1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
3 */
4
5 #include <linux/delay.h>
6 #include "dpu_hwio.h"
7 #include "dpu_hw_ctl.h"
8 #include "dpu_kms.h"
9 #include "dpu_trace.h"
10
11 #define CTL_LAYER(lm) \
12 (((lm) == LM_5) ? (0x024) : (((lm) - LM_0) * 0x004))
13 #define CTL_LAYER_EXT(lm) \
14 (0x40 + (((lm) - LM_0) * 0x004))
15 #define CTL_LAYER_EXT2(lm) \
16 (0x70 + (((lm) - LM_0) * 0x004))
17 #define CTL_LAYER_EXT3(lm) \
18 (0xA0 + (((lm) - LM_0) * 0x004))
19 #define CTL_TOP 0x014
20 #define CTL_FLUSH 0x018
21 #define CTL_START 0x01C
22 #define CTL_PREPARE 0x0d0
23 #define CTL_SW_RESET 0x030
24 #define CTL_LAYER_EXTN_OFFSET 0x40
25 #define CTL_MERGE_3D_ACTIVE 0x0E4
26 #define CTL_INTF_ACTIVE 0x0F4
27 #define CTL_MERGE_3D_FLUSH 0x100
28 #define CTL_INTF_FLUSH 0x110
29 #define CTL_INTF_MASTER 0x134
30 #define CTL_FETCH_PIPE_ACTIVE 0x0FC
31
32 #define CTL_MIXER_BORDER_OUT BIT(24)
33 #define CTL_FLUSH_MASK_CTL BIT(17)
34
35 #define DPU_REG_RESET_TIMEOUT_US 2000
36 #define MERGE_3D_IDX 23
37 #define INTF_IDX 31
38 #define CTL_INVALID_BIT 0xffff
39
40 static const u32 fetch_tbl[SSPP_MAX] = {CTL_INVALID_BIT, 16, 17, 18, 19,
41 CTL_INVALID_BIT, CTL_INVALID_BIT, CTL_INVALID_BIT, CTL_INVALID_BIT, 0,
42 1, 2, 3, CTL_INVALID_BIT, CTL_INVALID_BIT};
43
_ctl_offset(enum dpu_ctl ctl,const struct dpu_mdss_cfg * m,void __iomem * addr,struct dpu_hw_blk_reg_map * b)44 static const struct dpu_ctl_cfg *_ctl_offset(enum dpu_ctl ctl,
45 const struct dpu_mdss_cfg *m,
46 void __iomem *addr,
47 struct dpu_hw_blk_reg_map *b)
48 {
49 int i;
50
51 for (i = 0; i < m->ctl_count; i++) {
52 if (ctl == m->ctl[i].id) {
53 b->base_off = addr;
54 b->blk_off = m->ctl[i].base;
55 b->length = m->ctl[i].len;
56 b->hwversion = m->hwversion;
57 b->log_mask = DPU_DBG_MASK_CTL;
58 return &m->ctl[i];
59 }
60 }
61 return ERR_PTR(-ENOMEM);
62 }
63
_mixer_stages(const struct dpu_lm_cfg * mixer,int count,enum dpu_lm lm)64 static int _mixer_stages(const struct dpu_lm_cfg *mixer, int count,
65 enum dpu_lm lm)
66 {
67 int i;
68 int stages = -EINVAL;
69
70 for (i = 0; i < count; i++) {
71 if (lm == mixer[i].id) {
72 stages = mixer[i].sblk->maxblendstages;
73 break;
74 }
75 }
76
77 return stages;
78 }
79
dpu_hw_ctl_get_flush_register(struct dpu_hw_ctl * ctx)80 static inline u32 dpu_hw_ctl_get_flush_register(struct dpu_hw_ctl *ctx)
81 {
82 struct dpu_hw_blk_reg_map *c = &ctx->hw;
83
84 return DPU_REG_READ(c, CTL_FLUSH);
85 }
86
dpu_hw_ctl_trigger_start(struct dpu_hw_ctl * ctx)87 static inline void dpu_hw_ctl_trigger_start(struct dpu_hw_ctl *ctx)
88 {
89 trace_dpu_hw_ctl_trigger_start(ctx->pending_flush_mask,
90 dpu_hw_ctl_get_flush_register(ctx));
91 DPU_REG_WRITE(&ctx->hw, CTL_START, 0x1);
92 }
93
dpu_hw_ctl_trigger_pending(struct dpu_hw_ctl * ctx)94 static inline void dpu_hw_ctl_trigger_pending(struct dpu_hw_ctl *ctx)
95 {
96 trace_dpu_hw_ctl_trigger_prepare(ctx->pending_flush_mask,
97 dpu_hw_ctl_get_flush_register(ctx));
98 DPU_REG_WRITE(&ctx->hw, CTL_PREPARE, 0x1);
99 }
100
dpu_hw_ctl_clear_pending_flush(struct dpu_hw_ctl * ctx)101 static inline void dpu_hw_ctl_clear_pending_flush(struct dpu_hw_ctl *ctx)
102 {
103 trace_dpu_hw_ctl_clear_pending_flush(ctx->pending_flush_mask,
104 dpu_hw_ctl_get_flush_register(ctx));
105 ctx->pending_flush_mask = 0x0;
106 }
107
dpu_hw_ctl_update_pending_flush(struct dpu_hw_ctl * ctx,u32 flushbits)108 static inline void dpu_hw_ctl_update_pending_flush(struct dpu_hw_ctl *ctx,
109 u32 flushbits)
110 {
111 trace_dpu_hw_ctl_update_pending_flush(flushbits,
112 ctx->pending_flush_mask);
113 ctx->pending_flush_mask |= flushbits;
114 }
115
dpu_hw_ctl_get_pending_flush(struct dpu_hw_ctl * ctx)116 static u32 dpu_hw_ctl_get_pending_flush(struct dpu_hw_ctl *ctx)
117 {
118 return ctx->pending_flush_mask;
119 }
120
dpu_hw_ctl_trigger_flush_v1(struct dpu_hw_ctl * ctx)121 static inline void dpu_hw_ctl_trigger_flush_v1(struct dpu_hw_ctl *ctx)
122 {
123
124 if (ctx->pending_flush_mask & BIT(MERGE_3D_IDX))
125 DPU_REG_WRITE(&ctx->hw, CTL_MERGE_3D_FLUSH,
126 ctx->pending_merge_3d_flush_mask);
127 if (ctx->pending_flush_mask & BIT(INTF_IDX))
128 DPU_REG_WRITE(&ctx->hw, CTL_INTF_FLUSH,
129 ctx->pending_intf_flush_mask);
130
131 DPU_REG_WRITE(&ctx->hw, CTL_FLUSH, ctx->pending_flush_mask);
132 }
133
dpu_hw_ctl_trigger_flush(struct dpu_hw_ctl * ctx)134 static inline void dpu_hw_ctl_trigger_flush(struct dpu_hw_ctl *ctx)
135 {
136 trace_dpu_hw_ctl_trigger_pending_flush(ctx->pending_flush_mask,
137 dpu_hw_ctl_get_flush_register(ctx));
138 DPU_REG_WRITE(&ctx->hw, CTL_FLUSH, ctx->pending_flush_mask);
139 }
140
dpu_hw_ctl_get_bitmask_sspp(struct dpu_hw_ctl * ctx,enum dpu_sspp sspp)141 static uint32_t dpu_hw_ctl_get_bitmask_sspp(struct dpu_hw_ctl *ctx,
142 enum dpu_sspp sspp)
143 {
144 uint32_t flushbits = 0;
145
146 switch (sspp) {
147 case SSPP_VIG0:
148 flushbits = BIT(0);
149 break;
150 case SSPP_VIG1:
151 flushbits = BIT(1);
152 break;
153 case SSPP_VIG2:
154 flushbits = BIT(2);
155 break;
156 case SSPP_VIG3:
157 flushbits = BIT(18);
158 break;
159 case SSPP_RGB0:
160 flushbits = BIT(3);
161 break;
162 case SSPP_RGB1:
163 flushbits = BIT(4);
164 break;
165 case SSPP_RGB2:
166 flushbits = BIT(5);
167 break;
168 case SSPP_RGB3:
169 flushbits = BIT(19);
170 break;
171 case SSPP_DMA0:
172 flushbits = BIT(11);
173 break;
174 case SSPP_DMA1:
175 flushbits = BIT(12);
176 break;
177 case SSPP_DMA2:
178 flushbits = BIT(24);
179 break;
180 case SSPP_DMA3:
181 flushbits = BIT(25);
182 break;
183 case SSPP_CURSOR0:
184 flushbits = BIT(22);
185 break;
186 case SSPP_CURSOR1:
187 flushbits = BIT(23);
188 break;
189 default:
190 break;
191 }
192
193 return flushbits;
194 }
195
dpu_hw_ctl_get_bitmask_mixer(struct dpu_hw_ctl * ctx,enum dpu_lm lm)196 static uint32_t dpu_hw_ctl_get_bitmask_mixer(struct dpu_hw_ctl *ctx,
197 enum dpu_lm lm)
198 {
199 uint32_t flushbits = 0;
200
201 switch (lm) {
202 case LM_0:
203 flushbits = BIT(6);
204 break;
205 case LM_1:
206 flushbits = BIT(7);
207 break;
208 case LM_2:
209 flushbits = BIT(8);
210 break;
211 case LM_3:
212 flushbits = BIT(9);
213 break;
214 case LM_4:
215 flushbits = BIT(10);
216 break;
217 case LM_5:
218 flushbits = BIT(20);
219 break;
220 default:
221 return -EINVAL;
222 }
223
224 flushbits |= CTL_FLUSH_MASK_CTL;
225
226 return flushbits;
227 }
228
dpu_hw_ctl_update_pending_flush_intf(struct dpu_hw_ctl * ctx,enum dpu_intf intf)229 static void dpu_hw_ctl_update_pending_flush_intf(struct dpu_hw_ctl *ctx,
230 enum dpu_intf intf)
231 {
232 switch (intf) {
233 case INTF_0:
234 ctx->pending_flush_mask |= BIT(31);
235 break;
236 case INTF_1:
237 ctx->pending_flush_mask |= BIT(30);
238 break;
239 case INTF_2:
240 ctx->pending_flush_mask |= BIT(29);
241 break;
242 case INTF_3:
243 ctx->pending_flush_mask |= BIT(28);
244 break;
245 default:
246 break;
247 }
248 }
249
dpu_hw_ctl_update_pending_flush_intf_v1(struct dpu_hw_ctl * ctx,enum dpu_intf intf)250 static void dpu_hw_ctl_update_pending_flush_intf_v1(struct dpu_hw_ctl *ctx,
251 enum dpu_intf intf)
252 {
253 ctx->pending_intf_flush_mask |= BIT(intf - INTF_0);
254 ctx->pending_flush_mask |= BIT(INTF_IDX);
255 }
256
dpu_hw_ctl_update_pending_flush_merge_3d_v1(struct dpu_hw_ctl * ctx,enum dpu_merge_3d merge_3d)257 static void dpu_hw_ctl_update_pending_flush_merge_3d_v1(struct dpu_hw_ctl *ctx,
258 enum dpu_merge_3d merge_3d)
259 {
260 ctx->pending_merge_3d_flush_mask |= BIT(merge_3d - MERGE_3D_0);
261 ctx->pending_flush_mask |= BIT(MERGE_3D_IDX);
262 }
263
dpu_hw_ctl_get_bitmask_dspp(struct dpu_hw_ctl * ctx,enum dpu_dspp dspp)264 static uint32_t dpu_hw_ctl_get_bitmask_dspp(struct dpu_hw_ctl *ctx,
265 enum dpu_dspp dspp)
266 {
267 uint32_t flushbits = 0;
268
269 switch (dspp) {
270 case DSPP_0:
271 flushbits = BIT(13);
272 break;
273 case DSPP_1:
274 flushbits = BIT(14);
275 break;
276 case DSPP_2:
277 flushbits = BIT(15);
278 break;
279 case DSPP_3:
280 flushbits = BIT(21);
281 break;
282 default:
283 return 0;
284 }
285
286 return flushbits;
287 }
288
dpu_hw_ctl_poll_reset_status(struct dpu_hw_ctl * ctx,u32 timeout_us)289 static u32 dpu_hw_ctl_poll_reset_status(struct dpu_hw_ctl *ctx, u32 timeout_us)
290 {
291 struct dpu_hw_blk_reg_map *c = &ctx->hw;
292 ktime_t timeout;
293 u32 status;
294
295 timeout = ktime_add_us(ktime_get(), timeout_us);
296
297 /*
298 * it takes around 30us to have mdp finish resetting its ctl path
299 * poll every 50us so that reset should be completed at 1st poll
300 */
301 do {
302 status = DPU_REG_READ(c, CTL_SW_RESET);
303 status &= 0x1;
304 if (status)
305 usleep_range(20, 50);
306 } while (status && ktime_compare_safe(ktime_get(), timeout) < 0);
307
308 return status;
309 }
310
dpu_hw_ctl_reset_control(struct dpu_hw_ctl * ctx)311 static int dpu_hw_ctl_reset_control(struct dpu_hw_ctl *ctx)
312 {
313 struct dpu_hw_blk_reg_map *c = &ctx->hw;
314
315 pr_debug("issuing hw ctl reset for ctl:%d\n", ctx->idx);
316 DPU_REG_WRITE(c, CTL_SW_RESET, 0x1);
317 if (dpu_hw_ctl_poll_reset_status(ctx, DPU_REG_RESET_TIMEOUT_US))
318 return -EINVAL;
319
320 return 0;
321 }
322
dpu_hw_ctl_wait_reset_status(struct dpu_hw_ctl * ctx)323 static int dpu_hw_ctl_wait_reset_status(struct dpu_hw_ctl *ctx)
324 {
325 struct dpu_hw_blk_reg_map *c = &ctx->hw;
326 u32 status;
327
328 status = DPU_REG_READ(c, CTL_SW_RESET);
329 status &= 0x01;
330 if (!status)
331 return 0;
332
333 pr_debug("hw ctl reset is set for ctl:%d\n", ctx->idx);
334 if (dpu_hw_ctl_poll_reset_status(ctx, DPU_REG_RESET_TIMEOUT_US)) {
335 pr_err("hw recovery is not complete for ctl:%d\n", ctx->idx);
336 return -EINVAL;
337 }
338
339 return 0;
340 }
341
dpu_hw_ctl_clear_all_blendstages(struct dpu_hw_ctl * ctx)342 static void dpu_hw_ctl_clear_all_blendstages(struct dpu_hw_ctl *ctx)
343 {
344 struct dpu_hw_blk_reg_map *c = &ctx->hw;
345 int i;
346
347 for (i = 0; i < ctx->mixer_count; i++) {
348 enum dpu_lm mixer_id = ctx->mixer_hw_caps[i].id;
349
350 DPU_REG_WRITE(c, CTL_LAYER(mixer_id), 0);
351 DPU_REG_WRITE(c, CTL_LAYER_EXT(mixer_id), 0);
352 DPU_REG_WRITE(c, CTL_LAYER_EXT2(mixer_id), 0);
353 DPU_REG_WRITE(c, CTL_LAYER_EXT3(mixer_id), 0);
354 }
355
356 DPU_REG_WRITE(c, CTL_FETCH_PIPE_ACTIVE, 0);
357 }
358
dpu_hw_ctl_setup_blendstage(struct dpu_hw_ctl * ctx,enum dpu_lm lm,struct dpu_hw_stage_cfg * stage_cfg)359 static void dpu_hw_ctl_setup_blendstage(struct dpu_hw_ctl *ctx,
360 enum dpu_lm lm, struct dpu_hw_stage_cfg *stage_cfg)
361 {
362 struct dpu_hw_blk_reg_map *c = &ctx->hw;
363 u32 mixercfg = 0, mixercfg_ext = 0, mix, ext;
364 u32 mixercfg_ext2 = 0, mixercfg_ext3 = 0;
365 int i, j;
366 int stages;
367 int pipes_per_stage;
368
369 stages = _mixer_stages(ctx->mixer_hw_caps, ctx->mixer_count, lm);
370 if (stages < 0)
371 return;
372
373 if (test_bit(DPU_MIXER_SOURCESPLIT,
374 &ctx->mixer_hw_caps->features))
375 pipes_per_stage = PIPES_PER_STAGE;
376 else
377 pipes_per_stage = 1;
378
379 mixercfg = CTL_MIXER_BORDER_OUT; /* always set BORDER_OUT */
380
381 if (!stage_cfg)
382 goto exit;
383
384 for (i = 0; i <= stages; i++) {
385 /* overflow to ext register if 'i + 1 > 7' */
386 mix = (i + 1) & 0x7;
387 ext = i >= 7;
388
389 for (j = 0 ; j < pipes_per_stage; j++) {
390 enum dpu_sspp_multirect_index rect_index =
391 stage_cfg->multirect_index[i][j];
392
393 switch (stage_cfg->stage[i][j]) {
394 case SSPP_VIG0:
395 if (rect_index == DPU_SSPP_RECT_1) {
396 mixercfg_ext3 |= ((i + 1) & 0xF) << 0;
397 } else {
398 mixercfg |= mix << 0;
399 mixercfg_ext |= ext << 0;
400 }
401 break;
402 case SSPP_VIG1:
403 if (rect_index == DPU_SSPP_RECT_1) {
404 mixercfg_ext3 |= ((i + 1) & 0xF) << 4;
405 } else {
406 mixercfg |= mix << 3;
407 mixercfg_ext |= ext << 2;
408 }
409 break;
410 case SSPP_VIG2:
411 if (rect_index == DPU_SSPP_RECT_1) {
412 mixercfg_ext3 |= ((i + 1) & 0xF) << 8;
413 } else {
414 mixercfg |= mix << 6;
415 mixercfg_ext |= ext << 4;
416 }
417 break;
418 case SSPP_VIG3:
419 if (rect_index == DPU_SSPP_RECT_1) {
420 mixercfg_ext3 |= ((i + 1) & 0xF) << 12;
421 } else {
422 mixercfg |= mix << 26;
423 mixercfg_ext |= ext << 6;
424 }
425 break;
426 case SSPP_RGB0:
427 mixercfg |= mix << 9;
428 mixercfg_ext |= ext << 8;
429 break;
430 case SSPP_RGB1:
431 mixercfg |= mix << 12;
432 mixercfg_ext |= ext << 10;
433 break;
434 case SSPP_RGB2:
435 mixercfg |= mix << 15;
436 mixercfg_ext |= ext << 12;
437 break;
438 case SSPP_RGB3:
439 mixercfg |= mix << 29;
440 mixercfg_ext |= ext << 14;
441 break;
442 case SSPP_DMA0:
443 if (rect_index == DPU_SSPP_RECT_1) {
444 mixercfg_ext2 |= ((i + 1) & 0xF) << 8;
445 } else {
446 mixercfg |= mix << 18;
447 mixercfg_ext |= ext << 16;
448 }
449 break;
450 case SSPP_DMA1:
451 if (rect_index == DPU_SSPP_RECT_1) {
452 mixercfg_ext2 |= ((i + 1) & 0xF) << 12;
453 } else {
454 mixercfg |= mix << 21;
455 mixercfg_ext |= ext << 18;
456 }
457 break;
458 case SSPP_DMA2:
459 if (rect_index == DPU_SSPP_RECT_1) {
460 mixercfg_ext2 |= ((i + 1) & 0xF) << 16;
461 } else {
462 mix |= (i + 1) & 0xF;
463 mixercfg_ext2 |= mix << 0;
464 }
465 break;
466 case SSPP_DMA3:
467 if (rect_index == DPU_SSPP_RECT_1) {
468 mixercfg_ext2 |= ((i + 1) & 0xF) << 20;
469 } else {
470 mix |= (i + 1) & 0xF;
471 mixercfg_ext2 |= mix << 4;
472 }
473 break;
474 case SSPP_CURSOR0:
475 mixercfg_ext |= ((i + 1) & 0xF) << 20;
476 break;
477 case SSPP_CURSOR1:
478 mixercfg_ext |= ((i + 1) & 0xF) << 26;
479 break;
480 default:
481 break;
482 }
483 }
484 }
485
486 exit:
487 DPU_REG_WRITE(c, CTL_LAYER(lm), mixercfg);
488 DPU_REG_WRITE(c, CTL_LAYER_EXT(lm), mixercfg_ext);
489 DPU_REG_WRITE(c, CTL_LAYER_EXT2(lm), mixercfg_ext2);
490 DPU_REG_WRITE(c, CTL_LAYER_EXT3(lm), mixercfg_ext3);
491 }
492
493
dpu_hw_ctl_intf_cfg_v1(struct dpu_hw_ctl * ctx,struct dpu_hw_intf_cfg * cfg)494 static void dpu_hw_ctl_intf_cfg_v1(struct dpu_hw_ctl *ctx,
495 struct dpu_hw_intf_cfg *cfg)
496 {
497 struct dpu_hw_blk_reg_map *c = &ctx->hw;
498 u32 intf_active = 0;
499 u32 mode_sel = 0;
500
501 if (cfg->intf_mode_sel == DPU_CTL_MODE_SEL_CMD)
502 mode_sel |= BIT(17);
503
504 intf_active = DPU_REG_READ(c, CTL_INTF_ACTIVE);
505 intf_active |= BIT(cfg->intf - INTF_0);
506
507 DPU_REG_WRITE(c, CTL_TOP, mode_sel);
508 DPU_REG_WRITE(c, CTL_INTF_ACTIVE, intf_active);
509 if (cfg->merge_3d)
510 DPU_REG_WRITE(c, CTL_MERGE_3D_ACTIVE,
511 BIT(cfg->merge_3d - MERGE_3D_0));
512 }
513
dpu_hw_ctl_intf_cfg(struct dpu_hw_ctl * ctx,struct dpu_hw_intf_cfg * cfg)514 static void dpu_hw_ctl_intf_cfg(struct dpu_hw_ctl *ctx,
515 struct dpu_hw_intf_cfg *cfg)
516 {
517 struct dpu_hw_blk_reg_map *c = &ctx->hw;
518 u32 intf_cfg = 0;
519
520 intf_cfg |= (cfg->intf & 0xF) << 4;
521
522 if (cfg->mode_3d) {
523 intf_cfg |= BIT(19);
524 intf_cfg |= (cfg->mode_3d - 0x1) << 20;
525 }
526
527 switch (cfg->intf_mode_sel) {
528 case DPU_CTL_MODE_SEL_VID:
529 intf_cfg &= ~BIT(17);
530 intf_cfg &= ~(0x3 << 15);
531 break;
532 case DPU_CTL_MODE_SEL_CMD:
533 intf_cfg |= BIT(17);
534 intf_cfg |= ((cfg->stream_sel & 0x3) << 15);
535 break;
536 default:
537 pr_err("unknown interface type %d\n", cfg->intf_mode_sel);
538 return;
539 }
540
541 DPU_REG_WRITE(c, CTL_TOP, intf_cfg);
542 }
543
dpu_hw_ctl_set_fetch_pipe_active(struct dpu_hw_ctl * ctx,unsigned long * fetch_active)544 static void dpu_hw_ctl_set_fetch_pipe_active(struct dpu_hw_ctl *ctx,
545 unsigned long *fetch_active)
546 {
547 int i;
548 u32 val = 0;
549
550 if (fetch_active) {
551 for (i = 0; i < SSPP_MAX; i++) {
552 if (test_bit(i, fetch_active) &&
553 fetch_tbl[i] != CTL_INVALID_BIT)
554 val |= BIT(fetch_tbl[i]);
555 }
556 }
557
558 DPU_REG_WRITE(&ctx->hw, CTL_FETCH_PIPE_ACTIVE, val);
559 }
560
_setup_ctl_ops(struct dpu_hw_ctl_ops * ops,unsigned long cap)561 static void _setup_ctl_ops(struct dpu_hw_ctl_ops *ops,
562 unsigned long cap)
563 {
564 if (cap & BIT(DPU_CTL_ACTIVE_CFG)) {
565 ops->trigger_flush = dpu_hw_ctl_trigger_flush_v1;
566 ops->setup_intf_cfg = dpu_hw_ctl_intf_cfg_v1;
567 ops->update_pending_flush_intf =
568 dpu_hw_ctl_update_pending_flush_intf_v1;
569 ops->update_pending_flush_merge_3d =
570 dpu_hw_ctl_update_pending_flush_merge_3d_v1;
571 } else {
572 ops->trigger_flush = dpu_hw_ctl_trigger_flush;
573 ops->setup_intf_cfg = dpu_hw_ctl_intf_cfg;
574 ops->update_pending_flush_intf =
575 dpu_hw_ctl_update_pending_flush_intf;
576 }
577 ops->clear_pending_flush = dpu_hw_ctl_clear_pending_flush;
578 ops->update_pending_flush = dpu_hw_ctl_update_pending_flush;
579 ops->get_pending_flush = dpu_hw_ctl_get_pending_flush;
580 ops->get_flush_register = dpu_hw_ctl_get_flush_register;
581 ops->trigger_start = dpu_hw_ctl_trigger_start;
582 ops->trigger_pending = dpu_hw_ctl_trigger_pending;
583 ops->reset = dpu_hw_ctl_reset_control;
584 ops->wait_reset_status = dpu_hw_ctl_wait_reset_status;
585 ops->clear_all_blendstages = dpu_hw_ctl_clear_all_blendstages;
586 ops->setup_blendstage = dpu_hw_ctl_setup_blendstage;
587 ops->get_bitmask_sspp = dpu_hw_ctl_get_bitmask_sspp;
588 ops->get_bitmask_mixer = dpu_hw_ctl_get_bitmask_mixer;
589 ops->get_bitmask_dspp = dpu_hw_ctl_get_bitmask_dspp;
590 if (cap & BIT(DPU_CTL_FETCH_ACTIVE))
591 ops->set_active_pipes = dpu_hw_ctl_set_fetch_pipe_active;
592 };
593
dpu_hw_ctl_init(enum dpu_ctl idx,void __iomem * addr,const struct dpu_mdss_cfg * m)594 struct dpu_hw_ctl *dpu_hw_ctl_init(enum dpu_ctl idx,
595 void __iomem *addr,
596 const struct dpu_mdss_cfg *m)
597 {
598 struct dpu_hw_ctl *c;
599 const struct dpu_ctl_cfg *cfg;
600
601 c = kzalloc(sizeof(*c), GFP_KERNEL);
602 if (!c)
603 return ERR_PTR(-ENOMEM);
604
605 cfg = _ctl_offset(idx, m, addr, &c->hw);
606 if (IS_ERR_OR_NULL(cfg)) {
607 kfree(c);
608 pr_err("failed to create dpu_hw_ctl %d\n", idx);
609 return ERR_PTR(-EINVAL);
610 }
611
612 c->caps = cfg;
613 _setup_ctl_ops(&c->ops, c->caps->features);
614 c->idx = idx;
615 c->mixer_count = m->mixer_count;
616 c->mixer_hw_caps = m->mixer;
617
618 return c;
619 }
620
dpu_hw_ctl_destroy(struct dpu_hw_ctl * ctx)621 void dpu_hw_ctl_destroy(struct dpu_hw_ctl *ctx)
622 {
623 kfree(ctx);
624 }
625