• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/fault.c
4  *
5  * Copyright (C) 1995  Linus Torvalds
6  * Copyright (C) 1995-2004 Russell King
7  * Copyright (C) 2012 ARM Ltd.
8  */
9 
10 #include <linux/acpi.h>
11 #include <linux/bitfield.h>
12 #include <linux/extable.h>
13 #include <linux/kfence.h>
14 #include <linux/signal.h>
15 #include <linux/mm.h>
16 #include <linux/hardirq.h>
17 #include <linux/init.h>
18 #include <linux/kasan.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/page-flags.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/debug.h>
24 #include <linux/highmem.h>
25 #include <linux/perf_event.h>
26 #include <linux/preempt.h>
27 #include <linux/hugetlb.h>
28 #include <linux/vm_event_item.h>
29 
30 #include <asm/acpi.h>
31 #include <asm/bug.h>
32 #include <asm/cmpxchg.h>
33 #include <asm/cpufeature.h>
34 #include <asm/exception.h>
35 #include <asm/daifflags.h>
36 #include <asm/debug-monitors.h>
37 #include <asm/esr.h>
38 #include <asm/kprobes.h>
39 #include <asm/mte.h>
40 #include <asm/processor.h>
41 #include <asm/sysreg.h>
42 #include <asm/system_misc.h>
43 #include <asm/tlbflush.h>
44 #include <asm/traps.h>
45 #include <asm/virt.h>
46 
47 #include <trace/hooks/fault.h>
48 #include <trace/hooks/mm.h>
49 
50 struct fault_info {
51 	int	(*fn)(unsigned long far, unsigned int esr,
52 		      struct pt_regs *regs);
53 	int	sig;
54 	int	code;
55 	const char *name;
56 };
57 
58 static const struct fault_info fault_info[];
59 static struct fault_info debug_fault_info[];
60 
esr_to_fault_info(unsigned int esr)61 static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
62 {
63 	return fault_info + (esr & ESR_ELx_FSC);
64 }
65 
esr_to_debug_fault_info(unsigned int esr)66 static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr)
67 {
68 	return debug_fault_info + DBG_ESR_EVT(esr);
69 }
70 
data_abort_decode(unsigned int esr)71 static void data_abort_decode(unsigned int esr)
72 {
73 	pr_alert("Data abort info:\n");
74 
75 	if (esr & ESR_ELx_ISV) {
76 		pr_alert("  Access size = %u byte(s)\n",
77 			 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
78 		pr_alert("  SSE = %lu, SRT = %lu\n",
79 			 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
80 			 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
81 		pr_alert("  SF = %lu, AR = %lu\n",
82 			 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
83 			 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
84 	} else {
85 		pr_alert("  ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
86 	}
87 
88 	pr_alert("  CM = %lu, WnR = %lu\n",
89 		 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
90 		 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
91 }
92 
mem_abort_decode(unsigned int esr)93 static void mem_abort_decode(unsigned int esr)
94 {
95 	pr_alert("Mem abort info:\n");
96 
97 	pr_alert("  ESR = 0x%08x\n", esr);
98 	pr_alert("  EC = 0x%02lx: %s, IL = %u bits\n",
99 		 ESR_ELx_EC(esr), esr_get_class_string(esr),
100 		 (esr & ESR_ELx_IL) ? 32 : 16);
101 	pr_alert("  SET = %lu, FnV = %lu\n",
102 		 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
103 		 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
104 	pr_alert("  EA = %lu, S1PTW = %lu\n",
105 		 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
106 		 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
107 	pr_alert("  FSC = 0x%02x: %s\n", (esr & ESR_ELx_FSC),
108 		 esr_to_fault_info(esr)->name);
109 
110 	if (esr_is_data_abort(esr))
111 		data_abort_decode(esr);
112 }
113 
mm_to_pgd_phys(struct mm_struct * mm)114 static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
115 {
116 	/* Either init_pg_dir or swapper_pg_dir */
117 	if (mm == &init_mm)
118 		return __pa_symbol(mm->pgd);
119 
120 	return (unsigned long)virt_to_phys(mm->pgd);
121 }
122 
123 /*
124  * Dump out the page tables associated with 'addr' in the currently active mm.
125  */
show_pte(unsigned long addr)126 static void show_pte(unsigned long addr)
127 {
128 	struct mm_struct *mm;
129 	pgd_t *pgdp;
130 	pgd_t pgd;
131 
132 	if (is_ttbr0_addr(addr)) {
133 		/* TTBR0 */
134 		mm = current->active_mm;
135 		if (mm == &init_mm) {
136 			pr_alert("[%016lx] user address but active_mm is swapper\n",
137 				 addr);
138 			return;
139 		}
140 	} else if (is_ttbr1_addr(addr)) {
141 		/* TTBR1 */
142 		mm = &init_mm;
143 	} else {
144 		pr_alert("[%016lx] address between user and kernel address ranges\n",
145 			 addr);
146 		return;
147 	}
148 
149 	pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
150 		 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
151 		 vabits_actual, mm_to_pgd_phys(mm));
152 	pgdp = pgd_offset(mm, addr);
153 	pgd = READ_ONCE(*pgdp);
154 	pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
155 
156 	do {
157 		p4d_t *p4dp, p4d;
158 		pud_t *pudp, pud;
159 		pmd_t *pmdp, pmd;
160 		pte_t *ptep, pte;
161 
162 		if (pgd_none(pgd) || pgd_bad(pgd))
163 			break;
164 
165 		p4dp = p4d_offset(pgdp, addr);
166 		p4d = READ_ONCE(*p4dp);
167 		pr_cont(", p4d=%016llx", p4d_val(p4d));
168 		if (p4d_none(p4d) || p4d_bad(p4d))
169 			break;
170 
171 		pudp = pud_offset(p4dp, addr);
172 		pud = READ_ONCE(*pudp);
173 		pr_cont(", pud=%016llx", pud_val(pud));
174 		if (pud_none(pud) || pud_bad(pud))
175 			break;
176 
177 		pmdp = pmd_offset(pudp, addr);
178 		pmd = READ_ONCE(*pmdp);
179 		pr_cont(", pmd=%016llx", pmd_val(pmd));
180 		if (pmd_none(pmd) || pmd_bad(pmd))
181 			break;
182 
183 		ptep = pte_offset_map(pmdp, addr);
184 		pte = READ_ONCE(*ptep);
185 		pr_cont(", pte=%016llx", pte_val(pte));
186 		pte_unmap(ptep);
187 	} while(0);
188 
189 	pr_cont("\n");
190 }
191 
192 /*
193  * This function sets the access flags (dirty, accessed), as well as write
194  * permission, and only to a more permissive setting.
195  *
196  * It needs to cope with hardware update of the accessed/dirty state by other
197  * agents in the system and can safely skip the __sync_icache_dcache() call as,
198  * like set_pte_at(), the PTE is never changed from no-exec to exec here.
199  *
200  * Returns whether or not the PTE actually changed.
201  */
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long address,pte_t * ptep,pte_t entry,int dirty)202 int ptep_set_access_flags(struct vm_area_struct *vma,
203 			  unsigned long address, pte_t *ptep,
204 			  pte_t entry, int dirty)
205 {
206 	pteval_t old_pteval, pteval;
207 	pte_t pte = READ_ONCE(*ptep);
208 
209 	if (pte_same(pte, entry))
210 		return 0;
211 
212 	/* only preserve the access flags and write permission */
213 	pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
214 
215 	/*
216 	 * Setting the flags must be done atomically to avoid racing with the
217 	 * hardware update of the access/dirty state. The PTE_RDONLY bit must
218 	 * be set to the most permissive (lowest value) of *ptep and entry
219 	 * (calculated as: a & b == ~(~a | ~b)).
220 	 */
221 	pte_val(entry) ^= PTE_RDONLY;
222 	pteval = pte_val(pte);
223 	do {
224 		old_pteval = pteval;
225 		pteval ^= PTE_RDONLY;
226 		pteval |= pte_val(entry);
227 		pteval ^= PTE_RDONLY;
228 		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
229 	} while (pteval != old_pteval);
230 
231 	/* Invalidate a stale read-only entry */
232 	if (dirty)
233 		flush_tlb_page(vma, address);
234 	return 1;
235 }
236 
is_el1_instruction_abort(unsigned int esr)237 static bool is_el1_instruction_abort(unsigned int esr)
238 {
239 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
240 }
241 
is_el1_data_abort(unsigned int esr)242 static bool is_el1_data_abort(unsigned int esr)
243 {
244 	return ESR_ELx_EC(esr) == ESR_ELx_EC_DABT_CUR;
245 }
246 
is_el1_permission_fault(unsigned long addr,unsigned int esr,struct pt_regs * regs)247 static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr,
248 					   struct pt_regs *regs)
249 {
250 	unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
251 
252 	if (!is_el1_data_abort(esr) && !is_el1_instruction_abort(esr))
253 		return false;
254 
255 	if (fsc_type == ESR_ELx_FSC_PERM)
256 		return true;
257 
258 	if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
259 		return fsc_type == ESR_ELx_FSC_FAULT &&
260 			(regs->pstate & PSR_PAN_BIT);
261 
262 	return false;
263 }
264 
is_pkvm_stage2_abort(unsigned int esr)265 static bool is_pkvm_stage2_abort(unsigned int esr)
266 {
267 	/*
268 	 * S1PTW should only ever be set in ESR_EL1 if the pkvm hypervisor
269 	 * injected a stage-2 abort -- see host_inject_abort().
270 	 */
271 	return is_pkvm_initialized() && (esr & ESR_ELx_S1PTW);
272 }
273 
is_spurious_el1_translation_fault(unsigned long addr,unsigned int esr,struct pt_regs * regs)274 static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
275 							unsigned int esr,
276 							struct pt_regs *regs)
277 {
278 	unsigned long flags;
279 	u64 par, dfsc;
280 
281 	if (!is_el1_data_abort(esr) ||
282 	    (esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT)
283 		return false;
284 
285 	if (is_pkvm_stage2_abort(esr))
286 		return false;
287 
288 	local_irq_save(flags);
289 	asm volatile("at s1e1r, %0" :: "r" (addr));
290 	isb();
291 	par = read_sysreg_par();
292 	local_irq_restore(flags);
293 
294 	/*
295 	 * If we now have a valid translation, treat the translation fault as
296 	 * spurious.
297 	 */
298 	if (!(par & SYS_PAR_EL1_F))
299 		return true;
300 
301 	/*
302 	 * If we got a different type of fault from the AT instruction,
303 	 * treat the translation fault as spurious.
304 	 */
305 	dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
306 	return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT;
307 }
308 
die_kernel_fault(const char * msg,unsigned long addr,unsigned int esr,struct pt_regs * regs)309 static void die_kernel_fault(const char *msg, unsigned long addr,
310 			     unsigned int esr, struct pt_regs *regs)
311 {
312 	bust_spinlocks(1);
313 
314 	pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
315 		 addr);
316 
317 	trace_android_rvh_die_kernel_fault(msg, addr, esr, regs);
318 	mem_abort_decode(esr);
319 
320 	show_pte(addr);
321 	die("Oops", regs, esr);
322 	bust_spinlocks(0);
323 	make_task_dead(SIGKILL);
324 }
325 
326 #ifdef CONFIG_KASAN_HW_TAGS
report_tag_fault(unsigned long addr,unsigned int esr,struct pt_regs * regs)327 static void report_tag_fault(unsigned long addr, unsigned int esr,
328 			     struct pt_regs *regs)
329 {
330 	/*
331 	 * SAS bits aren't set for all faults reported in EL1, so we can't
332 	 * find out access size.
333 	 */
334 	bool is_write = !!(esr & ESR_ELx_WNR);
335 	kasan_report(addr, 0, is_write, regs->pc);
336 }
337 #else
338 /* Tag faults aren't enabled without CONFIG_KASAN_HW_TAGS. */
report_tag_fault(unsigned long addr,unsigned int esr,struct pt_regs * regs)339 static inline void report_tag_fault(unsigned long addr, unsigned int esr,
340 				    struct pt_regs *regs) { }
341 #endif
342 
do_tag_recovery(unsigned long addr,unsigned int esr,struct pt_regs * regs)343 static void do_tag_recovery(unsigned long addr, unsigned int esr,
344 			   struct pt_regs *regs)
345 {
346 
347 	report_tag_fault(addr, esr, regs);
348 
349 	/*
350 	 * Disable MTE Tag Checking on the local CPU for the current EL.
351 	 * It will be done lazily on the other CPUs when they will hit a
352 	 * tag fault.
353 	 */
354 	sysreg_clear_set(sctlr_el1, SCTLR_ELx_TCF_MASK, SCTLR_ELx_TCF_NONE);
355 	isb();
356 }
357 
is_el1_mte_sync_tag_check_fault(unsigned int esr)358 static bool is_el1_mte_sync_tag_check_fault(unsigned int esr)
359 {
360 	unsigned int fsc = esr & ESR_ELx_FSC;
361 
362 	if (!is_el1_data_abort(esr))
363 		return false;
364 
365 	if (fsc == ESR_ELx_FSC_MTE)
366 		return true;
367 
368 	return false;
369 }
370 
__do_kernel_fault(unsigned long addr,unsigned int esr,struct pt_regs * regs)371 static void __do_kernel_fault(unsigned long addr, unsigned int esr,
372 			      struct pt_regs *regs)
373 {
374 	const char *msg;
375 
376 	/*
377 	 * Are we prepared to handle this kernel fault?
378 	 * We are almost certainly not prepared to handle instruction faults.
379 	 */
380 	if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
381 		return;
382 
383 	if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
384 	    "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
385 		return;
386 
387 	if (is_el1_mte_sync_tag_check_fault(esr)) {
388 		do_tag_recovery(addr, esr, regs);
389 
390 		return;
391 	}
392 
393 	if (is_el1_permission_fault(addr, esr, regs)) {
394 		if (esr & ESR_ELx_WNR)
395 			msg = "write to read-only memory";
396 		else if (is_el1_instruction_abort(esr))
397 			msg = "execute from non-executable memory";
398 		else
399 			msg = "read from unreadable memory";
400 	} else if (addr < PAGE_SIZE) {
401 		msg = "NULL pointer dereference";
402 	} else if (is_pkvm_stage2_abort(esr)) {
403 		msg = "access to hypervisor-protected memory";
404 	} else {
405 		if (kfence_handle_page_fault(addr, esr & ESR_ELx_WNR, regs))
406 			return;
407 
408 		msg = "paging request";
409 	}
410 
411 	die_kernel_fault(msg, addr, esr, regs);
412 }
413 
set_thread_esr(unsigned long address,unsigned int esr)414 static void set_thread_esr(unsigned long address, unsigned int esr)
415 {
416 	current->thread.fault_address = address;
417 
418 	/*
419 	 * If the faulting address is in the kernel, we must sanitize the ESR.
420 	 * From userspace's point of view, kernel-only mappings don't exist
421 	 * at all, so we report them as level 0 translation faults.
422 	 * (This is not quite the way that "no mapping there at all" behaves:
423 	 * an alignment fault not caused by the memory type would take
424 	 * precedence over translation fault for a real access to empty
425 	 * space. Unfortunately we can't easily distinguish "alignment fault
426 	 * not caused by memory type" from "alignment fault caused by memory
427 	 * type", so we ignore this wrinkle and just return the translation
428 	 * fault.)
429 	 */
430 	if (!is_ttbr0_addr(current->thread.fault_address)) {
431 		switch (ESR_ELx_EC(esr)) {
432 		case ESR_ELx_EC_DABT_LOW:
433 			/*
434 			 * These bits provide only information about the
435 			 * faulting instruction, which userspace knows already.
436 			 * We explicitly clear bits which are architecturally
437 			 * RES0 in case they are given meanings in future.
438 			 * We always report the ESR as if the fault was taken
439 			 * to EL1 and so ISV and the bits in ISS[23:14] are
440 			 * clear. (In fact it always will be a fault to EL1.)
441 			 */
442 			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
443 				ESR_ELx_CM | ESR_ELx_WNR;
444 			esr |= ESR_ELx_FSC_FAULT;
445 			break;
446 		case ESR_ELx_EC_IABT_LOW:
447 			/*
448 			 * Claim a level 0 translation fault.
449 			 * All other bits are architecturally RES0 for faults
450 			 * reported with that DFSC value, so we clear them.
451 			 */
452 			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
453 			esr |= ESR_ELx_FSC_FAULT;
454 			break;
455 		default:
456 			/*
457 			 * This should never happen (entry.S only brings us
458 			 * into this code for insn and data aborts from a lower
459 			 * exception level). Fail safe by not providing an ESR
460 			 * context record at all.
461 			 */
462 			WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
463 			esr = 0;
464 			break;
465 		}
466 	}
467 
468 	current->thread.fault_code = esr;
469 }
470 
do_bad_area(unsigned long far,unsigned int esr,struct pt_regs * regs)471 static void do_bad_area(unsigned long far, unsigned int esr,
472 			struct pt_regs *regs)
473 {
474 	unsigned long addr = untagged_addr(far);
475 
476 	/*
477 	 * If we are in kernel mode at this point, we have no context to
478 	 * handle this fault with.
479 	 */
480 	if (user_mode(regs)) {
481 		const struct fault_info *inf = esr_to_fault_info(esr);
482 
483 		set_thread_esr(addr, esr);
484 		arm64_force_sig_fault(inf->sig, inf->code, far, inf->name);
485 	} else {
486 		__do_kernel_fault(addr, esr, regs);
487 	}
488 }
489 
490 #define VM_FAULT_BADMAP		((__force vm_fault_t)0x010000)
491 #define VM_FAULT_BADACCESS	((__force vm_fault_t)0x020000)
492 
__do_page_fault(struct mm_struct * mm,unsigned long addr,unsigned int mm_flags,unsigned long vm_flags,struct pt_regs * regs)493 static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
494 				  unsigned int mm_flags, unsigned long vm_flags,
495 				  struct pt_regs *regs)
496 {
497 	struct vm_area_struct *vma = find_vma(mm, addr);
498 
499 	if (unlikely(!vma))
500 		return VM_FAULT_BADMAP;
501 
502 	/*
503 	 * Ok, we have a good vm_area for this memory access, so we can handle
504 	 * it.
505 	 */
506 	if (unlikely(vma->vm_start > addr)) {
507 		if (!(vma->vm_flags & VM_GROWSDOWN))
508 			return VM_FAULT_BADMAP;
509 		if (expand_stack(vma, addr))
510 			return VM_FAULT_BADMAP;
511 	}
512 
513 	/*
514 	 * Check that the permissions on the VMA allow for the fault which
515 	 * occurred.
516 	 */
517 	if (!(vma->vm_flags & vm_flags))
518 		return VM_FAULT_BADACCESS;
519 	return handle_mm_fault(vma, addr, mm_flags, regs);
520 }
521 
is_el0_instruction_abort(unsigned int esr)522 static bool is_el0_instruction_abort(unsigned int esr)
523 {
524 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
525 }
526 
527 /*
528  * Note: not valid for EL1 DC IVAC, but we never use that such that it
529  * should fault. EL0 cannot issue DC IVAC (undef).
530  */
is_write_abort(unsigned int esr)531 static bool is_write_abort(unsigned int esr)
532 {
533 	return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
534 }
535 
do_page_fault(unsigned long far,unsigned int esr,struct pt_regs * regs)536 static int __kprobes do_page_fault(unsigned long far, unsigned int esr,
537 				   struct pt_regs *regs)
538 {
539 	const struct fault_info *inf;
540 	struct mm_struct *mm = current->mm;
541 	vm_fault_t fault;
542 	unsigned long vm_flags;
543 	unsigned int mm_flags = FAULT_FLAG_DEFAULT;
544 	unsigned long addr = untagged_addr(far);
545 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
546 	struct vm_area_struct *vma;
547 	struct vm_area_struct pvma;
548 	unsigned long seq;
549 #endif
550 
551 	if (kprobe_page_fault(regs, esr))
552 		return 0;
553 
554 	/*
555 	 * If we're in an interrupt or have no user context, we must not take
556 	 * the fault.
557 	 */
558 	if (faulthandler_disabled() || !mm)
559 		goto no_context;
560 
561 	if (user_mode(regs))
562 		mm_flags |= FAULT_FLAG_USER;
563 
564 	/*
565 	 * vm_flags tells us what bits we must have in vma->vm_flags
566 	 * for the fault to be benign, __do_page_fault() would check
567 	 * vma->vm_flags & vm_flags and returns an error if the
568 	 * intersection is empty
569 	 */
570 	if (is_el0_instruction_abort(esr)) {
571 		/* It was exec fault */
572 		vm_flags = VM_EXEC;
573 		mm_flags |= FAULT_FLAG_INSTRUCTION;
574 	} else if (is_write_abort(esr)) {
575 		/* It was write fault */
576 		vm_flags = VM_WRITE;
577 		mm_flags |= FAULT_FLAG_WRITE;
578 	} else {
579 		/* It was read fault */
580 		vm_flags = VM_READ;
581 		/* Write implies read */
582 		vm_flags |= VM_WRITE;
583 		/* If EPAN is absent then exec implies read */
584 		if (!cpus_have_const_cap(ARM64_HAS_EPAN))
585 			vm_flags |= VM_EXEC;
586 	}
587 
588 	if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
589 		if (is_el1_instruction_abort(esr))
590 			die_kernel_fault("execution of user memory",
591 					 addr, esr, regs);
592 
593 		if (!search_exception_tables(regs->pc))
594 			die_kernel_fault("access to user memory outside uaccess routines",
595 					 addr, esr, regs);
596 	}
597 
598 	if (is_pkvm_stage2_abort(esr)) {
599 		if (!user_mode(regs))
600 			goto no_context;
601 		arm64_force_sig_fault(SIGSEGV, SEGV_ACCERR, far, "stage-2 fault");
602 		return 0;
603 	}
604 
605 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
606 
607 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
608 	/*
609 	 * No need to try speculative faults for kernel or
610 	 * single threaded user space.
611 	 */
612 	if (!(mm_flags & FAULT_FLAG_USER) || atomic_read(&mm->mm_users) == 1)
613 		goto no_spf;
614 
615 	count_vm_event(SPF_ATTEMPT);
616 	seq = mmap_seq_read_start(mm);
617 	if (seq & 1) {
618 		count_vm_spf_event(SPF_ABORT_ODD);
619 		goto spf_abort;
620 	}
621 	vma = get_vma(mm, addr);
622 	if (!vma) {
623 		count_vm_spf_event(SPF_ABORT_UNMAPPED);
624 		goto spf_abort;
625 	}
626 	if (!vma_can_speculate(vma, mm_flags)) {
627 		put_vma(vma);
628 		count_vm_spf_event(SPF_ABORT_NO_SPECULATE);
629 		goto spf_abort;
630 	}
631 	pvma = *vma;
632 	if (!mmap_seq_read_check(mm, seq, SPF_ABORT_VMA_COPY)) {
633 		put_vma(vma);
634 		goto spf_abort;
635 	}
636 	if (!(pvma.vm_flags & vm_flags)) {
637 		put_vma(vma);
638 		count_vm_spf_event(SPF_ABORT_ACCESS_ERROR);
639 		goto spf_abort;
640 	}
641 	fault = do_handle_mm_fault(&pvma, addr & PAGE_MASK,
642 			mm_flags | FAULT_FLAG_SPECULATIVE, seq, regs);
643 	put_vma(vma);
644 
645 	/* Quick path to respond to signals */
646 	if (fault_signal_pending(fault, regs)) {
647 		if (!user_mode(regs))
648 			goto no_context;
649 		return 0;
650 	}
651 	if (!(fault & VM_FAULT_RETRY))
652 		goto done;
653 
654 spf_abort:
655 	count_vm_event(SPF_ABORT);
656 no_spf:
657 
658 #endif	/* CONFIG_SPECULATIVE_PAGE_FAULT */
659 
660 	/*
661 	 * As per x86, we may deadlock here. However, since the kernel only
662 	 * validly references user space from well defined areas of the code,
663 	 * we can bug out early if this is from code which shouldn't.
664 	 */
665 	if (!mmap_read_trylock(mm)) {
666 		if (!user_mode(regs) && !search_exception_tables(regs->pc))
667 			goto no_context;
668 retry:
669 		mmap_read_lock(mm);
670 	} else {
671 		/*
672 		 * The above mmap_read_trylock() might have succeeded in which
673 		 * case, we'll have missed the might_sleep() from down_read().
674 		 */
675 		might_sleep();
676 #ifdef CONFIG_DEBUG_VM
677 		if (!user_mode(regs) && !search_exception_tables(regs->pc)) {
678 			mmap_read_unlock(mm);
679 			goto no_context;
680 		}
681 #endif
682 	}
683 
684 	fault = __do_page_fault(mm, addr, mm_flags, vm_flags, regs);
685 
686 	/* Quick path to respond to signals */
687 	if (fault_signal_pending(fault, regs)) {
688 		if (!user_mode(regs))
689 			goto no_context;
690 		return 0;
691 	}
692 
693 	if (fault & VM_FAULT_RETRY) {
694 		if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
695 			mm_flags |= FAULT_FLAG_TRIED;
696 			goto retry;
697 		}
698 	}
699 	mmap_read_unlock(mm);
700 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
701 done:
702 #endif
703 
704 	/*
705 	 * Handle the "normal" (no error) case first.
706 	 */
707 	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
708 			      VM_FAULT_BADACCESS))))
709 		return 0;
710 
711 	/*
712 	 * If we are in kernel mode at this point, we have no context to
713 	 * handle this fault with.
714 	 */
715 	if (!user_mode(regs))
716 		goto no_context;
717 
718 	if (fault & VM_FAULT_OOM) {
719 		/*
720 		 * We ran out of memory, call the OOM killer, and return to
721 		 * userspace (which will retry the fault, or kill us if we got
722 		 * oom-killed).
723 		 */
724 		pagefault_out_of_memory();
725 		return 0;
726 	}
727 
728 	inf = esr_to_fault_info(esr);
729 	set_thread_esr(addr, esr);
730 	if (fault & VM_FAULT_SIGBUS) {
731 		/*
732 		 * We had some memory, but were unable to successfully fix up
733 		 * this page fault.
734 		 */
735 		arm64_force_sig_fault(SIGBUS, BUS_ADRERR, far, inf->name);
736 	} else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
737 		unsigned int lsb;
738 
739 		lsb = PAGE_SHIFT;
740 		if (fault & VM_FAULT_HWPOISON_LARGE)
741 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
742 
743 		arm64_force_sig_mceerr(BUS_MCEERR_AR, far, lsb, inf->name);
744 	} else {
745 		/*
746 		 * Something tried to access memory that isn't in our memory
747 		 * map.
748 		 */
749 		arm64_force_sig_fault(SIGSEGV,
750 				      fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
751 				      far, inf->name);
752 	}
753 
754 	return 0;
755 
756 no_context:
757 	__do_kernel_fault(addr, esr, regs);
758 	return 0;
759 }
760 
do_translation_fault(unsigned long far,unsigned int esr,struct pt_regs * regs)761 static int __kprobes do_translation_fault(unsigned long far,
762 					  unsigned int esr,
763 					  struct pt_regs *regs)
764 {
765 	unsigned long addr = untagged_addr(far);
766 
767 	if (is_ttbr0_addr(addr))
768 		return do_page_fault(far, esr, regs);
769 
770 	do_bad_area(far, esr, regs);
771 	return 0;
772 }
773 
do_alignment_fault(unsigned long far,unsigned int esr,struct pt_regs * regs)774 static int do_alignment_fault(unsigned long far, unsigned int esr,
775 			      struct pt_regs *regs)
776 {
777 	do_bad_area(far, esr, regs);
778 	return 0;
779 }
780 
do_bad(unsigned long far,unsigned int esr,struct pt_regs * regs)781 static int do_bad(unsigned long far, unsigned int esr, struct pt_regs *regs)
782 {
783 	unsigned long addr = untagged_addr(far);
784 	int ret = 1;
785 
786 	trace_android_vh_handle_tlb_conf(addr, esr, &ret);
787 	return ret;
788 }
789 
do_sea(unsigned long far,unsigned int esr,struct pt_regs * regs)790 static int do_sea(unsigned long far, unsigned int esr, struct pt_regs *regs)
791 {
792 	const struct fault_info *inf;
793 	unsigned long siaddr;
794 	bool can_fixup = false;
795 
796 	trace_android_vh_try_fixup_sea(far, esr, regs, &can_fixup);
797 	if (can_fixup && fixup_exception(regs))
798 		return 0;
799 
800 	inf = esr_to_fault_info(esr);
801 
802 	if (user_mode(regs) && apei_claim_sea(regs) == 0) {
803 		/*
804 		 * APEI claimed this as a firmware-first notification.
805 		 * Some processing deferred to task_work before ret_to_user().
806 		 */
807 		return 0;
808 	}
809 
810 	if (esr & ESR_ELx_FnV) {
811 		siaddr = 0;
812 	} else {
813 		/*
814 		 * The architecture specifies that the tag bits of FAR_EL1 are
815 		 * UNKNOWN for synchronous external aborts. Mask them out now
816 		 * so that userspace doesn't see them.
817 		 */
818 		siaddr  = untagged_addr(far);
819 	}
820 	trace_android_rvh_do_sea(siaddr, esr, regs);
821 	arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
822 
823 	return 0;
824 }
825 
do_tag_check_fault(unsigned long far,unsigned int esr,struct pt_regs * regs)826 static int do_tag_check_fault(unsigned long far, unsigned int esr,
827 			      struct pt_regs *regs)
828 {
829 	/*
830 	 * The architecture specifies that bits 63:60 of FAR_EL1 are UNKNOWN
831 	 * for tag check faults. Set them to corresponding bits in the untagged
832 	 * address.
833 	 */
834 	far = (__untagged_addr(far) & ~MTE_TAG_MASK) | (far & MTE_TAG_MASK);
835 	do_bad_area(far, esr, regs);
836 	return 0;
837 }
838 
839 static const struct fault_info fault_info[] = {
840 	{ do_bad,		SIGKILL, SI_KERNEL,	"ttbr address size fault"	},
841 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 1 address size fault"	},
842 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 2 address size fault"	},
843 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 3 address size fault"	},
844 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
845 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
846 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
847 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
848 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 8"			},
849 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
850 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
851 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
852 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 12"			},
853 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
854 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
855 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
856 	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous external abort"	},
857 	{ do_tag_check_fault,	SIGSEGV, SEGV_MTESERR,	"synchronous tag check fault"	},
858 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 18"			},
859 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 19"			},
860 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 (translation table walk)"	},
861 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 (translation table walk)"	},
862 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 (translation table walk)"	},
863 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 (translation table walk)"	},
864 	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous parity or ECC error" },	// Reserved when RAS is implemented
865 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 25"			},
866 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 26"			},
867 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 27"			},
868 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
869 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
870 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
871 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
872 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 32"			},
873 	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		},
874 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 34"			},
875 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 35"			},
876 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 36"			},
877 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 37"			},
878 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 38"			},
879 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 39"			},
880 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 40"			},
881 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 41"			},
882 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 42"			},
883 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 43"			},
884 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 44"			},
885 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 45"			},
886 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 46"			},
887 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 47"			},
888 	{ do_bad,		SIGKILL, SI_KERNEL,	"TLB conflict abort"		},
889 	{ do_bad,		SIGKILL, SI_KERNEL,	"Unsupported atomic hardware update fault"	},
890 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 50"			},
891 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 51"			},
892 	{ do_bad,		SIGKILL, SI_KERNEL,	"implementation fault (lockdown abort)" },
893 	{ do_bad,		SIGBUS,  BUS_OBJERR,	"implementation fault (unsupported exclusive)" },
894 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 54"			},
895 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 55"			},
896 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 56"			},
897 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 57"			},
898 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 58" 			},
899 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 59"			},
900 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 60"			},
901 	{ do_bad,		SIGKILL, SI_KERNEL,	"section domain fault"		},
902 	{ do_bad,		SIGKILL, SI_KERNEL,	"page domain fault"		},
903 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 63"			},
904 };
905 
do_mem_abort(unsigned long far,unsigned int esr,struct pt_regs * regs)906 void do_mem_abort(unsigned long far, unsigned int esr, struct pt_regs *regs)
907 {
908 	const struct fault_info *inf = esr_to_fault_info(esr);
909 	unsigned long addr = untagged_addr(far);
910 
911 	if (!inf->fn(far, esr, regs))
912 		return;
913 
914 	if (!user_mode(regs)) {
915 		pr_alert("Unhandled fault at 0x%016lx\n", addr);
916 		trace_android_rvh_do_mem_abort(addr, esr, regs);
917 		mem_abort_decode(esr);
918 		show_pte(addr);
919 	}
920 
921 	/*
922 	 * At this point we have an unrecognized fault type whose tag bits may
923 	 * have been defined as UNKNOWN. Therefore we only expose the untagged
924 	 * address to the signal handler.
925 	 */
926 	arm64_notify_die(inf->name, regs, inf->sig, inf->code, addr, esr);
927 }
928 NOKPROBE_SYMBOL(do_mem_abort);
929 
do_sp_pc_abort(unsigned long addr,unsigned int esr,struct pt_regs * regs)930 void do_sp_pc_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs)
931 {
932 	trace_android_rvh_do_sp_pc_abort(addr, esr, regs);
933 
934 	arm64_notify_die("SP/PC alignment exception", regs, SIGBUS, BUS_ADRALN,
935 			 addr, esr);
936 }
937 NOKPROBE_SYMBOL(do_sp_pc_abort);
938 
939 int __init early_brk64(unsigned long addr, unsigned int esr,
940 		       struct pt_regs *regs);
941 
942 /*
943  * __refdata because early_brk64 is __init, but the reference to it is
944  * clobbered at arch_initcall time.
945  * See traps.c and debug-monitors.c:debug_traps_init().
946  */
947 static struct fault_info __refdata debug_fault_info[] = {
948 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
949 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
950 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
951 	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 3"		},
952 	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
953 	{ do_bad,	SIGKILL,	SI_KERNEL,	"aarch32 vector catch"	},
954 	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
955 	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 7"		},
956 };
957 
hook_debug_fault_code(int nr,int (* fn)(unsigned long,unsigned int,struct pt_regs *),int sig,int code,const char * name)958 void __init hook_debug_fault_code(int nr,
959 				  int (*fn)(unsigned long, unsigned int, struct pt_regs *),
960 				  int sig, int code, const char *name)
961 {
962 	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
963 
964 	debug_fault_info[nr].fn		= fn;
965 	debug_fault_info[nr].sig	= sig;
966 	debug_fault_info[nr].code	= code;
967 	debug_fault_info[nr].name	= name;
968 }
969 
970 /*
971  * In debug exception context, we explicitly disable preemption despite
972  * having interrupts disabled.
973  * This serves two purposes: it makes it much less likely that we would
974  * accidentally schedule in exception context and it will force a warning
975  * if we somehow manage to schedule by accident.
976  */
debug_exception_enter(struct pt_regs * regs)977 static void debug_exception_enter(struct pt_regs *regs)
978 {
979 	preempt_disable();
980 
981 	/* This code is a bit fragile.  Test it. */
982 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
983 }
984 NOKPROBE_SYMBOL(debug_exception_enter);
985 
debug_exception_exit(struct pt_regs * regs)986 static void debug_exception_exit(struct pt_regs *regs)
987 {
988 	preempt_enable_no_resched();
989 }
990 NOKPROBE_SYMBOL(debug_exception_exit);
991 
do_debug_exception(unsigned long addr_if_watchpoint,unsigned int esr,struct pt_regs * regs)992 void do_debug_exception(unsigned long addr_if_watchpoint, unsigned int esr,
993 			struct pt_regs *regs)
994 {
995 	const struct fault_info *inf = esr_to_debug_fault_info(esr);
996 	unsigned long pc = instruction_pointer(regs);
997 
998 	debug_exception_enter(regs);
999 
1000 	if (user_mode(regs) && !is_ttbr0_addr(pc))
1001 		arm64_apply_bp_hardening();
1002 
1003 	if (inf->fn(addr_if_watchpoint, esr, regs)) {
1004 		arm64_notify_die(inf->name, regs, inf->sig, inf->code, pc, esr);
1005 	}
1006 
1007 	debug_exception_exit(regs);
1008 }
1009 NOKPROBE_SYMBOL(do_debug_exception);
1010 
1011 /*
1012  * Used during anonymous page fault handling.
1013  */
alloc_zeroed_user_highpage_movable(struct vm_area_struct * vma,unsigned long vaddr)1014 struct page *alloc_zeroed_user_highpage_movable(struct vm_area_struct *vma,
1015 						unsigned long vaddr)
1016 {
1017 	gfp_t flags = GFP_HIGHUSER_MOVABLE | __GFP_ZERO | __GFP_CMA;
1018 
1019 	trace_android_vh_alloc_highpage_movable_gfp_adjust(&flags);
1020 	trace_android_vh_anon_gfp_adjust(&flags);
1021 	/*
1022 	 * If the page is mapped with PROT_MTE, initialise the tags at the
1023 	 * point of allocation and page zeroing as this is usually faster than
1024 	 * separate DC ZVA and STGM.
1025 	 */
1026 	if (vma->vm_flags & VM_MTE)
1027 		flags |= __GFP_ZEROTAGS;
1028 
1029 	return alloc_page_vma(flags, vma, vaddr);
1030 }
1031 
tag_clear_highpage(struct page * page)1032 void tag_clear_highpage(struct page *page)
1033 {
1034 	mte_zero_clear_page_tags(page_address(page));
1035 	page_kasan_tag_reset(page);
1036 	set_bit(PG_mte_tagged, &page->flags);
1037 }
1038