1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/mm/fault.c
4 *
5 * Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 1995-2004 Russell King
7 * Copyright (C) 2012 ARM Ltd.
8 */
9
10 #include <linux/acpi.h>
11 #include <linux/bitfield.h>
12 #include <linux/extable.h>
13 #include <linux/kfence.h>
14 #include <linux/signal.h>
15 #include <linux/mm.h>
16 #include <linux/hardirq.h>
17 #include <linux/init.h>
18 #include <linux/kasan.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/page-flags.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/debug.h>
24 #include <linux/highmem.h>
25 #include <linux/perf_event.h>
26 #include <linux/preempt.h>
27 #include <linux/hugetlb.h>
28 #include <linux/vm_event_item.h>
29
30 #include <asm/acpi.h>
31 #include <asm/bug.h>
32 #include <asm/cmpxchg.h>
33 #include <asm/cpufeature.h>
34 #include <asm/exception.h>
35 #include <asm/daifflags.h>
36 #include <asm/debug-monitors.h>
37 #include <asm/esr.h>
38 #include <asm/kprobes.h>
39 #include <asm/mte.h>
40 #include <asm/processor.h>
41 #include <asm/sysreg.h>
42 #include <asm/system_misc.h>
43 #include <asm/tlbflush.h>
44 #include <asm/traps.h>
45 #include <asm/virt.h>
46
47 #include <trace/hooks/fault.h>
48 #include <trace/hooks/mm.h>
49
50 struct fault_info {
51 int (*fn)(unsigned long far, unsigned int esr,
52 struct pt_regs *regs);
53 int sig;
54 int code;
55 const char *name;
56 };
57
58 static const struct fault_info fault_info[];
59 static struct fault_info debug_fault_info[];
60
esr_to_fault_info(unsigned int esr)61 static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
62 {
63 return fault_info + (esr & ESR_ELx_FSC);
64 }
65
esr_to_debug_fault_info(unsigned int esr)66 static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr)
67 {
68 return debug_fault_info + DBG_ESR_EVT(esr);
69 }
70
data_abort_decode(unsigned int esr)71 static void data_abort_decode(unsigned int esr)
72 {
73 pr_alert("Data abort info:\n");
74
75 if (esr & ESR_ELx_ISV) {
76 pr_alert(" Access size = %u byte(s)\n",
77 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
78 pr_alert(" SSE = %lu, SRT = %lu\n",
79 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
80 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
81 pr_alert(" SF = %lu, AR = %lu\n",
82 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
83 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
84 } else {
85 pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
86 }
87
88 pr_alert(" CM = %lu, WnR = %lu\n",
89 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
90 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
91 }
92
mem_abort_decode(unsigned int esr)93 static void mem_abort_decode(unsigned int esr)
94 {
95 pr_alert("Mem abort info:\n");
96
97 pr_alert(" ESR = 0x%08x\n", esr);
98 pr_alert(" EC = 0x%02lx: %s, IL = %u bits\n",
99 ESR_ELx_EC(esr), esr_get_class_string(esr),
100 (esr & ESR_ELx_IL) ? 32 : 16);
101 pr_alert(" SET = %lu, FnV = %lu\n",
102 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
103 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
104 pr_alert(" EA = %lu, S1PTW = %lu\n",
105 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
106 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
107 pr_alert(" FSC = 0x%02x: %s\n", (esr & ESR_ELx_FSC),
108 esr_to_fault_info(esr)->name);
109
110 if (esr_is_data_abort(esr))
111 data_abort_decode(esr);
112 }
113
mm_to_pgd_phys(struct mm_struct * mm)114 static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
115 {
116 /* Either init_pg_dir or swapper_pg_dir */
117 if (mm == &init_mm)
118 return __pa_symbol(mm->pgd);
119
120 return (unsigned long)virt_to_phys(mm->pgd);
121 }
122
123 /*
124 * Dump out the page tables associated with 'addr' in the currently active mm.
125 */
show_pte(unsigned long addr)126 static void show_pte(unsigned long addr)
127 {
128 struct mm_struct *mm;
129 pgd_t *pgdp;
130 pgd_t pgd;
131
132 if (is_ttbr0_addr(addr)) {
133 /* TTBR0 */
134 mm = current->active_mm;
135 if (mm == &init_mm) {
136 pr_alert("[%016lx] user address but active_mm is swapper\n",
137 addr);
138 return;
139 }
140 } else if (is_ttbr1_addr(addr)) {
141 /* TTBR1 */
142 mm = &init_mm;
143 } else {
144 pr_alert("[%016lx] address between user and kernel address ranges\n",
145 addr);
146 return;
147 }
148
149 pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
150 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
151 vabits_actual, mm_to_pgd_phys(mm));
152 pgdp = pgd_offset(mm, addr);
153 pgd = READ_ONCE(*pgdp);
154 pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
155
156 do {
157 p4d_t *p4dp, p4d;
158 pud_t *pudp, pud;
159 pmd_t *pmdp, pmd;
160 pte_t *ptep, pte;
161
162 if (pgd_none(pgd) || pgd_bad(pgd))
163 break;
164
165 p4dp = p4d_offset(pgdp, addr);
166 p4d = READ_ONCE(*p4dp);
167 pr_cont(", p4d=%016llx", p4d_val(p4d));
168 if (p4d_none(p4d) || p4d_bad(p4d))
169 break;
170
171 pudp = pud_offset(p4dp, addr);
172 pud = READ_ONCE(*pudp);
173 pr_cont(", pud=%016llx", pud_val(pud));
174 if (pud_none(pud) || pud_bad(pud))
175 break;
176
177 pmdp = pmd_offset(pudp, addr);
178 pmd = READ_ONCE(*pmdp);
179 pr_cont(", pmd=%016llx", pmd_val(pmd));
180 if (pmd_none(pmd) || pmd_bad(pmd))
181 break;
182
183 ptep = pte_offset_map(pmdp, addr);
184 pte = READ_ONCE(*ptep);
185 pr_cont(", pte=%016llx", pte_val(pte));
186 pte_unmap(ptep);
187 } while(0);
188
189 pr_cont("\n");
190 }
191
192 /*
193 * This function sets the access flags (dirty, accessed), as well as write
194 * permission, and only to a more permissive setting.
195 *
196 * It needs to cope with hardware update of the accessed/dirty state by other
197 * agents in the system and can safely skip the __sync_icache_dcache() call as,
198 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
199 *
200 * Returns whether or not the PTE actually changed.
201 */
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long address,pte_t * ptep,pte_t entry,int dirty)202 int ptep_set_access_flags(struct vm_area_struct *vma,
203 unsigned long address, pte_t *ptep,
204 pte_t entry, int dirty)
205 {
206 pteval_t old_pteval, pteval;
207 pte_t pte = READ_ONCE(*ptep);
208
209 if (pte_same(pte, entry))
210 return 0;
211
212 /* only preserve the access flags and write permission */
213 pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
214
215 /*
216 * Setting the flags must be done atomically to avoid racing with the
217 * hardware update of the access/dirty state. The PTE_RDONLY bit must
218 * be set to the most permissive (lowest value) of *ptep and entry
219 * (calculated as: a & b == ~(~a | ~b)).
220 */
221 pte_val(entry) ^= PTE_RDONLY;
222 pteval = pte_val(pte);
223 do {
224 old_pteval = pteval;
225 pteval ^= PTE_RDONLY;
226 pteval |= pte_val(entry);
227 pteval ^= PTE_RDONLY;
228 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
229 } while (pteval != old_pteval);
230
231 /* Invalidate a stale read-only entry */
232 if (dirty)
233 flush_tlb_page(vma, address);
234 return 1;
235 }
236
is_el1_instruction_abort(unsigned int esr)237 static bool is_el1_instruction_abort(unsigned int esr)
238 {
239 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
240 }
241
is_el1_data_abort(unsigned int esr)242 static bool is_el1_data_abort(unsigned int esr)
243 {
244 return ESR_ELx_EC(esr) == ESR_ELx_EC_DABT_CUR;
245 }
246
is_el1_permission_fault(unsigned long addr,unsigned int esr,struct pt_regs * regs)247 static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr,
248 struct pt_regs *regs)
249 {
250 unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
251
252 if (!is_el1_data_abort(esr) && !is_el1_instruction_abort(esr))
253 return false;
254
255 if (fsc_type == ESR_ELx_FSC_PERM)
256 return true;
257
258 if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
259 return fsc_type == ESR_ELx_FSC_FAULT &&
260 (regs->pstate & PSR_PAN_BIT);
261
262 return false;
263 }
264
is_pkvm_stage2_abort(unsigned int esr)265 static bool is_pkvm_stage2_abort(unsigned int esr)
266 {
267 /*
268 * S1PTW should only ever be set in ESR_EL1 if the pkvm hypervisor
269 * injected a stage-2 abort -- see host_inject_abort().
270 */
271 return is_pkvm_initialized() && (esr & ESR_ELx_S1PTW);
272 }
273
is_spurious_el1_translation_fault(unsigned long addr,unsigned int esr,struct pt_regs * regs)274 static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
275 unsigned int esr,
276 struct pt_regs *regs)
277 {
278 unsigned long flags;
279 u64 par, dfsc;
280
281 if (!is_el1_data_abort(esr) ||
282 (esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT)
283 return false;
284
285 if (is_pkvm_stage2_abort(esr))
286 return false;
287
288 local_irq_save(flags);
289 asm volatile("at s1e1r, %0" :: "r" (addr));
290 isb();
291 par = read_sysreg_par();
292 local_irq_restore(flags);
293
294 /*
295 * If we now have a valid translation, treat the translation fault as
296 * spurious.
297 */
298 if (!(par & SYS_PAR_EL1_F))
299 return true;
300
301 /*
302 * If we got a different type of fault from the AT instruction,
303 * treat the translation fault as spurious.
304 */
305 dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
306 return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT;
307 }
308
die_kernel_fault(const char * msg,unsigned long addr,unsigned int esr,struct pt_regs * regs)309 static void die_kernel_fault(const char *msg, unsigned long addr,
310 unsigned int esr, struct pt_regs *regs)
311 {
312 bust_spinlocks(1);
313
314 pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
315 addr);
316
317 trace_android_rvh_die_kernel_fault(msg, addr, esr, regs);
318 mem_abort_decode(esr);
319
320 show_pte(addr);
321 die("Oops", regs, esr);
322 bust_spinlocks(0);
323 make_task_dead(SIGKILL);
324 }
325
326 #ifdef CONFIG_KASAN_HW_TAGS
report_tag_fault(unsigned long addr,unsigned int esr,struct pt_regs * regs)327 static void report_tag_fault(unsigned long addr, unsigned int esr,
328 struct pt_regs *regs)
329 {
330 /*
331 * SAS bits aren't set for all faults reported in EL1, so we can't
332 * find out access size.
333 */
334 bool is_write = !!(esr & ESR_ELx_WNR);
335 kasan_report(addr, 0, is_write, regs->pc);
336 }
337 #else
338 /* Tag faults aren't enabled without CONFIG_KASAN_HW_TAGS. */
report_tag_fault(unsigned long addr,unsigned int esr,struct pt_regs * regs)339 static inline void report_tag_fault(unsigned long addr, unsigned int esr,
340 struct pt_regs *regs) { }
341 #endif
342
do_tag_recovery(unsigned long addr,unsigned int esr,struct pt_regs * regs)343 static void do_tag_recovery(unsigned long addr, unsigned int esr,
344 struct pt_regs *regs)
345 {
346
347 report_tag_fault(addr, esr, regs);
348
349 /*
350 * Disable MTE Tag Checking on the local CPU for the current EL.
351 * It will be done lazily on the other CPUs when they will hit a
352 * tag fault.
353 */
354 sysreg_clear_set(sctlr_el1, SCTLR_ELx_TCF_MASK, SCTLR_ELx_TCF_NONE);
355 isb();
356 }
357
is_el1_mte_sync_tag_check_fault(unsigned int esr)358 static bool is_el1_mte_sync_tag_check_fault(unsigned int esr)
359 {
360 unsigned int fsc = esr & ESR_ELx_FSC;
361
362 if (!is_el1_data_abort(esr))
363 return false;
364
365 if (fsc == ESR_ELx_FSC_MTE)
366 return true;
367
368 return false;
369 }
370
__do_kernel_fault(unsigned long addr,unsigned int esr,struct pt_regs * regs)371 static void __do_kernel_fault(unsigned long addr, unsigned int esr,
372 struct pt_regs *regs)
373 {
374 const char *msg;
375
376 /*
377 * Are we prepared to handle this kernel fault?
378 * We are almost certainly not prepared to handle instruction faults.
379 */
380 if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
381 return;
382
383 if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
384 "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
385 return;
386
387 if (is_el1_mte_sync_tag_check_fault(esr)) {
388 do_tag_recovery(addr, esr, regs);
389
390 return;
391 }
392
393 if (is_el1_permission_fault(addr, esr, regs)) {
394 if (esr & ESR_ELx_WNR)
395 msg = "write to read-only memory";
396 else if (is_el1_instruction_abort(esr))
397 msg = "execute from non-executable memory";
398 else
399 msg = "read from unreadable memory";
400 } else if (addr < PAGE_SIZE) {
401 msg = "NULL pointer dereference";
402 } else if (is_pkvm_stage2_abort(esr)) {
403 msg = "access to hypervisor-protected memory";
404 } else {
405 if (kfence_handle_page_fault(addr, esr & ESR_ELx_WNR, regs))
406 return;
407
408 msg = "paging request";
409 }
410
411 die_kernel_fault(msg, addr, esr, regs);
412 }
413
set_thread_esr(unsigned long address,unsigned int esr)414 static void set_thread_esr(unsigned long address, unsigned int esr)
415 {
416 current->thread.fault_address = address;
417
418 /*
419 * If the faulting address is in the kernel, we must sanitize the ESR.
420 * From userspace's point of view, kernel-only mappings don't exist
421 * at all, so we report them as level 0 translation faults.
422 * (This is not quite the way that "no mapping there at all" behaves:
423 * an alignment fault not caused by the memory type would take
424 * precedence over translation fault for a real access to empty
425 * space. Unfortunately we can't easily distinguish "alignment fault
426 * not caused by memory type" from "alignment fault caused by memory
427 * type", so we ignore this wrinkle and just return the translation
428 * fault.)
429 */
430 if (!is_ttbr0_addr(current->thread.fault_address)) {
431 switch (ESR_ELx_EC(esr)) {
432 case ESR_ELx_EC_DABT_LOW:
433 /*
434 * These bits provide only information about the
435 * faulting instruction, which userspace knows already.
436 * We explicitly clear bits which are architecturally
437 * RES0 in case they are given meanings in future.
438 * We always report the ESR as if the fault was taken
439 * to EL1 and so ISV and the bits in ISS[23:14] are
440 * clear. (In fact it always will be a fault to EL1.)
441 */
442 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
443 ESR_ELx_CM | ESR_ELx_WNR;
444 esr |= ESR_ELx_FSC_FAULT;
445 break;
446 case ESR_ELx_EC_IABT_LOW:
447 /*
448 * Claim a level 0 translation fault.
449 * All other bits are architecturally RES0 for faults
450 * reported with that DFSC value, so we clear them.
451 */
452 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
453 esr |= ESR_ELx_FSC_FAULT;
454 break;
455 default:
456 /*
457 * This should never happen (entry.S only brings us
458 * into this code for insn and data aborts from a lower
459 * exception level). Fail safe by not providing an ESR
460 * context record at all.
461 */
462 WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
463 esr = 0;
464 break;
465 }
466 }
467
468 current->thread.fault_code = esr;
469 }
470
do_bad_area(unsigned long far,unsigned int esr,struct pt_regs * regs)471 static void do_bad_area(unsigned long far, unsigned int esr,
472 struct pt_regs *regs)
473 {
474 unsigned long addr = untagged_addr(far);
475
476 /*
477 * If we are in kernel mode at this point, we have no context to
478 * handle this fault with.
479 */
480 if (user_mode(regs)) {
481 const struct fault_info *inf = esr_to_fault_info(esr);
482
483 set_thread_esr(addr, esr);
484 arm64_force_sig_fault(inf->sig, inf->code, far, inf->name);
485 } else {
486 __do_kernel_fault(addr, esr, regs);
487 }
488 }
489
490 #define VM_FAULT_BADMAP ((__force vm_fault_t)0x010000)
491 #define VM_FAULT_BADACCESS ((__force vm_fault_t)0x020000)
492
__do_page_fault(struct mm_struct * mm,unsigned long addr,unsigned int mm_flags,unsigned long vm_flags,struct pt_regs * regs)493 static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
494 unsigned int mm_flags, unsigned long vm_flags,
495 struct pt_regs *regs)
496 {
497 struct vm_area_struct *vma = find_vma(mm, addr);
498
499 if (unlikely(!vma))
500 return VM_FAULT_BADMAP;
501
502 /*
503 * Ok, we have a good vm_area for this memory access, so we can handle
504 * it.
505 */
506 if (unlikely(vma->vm_start > addr)) {
507 if (!(vma->vm_flags & VM_GROWSDOWN))
508 return VM_FAULT_BADMAP;
509 if (expand_stack(vma, addr))
510 return VM_FAULT_BADMAP;
511 }
512
513 /*
514 * Check that the permissions on the VMA allow for the fault which
515 * occurred.
516 */
517 if (!(vma->vm_flags & vm_flags))
518 return VM_FAULT_BADACCESS;
519 return handle_mm_fault(vma, addr, mm_flags, regs);
520 }
521
is_el0_instruction_abort(unsigned int esr)522 static bool is_el0_instruction_abort(unsigned int esr)
523 {
524 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
525 }
526
527 /*
528 * Note: not valid for EL1 DC IVAC, but we never use that such that it
529 * should fault. EL0 cannot issue DC IVAC (undef).
530 */
is_write_abort(unsigned int esr)531 static bool is_write_abort(unsigned int esr)
532 {
533 return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
534 }
535
do_page_fault(unsigned long far,unsigned int esr,struct pt_regs * regs)536 static int __kprobes do_page_fault(unsigned long far, unsigned int esr,
537 struct pt_regs *regs)
538 {
539 const struct fault_info *inf;
540 struct mm_struct *mm = current->mm;
541 vm_fault_t fault;
542 unsigned long vm_flags;
543 unsigned int mm_flags = FAULT_FLAG_DEFAULT;
544 unsigned long addr = untagged_addr(far);
545 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
546 struct vm_area_struct *vma;
547 struct vm_area_struct pvma;
548 unsigned long seq;
549 #endif
550
551 if (kprobe_page_fault(regs, esr))
552 return 0;
553
554 /*
555 * If we're in an interrupt or have no user context, we must not take
556 * the fault.
557 */
558 if (faulthandler_disabled() || !mm)
559 goto no_context;
560
561 if (user_mode(regs))
562 mm_flags |= FAULT_FLAG_USER;
563
564 /*
565 * vm_flags tells us what bits we must have in vma->vm_flags
566 * for the fault to be benign, __do_page_fault() would check
567 * vma->vm_flags & vm_flags and returns an error if the
568 * intersection is empty
569 */
570 if (is_el0_instruction_abort(esr)) {
571 /* It was exec fault */
572 vm_flags = VM_EXEC;
573 mm_flags |= FAULT_FLAG_INSTRUCTION;
574 } else if (is_write_abort(esr)) {
575 /* It was write fault */
576 vm_flags = VM_WRITE;
577 mm_flags |= FAULT_FLAG_WRITE;
578 } else {
579 /* It was read fault */
580 vm_flags = VM_READ;
581 /* Write implies read */
582 vm_flags |= VM_WRITE;
583 /* If EPAN is absent then exec implies read */
584 if (!cpus_have_const_cap(ARM64_HAS_EPAN))
585 vm_flags |= VM_EXEC;
586 }
587
588 if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
589 if (is_el1_instruction_abort(esr))
590 die_kernel_fault("execution of user memory",
591 addr, esr, regs);
592
593 if (!search_exception_tables(regs->pc))
594 die_kernel_fault("access to user memory outside uaccess routines",
595 addr, esr, regs);
596 }
597
598 if (is_pkvm_stage2_abort(esr)) {
599 if (!user_mode(regs))
600 goto no_context;
601 arm64_force_sig_fault(SIGSEGV, SEGV_ACCERR, far, "stage-2 fault");
602 return 0;
603 }
604
605 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
606
607 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
608 /*
609 * No need to try speculative faults for kernel or
610 * single threaded user space.
611 */
612 if (!(mm_flags & FAULT_FLAG_USER) || atomic_read(&mm->mm_users) == 1)
613 goto no_spf;
614
615 count_vm_event(SPF_ATTEMPT);
616 seq = mmap_seq_read_start(mm);
617 if (seq & 1) {
618 count_vm_spf_event(SPF_ABORT_ODD);
619 goto spf_abort;
620 }
621 vma = get_vma(mm, addr);
622 if (!vma) {
623 count_vm_spf_event(SPF_ABORT_UNMAPPED);
624 goto spf_abort;
625 }
626 if (!vma_can_speculate(vma, mm_flags)) {
627 put_vma(vma);
628 count_vm_spf_event(SPF_ABORT_NO_SPECULATE);
629 goto spf_abort;
630 }
631 pvma = *vma;
632 if (!mmap_seq_read_check(mm, seq, SPF_ABORT_VMA_COPY)) {
633 put_vma(vma);
634 goto spf_abort;
635 }
636 if (!(pvma.vm_flags & vm_flags)) {
637 put_vma(vma);
638 count_vm_spf_event(SPF_ABORT_ACCESS_ERROR);
639 goto spf_abort;
640 }
641 fault = do_handle_mm_fault(&pvma, addr & PAGE_MASK,
642 mm_flags | FAULT_FLAG_SPECULATIVE, seq, regs);
643 put_vma(vma);
644
645 /* Quick path to respond to signals */
646 if (fault_signal_pending(fault, regs)) {
647 if (!user_mode(regs))
648 goto no_context;
649 return 0;
650 }
651 if (!(fault & VM_FAULT_RETRY))
652 goto done;
653
654 spf_abort:
655 count_vm_event(SPF_ABORT);
656 no_spf:
657
658 #endif /* CONFIG_SPECULATIVE_PAGE_FAULT */
659
660 /*
661 * As per x86, we may deadlock here. However, since the kernel only
662 * validly references user space from well defined areas of the code,
663 * we can bug out early if this is from code which shouldn't.
664 */
665 if (!mmap_read_trylock(mm)) {
666 if (!user_mode(regs) && !search_exception_tables(regs->pc))
667 goto no_context;
668 retry:
669 mmap_read_lock(mm);
670 } else {
671 /*
672 * The above mmap_read_trylock() might have succeeded in which
673 * case, we'll have missed the might_sleep() from down_read().
674 */
675 might_sleep();
676 #ifdef CONFIG_DEBUG_VM
677 if (!user_mode(regs) && !search_exception_tables(regs->pc)) {
678 mmap_read_unlock(mm);
679 goto no_context;
680 }
681 #endif
682 }
683
684 fault = __do_page_fault(mm, addr, mm_flags, vm_flags, regs);
685
686 /* Quick path to respond to signals */
687 if (fault_signal_pending(fault, regs)) {
688 if (!user_mode(regs))
689 goto no_context;
690 return 0;
691 }
692
693 if (fault & VM_FAULT_RETRY) {
694 if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
695 mm_flags |= FAULT_FLAG_TRIED;
696 goto retry;
697 }
698 }
699 mmap_read_unlock(mm);
700 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
701 done:
702 #endif
703
704 /*
705 * Handle the "normal" (no error) case first.
706 */
707 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
708 VM_FAULT_BADACCESS))))
709 return 0;
710
711 /*
712 * If we are in kernel mode at this point, we have no context to
713 * handle this fault with.
714 */
715 if (!user_mode(regs))
716 goto no_context;
717
718 if (fault & VM_FAULT_OOM) {
719 /*
720 * We ran out of memory, call the OOM killer, and return to
721 * userspace (which will retry the fault, or kill us if we got
722 * oom-killed).
723 */
724 pagefault_out_of_memory();
725 return 0;
726 }
727
728 inf = esr_to_fault_info(esr);
729 set_thread_esr(addr, esr);
730 if (fault & VM_FAULT_SIGBUS) {
731 /*
732 * We had some memory, but were unable to successfully fix up
733 * this page fault.
734 */
735 arm64_force_sig_fault(SIGBUS, BUS_ADRERR, far, inf->name);
736 } else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
737 unsigned int lsb;
738
739 lsb = PAGE_SHIFT;
740 if (fault & VM_FAULT_HWPOISON_LARGE)
741 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
742
743 arm64_force_sig_mceerr(BUS_MCEERR_AR, far, lsb, inf->name);
744 } else {
745 /*
746 * Something tried to access memory that isn't in our memory
747 * map.
748 */
749 arm64_force_sig_fault(SIGSEGV,
750 fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
751 far, inf->name);
752 }
753
754 return 0;
755
756 no_context:
757 __do_kernel_fault(addr, esr, regs);
758 return 0;
759 }
760
do_translation_fault(unsigned long far,unsigned int esr,struct pt_regs * regs)761 static int __kprobes do_translation_fault(unsigned long far,
762 unsigned int esr,
763 struct pt_regs *regs)
764 {
765 unsigned long addr = untagged_addr(far);
766
767 if (is_ttbr0_addr(addr))
768 return do_page_fault(far, esr, regs);
769
770 do_bad_area(far, esr, regs);
771 return 0;
772 }
773
do_alignment_fault(unsigned long far,unsigned int esr,struct pt_regs * regs)774 static int do_alignment_fault(unsigned long far, unsigned int esr,
775 struct pt_regs *regs)
776 {
777 do_bad_area(far, esr, regs);
778 return 0;
779 }
780
do_bad(unsigned long far,unsigned int esr,struct pt_regs * regs)781 static int do_bad(unsigned long far, unsigned int esr, struct pt_regs *regs)
782 {
783 unsigned long addr = untagged_addr(far);
784 int ret = 1;
785
786 trace_android_vh_handle_tlb_conf(addr, esr, &ret);
787 return ret;
788 }
789
do_sea(unsigned long far,unsigned int esr,struct pt_regs * regs)790 static int do_sea(unsigned long far, unsigned int esr, struct pt_regs *regs)
791 {
792 const struct fault_info *inf;
793 unsigned long siaddr;
794 bool can_fixup = false;
795
796 trace_android_vh_try_fixup_sea(far, esr, regs, &can_fixup);
797 if (can_fixup && fixup_exception(regs))
798 return 0;
799
800 inf = esr_to_fault_info(esr);
801
802 if (user_mode(regs) && apei_claim_sea(regs) == 0) {
803 /*
804 * APEI claimed this as a firmware-first notification.
805 * Some processing deferred to task_work before ret_to_user().
806 */
807 return 0;
808 }
809
810 if (esr & ESR_ELx_FnV) {
811 siaddr = 0;
812 } else {
813 /*
814 * The architecture specifies that the tag bits of FAR_EL1 are
815 * UNKNOWN for synchronous external aborts. Mask them out now
816 * so that userspace doesn't see them.
817 */
818 siaddr = untagged_addr(far);
819 }
820 trace_android_rvh_do_sea(siaddr, esr, regs);
821 arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
822
823 return 0;
824 }
825
do_tag_check_fault(unsigned long far,unsigned int esr,struct pt_regs * regs)826 static int do_tag_check_fault(unsigned long far, unsigned int esr,
827 struct pt_regs *regs)
828 {
829 /*
830 * The architecture specifies that bits 63:60 of FAR_EL1 are UNKNOWN
831 * for tag check faults. Set them to corresponding bits in the untagged
832 * address.
833 */
834 far = (__untagged_addr(far) & ~MTE_TAG_MASK) | (far & MTE_TAG_MASK);
835 do_bad_area(far, esr, regs);
836 return 0;
837 }
838
839 static const struct fault_info fault_info[] = {
840 { do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" },
841 { do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" },
842 { do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" },
843 { do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" },
844 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
845 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
846 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
847 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
848 { do_bad, SIGKILL, SI_KERNEL, "unknown 8" },
849 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
850 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
851 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
852 { do_bad, SIGKILL, SI_KERNEL, "unknown 12" },
853 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
854 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
855 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
856 { do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" },
857 { do_tag_check_fault, SIGSEGV, SEGV_MTESERR, "synchronous tag check fault" },
858 { do_bad, SIGKILL, SI_KERNEL, "unknown 18" },
859 { do_bad, SIGKILL, SI_KERNEL, "unknown 19" },
860 { do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" },
861 { do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" },
862 { do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" },
863 { do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" },
864 { do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented
865 { do_bad, SIGKILL, SI_KERNEL, "unknown 25" },
866 { do_bad, SIGKILL, SI_KERNEL, "unknown 26" },
867 { do_bad, SIGKILL, SI_KERNEL, "unknown 27" },
868 { do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
869 { do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
870 { do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
871 { do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
872 { do_bad, SIGKILL, SI_KERNEL, "unknown 32" },
873 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" },
874 { do_bad, SIGKILL, SI_KERNEL, "unknown 34" },
875 { do_bad, SIGKILL, SI_KERNEL, "unknown 35" },
876 { do_bad, SIGKILL, SI_KERNEL, "unknown 36" },
877 { do_bad, SIGKILL, SI_KERNEL, "unknown 37" },
878 { do_bad, SIGKILL, SI_KERNEL, "unknown 38" },
879 { do_bad, SIGKILL, SI_KERNEL, "unknown 39" },
880 { do_bad, SIGKILL, SI_KERNEL, "unknown 40" },
881 { do_bad, SIGKILL, SI_KERNEL, "unknown 41" },
882 { do_bad, SIGKILL, SI_KERNEL, "unknown 42" },
883 { do_bad, SIGKILL, SI_KERNEL, "unknown 43" },
884 { do_bad, SIGKILL, SI_KERNEL, "unknown 44" },
885 { do_bad, SIGKILL, SI_KERNEL, "unknown 45" },
886 { do_bad, SIGKILL, SI_KERNEL, "unknown 46" },
887 { do_bad, SIGKILL, SI_KERNEL, "unknown 47" },
888 { do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" },
889 { do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" },
890 { do_bad, SIGKILL, SI_KERNEL, "unknown 50" },
891 { do_bad, SIGKILL, SI_KERNEL, "unknown 51" },
892 { do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" },
893 { do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" },
894 { do_bad, SIGKILL, SI_KERNEL, "unknown 54" },
895 { do_bad, SIGKILL, SI_KERNEL, "unknown 55" },
896 { do_bad, SIGKILL, SI_KERNEL, "unknown 56" },
897 { do_bad, SIGKILL, SI_KERNEL, "unknown 57" },
898 { do_bad, SIGKILL, SI_KERNEL, "unknown 58" },
899 { do_bad, SIGKILL, SI_KERNEL, "unknown 59" },
900 { do_bad, SIGKILL, SI_KERNEL, "unknown 60" },
901 { do_bad, SIGKILL, SI_KERNEL, "section domain fault" },
902 { do_bad, SIGKILL, SI_KERNEL, "page domain fault" },
903 { do_bad, SIGKILL, SI_KERNEL, "unknown 63" },
904 };
905
do_mem_abort(unsigned long far,unsigned int esr,struct pt_regs * regs)906 void do_mem_abort(unsigned long far, unsigned int esr, struct pt_regs *regs)
907 {
908 const struct fault_info *inf = esr_to_fault_info(esr);
909 unsigned long addr = untagged_addr(far);
910
911 if (!inf->fn(far, esr, regs))
912 return;
913
914 if (!user_mode(regs)) {
915 pr_alert("Unhandled fault at 0x%016lx\n", addr);
916 trace_android_rvh_do_mem_abort(addr, esr, regs);
917 mem_abort_decode(esr);
918 show_pte(addr);
919 }
920
921 /*
922 * At this point we have an unrecognized fault type whose tag bits may
923 * have been defined as UNKNOWN. Therefore we only expose the untagged
924 * address to the signal handler.
925 */
926 arm64_notify_die(inf->name, regs, inf->sig, inf->code, addr, esr);
927 }
928 NOKPROBE_SYMBOL(do_mem_abort);
929
do_sp_pc_abort(unsigned long addr,unsigned int esr,struct pt_regs * regs)930 void do_sp_pc_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs)
931 {
932 trace_android_rvh_do_sp_pc_abort(addr, esr, regs);
933
934 arm64_notify_die("SP/PC alignment exception", regs, SIGBUS, BUS_ADRALN,
935 addr, esr);
936 }
937 NOKPROBE_SYMBOL(do_sp_pc_abort);
938
939 int __init early_brk64(unsigned long addr, unsigned int esr,
940 struct pt_regs *regs);
941
942 /*
943 * __refdata because early_brk64 is __init, but the reference to it is
944 * clobbered at arch_initcall time.
945 * See traps.c and debug-monitors.c:debug_traps_init().
946 */
947 static struct fault_info __refdata debug_fault_info[] = {
948 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" },
949 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" },
950 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" },
951 { do_bad, SIGKILL, SI_KERNEL, "unknown 3" },
952 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" },
953 { do_bad, SIGKILL, SI_KERNEL, "aarch32 vector catch" },
954 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" },
955 { do_bad, SIGKILL, SI_KERNEL, "unknown 7" },
956 };
957
hook_debug_fault_code(int nr,int (* fn)(unsigned long,unsigned int,struct pt_regs *),int sig,int code,const char * name)958 void __init hook_debug_fault_code(int nr,
959 int (*fn)(unsigned long, unsigned int, struct pt_regs *),
960 int sig, int code, const char *name)
961 {
962 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
963
964 debug_fault_info[nr].fn = fn;
965 debug_fault_info[nr].sig = sig;
966 debug_fault_info[nr].code = code;
967 debug_fault_info[nr].name = name;
968 }
969
970 /*
971 * In debug exception context, we explicitly disable preemption despite
972 * having interrupts disabled.
973 * This serves two purposes: it makes it much less likely that we would
974 * accidentally schedule in exception context and it will force a warning
975 * if we somehow manage to schedule by accident.
976 */
debug_exception_enter(struct pt_regs * regs)977 static void debug_exception_enter(struct pt_regs *regs)
978 {
979 preempt_disable();
980
981 /* This code is a bit fragile. Test it. */
982 RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
983 }
984 NOKPROBE_SYMBOL(debug_exception_enter);
985
debug_exception_exit(struct pt_regs * regs)986 static void debug_exception_exit(struct pt_regs *regs)
987 {
988 preempt_enable_no_resched();
989 }
990 NOKPROBE_SYMBOL(debug_exception_exit);
991
do_debug_exception(unsigned long addr_if_watchpoint,unsigned int esr,struct pt_regs * regs)992 void do_debug_exception(unsigned long addr_if_watchpoint, unsigned int esr,
993 struct pt_regs *regs)
994 {
995 const struct fault_info *inf = esr_to_debug_fault_info(esr);
996 unsigned long pc = instruction_pointer(regs);
997
998 debug_exception_enter(regs);
999
1000 if (user_mode(regs) && !is_ttbr0_addr(pc))
1001 arm64_apply_bp_hardening();
1002
1003 if (inf->fn(addr_if_watchpoint, esr, regs)) {
1004 arm64_notify_die(inf->name, regs, inf->sig, inf->code, pc, esr);
1005 }
1006
1007 debug_exception_exit(regs);
1008 }
1009 NOKPROBE_SYMBOL(do_debug_exception);
1010
1011 /*
1012 * Used during anonymous page fault handling.
1013 */
alloc_zeroed_user_highpage_movable(struct vm_area_struct * vma,unsigned long vaddr)1014 struct page *alloc_zeroed_user_highpage_movable(struct vm_area_struct *vma,
1015 unsigned long vaddr)
1016 {
1017 gfp_t flags = GFP_HIGHUSER_MOVABLE | __GFP_ZERO | __GFP_CMA;
1018
1019 trace_android_vh_alloc_highpage_movable_gfp_adjust(&flags);
1020 trace_android_vh_anon_gfp_adjust(&flags);
1021 /*
1022 * If the page is mapped with PROT_MTE, initialise the tags at the
1023 * point of allocation and page zeroing as this is usually faster than
1024 * separate DC ZVA and STGM.
1025 */
1026 if (vma->vm_flags & VM_MTE)
1027 flags |= __GFP_ZEROTAGS;
1028
1029 return alloc_page_vma(flags, vma, vaddr);
1030 }
1031
tag_clear_highpage(struct page * page)1032 void tag_clear_highpage(struct page *page)
1033 {
1034 mte_zero_clear_page_tags(page_address(page));
1035 page_kasan_tag_reset(page);
1036 set_bit(PG_mte_tagged, &page->flags);
1037 }
1038