already set the table's type */
874 		if (t->type == DM_TYPE_BIO_BASED) {
875 			/* possibly upgrade to a variant of bio-based */
876 			goto verify_bio_based;
877 		}
878 		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
879 		goto verify_rq_based;
880 	}
881 
882 	for (i = 0; i < t->num_targets; i++) {
883 		tgt = t->targets + i;
884 		if (dm_target_hybrid(tgt))
885 			hybrid = 1;
886 		else if (dm_target_request_based(tgt))
887 			request_based = 1;
888 		else
889 			bio_based = 1;
890 
891 		if (bio_based && request_based) {
892 			DMERR("Inconsistent table: different target types"
893 			      " can't be mixed up");
894 			return -EINVAL;
895 		}
896 	}
897 
898 	if (hybrid && !bio_based && !request_based) {
899 		/*
900 		 * The targets can work either way.
901 		 * Determine the type from the live device.
902 		 * Default to bio-based if device is new.
903 		 */
904 		if (__table_type_request_based(live_md_type))
905 			request_based = 1;
906 		else
907 			bio_based = 1;
908 	}
909 
910 	if (bio_based) {
911 verify_bio_based:
912 		/* We must use this table as bio-based */
913 		t->type = DM_TYPE_BIO_BASED;
914 		if (dm_table_supports_dax(t, device_not_dax_capable, &page_size) ||
915 		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
916 			t->type = DM_TYPE_DAX_BIO_BASED;
917 		}
918 		return 0;
919 	}
920 
921 	BUG_ON(!request_based); /* No targets in this table */
922 
923 	t->type = DM_TYPE_REQUEST_BASED;
924 
925 verify_rq_based:
926 	/*
927 	 * Request-based dm supports only tables that have a single target now.
928 	 * To support multiple targets, request splitting support is needed,
929 	 * and that needs lots of changes in the block-layer.
930 	 * (e.g. request completion process for partial completion.)
931 	 */
932 	if (t->num_targets > 1) {
933 		DMERR("request-based DM doesn't support multiple targets");
934 		return -EINVAL;
935 	}
936 
937 	if (list_empty(devices)) {
938 		int srcu_idx;
939 		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
940 
941 		/* inherit live table's type */
942 		if (live_table)
943 			t->type = live_table->type;
944 		dm_put_live_table(t->md, srcu_idx);
945 		return 0;
946 	}
947 
948 	tgt = dm_table_get_immutable_target(t);
949 	if (!tgt) {
950 		DMERR("table load rejected: immutable target is required");
951 		return -EINVAL;
952 	} else if (tgt->max_io_len) {
953 		DMERR("table load rejected: immutable target that splits IO is not supported");
954 		return -EINVAL;
955 	}
956 
957 	/* Non-request-stackable devices can't be used for request-based dm */
958 	if (!tgt->type->iterate_devices ||
959 	    !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
960 		DMERR("table load rejected: including non-request-stackable devices");
961 		return -EINVAL;
962 	}
963 
964 	return 0;
965 }
966 
dm_table_get_type(struct dm_table * t)967 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
968 {
969 	return t->type;
970 }
971 
dm_table_get_immutable_target_type(struct dm_table * t)972 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
973 {
974 	return t->immutable_target_type;
975 }
976 
dm_table_get_immutable_target(struct dm_table * t)977 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
978 {
979 	/* Immutable target is implicitly a singleton */
980 	if (t->num_targets > 1 ||
981 	    !dm_target_is_immutable(t->targets[0].type))
982 		return NULL;
983 
984 	return t->targets;
985 }
986 
dm_table_get_wildcard_target(struct dm_table * t)987 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
988 {
989 	struct dm_target *ti;
990 	unsigned i;
991 
992 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
993 		ti = dm_table_get_target(t, i);
994 		if (dm_target_is_wildcard(ti->type))
995 			return ti;
996 	}
997 
998 	return NULL;
999 }
1000 
dm_table_bio_based(struct dm_table * t)1001 bool dm_table_bio_based(struct dm_table *t)
1002 {
1003 	return __table_type_bio_based(dm_table_get_type(t));
1004 }
1005 
dm_table_request_based(struct dm_table * t)1006 bool dm_table_request_based(struct dm_table *t)
1007 {
1008 	return __table_type_request_based(dm_table_get_type(t));
1009 }
1010 
dm_table_alloc_md_mempools(struct dm_table * t,struct mapped_device * md)1011 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1012 {
1013 	enum dm_queue_mode type = dm_table_get_type(t);
1014 	unsigned per_io_data_size = 0;
1015 	unsigned min_pool_size = 0;
1016 	struct dm_target *ti;
1017 	unsigned i;
1018 
1019 	if (unlikely(type == DM_TYPE_NONE)) {
1020 		DMWARN("no table type is set, can't allocate mempools");
1021 		return -EINVAL;
1022 	}
1023 
1024 	if (__table_type_bio_based(type))
1025 		for (i = 0; i < t->num_targets; i++) {
1026 			ti = t->targets + i;
1027 			per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1028 			min_pool_size = max(min_pool_size, ti->num_flush_bios);
1029 		}
1030 
1031 	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1032 					   per_io_data_size, min_pool_size);
1033 	if (!t->mempools)
1034 		return -ENOMEM;
1035 
1036 	return 0;
1037 }
1038 
dm_table_free_md_mempools(struct dm_table * t)1039 void dm_table_free_md_mempools(struct dm_table *t)
1040 {
1041 	dm_free_md_mempools(t->mempools);
1042 	t->mempools = NULL;
1043 }
1044 
dm_table_get_md_mempools(struct dm_table * t)1045 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1046 {
1047 	return t->mempools;
1048 }
1049 
setup_indexes(struct dm_table * t)1050 static int setup_indexes(struct dm_table *t)
1051 {
1052 	int i;
1053 	unsigned int total = 0;
1054 	sector_t *indexes;
1055 
1056 	/* allocate the space for *all* the indexes */
1057 	for (i = t->depth - 2; i >= 0; i--) {
1058 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1059 		total += t->counts[i];
1060 	}
1061 
1062 	indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1063 	if (!indexes)
1064 		return -ENOMEM;
1065 
1066 	/* set up internal nodes, bottom-up */
1067 	for (i = t->depth - 2; i >= 0; i--) {
1068 		t->index[i] = indexes;
1069 		indexes += (KEYS_PER_NODE * t->counts[i]);
1070 		setup_btree_index(i, t);
1071 	}
1072 
1073 	return 0;
1074 }
1075 
1076 /*
1077  * Builds the btree to index the map.
1078  */
dm_table_build_index(struct dm_table * t)1079 static int dm_table_build_index(struct dm_table *t)
1080 {
1081 	int r = 0;
1082 	unsigned int leaf_nodes;
1083 
1084 	/* how many indexes will the btree have ? */
1085 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1086 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1087 
1088 	/* leaf layer has already been set up */
1089 	t->counts[t->depth - 1] = leaf_nodes;
1090 	t->index[t->depth - 1] = t->highs;
1091 
1092 	if (t->depth >= 2)
1093 		r = setup_indexes(t);
1094 
1095 	return r;
1096 }
1097 
integrity_profile_exists(struct gendisk * disk)1098 static bool integrity_profile_exists(struct gendisk *disk)
1099 {
1100 	return !!blk_get_integrity(disk);
1101 }
1102 
1103 /*
1104  * Get a disk whose integrity profile reflects the table's profile.
1105  * Returns NULL if integrity support was inconsistent or unavailable.
1106  */
dm_table_get_integrity_disk(struct dm_table * t)1107 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1108 {
1109 	struct list_head *devices = dm_table_get_devices(t);
1110 	struct dm_dev_internal *dd = NULL;
1111 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1112 	unsigned i;
1113 
1114 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1115 		struct dm_target *ti = dm_table_get_target(t, i);
1116 		if (!dm_target_passes_integrity(ti->type))
1117 			goto no_integrity;
1118 	}
1119 
1120 	list_for_each_entry(dd, devices, list) {
1121 		template_disk = dd->dm_dev->bdev->bd_disk;
1122 		if (!integrity_profile_exists(template_disk))
1123 			goto no_integrity;
1124 		else if (prev_disk &&
1125 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1126 			goto no_integrity;
1127 		prev_disk = template_disk;
1128 	}
1129 
1130 	return template_disk;
1131 
1132 no_integrity:
1133 	if (prev_disk)
1134 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1135 		       dm_device_name(t->md),
1136 		       prev_disk->disk_name,
1137 		       template_disk->disk_name);
1138 	return NULL;
1139 }
1140 
1141 /*
1142  * Register the mapped device for blk_integrity support if the
1143  * underlying devices have an integrity profile.  But all devices may
1144  * not have matching profiles (checking all devices isn't reliable
1145  * during table load because this table may use other DM device(s) which
1146  * must be resumed before they will have an initialized integity
1147  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1148  * profile validation: First pass during table load, final pass during
1149  * resume.
1150  */
dm_table_register_integrity(struct dm_table * t)1151 static int dm_table_register_integrity(struct dm_table *t)
1152 {
1153 	struct mapped_device *md = t->md;
1154 	struct gendisk *template_disk = NULL;
1155 
1156 	/* If target handles integrity itself do not register it here. */
1157 	if (t->integrity_added)
1158 		return 0;
1159 
1160 	template_disk = dm_table_get_integrity_disk(t);
1161 	if (!template_disk)
1162 		return 0;
1163 
1164 	if (!integrity_profile_exists(dm_disk(md))) {
1165 		t->integrity_supported = true;
1166 		/*
1167 		 * Register integrity profile during table load; we can do
1168 		 * this because the final profile must match during resume.
1169 		 */
1170 		blk_integrity_register(dm_disk(md),
1171 				       blk_get_integrity(template_disk));
1172 		return 0;
1173 	}
1174 
1175 	/*
1176 	 * If DM device already has an initialized integrity
1177 	 * profile the new profile should not conflict.
1178 	 */
1179 	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1180 		DMWARN("%s: conflict with existing integrity profile: "
1181 		       "%s profile mismatch",
1182 		       dm_device_name(t->md),
1183 		       template_disk->disk_name);
1184 		return 1;
1185 	}
1186 
1187 	/* Preserve existing integrity profile */
1188 	t->integrity_supported = true;
1189 	return 0;
1190 }
1191 
1192 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1193 
1194 struct dm_keyslot_manager {
1195 	struct blk_keyslot_manager ksm;
1196 	struct mapped_device *md;
1197 };
1198 
dm_keyslot_evict_callback(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1199 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1200 				     sector_t start, sector_t len, void *data)
1201 {
1202 	const struct blk_crypto_key *key = data;
1203 
1204 	blk_crypto_evict_key(bdev_get_queue(dev->bdev), key);
1205 	return 0;
1206 }
1207 
1208 /*
1209  * When an inline encryption key is evicted from a device-mapper device, evict
1210  * it from all the underlying devices.
1211  */
dm_keyslot_evict(struct blk_keyslot_manager * ksm,const struct blk_crypto_key * key,unsigned int slot)1212 static int dm_keyslot_evict(struct blk_keyslot_manager *ksm,
1213 			    const struct blk_crypto_key *key, unsigned int slot)
1214 {
1215 	struct dm_keyslot_manager *dksm = container_of(ksm,
1216 						       struct dm_keyslot_manager,
1217 						       ksm);
1218 	struct mapped_device *md = dksm->md;
1219 	struct dm_table *t;
1220 	int srcu_idx;
1221 	int i;
1222 	struct dm_target *ti;
1223 
1224 	t = dm_get_live_table(md, &srcu_idx);
1225 	if (!t)
1226 		return 0;
1227 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1228 		ti = dm_table_get_target(t, i);
1229 		if (!ti->type->iterate_devices)
1230 			continue;
1231 		ti->type->iterate_devices(ti, dm_keyslot_evict_callback,
1232 					  (void *)key);
1233 	}
1234 	dm_put_live_table(md, srcu_idx);
1235 	return 0;
1236 }
1237 
1238 struct dm_derive_raw_secret_args {
1239 	const u8 *wrapped_key;
1240 	unsigned int wrapped_key_size;
1241 	u8 *secret;
1242 	unsigned int secret_size;
1243 	int err;
1244 };
1245 
dm_derive_raw_secret_callback(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1246 static int dm_derive_raw_secret_callback(struct dm_target *ti,
1247 					 struct dm_dev *dev, sector_t start,
1248 					 sector_t len, void *data)
1249 {
1250 	struct dm_derive_raw_secret_args *args = data;
1251 	struct request_queue *q = bdev_get_queue(dev->bdev);
1252 
1253 	if (!args->err)
1254 		return 0;
1255 
1256 	if (!q->ksm) {
1257 		args->err = -EOPNOTSUPP;
1258 		return 0;
1259 	}
1260 
1261 	args->err = blk_ksm_derive_raw_secret(q->ksm, args->wrapped_key,
1262 					      args->wrapped_key_size,
1263 					      args->secret,
1264 					      args->secret_size);
1265 	/* Try another device in case this fails. */
1266 	return 0;
1267 }
1268 
1269 /*
1270  * Retrieve the raw_secret from the underlying device.  Given that only one
1271  * raw_secret can exist for a particular wrappedkey, retrieve it only from the
1272  * first device that supports derive_raw_secret().
1273  */
dm_derive_raw_secret(struct blk_keyslot_manager * ksm,const u8 * wrapped_key,unsigned int wrapped_key_size,u8 * secret,unsigned int secret_size)1274 static int dm_derive_raw_secret(struct blk_keyslot_manager *ksm,
1275 				const u8 *wrapped_key,
1276 				unsigned int wrapped_key_size,
1277 				u8 *secret, unsigned int secret_size)
1278 {
1279 	struct dm_keyslot_manager *dksm = container_of(ksm,
1280 						       struct dm_keyslot_manager,
1281 						       ksm);
1282 	struct mapped_device *md = dksm->md;
1283 	struct dm_derive_raw_secret_args args = {
1284 		.wrapped_key = wrapped_key,
1285 		.wrapped_key_size = wrapped_key_size,
1286 		.secret = secret,
1287 		.secret_size = secret_size,
1288 		.err = -EOPNOTSUPP,
1289 	};
1290 	struct dm_table *t;
1291 	int srcu_idx;
1292 	int i;
1293 	struct dm_target *ti;
1294 
1295 	t = dm_get_live_table(md, &srcu_idx);
1296 	if (!t)
1297 		return -EOPNOTSUPP;
1298 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1299 		ti = dm_table_get_target(t, i);
1300 		if (!ti->type->iterate_devices)
1301 			continue;
1302 		ti->type->iterate_devices(ti, dm_derive_raw_secret_callback,
1303 					  &args);
1304 		if (!args.err)
1305 			break;
1306 	}
1307 	dm_put_live_table(md, srcu_idx);
1308 	return args.err;
1309 }
1310 
1311 
1312 static const struct blk_ksm_ll_ops dm_ksm_ll_ops = {
1313 	.keyslot_evict = dm_keyslot_evict,
1314 	.derive_raw_secret = dm_derive_raw_secret,
1315 };
1316 
device_intersect_crypto_modes(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1317 static int device_intersect_crypto_modes(struct dm_target *ti,
1318 					 struct dm_dev *dev, sector_t start,
1319 					 sector_t len, void *data)
1320 {
1321 	struct blk_keyslot_manager *parent = data;
1322 	struct blk_keyslot_manager *child = bdev_get_queue(dev->bdev)->ksm;
1323 
1324 	blk_ksm_intersect_modes(parent, child);
1325 	return 0;
1326 }
1327 
dm_destroy_keyslot_manager(struct blk_keyslot_manager * ksm)1328 void dm_destroy_keyslot_manager(struct blk_keyslot_manager *ksm)
1329 {
1330 	struct dm_keyslot_manager *dksm = container_of(ksm,
1331 						       struct dm_keyslot_manager,
1332 						       ksm);
1333 
1334 	if (!ksm)
1335 		return;
1336 
1337 	blk_ksm_destroy(ksm);
1338 	kfree(dksm);
1339 }
1340 
dm_table_destroy_keyslot_manager(struct dm_table * t)1341 static void dm_table_destroy_keyslot_manager(struct dm_table *t)
1342 {
1343 	dm_destroy_keyslot_manager(t->ksm);
1344 	t->ksm = NULL;
1345 }
1346 
1347 /*
1348  * Constructs and initializes t->ksm with a keyslot manager that
1349  * represents the common set of crypto capabilities of the devices
1350  * described by the dm_table. However, if the constructed keyslot
1351  * manager does not support a superset of the crypto capabilities
1352  * supported by the current keyslot manager of the mapped_device,
1353  * it returns an error instead, since we don't support restricting
1354  * crypto capabilities on table changes. Finally, if the constructed
1355  * keyslot manager doesn't actually support any crypto modes at all,
1356  * it just returns NULL.
1357  */
dm_table_construct_keyslot_manager(struct dm_table * t)1358 static int dm_table_construct_keyslot_manager(struct dm_table *t)
1359 {
1360 	struct dm_keyslot_manager *dksm;
1361 	struct blk_keyslot_manager *ksm;
1362 	struct dm_target *ti;
1363 	unsigned int i;
1364 	bool ksm_is_empty = true;
1365 
1366 	dksm = kmalloc(sizeof(*dksm), GFP_KERNEL);
1367 	if (!dksm)
1368 		return -ENOMEM;
1369 	dksm->md = t->md;
1370 
1371 	ksm = &dksm->ksm;
1372 	blk_ksm_init_passthrough(ksm);
1373 	ksm->ksm_ll_ops = dm_ksm_ll_ops;
1374 	ksm->max_dun_bytes_supported = UINT_MAX;
1375 	memset(ksm->crypto_modes_supported, 0xFF,
1376 	       sizeof(ksm->crypto_modes_supported));
1377 	ksm->features = BLK_CRYPTO_FEATURE_STANDARD_KEYS |
1378 			BLK_CRYPTO_FEATURE_WRAPPED_KEYS;
1379 
1380 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1381 		ti = dm_table_get_target(t, i);
1382 
1383 		if (!dm_target_passes_crypto(ti->type)) {
1384 			blk_ksm_intersect_modes(ksm, NULL);
1385 			break;
1386 		}
1387 		if (!ti->type->iterate_devices)
1388 			continue;
1389 		ti->type->iterate_devices(ti, device_intersect_crypto_modes,
1390 					  ksm);
1391 	}
1392 
1393 	if (t->md->queue && !blk_ksm_is_superset(ksm, t->md->queue->ksm)) {
1394 		DMWARN("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1395 		dm_destroy_keyslot_manager(ksm);
1396 		return -EINVAL;
1397 	}
1398 
1399 	/*
1400 	 * If the new KSM doesn't actually support any crypto modes, we may as
1401 	 * well represent it with a NULL ksm.
1402 	 */
1403 	ksm_is_empty = true;
1404 	for (i = 0; i < ARRAY_SIZE(ksm->crypto_modes_supported); i++) {
1405 		if (ksm->crypto_modes_supported[i]) {
1406 			ksm_is_empty = false;
1407 			break;
1408 		}
1409 	}
1410 
1411 	if (ksm_is_empty) {
1412 		dm_destroy_keyslot_manager(ksm);
1413 		ksm = NULL;
1414 	}
1415 
1416 	/*
1417 	 * t->ksm is only set temporarily while the table is being set
1418 	 * up, and it gets set to NULL after the capabilities have
1419 	 * been transferred to the request_queue.
1420 	 */
1421 	t->ksm = ksm;
1422 
1423 	return 0;
1424 }
1425 
dm_update_keyslot_manager(struct request_queue * q,struct dm_table * t)1426 static void dm_update_keyslot_manager(struct request_queue *q,
1427 				      struct dm_table *t)
1428 {
1429 	if (!t->ksm)
1430 		return;
1431 
1432 	/* Make the ksm less restrictive */
1433 	if (!q->ksm) {
1434 		blk_ksm_register(t->ksm, q);
1435 	} else {
1436 		blk_ksm_update_capabilities(q->ksm, t->ksm);
1437 		dm_destroy_keyslot_manager(t->ksm);
1438 	}
1439 	t->ksm = NULL;
1440 }
1441 
1442 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1443 
dm_table_construct_keyslot_manager(struct dm_table * t)1444 static int dm_table_construct_keyslot_manager(struct dm_table *t)
1445 {
1446 	return 0;
1447 }
1448 
dm_destroy_keyslot_manager(struct blk_keyslot_manager * ksm)1449 void dm_destroy_keyslot_manager(struct blk_keyslot_manager *ksm)
1450 {
1451 }
1452 
dm_table_destroy_keyslot_manager(struct dm_table * t)1453 static void dm_table_destroy_keyslot_manager(struct dm_table *t)
1454 {
1455 }
1456 
dm_update_keyslot_manager(struct request_queue * q,struct dm_table * t)1457 static void dm_update_keyslot_manager(struct request_queue *q,
1458 				      struct dm_table *t)
1459 {
1460 }
1461 
1462 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1463 
1464 /*
1465  * Prepares the table for use by building the indices,
1466  * setting the type, and allocating mempools.
1467  */
dm_table_complete(struct dm_table * t)1468 int dm_table_complete(struct dm_table *t)
1469 {
1470 	int r;
1471 
1472 	r = dm_table_determine_type(t);
1473 	if (r) {
1474 		DMERR("unable to determine table type");
1475 		return r;
1476 	}
1477 
1478 	r = dm_table_build_index(t);
1479 	if (r) {
1480 		DMERR("unable to build btrees");
1481 		return r;
1482 	}
1483 
1484 	r = dm_table_register_integrity(t);
1485 	if (r) {
1486 		DMERR("could not register integrity profile.");
1487 		return r;
1488 	}
1489 
1490 	r = dm_table_construct_keyslot_manager(t);
1491 	if (r) {
1492 		DMERR("could not construct keyslot manager.");
1493 		return r;
1494 	}
1495 
1496 	r = dm_table_alloc_md_mempools(t, t->md);
1497 	if (r)
1498 		DMERR("unable to allocate mempools");
1499 
1500 	return r;
1501 }
1502 
1503 static DEFINE_MUTEX(_event_lock);
dm_table_event_callback(struct dm_table * t,void (* fn)(void *),void * context)1504 void dm_table_event_callback(struct dm_table *t,
1505 			     void (*fn)(void *), void *context)
1506 {
1507 	mutex_lock(&_event_lock);
1508 	t->event_fn = fn;
1509 	t->event_context = context;
1510 	mutex_unlock(&_event_lock);
1511 }
1512 
dm_table_event(struct dm_table * t)1513 void dm_table_event(struct dm_table *t)
1514 {
1515 	mutex_lock(&_event_lock);
1516 	if (t->event_fn)
1517 		t->event_fn(t->event_context);
1518 	mutex_unlock(&_event_lock);
1519 }
1520 EXPORT_SYMBOL(dm_table_event);
1521 
dm_table_get_size(struct dm_table * t)1522 inline sector_t dm_table_get_size(struct dm_table *t)
1523 {
1524 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1525 }
1526 EXPORT_SYMBOL(dm_table_get_size);
1527 
dm_table_get_target(struct dm_table * t,unsigned int index)1528 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1529 {
1530 	if (index >= t->num_targets)
1531 		return NULL;
1532 
1533 	return t->targets + index;
1534 }
1535 
1536 /*
1537  * Search the btree for the correct target.
1538  *
1539  * Caller should check returned pointer for NULL
1540  * to trap I/O beyond end of device.
1541  */
dm_table_find_target(struct dm_table * t,sector_t sector)1542 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1543 {
1544 	unsigned int l, n = 0, k = 0;
1545 	sector_t *node;
1546 
1547 	if (unlikely(sector >= dm_table_get_size(t)))
1548 		return NULL;
1549 
1550 	for (l = 0; l < t->depth; l++) {
1551 		n = get_child(n, k);
1552 		node = get_node(t, l, n);
1553 
1554 		for (k = 0; k < KEYS_PER_NODE; k++)
1555 			if (node[k] >= sector)
1556 				break;
1557 	}
1558 
1559 	return &t->targets[(KEYS_PER_NODE * n) + k];
1560 }
1561 
1562 /*
1563  * type->iterate_devices() should be called when the sanity check needs to
1564  * iterate and check all underlying data devices. iterate_devices() will
1565  * iterate all underlying data devices until it encounters a non-zero return
1566  * code, returned by whether the input iterate_devices_callout_fn, or
1567  * iterate_devices() itself internally.
1568  *
1569  * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1570  * iterate multiple underlying devices internally, in which case a non-zero
1571  * return code returned by iterate_devices_callout_fn will stop the iteration
1572  * in advance.
1573  *
1574  * Cases requiring _any_ underlying device supporting some kind of attribute,
1575  * should use the iteration structure like dm_table_any_dev_attr(), or call
1576  * it directly. @func should handle semantics of positive examples, e.g.
1577  * capable of something.
1578  *
1579  * Cases requiring _all_ underlying devices supporting some kind of attribute,
1580  * should use the iteration structure like dm_table_supports_nowait() or
1581  * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1582  * uses an @anti_func that handle semantics of counter examples, e.g. not
1583  * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1584  */
dm_table_any_dev_attr(struct dm_table * t,iterate_devices_callout_fn func,void * data)1585 static bool dm_table_any_dev_attr(struct dm_table *t,
1586 				  iterate_devices_callout_fn func, void *data)
1587 {
1588 	struct dm_target *ti;
1589 	unsigned int i;
1590 
1591 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1592 		ti = dm_table_get_target(t, i);
1593 
1594 		if (ti->type->iterate_devices &&
1595 		    ti->type->iterate_devices(ti, func, data))
1596 			return true;
1597         }
1598 
1599 	return false;
1600 }
1601 
count_device(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1602 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1603 			sector_t start, sector_t len, void *data)
1604 {
1605 	unsigned *num_devices = data;
1606 
1607 	(*num_devices)++;
1608 
1609 	return 0;
1610 }
1611 
1612 /*
1613  * Check whether a table has no data devices attached using each
1614  * target's iterate_devices method.
1615  * Returns false if the result is unknown because a target doesn't
1616  * support iterate_devices.
1617  */
dm_table_has_no_data_devices(struct dm_table * table)1618 bool dm_table_has_no_data_devices(struct dm_table *table)
1619 {
1620 	struct dm_target *ti;
1621 	unsigned i, num_devices;
1622 
1623 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1624 		ti = dm_table_get_target(table, i);
1625 
1626 		if (!ti->type->iterate_devices)
1627 			return false;
1628 
1629 		num_devices = 0;
1630 		ti->type->iterate_devices(ti, count_device, &num_devices);
1631 		if (num_devices)
1632 			return false;
1633 	}
1634 
1635 	return true;
1636 }
1637 
device_not_zoned_model(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1638 static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1639 				  sector_t start, sector_t len, void *data)
1640 {
1641 	struct request_queue *q = bdev_get_queue(dev->bdev);
1642 	enum blk_zoned_model *zoned_model = data;
1643 
1644 	return blk_queue_zoned_model(q) != *zoned_model;
1645 }
1646 
1647 /*
1648  * Check the device zoned model based on the target feature flag. If the target
1649  * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1650  * also accepted but all devices must have the same zoned model. If the target
1651  * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1652  * zoned model with all zoned devices having the same zone size.
1653  */
dm_table_supports_zoned_model(struct dm_table * t,enum blk_zoned_model zoned_model)1654 static bool dm_table_supports_zoned_model(struct dm_table *t,
1655 					  enum blk_zoned_model zoned_model)
1656 {
1657 	struct dm_target *ti;
1658 	unsigned i;
1659 
1660 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1661 		ti = dm_table_get_target(t, i);
1662 
1663 		if (dm_target_supports_zoned_hm(ti->type)) {
1664 			if (!ti->type->iterate_devices ||
1665 			    ti->type->iterate_devices(ti, device_not_zoned_model,
1666 						      &zoned_model))
1667 				return false;
1668 		} else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1669 			if (zoned_model == BLK_ZONED_HM)
1670 				return false;
1671 		}
1672 	}
1673 
1674 	return true;
1675 }
1676 
device_not_matches_zone_sectors(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1677 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1678 					   sector_t start, sector_t len, void *data)
1679 {
1680 	struct request_queue *q = bdev_get_queue(dev->bdev);
1681 	unsigned int *zone_sectors = data;
1682 
1683 	if (!blk_queue_is_zoned(q))
1684 		return 0;
1685 
1686 	return blk_queue_zone_sectors(q) != *zone_sectors;
1687 }
1688 
1689 /*
1690  * Check consistency of zoned model and zone sectors across all targets. For
1691  * zone sectors, if the destination device is a zoned block device, it shall
1692  * have the specified zone_sectors.
1693  */
validate_hardware_zoned_model(struct dm_table * table,enum blk_zoned_model zoned_model,unsigned int zone_sectors)1694 static int validate_hardware_zoned_model(struct dm_table *table,
1695 					 enum blk_zoned_model zoned_model,
1696 					 unsigned int zone_sectors)
1697 {
1698 	if (zoned_model == BLK_ZONED_NONE)
1699 		return 0;
1700 
1701 	if (!dm_table_supports_zoned_model(table, zoned_model)) {
1702 		DMERR("%s: zoned model is not consistent across all devices",
1703 		      dm_device_name(table->md));
1704 		return -EINVAL;
1705 	}
1706 
1707 	/* Check zone size validity and compatibility */
1708 	if (!zone_sectors || !is_power_of_2(zone_sectors))
1709 		return -EINVAL;
1710 
1711 	if (dm_table_any_dev_attr(table, device_not_matches_zone_sectors, &zone_sectors)) {
1712 		DMERR("%s: zone sectors is not consistent across all zoned devices",
1713 		      dm_device_name(table->md));
1714 		return -EINVAL;
1715 	}
1716 
1717 	return 0;
1718 }
1719 
1720 /*
1721  * Establish the new table's queue_limits and validate them.
1722  */
dm_calculate_queue_limits(struct dm_table * table,struct queue_limits * limits)1723 int dm_calculate_queue_limits(struct dm_table *table,
1724 			      struct queue_limits *limits)
1725 {
1726 	struct dm_target *ti;
1727 	struct queue_limits ti_limits;
1728 	unsigned i;
1729 	enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1730 	unsigned int zone_sectors = 0;
1731 
1732 	blk_set_stacking_limits(limits);
1733 
1734 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1735 		blk_set_stacking_limits(&ti_limits);
1736 
1737 		ti = dm_table_get_target(table, i);
1738 
1739 		if (!ti->type->iterate_devices)
1740 			goto combine_limits;
1741 
1742 		/*
1743 		 * Combine queue limits of all the devices this target uses.
1744 		 */
1745 		ti->type->iterate_devices(ti, dm_set_device_limits,
1746 					  &ti_limits);
1747 
1748 		if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1749 			/*
1750 			 * After stacking all limits, validate all devices
1751 			 * in table support this zoned model and zone sectors.
1752 			 */
1753 			zoned_model = ti_limits.zoned;
1754 			zone_sectors = ti_limits.chunk_sectors;
1755 		}
1756 
1757 		/* Set I/O hints portion of queue limits */
1758 		if (ti->type->io_hints)
1759 			ti->type->io_hints(ti, &ti_limits);
1760 
1761 		/*
1762 		 * Check each device area is consistent with the target's
1763 		 * overall queue limits.
1764 		 */
1765 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1766 					      &ti_limits))
1767 			return -EINVAL;
1768 
1769 combine_limits:
1770 		/*
1771 		 * Merge this target's queue limits into the overall limits
1772 		 * for the table.
1773 		 */
1774 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1775 			DMWARN("%s: adding target device "
1776 			       "(start sect %llu len %llu) "
1777 			       "caused an alignment inconsistency",
1778 			       dm_device_name(table->md),
1779 			       (unsigned long long) ti->begin,
1780 			       (unsigned long long) ti->len);
1781 	}
1782 
1783 	/*
1784 	 * Verify that the zoned model and zone sectors, as determined before
1785 	 * any .io_hints override, are the same across all devices in the table.
1786 	 * - this is especially relevant if .io_hints is emulating a disk-managed
1787 	 *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1788 	 * BUT...
1789 	 */
1790 	if (limits->zoned != BLK_ZONED_NONE) {
1791 		/*
1792 		 * ...IF the above limits stacking determined a zoned model
1793 		 * validate that all of the table's devices conform to it.
1794 		 */
1795 		zoned_model = limits->zoned;
1796 		zone_sectors = limits->chunk_sectors;
1797 	}
1798 	if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1799 		return -EINVAL;
1800 
1801 	return validate_hardware_logical_block_alignment(table, limits);
1802 }
1803 
1804 /*
1805  * Verify that all devices have an integrity profile that matches the
1806  * DM device's registered integrity profile.  If the profiles don't
1807  * match then unregister the DM device's integrity profile.
1808  */
dm_table_verify_integrity(struct dm_table * t)1809 static void dm_table_verify_integrity(struct dm_table *t)
1810 {
1811 	struct gendisk *template_disk = NULL;
1812 
1813 	if (t->integrity_added)
1814 		return;
1815 
1816 	if (t->integrity_supported) {
1817 		/*
1818 		 * Verify that the original integrity profile
1819 		 * matches all the devices in this table.
1820 		 */
1821 		template_disk = dm_table_get_integrity_disk(t);
1822 		if (template_disk &&
1823 		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1824 			return;
1825 	}
1826 
1827 	if (integrity_profile_exists(dm_disk(t->md))) {
1828 		DMWARN("%s: unable to establish an integrity profile",
1829 		       dm_device_name(t->md));
1830 		blk_integrity_unregister(dm_disk(t->md));
1831 	}
1832 }
1833 
device_flush_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1834 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1835 				sector_t start, sector_t len, void *data)
1836 {
1837 	unsigned long flush = (unsigned long) data;
1838 	struct request_queue *q = bdev_get_queue(dev->bdev);
1839 
1840 	return (q->queue_flags & flush);
1841 }
1842 
dm_table_supports_flush(struct dm_table * t,unsigned long flush)1843 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1844 {
1845 	struct dm_target *ti;
1846 	unsigned i;
1847 
1848 	/*
1849 	 * Require at least one underlying device to support flushes.
1850 	 * t->devices includes internal dm devices such as mirror logs
1851 	 * so we need to use iterate_devices here, which targets
1852 	 * supporting flushes must provide.
1853 	 */
1854 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1855 		ti = dm_table_get_target(t, i);
1856 
1857 		if (!ti->num_flush_bios)
1858 			continue;
1859 
1860 		if (ti->flush_supported)
1861 			return true;
1862 
1863 		if (ti->type->iterate_devices &&
1864 		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1865 			return true;
1866 	}
1867 
1868 	return false;
1869 }
1870 
device_dax_write_cache_enabled(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1871 static int device_dax_write_cache_enabled(struct dm_target *ti,
1872 					  struct dm_dev *dev, sector_t start,
1873 					  sector_t len, void *data)
1874 {
1875 	struct dax_device *dax_dev = dev->dax_dev;
1876 
1877 	if (!dax_dev)
1878 		return false;
1879 
1880 	if (dax_write_cache_enabled(dax_dev))
1881 		return true;
1882 	return false;
1883 }
1884 
device_is_rotational(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1885 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1886 				sector_t start, sector_t len, void *data)
1887 {
1888 	struct request_queue *q = bdev_get_queue(dev->bdev);
1889 
1890 	return !blk_queue_nonrot(q);
1891 }
1892 
device_is_not_random(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1893 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1894 			     sector_t start, sector_t len, void *data)
1895 {
1896 	struct request_queue *q = bdev_get_queue(dev->bdev);
1897 
1898 	return !blk_queue_add_random(q);
1899 }
1900 
device_not_write_same_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1901 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1902 					 sector_t start, sector_t len, void *data)
1903 {
1904 	struct request_queue *q = bdev_get_queue(dev->bdev);
1905 
1906 	return !q->limits.max_write_same_sectors;
1907 }
1908 
dm_table_supports_write_same(struct dm_table * t)1909 static bool dm_table_supports_write_same(struct dm_table *t)
1910 {
1911 	struct dm_target *ti;
1912 	unsigned i;
1913 
1914 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1915 		ti = dm_table_get_target(t, i);
1916 
1917 		if (!ti->num_write_same_bios)
1918 			return false;
1919 
1920 		if (!ti->type->iterate_devices ||
1921 		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1922 			return false;
1923 	}
1924 
1925 	return true;
1926 }
1927 
device_not_write_zeroes_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1928 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1929 					   sector_t start, sector_t len, void *data)
1930 {
1931 	struct request_queue *q = bdev_get_queue(dev->bdev);
1932 
1933 	return !q->limits.max_write_zeroes_sectors;
1934 }
1935 
dm_table_supports_write_zeroes(struct dm_table * t)1936 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1937 {
1938 	struct dm_target *ti;
1939 	unsigned i = 0;
1940 
1941 	while (i < dm_table_get_num_targets(t)) {
1942 		ti = dm_table_get_target(t, i++);
1943 
1944 		if (!ti->num_write_zeroes_bios)
1945 			return false;
1946 
1947 		if (!ti->type->iterate_devices ||
1948 		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1949 			return false;
1950 	}
1951 
1952 	return true;
1953 }
1954 
device_not_nowait_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1955 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1956 				     sector_t start, sector_t len, void *data)
1957 {
1958 	struct request_queue *q = bdev_get_queue(dev->bdev);
1959 
1960 	return !blk_queue_nowait(q);
1961 }
1962 
dm_table_supports_nowait(struct dm_table * t)1963 static bool dm_table_supports_nowait(struct dm_table *t)
1964 {
1965 	struct dm_target *ti;
1966 	unsigned i = 0;
1967 
1968 	while (i < dm_table_get_num_targets(t)) {
1969 		ti = dm_table_get_target(t, i++);
1970 
1971 		if (!dm_target_supports_nowait(ti->type))
1972 			return false;
1973 
1974 		if (!ti->type->iterate_devices ||
1975 		    ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1976 			return false;
1977 	}
1978 
1979 	return true;
1980 }
1981 
device_not_discard_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1982 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1983 				      sector_t start, sector_t len, void *data)
1984 {
1985 	struct request_queue *q = bdev_get_queue(dev->bdev);
1986 
1987 	return !blk_queue_discard(q);
1988 }
1989 
dm_table_supports_discards(struct dm_table * t)1990 static bool dm_table_supports_discards(struct dm_table *t)
1991 {
1992 	struct dm_target *ti;
1993 	unsigned i;
1994 
1995 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1996 		ti = dm_table_get_target(t, i);
1997 
1998 		if (!ti->num_discard_bios)
1999 			return false;
2000 
2001 		/*
2002 		 * Either the target provides discard support (as implied by setting
2003 		 * 'discards_supported') or it relies on _all_ data devices having
2004 		 * discard support.
2005 		 */
2006 		if (!ti->discards_supported &&
2007 		    (!ti->type->iterate_devices ||
2008 		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
2009 			return false;
2010 	}
2011 
2012 	return true;
2013 }
2014 
device_not_secure_erase_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)2015 static int device_not_secure_erase_capable(struct dm_target *ti,
2016 					   struct dm_dev *dev, sector_t start,
2017 					   sector_t len, void *data)
2018 {
2019 	struct request_queue *q = bdev_get_queue(dev->bdev);
2020 
2021 	return !blk_queue_secure_erase(q);
2022 }
2023 
dm_table_supports_secure_erase(struct dm_table * t)2024 static bool dm_table_supports_secure_erase(struct dm_table *t)
2025 {
2026 	struct dm_target *ti;
2027 	unsigned int i;
2028 
2029 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
2030 		ti = dm_table_get_target(t, i);
2031 
2032 		if (!ti->num_secure_erase_bios)
2033 			return false;
2034 
2035 		if (!ti->type->iterate_devices ||
2036 		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
2037 			return false;
2038 	}
2039 
2040 	return true;
2041 }
2042 
device_requires_stable_pages(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)2043 static int device_requires_stable_pages(struct dm_target *ti,
2044 					struct dm_dev *dev, sector_t start,
2045 					sector_t len, void *data)
2046 {
2047 	struct request_queue *q = bdev_get_queue(dev->bdev);
2048 
2049 	return blk_queue_stable_writes(q);
2050 }
2051 
dm_table_set_restrictions(struct dm_table * t,struct request_queue * q,struct queue_limits * limits)2052 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
2053 			      struct queue_limits *limits)
2054 {
2055 	bool wc = false, fua = false;
2056 	int page_size = PAGE_SIZE;
2057 	int r;
2058 
2059 	/*
2060 	 * Copy table's limits to the DM device's request_queue
2061 	 */
2062 	q->limits = *limits;
2063 
2064 	if (dm_table_supports_nowait(t))
2065 		blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
2066 	else
2067 		blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
2068 
2069 	if (!dm_table_supports_discards(t)) {
2070 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
2071 		/* Must also clear discard limits... */
2072 		q->limits.max_discard_sectors = 0;
2073 		q->limits.max_hw_discard_sectors = 0;
2074 		q->limits.discard_granularity = 0;
2075 		q->limits.discard_alignment = 0;
2076 		q->limits.discard_misaligned = 0;
2077 	} else
2078 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
2079 
2080 	if (dm_table_supports_secure_erase(t))
2081 		blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
2082 
2083 	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
2084 		wc = true;
2085 		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
2086 			fua = true;
2087 	}
2088 	blk_queue_write_cache(q, wc, fua);
2089 
2090 	if (dm_table_supports_dax(t, device_not_dax_capable, &page_size)) {
2091 		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
2092 		if (dm_table_supports_dax(t, device_not_dax_synchronous_capable, NULL))
2093 			set_dax_synchronous(t->md->dax_dev);
2094 	}
2095 	else
2096 		blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
2097 
2098 	if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
2099 		dax_write_cache(t->md->dax_dev, true);
2100 
2101 	/* Ensure that all underlying devices are non-rotational. */
2102 	if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
2103 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
2104 	else
2105 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2106 
2107 	if (!dm_table_supports_write_same(t))
2108 		q->limits.max_write_same_sectors = 0;
2109 	if (!dm_table_supports_write_zeroes(t))
2110 		q->limits.max_write_zeroes_sectors = 0;
2111 
2112 	dm_table_verify_integrity(t);
2113 
2114 	/*
2115 	 * Some devices don't use blk_integrity but still want stable pages
2116 	 * because they do their own checksumming.
2117 	 * If any underlying device requires stable pages, a table must require
2118 	 * them as well.  Only targets that support iterate_devices are considered:
2119 	 * don't want error, zero, etc to require stable pages.
2120 	 */
2121 	if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
2122 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
2123 	else
2124 		blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
2125 
2126 	/*
2127 	 * Determine whether or not this queue's I/O timings contribute
2128 	 * to the entropy pool, Only request-based targets use this.
2129 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2130 	 * have it set.
2131 	 */
2132 	if (blk_queue_add_random(q) &&
2133 	    dm_table_any_dev_attr(t, device_is_not_random, NULL))
2134 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2135 
2136 	/*
2137 	 * For a zoned target, setup the zones related queue attributes
2138 	 * and resources necessary for zone append emulation if necessary.
2139 	 */
2140 	if (blk_queue_is_zoned(q)) {
2141 		r = dm_set_zones_restrictions(t, q);
2142 		if (r)
2143 			return r;
2144 	}
2145 
2146 	dm_update_keyslot_manager(q, t);
2147 	disk_update_readahead(t->md->disk);
2148 
2149 	return 0;
2150 }
2151 
dm_table_get_num_targets(struct dm_table * t)2152 unsigned int dm_table_get_num_targets(struct dm_table *t)
2153 {
2154 	return t->num_targets;
2155 }
2156 
dm_table_get_devices(struct dm_table * t)2157 struct list_head *dm_table_get_devices(struct dm_table *t)
2158 {
2159 	return &t->devices;
2160 }
2161 
dm_table_get_mode(struct dm_table * t)2162 fmode_t dm_table_get_mode(struct dm_table *t)
2163 {
2164 	return t->mode;
2165 }
2166 EXPORT_SYMBOL(dm_table_get_mode);
2167 
2168 enum suspend_mode {
2169 	PRESUSPEND,
2170 	PRESUSPEND_UNDO,
2171 	POSTSUSPEND,
2172 };
2173 
suspend_targets(struct dm_table * t,enum suspend_mode mode)2174 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2175 {
2176 	int i = t->num_targets;
2177 	struct dm_target *ti = t->targets;
2178 
2179 	lockdep_assert_held(&t->md->suspend_lock);
2180 
2181 	while (i--) {
2182 		switch (mode) {
2183 		case PRESUSPEND:
2184 			if (ti->type->presuspend)
2185 				ti->type->presuspend(ti);
2186 			break;
2187 		case PRESUSPEND_UNDO:
2188 			if (ti->type->presuspend_undo)
2189 				ti->type->presuspend_undo(ti);
2190 			break;
2191 		case POSTSUSPEND:
2192 			if (ti->type->postsuspend)
2193 				ti->type->postsuspend(ti);
2194 			break;
2195 		}
2196 		ti++;
2197 	}
2198 }
2199 
dm_table_presuspend_targets(struct dm_table * t)2200 void dm_table_presuspend_targets(struct dm_table *t)
2201 {
2202 	if (!t)
2203 		return;
2204 
2205 	suspend_targets(t, PRESUSPEND);
2206 }
2207 
dm_table_presuspend_undo_targets(struct dm_table * t)2208 void dm_table_presuspend_undo_targets(struct dm_table *t)
2209 {
2210 	if (!t)
2211 		return;
2212 
2213 	suspend_targets(t, PRESUSPEND_UNDO);
2214 }
2215 
dm_table_postsuspend_targets(struct dm_table * t)2216 void dm_table_postsuspend_targets(struct dm_table *t)
2217 {
2218 	if (!t)
2219 		return;
2220 
2221 	suspend_targets(t, POSTSUSPEND);
2222 }
2223 
dm_table_resume_targets(struct dm_table * t)2224 int dm_table_resume_targets(struct dm_table *t)
2225 {
2226 	int i, r = 0;
2227 
2228 	lockdep_assert_held(&t->md->suspend_lock);
2229 
2230 	for (i = 0; i < t->num_targets; i++) {
2231 		struct dm_target *ti = t->targets + i;
2232 
2233 		if (!ti->type->preresume)
2234 			continue;
2235 
2236 		r = ti->type->preresume(ti);
2237 		if (r) {
2238 			DMERR("%s: %s: preresume failed, error = %d",
2239 			      dm_device_name(t->md), ti->type->name, r);
2240 			return r;
2241 		}
2242 	}
2243 
2244 	for (i = 0; i < t->num_targets; i++) {
2245 		struct dm_target *ti = t->targets + i;
2246 
2247 		if (ti->type->resume)
2248 			ti->type->resume(ti);
2249 	}
2250 
2251 	return 0;
2252 }
2253 
dm_table_get_md(struct dm_table * t)2254 struct mapped_device *dm_table_get_md(struct dm_table *t)
2255 {
2256 	return t->md;
2257 }
2258 EXPORT_SYMBOL(dm_table_get_md);
2259 
dm_table_device_name(struct dm_table * t)2260 const char *dm_table_device_name(struct dm_table *t)
2261 {
2262 	return dm_device_name(t->md);
2263 }
2264 EXPORT_SYMBOL_GPL(dm_table_device_name);
2265 
dm_table_run_md_queue_async(struct dm_table * t)2266 void dm_table_run_md_queue_async(struct dm_table *t)
2267 {
2268 	if (!dm_table_request_based(t))
2269 		return;
2270 
2271 	if (t->md->queue)
2272 		blk_mq_run_hw_queues(t->md->queue, true);
2273 }
2274 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2275 
2276