1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Designware SPI core controller driver (refer pxa2xx_spi.c)
4 *
5 * Copyright (c) 2009, Intel Corporation.
6 */
7
8 #include <linux/dma-mapping.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/preempt.h>
12 #include <linux/highmem.h>
13 #include <linux/delay.h>
14 #include <linux/slab.h>
15 #include <linux/spi/spi.h>
16 #include <linux/spi/spi-mem.h>
17 #include <linux/string.h>
18 #include <linux/of.h>
19
20 #include "spi-dw.h"
21
22 #ifdef CONFIG_DEBUG_FS
23 #include <linux/debugfs.h>
24 #endif
25
26 /* Slave spi_device related */
27 struct chip_data {
28 u32 cr0;
29 u32 rx_sample_dly; /* RX sample delay */
30 };
31
32 #ifdef CONFIG_DEBUG_FS
33
34 #define DW_SPI_DBGFS_REG(_name, _off) \
35 { \
36 .name = _name, \
37 .offset = _off, \
38 }
39
40 static const struct debugfs_reg32 dw_spi_dbgfs_regs[] = {
41 DW_SPI_DBGFS_REG("CTRLR0", DW_SPI_CTRLR0),
42 DW_SPI_DBGFS_REG("CTRLR1", DW_SPI_CTRLR1),
43 DW_SPI_DBGFS_REG("SSIENR", DW_SPI_SSIENR),
44 DW_SPI_DBGFS_REG("SER", DW_SPI_SER),
45 DW_SPI_DBGFS_REG("BAUDR", DW_SPI_BAUDR),
46 DW_SPI_DBGFS_REG("TXFTLR", DW_SPI_TXFTLR),
47 DW_SPI_DBGFS_REG("RXFTLR", DW_SPI_RXFTLR),
48 DW_SPI_DBGFS_REG("TXFLR", DW_SPI_TXFLR),
49 DW_SPI_DBGFS_REG("RXFLR", DW_SPI_RXFLR),
50 DW_SPI_DBGFS_REG("SR", DW_SPI_SR),
51 DW_SPI_DBGFS_REG("IMR", DW_SPI_IMR),
52 DW_SPI_DBGFS_REG("ISR", DW_SPI_ISR),
53 DW_SPI_DBGFS_REG("DMACR", DW_SPI_DMACR),
54 DW_SPI_DBGFS_REG("DMATDLR", DW_SPI_DMATDLR),
55 DW_SPI_DBGFS_REG("DMARDLR", DW_SPI_DMARDLR),
56 DW_SPI_DBGFS_REG("RX_SAMPLE_DLY", DW_SPI_RX_SAMPLE_DLY),
57 };
58
dw_spi_debugfs_init(struct dw_spi * dws)59 static int dw_spi_debugfs_init(struct dw_spi *dws)
60 {
61 char name[32];
62
63 snprintf(name, 32, "dw_spi%d", dws->master->bus_num);
64 dws->debugfs = debugfs_create_dir(name, NULL);
65 if (!dws->debugfs)
66 return -ENOMEM;
67
68 dws->regset.regs = dw_spi_dbgfs_regs;
69 dws->regset.nregs = ARRAY_SIZE(dw_spi_dbgfs_regs);
70 dws->regset.base = dws->regs;
71 debugfs_create_regset32("registers", 0400, dws->debugfs, &dws->regset);
72
73 return 0;
74 }
75
dw_spi_debugfs_remove(struct dw_spi * dws)76 static void dw_spi_debugfs_remove(struct dw_spi *dws)
77 {
78 debugfs_remove_recursive(dws->debugfs);
79 }
80
81 #else
dw_spi_debugfs_init(struct dw_spi * dws)82 static inline int dw_spi_debugfs_init(struct dw_spi *dws)
83 {
84 return 0;
85 }
86
dw_spi_debugfs_remove(struct dw_spi * dws)87 static inline void dw_spi_debugfs_remove(struct dw_spi *dws)
88 {
89 }
90 #endif /* CONFIG_DEBUG_FS */
91
dw_spi_set_cs(struct spi_device * spi,bool enable)92 void dw_spi_set_cs(struct spi_device *spi, bool enable)
93 {
94 struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
95 bool cs_high = !!(spi->mode & SPI_CS_HIGH);
96
97 /*
98 * DW SPI controller demands any native CS being set in order to
99 * proceed with data transfer. So in order to activate the SPI
100 * communications we must set a corresponding bit in the Slave
101 * Enable register no matter whether the SPI core is configured to
102 * support active-high or active-low CS level.
103 */
104 if (cs_high == enable)
105 dw_writel(dws, DW_SPI_SER, BIT(spi->chip_select));
106 else
107 dw_writel(dws, DW_SPI_SER, 0);
108 }
109 EXPORT_SYMBOL_GPL(dw_spi_set_cs);
110
111 /* Return the max entries we can fill into tx fifo */
tx_max(struct dw_spi * dws)112 static inline u32 tx_max(struct dw_spi *dws)
113 {
114 u32 tx_room, rxtx_gap;
115
116 tx_room = dws->fifo_len - dw_readl(dws, DW_SPI_TXFLR);
117
118 /*
119 * Another concern is about the tx/rx mismatch, we
120 * though to use (dws->fifo_len - rxflr - txflr) as
121 * one maximum value for tx, but it doesn't cover the
122 * data which is out of tx/rx fifo and inside the
123 * shift registers. So a control from sw point of
124 * view is taken.
125 */
126 rxtx_gap = dws->fifo_len - (dws->rx_len - dws->tx_len);
127
128 return min3((u32)dws->tx_len, tx_room, rxtx_gap);
129 }
130
131 /* Return the max entries we should read out of rx fifo */
rx_max(struct dw_spi * dws)132 static inline u32 rx_max(struct dw_spi *dws)
133 {
134 return min_t(u32, dws->rx_len, dw_readl(dws, DW_SPI_RXFLR));
135 }
136
dw_writer(struct dw_spi * dws)137 static void dw_writer(struct dw_spi *dws)
138 {
139 u32 max = tx_max(dws);
140 u32 txw = 0;
141
142 while (max--) {
143 if (dws->tx) {
144 if (dws->n_bytes == 1)
145 txw = *(u8 *)(dws->tx);
146 else if (dws->n_bytes == 2)
147 txw = *(u16 *)(dws->tx);
148 else
149 txw = *(u32 *)(dws->tx);
150
151 dws->tx += dws->n_bytes;
152 }
153 dw_write_io_reg(dws, DW_SPI_DR, txw);
154 --dws->tx_len;
155 }
156 }
157
dw_reader(struct dw_spi * dws)158 static void dw_reader(struct dw_spi *dws)
159 {
160 u32 max = rx_max(dws);
161 u32 rxw;
162
163 while (max--) {
164 rxw = dw_read_io_reg(dws, DW_SPI_DR);
165 if (dws->rx) {
166 if (dws->n_bytes == 1)
167 *(u8 *)(dws->rx) = rxw;
168 else if (dws->n_bytes == 2)
169 *(u16 *)(dws->rx) = rxw;
170 else
171 *(u32 *)(dws->rx) = rxw;
172
173 dws->rx += dws->n_bytes;
174 }
175 --dws->rx_len;
176 }
177 }
178
dw_spi_check_status(struct dw_spi * dws,bool raw)179 int dw_spi_check_status(struct dw_spi *dws, bool raw)
180 {
181 u32 irq_status;
182 int ret = 0;
183
184 if (raw)
185 irq_status = dw_readl(dws, DW_SPI_RISR);
186 else
187 irq_status = dw_readl(dws, DW_SPI_ISR);
188
189 if (irq_status & SPI_INT_RXOI) {
190 dev_err(&dws->master->dev, "RX FIFO overflow detected\n");
191 ret = -EIO;
192 }
193
194 if (irq_status & SPI_INT_RXUI) {
195 dev_err(&dws->master->dev, "RX FIFO underflow detected\n");
196 ret = -EIO;
197 }
198
199 if (irq_status & SPI_INT_TXOI) {
200 dev_err(&dws->master->dev, "TX FIFO overflow detected\n");
201 ret = -EIO;
202 }
203
204 /* Generically handle the erroneous situation */
205 if (ret) {
206 spi_reset_chip(dws);
207 if (dws->master->cur_msg)
208 dws->master->cur_msg->status = ret;
209 }
210
211 return ret;
212 }
213 EXPORT_SYMBOL_GPL(dw_spi_check_status);
214
dw_spi_transfer_handler(struct dw_spi * dws)215 static irqreturn_t dw_spi_transfer_handler(struct dw_spi *dws)
216 {
217 u16 irq_status = dw_readl(dws, DW_SPI_ISR);
218
219 if (dw_spi_check_status(dws, false)) {
220 spi_finalize_current_transfer(dws->master);
221 return IRQ_HANDLED;
222 }
223
224 /*
225 * Read data from the Rx FIFO every time we've got a chance executing
226 * this method. If there is nothing left to receive, terminate the
227 * procedure. Otherwise adjust the Rx FIFO Threshold level if it's a
228 * final stage of the transfer. By doing so we'll get the next IRQ
229 * right when the leftover incoming data is received.
230 */
231 dw_reader(dws);
232 if (!dws->rx_len) {
233 spi_mask_intr(dws, 0xff);
234 spi_finalize_current_transfer(dws->master);
235 } else if (dws->rx_len <= dw_readl(dws, DW_SPI_RXFTLR)) {
236 dw_writel(dws, DW_SPI_RXFTLR, dws->rx_len - 1);
237 }
238
239 /*
240 * Send data out if Tx FIFO Empty IRQ is received. The IRQ will be
241 * disabled after the data transmission is finished so not to
242 * have the TXE IRQ flood at the final stage of the transfer.
243 */
244 if (irq_status & SPI_INT_TXEI) {
245 dw_writer(dws);
246 if (!dws->tx_len)
247 spi_mask_intr(dws, SPI_INT_TXEI);
248 }
249
250 return IRQ_HANDLED;
251 }
252
dw_spi_irq(int irq,void * dev_id)253 static irqreturn_t dw_spi_irq(int irq, void *dev_id)
254 {
255 struct spi_controller *master = dev_id;
256 struct dw_spi *dws = spi_controller_get_devdata(master);
257 u16 irq_status = dw_readl(dws, DW_SPI_ISR) & 0x3f;
258
259 if (!irq_status)
260 return IRQ_NONE;
261
262 if (!master->cur_msg) {
263 spi_mask_intr(dws, 0xff);
264 return IRQ_HANDLED;
265 }
266
267 return dws->transfer_handler(dws);
268 }
269
dw_spi_prepare_cr0(struct dw_spi * dws,struct spi_device * spi)270 static u32 dw_spi_prepare_cr0(struct dw_spi *dws, struct spi_device *spi)
271 {
272 u32 cr0 = 0;
273
274 if (!(dws->caps & DW_SPI_CAP_DWC_SSI)) {
275 /* CTRLR0[ 5: 4] Frame Format */
276 cr0 |= SSI_MOTO_SPI << SPI_FRF_OFFSET;
277
278 /*
279 * SPI mode (SCPOL|SCPH)
280 * CTRLR0[ 6] Serial Clock Phase
281 * CTRLR0[ 7] Serial Clock Polarity
282 */
283 cr0 |= ((spi->mode & SPI_CPOL) ? 1 : 0) << SPI_SCOL_OFFSET;
284 cr0 |= ((spi->mode & SPI_CPHA) ? 1 : 0) << SPI_SCPH_OFFSET;
285
286 /* CTRLR0[11] Shift Register Loop */
287 cr0 |= ((spi->mode & SPI_LOOP) ? 1 : 0) << SPI_SRL_OFFSET;
288 } else {
289 /* CTRLR0[ 7: 6] Frame Format */
290 cr0 |= SSI_MOTO_SPI << DWC_SSI_CTRLR0_FRF_OFFSET;
291
292 /*
293 * SPI mode (SCPOL|SCPH)
294 * CTRLR0[ 8] Serial Clock Phase
295 * CTRLR0[ 9] Serial Clock Polarity
296 */
297 cr0 |= ((spi->mode & SPI_CPOL) ? 1 : 0) << DWC_SSI_CTRLR0_SCPOL_OFFSET;
298 cr0 |= ((spi->mode & SPI_CPHA) ? 1 : 0) << DWC_SSI_CTRLR0_SCPH_OFFSET;
299
300 /* CTRLR0[13] Shift Register Loop */
301 cr0 |= ((spi->mode & SPI_LOOP) ? 1 : 0) << DWC_SSI_CTRLR0_SRL_OFFSET;
302
303 if (dws->caps & DW_SPI_CAP_KEEMBAY_MST)
304 cr0 |= DWC_SSI_CTRLR0_KEEMBAY_MST;
305 }
306
307 return cr0;
308 }
309
dw_spi_update_config(struct dw_spi * dws,struct spi_device * spi,struct dw_spi_cfg * cfg)310 void dw_spi_update_config(struct dw_spi *dws, struct spi_device *spi,
311 struct dw_spi_cfg *cfg)
312 {
313 struct chip_data *chip = spi_get_ctldata(spi);
314 u32 cr0 = chip->cr0;
315 u32 speed_hz;
316 u16 clk_div;
317
318 /* CTRLR0[ 4/3: 0] or CTRLR0[ 20: 16] Data Frame Size */
319 cr0 |= (cfg->dfs - 1) << dws->dfs_offset;
320
321 if (!(dws->caps & DW_SPI_CAP_DWC_SSI))
322 /* CTRLR0[ 9:8] Transfer Mode */
323 cr0 |= cfg->tmode << SPI_TMOD_OFFSET;
324 else
325 /* CTRLR0[11:10] Transfer Mode */
326 cr0 |= cfg->tmode << DWC_SSI_CTRLR0_TMOD_OFFSET;
327
328 dw_writel(dws, DW_SPI_CTRLR0, cr0);
329
330 if (cfg->tmode == SPI_TMOD_EPROMREAD || cfg->tmode == SPI_TMOD_RO)
331 dw_writel(dws, DW_SPI_CTRLR1, cfg->ndf ? cfg->ndf - 1 : 0);
332
333 /* Note DW APB SSI clock divider doesn't support odd numbers */
334 clk_div = (DIV_ROUND_UP(dws->max_freq, cfg->freq) + 1) & 0xfffe;
335 speed_hz = dws->max_freq / clk_div;
336
337 if (dws->current_freq != speed_hz) {
338 spi_set_clk(dws, clk_div);
339 dws->current_freq = speed_hz;
340 }
341
342 /* Update RX sample delay if required */
343 if (dws->cur_rx_sample_dly != chip->rx_sample_dly) {
344 dw_writel(dws, DW_SPI_RX_SAMPLE_DLY, chip->rx_sample_dly);
345 dws->cur_rx_sample_dly = chip->rx_sample_dly;
346 }
347 }
348 EXPORT_SYMBOL_GPL(dw_spi_update_config);
349
dw_spi_irq_setup(struct dw_spi * dws)350 static void dw_spi_irq_setup(struct dw_spi *dws)
351 {
352 u16 level;
353 u8 imask;
354
355 /*
356 * Originally Tx and Rx data lengths match. Rx FIFO Threshold level
357 * will be adjusted at the final stage of the IRQ-based SPI transfer
358 * execution so not to lose the leftover of the incoming data.
359 */
360 level = min_t(unsigned int, dws->fifo_len / 2, dws->tx_len);
361 dw_writel(dws, DW_SPI_TXFTLR, level);
362 dw_writel(dws, DW_SPI_RXFTLR, level - 1);
363
364 dws->transfer_handler = dw_spi_transfer_handler;
365
366 imask = SPI_INT_TXEI | SPI_INT_TXOI | SPI_INT_RXUI | SPI_INT_RXOI |
367 SPI_INT_RXFI;
368 spi_umask_intr(dws, imask);
369 }
370
371 /*
372 * The iterative procedure of the poll-based transfer is simple: write as much
373 * as possible to the Tx FIFO, wait until the pending to receive data is ready
374 * to be read, read it from the Rx FIFO and check whether the performed
375 * procedure has been successful.
376 *
377 * Note this method the same way as the IRQ-based transfer won't work well for
378 * the SPI devices connected to the controller with native CS due to the
379 * automatic CS assertion/de-assertion.
380 */
dw_spi_poll_transfer(struct dw_spi * dws,struct spi_transfer * transfer)381 static int dw_spi_poll_transfer(struct dw_spi *dws,
382 struct spi_transfer *transfer)
383 {
384 struct spi_delay delay;
385 u16 nbits;
386 int ret;
387
388 delay.unit = SPI_DELAY_UNIT_SCK;
389 nbits = dws->n_bytes * BITS_PER_BYTE;
390
391 do {
392 dw_writer(dws);
393
394 delay.value = nbits * (dws->rx_len - dws->tx_len);
395 spi_delay_exec(&delay, transfer);
396
397 dw_reader(dws);
398
399 ret = dw_spi_check_status(dws, true);
400 if (ret)
401 return ret;
402 } while (dws->rx_len);
403
404 return 0;
405 }
406
dw_spi_transfer_one(struct spi_controller * master,struct spi_device * spi,struct spi_transfer * transfer)407 static int dw_spi_transfer_one(struct spi_controller *master,
408 struct spi_device *spi, struct spi_transfer *transfer)
409 {
410 struct dw_spi *dws = spi_controller_get_devdata(master);
411 struct dw_spi_cfg cfg = {
412 .tmode = SPI_TMOD_TR,
413 .dfs = transfer->bits_per_word,
414 .freq = transfer->speed_hz,
415 };
416 int ret;
417
418 dws->dma_mapped = 0;
419 dws->n_bytes =
420 roundup_pow_of_two(DIV_ROUND_UP(transfer->bits_per_word,
421 BITS_PER_BYTE));
422
423 dws->tx = (void *)transfer->tx_buf;
424 dws->tx_len = transfer->len / dws->n_bytes;
425 dws->rx = transfer->rx_buf;
426 dws->rx_len = dws->tx_len;
427
428 /* Ensure the data above is visible for all CPUs */
429 smp_mb();
430
431 spi_enable_chip(dws, 0);
432
433 dw_spi_update_config(dws, spi, &cfg);
434
435 transfer->effective_speed_hz = dws->current_freq;
436
437 /* Check if current transfer is a DMA transaction */
438 if (master->can_dma && master->can_dma(master, spi, transfer))
439 dws->dma_mapped = master->cur_msg_mapped;
440
441 /* For poll mode just disable all interrupts */
442 spi_mask_intr(dws, 0xff);
443
444 if (dws->dma_mapped) {
445 ret = dws->dma_ops->dma_setup(dws, transfer);
446 if (ret)
447 return ret;
448 }
449
450 spi_enable_chip(dws, 1);
451
452 if (dws->dma_mapped)
453 return dws->dma_ops->dma_transfer(dws, transfer);
454 else if (dws->irq == IRQ_NOTCONNECTED)
455 return dw_spi_poll_transfer(dws, transfer);
456
457 dw_spi_irq_setup(dws);
458
459 return 1;
460 }
461
dw_spi_handle_err(struct spi_controller * master,struct spi_message * msg)462 static void dw_spi_handle_err(struct spi_controller *master,
463 struct spi_message *msg)
464 {
465 struct dw_spi *dws = spi_controller_get_devdata(master);
466
467 if (dws->dma_mapped)
468 dws->dma_ops->dma_stop(dws);
469
470 spi_reset_chip(dws);
471 }
472
dw_spi_adjust_mem_op_size(struct spi_mem * mem,struct spi_mem_op * op)473 static int dw_spi_adjust_mem_op_size(struct spi_mem *mem, struct spi_mem_op *op)
474 {
475 if (op->data.dir == SPI_MEM_DATA_IN)
476 op->data.nbytes = clamp_val(op->data.nbytes, 0, SPI_NDF_MASK + 1);
477
478 return 0;
479 }
480
dw_spi_supports_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)481 static bool dw_spi_supports_mem_op(struct spi_mem *mem,
482 const struct spi_mem_op *op)
483 {
484 if (op->data.buswidth > 1 || op->addr.buswidth > 1 ||
485 op->dummy.buswidth > 1 || op->cmd.buswidth > 1)
486 return false;
487
488 return spi_mem_default_supports_op(mem, op);
489 }
490
dw_spi_init_mem_buf(struct dw_spi * dws,const struct spi_mem_op * op)491 static int dw_spi_init_mem_buf(struct dw_spi *dws, const struct spi_mem_op *op)
492 {
493 unsigned int i, j, len;
494 u8 *out;
495
496 /*
497 * Calculate the total length of the EEPROM command transfer and
498 * either use the pre-allocated buffer or create a temporary one.
499 */
500 len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
501 if (op->data.dir == SPI_MEM_DATA_OUT)
502 len += op->data.nbytes;
503
504 if (len <= SPI_BUF_SIZE) {
505 out = dws->buf;
506 } else {
507 out = kzalloc(len, GFP_KERNEL);
508 if (!out)
509 return -ENOMEM;
510 }
511
512 /*
513 * Collect the operation code, address and dummy bytes into the single
514 * buffer. If it's a transfer with data to be sent, also copy it into the
515 * single buffer in order to speed the data transmission up.
516 */
517 for (i = 0; i < op->cmd.nbytes; ++i)
518 out[i] = SPI_GET_BYTE(op->cmd.opcode, op->cmd.nbytes - i - 1);
519 for (j = 0; j < op->addr.nbytes; ++i, ++j)
520 out[i] = SPI_GET_BYTE(op->addr.val, op->addr.nbytes - j - 1);
521 for (j = 0; j < op->dummy.nbytes; ++i, ++j)
522 out[i] = 0x0;
523
524 if (op->data.dir == SPI_MEM_DATA_OUT)
525 memcpy(&out[i], op->data.buf.out, op->data.nbytes);
526
527 dws->n_bytes = 1;
528 dws->tx = out;
529 dws->tx_len = len;
530 if (op->data.dir == SPI_MEM_DATA_IN) {
531 dws->rx = op->data.buf.in;
532 dws->rx_len = op->data.nbytes;
533 } else {
534 dws->rx = NULL;
535 dws->rx_len = 0;
536 }
537
538 return 0;
539 }
540
dw_spi_free_mem_buf(struct dw_spi * dws)541 static void dw_spi_free_mem_buf(struct dw_spi *dws)
542 {
543 if (dws->tx != dws->buf)
544 kfree(dws->tx);
545 }
546
dw_spi_write_then_read(struct dw_spi * dws,struct spi_device * spi)547 static int dw_spi_write_then_read(struct dw_spi *dws, struct spi_device *spi)
548 {
549 u32 room, entries, sts;
550 unsigned int len;
551 u8 *buf;
552
553 /*
554 * At initial stage we just pre-fill the Tx FIFO in with no rush,
555 * since native CS hasn't been enabled yet and the automatic data
556 * transmission won't start til we do that.
557 */
558 len = min(dws->fifo_len, dws->tx_len);
559 buf = dws->tx;
560 while (len--)
561 dw_write_io_reg(dws, DW_SPI_DR, *buf++);
562
563 /*
564 * After setting any bit in the SER register the transmission will
565 * start automatically. We have to keep up with that procedure
566 * otherwise the CS de-assertion will happen whereupon the memory
567 * operation will be pre-terminated.
568 */
569 len = dws->tx_len - ((void *)buf - dws->tx);
570 dw_spi_set_cs(spi, false);
571 while (len) {
572 entries = readl_relaxed(dws->regs + DW_SPI_TXFLR);
573 if (!entries) {
574 dev_err(&dws->master->dev, "CS de-assertion on Tx\n");
575 return -EIO;
576 }
577 room = min(dws->fifo_len - entries, len);
578 for (; room; --room, --len)
579 dw_write_io_reg(dws, DW_SPI_DR, *buf++);
580 }
581
582 /*
583 * Data fetching will start automatically if the EEPROM-read mode is
584 * activated. We have to keep up with the incoming data pace to
585 * prevent the Rx FIFO overflow causing the inbound data loss.
586 */
587 len = dws->rx_len;
588 buf = dws->rx;
589 while (len) {
590 entries = readl_relaxed(dws->regs + DW_SPI_RXFLR);
591 if (!entries) {
592 sts = readl_relaxed(dws->regs + DW_SPI_RISR);
593 if (sts & SPI_INT_RXOI) {
594 dev_err(&dws->master->dev, "FIFO overflow on Rx\n");
595 return -EIO;
596 }
597 continue;
598 }
599 entries = min(entries, len);
600 for (; entries; --entries, --len)
601 *buf++ = dw_read_io_reg(dws, DW_SPI_DR);
602 }
603
604 return 0;
605 }
606
dw_spi_ctlr_busy(struct dw_spi * dws)607 static inline bool dw_spi_ctlr_busy(struct dw_spi *dws)
608 {
609 return dw_readl(dws, DW_SPI_SR) & SR_BUSY;
610 }
611
dw_spi_wait_mem_op_done(struct dw_spi * dws)612 static int dw_spi_wait_mem_op_done(struct dw_spi *dws)
613 {
614 int retry = SPI_WAIT_RETRIES;
615 struct spi_delay delay;
616 unsigned long ns, us;
617 u32 nents;
618
619 nents = dw_readl(dws, DW_SPI_TXFLR);
620 ns = NSEC_PER_SEC / dws->current_freq * nents;
621 ns *= dws->n_bytes * BITS_PER_BYTE;
622 if (ns <= NSEC_PER_USEC) {
623 delay.unit = SPI_DELAY_UNIT_NSECS;
624 delay.value = ns;
625 } else {
626 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
627 delay.unit = SPI_DELAY_UNIT_USECS;
628 delay.value = clamp_val(us, 0, USHRT_MAX);
629 }
630
631 while (dw_spi_ctlr_busy(dws) && retry--)
632 spi_delay_exec(&delay, NULL);
633
634 if (retry < 0) {
635 dev_err(&dws->master->dev, "Mem op hanged up\n");
636 return -EIO;
637 }
638
639 return 0;
640 }
641
dw_spi_stop_mem_op(struct dw_spi * dws,struct spi_device * spi)642 static void dw_spi_stop_mem_op(struct dw_spi *dws, struct spi_device *spi)
643 {
644 spi_enable_chip(dws, 0);
645 dw_spi_set_cs(spi, true);
646 spi_enable_chip(dws, 1);
647 }
648
649 /*
650 * The SPI memory operation implementation below is the best choice for the
651 * devices, which are selected by the native chip-select lane. It's
652 * specifically developed to workaround the problem with automatic chip-select
653 * lane toggle when there is no data in the Tx FIFO buffer. Luckily the current
654 * SPI-mem core calls exec_op() callback only if the GPIO-based CS is
655 * unavailable.
656 */
dw_spi_exec_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)657 static int dw_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
658 {
659 struct dw_spi *dws = spi_controller_get_devdata(mem->spi->controller);
660 struct dw_spi_cfg cfg;
661 unsigned long flags;
662 int ret;
663
664 /*
665 * Collect the outbound data into a single buffer to speed the
666 * transmission up at least on the initial stage.
667 */
668 ret = dw_spi_init_mem_buf(dws, op);
669 if (ret)
670 return ret;
671
672 /*
673 * DW SPI EEPROM-read mode is required only for the SPI memory Data-IN
674 * operation. Transmit-only mode is suitable for the rest of them.
675 */
676 cfg.dfs = 8;
677 cfg.freq = clamp(mem->spi->max_speed_hz, 0U, dws->max_mem_freq);
678 if (op->data.dir == SPI_MEM_DATA_IN) {
679 cfg.tmode = SPI_TMOD_EPROMREAD;
680 cfg.ndf = op->data.nbytes;
681 } else {
682 cfg.tmode = SPI_TMOD_TO;
683 }
684
685 spi_enable_chip(dws, 0);
686
687 dw_spi_update_config(dws, mem->spi, &cfg);
688
689 spi_mask_intr(dws, 0xff);
690
691 spi_enable_chip(dws, 1);
692
693 /*
694 * DW APB SSI controller has very nasty peculiarities. First originally
695 * (without any vendor-specific modifications) it doesn't provide a
696 * direct way to set and clear the native chip-select signal. Instead
697 * the controller asserts the CS lane if Tx FIFO isn't empty and a
698 * transmission is going on, and automatically de-asserts it back to
699 * the high level if the Tx FIFO doesn't have anything to be pushed
700 * out. Due to that a multi-tasking or heavy IRQs activity might be
701 * fatal, since the transfer procedure preemption may cause the Tx FIFO
702 * getting empty and sudden CS de-assertion, which in the middle of the
703 * transfer will most likely cause the data loss. Secondly the
704 * EEPROM-read or Read-only DW SPI transfer modes imply the incoming
705 * data being automatically pulled in into the Rx FIFO. So if the
706 * driver software is late in fetching the data from the FIFO before
707 * it's overflown, new incoming data will be lost. In order to make
708 * sure the executed memory operations are CS-atomic and to prevent the
709 * Rx FIFO overflow we have to disable the local interrupts so to block
710 * any preemption during the subsequent IO operations.
711 *
712 * Note. At some circumstances disabling IRQs may not help to prevent
713 * the problems described above. The CS de-assertion and Rx FIFO
714 * overflow may still happen due to the relatively slow system bus or
715 * CPU not working fast enough, so the write-then-read algo implemented
716 * here just won't keep up with the SPI bus data transfer. Such
717 * situation is highly platform specific and is supposed to be fixed by
718 * manually restricting the SPI bus frequency using the
719 * dws->max_mem_freq parameter.
720 */
721 local_irq_save(flags);
722 preempt_disable();
723
724 ret = dw_spi_write_then_read(dws, mem->spi);
725
726 local_irq_restore(flags);
727 preempt_enable();
728
729 /*
730 * Wait for the operation being finished and check the controller
731 * status only if there hasn't been any run-time error detected. In the
732 * former case it's just pointless. In the later one to prevent an
733 * additional error message printing since any hw error flag being set
734 * would be due to an error detected on the data transfer.
735 */
736 if (!ret) {
737 ret = dw_spi_wait_mem_op_done(dws);
738 if (!ret)
739 ret = dw_spi_check_status(dws, true);
740 }
741
742 dw_spi_stop_mem_op(dws, mem->spi);
743
744 dw_spi_free_mem_buf(dws);
745
746 return ret;
747 }
748
749 /*
750 * Initialize the default memory operations if a glue layer hasn't specified
751 * custom ones. Direct mapping operations will be preserved anyway since DW SPI
752 * controller doesn't have an embedded dirmap interface. Note the memory
753 * operations implemented in this driver is the best choice only for the DW APB
754 * SSI controller with standard native CS functionality. If a hardware vendor
755 * has fixed the automatic CS assertion/de-assertion peculiarity, then it will
756 * be safer to use the normal SPI-messages-based transfers implementation.
757 */
dw_spi_init_mem_ops(struct dw_spi * dws)758 static void dw_spi_init_mem_ops(struct dw_spi *dws)
759 {
760 if (!dws->mem_ops.exec_op && !(dws->caps & DW_SPI_CAP_CS_OVERRIDE) &&
761 !dws->set_cs) {
762 dws->mem_ops.adjust_op_size = dw_spi_adjust_mem_op_size;
763 dws->mem_ops.supports_op = dw_spi_supports_mem_op;
764 dws->mem_ops.exec_op = dw_spi_exec_mem_op;
765 if (!dws->max_mem_freq)
766 dws->max_mem_freq = dws->max_freq;
767 }
768 }
769
770 /* This may be called twice for each spi dev */
dw_spi_setup(struct spi_device * spi)771 static int dw_spi_setup(struct spi_device *spi)
772 {
773 struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
774 struct chip_data *chip;
775
776 /* Only alloc on first setup */
777 chip = spi_get_ctldata(spi);
778 if (!chip) {
779 struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
780 u32 rx_sample_dly_ns;
781
782 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
783 if (!chip)
784 return -ENOMEM;
785 spi_set_ctldata(spi, chip);
786 /* Get specific / default rx-sample-delay */
787 if (device_property_read_u32(&spi->dev,
788 "rx-sample-delay-ns",
789 &rx_sample_dly_ns) != 0)
790 /* Use default controller value */
791 rx_sample_dly_ns = dws->def_rx_sample_dly_ns;
792 chip->rx_sample_dly = DIV_ROUND_CLOSEST(rx_sample_dly_ns,
793 NSEC_PER_SEC /
794 dws->max_freq);
795 }
796
797 /*
798 * Update CR0 data each time the setup callback is invoked since
799 * the device parameters could have been changed, for instance, by
800 * the MMC SPI driver or something else.
801 */
802 chip->cr0 = dw_spi_prepare_cr0(dws, spi);
803
804 return 0;
805 }
806
dw_spi_cleanup(struct spi_device * spi)807 static void dw_spi_cleanup(struct spi_device *spi)
808 {
809 struct chip_data *chip = spi_get_ctldata(spi);
810
811 kfree(chip);
812 spi_set_ctldata(spi, NULL);
813 }
814
815 /* Restart the controller, disable all interrupts, clean rx fifo */
spi_hw_init(struct device * dev,struct dw_spi * dws)816 static void spi_hw_init(struct device *dev, struct dw_spi *dws)
817 {
818 spi_reset_chip(dws);
819
820 /*
821 * Try to detect the FIFO depth if not set by interface driver,
822 * the depth could be from 2 to 256 from HW spec
823 */
824 if (!dws->fifo_len) {
825 u32 fifo;
826
827 for (fifo = 1; fifo < 256; fifo++) {
828 dw_writel(dws, DW_SPI_TXFTLR, fifo);
829 if (fifo != dw_readl(dws, DW_SPI_TXFTLR))
830 break;
831 }
832 dw_writel(dws, DW_SPI_TXFTLR, 0);
833
834 dws->fifo_len = (fifo == 1) ? 0 : fifo;
835 dev_dbg(dev, "Detected FIFO size: %u bytes\n", dws->fifo_len);
836 }
837
838 /*
839 * Detect CTRLR0.DFS field size and offset by testing the lowest bits
840 * writability. Note DWC SSI controller also has the extended DFS, but
841 * with zero offset.
842 */
843 if (!(dws->caps & DW_SPI_CAP_DWC_SSI)) {
844 u32 cr0, tmp = dw_readl(dws, DW_SPI_CTRLR0);
845
846 spi_enable_chip(dws, 0);
847 dw_writel(dws, DW_SPI_CTRLR0, 0xffffffff);
848 cr0 = dw_readl(dws, DW_SPI_CTRLR0);
849 dw_writel(dws, DW_SPI_CTRLR0, tmp);
850 spi_enable_chip(dws, 1);
851
852 if (!(cr0 & SPI_DFS_MASK)) {
853 dws->caps |= DW_SPI_CAP_DFS32;
854 dws->dfs_offset = SPI_DFS32_OFFSET;
855 dev_dbg(dev, "Detected 32-bits max data frame size\n");
856 }
857 } else {
858 dws->caps |= DW_SPI_CAP_DFS32;
859 }
860
861 /* enable HW fixup for explicit CS deselect for Amazon's alpine chip */
862 if (dws->caps & DW_SPI_CAP_CS_OVERRIDE)
863 dw_writel(dws, DW_SPI_CS_OVERRIDE, 0xF);
864 }
865
dw_spi_add_host(struct device * dev,struct dw_spi * dws)866 int dw_spi_add_host(struct device *dev, struct dw_spi *dws)
867 {
868 struct spi_controller *master;
869 int ret;
870
871 if (!dws)
872 return -EINVAL;
873
874 master = spi_alloc_master(dev, 0);
875 if (!master)
876 return -ENOMEM;
877
878 dws->master = master;
879 dws->dma_addr = (dma_addr_t)(dws->paddr + DW_SPI_DR);
880
881 spi_controller_set_devdata(master, dws);
882
883 /* Basic HW init */
884 spi_hw_init(dev, dws);
885
886 ret = request_irq(dws->irq, dw_spi_irq, IRQF_SHARED, dev_name(dev),
887 master);
888 if (ret < 0 && ret != -ENOTCONN) {
889 dev_err(dev, "can not get IRQ\n");
890 goto err_free_master;
891 }
892
893 dw_spi_init_mem_ops(dws);
894
895 master->use_gpio_descriptors = true;
896 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP;
897 if (dws->caps & DW_SPI_CAP_DFS32)
898 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
899 else
900 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
901 master->bus_num = dws->bus_num;
902 master->num_chipselect = dws->num_cs;
903 master->setup = dw_spi_setup;
904 master->cleanup = dw_spi_cleanup;
905 if (dws->set_cs)
906 master->set_cs = dws->set_cs;
907 else
908 master->set_cs = dw_spi_set_cs;
909 master->transfer_one = dw_spi_transfer_one;
910 master->handle_err = dw_spi_handle_err;
911 if (dws->mem_ops.exec_op)
912 master->mem_ops = &dws->mem_ops;
913 master->max_speed_hz = dws->max_freq;
914 master->dev.of_node = dev->of_node;
915 master->dev.fwnode = dev->fwnode;
916 master->flags = SPI_MASTER_GPIO_SS;
917 master->auto_runtime_pm = true;
918
919 /* Get default rx sample delay */
920 device_property_read_u32(dev, "rx-sample-delay-ns",
921 &dws->def_rx_sample_dly_ns);
922
923 if (dws->dma_ops && dws->dma_ops->dma_init) {
924 ret = dws->dma_ops->dma_init(dev, dws);
925 if (ret) {
926 dev_warn(dev, "DMA init failed\n");
927 } else {
928 master->can_dma = dws->dma_ops->can_dma;
929 master->flags |= SPI_CONTROLLER_MUST_TX;
930 }
931 }
932
933 ret = spi_register_controller(master);
934 if (ret) {
935 dev_err(&master->dev, "problem registering spi master\n");
936 goto err_dma_exit;
937 }
938
939 dw_spi_debugfs_init(dws);
940 return 0;
941
942 err_dma_exit:
943 if (dws->dma_ops && dws->dma_ops->dma_exit)
944 dws->dma_ops->dma_exit(dws);
945 spi_enable_chip(dws, 0);
946 free_irq(dws->irq, master);
947 err_free_master:
948 spi_controller_put(master);
949 return ret;
950 }
951 EXPORT_SYMBOL_GPL(dw_spi_add_host);
952
dw_spi_remove_host(struct dw_spi * dws)953 void dw_spi_remove_host(struct dw_spi *dws)
954 {
955 dw_spi_debugfs_remove(dws);
956
957 spi_unregister_controller(dws->master);
958
959 if (dws->dma_ops && dws->dma_ops->dma_exit)
960 dws->dma_ops->dma_exit(dws);
961
962 spi_shutdown_chip(dws);
963
964 free_irq(dws->irq, dws->master);
965 }
966 EXPORT_SYMBOL_GPL(dw_spi_remove_host);
967
dw_spi_suspend_host(struct dw_spi * dws)968 int dw_spi_suspend_host(struct dw_spi *dws)
969 {
970 int ret;
971
972 ret = spi_controller_suspend(dws->master);
973 if (ret)
974 return ret;
975
976 spi_shutdown_chip(dws);
977 return 0;
978 }
979 EXPORT_SYMBOL_GPL(dw_spi_suspend_host);
980
dw_spi_resume_host(struct dw_spi * dws)981 int dw_spi_resume_host(struct dw_spi *dws)
982 {
983 spi_hw_init(&dws->master->dev, dws);
984 return spi_controller_resume(dws->master);
985 }
986 EXPORT_SYMBOL_GPL(dw_spi_resume_host);
987
988 MODULE_AUTHOR("Feng Tang <feng.tang@intel.com>");
989 MODULE_DESCRIPTION("Driver for DesignWare SPI controller core");
990 MODULE_LICENSE("GPL v2");
991