• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_DMA_MAPPING_H
3 #define _LINUX_DMA_MAPPING_H
4 
5 #include <linux/sizes.h>
6 #include <linux/string.h>
7 #include <linux/device.h>
8 #include <linux/err.h>
9 #include <linux/dma-direction.h>
10 #include <linux/scatterlist.h>
11 #include <linux/bug.h>
12 #include <linux/mem_encrypt.h>
13 
14 /**
15  * List of possible attributes associated with a DMA mapping. The semantics
16  * of each attribute should be defined in Documentation/core-api/dma-attributes.rst.
17  */
18 
19 /*
20  * DMA_ATTR_WEAK_ORDERING: Specifies that reads and writes to the mapping
21  * may be weakly ordered, that is that reads and writes may pass each other.
22  */
23 #define DMA_ATTR_WEAK_ORDERING		(1UL << 1)
24 /*
25  * DMA_ATTR_WRITE_COMBINE: Specifies that writes to the mapping may be
26  * buffered to improve performance.
27  */
28 #define DMA_ATTR_WRITE_COMBINE		(1UL << 2)
29 /*
30  * DMA_ATTR_NO_KERNEL_MAPPING: Lets the platform to avoid creating a kernel
31  * virtual mapping for the allocated buffer.
32  */
33 #define DMA_ATTR_NO_KERNEL_MAPPING	(1UL << 4)
34 /*
35  * DMA_ATTR_SKIP_CPU_SYNC: Allows platform code to skip synchronization of
36  * the CPU cache for the given buffer assuming that it has been already
37  * transferred to 'device' domain.
38  */
39 #define DMA_ATTR_SKIP_CPU_SYNC		(1UL << 5)
40 /*
41  * DMA_ATTR_FORCE_CONTIGUOUS: Forces contiguous allocation of the buffer
42  * in physical memory.
43  */
44 #define DMA_ATTR_FORCE_CONTIGUOUS	(1UL << 6)
45 /*
46  * DMA_ATTR_ALLOC_SINGLE_PAGES: This is a hint to the DMA-mapping subsystem
47  * that it's probably not worth the time to try to allocate memory to in a way
48  * that gives better TLB efficiency.
49  */
50 #define DMA_ATTR_ALLOC_SINGLE_PAGES	(1UL << 7)
51 /*
52  * DMA_ATTR_NO_WARN: This tells the DMA-mapping subsystem to suppress
53  * allocation failure reports (similarly to __GFP_NOWARN).
54  */
55 #define DMA_ATTR_NO_WARN	(1UL << 8)
56 
57 /*
58  * DMA_ATTR_PRIVILEGED: used to indicate that the buffer is fully
59  * accessible at an elevated privilege level (and ideally inaccessible or
60  * at least read-only at lesser-privileged levels).
61  */
62 #define DMA_ATTR_PRIVILEGED		(1UL << 9)
63 
64 /*
65  * DMA_ATTR_SYS_CACHE_ONLY: used to indicate that the buffer should be mapped
66  * with the correct memory attributes so that it can be cached in the system
67  * or last level cache. This is useful for buffers that are being mapped for
68  * devices that are non-coherent, but can use the system cache.
69  */
70 #define DMA_ATTR_SYS_CACHE_ONLY		(1UL << 10)
71 
72 /*
73  * DMA_ATTR_SYS_CACHE_ONLY_NWA: used to indicate that the buffer should be
74  * mapped with the correct memory attributes so that it can be cached in the
75  * system or last level cache, with a no write allocate cache policy. This is
76  * useful for buffers that are being mapped for devices that are non-coherent,
77  * but can use the system cache.
78  */
79 #define DMA_ATTR_SYS_CACHE_ONLY_NWA	(1UL << 11)
80 
81 /*
82  * A dma_addr_t can hold any valid DMA or bus address for the platform.  It can
83  * be given to a device to use as a DMA source or target.  It is specific to a
84  * given device and there may be a translation between the CPU physical address
85  * space and the bus address space.
86  *
87  * DMA_MAPPING_ERROR is the magic error code if a mapping failed.  It should not
88  * be used directly in drivers, but checked for using dma_mapping_error()
89  * instead.
90  */
91 #define DMA_MAPPING_ERROR		(~(dma_addr_t)0)
92 
93 #define DMA_BIT_MASK(n)	(((n) == 64) ? ~0ULL : ((1ULL<<(n))-1))
94 
95 #ifdef CONFIG_DMA_API_DEBUG
96 void debug_dma_mapping_error(struct device *dev, dma_addr_t dma_addr);
97 void debug_dma_map_single(struct device *dev, const void *addr,
98 		unsigned long len);
99 #else
debug_dma_mapping_error(struct device * dev,dma_addr_t dma_addr)100 static inline void debug_dma_mapping_error(struct device *dev,
101 		dma_addr_t dma_addr)
102 {
103 }
debug_dma_map_single(struct device * dev,const void * addr,unsigned long len)104 static inline void debug_dma_map_single(struct device *dev, const void *addr,
105 		unsigned long len)
106 {
107 }
108 #endif /* CONFIG_DMA_API_DEBUG */
109 
110 #ifdef CONFIG_HAS_DMA
dma_mapping_error(struct device * dev,dma_addr_t dma_addr)111 static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
112 {
113 	debug_dma_mapping_error(dev, dma_addr);
114 
115 	if (unlikely(dma_addr == DMA_MAPPING_ERROR))
116 		return -ENOMEM;
117 	return 0;
118 }
119 
120 dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
121 		size_t offset, size_t size, enum dma_data_direction dir,
122 		unsigned long attrs);
123 void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
124 		enum dma_data_direction dir, unsigned long attrs);
125 unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
126 		int nents, enum dma_data_direction dir, unsigned long attrs);
127 void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
128 				      int nents, enum dma_data_direction dir,
129 				      unsigned long attrs);
130 int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
131 		enum dma_data_direction dir, unsigned long attrs);
132 dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
133 		size_t size, enum dma_data_direction dir, unsigned long attrs);
134 void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
135 		enum dma_data_direction dir, unsigned long attrs);
136 void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
137 		enum dma_data_direction dir);
138 void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
139 		size_t size, enum dma_data_direction dir);
140 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
141 		    int nelems, enum dma_data_direction dir);
142 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
143 		       int nelems, enum dma_data_direction dir);
144 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
145 		gfp_t flag, unsigned long attrs);
146 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
147 		dma_addr_t dma_handle, unsigned long attrs);
148 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
149 		gfp_t gfp, unsigned long attrs);
150 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
151 		dma_addr_t dma_handle);
152 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
153 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
154 		unsigned long attrs);
155 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
156 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
157 		unsigned long attrs);
158 bool dma_can_mmap(struct device *dev);
159 int dma_supported(struct device *dev, u64 mask);
160 int dma_set_mask(struct device *dev, u64 mask);
161 int dma_set_coherent_mask(struct device *dev, u64 mask);
162 u64 dma_get_required_mask(struct device *dev);
163 size_t dma_max_mapping_size(struct device *dev);
164 bool dma_need_sync(struct device *dev, dma_addr_t dma_addr);
165 unsigned long dma_get_merge_boundary(struct device *dev);
166 struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
167 		enum dma_data_direction dir, gfp_t gfp, unsigned long attrs);
168 void dma_free_noncontiguous(struct device *dev, size_t size,
169 		struct sg_table *sgt, enum dma_data_direction dir);
170 void *dma_vmap_noncontiguous(struct device *dev, size_t size,
171 		struct sg_table *sgt);
172 void dma_vunmap_noncontiguous(struct device *dev, void *vaddr);
173 int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
174 		size_t size, struct sg_table *sgt);
175 #else /* CONFIG_HAS_DMA */
dma_map_page_attrs(struct device * dev,struct page * page,size_t offset,size_t size,enum dma_data_direction dir,unsigned long attrs)176 static inline dma_addr_t dma_map_page_attrs(struct device *dev,
177 		struct page *page, size_t offset, size_t size,
178 		enum dma_data_direction dir, unsigned long attrs)
179 {
180 	return DMA_MAPPING_ERROR;
181 }
dma_unmap_page_attrs(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir,unsigned long attrs)182 static inline void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr,
183 		size_t size, enum dma_data_direction dir, unsigned long attrs)
184 {
185 }
dma_map_sg_attrs(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)186 static inline unsigned int dma_map_sg_attrs(struct device *dev,
187 		struct scatterlist *sg, int nents, enum dma_data_direction dir,
188 		unsigned long attrs)
189 {
190 	return 0;
191 }
dma_unmap_sg_attrs(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)192 static inline void dma_unmap_sg_attrs(struct device *dev,
193 		struct scatterlist *sg, int nents, enum dma_data_direction dir,
194 		unsigned long attrs)
195 {
196 }
dma_map_sgtable(struct device * dev,struct sg_table * sgt,enum dma_data_direction dir,unsigned long attrs)197 static inline int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
198 		enum dma_data_direction dir, unsigned long attrs)
199 {
200 	return -EOPNOTSUPP;
201 }
dma_map_resource(struct device * dev,phys_addr_t phys_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)202 static inline dma_addr_t dma_map_resource(struct device *dev,
203 		phys_addr_t phys_addr, size_t size, enum dma_data_direction dir,
204 		unsigned long attrs)
205 {
206 	return DMA_MAPPING_ERROR;
207 }
dma_unmap_resource(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir,unsigned long attrs)208 static inline void dma_unmap_resource(struct device *dev, dma_addr_t addr,
209 		size_t size, enum dma_data_direction dir, unsigned long attrs)
210 {
211 }
dma_sync_single_for_cpu(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)212 static inline void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
213 		size_t size, enum dma_data_direction dir)
214 {
215 }
dma_sync_single_for_device(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)216 static inline void dma_sync_single_for_device(struct device *dev,
217 		dma_addr_t addr, size_t size, enum dma_data_direction dir)
218 {
219 }
dma_sync_sg_for_cpu(struct device * dev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)220 static inline void dma_sync_sg_for_cpu(struct device *dev,
221 		struct scatterlist *sg, int nelems, enum dma_data_direction dir)
222 {
223 }
dma_sync_sg_for_device(struct device * dev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)224 static inline void dma_sync_sg_for_device(struct device *dev,
225 		struct scatterlist *sg, int nelems, enum dma_data_direction dir)
226 {
227 }
dma_mapping_error(struct device * dev,dma_addr_t dma_addr)228 static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
229 {
230 	return -ENOMEM;
231 }
dma_alloc_attrs(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flag,unsigned long attrs)232 static inline void *dma_alloc_attrs(struct device *dev, size_t size,
233 		dma_addr_t *dma_handle, gfp_t flag, unsigned long attrs)
234 {
235 	return NULL;
236 }
dma_free_attrs(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_handle,unsigned long attrs)237 static void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
238 		dma_addr_t dma_handle, unsigned long attrs)
239 {
240 }
dmam_alloc_attrs(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)241 static inline void *dmam_alloc_attrs(struct device *dev, size_t size,
242 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
243 {
244 	return NULL;
245 }
dmam_free_coherent(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle)246 static inline void dmam_free_coherent(struct device *dev, size_t size,
247 		void *vaddr, dma_addr_t dma_handle)
248 {
249 }
dma_get_sgtable_attrs(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)250 static inline int dma_get_sgtable_attrs(struct device *dev,
251 		struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr,
252 		size_t size, unsigned long attrs)
253 {
254 	return -ENXIO;
255 }
dma_mmap_attrs(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)256 static inline int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
257 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
258 		unsigned long attrs)
259 {
260 	return -ENXIO;
261 }
dma_can_mmap(struct device * dev)262 static inline bool dma_can_mmap(struct device *dev)
263 {
264 	return false;
265 }
dma_supported(struct device * dev,u64 mask)266 static inline int dma_supported(struct device *dev, u64 mask)
267 {
268 	return 0;
269 }
dma_set_mask(struct device * dev,u64 mask)270 static inline int dma_set_mask(struct device *dev, u64 mask)
271 {
272 	return -EIO;
273 }
dma_set_coherent_mask(struct device * dev,u64 mask)274 static inline int dma_set_coherent_mask(struct device *dev, u64 mask)
275 {
276 	return -EIO;
277 }
dma_get_required_mask(struct device * dev)278 static inline u64 dma_get_required_mask(struct device *dev)
279 {
280 	return 0;
281 }
dma_max_mapping_size(struct device * dev)282 static inline size_t dma_max_mapping_size(struct device *dev)
283 {
284 	return 0;
285 }
dma_need_sync(struct device * dev,dma_addr_t dma_addr)286 static inline bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
287 {
288 	return false;
289 }
dma_get_merge_boundary(struct device * dev)290 static inline unsigned long dma_get_merge_boundary(struct device *dev)
291 {
292 	return 0;
293 }
dma_alloc_noncontiguous(struct device * dev,size_t size,enum dma_data_direction dir,gfp_t gfp,unsigned long attrs)294 static inline struct sg_table *dma_alloc_noncontiguous(struct device *dev,
295 		size_t size, enum dma_data_direction dir, gfp_t gfp,
296 		unsigned long attrs)
297 {
298 	return NULL;
299 }
dma_free_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt,enum dma_data_direction dir)300 static inline void dma_free_noncontiguous(struct device *dev, size_t size,
301 		struct sg_table *sgt, enum dma_data_direction dir)
302 {
303 }
dma_vmap_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt)304 static inline void *dma_vmap_noncontiguous(struct device *dev, size_t size,
305 		struct sg_table *sgt)
306 {
307 	return NULL;
308 }
dma_vunmap_noncontiguous(struct device * dev,void * vaddr)309 static inline void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
310 {
311 }
dma_mmap_noncontiguous(struct device * dev,struct vm_area_struct * vma,size_t size,struct sg_table * sgt)312 static inline int dma_mmap_noncontiguous(struct device *dev,
313 		struct vm_area_struct *vma, size_t size, struct sg_table *sgt)
314 {
315 	return -EINVAL;
316 }
317 #endif /* CONFIG_HAS_DMA */
318 
319 struct page *dma_alloc_pages(struct device *dev, size_t size,
320 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp);
321 void dma_free_pages(struct device *dev, size_t size, struct page *page,
322 		dma_addr_t dma_handle, enum dma_data_direction dir);
323 int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
324 		size_t size, struct page *page);
325 
dma_alloc_noncoherent(struct device * dev,size_t size,dma_addr_t * dma_handle,enum dma_data_direction dir,gfp_t gfp)326 static inline void *dma_alloc_noncoherent(struct device *dev, size_t size,
327 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
328 {
329 	struct page *page = dma_alloc_pages(dev, size, dma_handle, dir, gfp);
330 	return page ? page_address(page) : NULL;
331 }
332 
dma_free_noncoherent(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle,enum dma_data_direction dir)333 static inline void dma_free_noncoherent(struct device *dev, size_t size,
334 		void *vaddr, dma_addr_t dma_handle, enum dma_data_direction dir)
335 {
336 	dma_free_pages(dev, size, virt_to_page(vaddr), dma_handle, dir);
337 }
338 
dma_map_single_attrs(struct device * dev,void * ptr,size_t size,enum dma_data_direction dir,unsigned long attrs)339 static inline dma_addr_t dma_map_single_attrs(struct device *dev, void *ptr,
340 		size_t size, enum dma_data_direction dir, unsigned long attrs)
341 {
342 	/* DMA must never operate on areas that might be remapped. */
343 	if (dev_WARN_ONCE(dev, is_vmalloc_addr(ptr),
344 			  "rejecting DMA map of vmalloc memory\n"))
345 		return DMA_MAPPING_ERROR;
346 	debug_dma_map_single(dev, ptr, size);
347 	return dma_map_page_attrs(dev, virt_to_page(ptr), offset_in_page(ptr),
348 			size, dir, attrs);
349 }
350 
dma_unmap_single_attrs(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir,unsigned long attrs)351 static inline void dma_unmap_single_attrs(struct device *dev, dma_addr_t addr,
352 		size_t size, enum dma_data_direction dir, unsigned long attrs)
353 {
354 	return dma_unmap_page_attrs(dev, addr, size, dir, attrs);
355 }
356 
dma_sync_single_range_for_cpu(struct device * dev,dma_addr_t addr,unsigned long offset,size_t size,enum dma_data_direction dir)357 static inline void dma_sync_single_range_for_cpu(struct device *dev,
358 		dma_addr_t addr, unsigned long offset, size_t size,
359 		enum dma_data_direction dir)
360 {
361 	return dma_sync_single_for_cpu(dev, addr + offset, size, dir);
362 }
363 
dma_sync_single_range_for_device(struct device * dev,dma_addr_t addr,unsigned long offset,size_t size,enum dma_data_direction dir)364 static inline void dma_sync_single_range_for_device(struct device *dev,
365 		dma_addr_t addr, unsigned long offset, size_t size,
366 		enum dma_data_direction dir)
367 {
368 	return dma_sync_single_for_device(dev, addr + offset, size, dir);
369 }
370 
371 /**
372  * dma_unmap_sgtable - Unmap the given buffer for DMA
373  * @dev:	The device for which to perform the DMA operation
374  * @sgt:	The sg_table object describing the buffer
375  * @dir:	DMA direction
376  * @attrs:	Optional DMA attributes for the unmap operation
377  *
378  * Unmaps a buffer described by a scatterlist stored in the given sg_table
379  * object for the @dir DMA operation by the @dev device. After this function
380  * the ownership of the buffer is transferred back to the CPU domain.
381  */
dma_unmap_sgtable(struct device * dev,struct sg_table * sgt,enum dma_data_direction dir,unsigned long attrs)382 static inline void dma_unmap_sgtable(struct device *dev, struct sg_table *sgt,
383 		enum dma_data_direction dir, unsigned long attrs)
384 {
385 	dma_unmap_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
386 }
387 
388 /**
389  * dma_sync_sgtable_for_cpu - Synchronize the given buffer for CPU access
390  * @dev:	The device for which to perform the DMA operation
391  * @sgt:	The sg_table object describing the buffer
392  * @dir:	DMA direction
393  *
394  * Performs the needed cache synchronization and moves the ownership of the
395  * buffer back to the CPU domain, so it is safe to perform any access to it
396  * by the CPU. Before doing any further DMA operations, one has to transfer
397  * the ownership of the buffer back to the DMA domain by calling the
398  * dma_sync_sgtable_for_device().
399  */
dma_sync_sgtable_for_cpu(struct device * dev,struct sg_table * sgt,enum dma_data_direction dir)400 static inline void dma_sync_sgtable_for_cpu(struct device *dev,
401 		struct sg_table *sgt, enum dma_data_direction dir)
402 {
403 	dma_sync_sg_for_cpu(dev, sgt->sgl, sgt->orig_nents, dir);
404 }
405 
406 /**
407  * dma_sync_sgtable_for_device - Synchronize the given buffer for DMA
408  * @dev:	The device for which to perform the DMA operation
409  * @sgt:	The sg_table object describing the buffer
410  * @dir:	DMA direction
411  *
412  * Performs the needed cache synchronization and moves the ownership of the
413  * buffer back to the DMA domain, so it is safe to perform the DMA operation.
414  * Once finished, one has to call dma_sync_sgtable_for_cpu() or
415  * dma_unmap_sgtable().
416  */
dma_sync_sgtable_for_device(struct device * dev,struct sg_table * sgt,enum dma_data_direction dir)417 static inline void dma_sync_sgtable_for_device(struct device *dev,
418 		struct sg_table *sgt, enum dma_data_direction dir)
419 {
420 	dma_sync_sg_for_device(dev, sgt->sgl, sgt->orig_nents, dir);
421 }
422 
423 #define dma_map_single(d, a, s, r) dma_map_single_attrs(d, a, s, r, 0)
424 #define dma_unmap_single(d, a, s, r) dma_unmap_single_attrs(d, a, s, r, 0)
425 #define dma_map_sg(d, s, n, r) dma_map_sg_attrs(d, s, n, r, 0)
426 #define dma_unmap_sg(d, s, n, r) dma_unmap_sg_attrs(d, s, n, r, 0)
427 #define dma_map_page(d, p, o, s, r) dma_map_page_attrs(d, p, o, s, r, 0)
428 #define dma_unmap_page(d, a, s, r) dma_unmap_page_attrs(d, a, s, r, 0)
429 #define dma_get_sgtable(d, t, v, h, s) dma_get_sgtable_attrs(d, t, v, h, s, 0)
430 #define dma_mmap_coherent(d, v, c, h, s) dma_mmap_attrs(d, v, c, h, s, 0)
431 
dma_alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp)432 static inline void *dma_alloc_coherent(struct device *dev, size_t size,
433 		dma_addr_t *dma_handle, gfp_t gfp)
434 {
435 	return dma_alloc_attrs(dev, size, dma_handle, gfp,
436 			(gfp & __GFP_NOWARN) ? DMA_ATTR_NO_WARN : 0);
437 }
438 
dma_free_coherent(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_handle)439 static inline void dma_free_coherent(struct device *dev, size_t size,
440 		void *cpu_addr, dma_addr_t dma_handle)
441 {
442 	return dma_free_attrs(dev, size, cpu_addr, dma_handle, 0);
443 }
444 
445 
dma_get_mask(struct device * dev)446 static inline u64 dma_get_mask(struct device *dev)
447 {
448 	if (dev->dma_mask && *dev->dma_mask)
449 		return *dev->dma_mask;
450 	return DMA_BIT_MASK(32);
451 }
452 
453 /*
454  * Set both the DMA mask and the coherent DMA mask to the same thing.
455  * Note that we don't check the return value from dma_set_coherent_mask()
456  * as the DMA API guarantees that the coherent DMA mask can be set to
457  * the same or smaller than the streaming DMA mask.
458  */
dma_set_mask_and_coherent(struct device * dev,u64 mask)459 static inline int dma_set_mask_and_coherent(struct device *dev, u64 mask)
460 {
461 	int rc = dma_set_mask(dev, mask);
462 	if (rc == 0)
463 		dma_set_coherent_mask(dev, mask);
464 	return rc;
465 }
466 
467 /*
468  * Similar to the above, except it deals with the case where the device
469  * does not have dev->dma_mask appropriately setup.
470  */
dma_coerce_mask_and_coherent(struct device * dev,u64 mask)471 static inline int dma_coerce_mask_and_coherent(struct device *dev, u64 mask)
472 {
473 	dev->dma_mask = &dev->coherent_dma_mask;
474 	return dma_set_mask_and_coherent(dev, mask);
475 }
476 
477 /**
478  * dma_addressing_limited - return if the device is addressing limited
479  * @dev:	device to check
480  *
481  * Return %true if the devices DMA mask is too small to address all memory in
482  * the system, else %false.  Lack of addressing bits is the prime reason for
483  * bounce buffering, but might not be the only one.
484  */
dma_addressing_limited(struct device * dev)485 static inline bool dma_addressing_limited(struct device *dev)
486 {
487 	return min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) <
488 			    dma_get_required_mask(dev);
489 }
490 
dma_get_max_seg_size(struct device * dev)491 static inline unsigned int dma_get_max_seg_size(struct device *dev)
492 {
493 	if (dev->dma_parms && dev->dma_parms->max_segment_size)
494 		return dev->dma_parms->max_segment_size;
495 	return SZ_64K;
496 }
497 
dma_set_max_seg_size(struct device * dev,unsigned int size)498 static inline int dma_set_max_seg_size(struct device *dev, unsigned int size)
499 {
500 	if (dev->dma_parms) {
501 		dev->dma_parms->max_segment_size = size;
502 		return 0;
503 	}
504 	return -EIO;
505 }
506 
dma_get_seg_boundary(struct device * dev)507 static inline unsigned long dma_get_seg_boundary(struct device *dev)
508 {
509 	if (dev->dma_parms && dev->dma_parms->segment_boundary_mask)
510 		return dev->dma_parms->segment_boundary_mask;
511 	return ULONG_MAX;
512 }
513 
514 /**
515  * dma_get_seg_boundary_nr_pages - return the segment boundary in "page" units
516  * @dev: device to guery the boundary for
517  * @page_shift: ilog() of the IOMMU page size
518  *
519  * Return the segment boundary in IOMMU page units (which may be different from
520  * the CPU page size) for the passed in device.
521  *
522  * If @dev is NULL a boundary of U32_MAX is assumed, this case is just for
523  * non-DMA API callers.
524  */
dma_get_seg_boundary_nr_pages(struct device * dev,unsigned int page_shift)525 static inline unsigned long dma_get_seg_boundary_nr_pages(struct device *dev,
526 		unsigned int page_shift)
527 {
528 	if (!dev)
529 		return (U32_MAX >> page_shift) + 1;
530 	return (dma_get_seg_boundary(dev) >> page_shift) + 1;
531 }
532 
dma_set_seg_boundary(struct device * dev,unsigned long mask)533 static inline int dma_set_seg_boundary(struct device *dev, unsigned long mask)
534 {
535 	if (dev->dma_parms) {
536 		dev->dma_parms->segment_boundary_mask = mask;
537 		return 0;
538 	}
539 	return -EIO;
540 }
541 
dma_get_min_align_mask(struct device * dev)542 static inline unsigned int dma_get_min_align_mask(struct device *dev)
543 {
544 	if (dev->dma_parms)
545 		return dev->dma_parms->min_align_mask;
546 	return 0;
547 }
548 
dma_set_min_align_mask(struct device * dev,unsigned int min_align_mask)549 static inline int dma_set_min_align_mask(struct device *dev,
550 		unsigned int min_align_mask)
551 {
552 	if (WARN_ON_ONCE(!dev->dma_parms))
553 		return -EIO;
554 	dev->dma_parms->min_align_mask = min_align_mask;
555 	return 0;
556 }
557 
dma_get_cache_alignment(void)558 static inline int dma_get_cache_alignment(void)
559 {
560 #ifdef ARCH_DMA_MINALIGN
561 	return ARCH_DMA_MINALIGN;
562 #endif
563 	return 1;
564 }
565 
dmam_alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp)566 static inline void *dmam_alloc_coherent(struct device *dev, size_t size,
567 		dma_addr_t *dma_handle, gfp_t gfp)
568 {
569 	return dmam_alloc_attrs(dev, size, dma_handle, gfp,
570 			(gfp & __GFP_NOWARN) ? DMA_ATTR_NO_WARN : 0);
571 }
572 
dma_alloc_wc(struct device * dev,size_t size,dma_addr_t * dma_addr,gfp_t gfp)573 static inline void *dma_alloc_wc(struct device *dev, size_t size,
574 				 dma_addr_t *dma_addr, gfp_t gfp)
575 {
576 	unsigned long attrs = DMA_ATTR_WRITE_COMBINE;
577 
578 	if (gfp & __GFP_NOWARN)
579 		attrs |= DMA_ATTR_NO_WARN;
580 
581 	return dma_alloc_attrs(dev, size, dma_addr, gfp, attrs);
582 }
583 
dma_free_wc(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_addr)584 static inline void dma_free_wc(struct device *dev, size_t size,
585 			       void *cpu_addr, dma_addr_t dma_addr)
586 {
587 	return dma_free_attrs(dev, size, cpu_addr, dma_addr,
588 			      DMA_ATTR_WRITE_COMBINE);
589 }
590 
dma_mmap_wc(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size)591 static inline int dma_mmap_wc(struct device *dev,
592 			      struct vm_area_struct *vma,
593 			      void *cpu_addr, dma_addr_t dma_addr,
594 			      size_t size)
595 {
596 	return dma_mmap_attrs(dev, vma, cpu_addr, dma_addr, size,
597 			      DMA_ATTR_WRITE_COMBINE);
598 }
599 
600 #ifdef CONFIG_NEED_DMA_MAP_STATE
601 #define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME)        dma_addr_t ADDR_NAME
602 #define DEFINE_DMA_UNMAP_LEN(LEN_NAME)          __u32 LEN_NAME
603 #define dma_unmap_addr(PTR, ADDR_NAME)           ((PTR)->ADDR_NAME)
604 #define dma_unmap_addr_set(PTR, ADDR_NAME, VAL)  (((PTR)->ADDR_NAME) = (VAL))
605 #define dma_unmap_len(PTR, LEN_NAME)             ((PTR)->LEN_NAME)
606 #define dma_unmap_len_set(PTR, LEN_NAME, VAL)    (((PTR)->LEN_NAME) = (VAL))
607 #else
608 #define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME)
609 #define DEFINE_DMA_UNMAP_LEN(LEN_NAME)
610 #define dma_unmap_addr(PTR, ADDR_NAME)           (0)
611 #define dma_unmap_addr_set(PTR, ADDR_NAME, VAL)  do { } while (0)
612 #define dma_unmap_len(PTR, LEN_NAME)             (0)
613 #define dma_unmap_len_set(PTR, LEN_NAME, VAL)    do { } while (0)
614 #endif
615 
616 #endif /* _LINUX_DMA_MAPPING_H */
617