• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
3  */
4 
5 #include "dpu_hwio.h"
6 #include "dpu_hw_catalog.h"
7 #include "dpu_hw_top.h"
8 #include "dpu_kms.h"
9 
10 #define SSPP_SPARE                        0x28
11 
12 #define FLD_SPLIT_DISPLAY_CMD             BIT(1)
13 #define FLD_SMART_PANEL_FREE_RUN          BIT(2)
14 #define FLD_INTF_1_SW_TRG_MUX             BIT(4)
15 #define FLD_INTF_2_SW_TRG_MUX             BIT(8)
16 #define FLD_TE_LINE_INTER_WATERLEVEL_MASK 0xFFFF
17 
18 #define DANGER_STATUS                     0x360
19 #define SAFE_STATUS                       0x364
20 
21 #define TE_LINE_INTERVAL                  0x3F4
22 
23 #define TRAFFIC_SHAPER_EN                 BIT(31)
24 #define TRAFFIC_SHAPER_RD_CLIENT(num)     (0x030 + (num * 4))
25 #define TRAFFIC_SHAPER_WR_CLIENT(num)     (0x060 + (num * 4))
26 #define TRAFFIC_SHAPER_FIXPOINT_FACTOR    4
27 
28 #define MDP_WD_TIMER_0_CTL                0x380
29 #define MDP_WD_TIMER_0_CTL2               0x384
30 #define MDP_WD_TIMER_0_LOAD_VALUE         0x388
31 #define MDP_WD_TIMER_1_CTL                0x390
32 #define MDP_WD_TIMER_1_CTL2               0x394
33 #define MDP_WD_TIMER_1_LOAD_VALUE         0x398
34 #define MDP_WD_TIMER_2_CTL                0x420
35 #define MDP_WD_TIMER_2_CTL2               0x424
36 #define MDP_WD_TIMER_2_LOAD_VALUE         0x428
37 #define MDP_WD_TIMER_3_CTL                0x430
38 #define MDP_WD_TIMER_3_CTL2               0x434
39 #define MDP_WD_TIMER_3_LOAD_VALUE         0x438
40 #define MDP_WD_TIMER_4_CTL                0x440
41 #define MDP_WD_TIMER_4_CTL2               0x444
42 #define MDP_WD_TIMER_4_LOAD_VALUE         0x448
43 
44 #define MDP_TICK_COUNT                    16
45 #define XO_CLK_RATE                       19200
46 #define MS_TICKS_IN_SEC                   1000
47 
48 #define CALCULATE_WD_LOAD_VALUE(fps) \
49 	((uint32_t)((MS_TICKS_IN_SEC * XO_CLK_RATE)/(MDP_TICK_COUNT * fps)))
50 
51 #define DCE_SEL                           0x450
52 
dpu_hw_setup_split_pipe(struct dpu_hw_mdp * mdp,struct split_pipe_cfg * cfg)53 static void dpu_hw_setup_split_pipe(struct dpu_hw_mdp *mdp,
54 		struct split_pipe_cfg *cfg)
55 {
56 	struct dpu_hw_blk_reg_map *c;
57 	u32 upper_pipe = 0;
58 	u32 lower_pipe = 0;
59 
60 	if (!mdp || !cfg)
61 		return;
62 
63 	c = &mdp->hw;
64 
65 	if (cfg->en) {
66 		if (cfg->mode == INTF_MODE_CMD) {
67 			lower_pipe = FLD_SPLIT_DISPLAY_CMD;
68 			/* interface controlling sw trigger */
69 			if (cfg->intf == INTF_2)
70 				lower_pipe |= FLD_INTF_1_SW_TRG_MUX;
71 			else
72 				lower_pipe |= FLD_INTF_2_SW_TRG_MUX;
73 			upper_pipe = lower_pipe;
74 		} else {
75 			if (cfg->intf == INTF_2) {
76 				lower_pipe = FLD_INTF_1_SW_TRG_MUX;
77 				upper_pipe = FLD_INTF_2_SW_TRG_MUX;
78 			} else {
79 				lower_pipe = FLD_INTF_2_SW_TRG_MUX;
80 				upper_pipe = FLD_INTF_1_SW_TRG_MUX;
81 			}
82 		}
83 	}
84 
85 	DPU_REG_WRITE(c, SSPP_SPARE, cfg->split_flush_en ? 0x1 : 0x0);
86 	DPU_REG_WRITE(c, SPLIT_DISPLAY_LOWER_PIPE_CTRL, lower_pipe);
87 	DPU_REG_WRITE(c, SPLIT_DISPLAY_UPPER_PIPE_CTRL, upper_pipe);
88 	DPU_REG_WRITE(c, SPLIT_DISPLAY_EN, cfg->en & 0x1);
89 }
90 
dpu_hw_setup_clk_force_ctrl(struct dpu_hw_mdp * mdp,enum dpu_clk_ctrl_type clk_ctrl,bool enable)91 static bool dpu_hw_setup_clk_force_ctrl(struct dpu_hw_mdp *mdp,
92 		enum dpu_clk_ctrl_type clk_ctrl, bool enable)
93 {
94 	struct dpu_hw_blk_reg_map *c;
95 	u32 reg_off, bit_off;
96 	u32 reg_val, new_val;
97 	bool clk_forced_on;
98 
99 	if (!mdp)
100 		return false;
101 
102 	c = &mdp->hw;
103 
104 	if (clk_ctrl <= DPU_CLK_CTRL_NONE || clk_ctrl >= DPU_CLK_CTRL_MAX)
105 		return false;
106 
107 	reg_off = mdp->caps->clk_ctrls[clk_ctrl].reg_off;
108 	bit_off = mdp->caps->clk_ctrls[clk_ctrl].bit_off;
109 
110 	reg_val = DPU_REG_READ(c, reg_off);
111 
112 	if (enable)
113 		new_val = reg_val | BIT(bit_off);
114 	else
115 		new_val = reg_val & ~BIT(bit_off);
116 
117 	DPU_REG_WRITE(c, reg_off, new_val);
118 
119 	clk_forced_on = !(reg_val & BIT(bit_off));
120 
121 	return clk_forced_on;
122 }
123 
124 
dpu_hw_get_danger_status(struct dpu_hw_mdp * mdp,struct dpu_danger_safe_status * status)125 static void dpu_hw_get_danger_status(struct dpu_hw_mdp *mdp,
126 		struct dpu_danger_safe_status *status)
127 {
128 	struct dpu_hw_blk_reg_map *c;
129 	u32 value;
130 
131 	if (!mdp || !status)
132 		return;
133 
134 	c = &mdp->hw;
135 
136 	value = DPU_REG_READ(c, DANGER_STATUS);
137 	status->mdp = (value >> 0) & 0x3;
138 	status->sspp[SSPP_VIG0] = (value >> 4) & 0x3;
139 	status->sspp[SSPP_VIG1] = (value >> 6) & 0x3;
140 	status->sspp[SSPP_VIG2] = (value >> 8) & 0x3;
141 	status->sspp[SSPP_VIG3] = (value >> 10) & 0x3;
142 	status->sspp[SSPP_RGB0] = (value >> 12) & 0x3;
143 	status->sspp[SSPP_RGB1] = (value >> 14) & 0x3;
144 	status->sspp[SSPP_RGB2] = (value >> 16) & 0x3;
145 	status->sspp[SSPP_RGB3] = (value >> 18) & 0x3;
146 	status->sspp[SSPP_DMA0] = (value >> 20) & 0x3;
147 	status->sspp[SSPP_DMA1] = (value >> 22) & 0x3;
148 	status->sspp[SSPP_DMA2] = (value >> 28) & 0x3;
149 	status->sspp[SSPP_DMA3] = (value >> 30) & 0x3;
150 	status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x3;
151 	status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x3;
152 }
153 
dpu_hw_setup_vsync_source(struct dpu_hw_mdp * mdp,struct dpu_vsync_source_cfg * cfg)154 static void dpu_hw_setup_vsync_source(struct dpu_hw_mdp *mdp,
155 		struct dpu_vsync_source_cfg *cfg)
156 {
157 	struct dpu_hw_blk_reg_map *c;
158 	u32 reg, wd_load_value, wd_ctl, wd_ctl2, i;
159 	static const u32 pp_offset[PINGPONG_MAX] = {0xC, 0x8, 0x4, 0x13, 0x18};
160 
161 	if (!mdp || !cfg || (cfg->pp_count > ARRAY_SIZE(cfg->ppnumber)))
162 		return;
163 
164 	c = &mdp->hw;
165 	reg = DPU_REG_READ(c, MDP_VSYNC_SEL);
166 	for (i = 0; i < cfg->pp_count; i++) {
167 		int pp_idx = cfg->ppnumber[i] - PINGPONG_0;
168 
169 		if (pp_idx >= ARRAY_SIZE(pp_offset))
170 			continue;
171 
172 		reg &= ~(0xf << pp_offset[pp_idx]);
173 		reg |= (cfg->vsync_source & 0xf) << pp_offset[pp_idx];
174 	}
175 	DPU_REG_WRITE(c, MDP_VSYNC_SEL, reg);
176 
177 	if (cfg->vsync_source >= DPU_VSYNC_SOURCE_WD_TIMER_4 &&
178 			cfg->vsync_source <= DPU_VSYNC_SOURCE_WD_TIMER_0) {
179 		switch (cfg->vsync_source) {
180 		case DPU_VSYNC_SOURCE_WD_TIMER_4:
181 			wd_load_value = MDP_WD_TIMER_4_LOAD_VALUE;
182 			wd_ctl = MDP_WD_TIMER_4_CTL;
183 			wd_ctl2 = MDP_WD_TIMER_4_CTL2;
184 			break;
185 		case DPU_VSYNC_SOURCE_WD_TIMER_3:
186 			wd_load_value = MDP_WD_TIMER_3_LOAD_VALUE;
187 			wd_ctl = MDP_WD_TIMER_3_CTL;
188 			wd_ctl2 = MDP_WD_TIMER_3_CTL2;
189 			break;
190 		case DPU_VSYNC_SOURCE_WD_TIMER_2:
191 			wd_load_value = MDP_WD_TIMER_2_LOAD_VALUE;
192 			wd_ctl = MDP_WD_TIMER_2_CTL;
193 			wd_ctl2 = MDP_WD_TIMER_2_CTL2;
194 			break;
195 		case DPU_VSYNC_SOURCE_WD_TIMER_1:
196 			wd_load_value = MDP_WD_TIMER_1_LOAD_VALUE;
197 			wd_ctl = MDP_WD_TIMER_1_CTL;
198 			wd_ctl2 = MDP_WD_TIMER_1_CTL2;
199 			break;
200 		case DPU_VSYNC_SOURCE_WD_TIMER_0:
201 		default:
202 			wd_load_value = MDP_WD_TIMER_0_LOAD_VALUE;
203 			wd_ctl = MDP_WD_TIMER_0_CTL;
204 			wd_ctl2 = MDP_WD_TIMER_0_CTL2;
205 			break;
206 		}
207 
208 		DPU_REG_WRITE(c, wd_load_value,
209 			CALCULATE_WD_LOAD_VALUE(cfg->frame_rate));
210 
211 		DPU_REG_WRITE(c, wd_ctl, BIT(0)); /* clear timer */
212 		reg = DPU_REG_READ(c, wd_ctl2);
213 		reg |= BIT(8);		/* enable heartbeat timer */
214 		reg |= BIT(0);		/* enable WD timer */
215 		DPU_REG_WRITE(c, wd_ctl2, reg);
216 
217 		/* make sure that timers are enabled/disabled for vsync state */
218 		wmb();
219 	}
220 }
221 
dpu_hw_get_safe_status(struct dpu_hw_mdp * mdp,struct dpu_danger_safe_status * status)222 static void dpu_hw_get_safe_status(struct dpu_hw_mdp *mdp,
223 		struct dpu_danger_safe_status *status)
224 {
225 	struct dpu_hw_blk_reg_map *c;
226 	u32 value;
227 
228 	if (!mdp || !status)
229 		return;
230 
231 	c = &mdp->hw;
232 
233 	value = DPU_REG_READ(c, SAFE_STATUS);
234 	status->mdp = (value >> 0) & 0x1;
235 	status->sspp[SSPP_VIG0] = (value >> 4) & 0x1;
236 	status->sspp[SSPP_VIG1] = (value >> 6) & 0x1;
237 	status->sspp[SSPP_VIG2] = (value >> 8) & 0x1;
238 	status->sspp[SSPP_VIG3] = (value >> 10) & 0x1;
239 	status->sspp[SSPP_RGB0] = (value >> 12) & 0x1;
240 	status->sspp[SSPP_RGB1] = (value >> 14) & 0x1;
241 	status->sspp[SSPP_RGB2] = (value >> 16) & 0x1;
242 	status->sspp[SSPP_RGB3] = (value >> 18) & 0x1;
243 	status->sspp[SSPP_DMA0] = (value >> 20) & 0x1;
244 	status->sspp[SSPP_DMA1] = (value >> 22) & 0x1;
245 	status->sspp[SSPP_DMA2] = (value >> 28) & 0x1;
246 	status->sspp[SSPP_DMA3] = (value >> 30) & 0x1;
247 	status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x1;
248 	status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x1;
249 }
250 
dpu_hw_intf_audio_select(struct dpu_hw_mdp * mdp)251 static void dpu_hw_intf_audio_select(struct dpu_hw_mdp *mdp)
252 {
253 	struct dpu_hw_blk_reg_map *c;
254 
255 	if (!mdp)
256 		return;
257 
258 	c = &mdp->hw;
259 
260 	DPU_REG_WRITE(c, HDMI_DP_CORE_SELECT, 0x1);
261 }
262 
_setup_mdp_ops(struct dpu_hw_mdp_ops * ops,unsigned long cap)263 static void _setup_mdp_ops(struct dpu_hw_mdp_ops *ops,
264 		unsigned long cap)
265 {
266 	ops->setup_split_pipe = dpu_hw_setup_split_pipe;
267 	ops->setup_clk_force_ctrl = dpu_hw_setup_clk_force_ctrl;
268 	ops->get_danger_status = dpu_hw_get_danger_status;
269 	ops->setup_vsync_source = dpu_hw_setup_vsync_source;
270 	ops->get_safe_status = dpu_hw_get_safe_status;
271 	ops->intf_audio_select = dpu_hw_intf_audio_select;
272 }
273 
_top_offset(enum dpu_mdp mdp,const struct dpu_mdss_cfg * m,void __iomem * addr,struct dpu_hw_blk_reg_map * b)274 static const struct dpu_mdp_cfg *_top_offset(enum dpu_mdp mdp,
275 		const struct dpu_mdss_cfg *m,
276 		void __iomem *addr,
277 		struct dpu_hw_blk_reg_map *b)
278 {
279 	int i;
280 
281 	if (!m || !addr || !b)
282 		return ERR_PTR(-EINVAL);
283 
284 	for (i = 0; i < m->mdp_count; i++) {
285 		if (mdp == m->mdp[i].id) {
286 			b->base_off = addr;
287 			b->blk_off = m->mdp[i].base;
288 			b->length = m->mdp[i].len;
289 			b->hwversion = m->hwversion;
290 			b->log_mask = DPU_DBG_MASK_TOP;
291 			return &m->mdp[i];
292 		}
293 	}
294 
295 	return ERR_PTR(-EINVAL);
296 }
297 
dpu_hw_mdptop_init(enum dpu_mdp idx,void __iomem * addr,const struct dpu_mdss_cfg * m)298 struct dpu_hw_mdp *dpu_hw_mdptop_init(enum dpu_mdp idx,
299 		void __iomem *addr,
300 		const struct dpu_mdss_cfg *m)
301 {
302 	struct dpu_hw_mdp *mdp;
303 	const struct dpu_mdp_cfg *cfg;
304 
305 	if (!addr || !m)
306 		return ERR_PTR(-EINVAL);
307 
308 	mdp = kzalloc(sizeof(*mdp), GFP_KERNEL);
309 	if (!mdp)
310 		return ERR_PTR(-ENOMEM);
311 
312 	cfg = _top_offset(idx, m, addr, &mdp->hw);
313 	if (IS_ERR_OR_NULL(cfg)) {
314 		kfree(mdp);
315 		return ERR_PTR(-EINVAL);
316 	}
317 
318 	/*
319 	 * Assign ops
320 	 */
321 	mdp->idx = idx;
322 	mdp->caps = cfg;
323 	_setup_mdp_ops(&mdp->ops, mdp->caps->features);
324 
325 	return mdp;
326 }
327 
dpu_hw_mdp_destroy(struct dpu_hw_mdp * mdp)328 void dpu_hw_mdp_destroy(struct dpu_hw_mdp *mdp)
329 {
330 	kfree(mdp);
331 }
332 
333