• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Framework for buffer objects that can be shared across devices/subsystems.
4  *
5  * Copyright(C) 2011 Linaro Limited. All rights reserved.
6  * Author: Sumit Semwal <sumit.semwal@ti.com>
7  *
8  * Many thanks to linaro-mm-sig list, and specially
9  * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10  * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11  * refining of this idea.
12  */
13 
14 #include <linux/fs.h>
15 #include <linux/slab.h>
16 #include <linux/dma-buf.h>
17 #include <linux/dma-fence.h>
18 #include <linux/anon_inodes.h>
19 #include <linux/export.h>
20 #include <linux/debugfs.h>
21 #include <linux/module.h>
22 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/dma-resv.h>
25 #include <linux/mm.h>
26 #include <linux/mount.h>
27 #include <linux/pseudo_fs.h>
28 
29 #include <uapi/linux/dma-buf.h>
30 #include <uapi/linux/magic.h>
31 
32 #include <trace/hooks/dmabuf.h>
33 
34 #include "dma-buf-sysfs-stats.h"
35 
36 struct dma_buf_list {
37 	struct list_head head;
38 	struct mutex lock;
39 };
40 
41 static struct dma_buf_list db_list;
42 
43 /*
44  * This function helps in traversing the db_list and calls the
45  * callback function which can extract required info out of each
46  * dmabuf.
47  */
get_each_dmabuf(int (* callback)(const struct dma_buf * dmabuf,void * private),void * private)48 int get_each_dmabuf(int (*callback)(const struct dma_buf *dmabuf,
49 		    void *private), void *private)
50 {
51 	struct dma_buf *buf;
52 	int ret = mutex_lock_interruptible(&db_list.lock);
53 
54 	if (ret)
55 		return ret;
56 
57 	list_for_each_entry(buf, &db_list.head, list_node) {
58 		ret = callback(buf, private);
59 		if (ret)
60 			break;
61 	}
62 	mutex_unlock(&db_list.lock);
63 	return ret;
64 }
65 EXPORT_SYMBOL_NS_GPL(get_each_dmabuf, MINIDUMP);
66 
dmabuffs_dname(struct dentry * dentry,char * buffer,int buflen)67 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
68 {
69 	struct dma_buf *dmabuf;
70 	char name[DMA_BUF_NAME_LEN];
71 	size_t ret = 0;
72 
73 	dmabuf = dentry->d_fsdata;
74 	spin_lock(&dmabuf->name_lock);
75 	if (dmabuf->name)
76 		ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
77 	spin_unlock(&dmabuf->name_lock);
78 
79 	return dynamic_dname(dentry, buffer, buflen, "/%s:%s",
80 			     dentry->d_name.name, ret > 0 ? name : "");
81 }
82 
dma_buf_release(struct dentry * dentry)83 static void dma_buf_release(struct dentry *dentry)
84 {
85 	struct dma_buf *dmabuf;
86 
87 	dmabuf = dentry->d_fsdata;
88 	if (unlikely(!dmabuf))
89 		return;
90 
91 	BUG_ON(dmabuf->vmapping_counter);
92 
93 	/*
94 	 * If you hit this BUG() it could mean:
95 	 * * There's a file reference imbalance in dma_buf_poll / dma_buf_poll_cb or somewhere else
96 	 * * dmabuf->cb_in/out.active are non-0 despite no pending fence callback
97 	 */
98 	BUG_ON(dmabuf->cb_in.active || dmabuf->cb_out.active);
99 
100 	dma_buf_stats_teardown(dmabuf);
101 	dmabuf->ops->release(dmabuf);
102 
103 	trace_android_vh_dma_buf_release(dmabuf);
104 	if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
105 		dma_resv_fini(dmabuf->resv);
106 
107 	WARN_ON(!list_empty(&dmabuf->attachments));
108 	module_put(dmabuf->owner);
109 	kfree(dmabuf->name);
110 	kfree(dmabuf);
111 }
112 
dma_buf_file_release(struct inode * inode,struct file * file)113 static int dma_buf_file_release(struct inode *inode, struct file *file)
114 {
115 	struct dma_buf *dmabuf;
116 
117 	if (!is_dma_buf_file(file))
118 		return -EINVAL;
119 
120 	dmabuf = file->private_data;
121 
122 	mutex_lock(&db_list.lock);
123 	list_del(&dmabuf->list_node);
124 	mutex_unlock(&db_list.lock);
125 
126 	return 0;
127 }
128 
129 static const struct dentry_operations dma_buf_dentry_ops = {
130 	.d_dname = dmabuffs_dname,
131 	.d_release = dma_buf_release,
132 };
133 
134 static struct vfsmount *dma_buf_mnt;
135 
dma_buf_fs_init_context(struct fs_context * fc)136 static int dma_buf_fs_init_context(struct fs_context *fc)
137 {
138 	struct pseudo_fs_context *ctx;
139 
140 	ctx = init_pseudo(fc, DMA_BUF_MAGIC);
141 	if (!ctx)
142 		return -ENOMEM;
143 	ctx->dops = &dma_buf_dentry_ops;
144 	return 0;
145 }
146 
147 static struct file_system_type dma_buf_fs_type = {
148 	.name = "dmabuf",
149 	.init_fs_context = dma_buf_fs_init_context,
150 	.kill_sb = kill_anon_super,
151 };
152 
dma_buf_mmap_internal(struct file * file,struct vm_area_struct * vma)153 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
154 {
155 	struct dma_buf *dmabuf;
156 
157 	if (!is_dma_buf_file(file))
158 		return -EINVAL;
159 
160 	dmabuf = file->private_data;
161 
162 	/* check if buffer supports mmap */
163 	if (!dmabuf->ops->mmap)
164 		return -EINVAL;
165 
166 	/* check for overflowing the buffer's size */
167 	if (vma->vm_pgoff + vma_pages(vma) >
168 	    dmabuf->size >> PAGE_SHIFT)
169 		return -EINVAL;
170 
171 	return dmabuf->ops->mmap(dmabuf, vma);
172 }
173 
dma_buf_llseek(struct file * file,loff_t offset,int whence)174 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
175 {
176 	struct dma_buf *dmabuf;
177 	loff_t base;
178 
179 	if (!is_dma_buf_file(file))
180 		return -EBADF;
181 
182 	dmabuf = file->private_data;
183 
184 	/* only support discovering the end of the buffer,
185 	   but also allow SEEK_SET to maintain the idiomatic
186 	   SEEK_END(0), SEEK_CUR(0) pattern */
187 	if (whence == SEEK_END)
188 		base = dmabuf->size;
189 	else if (whence == SEEK_SET)
190 		base = 0;
191 	else
192 		return -EINVAL;
193 
194 	if (offset != 0)
195 		return -EINVAL;
196 
197 	return base + offset;
198 }
199 
200 /**
201  * DOC: implicit fence polling
202  *
203  * To support cross-device and cross-driver synchronization of buffer access
204  * implicit fences (represented internally in the kernel with &struct dma_fence)
205  * can be attached to a &dma_buf. The glue for that and a few related things are
206  * provided in the &dma_resv structure.
207  *
208  * Userspace can query the state of these implicitly tracked fences using poll()
209  * and related system calls:
210  *
211  * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
212  *   most recent write or exclusive fence.
213  *
214  * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
215  *   all attached fences, shared and exclusive ones.
216  *
217  * Note that this only signals the completion of the respective fences, i.e. the
218  * DMA transfers are complete. Cache flushing and any other necessary
219  * preparations before CPU access can begin still need to happen.
220  */
221 
dma_buf_poll_cb(struct dma_fence * fence,struct dma_fence_cb * cb)222 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
223 {
224 	struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
225 	struct dma_buf *dmabuf = container_of(dcb->poll, struct dma_buf, poll);
226 	unsigned long flags;
227 
228 	spin_lock_irqsave(&dcb->poll->lock, flags);
229 	wake_up_locked_poll(dcb->poll, dcb->active);
230 	dcb->active = 0;
231 	spin_unlock_irqrestore(&dcb->poll->lock, flags);
232 	dma_fence_put(fence);
233 	/* Paired with get_file in dma_buf_poll */
234 	fput(dmabuf->file);
235 }
236 
dma_buf_poll_shared(struct dma_resv * resv,struct dma_buf_poll_cb_t * dcb)237 static bool dma_buf_poll_shared(struct dma_resv *resv,
238 				struct dma_buf_poll_cb_t *dcb)
239 {
240 	struct dma_resv_list *fobj = dma_resv_shared_list(resv);
241 	struct dma_fence *fence;
242 	int i, r;
243 
244 	if (!fobj)
245 		return false;
246 
247 	for (i = 0; i < fobj->shared_count; ++i) {
248 		fence = rcu_dereference_protected(fobj->shared[i],
249 						  dma_resv_held(resv));
250 		dma_fence_get(fence);
251 		r = dma_fence_add_callback(fence, &dcb->cb, dma_buf_poll_cb);
252 		if (!r)
253 			return true;
254 		dma_fence_put(fence);
255 	}
256 
257 	return false;
258 }
259 
dma_buf_poll_excl(struct dma_resv * resv,struct dma_buf_poll_cb_t * dcb)260 static bool dma_buf_poll_excl(struct dma_resv *resv,
261 			      struct dma_buf_poll_cb_t *dcb)
262 {
263 	struct dma_fence *fence = dma_resv_excl_fence(resv);
264 	int r;
265 
266 	if (!fence)
267 		return false;
268 
269 	dma_fence_get(fence);
270 	r = dma_fence_add_callback(fence, &dcb->cb, dma_buf_poll_cb);
271 	if (!r)
272 		return true;
273 	dma_fence_put(fence);
274 
275 	return false;
276 }
277 
dma_buf_poll(struct file * file,poll_table * poll)278 static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
279 {
280 	struct dma_buf *dmabuf;
281 	struct dma_resv *resv;
282 	__poll_t events;
283 
284 	dmabuf = file->private_data;
285 	if (!dmabuf || !dmabuf->resv)
286 		return EPOLLERR;
287 
288 	resv = dmabuf->resv;
289 
290 	poll_wait(file, &dmabuf->poll, poll);
291 
292 	events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
293 	if (!events)
294 		return 0;
295 
296 	dma_resv_lock(resv, NULL);
297 
298 	if (events & EPOLLOUT) {
299 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_out;
300 
301 		/* Check that callback isn't busy */
302 		spin_lock_irq(&dmabuf->poll.lock);
303 		if (dcb->active)
304 			events &= ~EPOLLOUT;
305 		else
306 			dcb->active = EPOLLOUT;
307 		spin_unlock_irq(&dmabuf->poll.lock);
308 
309 		if (events & EPOLLOUT) {
310 			/* Paired with fput in dma_buf_poll_cb */
311 			get_file(dmabuf->file);
312 
313 			if (!dma_buf_poll_shared(resv, dcb) &&
314 			    !dma_buf_poll_excl(resv, dcb))
315 
316 				/* No callback queued, wake up any other waiters */
317 				dma_buf_poll_cb(NULL, &dcb->cb);
318 			else
319 				events &= ~EPOLLOUT;
320 		}
321 	}
322 
323 	if (events & EPOLLIN) {
324 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_in;
325 
326 		/* Check that callback isn't busy */
327 		spin_lock_irq(&dmabuf->poll.lock);
328 		if (dcb->active)
329 			events &= ~EPOLLIN;
330 		else
331 			dcb->active = EPOLLIN;
332 		spin_unlock_irq(&dmabuf->poll.lock);
333 
334 		if (events & EPOLLIN) {
335 			/* Paired with fput in dma_buf_poll_cb */
336 			get_file(dmabuf->file);
337 
338 			if (!dma_buf_poll_excl(resv, dcb))
339 				/* No callback queued, wake up any other waiters */
340 				dma_buf_poll_cb(NULL, &dcb->cb);
341 			else
342 				events &= ~EPOLLIN;
343 		}
344 	}
345 
346 	dma_resv_unlock(resv);
347 	return events;
348 }
349 
_dma_buf_set_name(struct dma_buf * dmabuf,const char * name)350 static long _dma_buf_set_name(struct dma_buf *dmabuf, const char *name)
351 {
352 	spin_lock(&dmabuf->name_lock);
353 	kfree(dmabuf->name);
354 	dmabuf->name = name;
355 	spin_unlock(&dmabuf->name_lock);
356 
357 	return 0;
358 }
359 
360 /**
361  * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
362  * It could support changing the name of the dma-buf if the same piece of
363  * memory is used for multiple purpose between different devices.
364  *
365  * @dmabuf: [in]     dmabuf buffer that will be renamed.
366  * @buf:    [in]     A piece of userspace memory that contains the name of
367  *                   the dma-buf.
368  *
369  * Returns 0 on success. If the dma-buf buffer is already attached to
370  * devices, return -EBUSY.
371  *
372  */
dma_buf_set_name(struct dma_buf * dmabuf,const char * name)373 long dma_buf_set_name(struct dma_buf *dmabuf, const char *name)
374 {
375 	long ret = 0;
376 	char *buf = kstrndup(name, DMA_BUF_NAME_LEN, GFP_KERNEL);
377 
378 	if (!buf)
379 		return -ENOMEM;
380 
381 	ret = _dma_buf_set_name(dmabuf, buf);
382 	if (ret)
383 		kfree(buf);
384 
385 	return ret;
386 }
387 EXPORT_SYMBOL_GPL(dma_buf_set_name);
388 
dma_buf_set_name_user(struct dma_buf * dmabuf,const char __user * buf)389 static long dma_buf_set_name_user(struct dma_buf *dmabuf, const char __user *buf)
390 {
391 	char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
392 	long ret = 0;
393 
394 	if (IS_ERR(name))
395 		return PTR_ERR(name);
396 
397 	ret = _dma_buf_set_name(dmabuf, name);
398 	if (ret)
399 		kfree(name);
400 
401 	return ret;
402 }
403 
dma_buf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)404 static long dma_buf_ioctl(struct file *file,
405 			  unsigned int cmd, unsigned long arg)
406 {
407 	struct dma_buf *dmabuf;
408 	struct dma_buf_sync sync;
409 	enum dma_data_direction direction;
410 	int ret;
411 
412 	dmabuf = file->private_data;
413 
414 	switch (cmd) {
415 	case DMA_BUF_IOCTL_SYNC:
416 		if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
417 			return -EFAULT;
418 
419 		if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
420 			return -EINVAL;
421 
422 		switch (sync.flags & DMA_BUF_SYNC_RW) {
423 		case DMA_BUF_SYNC_READ:
424 			direction = DMA_FROM_DEVICE;
425 			break;
426 		case DMA_BUF_SYNC_WRITE:
427 			direction = DMA_TO_DEVICE;
428 			break;
429 		case DMA_BUF_SYNC_RW:
430 			direction = DMA_BIDIRECTIONAL;
431 			break;
432 		default:
433 			return -EINVAL;
434 		}
435 
436 		if (sync.flags & DMA_BUF_SYNC_END)
437 			ret = dma_buf_end_cpu_access(dmabuf, direction);
438 		else
439 			ret = dma_buf_begin_cpu_access(dmabuf, direction);
440 
441 		return ret;
442 
443 	case DMA_BUF_SET_NAME_A:
444 	case DMA_BUF_SET_NAME_B:
445 		return dma_buf_set_name_user(dmabuf, (const char __user *)arg);
446 
447 	default:
448 		return -ENOTTY;
449 	}
450 }
451 
dma_buf_show_fdinfo(struct seq_file * m,struct file * file)452 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
453 {
454 	struct dma_buf *dmabuf = file->private_data;
455 
456 	seq_printf(m, "size:\t%zu\n", dmabuf->size);
457 	/* Don't count the temporary reference taken inside procfs seq_show */
458 	seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
459 	seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
460 	spin_lock(&dmabuf->name_lock);
461 	if (dmabuf->name)
462 		seq_printf(m, "name:\t%s\n", dmabuf->name);
463 	spin_unlock(&dmabuf->name_lock);
464 }
465 
466 static const struct file_operations dma_buf_fops = {
467 	.release	= dma_buf_file_release,
468 	.mmap		= dma_buf_mmap_internal,
469 	.llseek		= dma_buf_llseek,
470 	.poll		= dma_buf_poll,
471 	.unlocked_ioctl	= dma_buf_ioctl,
472 	.compat_ioctl	= compat_ptr_ioctl,
473 	.show_fdinfo	= dma_buf_show_fdinfo,
474 };
475 
476 /*
477  * is_dma_buf_file - Check if struct file* is associated with dma_buf
478  */
is_dma_buf_file(struct file * file)479 int is_dma_buf_file(struct file *file)
480 {
481 	return file->f_op == &dma_buf_fops;
482 }
483 EXPORT_SYMBOL_NS_GPL(is_dma_buf_file, MINIDUMP);
484 
dma_buf_getfile(struct dma_buf * dmabuf,int flags)485 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags)
486 {
487 	static atomic64_t dmabuf_inode = ATOMIC64_INIT(0);
488 	struct file *file;
489 	struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
490 
491 	if (IS_ERR(inode))
492 		return ERR_CAST(inode);
493 
494 	inode->i_size = dmabuf->size;
495 	inode_set_bytes(inode, dmabuf->size);
496 
497 	/*
498 	 * The ->i_ino acquired from get_next_ino() is not unique thus
499 	 * not suitable for using it as dentry name by dmabuf stats.
500 	 * Override ->i_ino with the unique and dmabuffs specific
501 	 * value.
502 	 */
503 	inode->i_ino = atomic64_add_return(1, &dmabuf_inode);
504 	file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
505 				 flags, &dma_buf_fops);
506 	if (IS_ERR(file))
507 		goto err_alloc_file;
508 	file->f_flags = flags & (O_ACCMODE | O_NONBLOCK);
509 	file->private_data = dmabuf;
510 	file->f_path.dentry->d_fsdata = dmabuf;
511 
512 	return file;
513 
514 err_alloc_file:
515 	iput(inode);
516 	return file;
517 }
518 
519 /**
520  * DOC: dma buf device access
521  *
522  * For device DMA access to a shared DMA buffer the usual sequence of operations
523  * is fairly simple:
524  *
525  * 1. The exporter defines his exporter instance using
526  *    DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
527  *    buffer object into a &dma_buf. It then exports that &dma_buf to userspace
528  *    as a file descriptor by calling dma_buf_fd().
529  *
530  * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
531  *    to share with: First the filedescriptor is converted to a &dma_buf using
532  *    dma_buf_get(). Then the buffer is attached to the device using
533  *    dma_buf_attach().
534  *
535  *    Up to this stage the exporter is still free to migrate or reallocate the
536  *    backing storage.
537  *
538  * 3. Once the buffer is attached to all devices userspace can initiate DMA
539  *    access to the shared buffer. In the kernel this is done by calling
540  *    dma_buf_map_attachment() and dma_buf_unmap_attachment().
541  *
542  * 4. Once a driver is done with a shared buffer it needs to call
543  *    dma_buf_detach() (after cleaning up any mappings) and then release the
544  *    reference acquired with dma_buf_get() by calling dma_buf_put().
545  *
546  * For the detailed semantics exporters are expected to implement see
547  * &dma_buf_ops.
548  */
549 
550 /**
551  * dma_buf_export - Creates a new dma_buf, and associates an anon file
552  * with this buffer, so it can be exported.
553  * Also connect the allocator specific data and ops to the buffer.
554  * Additionally, provide a name string for exporter; useful in debugging.
555  *
556  * @exp_info:	[in]	holds all the export related information provided
557  *			by the exporter. see &struct dma_buf_export_info
558  *			for further details.
559  *
560  * Returns, on success, a newly created struct dma_buf object, which wraps the
561  * supplied private data and operations for struct dma_buf_ops. On either
562  * missing ops, or error in allocating struct dma_buf, will return negative
563  * error.
564  *
565  * For most cases the easiest way to create @exp_info is through the
566  * %DEFINE_DMA_BUF_EXPORT_INFO macro.
567  */
dma_buf_export(const struct dma_buf_export_info * exp_info)568 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
569 {
570 	struct dma_buf *dmabuf;
571 	struct dma_resv *resv = exp_info->resv;
572 	struct file *file;
573 	size_t alloc_size = sizeof(struct dma_buf);
574 	int ret;
575 
576 	if (!exp_info->resv)
577 		alloc_size += sizeof(struct dma_resv);
578 	else
579 		/* prevent &dma_buf[1] == dma_buf->resv */
580 		alloc_size += 1;
581 
582 	if (WARN_ON(!exp_info->priv
583 			  || !exp_info->ops
584 			  || !exp_info->ops->map_dma_buf
585 			  || !exp_info->ops->unmap_dma_buf
586 			  || !exp_info->ops->release)) {
587 		return ERR_PTR(-EINVAL);
588 	}
589 
590 	if (WARN_ON(exp_info->ops->cache_sgt_mapping &&
591 		    (exp_info->ops->pin || exp_info->ops->unpin)))
592 		return ERR_PTR(-EINVAL);
593 
594 	if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin))
595 		return ERR_PTR(-EINVAL);
596 
597 	if (!try_module_get(exp_info->owner))
598 		return ERR_PTR(-ENOENT);
599 
600 	dmabuf = kzalloc(alloc_size, GFP_KERNEL);
601 	if (!dmabuf) {
602 		ret = -ENOMEM;
603 		goto err_module;
604 	}
605 
606 	dmabuf->priv = exp_info->priv;
607 	dmabuf->ops = exp_info->ops;
608 	dmabuf->size = exp_info->size;
609 	dmabuf->exp_name = exp_info->exp_name;
610 	dmabuf->owner = exp_info->owner;
611 	spin_lock_init(&dmabuf->name_lock);
612 	init_waitqueue_head(&dmabuf->poll);
613 	dmabuf->cb_in.poll = dmabuf->cb_out.poll = &dmabuf->poll;
614 	dmabuf->cb_in.active = dmabuf->cb_out.active = 0;
615 
616 	if (!resv) {
617 		resv = (struct dma_resv *)&dmabuf[1];
618 		dma_resv_init(resv);
619 	}
620 	dmabuf->resv = resv;
621 
622 	file = dma_buf_getfile(dmabuf, exp_info->flags);
623 	if (IS_ERR(file)) {
624 		ret = PTR_ERR(file);
625 		goto err_dmabuf;
626 	}
627 
628 	file->f_mode |= FMODE_LSEEK;
629 	dmabuf->file = file;
630 
631 	mutex_init(&dmabuf->lock);
632 	INIT_LIST_HEAD(&dmabuf->attachments);
633 
634 	mutex_lock(&db_list.lock);
635 	list_add(&dmabuf->list_node, &db_list.head);
636 	mutex_unlock(&db_list.lock);
637 
638 	ret = dma_buf_stats_setup(dmabuf);
639 	if (ret)
640 		goto err_sysfs;
641 
642 	return dmabuf;
643 
644 err_sysfs:
645 	/*
646 	 * Set file->f_path.dentry->d_fsdata to NULL so that when
647 	 * dma_buf_release() gets invoked by dentry_ops, it exits
648 	 * early before calling the release() dma_buf op.
649 	 */
650 	file->f_path.dentry->d_fsdata = NULL;
651 	fput(file);
652 err_dmabuf:
653 	kfree(dmabuf);
654 err_module:
655 	module_put(exp_info->owner);
656 	return ERR_PTR(ret);
657 }
658 EXPORT_SYMBOL_GPL(dma_buf_export);
659 
660 /**
661  * dma_buf_fd - returns a file descriptor for the given struct dma_buf
662  * @dmabuf:	[in]	pointer to dma_buf for which fd is required.
663  * @flags:      [in]    flags to give to fd
664  *
665  * On success, returns an associated 'fd'. Else, returns error.
666  */
dma_buf_fd(struct dma_buf * dmabuf,int flags)667 int dma_buf_fd(struct dma_buf *dmabuf, int flags)
668 {
669 	int fd;
670 
671 	if (!dmabuf || !dmabuf->file)
672 		return -EINVAL;
673 
674 	fd = get_unused_fd_flags(flags);
675 	if (fd < 0)
676 		return fd;
677 
678 	fd_install(fd, dmabuf->file);
679 
680 	return fd;
681 }
682 EXPORT_SYMBOL_GPL(dma_buf_fd);
683 
684 /**
685  * dma_buf_get - returns the struct dma_buf related to an fd
686  * @fd:	[in]	fd associated with the struct dma_buf to be returned
687  *
688  * On success, returns the struct dma_buf associated with an fd; uses
689  * file's refcounting done by fget to increase refcount. returns ERR_PTR
690  * otherwise.
691  */
dma_buf_get(int fd)692 struct dma_buf *dma_buf_get(int fd)
693 {
694 	struct file *file;
695 
696 	file = fget(fd);
697 
698 	if (!file)
699 		return ERR_PTR(-EBADF);
700 
701 	if (!is_dma_buf_file(file)) {
702 		fput(file);
703 		return ERR_PTR(-EINVAL);
704 	}
705 
706 	return file->private_data;
707 }
708 EXPORT_SYMBOL_GPL(dma_buf_get);
709 
710 /**
711  * dma_buf_put - decreases refcount of the buffer
712  * @dmabuf:	[in]	buffer to reduce refcount of
713  *
714  * Uses file's refcounting done implicitly by fput().
715  *
716  * If, as a result of this call, the refcount becomes 0, the 'release' file
717  * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
718  * in turn, and frees the memory allocated for dmabuf when exported.
719  */
dma_buf_put(struct dma_buf * dmabuf)720 void dma_buf_put(struct dma_buf *dmabuf)
721 {
722 	if (WARN_ON(!dmabuf || !dmabuf->file))
723 		return;
724 
725 	fput(dmabuf->file);
726 }
727 EXPORT_SYMBOL_GPL(dma_buf_put);
728 
mangle_sg_table(struct sg_table * sg_table)729 static void mangle_sg_table(struct sg_table *sg_table)
730 {
731 #ifdef CONFIG_DMABUF_DEBUG
732 	int i;
733 	struct scatterlist *sg;
734 
735 	/* To catch abuse of the underlying struct page by importers mix
736 	 * up the bits, but take care to preserve the low SG_ bits to
737 	 * not corrupt the sgt. The mixing is undone in __unmap_dma_buf
738 	 * before passing the sgt back to the exporter. */
739 	for_each_sgtable_sg(sg_table, sg, i)
740 		sg->page_link ^= ~0xffUL;
741 #endif
742 
743 }
__map_dma_buf(struct dma_buf_attachment * attach,enum dma_data_direction direction)744 static struct sg_table * __map_dma_buf(struct dma_buf_attachment *attach,
745 				       enum dma_data_direction direction)
746 {
747 	struct sg_table *sg_table;
748 
749 	sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
750 
751 	if (!IS_ERR_OR_NULL(sg_table))
752 		mangle_sg_table(sg_table);
753 
754 	return sg_table;
755 }
756 
757 /**
758  * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list
759  * @dmabuf:		[in]	buffer to attach device to.
760  * @dev:		[in]	device to be attached.
761  * @importer_ops:	[in]	importer operations for the attachment
762  * @importer_priv:	[in]	importer private pointer for the attachment
763  *
764  * Returns struct dma_buf_attachment pointer for this attachment. Attachments
765  * must be cleaned up by calling dma_buf_detach().
766  *
767  * Optionally this calls &dma_buf_ops.attach to allow device-specific attach
768  * functionality.
769  *
770  * Returns:
771  *
772  * A pointer to newly created &dma_buf_attachment on success, or a negative
773  * error code wrapped into a pointer on failure.
774  *
775  * Note that this can fail if the backing storage of @dmabuf is in a place not
776  * accessible to @dev, and cannot be moved to a more suitable place. This is
777  * indicated with the error code -EBUSY.
778  */
779 struct dma_buf_attachment *
dma_buf_dynamic_attach(struct dma_buf * dmabuf,struct device * dev,const struct dma_buf_attach_ops * importer_ops,void * importer_priv)780 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
781 		       const struct dma_buf_attach_ops *importer_ops,
782 		       void *importer_priv)
783 {
784 	struct dma_buf_attachment *attach;
785 	int ret;
786 
787 	if (WARN_ON(!dmabuf || !dev))
788 		return ERR_PTR(-EINVAL);
789 
790 	if (WARN_ON(importer_ops && !importer_ops->move_notify))
791 		return ERR_PTR(-EINVAL);
792 
793 	attach = kzalloc(sizeof(*attach), GFP_KERNEL);
794 	if (!attach)
795 		return ERR_PTR(-ENOMEM);
796 
797 	attach->dev = dev;
798 	attach->dmabuf = dmabuf;
799 	if (importer_ops)
800 		attach->peer2peer = importer_ops->allow_peer2peer;
801 	attach->importer_ops = importer_ops;
802 	attach->importer_priv = importer_priv;
803 
804 	if (dmabuf->ops->attach) {
805 		ret = dmabuf->ops->attach(dmabuf, attach);
806 		if (ret)
807 			goto err_attach;
808 	}
809 	dma_resv_lock(dmabuf->resv, NULL);
810 	list_add(&attach->node, &dmabuf->attachments);
811 	dma_resv_unlock(dmabuf->resv);
812 
813 	/* When either the importer or the exporter can't handle dynamic
814 	 * mappings we cache the mapping here to avoid issues with the
815 	 * reservation object lock.
816 	 */
817 	if (dma_buf_attachment_is_dynamic(attach) !=
818 	    dma_buf_is_dynamic(dmabuf)) {
819 		struct sg_table *sgt;
820 
821 		if (dma_buf_is_dynamic(attach->dmabuf)) {
822 			dma_resv_lock(attach->dmabuf->resv, NULL);
823 			ret = dmabuf->ops->pin(attach);
824 			if (ret)
825 				goto err_unlock;
826 		}
827 
828 		sgt = __map_dma_buf(attach, DMA_BIDIRECTIONAL);
829 		if (!sgt)
830 			sgt = ERR_PTR(-ENOMEM);
831 		if (IS_ERR(sgt)) {
832 			ret = PTR_ERR(sgt);
833 			goto err_unpin;
834 		}
835 		if (dma_buf_is_dynamic(attach->dmabuf))
836 			dma_resv_unlock(attach->dmabuf->resv);
837 		attach->sgt = sgt;
838 		attach->dir = DMA_BIDIRECTIONAL;
839 	}
840 
841 	return attach;
842 
843 err_attach:
844 	kfree(attach);
845 	return ERR_PTR(ret);
846 
847 err_unpin:
848 	if (dma_buf_is_dynamic(attach->dmabuf))
849 		dmabuf->ops->unpin(attach);
850 
851 err_unlock:
852 	if (dma_buf_is_dynamic(attach->dmabuf))
853 		dma_resv_unlock(attach->dmabuf->resv);
854 
855 	dma_buf_detach(dmabuf, attach);
856 	return ERR_PTR(ret);
857 }
858 EXPORT_SYMBOL_GPL(dma_buf_dynamic_attach);
859 
860 /**
861  * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
862  * @dmabuf:	[in]	buffer to attach device to.
863  * @dev:	[in]	device to be attached.
864  *
865  * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
866  * mapping.
867  */
dma_buf_attach(struct dma_buf * dmabuf,struct device * dev)868 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
869 					  struct device *dev)
870 {
871 	return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL);
872 }
873 EXPORT_SYMBOL_GPL(dma_buf_attach);
874 
__unmap_dma_buf(struct dma_buf_attachment * attach,struct sg_table * sg_table,enum dma_data_direction direction)875 static void __unmap_dma_buf(struct dma_buf_attachment *attach,
876 			    struct sg_table *sg_table,
877 			    enum dma_data_direction direction)
878 {
879 	/* uses XOR, hence this unmangles */
880 	mangle_sg_table(sg_table);
881 
882 	attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
883 }
884 
885 /**
886  * dma_buf_detach - Remove the given attachment from dmabuf's attachments list
887  * @dmabuf:	[in]	buffer to detach from.
888  * @attach:	[in]	attachment to be detached; is free'd after this call.
889  *
890  * Clean up a device attachment obtained by calling dma_buf_attach().
891  *
892  * Optionally this calls &dma_buf_ops.detach for device-specific detach.
893  */
dma_buf_detach(struct dma_buf * dmabuf,struct dma_buf_attachment * attach)894 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
895 {
896 	if (WARN_ON(!dmabuf || !attach))
897 		return;
898 
899 	if (attach->sgt) {
900 		if (dma_buf_is_dynamic(attach->dmabuf))
901 			dma_resv_lock(attach->dmabuf->resv, NULL);
902 
903 		__unmap_dma_buf(attach, attach->sgt, attach->dir);
904 
905 		if (dma_buf_is_dynamic(attach->dmabuf)) {
906 			dmabuf->ops->unpin(attach);
907 			dma_resv_unlock(attach->dmabuf->resv);
908 		}
909 	}
910 
911 	dma_resv_lock(dmabuf->resv, NULL);
912 	list_del(&attach->node);
913 	dma_resv_unlock(dmabuf->resv);
914 	if (dmabuf->ops->detach)
915 		dmabuf->ops->detach(dmabuf, attach);
916 
917 	kfree(attach);
918 }
919 EXPORT_SYMBOL_GPL(dma_buf_detach);
920 
921 /**
922  * dma_buf_pin - Lock down the DMA-buf
923  * @attach:	[in]	attachment which should be pinned
924  *
925  * Only dynamic importers (who set up @attach with dma_buf_dynamic_attach()) may
926  * call this, and only for limited use cases like scanout and not for temporary
927  * pin operations. It is not permitted to allow userspace to pin arbitrary
928  * amounts of buffers through this interface.
929  *
930  * Buffers must be unpinned by calling dma_buf_unpin().
931  *
932  * Returns:
933  * 0 on success, negative error code on failure.
934  */
dma_buf_pin(struct dma_buf_attachment * attach)935 int dma_buf_pin(struct dma_buf_attachment *attach)
936 {
937 	struct dma_buf *dmabuf = attach->dmabuf;
938 	int ret = 0;
939 
940 	WARN_ON(!dma_buf_attachment_is_dynamic(attach));
941 
942 	dma_resv_assert_held(dmabuf->resv);
943 
944 	if (dmabuf->ops->pin)
945 		ret = dmabuf->ops->pin(attach);
946 
947 	return ret;
948 }
949 EXPORT_SYMBOL_GPL(dma_buf_pin);
950 
951 /**
952  * dma_buf_unpin - Unpin a DMA-buf
953  * @attach:	[in]	attachment which should be unpinned
954  *
955  * This unpins a buffer pinned by dma_buf_pin() and allows the exporter to move
956  * any mapping of @attach again and inform the importer through
957  * &dma_buf_attach_ops.move_notify.
958  */
dma_buf_unpin(struct dma_buf_attachment * attach)959 void dma_buf_unpin(struct dma_buf_attachment *attach)
960 {
961 	struct dma_buf *dmabuf = attach->dmabuf;
962 
963 	WARN_ON(!dma_buf_attachment_is_dynamic(attach));
964 
965 	dma_resv_assert_held(dmabuf->resv);
966 
967 	if (dmabuf->ops->unpin)
968 		dmabuf->ops->unpin(attach);
969 }
970 EXPORT_SYMBOL_GPL(dma_buf_unpin);
971 
972 /**
973  * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
974  * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
975  * dma_buf_ops.
976  * @attach:	[in]	attachment whose scatterlist is to be returned
977  * @direction:	[in]	direction of DMA transfer
978  *
979  * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
980  * on error. May return -EINTR if it is interrupted by a signal.
981  *
982  * On success, the DMA addresses and lengths in the returned scatterlist are
983  * PAGE_SIZE aligned.
984  *
985  * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
986  * the underlying backing storage is pinned for as long as a mapping exists,
987  * therefore users/importers should not hold onto a mapping for undue amounts of
988  * time.
989  *
990  * Important: Dynamic importers must wait for the exclusive fence of the struct
991  * dma_resv attached to the DMA-BUF first.
992  */
dma_buf_map_attachment(struct dma_buf_attachment * attach,enum dma_data_direction direction)993 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
994 					enum dma_data_direction direction)
995 {
996 	struct sg_table *sg_table;
997 	int r;
998 
999 	might_sleep();
1000 
1001 	if (WARN_ON(!attach || !attach->dmabuf))
1002 		return ERR_PTR(-EINVAL);
1003 
1004 	if (dma_buf_attachment_is_dynamic(attach))
1005 		dma_resv_assert_held(attach->dmabuf->resv);
1006 
1007 	if (attach->sgt) {
1008 		/*
1009 		 * Two mappings with different directions for the same
1010 		 * attachment are not allowed.
1011 		 */
1012 		if (attach->dir != direction &&
1013 		    attach->dir != DMA_BIDIRECTIONAL)
1014 			return ERR_PTR(-EBUSY);
1015 
1016 		return attach->sgt;
1017 	}
1018 
1019 	if (dma_buf_is_dynamic(attach->dmabuf)) {
1020 		dma_resv_assert_held(attach->dmabuf->resv);
1021 		if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) {
1022 			r = attach->dmabuf->ops->pin(attach);
1023 			if (r)
1024 				return ERR_PTR(r);
1025 		}
1026 	}
1027 
1028 	sg_table = __map_dma_buf(attach, direction);
1029 	if (!sg_table)
1030 		sg_table = ERR_PTR(-ENOMEM);
1031 
1032 	if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) &&
1033 	     !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
1034 		attach->dmabuf->ops->unpin(attach);
1035 
1036 	if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
1037 		attach->sgt = sg_table;
1038 		attach->dir = direction;
1039 	}
1040 
1041 #ifdef CONFIG_DMA_API_DEBUG
1042 	if (!IS_ERR(sg_table)) {
1043 		struct scatterlist *sg;
1044 		u64 addr;
1045 		int len;
1046 		int i;
1047 
1048 		for_each_sgtable_dma_sg(sg_table, sg, i) {
1049 			addr = sg_dma_address(sg);
1050 			len = sg_dma_len(sg);
1051 			if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(len)) {
1052 				pr_debug("%s: addr %llx or len %x is not page aligned!\n",
1053 					 __func__, addr, len);
1054 			}
1055 		}
1056 	}
1057 #endif /* CONFIG_DMA_API_DEBUG */
1058 	return sg_table;
1059 }
1060 EXPORT_SYMBOL_GPL(dma_buf_map_attachment);
1061 
1062 /**
1063  * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
1064  * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
1065  * dma_buf_ops.
1066  * @attach:	[in]	attachment to unmap buffer from
1067  * @sg_table:	[in]	scatterlist info of the buffer to unmap
1068  * @direction:  [in]    direction of DMA transfer
1069  *
1070  * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
1071  */
dma_buf_unmap_attachment(struct dma_buf_attachment * attach,struct sg_table * sg_table,enum dma_data_direction direction)1072 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
1073 				struct sg_table *sg_table,
1074 				enum dma_data_direction direction)
1075 {
1076 	might_sleep();
1077 
1078 	if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
1079 		return;
1080 
1081 	if (dma_buf_attachment_is_dynamic(attach))
1082 		dma_resv_assert_held(attach->dmabuf->resv);
1083 
1084 	if (attach->sgt == sg_table)
1085 		return;
1086 
1087 	if (dma_buf_is_dynamic(attach->dmabuf))
1088 		dma_resv_assert_held(attach->dmabuf->resv);
1089 
1090 	__unmap_dma_buf(attach, sg_table, direction);
1091 
1092 	if (dma_buf_is_dynamic(attach->dmabuf) &&
1093 	    !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
1094 		dma_buf_unpin(attach);
1095 }
1096 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment);
1097 
1098 /**
1099  * dma_buf_move_notify - notify attachments that DMA-buf is moving
1100  *
1101  * @dmabuf:	[in]	buffer which is moving
1102  *
1103  * Informs all attachmenst that they need to destroy and recreated all their
1104  * mappings.
1105  */
dma_buf_move_notify(struct dma_buf * dmabuf)1106 void dma_buf_move_notify(struct dma_buf *dmabuf)
1107 {
1108 	struct dma_buf_attachment *attach;
1109 
1110 	dma_resv_assert_held(dmabuf->resv);
1111 
1112 	list_for_each_entry(attach, &dmabuf->attachments, node)
1113 		if (attach->importer_ops)
1114 			attach->importer_ops->move_notify(attach);
1115 }
1116 EXPORT_SYMBOL_GPL(dma_buf_move_notify);
1117 
1118 /**
1119  * DOC: cpu access
1120  *
1121  * There are mutliple reasons for supporting CPU access to a dma buffer object:
1122  *
1123  * - Fallback operations in the kernel, for example when a device is connected
1124  *   over USB and the kernel needs to shuffle the data around first before
1125  *   sending it away. Cache coherency is handled by braketing any transactions
1126  *   with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
1127  *   access.
1128  *
1129  *   Since for most kernel internal dma-buf accesses need the entire buffer, a
1130  *   vmap interface is introduced. Note that on very old 32-bit architectures
1131  *   vmalloc space might be limited and result in vmap calls failing.
1132  *
1133  *   Interfaces::
1134  *
1135  *      void \*dma_buf_vmap(struct dma_buf \*dmabuf)
1136  *      void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
1137  *
1138  *   The vmap call can fail if there is no vmap support in the exporter, or if
1139  *   it runs out of vmalloc space. Note that the dma-buf layer keeps a reference
1140  *   count for all vmap access and calls down into the exporter's vmap function
1141  *   only when no vmapping exists, and only unmaps it once. Protection against
1142  *   concurrent vmap/vunmap calls is provided by taking the &dma_buf.lock mutex.
1143  *
1144  * - For full compatibility on the importer side with existing userspace
1145  *   interfaces, which might already support mmap'ing buffers. This is needed in
1146  *   many processing pipelines (e.g. feeding a software rendered image into a
1147  *   hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
1148  *   framework already supported this and for DMA buffer file descriptors to
1149  *   replace ION buffers mmap support was needed.
1150  *
1151  *   There is no special interfaces, userspace simply calls mmap on the dma-buf
1152  *   fd. But like for CPU access there's a need to braket the actual access,
1153  *   which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
1154  *   DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
1155  *   be restarted.
1156  *
1157  *   Some systems might need some sort of cache coherency management e.g. when
1158  *   CPU and GPU domains are being accessed through dma-buf at the same time.
1159  *   To circumvent this problem there are begin/end coherency markers, that
1160  *   forward directly to existing dma-buf device drivers vfunc hooks. Userspace
1161  *   can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
1162  *   sequence would be used like following:
1163  *
1164  *     - mmap dma-buf fd
1165  *     - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
1166  *       to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
1167  *       want (with the new data being consumed by say the GPU or the scanout
1168  *       device)
1169  *     - munmap once you don't need the buffer any more
1170  *
1171  *    For correctness and optimal performance, it is always required to use
1172  *    SYNC_START and SYNC_END before and after, respectively, when accessing the
1173  *    mapped address. Userspace cannot rely on coherent access, even when there
1174  *    are systems where it just works without calling these ioctls.
1175  *
1176  * - And as a CPU fallback in userspace processing pipelines.
1177  *
1178  *   Similar to the motivation for kernel cpu access it is again important that
1179  *   the userspace code of a given importing subsystem can use the same
1180  *   interfaces with a imported dma-buf buffer object as with a native buffer
1181  *   object. This is especially important for drm where the userspace part of
1182  *   contemporary OpenGL, X, and other drivers is huge, and reworking them to
1183  *   use a different way to mmap a buffer rather invasive.
1184  *
1185  *   The assumption in the current dma-buf interfaces is that redirecting the
1186  *   initial mmap is all that's needed. A survey of some of the existing
1187  *   subsystems shows that no driver seems to do any nefarious thing like
1188  *   syncing up with outstanding asynchronous processing on the device or
1189  *   allocating special resources at fault time. So hopefully this is good
1190  *   enough, since adding interfaces to intercept pagefaults and allow pte
1191  *   shootdowns would increase the complexity quite a bit.
1192  *
1193  *   Interface::
1194  *
1195  *      int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
1196  *		       unsigned long);
1197  *
1198  *   If the importing subsystem simply provides a special-purpose mmap call to
1199  *   set up a mapping in userspace, calling do_mmap with &dma_buf.file will
1200  *   equally achieve that for a dma-buf object.
1201  */
1202 
__dma_buf_begin_cpu_access(struct dma_buf * dmabuf,enum dma_data_direction direction)1203 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1204 				      enum dma_data_direction direction)
1205 {
1206 	bool write = (direction == DMA_BIDIRECTIONAL ||
1207 		      direction == DMA_TO_DEVICE);
1208 	struct dma_resv *resv = dmabuf->resv;
1209 	long ret;
1210 
1211 	/* Wait on any implicit rendering fences */
1212 	ret = dma_resv_wait_timeout(resv, write, true, MAX_SCHEDULE_TIMEOUT);
1213 	if (ret < 0)
1214 		return ret;
1215 
1216 	return 0;
1217 }
1218 
1219 /**
1220  * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
1221  * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
1222  * preparations. Coherency is only guaranteed in the specified range for the
1223  * specified access direction.
1224  * @dmabuf:	[in]	buffer to prepare cpu access for.
1225  * @direction:	[in]	length of range for cpu access.
1226  *
1227  * After the cpu access is complete the caller should call
1228  * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
1229  * it guaranteed to be coherent with other DMA access.
1230  *
1231  * This function will also wait for any DMA transactions tracked through
1232  * implicit synchronization in &dma_buf.resv. For DMA transactions with explicit
1233  * synchronization this function will only ensure cache coherency, callers must
1234  * ensure synchronization with such DMA transactions on their own.
1235  *
1236  * Can return negative error values, returns 0 on success.
1237  */
dma_buf_begin_cpu_access(struct dma_buf * dmabuf,enum dma_data_direction direction)1238 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1239 			     enum dma_data_direction direction)
1240 {
1241 	int ret = 0;
1242 
1243 	if (WARN_ON(!dmabuf))
1244 		return -EINVAL;
1245 
1246 	might_lock(&dmabuf->resv->lock.base);
1247 
1248 	if (dmabuf->ops->begin_cpu_access)
1249 		ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
1250 
1251 	/* Ensure that all fences are waited upon - but we first allow
1252 	 * the native handler the chance to do so more efficiently if it
1253 	 * chooses. A double invocation here will be reasonably cheap no-op.
1254 	 */
1255 	if (ret == 0)
1256 		ret = __dma_buf_begin_cpu_access(dmabuf, direction);
1257 
1258 	return ret;
1259 }
1260 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access);
1261 
dma_buf_begin_cpu_access_partial(struct dma_buf * dmabuf,enum dma_data_direction direction,unsigned int offset,unsigned int len)1262 int dma_buf_begin_cpu_access_partial(struct dma_buf *dmabuf,
1263 				     enum dma_data_direction direction,
1264 				     unsigned int offset, unsigned int len)
1265 {
1266 	int ret = 0;
1267 
1268 	if (WARN_ON(!dmabuf))
1269 		return -EINVAL;
1270 
1271 	if (dmabuf->ops->begin_cpu_access_partial)
1272 		ret = dmabuf->ops->begin_cpu_access_partial(dmabuf, direction,
1273 							    offset, len);
1274 
1275 	/* Ensure that all fences are waited upon - but we first allow
1276 	 * the native handler the chance to do so more efficiently if it
1277 	 * chooses. A double invocation here will be reasonably cheap no-op.
1278 	 */
1279 	if (ret == 0)
1280 		ret = __dma_buf_begin_cpu_access(dmabuf, direction);
1281 
1282 	return ret;
1283 }
1284 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access_partial);
1285 
1286 /**
1287  * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1288  * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1289  * actions. Coherency is only guaranteed in the specified range for the
1290  * specified access direction.
1291  * @dmabuf:	[in]	buffer to complete cpu access for.
1292  * @direction:	[in]	length of range for cpu access.
1293  *
1294  * This terminates CPU access started with dma_buf_begin_cpu_access().
1295  *
1296  * Can return negative error values, returns 0 on success.
1297  */
dma_buf_end_cpu_access(struct dma_buf * dmabuf,enum dma_data_direction direction)1298 int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
1299 			   enum dma_data_direction direction)
1300 {
1301 	int ret = 0;
1302 
1303 	WARN_ON(!dmabuf);
1304 
1305 	might_lock(&dmabuf->resv->lock.base);
1306 
1307 	if (dmabuf->ops->end_cpu_access)
1308 		ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
1309 
1310 	return ret;
1311 }
1312 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access);
1313 
dma_buf_end_cpu_access_partial(struct dma_buf * dmabuf,enum dma_data_direction direction,unsigned int offset,unsigned int len)1314 int dma_buf_end_cpu_access_partial(struct dma_buf *dmabuf,
1315 				   enum dma_data_direction direction,
1316 				   unsigned int offset, unsigned int len)
1317 {
1318 	int ret = 0;
1319 
1320 	WARN_ON(!dmabuf);
1321 
1322 	if (dmabuf->ops->end_cpu_access_partial)
1323 		ret = dmabuf->ops->end_cpu_access_partial(dmabuf, direction,
1324 							  offset, len);
1325 
1326 	return ret;
1327 }
1328 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access_partial);
1329 
1330 /**
1331  * dma_buf_mmap - Setup up a userspace mmap with the given vma
1332  * @dmabuf:	[in]	buffer that should back the vma
1333  * @vma:	[in]	vma for the mmap
1334  * @pgoff:	[in]	offset in pages where this mmap should start within the
1335  *			dma-buf buffer.
1336  *
1337  * This function adjusts the passed in vma so that it points at the file of the
1338  * dma_buf operation. It also adjusts the starting pgoff and does bounds
1339  * checking on the size of the vma. Then it calls the exporters mmap function to
1340  * set up the mapping.
1341  *
1342  * Can return negative error values, returns 0 on success.
1343  */
dma_buf_mmap(struct dma_buf * dmabuf,struct vm_area_struct * vma,unsigned long pgoff)1344 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1345 		 unsigned long pgoff)
1346 {
1347 	if (WARN_ON(!dmabuf || !vma))
1348 		return -EINVAL;
1349 
1350 	/* check if buffer supports mmap */
1351 	if (!dmabuf->ops->mmap)
1352 		return -EINVAL;
1353 
1354 	/* check for offset overflow */
1355 	if (pgoff + vma_pages(vma) < pgoff)
1356 		return -EOVERFLOW;
1357 
1358 	/* check for overflowing the buffer's size */
1359 	if (pgoff + vma_pages(vma) >
1360 	    dmabuf->size >> PAGE_SHIFT)
1361 		return -EINVAL;
1362 
1363 	/* readjust the vma */
1364 	vma_set_file(vma, dmabuf->file);
1365 	vma->vm_pgoff = pgoff;
1366 
1367 	return dmabuf->ops->mmap(dmabuf, vma);
1368 }
1369 EXPORT_SYMBOL_GPL(dma_buf_mmap);
1370 
1371 /**
1372  * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1373  * address space. Same restrictions as for vmap and friends apply.
1374  * @dmabuf:	[in]	buffer to vmap
1375  * @map:	[out]	returns the vmap pointer
1376  *
1377  * This call may fail due to lack of virtual mapping address space.
1378  * These calls are optional in drivers. The intended use for them
1379  * is for mapping objects linear in kernel space for high use objects.
1380  *
1381  * To ensure coherency users must call dma_buf_begin_cpu_access() and
1382  * dma_buf_end_cpu_access() around any cpu access performed through this
1383  * mapping.
1384  *
1385  * Returns 0 on success, or a negative errno code otherwise.
1386  */
dma_buf_vmap(struct dma_buf * dmabuf,struct dma_buf_map * map)1387 int dma_buf_vmap(struct dma_buf *dmabuf, struct dma_buf_map *map)
1388 {
1389 	struct dma_buf_map ptr;
1390 	int ret = 0;
1391 
1392 	dma_buf_map_clear(map);
1393 
1394 	if (WARN_ON(!dmabuf))
1395 		return -EINVAL;
1396 
1397 	if (!dmabuf->ops->vmap)
1398 		return -EINVAL;
1399 
1400 	mutex_lock(&dmabuf->lock);
1401 	if (dmabuf->vmapping_counter) {
1402 		dmabuf->vmapping_counter++;
1403 		BUG_ON(dma_buf_map_is_null(&dmabuf->vmap_ptr));
1404 		*map = dmabuf->vmap_ptr;
1405 		goto out_unlock;
1406 	}
1407 
1408 	BUG_ON(dma_buf_map_is_set(&dmabuf->vmap_ptr));
1409 
1410 	ret = dmabuf->ops->vmap(dmabuf, &ptr);
1411 	if (WARN_ON_ONCE(ret))
1412 		goto out_unlock;
1413 
1414 	dmabuf->vmap_ptr = ptr;
1415 	dmabuf->vmapping_counter = 1;
1416 
1417 	*map = dmabuf->vmap_ptr;
1418 
1419 out_unlock:
1420 	mutex_unlock(&dmabuf->lock);
1421 	return ret;
1422 }
1423 EXPORT_SYMBOL_GPL(dma_buf_vmap);
1424 
1425 /**
1426  * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1427  * @dmabuf:	[in]	buffer to vunmap
1428  * @map:	[in]	vmap pointer to vunmap
1429  */
dma_buf_vunmap(struct dma_buf * dmabuf,struct dma_buf_map * map)1430 void dma_buf_vunmap(struct dma_buf *dmabuf, struct dma_buf_map *map)
1431 {
1432 	if (WARN_ON(!dmabuf))
1433 		return;
1434 
1435 	BUG_ON(dma_buf_map_is_null(&dmabuf->vmap_ptr));
1436 	BUG_ON(dmabuf->vmapping_counter == 0);
1437 	BUG_ON(!dma_buf_map_is_equal(&dmabuf->vmap_ptr, map));
1438 
1439 	mutex_lock(&dmabuf->lock);
1440 	if (--dmabuf->vmapping_counter == 0) {
1441 		if (dmabuf->ops->vunmap)
1442 			dmabuf->ops->vunmap(dmabuf, map);
1443 		dma_buf_map_clear(&dmabuf->vmap_ptr);
1444 	}
1445 	mutex_unlock(&dmabuf->lock);
1446 }
1447 EXPORT_SYMBOL_GPL(dma_buf_vunmap);
1448 
dma_buf_get_flags(struct dma_buf * dmabuf,unsigned long * flags)1449 int dma_buf_get_flags(struct dma_buf *dmabuf, unsigned long *flags)
1450 {
1451 	int ret = 0;
1452 
1453 	if (WARN_ON(!dmabuf) || !flags)
1454 		return -EINVAL;
1455 
1456 	if (dmabuf->ops->get_flags)
1457 		ret = dmabuf->ops->get_flags(dmabuf, flags);
1458 
1459 	return ret;
1460 }
1461 EXPORT_SYMBOL_GPL(dma_buf_get_flags);
1462 
1463 #ifdef CONFIG_DEBUG_FS
dma_buf_debug_show(struct seq_file * s,void * unused)1464 static int dma_buf_debug_show(struct seq_file *s, void *unused)
1465 {
1466 	struct dma_buf *buf_obj;
1467 	struct dma_buf_attachment *attach_obj;
1468 	struct dma_resv *robj;
1469 	struct dma_resv_list *fobj;
1470 	struct dma_fence *fence;
1471 	int count = 0, attach_count, shared_count, i;
1472 	size_t size = 0;
1473 	int ret;
1474 
1475 	ret = mutex_lock_interruptible(&db_list.lock);
1476 
1477 	if (ret)
1478 		return ret;
1479 
1480 	seq_puts(s, "\nDma-buf Objects:\n");
1481 	seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n",
1482 		   "size", "flags", "mode", "count", "ino");
1483 
1484 	list_for_each_entry(buf_obj, &db_list.head, list_node) {
1485 
1486 		ret = dma_resv_lock_interruptible(buf_obj->resv, NULL);
1487 		if (ret)
1488 			goto error_unlock;
1489 
1490 		spin_lock(&buf_obj->name_lock);
1491 		seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1492 				buf_obj->size,
1493 				buf_obj->file->f_flags, buf_obj->file->f_mode,
1494 				file_count(buf_obj->file),
1495 				buf_obj->exp_name,
1496 				file_inode(buf_obj->file)->i_ino,
1497 				buf_obj->name ?: "");
1498 		spin_unlock(&buf_obj->name_lock);
1499 
1500 		robj = buf_obj->resv;
1501 		fence = dma_resv_excl_fence(robj);
1502 		if (fence)
1503 			seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n",
1504 				   fence->ops->get_driver_name(fence),
1505 				   fence->ops->get_timeline_name(fence),
1506 				   dma_fence_is_signaled(fence) ? "" : "un");
1507 
1508 		fobj = rcu_dereference_protected(robj->fence,
1509 						 dma_resv_held(robj));
1510 		shared_count = fobj ? fobj->shared_count : 0;
1511 		for (i = 0; i < shared_count; i++) {
1512 			fence = rcu_dereference_protected(fobj->shared[i],
1513 							  dma_resv_held(robj));
1514 			seq_printf(s, "\tShared fence: %s %s %ssignalled\n",
1515 				   fence->ops->get_driver_name(fence),
1516 				   fence->ops->get_timeline_name(fence),
1517 				   dma_fence_is_signaled(fence) ? "" : "un");
1518 		}
1519 
1520 		seq_puts(s, "\tAttached Devices:\n");
1521 		attach_count = 0;
1522 
1523 		list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1524 			seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1525 			attach_count++;
1526 		}
1527 		dma_resv_unlock(buf_obj->resv);
1528 
1529 		seq_printf(s, "Total %d devices attached\n\n",
1530 				attach_count);
1531 
1532 		count++;
1533 		size += buf_obj->size;
1534 	}
1535 
1536 	seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1537 
1538 	mutex_unlock(&db_list.lock);
1539 	return 0;
1540 
1541 error_unlock:
1542 	mutex_unlock(&db_list.lock);
1543 	return ret;
1544 }
1545 
1546 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1547 
1548 static struct dentry *dma_buf_debugfs_dir;
1549 
dma_buf_init_debugfs(void)1550 static int dma_buf_init_debugfs(void)
1551 {
1552 	struct dentry *d;
1553 	int err = 0;
1554 
1555 	d = debugfs_create_dir("dma_buf", NULL);
1556 	if (IS_ERR(d))
1557 		return PTR_ERR(d);
1558 
1559 	dma_buf_debugfs_dir = d;
1560 
1561 	d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1562 				NULL, &dma_buf_debug_fops);
1563 	if (IS_ERR(d)) {
1564 		pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1565 		debugfs_remove_recursive(dma_buf_debugfs_dir);
1566 		dma_buf_debugfs_dir = NULL;
1567 		err = PTR_ERR(d);
1568 	}
1569 
1570 	return err;
1571 }
1572 
dma_buf_uninit_debugfs(void)1573 static void dma_buf_uninit_debugfs(void)
1574 {
1575 	debugfs_remove_recursive(dma_buf_debugfs_dir);
1576 }
1577 #else
dma_buf_init_debugfs(void)1578 static inline int dma_buf_init_debugfs(void)
1579 {
1580 	return 0;
1581 }
dma_buf_uninit_debugfs(void)1582 static inline void dma_buf_uninit_debugfs(void)
1583 {
1584 }
1585 #endif
1586 
dma_buf_init(void)1587 static int __init dma_buf_init(void)
1588 {
1589 	int ret;
1590 
1591 	ret = dma_buf_init_sysfs_statistics();
1592 	if (ret)
1593 		return ret;
1594 
1595 	dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1596 	if (IS_ERR(dma_buf_mnt))
1597 		return PTR_ERR(dma_buf_mnt);
1598 
1599 	mutex_init(&db_list.lock);
1600 	INIT_LIST_HEAD(&db_list.head);
1601 	dma_buf_init_debugfs();
1602 	return 0;
1603 }
1604 subsys_initcall(dma_buf_init);
1605 
dma_buf_deinit(void)1606 static void __exit dma_buf_deinit(void)
1607 {
1608 	dma_buf_uninit_debugfs();
1609 	kern_unmount(dma_buf_mnt);
1610 	dma_buf_uninit_sysfs_statistics();
1611 }
1612 __exitcall(dma_buf_deinit);
1613