1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Kernel timekeeping code and accessor functions. Based on code from
4 * timer.c, moved in commit 8524070b7982.
5 */
6 #include <linux/timekeeper_internal.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/percpu.h>
10 #include <linux/init.h>
11 #include <linux/mm.h>
12 #include <linux/nmi.h>
13 #include <linux/sched.h>
14 #include <linux/sched/loadavg.h>
15 #include <linux/sched/clock.h>
16 #include <linux/syscore_ops.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/timex.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
23 #include <linux/pvclock_gtod.h>
24 #include <linux/compiler.h>
25 #include <linux/audit.h>
26 #include <linux/random.h>
27 #include <trace/hooks/timekeeping.h>
28
29 #include "tick-internal.h"
30 #include "ntp_internal.h"
31 #include "timekeeping_internal.h"
32
33 #define TK_CLEAR_NTP (1 << 0)
34 #define TK_MIRROR (1 << 1)
35 #define TK_CLOCK_WAS_SET (1 << 2)
36
37 enum timekeeping_adv_mode {
38 /* Update timekeeper when a tick has passed */
39 TK_ADV_TICK,
40
41 /* Update timekeeper on a direct frequency change */
42 TK_ADV_FREQ
43 };
44
45 DEFINE_RAW_SPINLOCK(timekeeper_lock);
46
47 /*
48 * The most important data for readout fits into a single 64 byte
49 * cache line.
50 */
51 static struct {
52 seqcount_raw_spinlock_t seq;
53 struct timekeeper timekeeper;
54 } tk_core ____cacheline_aligned = {
55 .seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock),
56 };
57
58 static struct timekeeper shadow_timekeeper;
59
60 /* flag for if timekeeping is suspended */
61 int __read_mostly timekeeping_suspended;
62
63 /**
64 * struct tk_fast - NMI safe timekeeper
65 * @seq: Sequence counter for protecting updates. The lowest bit
66 * is the index for the tk_read_base array
67 * @base: tk_read_base array. Access is indexed by the lowest bit of
68 * @seq.
69 *
70 * See @update_fast_timekeeper() below.
71 */
72 struct tk_fast {
73 seqcount_latch_t seq;
74 struct tk_read_base base[2];
75 };
76
77 /* Suspend-time cycles value for halted fast timekeeper. */
78 static u64 cycles_at_suspend;
79
dummy_clock_read(struct clocksource * cs)80 static u64 dummy_clock_read(struct clocksource *cs)
81 {
82 if (timekeeping_suspended)
83 return cycles_at_suspend;
84 return local_clock();
85 }
86
87 static struct clocksource dummy_clock = {
88 .read = dummy_clock_read,
89 };
90
91 /*
92 * Boot time initialization which allows local_clock() to be utilized
93 * during early boot when clocksources are not available. local_clock()
94 * returns nanoseconds already so no conversion is required, hence mult=1
95 * and shift=0. When the first proper clocksource is installed then
96 * the fast time keepers are updated with the correct values.
97 */
98 #define FAST_TK_INIT \
99 { \
100 .clock = &dummy_clock, \
101 .mask = CLOCKSOURCE_MASK(64), \
102 .mult = 1, \
103 .shift = 0, \
104 }
105
106 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
107 .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq),
108 .base[0] = FAST_TK_INIT,
109 .base[1] = FAST_TK_INIT,
110 };
111
112 static struct tk_fast tk_fast_raw ____cacheline_aligned = {
113 .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq),
114 .base[0] = FAST_TK_INIT,
115 .base[1] = FAST_TK_INIT,
116 };
117
tk_normalize_xtime(struct timekeeper * tk)118 static inline void tk_normalize_xtime(struct timekeeper *tk)
119 {
120 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
121 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
122 tk->xtime_sec++;
123 }
124 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
125 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
126 tk->raw_sec++;
127 }
128 }
129
tk_xtime(const struct timekeeper * tk)130 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
131 {
132 struct timespec64 ts;
133
134 ts.tv_sec = tk->xtime_sec;
135 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
136 return ts;
137 }
138
tk_set_xtime(struct timekeeper * tk,const struct timespec64 * ts)139 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
140 {
141 tk->xtime_sec = ts->tv_sec;
142 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
143 }
144
tk_xtime_add(struct timekeeper * tk,const struct timespec64 * ts)145 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
146 {
147 tk->xtime_sec += ts->tv_sec;
148 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
149 tk_normalize_xtime(tk);
150 }
151
tk_set_wall_to_mono(struct timekeeper * tk,struct timespec64 wtm)152 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
153 {
154 struct timespec64 tmp;
155
156 /*
157 * Verify consistency of: offset_real = -wall_to_monotonic
158 * before modifying anything
159 */
160 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
161 -tk->wall_to_monotonic.tv_nsec);
162 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
163 tk->wall_to_monotonic = wtm;
164 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
165 tk->offs_real = timespec64_to_ktime(tmp);
166 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
167 }
168
tk_update_sleep_time(struct timekeeper * tk,ktime_t delta)169 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
170 {
171 tk->offs_boot = ktime_add(tk->offs_boot, delta);
172 /*
173 * Timespec representation for VDSO update to avoid 64bit division
174 * on every update.
175 */
176 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
177 }
178
179 /*
180 * tk_clock_read - atomic clocksource read() helper
181 *
182 * This helper is necessary to use in the read paths because, while the
183 * seqcount ensures we don't return a bad value while structures are updated,
184 * it doesn't protect from potential crashes. There is the possibility that
185 * the tkr's clocksource may change between the read reference, and the
186 * clock reference passed to the read function. This can cause crashes if
187 * the wrong clocksource is passed to the wrong read function.
188 * This isn't necessary to use when holding the timekeeper_lock or doing
189 * a read of the fast-timekeeper tkrs (which is protected by its own locking
190 * and update logic).
191 */
tk_clock_read(const struct tk_read_base * tkr)192 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
193 {
194 struct clocksource *clock = READ_ONCE(tkr->clock);
195
196 return clock->read(clock);
197 }
198
199 #ifdef CONFIG_DEBUG_TIMEKEEPING
200 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
201
timekeeping_check_update(struct timekeeper * tk,u64 offset)202 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
203 {
204
205 u64 max_cycles = tk->tkr_mono.clock->max_cycles;
206 const char *name = tk->tkr_mono.clock->name;
207
208 if (offset > max_cycles) {
209 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
210 offset, name, max_cycles);
211 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
212 } else {
213 if (offset > (max_cycles >> 1)) {
214 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
215 offset, name, max_cycles >> 1);
216 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
217 }
218 }
219
220 if (tk->underflow_seen) {
221 if (jiffies - tk->last_warning > WARNING_FREQ) {
222 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
223 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
224 printk_deferred(" Your kernel is probably still fine.\n");
225 tk->last_warning = jiffies;
226 }
227 tk->underflow_seen = 0;
228 }
229
230 if (tk->overflow_seen) {
231 if (jiffies - tk->last_warning > WARNING_FREQ) {
232 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
233 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
234 printk_deferred(" Your kernel is probably still fine.\n");
235 tk->last_warning = jiffies;
236 }
237 tk->overflow_seen = 0;
238 }
239 }
240
timekeeping_get_delta(const struct tk_read_base * tkr)241 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
242 {
243 struct timekeeper *tk = &tk_core.timekeeper;
244 u64 now, last, mask, max, delta;
245 unsigned int seq;
246
247 /*
248 * Since we're called holding a seqcount, the data may shift
249 * under us while we're doing the calculation. This can cause
250 * false positives, since we'd note a problem but throw the
251 * results away. So nest another seqcount here to atomically
252 * grab the points we are checking with.
253 */
254 do {
255 seq = read_seqcount_begin(&tk_core.seq);
256 now = tk_clock_read(tkr);
257 last = tkr->cycle_last;
258 mask = tkr->mask;
259 max = tkr->clock->max_cycles;
260 } while (read_seqcount_retry(&tk_core.seq, seq));
261
262 delta = clocksource_delta(now, last, mask);
263
264 /*
265 * Try to catch underflows by checking if we are seeing small
266 * mask-relative negative values.
267 */
268 if (unlikely((~delta & mask) < (mask >> 3))) {
269 tk->underflow_seen = 1;
270 delta = 0;
271 }
272
273 /* Cap delta value to the max_cycles values to avoid mult overflows */
274 if (unlikely(delta > max)) {
275 tk->overflow_seen = 1;
276 delta = tkr->clock->max_cycles;
277 }
278
279 return delta;
280 }
281 #else
timekeeping_check_update(struct timekeeper * tk,u64 offset)282 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
283 {
284 }
timekeeping_get_delta(const struct tk_read_base * tkr)285 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
286 {
287 u64 cycle_now, delta;
288
289 /* read clocksource */
290 cycle_now = tk_clock_read(tkr);
291
292 /* calculate the delta since the last update_wall_time */
293 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
294
295 return delta;
296 }
297 #endif
298
299 /**
300 * tk_setup_internals - Set up internals to use clocksource clock.
301 *
302 * @tk: The target timekeeper to setup.
303 * @clock: Pointer to clocksource.
304 *
305 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
306 * pair and interval request.
307 *
308 * Unless you're the timekeeping code, you should not be using this!
309 */
tk_setup_internals(struct timekeeper * tk,struct clocksource * clock)310 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
311 {
312 u64 interval;
313 u64 tmp, ntpinterval;
314 struct clocksource *old_clock;
315
316 ++tk->cs_was_changed_seq;
317 old_clock = tk->tkr_mono.clock;
318 tk->tkr_mono.clock = clock;
319 tk->tkr_mono.mask = clock->mask;
320 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
321
322 tk->tkr_raw.clock = clock;
323 tk->tkr_raw.mask = clock->mask;
324 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
325
326 /* Do the ns -> cycle conversion first, using original mult */
327 tmp = NTP_INTERVAL_LENGTH;
328 tmp <<= clock->shift;
329 ntpinterval = tmp;
330 tmp += clock->mult/2;
331 do_div(tmp, clock->mult);
332 if (tmp == 0)
333 tmp = 1;
334
335 interval = (u64) tmp;
336 tk->cycle_interval = interval;
337
338 /* Go back from cycles -> shifted ns */
339 tk->xtime_interval = interval * clock->mult;
340 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
341 tk->raw_interval = interval * clock->mult;
342
343 /* if changing clocks, convert xtime_nsec shift units */
344 if (old_clock) {
345 int shift_change = clock->shift - old_clock->shift;
346 if (shift_change < 0) {
347 tk->tkr_mono.xtime_nsec >>= -shift_change;
348 tk->tkr_raw.xtime_nsec >>= -shift_change;
349 } else {
350 tk->tkr_mono.xtime_nsec <<= shift_change;
351 tk->tkr_raw.xtime_nsec <<= shift_change;
352 }
353 }
354
355 tk->tkr_mono.shift = clock->shift;
356 tk->tkr_raw.shift = clock->shift;
357
358 tk->ntp_error = 0;
359 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
360 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
361
362 /*
363 * The timekeeper keeps its own mult values for the currently
364 * active clocksource. These value will be adjusted via NTP
365 * to counteract clock drifting.
366 */
367 tk->tkr_mono.mult = clock->mult;
368 tk->tkr_raw.mult = clock->mult;
369 tk->ntp_err_mult = 0;
370 tk->skip_second_overflow = 0;
371 }
372
373 /* Timekeeper helper functions. */
374
timekeeping_delta_to_ns(const struct tk_read_base * tkr,u64 delta)375 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
376 {
377 u64 nsec;
378
379 nsec = delta * tkr->mult + tkr->xtime_nsec;
380 nsec >>= tkr->shift;
381
382 return nsec;
383 }
384
timekeeping_get_ns(const struct tk_read_base * tkr)385 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
386 {
387 u64 delta;
388
389 delta = timekeeping_get_delta(tkr);
390 return timekeeping_delta_to_ns(tkr, delta);
391 }
392
timekeeping_cycles_to_ns(const struct tk_read_base * tkr,u64 cycles)393 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
394 {
395 u64 delta;
396
397 /* calculate the delta since the last update_wall_time */
398 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
399 return timekeeping_delta_to_ns(tkr, delta);
400 }
401
402 /**
403 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
404 * @tkr: Timekeeping readout base from which we take the update
405 * @tkf: Pointer to NMI safe timekeeper
406 *
407 * We want to use this from any context including NMI and tracing /
408 * instrumenting the timekeeping code itself.
409 *
410 * Employ the latch technique; see @raw_write_seqcount_latch.
411 *
412 * So if a NMI hits the update of base[0] then it will use base[1]
413 * which is still consistent. In the worst case this can result is a
414 * slightly wrong timestamp (a few nanoseconds). See
415 * @ktime_get_mono_fast_ns.
416 */
update_fast_timekeeper(const struct tk_read_base * tkr,struct tk_fast * tkf)417 static void update_fast_timekeeper(const struct tk_read_base *tkr,
418 struct tk_fast *tkf)
419 {
420 struct tk_read_base *base = tkf->base;
421
422 /* Force readers off to base[1] */
423 raw_write_seqcount_latch(&tkf->seq);
424
425 /* Update base[0] */
426 memcpy(base, tkr, sizeof(*base));
427
428 /* Force readers back to base[0] */
429 raw_write_seqcount_latch(&tkf->seq);
430
431 /* Update base[1] */
432 memcpy(base + 1, base, sizeof(*base));
433 }
434
__ktime_get_fast_ns(struct tk_fast * tkf)435 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
436 {
437 struct tk_read_base *tkr;
438 unsigned int seq;
439 u64 now;
440
441 do {
442 seq = raw_read_seqcount_latch(&tkf->seq);
443 tkr = tkf->base + (seq & 0x01);
444 now = ktime_to_ns(tkr->base);
445
446 now += timekeeping_delta_to_ns(tkr,
447 clocksource_delta(
448 tk_clock_read(tkr),
449 tkr->cycle_last,
450 tkr->mask));
451 } while (read_seqcount_latch_retry(&tkf->seq, seq));
452
453 return now;
454 }
455
456 /**
457 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
458 *
459 * This timestamp is not guaranteed to be monotonic across an update.
460 * The timestamp is calculated by:
461 *
462 * now = base_mono + clock_delta * slope
463 *
464 * So if the update lowers the slope, readers who are forced to the
465 * not yet updated second array are still using the old steeper slope.
466 *
467 * tmono
468 * ^
469 * | o n
470 * | o n
471 * | u
472 * | o
473 * |o
474 * |12345678---> reader order
475 *
476 * o = old slope
477 * u = update
478 * n = new slope
479 *
480 * So reader 6 will observe time going backwards versus reader 5.
481 *
482 * While other CPUs are likely to be able to observe that, the only way
483 * for a CPU local observation is when an NMI hits in the middle of
484 * the update. Timestamps taken from that NMI context might be ahead
485 * of the following timestamps. Callers need to be aware of that and
486 * deal with it.
487 */
ktime_get_mono_fast_ns(void)488 u64 notrace ktime_get_mono_fast_ns(void)
489 {
490 return __ktime_get_fast_ns(&tk_fast_mono);
491 }
492 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
493
494 /**
495 * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw
496 *
497 * Contrary to ktime_get_mono_fast_ns() this is always correct because the
498 * conversion factor is not affected by NTP/PTP correction.
499 */
ktime_get_raw_fast_ns(void)500 u64 notrace ktime_get_raw_fast_ns(void)
501 {
502 return __ktime_get_fast_ns(&tk_fast_raw);
503 }
504 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
505
506 /**
507 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
508 *
509 * To keep it NMI safe since we're accessing from tracing, we're not using a
510 * separate timekeeper with updates to monotonic clock and boot offset
511 * protected with seqcounts. This has the following minor side effects:
512 *
513 * (1) Its possible that a timestamp be taken after the boot offset is updated
514 * but before the timekeeper is updated. If this happens, the new boot offset
515 * is added to the old timekeeping making the clock appear to update slightly
516 * earlier:
517 * CPU 0 CPU 1
518 * timekeeping_inject_sleeptime64()
519 * __timekeeping_inject_sleeptime(tk, delta);
520 * timestamp();
521 * timekeeping_update(tk, TK_CLEAR_NTP...);
522 *
523 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
524 * partially updated. Since the tk->offs_boot update is a rare event, this
525 * should be a rare occurrence which postprocessing should be able to handle.
526 *
527 * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns()
528 * apply as well.
529 */
ktime_get_boot_fast_ns(void)530 u64 notrace ktime_get_boot_fast_ns(void)
531 {
532 struct timekeeper *tk = &tk_core.timekeeper;
533
534 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
535 }
536 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
537
__ktime_get_real_fast(struct tk_fast * tkf,u64 * mono)538 static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono)
539 {
540 struct tk_read_base *tkr;
541 u64 basem, baser, delta;
542 unsigned int seq;
543
544 do {
545 seq = raw_read_seqcount_latch(&tkf->seq);
546 tkr = tkf->base + (seq & 0x01);
547 basem = ktime_to_ns(tkr->base);
548 baser = ktime_to_ns(tkr->base_real);
549
550 delta = timekeeping_delta_to_ns(tkr,
551 clocksource_delta(tk_clock_read(tkr),
552 tkr->cycle_last, tkr->mask));
553 } while (read_seqcount_latch_retry(&tkf->seq, seq));
554
555 if (mono)
556 *mono = basem + delta;
557 return baser + delta;
558 }
559
560 /**
561 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
562 *
563 * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering.
564 */
ktime_get_real_fast_ns(void)565 u64 ktime_get_real_fast_ns(void)
566 {
567 return __ktime_get_real_fast(&tk_fast_mono, NULL);
568 }
569 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
570
571 /**
572 * ktime_get_fast_timestamps: - NMI safe timestamps
573 * @snapshot: Pointer to timestamp storage
574 *
575 * Stores clock monotonic, boottime and realtime timestamps.
576 *
577 * Boot time is a racy access on 32bit systems if the sleep time injection
578 * happens late during resume and not in timekeeping_resume(). That could
579 * be avoided by expanding struct tk_read_base with boot offset for 32bit
580 * and adding more overhead to the update. As this is a hard to observe
581 * once per resume event which can be filtered with reasonable effort using
582 * the accurate mono/real timestamps, it's probably not worth the trouble.
583 *
584 * Aside of that it might be possible on 32 and 64 bit to observe the
585 * following when the sleep time injection happens late:
586 *
587 * CPU 0 CPU 1
588 * timekeeping_resume()
589 * ktime_get_fast_timestamps()
590 * mono, real = __ktime_get_real_fast()
591 * inject_sleep_time()
592 * update boot offset
593 * boot = mono + bootoffset;
594 *
595 * That means that boot time already has the sleep time adjustment, but
596 * real time does not. On the next readout both are in sync again.
597 *
598 * Preventing this for 64bit is not really feasible without destroying the
599 * careful cache layout of the timekeeper because the sequence count and
600 * struct tk_read_base would then need two cache lines instead of one.
601 *
602 * Access to the time keeper clock source is disabled across the innermost
603 * steps of suspend/resume. The accessors still work, but the timestamps
604 * are frozen until time keeping is resumed which happens very early.
605 *
606 * For regular suspend/resume there is no observable difference vs. sched
607 * clock, but it might affect some of the nasty low level debug printks.
608 *
609 * OTOH, access to sched clock is not guaranteed across suspend/resume on
610 * all systems either so it depends on the hardware in use.
611 *
612 * If that turns out to be a real problem then this could be mitigated by
613 * using sched clock in a similar way as during early boot. But it's not as
614 * trivial as on early boot because it needs some careful protection
615 * against the clock monotonic timestamp jumping backwards on resume.
616 */
ktime_get_fast_timestamps(struct ktime_timestamps * snapshot)617 void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot)
618 {
619 struct timekeeper *tk = &tk_core.timekeeper;
620
621 snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono);
622 snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot));
623 }
624
625 /**
626 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
627 * @tk: Timekeeper to snapshot.
628 *
629 * It generally is unsafe to access the clocksource after timekeeping has been
630 * suspended, so take a snapshot of the readout base of @tk and use it as the
631 * fast timekeeper's readout base while suspended. It will return the same
632 * number of cycles every time until timekeeping is resumed at which time the
633 * proper readout base for the fast timekeeper will be restored automatically.
634 */
halt_fast_timekeeper(const struct timekeeper * tk)635 static void halt_fast_timekeeper(const struct timekeeper *tk)
636 {
637 static struct tk_read_base tkr_dummy;
638 const struct tk_read_base *tkr = &tk->tkr_mono;
639
640 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
641 cycles_at_suspend = tk_clock_read(tkr);
642 tkr_dummy.clock = &dummy_clock;
643 tkr_dummy.base_real = tkr->base + tk->offs_real;
644 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
645
646 tkr = &tk->tkr_raw;
647 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
648 tkr_dummy.clock = &dummy_clock;
649 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
650 }
651
652 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
653
update_pvclock_gtod(struct timekeeper * tk,bool was_set)654 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
655 {
656 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
657 }
658
659 /**
660 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
661 * @nb: Pointer to the notifier block to register
662 */
pvclock_gtod_register_notifier(struct notifier_block * nb)663 int pvclock_gtod_register_notifier(struct notifier_block *nb)
664 {
665 struct timekeeper *tk = &tk_core.timekeeper;
666 unsigned long flags;
667 int ret;
668
669 raw_spin_lock_irqsave(&timekeeper_lock, flags);
670 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
671 update_pvclock_gtod(tk, true);
672 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
673
674 return ret;
675 }
676 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
677
678 /**
679 * pvclock_gtod_unregister_notifier - unregister a pvclock
680 * timedata update listener
681 * @nb: Pointer to the notifier block to unregister
682 */
pvclock_gtod_unregister_notifier(struct notifier_block * nb)683 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
684 {
685 unsigned long flags;
686 int ret;
687
688 raw_spin_lock_irqsave(&timekeeper_lock, flags);
689 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
690 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
691
692 return ret;
693 }
694 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
695
696 /*
697 * tk_update_leap_state - helper to update the next_leap_ktime
698 */
tk_update_leap_state(struct timekeeper * tk)699 static inline void tk_update_leap_state(struct timekeeper *tk)
700 {
701 tk->next_leap_ktime = ntp_get_next_leap();
702 if (tk->next_leap_ktime != KTIME_MAX)
703 /* Convert to monotonic time */
704 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
705 }
706
707 /*
708 * Update the ktime_t based scalar nsec members of the timekeeper
709 */
tk_update_ktime_data(struct timekeeper * tk)710 static inline void tk_update_ktime_data(struct timekeeper *tk)
711 {
712 u64 seconds;
713 u32 nsec;
714
715 /*
716 * The xtime based monotonic readout is:
717 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
718 * The ktime based monotonic readout is:
719 * nsec = base_mono + now();
720 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
721 */
722 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
723 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
724 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
725
726 /*
727 * The sum of the nanoseconds portions of xtime and
728 * wall_to_monotonic can be greater/equal one second. Take
729 * this into account before updating tk->ktime_sec.
730 */
731 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
732 if (nsec >= NSEC_PER_SEC)
733 seconds++;
734 tk->ktime_sec = seconds;
735
736 /* Update the monotonic raw base */
737 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
738 }
739
740 /* must hold timekeeper_lock */
timekeeping_update(struct timekeeper * tk,unsigned int action)741 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
742 {
743 if (action & TK_CLEAR_NTP) {
744 tk->ntp_error = 0;
745 ntp_clear();
746 }
747
748 tk_update_leap_state(tk);
749 tk_update_ktime_data(tk);
750
751 update_vsyscall(tk);
752 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
753
754 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
755 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
756 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
757
758 if (action & TK_CLOCK_WAS_SET)
759 tk->clock_was_set_seq++;
760 /*
761 * The mirroring of the data to the shadow-timekeeper needs
762 * to happen last here to ensure we don't over-write the
763 * timekeeper structure on the next update with stale data
764 */
765 if (action & TK_MIRROR)
766 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
767 sizeof(tk_core.timekeeper));
768 }
769
770 /**
771 * timekeeping_forward_now - update clock to the current time
772 * @tk: Pointer to the timekeeper to update
773 *
774 * Forward the current clock to update its state since the last call to
775 * update_wall_time(). This is useful before significant clock changes,
776 * as it avoids having to deal with this time offset explicitly.
777 */
timekeeping_forward_now(struct timekeeper * tk)778 static void timekeeping_forward_now(struct timekeeper *tk)
779 {
780 u64 cycle_now, delta;
781
782 cycle_now = tk_clock_read(&tk->tkr_mono);
783 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
784 tk->tkr_mono.cycle_last = cycle_now;
785 tk->tkr_raw.cycle_last = cycle_now;
786
787 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
788 tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
789
790 tk_normalize_xtime(tk);
791 }
792
793 /**
794 * ktime_get_real_ts64 - Returns the time of day in a timespec64.
795 * @ts: pointer to the timespec to be set
796 *
797 * Returns the time of day in a timespec64 (WARN if suspended).
798 */
ktime_get_real_ts64(struct timespec64 * ts)799 void ktime_get_real_ts64(struct timespec64 *ts)
800 {
801 struct timekeeper *tk = &tk_core.timekeeper;
802 unsigned int seq;
803 u64 nsecs;
804
805 WARN_ON(timekeeping_suspended);
806
807 do {
808 seq = read_seqcount_begin(&tk_core.seq);
809
810 ts->tv_sec = tk->xtime_sec;
811 nsecs = timekeeping_get_ns(&tk->tkr_mono);
812
813 } while (read_seqcount_retry(&tk_core.seq, seq));
814
815 ts->tv_nsec = 0;
816 timespec64_add_ns(ts, nsecs);
817 }
818 EXPORT_SYMBOL(ktime_get_real_ts64);
819
ktime_get(void)820 ktime_t ktime_get(void)
821 {
822 struct timekeeper *tk = &tk_core.timekeeper;
823 unsigned int seq;
824 ktime_t base;
825 u64 nsecs;
826
827 WARN_ON(timekeeping_suspended);
828
829 do {
830 seq = read_seqcount_begin(&tk_core.seq);
831 base = tk->tkr_mono.base;
832 nsecs = timekeeping_get_ns(&tk->tkr_mono);
833
834 } while (read_seqcount_retry(&tk_core.seq, seq));
835
836 return ktime_add_ns(base, nsecs);
837 }
838 EXPORT_SYMBOL_GPL(ktime_get);
839
ktime_get_resolution_ns(void)840 u32 ktime_get_resolution_ns(void)
841 {
842 struct timekeeper *tk = &tk_core.timekeeper;
843 unsigned int seq;
844 u32 nsecs;
845
846 WARN_ON(timekeeping_suspended);
847
848 do {
849 seq = read_seqcount_begin(&tk_core.seq);
850 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
851 } while (read_seqcount_retry(&tk_core.seq, seq));
852
853 return nsecs;
854 }
855 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
856
857 static ktime_t *offsets[TK_OFFS_MAX] = {
858 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
859 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
860 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
861 };
862
ktime_get_with_offset(enum tk_offsets offs)863 ktime_t ktime_get_with_offset(enum tk_offsets offs)
864 {
865 struct timekeeper *tk = &tk_core.timekeeper;
866 unsigned int seq;
867 ktime_t base, *offset = offsets[offs];
868 u64 nsecs;
869
870 WARN_ON(timekeeping_suspended);
871
872 do {
873 seq = read_seqcount_begin(&tk_core.seq);
874 base = ktime_add(tk->tkr_mono.base, *offset);
875 nsecs = timekeeping_get_ns(&tk->tkr_mono);
876
877 } while (read_seqcount_retry(&tk_core.seq, seq));
878
879 return ktime_add_ns(base, nsecs);
880
881 }
882 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
883
ktime_get_coarse_with_offset(enum tk_offsets offs)884 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
885 {
886 struct timekeeper *tk = &tk_core.timekeeper;
887 unsigned int seq;
888 ktime_t base, *offset = offsets[offs];
889 u64 nsecs;
890
891 WARN_ON(timekeeping_suspended);
892
893 do {
894 seq = read_seqcount_begin(&tk_core.seq);
895 base = ktime_add(tk->tkr_mono.base, *offset);
896 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
897
898 } while (read_seqcount_retry(&tk_core.seq, seq));
899
900 return ktime_add_ns(base, nsecs);
901 }
902 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
903
904 /**
905 * ktime_mono_to_any() - convert monotonic time to any other time
906 * @tmono: time to convert.
907 * @offs: which offset to use
908 */
ktime_mono_to_any(ktime_t tmono,enum tk_offsets offs)909 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
910 {
911 ktime_t *offset = offsets[offs];
912 unsigned int seq;
913 ktime_t tconv;
914
915 do {
916 seq = read_seqcount_begin(&tk_core.seq);
917 tconv = ktime_add(tmono, *offset);
918 } while (read_seqcount_retry(&tk_core.seq, seq));
919
920 return tconv;
921 }
922 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
923
924 /**
925 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
926 */
ktime_get_raw(void)927 ktime_t ktime_get_raw(void)
928 {
929 struct timekeeper *tk = &tk_core.timekeeper;
930 unsigned int seq;
931 ktime_t base;
932 u64 nsecs;
933
934 do {
935 seq = read_seqcount_begin(&tk_core.seq);
936 base = tk->tkr_raw.base;
937 nsecs = timekeeping_get_ns(&tk->tkr_raw);
938
939 } while (read_seqcount_retry(&tk_core.seq, seq));
940
941 return ktime_add_ns(base, nsecs);
942 }
943 EXPORT_SYMBOL_GPL(ktime_get_raw);
944
945 /**
946 * ktime_get_ts64 - get the monotonic clock in timespec64 format
947 * @ts: pointer to timespec variable
948 *
949 * The function calculates the monotonic clock from the realtime
950 * clock and the wall_to_monotonic offset and stores the result
951 * in normalized timespec64 format in the variable pointed to by @ts.
952 */
ktime_get_ts64(struct timespec64 * ts)953 void ktime_get_ts64(struct timespec64 *ts)
954 {
955 struct timekeeper *tk = &tk_core.timekeeper;
956 struct timespec64 tomono;
957 unsigned int seq;
958 u64 nsec;
959
960 WARN_ON(timekeeping_suspended);
961
962 do {
963 seq = read_seqcount_begin(&tk_core.seq);
964 ts->tv_sec = tk->xtime_sec;
965 nsec = timekeeping_get_ns(&tk->tkr_mono);
966 tomono = tk->wall_to_monotonic;
967
968 } while (read_seqcount_retry(&tk_core.seq, seq));
969
970 ts->tv_sec += tomono.tv_sec;
971 ts->tv_nsec = 0;
972 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
973 }
974 EXPORT_SYMBOL_GPL(ktime_get_ts64);
975
976 /**
977 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
978 *
979 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
980 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
981 * works on both 32 and 64 bit systems. On 32 bit systems the readout
982 * covers ~136 years of uptime which should be enough to prevent
983 * premature wrap arounds.
984 */
ktime_get_seconds(void)985 time64_t ktime_get_seconds(void)
986 {
987 struct timekeeper *tk = &tk_core.timekeeper;
988
989 WARN_ON(timekeeping_suspended);
990 return tk->ktime_sec;
991 }
992 EXPORT_SYMBOL_GPL(ktime_get_seconds);
993
994 /**
995 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
996 *
997 * Returns the wall clock seconds since 1970.
998 *
999 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
1000 * 32bit systems the access must be protected with the sequence
1001 * counter to provide "atomic" access to the 64bit tk->xtime_sec
1002 * value.
1003 */
ktime_get_real_seconds(void)1004 time64_t ktime_get_real_seconds(void)
1005 {
1006 struct timekeeper *tk = &tk_core.timekeeper;
1007 time64_t seconds;
1008 unsigned int seq;
1009
1010 if (IS_ENABLED(CONFIG_64BIT))
1011 return tk->xtime_sec;
1012
1013 do {
1014 seq = read_seqcount_begin(&tk_core.seq);
1015 seconds = tk->xtime_sec;
1016
1017 } while (read_seqcount_retry(&tk_core.seq, seq));
1018
1019 return seconds;
1020 }
1021 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
1022
1023 /**
1024 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
1025 * but without the sequence counter protect. This internal function
1026 * is called just when timekeeping lock is already held.
1027 */
__ktime_get_real_seconds(void)1028 noinstr time64_t __ktime_get_real_seconds(void)
1029 {
1030 struct timekeeper *tk = &tk_core.timekeeper;
1031
1032 return tk->xtime_sec;
1033 }
1034
1035 /**
1036 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
1037 * @systime_snapshot: pointer to struct receiving the system time snapshot
1038 */
ktime_get_snapshot(struct system_time_snapshot * systime_snapshot)1039 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
1040 {
1041 struct timekeeper *tk = &tk_core.timekeeper;
1042 unsigned int seq;
1043 ktime_t base_raw;
1044 ktime_t base_real;
1045 u64 nsec_raw;
1046 u64 nsec_real;
1047 u64 now;
1048
1049 WARN_ON_ONCE(timekeeping_suspended);
1050
1051 do {
1052 seq = read_seqcount_begin(&tk_core.seq);
1053 now = tk_clock_read(&tk->tkr_mono);
1054 systime_snapshot->cs_id = tk->tkr_mono.clock->id;
1055 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
1056 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
1057 base_real = ktime_add(tk->tkr_mono.base,
1058 tk_core.timekeeper.offs_real);
1059 base_raw = tk->tkr_raw.base;
1060 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
1061 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
1062 } while (read_seqcount_retry(&tk_core.seq, seq));
1063
1064 systime_snapshot->cycles = now;
1065 systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
1066 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
1067 }
1068 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
1069
1070 /* Scale base by mult/div checking for overflow */
scale64_check_overflow(u64 mult,u64 div,u64 * base)1071 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
1072 {
1073 u64 tmp, rem;
1074
1075 tmp = div64_u64_rem(*base, div, &rem);
1076
1077 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1078 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1079 return -EOVERFLOW;
1080 tmp *= mult;
1081
1082 rem = div64_u64(rem * mult, div);
1083 *base = tmp + rem;
1084 return 0;
1085 }
1086
1087 /**
1088 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1089 * @history: Snapshot representing start of history
1090 * @partial_history_cycles: Cycle offset into history (fractional part)
1091 * @total_history_cycles: Total history length in cycles
1092 * @discontinuity: True indicates clock was set on history period
1093 * @ts: Cross timestamp that should be adjusted using
1094 * partial/total ratio
1095 *
1096 * Helper function used by get_device_system_crosststamp() to correct the
1097 * crosstimestamp corresponding to the start of the current interval to the
1098 * system counter value (timestamp point) provided by the driver. The
1099 * total_history_* quantities are the total history starting at the provided
1100 * reference point and ending at the start of the current interval. The cycle
1101 * count between the driver timestamp point and the start of the current
1102 * interval is partial_history_cycles.
1103 */
adjust_historical_crosststamp(struct system_time_snapshot * history,u64 partial_history_cycles,u64 total_history_cycles,bool discontinuity,struct system_device_crosststamp * ts)1104 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1105 u64 partial_history_cycles,
1106 u64 total_history_cycles,
1107 bool discontinuity,
1108 struct system_device_crosststamp *ts)
1109 {
1110 struct timekeeper *tk = &tk_core.timekeeper;
1111 u64 corr_raw, corr_real;
1112 bool interp_forward;
1113 int ret;
1114
1115 if (total_history_cycles == 0 || partial_history_cycles == 0)
1116 return 0;
1117
1118 /* Interpolate shortest distance from beginning or end of history */
1119 interp_forward = partial_history_cycles > total_history_cycles / 2;
1120 partial_history_cycles = interp_forward ?
1121 total_history_cycles - partial_history_cycles :
1122 partial_history_cycles;
1123
1124 /*
1125 * Scale the monotonic raw time delta by:
1126 * partial_history_cycles / total_history_cycles
1127 */
1128 corr_raw = (u64)ktime_to_ns(
1129 ktime_sub(ts->sys_monoraw, history->raw));
1130 ret = scale64_check_overflow(partial_history_cycles,
1131 total_history_cycles, &corr_raw);
1132 if (ret)
1133 return ret;
1134
1135 /*
1136 * If there is a discontinuity in the history, scale monotonic raw
1137 * correction by:
1138 * mult(real)/mult(raw) yielding the realtime correction
1139 * Otherwise, calculate the realtime correction similar to monotonic
1140 * raw calculation
1141 */
1142 if (discontinuity) {
1143 corr_real = mul_u64_u32_div
1144 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1145 } else {
1146 corr_real = (u64)ktime_to_ns(
1147 ktime_sub(ts->sys_realtime, history->real));
1148 ret = scale64_check_overflow(partial_history_cycles,
1149 total_history_cycles, &corr_real);
1150 if (ret)
1151 return ret;
1152 }
1153
1154 /* Fixup monotonic raw and real time time values */
1155 if (interp_forward) {
1156 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1157 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1158 } else {
1159 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1160 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1161 }
1162
1163 return 0;
1164 }
1165
1166 /*
1167 * cycle_between - true if test occurs chronologically between before and after
1168 */
cycle_between(u64 before,u64 test,u64 after)1169 static bool cycle_between(u64 before, u64 test, u64 after)
1170 {
1171 if (test > before && test < after)
1172 return true;
1173 if (test < before && before > after)
1174 return true;
1175 return false;
1176 }
1177
1178 /**
1179 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1180 * @get_time_fn: Callback to get simultaneous device time and
1181 * system counter from the device driver
1182 * @ctx: Context passed to get_time_fn()
1183 * @history_begin: Historical reference point used to interpolate system
1184 * time when counter provided by the driver is before the current interval
1185 * @xtstamp: Receives simultaneously captured system and device time
1186 *
1187 * Reads a timestamp from a device and correlates it to system time
1188 */
get_device_system_crosststamp(int (* get_time_fn)(ktime_t * device_time,struct system_counterval_t * sys_counterval,void * ctx),void * ctx,struct system_time_snapshot * history_begin,struct system_device_crosststamp * xtstamp)1189 int get_device_system_crosststamp(int (*get_time_fn)
1190 (ktime_t *device_time,
1191 struct system_counterval_t *sys_counterval,
1192 void *ctx),
1193 void *ctx,
1194 struct system_time_snapshot *history_begin,
1195 struct system_device_crosststamp *xtstamp)
1196 {
1197 struct system_counterval_t system_counterval;
1198 struct timekeeper *tk = &tk_core.timekeeper;
1199 u64 cycles, now, interval_start;
1200 unsigned int clock_was_set_seq = 0;
1201 ktime_t base_real, base_raw;
1202 u64 nsec_real, nsec_raw;
1203 u8 cs_was_changed_seq;
1204 unsigned int seq;
1205 bool do_interp;
1206 int ret;
1207
1208 do {
1209 seq = read_seqcount_begin(&tk_core.seq);
1210 /*
1211 * Try to synchronously capture device time and a system
1212 * counter value calling back into the device driver
1213 */
1214 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1215 if (ret)
1216 return ret;
1217
1218 /*
1219 * Verify that the clocksource associated with the captured
1220 * system counter value is the same as the currently installed
1221 * timekeeper clocksource
1222 */
1223 if (tk->tkr_mono.clock != system_counterval.cs)
1224 return -ENODEV;
1225 cycles = system_counterval.cycles;
1226
1227 /*
1228 * Check whether the system counter value provided by the
1229 * device driver is on the current timekeeping interval.
1230 */
1231 now = tk_clock_read(&tk->tkr_mono);
1232 interval_start = tk->tkr_mono.cycle_last;
1233 if (!cycle_between(interval_start, cycles, now)) {
1234 clock_was_set_seq = tk->clock_was_set_seq;
1235 cs_was_changed_seq = tk->cs_was_changed_seq;
1236 cycles = interval_start;
1237 do_interp = true;
1238 } else {
1239 do_interp = false;
1240 }
1241
1242 base_real = ktime_add(tk->tkr_mono.base,
1243 tk_core.timekeeper.offs_real);
1244 base_raw = tk->tkr_raw.base;
1245
1246 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1247 system_counterval.cycles);
1248 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1249 system_counterval.cycles);
1250 } while (read_seqcount_retry(&tk_core.seq, seq));
1251
1252 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1253 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1254
1255 /*
1256 * Interpolate if necessary, adjusting back from the start of the
1257 * current interval
1258 */
1259 if (do_interp) {
1260 u64 partial_history_cycles, total_history_cycles;
1261 bool discontinuity;
1262
1263 /*
1264 * Check that the counter value occurs after the provided
1265 * history reference and that the history doesn't cross a
1266 * clocksource change
1267 */
1268 if (!history_begin ||
1269 !cycle_between(history_begin->cycles,
1270 system_counterval.cycles, cycles) ||
1271 history_begin->cs_was_changed_seq != cs_was_changed_seq)
1272 return -EINVAL;
1273 partial_history_cycles = cycles - system_counterval.cycles;
1274 total_history_cycles = cycles - history_begin->cycles;
1275 discontinuity =
1276 history_begin->clock_was_set_seq != clock_was_set_seq;
1277
1278 ret = adjust_historical_crosststamp(history_begin,
1279 partial_history_cycles,
1280 total_history_cycles,
1281 discontinuity, xtstamp);
1282 if (ret)
1283 return ret;
1284 }
1285
1286 return 0;
1287 }
1288 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1289
1290 /**
1291 * do_settimeofday64 - Sets the time of day.
1292 * @ts: pointer to the timespec64 variable containing the new time
1293 *
1294 * Sets the time of day to the new time and update NTP and notify hrtimers
1295 */
do_settimeofday64(const struct timespec64 * ts)1296 int do_settimeofday64(const struct timespec64 *ts)
1297 {
1298 struct timekeeper *tk = &tk_core.timekeeper;
1299 struct timespec64 ts_delta, xt;
1300 unsigned long flags;
1301 int ret = 0;
1302
1303 if (!timespec64_valid_settod(ts))
1304 return -EINVAL;
1305
1306 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1307 write_seqcount_begin(&tk_core.seq);
1308
1309 timekeeping_forward_now(tk);
1310
1311 xt = tk_xtime(tk);
1312 ts_delta = timespec64_sub(*ts, xt);
1313
1314 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1315 ret = -EINVAL;
1316 goto out;
1317 }
1318
1319 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1320
1321 tk_set_xtime(tk, ts);
1322 out:
1323 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1324
1325 write_seqcount_end(&tk_core.seq);
1326 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1327
1328 trace_android_rvh_tk_based_time_sync(tk);
1329
1330 /* Signal hrtimers about time change */
1331 clock_was_set(CLOCK_SET_WALL);
1332
1333 if (!ret) {
1334 audit_tk_injoffset(ts_delta);
1335 add_device_randomness(ts, sizeof(*ts));
1336 }
1337
1338 return ret;
1339 }
1340 EXPORT_SYMBOL(do_settimeofday64);
1341
1342 /**
1343 * timekeeping_inject_offset - Adds or subtracts from the current time.
1344 * @ts: Pointer to the timespec variable containing the offset
1345 *
1346 * Adds or subtracts an offset value from the current time.
1347 */
timekeeping_inject_offset(const struct timespec64 * ts)1348 static int timekeeping_inject_offset(const struct timespec64 *ts)
1349 {
1350 struct timekeeper *tk = &tk_core.timekeeper;
1351 unsigned long flags;
1352 struct timespec64 tmp;
1353 int ret = 0;
1354
1355 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1356 return -EINVAL;
1357
1358 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1359 write_seqcount_begin(&tk_core.seq);
1360
1361 timekeeping_forward_now(tk);
1362
1363 /* Make sure the proposed value is valid */
1364 tmp = timespec64_add(tk_xtime(tk), *ts);
1365 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1366 !timespec64_valid_settod(&tmp)) {
1367 ret = -EINVAL;
1368 goto error;
1369 }
1370
1371 tk_xtime_add(tk, ts);
1372 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1373
1374 error: /* even if we error out, we forwarded the time, so call update */
1375 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1376
1377 write_seqcount_end(&tk_core.seq);
1378 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1379
1380 /* Signal hrtimers about time change */
1381 clock_was_set(CLOCK_SET_WALL);
1382
1383 return ret;
1384 }
1385
1386 /*
1387 * Indicates if there is an offset between the system clock and the hardware
1388 * clock/persistent clock/rtc.
1389 */
1390 int persistent_clock_is_local;
1391
1392 /*
1393 * Adjust the time obtained from the CMOS to be UTC time instead of
1394 * local time.
1395 *
1396 * This is ugly, but preferable to the alternatives. Otherwise we
1397 * would either need to write a program to do it in /etc/rc (and risk
1398 * confusion if the program gets run more than once; it would also be
1399 * hard to make the program warp the clock precisely n hours) or
1400 * compile in the timezone information into the kernel. Bad, bad....
1401 *
1402 * - TYT, 1992-01-01
1403 *
1404 * The best thing to do is to keep the CMOS clock in universal time (UTC)
1405 * as real UNIX machines always do it. This avoids all headaches about
1406 * daylight saving times and warping kernel clocks.
1407 */
timekeeping_warp_clock(void)1408 void timekeeping_warp_clock(void)
1409 {
1410 if (sys_tz.tz_minuteswest != 0) {
1411 struct timespec64 adjust;
1412
1413 persistent_clock_is_local = 1;
1414 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1415 adjust.tv_nsec = 0;
1416 timekeeping_inject_offset(&adjust);
1417 }
1418 }
1419
1420 /*
1421 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1422 */
__timekeeping_set_tai_offset(struct timekeeper * tk,s32 tai_offset)1423 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1424 {
1425 tk->tai_offset = tai_offset;
1426 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1427 }
1428
1429 /*
1430 * change_clocksource - Swaps clocksources if a new one is available
1431 *
1432 * Accumulates current time interval and initializes new clocksource
1433 */
change_clocksource(void * data)1434 static int change_clocksource(void *data)
1435 {
1436 struct timekeeper *tk = &tk_core.timekeeper;
1437 struct clocksource *new, *old = NULL;
1438 unsigned long flags;
1439 bool change = false;
1440
1441 new = (struct clocksource *) data;
1442
1443 /*
1444 * If the cs is in module, get a module reference. Succeeds
1445 * for built-in code (owner == NULL) as well.
1446 */
1447 if (try_module_get(new->owner)) {
1448 if (!new->enable || new->enable(new) == 0)
1449 change = true;
1450 else
1451 module_put(new->owner);
1452 }
1453
1454 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1455 write_seqcount_begin(&tk_core.seq);
1456
1457 timekeeping_forward_now(tk);
1458
1459 if (change) {
1460 old = tk->tkr_mono.clock;
1461 tk_setup_internals(tk, new);
1462 }
1463
1464 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1465
1466 write_seqcount_end(&tk_core.seq);
1467 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1468
1469 if (old) {
1470 if (old->disable)
1471 old->disable(old);
1472
1473 module_put(old->owner);
1474 }
1475
1476 return 0;
1477 }
1478
1479 /**
1480 * timekeeping_notify - Install a new clock source
1481 * @clock: pointer to the clock source
1482 *
1483 * This function is called from clocksource.c after a new, better clock
1484 * source has been registered. The caller holds the clocksource_mutex.
1485 */
timekeeping_notify(struct clocksource * clock)1486 int timekeeping_notify(struct clocksource *clock)
1487 {
1488 struct timekeeper *tk = &tk_core.timekeeper;
1489
1490 if (tk->tkr_mono.clock == clock)
1491 return 0;
1492 stop_machine(change_clocksource, clock, NULL);
1493 tick_clock_notify();
1494 return tk->tkr_mono.clock == clock ? 0 : -1;
1495 }
1496
1497 /**
1498 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1499 * @ts: pointer to the timespec64 to be set
1500 *
1501 * Returns the raw monotonic time (completely un-modified by ntp)
1502 */
ktime_get_raw_ts64(struct timespec64 * ts)1503 void ktime_get_raw_ts64(struct timespec64 *ts)
1504 {
1505 struct timekeeper *tk = &tk_core.timekeeper;
1506 unsigned int seq;
1507 u64 nsecs;
1508
1509 do {
1510 seq = read_seqcount_begin(&tk_core.seq);
1511 ts->tv_sec = tk->raw_sec;
1512 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1513
1514 } while (read_seqcount_retry(&tk_core.seq, seq));
1515
1516 ts->tv_nsec = 0;
1517 timespec64_add_ns(ts, nsecs);
1518 }
1519 EXPORT_SYMBOL(ktime_get_raw_ts64);
1520
1521
1522 /**
1523 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1524 */
timekeeping_valid_for_hres(void)1525 int timekeeping_valid_for_hres(void)
1526 {
1527 struct timekeeper *tk = &tk_core.timekeeper;
1528 unsigned int seq;
1529 int ret;
1530
1531 do {
1532 seq = read_seqcount_begin(&tk_core.seq);
1533
1534 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1535
1536 } while (read_seqcount_retry(&tk_core.seq, seq));
1537
1538 return ret;
1539 }
1540
1541 /**
1542 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1543 */
timekeeping_max_deferment(void)1544 u64 timekeeping_max_deferment(void)
1545 {
1546 struct timekeeper *tk = &tk_core.timekeeper;
1547 unsigned int seq;
1548 u64 ret;
1549
1550 do {
1551 seq = read_seqcount_begin(&tk_core.seq);
1552
1553 ret = tk->tkr_mono.clock->max_idle_ns;
1554
1555 } while (read_seqcount_retry(&tk_core.seq, seq));
1556
1557 return ret;
1558 }
1559
1560 /**
1561 * read_persistent_clock64 - Return time from the persistent clock.
1562 * @ts: Pointer to the storage for the readout value
1563 *
1564 * Weak dummy function for arches that do not yet support it.
1565 * Reads the time from the battery backed persistent clock.
1566 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1567 *
1568 * XXX - Do be sure to remove it once all arches implement it.
1569 */
read_persistent_clock64(struct timespec64 * ts)1570 void __weak read_persistent_clock64(struct timespec64 *ts)
1571 {
1572 ts->tv_sec = 0;
1573 ts->tv_nsec = 0;
1574 }
1575
1576 /**
1577 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1578 * from the boot.
1579 *
1580 * Weak dummy function for arches that do not yet support it.
1581 * @wall_time: - current time as returned by persistent clock
1582 * @boot_offset: - offset that is defined as wall_time - boot_time
1583 *
1584 * The default function calculates offset based on the current value of
1585 * local_clock(). This way architectures that support sched_clock() but don't
1586 * support dedicated boot time clock will provide the best estimate of the
1587 * boot time.
1588 */
1589 void __weak __init
read_persistent_wall_and_boot_offset(struct timespec64 * wall_time,struct timespec64 * boot_offset)1590 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1591 struct timespec64 *boot_offset)
1592 {
1593 read_persistent_clock64(wall_time);
1594 *boot_offset = ns_to_timespec64(local_clock());
1595 }
1596
1597 /*
1598 * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1599 *
1600 * The flag starts of false and is only set when a suspend reaches
1601 * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1602 * timekeeper clocksource is not stopping across suspend and has been
1603 * used to update sleep time. If the timekeeper clocksource has stopped
1604 * then the flag stays true and is used by the RTC resume code to decide
1605 * whether sleeptime must be injected and if so the flag gets false then.
1606 *
1607 * If a suspend fails before reaching timekeeping_resume() then the flag
1608 * stays false and prevents erroneous sleeptime injection.
1609 */
1610 static bool suspend_timing_needed;
1611
1612 /* Flag for if there is a persistent clock on this platform */
1613 static bool persistent_clock_exists;
1614
1615 /*
1616 * timekeeping_init - Initializes the clocksource and common timekeeping values
1617 */
timekeeping_init(void)1618 void __init timekeeping_init(void)
1619 {
1620 struct timespec64 wall_time, boot_offset, wall_to_mono;
1621 struct timekeeper *tk = &tk_core.timekeeper;
1622 struct clocksource *clock;
1623 unsigned long flags;
1624
1625 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1626 if (timespec64_valid_settod(&wall_time) &&
1627 timespec64_to_ns(&wall_time) > 0) {
1628 persistent_clock_exists = true;
1629 } else if (timespec64_to_ns(&wall_time) != 0) {
1630 pr_warn("Persistent clock returned invalid value");
1631 wall_time = (struct timespec64){0};
1632 }
1633
1634 if (timespec64_compare(&wall_time, &boot_offset) < 0)
1635 boot_offset = (struct timespec64){0};
1636
1637 /*
1638 * We want set wall_to_mono, so the following is true:
1639 * wall time + wall_to_mono = boot time
1640 */
1641 wall_to_mono = timespec64_sub(boot_offset, wall_time);
1642
1643 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1644 write_seqcount_begin(&tk_core.seq);
1645 ntp_init();
1646
1647 clock = clocksource_default_clock();
1648 if (clock->enable)
1649 clock->enable(clock);
1650 tk_setup_internals(tk, clock);
1651
1652 tk_set_xtime(tk, &wall_time);
1653 tk->raw_sec = 0;
1654
1655 tk_set_wall_to_mono(tk, wall_to_mono);
1656
1657 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1658
1659 write_seqcount_end(&tk_core.seq);
1660 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1661 }
1662
1663 /* time in seconds when suspend began for persistent clock */
1664 static struct timespec64 timekeeping_suspend_time;
1665
1666 /**
1667 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1668 * @tk: Pointer to the timekeeper to be updated
1669 * @delta: Pointer to the delta value in timespec64 format
1670 *
1671 * Takes a timespec offset measuring a suspend interval and properly
1672 * adds the sleep offset to the timekeeping variables.
1673 */
__timekeeping_inject_sleeptime(struct timekeeper * tk,const struct timespec64 * delta)1674 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1675 const struct timespec64 *delta)
1676 {
1677 if (!timespec64_valid_strict(delta)) {
1678 printk_deferred(KERN_WARNING
1679 "__timekeeping_inject_sleeptime: Invalid "
1680 "sleep delta value!\n");
1681 return;
1682 }
1683 tk_xtime_add(tk, delta);
1684 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1685 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1686 tk_debug_account_sleep_time(delta);
1687 }
1688
1689 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1690 /**
1691 * We have three kinds of time sources to use for sleep time
1692 * injection, the preference order is:
1693 * 1) non-stop clocksource
1694 * 2) persistent clock (ie: RTC accessible when irqs are off)
1695 * 3) RTC
1696 *
1697 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1698 * If system has neither 1) nor 2), 3) will be used finally.
1699 *
1700 *
1701 * If timekeeping has injected sleeptime via either 1) or 2),
1702 * 3) becomes needless, so in this case we don't need to call
1703 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1704 * means.
1705 */
timekeeping_rtc_skipresume(void)1706 bool timekeeping_rtc_skipresume(void)
1707 {
1708 return !suspend_timing_needed;
1709 }
1710
1711 /**
1712 * 1) can be determined whether to use or not only when doing
1713 * timekeeping_resume() which is invoked after rtc_suspend(),
1714 * so we can't skip rtc_suspend() surely if system has 1).
1715 *
1716 * But if system has 2), 2) will definitely be used, so in this
1717 * case we don't need to call rtc_suspend(), and this is what
1718 * timekeeping_rtc_skipsuspend() means.
1719 */
timekeeping_rtc_skipsuspend(void)1720 bool timekeeping_rtc_skipsuspend(void)
1721 {
1722 return persistent_clock_exists;
1723 }
1724
1725 /**
1726 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1727 * @delta: pointer to a timespec64 delta value
1728 *
1729 * This hook is for architectures that cannot support read_persistent_clock64
1730 * because their RTC/persistent clock is only accessible when irqs are enabled.
1731 * and also don't have an effective nonstop clocksource.
1732 *
1733 * This function should only be called by rtc_resume(), and allows
1734 * a suspend offset to be injected into the timekeeping values.
1735 */
timekeeping_inject_sleeptime64(const struct timespec64 * delta)1736 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1737 {
1738 struct timekeeper *tk = &tk_core.timekeeper;
1739 unsigned long flags;
1740
1741 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1742 write_seqcount_begin(&tk_core.seq);
1743
1744 suspend_timing_needed = false;
1745
1746 timekeeping_forward_now(tk);
1747
1748 __timekeeping_inject_sleeptime(tk, delta);
1749
1750 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1751
1752 write_seqcount_end(&tk_core.seq);
1753 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1754
1755 /* Signal hrtimers about time change */
1756 clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT);
1757 }
1758 #endif
1759
1760 /**
1761 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1762 */
timekeeping_resume(void)1763 void timekeeping_resume(void)
1764 {
1765 struct timekeeper *tk = &tk_core.timekeeper;
1766 struct clocksource *clock = tk->tkr_mono.clock;
1767 unsigned long flags;
1768 struct timespec64 ts_new, ts_delta;
1769 u64 cycle_now, nsec;
1770 bool inject_sleeptime = false;
1771
1772 read_persistent_clock64(&ts_new);
1773
1774 clockevents_resume();
1775 clocksource_resume();
1776
1777 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1778 write_seqcount_begin(&tk_core.seq);
1779
1780 /*
1781 * After system resumes, we need to calculate the suspended time and
1782 * compensate it for the OS time. There are 3 sources that could be
1783 * used: Nonstop clocksource during suspend, persistent clock and rtc
1784 * device.
1785 *
1786 * One specific platform may have 1 or 2 or all of them, and the
1787 * preference will be:
1788 * suspend-nonstop clocksource -> persistent clock -> rtc
1789 * The less preferred source will only be tried if there is no better
1790 * usable source. The rtc part is handled separately in rtc core code.
1791 */
1792 cycle_now = tk_clock_read(&tk->tkr_mono);
1793 nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1794 if (nsec > 0) {
1795 ts_delta = ns_to_timespec64(nsec);
1796 inject_sleeptime = true;
1797 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1798 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1799 inject_sleeptime = true;
1800 }
1801
1802 if (inject_sleeptime) {
1803 suspend_timing_needed = false;
1804 __timekeeping_inject_sleeptime(tk, &ts_delta);
1805 }
1806
1807 /* Re-base the last cycle value */
1808 tk->tkr_mono.cycle_last = cycle_now;
1809 tk->tkr_raw.cycle_last = cycle_now;
1810
1811 tk->ntp_error = 0;
1812 timekeeping_suspended = 0;
1813 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1814 write_seqcount_end(&tk_core.seq);
1815 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1816
1817 touch_softlockup_watchdog();
1818
1819 /* Resume the clockevent device(s) and hrtimers */
1820 tick_resume();
1821 /* Notify timerfd as resume is equivalent to clock_was_set() */
1822 timerfd_resume();
1823 }
1824
timekeeping_suspend(void)1825 int timekeeping_suspend(void)
1826 {
1827 struct timekeeper *tk = &tk_core.timekeeper;
1828 unsigned long flags;
1829 struct timespec64 delta, delta_delta;
1830 static struct timespec64 old_delta;
1831 struct clocksource *curr_clock;
1832 u64 cycle_now;
1833
1834 read_persistent_clock64(&timekeeping_suspend_time);
1835
1836 /*
1837 * On some systems the persistent_clock can not be detected at
1838 * timekeeping_init by its return value, so if we see a valid
1839 * value returned, update the persistent_clock_exists flag.
1840 */
1841 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1842 persistent_clock_exists = true;
1843
1844 suspend_timing_needed = true;
1845
1846 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1847 write_seqcount_begin(&tk_core.seq);
1848 timekeeping_forward_now(tk);
1849 timekeeping_suspended = 1;
1850
1851 /*
1852 * Since we've called forward_now, cycle_last stores the value
1853 * just read from the current clocksource. Save this to potentially
1854 * use in suspend timing.
1855 */
1856 curr_clock = tk->tkr_mono.clock;
1857 cycle_now = tk->tkr_mono.cycle_last;
1858 clocksource_start_suspend_timing(curr_clock, cycle_now);
1859
1860 if (persistent_clock_exists) {
1861 /*
1862 * To avoid drift caused by repeated suspend/resumes,
1863 * which each can add ~1 second drift error,
1864 * try to compensate so the difference in system time
1865 * and persistent_clock time stays close to constant.
1866 */
1867 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1868 delta_delta = timespec64_sub(delta, old_delta);
1869 if (abs(delta_delta.tv_sec) >= 2) {
1870 /*
1871 * if delta_delta is too large, assume time correction
1872 * has occurred and set old_delta to the current delta.
1873 */
1874 old_delta = delta;
1875 } else {
1876 /* Otherwise try to adjust old_system to compensate */
1877 timekeeping_suspend_time =
1878 timespec64_add(timekeeping_suspend_time, delta_delta);
1879 }
1880 }
1881
1882 timekeeping_update(tk, TK_MIRROR);
1883 halt_fast_timekeeper(tk);
1884 write_seqcount_end(&tk_core.seq);
1885 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1886
1887 tick_suspend();
1888 clocksource_suspend();
1889 clockevents_suspend();
1890
1891 return 0;
1892 }
1893
1894 /* sysfs resume/suspend bits for timekeeping */
1895 static struct syscore_ops timekeeping_syscore_ops = {
1896 .resume = timekeeping_resume,
1897 .suspend = timekeeping_suspend,
1898 };
1899
timekeeping_init_ops(void)1900 static int __init timekeeping_init_ops(void)
1901 {
1902 register_syscore_ops(&timekeeping_syscore_ops);
1903 return 0;
1904 }
1905 device_initcall(timekeeping_init_ops);
1906
1907 /*
1908 * Apply a multiplier adjustment to the timekeeper
1909 */
timekeeping_apply_adjustment(struct timekeeper * tk,s64 offset,s32 mult_adj)1910 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1911 s64 offset,
1912 s32 mult_adj)
1913 {
1914 s64 interval = tk->cycle_interval;
1915
1916 if (mult_adj == 0) {
1917 return;
1918 } else if (mult_adj == -1) {
1919 interval = -interval;
1920 offset = -offset;
1921 } else if (mult_adj != 1) {
1922 interval *= mult_adj;
1923 offset *= mult_adj;
1924 }
1925
1926 /*
1927 * So the following can be confusing.
1928 *
1929 * To keep things simple, lets assume mult_adj == 1 for now.
1930 *
1931 * When mult_adj != 1, remember that the interval and offset values
1932 * have been appropriately scaled so the math is the same.
1933 *
1934 * The basic idea here is that we're increasing the multiplier
1935 * by one, this causes the xtime_interval to be incremented by
1936 * one cycle_interval. This is because:
1937 * xtime_interval = cycle_interval * mult
1938 * So if mult is being incremented by one:
1939 * xtime_interval = cycle_interval * (mult + 1)
1940 * Its the same as:
1941 * xtime_interval = (cycle_interval * mult) + cycle_interval
1942 * Which can be shortened to:
1943 * xtime_interval += cycle_interval
1944 *
1945 * So offset stores the non-accumulated cycles. Thus the current
1946 * time (in shifted nanoseconds) is:
1947 * now = (offset * adj) + xtime_nsec
1948 * Now, even though we're adjusting the clock frequency, we have
1949 * to keep time consistent. In other words, we can't jump back
1950 * in time, and we also want to avoid jumping forward in time.
1951 *
1952 * So given the same offset value, we need the time to be the same
1953 * both before and after the freq adjustment.
1954 * now = (offset * adj_1) + xtime_nsec_1
1955 * now = (offset * adj_2) + xtime_nsec_2
1956 * So:
1957 * (offset * adj_1) + xtime_nsec_1 =
1958 * (offset * adj_2) + xtime_nsec_2
1959 * And we know:
1960 * adj_2 = adj_1 + 1
1961 * So:
1962 * (offset * adj_1) + xtime_nsec_1 =
1963 * (offset * (adj_1+1)) + xtime_nsec_2
1964 * (offset * adj_1) + xtime_nsec_1 =
1965 * (offset * adj_1) + offset + xtime_nsec_2
1966 * Canceling the sides:
1967 * xtime_nsec_1 = offset + xtime_nsec_2
1968 * Which gives us:
1969 * xtime_nsec_2 = xtime_nsec_1 - offset
1970 * Which simplifies to:
1971 * xtime_nsec -= offset
1972 */
1973 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1974 /* NTP adjustment caused clocksource mult overflow */
1975 WARN_ON_ONCE(1);
1976 return;
1977 }
1978
1979 tk->tkr_mono.mult += mult_adj;
1980 tk->xtime_interval += interval;
1981 tk->tkr_mono.xtime_nsec -= offset;
1982 }
1983
1984 /*
1985 * Adjust the timekeeper's multiplier to the correct frequency
1986 * and also to reduce the accumulated error value.
1987 */
timekeeping_adjust(struct timekeeper * tk,s64 offset)1988 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1989 {
1990 u32 mult;
1991
1992 /*
1993 * Determine the multiplier from the current NTP tick length.
1994 * Avoid expensive division when the tick length doesn't change.
1995 */
1996 if (likely(tk->ntp_tick == ntp_tick_length())) {
1997 mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1998 } else {
1999 tk->ntp_tick = ntp_tick_length();
2000 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
2001 tk->xtime_remainder, tk->cycle_interval);
2002 }
2003
2004 /*
2005 * If the clock is behind the NTP time, increase the multiplier by 1
2006 * to catch up with it. If it's ahead and there was a remainder in the
2007 * tick division, the clock will slow down. Otherwise it will stay
2008 * ahead until the tick length changes to a non-divisible value.
2009 */
2010 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
2011 mult += tk->ntp_err_mult;
2012
2013 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
2014
2015 if (unlikely(tk->tkr_mono.clock->maxadj &&
2016 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
2017 > tk->tkr_mono.clock->maxadj))) {
2018 printk_once(KERN_WARNING
2019 "Adjusting %s more than 11%% (%ld vs %ld)\n",
2020 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
2021 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
2022 }
2023
2024 /*
2025 * It may be possible that when we entered this function, xtime_nsec
2026 * was very small. Further, if we're slightly speeding the clocksource
2027 * in the code above, its possible the required corrective factor to
2028 * xtime_nsec could cause it to underflow.
2029 *
2030 * Now, since we have already accumulated the second and the NTP
2031 * subsystem has been notified via second_overflow(), we need to skip
2032 * the next update.
2033 */
2034 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
2035 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
2036 tk->tkr_mono.shift;
2037 tk->xtime_sec--;
2038 tk->skip_second_overflow = 1;
2039 }
2040 }
2041
2042 /*
2043 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
2044 *
2045 * Helper function that accumulates the nsecs greater than a second
2046 * from the xtime_nsec field to the xtime_secs field.
2047 * It also calls into the NTP code to handle leapsecond processing.
2048 */
accumulate_nsecs_to_secs(struct timekeeper * tk)2049 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
2050 {
2051 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
2052 unsigned int clock_set = 0;
2053
2054 while (tk->tkr_mono.xtime_nsec >= nsecps) {
2055 int leap;
2056
2057 tk->tkr_mono.xtime_nsec -= nsecps;
2058 tk->xtime_sec++;
2059
2060 /*
2061 * Skip NTP update if this second was accumulated before,
2062 * i.e. xtime_nsec underflowed in timekeeping_adjust()
2063 */
2064 if (unlikely(tk->skip_second_overflow)) {
2065 tk->skip_second_overflow = 0;
2066 continue;
2067 }
2068
2069 /* Figure out if its a leap sec and apply if needed */
2070 leap = second_overflow(tk->xtime_sec);
2071 if (unlikely(leap)) {
2072 struct timespec64 ts;
2073
2074 tk->xtime_sec += leap;
2075
2076 ts.tv_sec = leap;
2077 ts.tv_nsec = 0;
2078 tk_set_wall_to_mono(tk,
2079 timespec64_sub(tk->wall_to_monotonic, ts));
2080
2081 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2082
2083 clock_set = TK_CLOCK_WAS_SET;
2084 }
2085 }
2086 return clock_set;
2087 }
2088
2089 /*
2090 * logarithmic_accumulation - shifted accumulation of cycles
2091 *
2092 * This functions accumulates a shifted interval of cycles into
2093 * a shifted interval nanoseconds. Allows for O(log) accumulation
2094 * loop.
2095 *
2096 * Returns the unconsumed cycles.
2097 */
logarithmic_accumulation(struct timekeeper * tk,u64 offset,u32 shift,unsigned int * clock_set)2098 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2099 u32 shift, unsigned int *clock_set)
2100 {
2101 u64 interval = tk->cycle_interval << shift;
2102 u64 snsec_per_sec;
2103
2104 /* If the offset is smaller than a shifted interval, do nothing */
2105 if (offset < interval)
2106 return offset;
2107
2108 /* Accumulate one shifted interval */
2109 offset -= interval;
2110 tk->tkr_mono.cycle_last += interval;
2111 tk->tkr_raw.cycle_last += interval;
2112
2113 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2114 *clock_set |= accumulate_nsecs_to_secs(tk);
2115
2116 /* Accumulate raw time */
2117 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2118 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2119 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2120 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2121 tk->raw_sec++;
2122 }
2123
2124 /* Accumulate error between NTP and clock interval */
2125 tk->ntp_error += tk->ntp_tick << shift;
2126 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2127 (tk->ntp_error_shift + shift);
2128
2129 return offset;
2130 }
2131
2132 /*
2133 * timekeeping_advance - Updates the timekeeper to the current time and
2134 * current NTP tick length
2135 */
timekeeping_advance(enum timekeeping_adv_mode mode)2136 static bool timekeeping_advance(enum timekeeping_adv_mode mode)
2137 {
2138 struct timekeeper *real_tk = &tk_core.timekeeper;
2139 struct timekeeper *tk = &shadow_timekeeper;
2140 u64 offset;
2141 int shift = 0, maxshift;
2142 unsigned int clock_set = 0;
2143 unsigned long flags;
2144
2145 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2146
2147 /* Make sure we're fully resumed: */
2148 if (unlikely(timekeeping_suspended))
2149 goto out;
2150
2151 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2152 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2153
2154 /* Check if there's really nothing to do */
2155 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2156 goto out;
2157
2158 /* Do some additional sanity checking */
2159 timekeeping_check_update(tk, offset);
2160
2161 /*
2162 * With NO_HZ we may have to accumulate many cycle_intervals
2163 * (think "ticks") worth of time at once. To do this efficiently,
2164 * we calculate the largest doubling multiple of cycle_intervals
2165 * that is smaller than the offset. We then accumulate that
2166 * chunk in one go, and then try to consume the next smaller
2167 * doubled multiple.
2168 */
2169 shift = ilog2(offset) - ilog2(tk->cycle_interval);
2170 shift = max(0, shift);
2171 /* Bound shift to one less than what overflows tick_length */
2172 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2173 shift = min(shift, maxshift);
2174 while (offset >= tk->cycle_interval) {
2175 offset = logarithmic_accumulation(tk, offset, shift,
2176 &clock_set);
2177 if (offset < tk->cycle_interval<<shift)
2178 shift--;
2179 }
2180
2181 /* Adjust the multiplier to correct NTP error */
2182 timekeeping_adjust(tk, offset);
2183
2184 /*
2185 * Finally, make sure that after the rounding
2186 * xtime_nsec isn't larger than NSEC_PER_SEC
2187 */
2188 clock_set |= accumulate_nsecs_to_secs(tk);
2189
2190 write_seqcount_begin(&tk_core.seq);
2191 /*
2192 * Update the real timekeeper.
2193 *
2194 * We could avoid this memcpy by switching pointers, but that
2195 * requires changes to all other timekeeper usage sites as
2196 * well, i.e. move the timekeeper pointer getter into the
2197 * spinlocked/seqcount protected sections. And we trade this
2198 * memcpy under the tk_core.seq against one before we start
2199 * updating.
2200 */
2201 timekeeping_update(tk, clock_set);
2202 memcpy(real_tk, tk, sizeof(*tk));
2203 /* The memcpy must come last. Do not put anything here! */
2204 write_seqcount_end(&tk_core.seq);
2205 out:
2206 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2207
2208 return !!clock_set;
2209 }
2210
2211 /**
2212 * update_wall_time - Uses the current clocksource to increment the wall time
2213 *
2214 */
update_wall_time(void)2215 void update_wall_time(void)
2216 {
2217 if (timekeeping_advance(TK_ADV_TICK))
2218 clock_was_set_delayed();
2219 }
2220
2221 /**
2222 * getboottime64 - Return the real time of system boot.
2223 * @ts: pointer to the timespec64 to be set
2224 *
2225 * Returns the wall-time of boot in a timespec64.
2226 *
2227 * This is based on the wall_to_monotonic offset and the total suspend
2228 * time. Calls to settimeofday will affect the value returned (which
2229 * basically means that however wrong your real time clock is at boot time,
2230 * you get the right time here).
2231 */
getboottime64(struct timespec64 * ts)2232 void getboottime64(struct timespec64 *ts)
2233 {
2234 struct timekeeper *tk = &tk_core.timekeeper;
2235 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2236
2237 *ts = ktime_to_timespec64(t);
2238 }
2239 EXPORT_SYMBOL_GPL(getboottime64);
2240
ktime_get_coarse_real_ts64(struct timespec64 * ts)2241 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2242 {
2243 struct timekeeper *tk = &tk_core.timekeeper;
2244 unsigned int seq;
2245
2246 do {
2247 seq = read_seqcount_begin(&tk_core.seq);
2248
2249 *ts = tk_xtime(tk);
2250 } while (read_seqcount_retry(&tk_core.seq, seq));
2251 }
2252 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2253
ktime_get_coarse_ts64(struct timespec64 * ts)2254 void ktime_get_coarse_ts64(struct timespec64 *ts)
2255 {
2256 struct timekeeper *tk = &tk_core.timekeeper;
2257 struct timespec64 now, mono;
2258 unsigned int seq;
2259
2260 do {
2261 seq = read_seqcount_begin(&tk_core.seq);
2262
2263 now = tk_xtime(tk);
2264 mono = tk->wall_to_monotonic;
2265 } while (read_seqcount_retry(&tk_core.seq, seq));
2266
2267 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2268 now.tv_nsec + mono.tv_nsec);
2269 }
2270 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2271
2272 /*
2273 * Must hold jiffies_lock
2274 */
do_timer(unsigned long ticks)2275 void do_timer(unsigned long ticks)
2276 {
2277 jiffies_64 += ticks;
2278 calc_global_load();
2279 }
2280
2281 /**
2282 * ktime_get_update_offsets_now - hrtimer helper
2283 * @cwsseq: pointer to check and store the clock was set sequence number
2284 * @offs_real: pointer to storage for monotonic -> realtime offset
2285 * @offs_boot: pointer to storage for monotonic -> boottime offset
2286 * @offs_tai: pointer to storage for monotonic -> clock tai offset
2287 *
2288 * Returns current monotonic time and updates the offsets if the
2289 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2290 * different.
2291 *
2292 * Called from hrtimer_interrupt() or retrigger_next_event()
2293 */
ktime_get_update_offsets_now(unsigned int * cwsseq,ktime_t * offs_real,ktime_t * offs_boot,ktime_t * offs_tai)2294 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2295 ktime_t *offs_boot, ktime_t *offs_tai)
2296 {
2297 struct timekeeper *tk = &tk_core.timekeeper;
2298 unsigned int seq;
2299 ktime_t base;
2300 u64 nsecs;
2301
2302 do {
2303 seq = read_seqcount_begin(&tk_core.seq);
2304
2305 base = tk->tkr_mono.base;
2306 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2307 base = ktime_add_ns(base, nsecs);
2308
2309 if (*cwsseq != tk->clock_was_set_seq) {
2310 *cwsseq = tk->clock_was_set_seq;
2311 *offs_real = tk->offs_real;
2312 *offs_boot = tk->offs_boot;
2313 *offs_tai = tk->offs_tai;
2314 }
2315
2316 /* Handle leapsecond insertion adjustments */
2317 if (unlikely(base >= tk->next_leap_ktime))
2318 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2319
2320 } while (read_seqcount_retry(&tk_core.seq, seq));
2321
2322 return base;
2323 }
2324
2325 /*
2326 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2327 */
timekeeping_validate_timex(const struct __kernel_timex * txc)2328 static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2329 {
2330 if (txc->modes & ADJ_ADJTIME) {
2331 /* singleshot must not be used with any other mode bits */
2332 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2333 return -EINVAL;
2334 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2335 !capable(CAP_SYS_TIME))
2336 return -EPERM;
2337 } else {
2338 /* In order to modify anything, you gotta be super-user! */
2339 if (txc->modes && !capable(CAP_SYS_TIME))
2340 return -EPERM;
2341 /*
2342 * if the quartz is off by more than 10% then
2343 * something is VERY wrong!
2344 */
2345 if (txc->modes & ADJ_TICK &&
2346 (txc->tick < 900000/USER_HZ ||
2347 txc->tick > 1100000/USER_HZ))
2348 return -EINVAL;
2349 }
2350
2351 if (txc->modes & ADJ_SETOFFSET) {
2352 /* In order to inject time, you gotta be super-user! */
2353 if (!capable(CAP_SYS_TIME))
2354 return -EPERM;
2355
2356 /*
2357 * Validate if a timespec/timeval used to inject a time
2358 * offset is valid. Offsets can be positive or negative, so
2359 * we don't check tv_sec. The value of the timeval/timespec
2360 * is the sum of its fields,but *NOTE*:
2361 * The field tv_usec/tv_nsec must always be non-negative and
2362 * we can't have more nanoseconds/microseconds than a second.
2363 */
2364 if (txc->time.tv_usec < 0)
2365 return -EINVAL;
2366
2367 if (txc->modes & ADJ_NANO) {
2368 if (txc->time.tv_usec >= NSEC_PER_SEC)
2369 return -EINVAL;
2370 } else {
2371 if (txc->time.tv_usec >= USEC_PER_SEC)
2372 return -EINVAL;
2373 }
2374 }
2375
2376 /*
2377 * Check for potential multiplication overflows that can
2378 * only happen on 64-bit systems:
2379 */
2380 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2381 if (LLONG_MIN / PPM_SCALE > txc->freq)
2382 return -EINVAL;
2383 if (LLONG_MAX / PPM_SCALE < txc->freq)
2384 return -EINVAL;
2385 }
2386
2387 return 0;
2388 }
2389
2390 /**
2391 * random_get_entropy_fallback - Returns the raw clock source value,
2392 * used by random.c for platforms with no valid random_get_entropy().
2393 */
random_get_entropy_fallback(void)2394 unsigned long random_get_entropy_fallback(void)
2395 {
2396 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
2397 struct clocksource *clock = READ_ONCE(tkr->clock);
2398
2399 if (unlikely(timekeeping_suspended || !clock))
2400 return 0;
2401 return clock->read(clock);
2402 }
2403 EXPORT_SYMBOL_GPL(random_get_entropy_fallback);
2404
2405 /**
2406 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2407 */
do_adjtimex(struct __kernel_timex * txc)2408 int do_adjtimex(struct __kernel_timex *txc)
2409 {
2410 struct timekeeper *tk = &tk_core.timekeeper;
2411 struct audit_ntp_data ad;
2412 bool clock_set = false;
2413 struct timespec64 ts;
2414 unsigned long flags;
2415 s32 orig_tai, tai;
2416 int ret;
2417
2418 /* Validate the data before disabling interrupts */
2419 ret = timekeeping_validate_timex(txc);
2420 if (ret)
2421 return ret;
2422 add_device_randomness(txc, sizeof(*txc));
2423
2424 if (txc->modes & ADJ_SETOFFSET) {
2425 struct timespec64 delta;
2426 delta.tv_sec = txc->time.tv_sec;
2427 delta.tv_nsec = txc->time.tv_usec;
2428 if (!(txc->modes & ADJ_NANO))
2429 delta.tv_nsec *= 1000;
2430 ret = timekeeping_inject_offset(&delta);
2431 if (ret)
2432 return ret;
2433
2434 audit_tk_injoffset(delta);
2435 }
2436
2437 audit_ntp_init(&ad);
2438
2439 ktime_get_real_ts64(&ts);
2440 add_device_randomness(&ts, sizeof(ts));
2441
2442 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2443 write_seqcount_begin(&tk_core.seq);
2444
2445 orig_tai = tai = tk->tai_offset;
2446 ret = __do_adjtimex(txc, &ts, &tai, &ad);
2447
2448 if (tai != orig_tai) {
2449 __timekeeping_set_tai_offset(tk, tai);
2450 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2451 clock_set = true;
2452 }
2453 tk_update_leap_state(tk);
2454
2455 write_seqcount_end(&tk_core.seq);
2456 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2457
2458 audit_ntp_log(&ad);
2459
2460 /* Update the multiplier immediately if frequency was set directly */
2461 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2462 clock_set |= timekeeping_advance(TK_ADV_FREQ);
2463
2464 if (clock_set)
2465 clock_was_set(CLOCK_REALTIME);
2466
2467 ntp_notify_cmos_timer();
2468
2469 return ret;
2470 }
2471
2472 #ifdef CONFIG_NTP_PPS
2473 /**
2474 * hardpps() - Accessor function to NTP __hardpps function
2475 */
hardpps(const struct timespec64 * phase_ts,const struct timespec64 * raw_ts)2476 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2477 {
2478 unsigned long flags;
2479
2480 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2481 write_seqcount_begin(&tk_core.seq);
2482
2483 __hardpps(phase_ts, raw_ts);
2484
2485 write_seqcount_end(&tk_core.seq);
2486 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2487 }
2488 EXPORT_SYMBOL(hardpps);
2489 #endif /* CONFIG_NTP_PPS */
2490