1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* sched.c - SPU scheduler.
3 *
4 * Copyright (C) IBM 2005
5 * Author: Mark Nutter <mnutter@us.ibm.com>
6 *
7 * 2006-03-31 NUMA domains added.
8 */
9
10 #undef DEBUG
11
12 #include <linux/errno.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sched/loadavg.h>
15 #include <linux/sched/rt.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/slab.h>
19 #include <linux/completion.h>
20 #include <linux/vmalloc.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/numa.h>
25 #include <linux/mutex.h>
26 #include <linux/notifier.h>
27 #include <linux/kthread.h>
28 #include <linux/pid_namespace.h>
29 #include <linux/proc_fs.h>
30 #include <linux/seq_file.h>
31
32 #include <asm/io.h>
33 #include <asm/mmu_context.h>
34 #include <asm/spu.h>
35 #include <asm/spu_csa.h>
36 #include <asm/spu_priv1.h>
37 #include "spufs.h"
38 #define CREATE_TRACE_POINTS
39 #include "sputrace.h"
40
41 struct spu_prio_array {
42 DECLARE_BITMAP(bitmap, MAX_PRIO);
43 struct list_head runq[MAX_PRIO];
44 spinlock_t runq_lock;
45 int nr_waiting;
46 };
47
48 static unsigned long spu_avenrun[3];
49 static struct spu_prio_array *spu_prio;
50 static struct task_struct *spusched_task;
51 static struct timer_list spusched_timer;
52 static struct timer_list spuloadavg_timer;
53
54 /*
55 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
56 */
57 #define NORMAL_PRIO 120
58
59 /*
60 * Frequency of the spu scheduler tick. By default we do one SPU scheduler
61 * tick for every 10 CPU scheduler ticks.
62 */
63 #define SPUSCHED_TICK (10)
64
65 /*
66 * These are the 'tuning knobs' of the scheduler:
67 *
68 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
69 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
70 */
71 #define MIN_SPU_TIMESLICE max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
72 #define DEF_SPU_TIMESLICE (100 * HZ / (1000 * SPUSCHED_TICK))
73
74 #define SCALE_PRIO(x, prio) \
75 max(x * (MAX_PRIO - prio) / (NICE_WIDTH / 2), MIN_SPU_TIMESLICE)
76
77 /*
78 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
79 * [800ms ... 100ms ... 5ms]
80 *
81 * The higher a thread's priority, the bigger timeslices
82 * it gets during one round of execution. But even the lowest
83 * priority thread gets MIN_TIMESLICE worth of execution time.
84 */
spu_set_timeslice(struct spu_context * ctx)85 void spu_set_timeslice(struct spu_context *ctx)
86 {
87 if (ctx->prio < NORMAL_PRIO)
88 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
89 else
90 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
91 }
92
93 /*
94 * Update scheduling information from the owning thread.
95 */
__spu_update_sched_info(struct spu_context * ctx)96 void __spu_update_sched_info(struct spu_context *ctx)
97 {
98 /*
99 * assert that the context is not on the runqueue, so it is safe
100 * to change its scheduling parameters.
101 */
102 BUG_ON(!list_empty(&ctx->rq));
103
104 /*
105 * 32-Bit assignments are atomic on powerpc, and we don't care about
106 * memory ordering here because retrieving the controlling thread is
107 * per definition racy.
108 */
109 ctx->tid = current->pid;
110
111 /*
112 * We do our own priority calculations, so we normally want
113 * ->static_prio to start with. Unfortunately this field
114 * contains junk for threads with a realtime scheduling
115 * policy so we have to look at ->prio in this case.
116 */
117 if (rt_prio(current->prio))
118 ctx->prio = current->prio;
119 else
120 ctx->prio = current->static_prio;
121 ctx->policy = current->policy;
122
123 /*
124 * TO DO: the context may be loaded, so we may need to activate
125 * it again on a different node. But it shouldn't hurt anything
126 * to update its parameters, because we know that the scheduler
127 * is not actively looking at this field, since it is not on the
128 * runqueue. The context will be rescheduled on the proper node
129 * if it is timesliced or preempted.
130 */
131 cpumask_copy(&ctx->cpus_allowed, current->cpus_ptr);
132
133 /* Save the current cpu id for spu interrupt routing. */
134 ctx->last_ran = raw_smp_processor_id();
135 }
136
spu_update_sched_info(struct spu_context * ctx)137 void spu_update_sched_info(struct spu_context *ctx)
138 {
139 int node;
140
141 if (ctx->state == SPU_STATE_RUNNABLE) {
142 node = ctx->spu->node;
143
144 /*
145 * Take list_mutex to sync with find_victim().
146 */
147 mutex_lock(&cbe_spu_info[node].list_mutex);
148 __spu_update_sched_info(ctx);
149 mutex_unlock(&cbe_spu_info[node].list_mutex);
150 } else {
151 __spu_update_sched_info(ctx);
152 }
153 }
154
__node_allowed(struct spu_context * ctx,int node)155 static int __node_allowed(struct spu_context *ctx, int node)
156 {
157 if (nr_cpus_node(node)) {
158 const struct cpumask *mask = cpumask_of_node(node);
159
160 if (cpumask_intersects(mask, &ctx->cpus_allowed))
161 return 1;
162 }
163
164 return 0;
165 }
166
node_allowed(struct spu_context * ctx,int node)167 static int node_allowed(struct spu_context *ctx, int node)
168 {
169 int rval;
170
171 spin_lock(&spu_prio->runq_lock);
172 rval = __node_allowed(ctx, node);
173 spin_unlock(&spu_prio->runq_lock);
174
175 return rval;
176 }
177
do_notify_spus_active(void)178 void do_notify_spus_active(void)
179 {
180 int node;
181
182 /*
183 * Wake up the active spu_contexts.
184 */
185 for_each_online_node(node) {
186 struct spu *spu;
187
188 mutex_lock(&cbe_spu_info[node].list_mutex);
189 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
190 if (spu->alloc_state != SPU_FREE) {
191 struct spu_context *ctx = spu->ctx;
192 set_bit(SPU_SCHED_NOTIFY_ACTIVE,
193 &ctx->sched_flags);
194 mb();
195 wake_up_all(&ctx->stop_wq);
196 }
197 }
198 mutex_unlock(&cbe_spu_info[node].list_mutex);
199 }
200 }
201
202 /**
203 * spu_bind_context - bind spu context to physical spu
204 * @spu: physical spu to bind to
205 * @ctx: context to bind
206 */
spu_bind_context(struct spu * spu,struct spu_context * ctx)207 static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
208 {
209 spu_context_trace(spu_bind_context__enter, ctx, spu);
210
211 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
212
213 if (ctx->flags & SPU_CREATE_NOSCHED)
214 atomic_inc(&cbe_spu_info[spu->node].reserved_spus);
215
216 ctx->stats.slb_flt_base = spu->stats.slb_flt;
217 ctx->stats.class2_intr_base = spu->stats.class2_intr;
218
219 spu_associate_mm(spu, ctx->owner);
220
221 spin_lock_irq(&spu->register_lock);
222 spu->ctx = ctx;
223 spu->flags = 0;
224 ctx->spu = spu;
225 ctx->ops = &spu_hw_ops;
226 spu->pid = current->pid;
227 spu->tgid = current->tgid;
228 spu->ibox_callback = spufs_ibox_callback;
229 spu->wbox_callback = spufs_wbox_callback;
230 spu->stop_callback = spufs_stop_callback;
231 spu->mfc_callback = spufs_mfc_callback;
232 spin_unlock_irq(&spu->register_lock);
233
234 spu_unmap_mappings(ctx);
235
236 spu_switch_log_notify(spu, ctx, SWITCH_LOG_START, 0);
237 spu_restore(&ctx->csa, spu);
238 spu->timestamp = jiffies;
239 ctx->state = SPU_STATE_RUNNABLE;
240
241 spuctx_switch_state(ctx, SPU_UTIL_USER);
242 }
243
244 /*
245 * Must be used with the list_mutex held.
246 */
sched_spu(struct spu * spu)247 static inline int sched_spu(struct spu *spu)
248 {
249 BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));
250
251 return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
252 }
253
aff_merge_remaining_ctxs(struct spu_gang * gang)254 static void aff_merge_remaining_ctxs(struct spu_gang *gang)
255 {
256 struct spu_context *ctx;
257
258 list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
259 if (list_empty(&ctx->aff_list))
260 list_add(&ctx->aff_list, &gang->aff_list_head);
261 }
262 gang->aff_flags |= AFF_MERGED;
263 }
264
aff_set_offsets(struct spu_gang * gang)265 static void aff_set_offsets(struct spu_gang *gang)
266 {
267 struct spu_context *ctx;
268 int offset;
269
270 offset = -1;
271 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
272 aff_list) {
273 if (&ctx->aff_list == &gang->aff_list_head)
274 break;
275 ctx->aff_offset = offset--;
276 }
277
278 offset = 0;
279 list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
280 if (&ctx->aff_list == &gang->aff_list_head)
281 break;
282 ctx->aff_offset = offset++;
283 }
284
285 gang->aff_flags |= AFF_OFFSETS_SET;
286 }
287
aff_ref_location(struct spu_context * ctx,int mem_aff,int group_size,int lowest_offset)288 static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
289 int group_size, int lowest_offset)
290 {
291 struct spu *spu;
292 int node, n;
293
294 /*
295 * TODO: A better algorithm could be used to find a good spu to be
296 * used as reference location for the ctxs chain.
297 */
298 node = cpu_to_node(raw_smp_processor_id());
299 for (n = 0; n < MAX_NUMNODES; n++, node++) {
300 /*
301 * "available_spus" counts how many spus are not potentially
302 * going to be used by other affinity gangs whose reference
303 * context is already in place. Although this code seeks to
304 * avoid having affinity gangs with a summed amount of
305 * contexts bigger than the amount of spus in the node,
306 * this may happen sporadically. In this case, available_spus
307 * becomes negative, which is harmless.
308 */
309 int available_spus;
310
311 node = (node < MAX_NUMNODES) ? node : 0;
312 if (!node_allowed(ctx, node))
313 continue;
314
315 available_spus = 0;
316 mutex_lock(&cbe_spu_info[node].list_mutex);
317 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
318 if (spu->ctx && spu->ctx->gang && !spu->ctx->aff_offset
319 && spu->ctx->gang->aff_ref_spu)
320 available_spus -= spu->ctx->gang->contexts;
321 available_spus++;
322 }
323 if (available_spus < ctx->gang->contexts) {
324 mutex_unlock(&cbe_spu_info[node].list_mutex);
325 continue;
326 }
327
328 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
329 if ((!mem_aff || spu->has_mem_affinity) &&
330 sched_spu(spu)) {
331 mutex_unlock(&cbe_spu_info[node].list_mutex);
332 return spu;
333 }
334 }
335 mutex_unlock(&cbe_spu_info[node].list_mutex);
336 }
337 return NULL;
338 }
339
aff_set_ref_point_location(struct spu_gang * gang)340 static void aff_set_ref_point_location(struct spu_gang *gang)
341 {
342 int mem_aff, gs, lowest_offset;
343 struct spu_context *ctx;
344 struct spu *tmp;
345
346 mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
347 lowest_offset = 0;
348 gs = 0;
349
350 list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
351 gs++;
352
353 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
354 aff_list) {
355 if (&ctx->aff_list == &gang->aff_list_head)
356 break;
357 lowest_offset = ctx->aff_offset;
358 }
359
360 gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs,
361 lowest_offset);
362 }
363
ctx_location(struct spu * ref,int offset,int node)364 static struct spu *ctx_location(struct spu *ref, int offset, int node)
365 {
366 struct spu *spu;
367
368 spu = NULL;
369 if (offset >= 0) {
370 list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
371 BUG_ON(spu->node != node);
372 if (offset == 0)
373 break;
374 if (sched_spu(spu))
375 offset--;
376 }
377 } else {
378 list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
379 BUG_ON(spu->node != node);
380 if (offset == 0)
381 break;
382 if (sched_spu(spu))
383 offset++;
384 }
385 }
386
387 return spu;
388 }
389
390 /*
391 * affinity_check is called each time a context is going to be scheduled.
392 * It returns the spu ptr on which the context must run.
393 */
has_affinity(struct spu_context * ctx)394 static int has_affinity(struct spu_context *ctx)
395 {
396 struct spu_gang *gang = ctx->gang;
397
398 if (list_empty(&ctx->aff_list))
399 return 0;
400
401 if (atomic_read(&ctx->gang->aff_sched_count) == 0)
402 ctx->gang->aff_ref_spu = NULL;
403
404 if (!gang->aff_ref_spu) {
405 if (!(gang->aff_flags & AFF_MERGED))
406 aff_merge_remaining_ctxs(gang);
407 if (!(gang->aff_flags & AFF_OFFSETS_SET))
408 aff_set_offsets(gang);
409 aff_set_ref_point_location(gang);
410 }
411
412 return gang->aff_ref_spu != NULL;
413 }
414
415 /**
416 * spu_unbind_context - unbind spu context from physical spu
417 * @spu: physical spu to unbind from
418 * @ctx: context to unbind
419 */
spu_unbind_context(struct spu * spu,struct spu_context * ctx)420 static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
421 {
422 u32 status;
423
424 spu_context_trace(spu_unbind_context__enter, ctx, spu);
425
426 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
427
428 if (spu->ctx->flags & SPU_CREATE_NOSCHED)
429 atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
430
431 if (ctx->gang)
432 /*
433 * If ctx->gang->aff_sched_count is positive, SPU affinity is
434 * being considered in this gang. Using atomic_dec_if_positive
435 * allow us to skip an explicit check for affinity in this gang
436 */
437 atomic_dec_if_positive(&ctx->gang->aff_sched_count);
438
439 spu_unmap_mappings(ctx);
440 spu_save(&ctx->csa, spu);
441 spu_switch_log_notify(spu, ctx, SWITCH_LOG_STOP, 0);
442
443 spin_lock_irq(&spu->register_lock);
444 spu->timestamp = jiffies;
445 ctx->state = SPU_STATE_SAVED;
446 spu->ibox_callback = NULL;
447 spu->wbox_callback = NULL;
448 spu->stop_callback = NULL;
449 spu->mfc_callback = NULL;
450 spu->pid = 0;
451 spu->tgid = 0;
452 ctx->ops = &spu_backing_ops;
453 spu->flags = 0;
454 spu->ctx = NULL;
455 spin_unlock_irq(&spu->register_lock);
456
457 spu_associate_mm(spu, NULL);
458
459 ctx->stats.slb_flt +=
460 (spu->stats.slb_flt - ctx->stats.slb_flt_base);
461 ctx->stats.class2_intr +=
462 (spu->stats.class2_intr - ctx->stats.class2_intr_base);
463
464 /* This maps the underlying spu state to idle */
465 spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
466 ctx->spu = NULL;
467
468 if (spu_stopped(ctx, &status))
469 wake_up_all(&ctx->stop_wq);
470 }
471
472 /**
473 * spu_add_to_rq - add a context to the runqueue
474 * @ctx: context to add
475 */
__spu_add_to_rq(struct spu_context * ctx)476 static void __spu_add_to_rq(struct spu_context *ctx)
477 {
478 /*
479 * Unfortunately this code path can be called from multiple threads
480 * on behalf of a single context due to the way the problem state
481 * mmap support works.
482 *
483 * Fortunately we need to wake up all these threads at the same time
484 * and can simply skip the runqueue addition for every but the first
485 * thread getting into this codepath.
486 *
487 * It's still quite hacky, and long-term we should proxy all other
488 * threads through the owner thread so that spu_run is in control
489 * of all the scheduling activity for a given context.
490 */
491 if (list_empty(&ctx->rq)) {
492 list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
493 set_bit(ctx->prio, spu_prio->bitmap);
494 if (!spu_prio->nr_waiting++)
495 mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
496 }
497 }
498
spu_add_to_rq(struct spu_context * ctx)499 static void spu_add_to_rq(struct spu_context *ctx)
500 {
501 spin_lock(&spu_prio->runq_lock);
502 __spu_add_to_rq(ctx);
503 spin_unlock(&spu_prio->runq_lock);
504 }
505
__spu_del_from_rq(struct spu_context * ctx)506 static void __spu_del_from_rq(struct spu_context *ctx)
507 {
508 int prio = ctx->prio;
509
510 if (!list_empty(&ctx->rq)) {
511 if (!--spu_prio->nr_waiting)
512 del_timer(&spusched_timer);
513 list_del_init(&ctx->rq);
514
515 if (list_empty(&spu_prio->runq[prio]))
516 clear_bit(prio, spu_prio->bitmap);
517 }
518 }
519
spu_del_from_rq(struct spu_context * ctx)520 void spu_del_from_rq(struct spu_context *ctx)
521 {
522 spin_lock(&spu_prio->runq_lock);
523 __spu_del_from_rq(ctx);
524 spin_unlock(&spu_prio->runq_lock);
525 }
526
spu_prio_wait(struct spu_context * ctx)527 static void spu_prio_wait(struct spu_context *ctx)
528 {
529 DEFINE_WAIT(wait);
530
531 /*
532 * The caller must explicitly wait for a context to be loaded
533 * if the nosched flag is set. If NOSCHED is not set, the caller
534 * queues the context and waits for an spu event or error.
535 */
536 BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED));
537
538 spin_lock(&spu_prio->runq_lock);
539 prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
540 if (!signal_pending(current)) {
541 __spu_add_to_rq(ctx);
542 spin_unlock(&spu_prio->runq_lock);
543 mutex_unlock(&ctx->state_mutex);
544 schedule();
545 mutex_lock(&ctx->state_mutex);
546 spin_lock(&spu_prio->runq_lock);
547 __spu_del_from_rq(ctx);
548 }
549 spin_unlock(&spu_prio->runq_lock);
550 __set_current_state(TASK_RUNNING);
551 remove_wait_queue(&ctx->stop_wq, &wait);
552 }
553
spu_get_idle(struct spu_context * ctx)554 static struct spu *spu_get_idle(struct spu_context *ctx)
555 {
556 struct spu *spu, *aff_ref_spu;
557 int node, n;
558
559 spu_context_nospu_trace(spu_get_idle__enter, ctx);
560
561 if (ctx->gang) {
562 mutex_lock(&ctx->gang->aff_mutex);
563 if (has_affinity(ctx)) {
564 aff_ref_spu = ctx->gang->aff_ref_spu;
565 atomic_inc(&ctx->gang->aff_sched_count);
566 mutex_unlock(&ctx->gang->aff_mutex);
567 node = aff_ref_spu->node;
568
569 mutex_lock(&cbe_spu_info[node].list_mutex);
570 spu = ctx_location(aff_ref_spu, ctx->aff_offset, node);
571 if (spu && spu->alloc_state == SPU_FREE)
572 goto found;
573 mutex_unlock(&cbe_spu_info[node].list_mutex);
574
575 atomic_dec(&ctx->gang->aff_sched_count);
576 goto not_found;
577 }
578 mutex_unlock(&ctx->gang->aff_mutex);
579 }
580 node = cpu_to_node(raw_smp_processor_id());
581 for (n = 0; n < MAX_NUMNODES; n++, node++) {
582 node = (node < MAX_NUMNODES) ? node : 0;
583 if (!node_allowed(ctx, node))
584 continue;
585
586 mutex_lock(&cbe_spu_info[node].list_mutex);
587 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
588 if (spu->alloc_state == SPU_FREE)
589 goto found;
590 }
591 mutex_unlock(&cbe_spu_info[node].list_mutex);
592 }
593
594 not_found:
595 spu_context_nospu_trace(spu_get_idle__not_found, ctx);
596 return NULL;
597
598 found:
599 spu->alloc_state = SPU_USED;
600 mutex_unlock(&cbe_spu_info[node].list_mutex);
601 spu_context_trace(spu_get_idle__found, ctx, spu);
602 spu_init_channels(spu);
603 return spu;
604 }
605
606 /**
607 * find_victim - find a lower priority context to preempt
608 * @ctx: candidate context for running
609 *
610 * Returns the freed physical spu to run the new context on.
611 */
find_victim(struct spu_context * ctx)612 static struct spu *find_victim(struct spu_context *ctx)
613 {
614 struct spu_context *victim = NULL;
615 struct spu *spu;
616 int node, n;
617
618 spu_context_nospu_trace(spu_find_victim__enter, ctx);
619
620 /*
621 * Look for a possible preemption candidate on the local node first.
622 * If there is no candidate look at the other nodes. This isn't
623 * exactly fair, but so far the whole spu scheduler tries to keep
624 * a strong node affinity. We might want to fine-tune this in
625 * the future.
626 */
627 restart:
628 node = cpu_to_node(raw_smp_processor_id());
629 for (n = 0; n < MAX_NUMNODES; n++, node++) {
630 node = (node < MAX_NUMNODES) ? node : 0;
631 if (!node_allowed(ctx, node))
632 continue;
633
634 mutex_lock(&cbe_spu_info[node].list_mutex);
635 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
636 struct spu_context *tmp = spu->ctx;
637
638 if (tmp && tmp->prio > ctx->prio &&
639 !(tmp->flags & SPU_CREATE_NOSCHED) &&
640 (!victim || tmp->prio > victim->prio)) {
641 victim = spu->ctx;
642 }
643 }
644 if (victim)
645 get_spu_context(victim);
646 mutex_unlock(&cbe_spu_info[node].list_mutex);
647
648 if (victim) {
649 /*
650 * This nests ctx->state_mutex, but we always lock
651 * higher priority contexts before lower priority
652 * ones, so this is safe until we introduce
653 * priority inheritance schemes.
654 *
655 * XXX if the highest priority context is locked,
656 * this can loop a long time. Might be better to
657 * look at another context or give up after X retries.
658 */
659 if (!mutex_trylock(&victim->state_mutex)) {
660 put_spu_context(victim);
661 victim = NULL;
662 goto restart;
663 }
664
665 spu = victim->spu;
666 if (!spu || victim->prio <= ctx->prio) {
667 /*
668 * This race can happen because we've dropped
669 * the active list mutex. Not a problem, just
670 * restart the search.
671 */
672 mutex_unlock(&victim->state_mutex);
673 put_spu_context(victim);
674 victim = NULL;
675 goto restart;
676 }
677
678 spu_context_trace(__spu_deactivate__unload, ctx, spu);
679
680 mutex_lock(&cbe_spu_info[node].list_mutex);
681 cbe_spu_info[node].nr_active--;
682 spu_unbind_context(spu, victim);
683 mutex_unlock(&cbe_spu_info[node].list_mutex);
684
685 victim->stats.invol_ctx_switch++;
686 spu->stats.invol_ctx_switch++;
687 if (test_bit(SPU_SCHED_SPU_RUN, &victim->sched_flags))
688 spu_add_to_rq(victim);
689
690 mutex_unlock(&victim->state_mutex);
691 put_spu_context(victim);
692
693 return spu;
694 }
695 }
696
697 return NULL;
698 }
699
__spu_schedule(struct spu * spu,struct spu_context * ctx)700 static void __spu_schedule(struct spu *spu, struct spu_context *ctx)
701 {
702 int node = spu->node;
703 int success = 0;
704
705 spu_set_timeslice(ctx);
706
707 mutex_lock(&cbe_spu_info[node].list_mutex);
708 if (spu->ctx == NULL) {
709 spu_bind_context(spu, ctx);
710 cbe_spu_info[node].nr_active++;
711 spu->alloc_state = SPU_USED;
712 success = 1;
713 }
714 mutex_unlock(&cbe_spu_info[node].list_mutex);
715
716 if (success)
717 wake_up_all(&ctx->run_wq);
718 else
719 spu_add_to_rq(ctx);
720 }
721
spu_schedule(struct spu * spu,struct spu_context * ctx)722 static void spu_schedule(struct spu *spu, struct spu_context *ctx)
723 {
724 /* not a candidate for interruptible because it's called either
725 from the scheduler thread or from spu_deactivate */
726 mutex_lock(&ctx->state_mutex);
727 if (ctx->state == SPU_STATE_SAVED)
728 __spu_schedule(spu, ctx);
729 spu_release(ctx);
730 }
731
732 /**
733 * spu_unschedule - remove a context from a spu, and possibly release it.
734 * @spu: The SPU to unschedule from
735 * @ctx: The context currently scheduled on the SPU
736 * @free_spu Whether to free the SPU for other contexts
737 *
738 * Unbinds the context @ctx from the SPU @spu. If @free_spu is non-zero, the
739 * SPU is made available for other contexts (ie, may be returned by
740 * spu_get_idle). If this is zero, the caller is expected to schedule another
741 * context to this spu.
742 *
743 * Should be called with ctx->state_mutex held.
744 */
spu_unschedule(struct spu * spu,struct spu_context * ctx,int free_spu)745 static void spu_unschedule(struct spu *spu, struct spu_context *ctx,
746 int free_spu)
747 {
748 int node = spu->node;
749
750 mutex_lock(&cbe_spu_info[node].list_mutex);
751 cbe_spu_info[node].nr_active--;
752 if (free_spu)
753 spu->alloc_state = SPU_FREE;
754 spu_unbind_context(spu, ctx);
755 ctx->stats.invol_ctx_switch++;
756 spu->stats.invol_ctx_switch++;
757 mutex_unlock(&cbe_spu_info[node].list_mutex);
758 }
759
760 /**
761 * spu_activate - find a free spu for a context and execute it
762 * @ctx: spu context to schedule
763 * @flags: flags (currently ignored)
764 *
765 * Tries to find a free spu to run @ctx. If no free spu is available
766 * add the context to the runqueue so it gets woken up once an spu
767 * is available.
768 */
spu_activate(struct spu_context * ctx,unsigned long flags)769 int spu_activate(struct spu_context *ctx, unsigned long flags)
770 {
771 struct spu *spu;
772
773 /*
774 * If there are multiple threads waiting for a single context
775 * only one actually binds the context while the others will
776 * only be able to acquire the state_mutex once the context
777 * already is in runnable state.
778 */
779 if (ctx->spu)
780 return 0;
781
782 spu_activate_top:
783 if (signal_pending(current))
784 return -ERESTARTSYS;
785
786 spu = spu_get_idle(ctx);
787 /*
788 * If this is a realtime thread we try to get it running by
789 * preempting a lower priority thread.
790 */
791 if (!spu && rt_prio(ctx->prio))
792 spu = find_victim(ctx);
793 if (spu) {
794 unsigned long runcntl;
795
796 runcntl = ctx->ops->runcntl_read(ctx);
797 __spu_schedule(spu, ctx);
798 if (runcntl & SPU_RUNCNTL_RUNNABLE)
799 spuctx_switch_state(ctx, SPU_UTIL_USER);
800
801 return 0;
802 }
803
804 if (ctx->flags & SPU_CREATE_NOSCHED) {
805 spu_prio_wait(ctx);
806 goto spu_activate_top;
807 }
808
809 spu_add_to_rq(ctx);
810
811 return 0;
812 }
813
814 /**
815 * grab_runnable_context - try to find a runnable context
816 *
817 * Remove the highest priority context on the runqueue and return it
818 * to the caller. Returns %NULL if no runnable context was found.
819 */
grab_runnable_context(int prio,int node)820 static struct spu_context *grab_runnable_context(int prio, int node)
821 {
822 struct spu_context *ctx;
823 int best;
824
825 spin_lock(&spu_prio->runq_lock);
826 best = find_first_bit(spu_prio->bitmap, prio);
827 while (best < prio) {
828 struct list_head *rq = &spu_prio->runq[best];
829
830 list_for_each_entry(ctx, rq, rq) {
831 /* XXX(hch): check for affinity here as well */
832 if (__node_allowed(ctx, node)) {
833 __spu_del_from_rq(ctx);
834 goto found;
835 }
836 }
837 best++;
838 }
839 ctx = NULL;
840 found:
841 spin_unlock(&spu_prio->runq_lock);
842 return ctx;
843 }
844
__spu_deactivate(struct spu_context * ctx,int force,int max_prio)845 static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
846 {
847 struct spu *spu = ctx->spu;
848 struct spu_context *new = NULL;
849
850 if (spu) {
851 new = grab_runnable_context(max_prio, spu->node);
852 if (new || force) {
853 spu_unschedule(spu, ctx, new == NULL);
854 if (new) {
855 if (new->flags & SPU_CREATE_NOSCHED)
856 wake_up(&new->stop_wq);
857 else {
858 spu_release(ctx);
859 spu_schedule(spu, new);
860 /* this one can't easily be made
861 interruptible */
862 mutex_lock(&ctx->state_mutex);
863 }
864 }
865 }
866 }
867
868 return new != NULL;
869 }
870
871 /**
872 * spu_deactivate - unbind a context from it's physical spu
873 * @ctx: spu context to unbind
874 *
875 * Unbind @ctx from the physical spu it is running on and schedule
876 * the highest priority context to run on the freed physical spu.
877 */
spu_deactivate(struct spu_context * ctx)878 void spu_deactivate(struct spu_context *ctx)
879 {
880 spu_context_nospu_trace(spu_deactivate__enter, ctx);
881 __spu_deactivate(ctx, 1, MAX_PRIO);
882 }
883
884 /**
885 * spu_yield - yield a physical spu if others are waiting
886 * @ctx: spu context to yield
887 *
888 * Check if there is a higher priority context waiting and if yes
889 * unbind @ctx from the physical spu and schedule the highest
890 * priority context to run on the freed physical spu instead.
891 */
spu_yield(struct spu_context * ctx)892 void spu_yield(struct spu_context *ctx)
893 {
894 spu_context_nospu_trace(spu_yield__enter, ctx);
895 if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
896 mutex_lock(&ctx->state_mutex);
897 __spu_deactivate(ctx, 0, MAX_PRIO);
898 mutex_unlock(&ctx->state_mutex);
899 }
900 }
901
spusched_tick(struct spu_context * ctx)902 static noinline void spusched_tick(struct spu_context *ctx)
903 {
904 struct spu_context *new = NULL;
905 struct spu *spu = NULL;
906
907 if (spu_acquire(ctx))
908 BUG(); /* a kernel thread never has signals pending */
909
910 if (ctx->state != SPU_STATE_RUNNABLE)
911 goto out;
912 if (ctx->flags & SPU_CREATE_NOSCHED)
913 goto out;
914 if (ctx->policy == SCHED_FIFO)
915 goto out;
916
917 if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
918 goto out;
919
920 spu = ctx->spu;
921
922 spu_context_trace(spusched_tick__preempt, ctx, spu);
923
924 new = grab_runnable_context(ctx->prio + 1, spu->node);
925 if (new) {
926 spu_unschedule(spu, ctx, 0);
927 if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
928 spu_add_to_rq(ctx);
929 } else {
930 spu_context_nospu_trace(spusched_tick__newslice, ctx);
931 if (!ctx->time_slice)
932 ctx->time_slice++;
933 }
934 out:
935 spu_release(ctx);
936
937 if (new)
938 spu_schedule(spu, new);
939 }
940
941 /**
942 * count_active_contexts - count nr of active tasks
943 *
944 * Return the number of tasks currently running or waiting to run.
945 *
946 * Note that we don't take runq_lock / list_mutex here. Reading
947 * a single 32bit value is atomic on powerpc, and we don't care
948 * about memory ordering issues here.
949 */
count_active_contexts(void)950 static unsigned long count_active_contexts(void)
951 {
952 int nr_active = 0, node;
953
954 for (node = 0; node < MAX_NUMNODES; node++)
955 nr_active += cbe_spu_info[node].nr_active;
956 nr_active += spu_prio->nr_waiting;
957
958 return nr_active;
959 }
960
961 /**
962 * spu_calc_load - update the avenrun load estimates.
963 *
964 * No locking against reading these values from userspace, as for
965 * the CPU loadavg code.
966 */
spu_calc_load(void)967 static void spu_calc_load(void)
968 {
969 unsigned long active_tasks; /* fixed-point */
970
971 active_tasks = count_active_contexts() * FIXED_1;
972 spu_avenrun[0] = calc_load(spu_avenrun[0], EXP_1, active_tasks);
973 spu_avenrun[1] = calc_load(spu_avenrun[1], EXP_5, active_tasks);
974 spu_avenrun[2] = calc_load(spu_avenrun[2], EXP_15, active_tasks);
975 }
976
spusched_wake(struct timer_list * unused)977 static void spusched_wake(struct timer_list *unused)
978 {
979 mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
980 wake_up_process(spusched_task);
981 }
982
spuloadavg_wake(struct timer_list * unused)983 static void spuloadavg_wake(struct timer_list *unused)
984 {
985 mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ);
986 spu_calc_load();
987 }
988
spusched_thread(void * unused)989 static int spusched_thread(void *unused)
990 {
991 struct spu *spu;
992 int node;
993
994 while (!kthread_should_stop()) {
995 set_current_state(TASK_INTERRUPTIBLE);
996 schedule();
997 for (node = 0; node < MAX_NUMNODES; node++) {
998 struct mutex *mtx = &cbe_spu_info[node].list_mutex;
999
1000 mutex_lock(mtx);
1001 list_for_each_entry(spu, &cbe_spu_info[node].spus,
1002 cbe_list) {
1003 struct spu_context *ctx = spu->ctx;
1004
1005 if (ctx) {
1006 get_spu_context(ctx);
1007 mutex_unlock(mtx);
1008 spusched_tick(ctx);
1009 mutex_lock(mtx);
1010 put_spu_context(ctx);
1011 }
1012 }
1013 mutex_unlock(mtx);
1014 }
1015 }
1016
1017 return 0;
1018 }
1019
spuctx_switch_state(struct spu_context * ctx,enum spu_utilization_state new_state)1020 void spuctx_switch_state(struct spu_context *ctx,
1021 enum spu_utilization_state new_state)
1022 {
1023 unsigned long long curtime;
1024 signed long long delta;
1025 struct spu *spu;
1026 enum spu_utilization_state old_state;
1027 int node;
1028
1029 curtime = ktime_get_ns();
1030 delta = curtime - ctx->stats.tstamp;
1031
1032 WARN_ON(!mutex_is_locked(&ctx->state_mutex));
1033 WARN_ON(delta < 0);
1034
1035 spu = ctx->spu;
1036 old_state = ctx->stats.util_state;
1037 ctx->stats.util_state = new_state;
1038 ctx->stats.tstamp = curtime;
1039
1040 /*
1041 * Update the physical SPU utilization statistics.
1042 */
1043 if (spu) {
1044 ctx->stats.times[old_state] += delta;
1045 spu->stats.times[old_state] += delta;
1046 spu->stats.util_state = new_state;
1047 spu->stats.tstamp = curtime;
1048 node = spu->node;
1049 if (old_state == SPU_UTIL_USER)
1050 atomic_dec(&cbe_spu_info[node].busy_spus);
1051 if (new_state == SPU_UTIL_USER)
1052 atomic_inc(&cbe_spu_info[node].busy_spus);
1053 }
1054 }
1055
show_spu_loadavg(struct seq_file * s,void * private)1056 static int show_spu_loadavg(struct seq_file *s, void *private)
1057 {
1058 int a, b, c;
1059
1060 a = spu_avenrun[0] + (FIXED_1/200);
1061 b = spu_avenrun[1] + (FIXED_1/200);
1062 c = spu_avenrun[2] + (FIXED_1/200);
1063
1064 /*
1065 * Note that last_pid doesn't really make much sense for the
1066 * SPU loadavg (it even seems very odd on the CPU side...),
1067 * but we include it here to have a 100% compatible interface.
1068 */
1069 seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
1070 LOAD_INT(a), LOAD_FRAC(a),
1071 LOAD_INT(b), LOAD_FRAC(b),
1072 LOAD_INT(c), LOAD_FRAC(c),
1073 count_active_contexts(),
1074 atomic_read(&nr_spu_contexts),
1075 idr_get_cursor(&task_active_pid_ns(current)->idr) - 1);
1076 return 0;
1077 };
1078
spu_sched_init(void)1079 int __init spu_sched_init(void)
1080 {
1081 struct proc_dir_entry *entry;
1082 int err = -ENOMEM, i;
1083
1084 spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
1085 if (!spu_prio)
1086 goto out;
1087
1088 for (i = 0; i < MAX_PRIO; i++) {
1089 INIT_LIST_HEAD(&spu_prio->runq[i]);
1090 __clear_bit(i, spu_prio->bitmap);
1091 }
1092 spin_lock_init(&spu_prio->runq_lock);
1093
1094 timer_setup(&spusched_timer, spusched_wake, 0);
1095 timer_setup(&spuloadavg_timer, spuloadavg_wake, 0);
1096
1097 spusched_task = kthread_run(spusched_thread, NULL, "spusched");
1098 if (IS_ERR(spusched_task)) {
1099 err = PTR_ERR(spusched_task);
1100 goto out_free_spu_prio;
1101 }
1102
1103 mod_timer(&spuloadavg_timer, 0);
1104
1105 entry = proc_create_single("spu_loadavg", 0, NULL, show_spu_loadavg);
1106 if (!entry)
1107 goto out_stop_kthread;
1108
1109 pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
1110 SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
1111 return 0;
1112
1113 out_stop_kthread:
1114 kthread_stop(spusched_task);
1115 out_free_spu_prio:
1116 kfree(spu_prio);
1117 out:
1118 return err;
1119 }
1120
spu_sched_exit(void)1121 void spu_sched_exit(void)
1122 {
1123 struct spu *spu;
1124 int node;
1125
1126 remove_proc_entry("spu_loadavg", NULL);
1127
1128 del_timer_sync(&spusched_timer);
1129 del_timer_sync(&spuloadavg_timer);
1130 kthread_stop(spusched_task);
1131
1132 for (node = 0; node < MAX_NUMNODES; node++) {
1133 mutex_lock(&cbe_spu_info[node].list_mutex);
1134 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
1135 if (spu->alloc_state != SPU_FREE)
1136 spu->alloc_state = SPU_FREE;
1137 mutex_unlock(&cbe_spu_info[node].list_mutex);
1138 }
1139 kfree(spu_prio);
1140 }
1141