1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * File Name:
4 * skfddi.c
5 *
6 * Copyright Information:
7 * Copyright SysKonnect 1998,1999.
8 *
9 * The information in this file is provided "AS IS" without warranty.
10 *
11 * Abstract:
12 * A Linux device driver supporting the SysKonnect FDDI PCI controller
13 * familie.
14 *
15 * Maintainers:
16 * CG Christoph Goos (cgoos@syskonnect.de)
17 *
18 * Contributors:
19 * DM David S. Miller
20 *
21 * Address all question to:
22 * linux@syskonnect.de
23 *
24 * The technical manual for the adapters is available from SysKonnect's
25 * web pages: www.syskonnect.com
26 * Goto "Support" and search Knowledge Base for "manual".
27 *
28 * Driver Architecture:
29 * The driver architecture is based on the DEC FDDI driver by
30 * Lawrence V. Stefani and several ethernet drivers.
31 * I also used an existing Windows NT miniport driver.
32 * All hardware dependent functions are handled by the SysKonnect
33 * Hardware Module.
34 * The only headerfiles that are directly related to this source
35 * are skfddi.c, h/types.h, h/osdef1st.h, h/targetos.h.
36 * The others belong to the SysKonnect FDDI Hardware Module and
37 * should better not be changed.
38 *
39 * Modification History:
40 * Date Name Description
41 * 02-Mar-98 CG Created.
42 *
43 * 10-Mar-99 CG Support for 2.2.x added.
44 * 25-Mar-99 CG Corrected IRQ routing for SMP (APIC)
45 * 26-Oct-99 CG Fixed compilation error on 2.2.13
46 * 12-Nov-99 CG Source code release
47 * 22-Nov-99 CG Included in kernel source.
48 * 07-May-00 DM 64 bit fixes, new dma interface
49 * 31-Jul-03 DB Audit copy_*_user in skfp_ioctl
50 * Daniele Bellucci <bellucda@tiscali.it>
51 * 03-Dec-03 SH Convert to PCI device model
52 *
53 * Compilation options (-Dxxx):
54 * DRIVERDEBUG print lots of messages to log file
55 * DUMPPACKETS print received/transmitted packets to logfile
56 *
57 * Tested cpu architectures:
58 * - i386
59 * - sparc64
60 */
61
62 /* Version information string - should be updated prior to */
63 /* each new release!!! */
64 #define VERSION "2.07"
65
66 static const char * const boot_msg =
67 "SysKonnect FDDI PCI Adapter driver v" VERSION " for\n"
68 " SK-55xx/SK-58xx adapters (SK-NET FDDI-FP/UP/LP)";
69
70 /* Include files */
71
72 #include <linux/capability.h>
73 #include <linux/compat.h>
74 #include <linux/module.h>
75 #include <linux/kernel.h>
76 #include <linux/errno.h>
77 #include <linux/ioport.h>
78 #include <linux/interrupt.h>
79 #include <linux/pci.h>
80 #include <linux/netdevice.h>
81 #include <linux/fddidevice.h>
82 #include <linux/skbuff.h>
83 #include <linux/bitops.h>
84 #include <linux/gfp.h>
85
86 #include <asm/byteorder.h>
87 #include <asm/io.h>
88 #include <linux/uaccess.h>
89
90 #include "h/types.h"
91 #undef ADDR // undo Linux definition
92 #include "h/skfbi.h"
93 #include "h/fddi.h"
94 #include "h/smc.h"
95 #include "h/smtstate.h"
96
97
98 // Define module-wide (static) routines
99 static int skfp_driver_init(struct net_device *dev);
100 static int skfp_open(struct net_device *dev);
101 static int skfp_close(struct net_device *dev);
102 static irqreturn_t skfp_interrupt(int irq, void *dev_id);
103 static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev);
104 static void skfp_ctl_set_multicast_list(struct net_device *dev);
105 static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev);
106 static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr);
107 static int skfp_siocdevprivate(struct net_device *dev, struct ifreq *rq,
108 void __user *data, int cmd);
109 static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
110 struct net_device *dev);
111 static void send_queued_packets(struct s_smc *smc);
112 static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr);
113 static void ResetAdapter(struct s_smc *smc);
114
115
116 // Functions needed by the hardware module
117 void *mac_drv_get_space(struct s_smc *smc, u_int size);
118 void *mac_drv_get_desc_mem(struct s_smc *smc, u_int size);
119 unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt);
120 unsigned long dma_master(struct s_smc *smc, void *virt, int len, int flag);
121 void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr,
122 int flag);
123 void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd);
124 void llc_restart_tx(struct s_smc *smc);
125 void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
126 int frag_count, int len);
127 void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
128 int frag_count);
129 void mac_drv_fill_rxd(struct s_smc *smc);
130 void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
131 int frag_count);
132 int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead,
133 int la_len);
134 void dump_data(unsigned char *Data, int length);
135
136 // External functions from the hardware module
137 extern u_int mac_drv_check_space(void);
138 extern int mac_drv_init(struct s_smc *smc);
139 extern void hwm_tx_frag(struct s_smc *smc, char far * virt, u_long phys,
140 int len, int frame_status);
141 extern int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count,
142 int frame_len, int frame_status);
143 extern void fddi_isr(struct s_smc *smc);
144 extern void hwm_rx_frag(struct s_smc *smc, char far * virt, u_long phys,
145 int len, int frame_status);
146 extern void mac_drv_rx_mode(struct s_smc *smc, int mode);
147 extern void mac_drv_clear_rx_queue(struct s_smc *smc);
148 extern void enable_tx_irq(struct s_smc *smc, u_short queue);
149
150 static const struct pci_device_id skfddi_pci_tbl[] = {
151 { PCI_VENDOR_ID_SK, PCI_DEVICE_ID_SK_FP, PCI_ANY_ID, PCI_ANY_ID, },
152 { } /* Terminating entry */
153 };
154 MODULE_DEVICE_TABLE(pci, skfddi_pci_tbl);
155 MODULE_LICENSE("GPL");
156 MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
157
158 // Define module-wide (static) variables
159
160 static int num_boards; /* total number of adapters configured */
161
162 static const struct net_device_ops skfp_netdev_ops = {
163 .ndo_open = skfp_open,
164 .ndo_stop = skfp_close,
165 .ndo_start_xmit = skfp_send_pkt,
166 .ndo_get_stats = skfp_ctl_get_stats,
167 .ndo_set_rx_mode = skfp_ctl_set_multicast_list,
168 .ndo_set_mac_address = skfp_ctl_set_mac_address,
169 .ndo_siocdevprivate = skfp_siocdevprivate,
170 };
171
172 /*
173 * =================
174 * = skfp_init_one =
175 * =================
176 *
177 * Overview:
178 * Probes for supported FDDI PCI controllers
179 *
180 * Returns:
181 * Condition code
182 *
183 * Arguments:
184 * pdev - pointer to PCI device information
185 *
186 * Functional Description:
187 * This is now called by PCI driver registration process
188 * for each board found.
189 *
190 * Return Codes:
191 * 0 - This device (fddi0, fddi1, etc) configured successfully
192 * -ENODEV - No devices present, or no SysKonnect FDDI PCI device
193 * present for this device name
194 *
195 *
196 * Side Effects:
197 * Device structures for FDDI adapters (fddi0, fddi1, etc) are
198 * initialized and the board resources are read and stored in
199 * the device structure.
200 */
skfp_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)201 static int skfp_init_one(struct pci_dev *pdev,
202 const struct pci_device_id *ent)
203 {
204 struct net_device *dev;
205 struct s_smc *smc; /* board pointer */
206 void __iomem *mem;
207 int err;
208
209 pr_debug("entering skfp_init_one\n");
210
211 if (num_boards == 0)
212 printk("%s\n", boot_msg);
213
214 err = pci_enable_device(pdev);
215 if (err)
216 return err;
217
218 err = pci_request_regions(pdev, "skfddi");
219 if (err)
220 goto err_out1;
221
222 pci_set_master(pdev);
223
224 #ifdef MEM_MAPPED_IO
225 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
226 printk(KERN_ERR "skfp: region is not an MMIO resource\n");
227 err = -EIO;
228 goto err_out2;
229 }
230
231 mem = ioremap(pci_resource_start(pdev, 0), 0x4000);
232 #else
233 if (!(pci_resource_flags(pdev, 1) & IO_RESOURCE_IO)) {
234 printk(KERN_ERR "skfp: region is not PIO resource\n");
235 err = -EIO;
236 goto err_out2;
237 }
238
239 mem = ioport_map(pci_resource_start(pdev, 1), FP_IO_LEN);
240 #endif
241 if (!mem) {
242 printk(KERN_ERR "skfp: Unable to map register, "
243 "FDDI adapter will be disabled.\n");
244 err = -EIO;
245 goto err_out2;
246 }
247
248 dev = alloc_fddidev(sizeof(struct s_smc));
249 if (!dev) {
250 printk(KERN_ERR "skfp: Unable to allocate fddi device, "
251 "FDDI adapter will be disabled.\n");
252 err = -ENOMEM;
253 goto err_out3;
254 }
255
256 dev->irq = pdev->irq;
257 dev->netdev_ops = &skfp_netdev_ops;
258
259 SET_NETDEV_DEV(dev, &pdev->dev);
260
261 /* Initialize board structure with bus-specific info */
262 smc = netdev_priv(dev);
263 smc->os.dev = dev;
264 smc->os.bus_type = SK_BUS_TYPE_PCI;
265 smc->os.pdev = *pdev;
266 smc->os.QueueSkb = MAX_TX_QUEUE_LEN;
267 smc->os.MaxFrameSize = MAX_FRAME_SIZE;
268 smc->os.dev = dev;
269 smc->hw.slot = -1;
270 smc->hw.iop = mem;
271 smc->os.ResetRequested = FALSE;
272 skb_queue_head_init(&smc->os.SendSkbQueue);
273
274 dev->base_addr = (unsigned long)mem;
275
276 err = skfp_driver_init(dev);
277 if (err)
278 goto err_out4;
279
280 err = register_netdev(dev);
281 if (err)
282 goto err_out5;
283
284 ++num_boards;
285 pci_set_drvdata(pdev, dev);
286
287 if ((pdev->subsystem_device & 0xff00) == 0x5500 ||
288 (pdev->subsystem_device & 0xff00) == 0x5800)
289 printk("%s: SysKonnect FDDI PCI adapter"
290 " found (SK-%04X)\n", dev->name,
291 pdev->subsystem_device);
292 else
293 printk("%s: FDDI PCI adapter found\n", dev->name);
294
295 return 0;
296 err_out5:
297 if (smc->os.SharedMemAddr)
298 dma_free_coherent(&pdev->dev, smc->os.SharedMemSize,
299 smc->os.SharedMemAddr,
300 smc->os.SharedMemDMA);
301 dma_free_coherent(&pdev->dev, MAX_FRAME_SIZE,
302 smc->os.LocalRxBuffer, smc->os.LocalRxBufferDMA);
303 err_out4:
304 free_netdev(dev);
305 err_out3:
306 #ifdef MEM_MAPPED_IO
307 iounmap(mem);
308 #else
309 ioport_unmap(mem);
310 #endif
311 err_out2:
312 pci_release_regions(pdev);
313 err_out1:
314 pci_disable_device(pdev);
315 return err;
316 }
317
318 /*
319 * Called for each adapter board from pci_unregister_driver
320 */
skfp_remove_one(struct pci_dev * pdev)321 static void skfp_remove_one(struct pci_dev *pdev)
322 {
323 struct net_device *p = pci_get_drvdata(pdev);
324 struct s_smc *lp = netdev_priv(p);
325
326 unregister_netdev(p);
327
328 if (lp->os.SharedMemAddr) {
329 dma_free_coherent(&pdev->dev,
330 lp->os.SharedMemSize,
331 lp->os.SharedMemAddr,
332 lp->os.SharedMemDMA);
333 lp->os.SharedMemAddr = NULL;
334 }
335 if (lp->os.LocalRxBuffer) {
336 dma_free_coherent(&pdev->dev,
337 MAX_FRAME_SIZE,
338 lp->os.LocalRxBuffer,
339 lp->os.LocalRxBufferDMA);
340 lp->os.LocalRxBuffer = NULL;
341 }
342 #ifdef MEM_MAPPED_IO
343 iounmap(lp->hw.iop);
344 #else
345 ioport_unmap(lp->hw.iop);
346 #endif
347 pci_release_regions(pdev);
348 free_netdev(p);
349
350 pci_disable_device(pdev);
351 }
352
353 /*
354 * ====================
355 * = skfp_driver_init =
356 * ====================
357 *
358 * Overview:
359 * Initializes remaining adapter board structure information
360 * and makes sure adapter is in a safe state prior to skfp_open().
361 *
362 * Returns:
363 * Condition code
364 *
365 * Arguments:
366 * dev - pointer to device information
367 *
368 * Functional Description:
369 * This function allocates additional resources such as the host memory
370 * blocks needed by the adapter.
371 * The adapter is also reset. The OS must call skfp_open() to open
372 * the adapter and bring it on-line.
373 *
374 * Return Codes:
375 * 0 - initialization succeeded
376 * -1 - initialization failed
377 */
skfp_driver_init(struct net_device * dev)378 static int skfp_driver_init(struct net_device *dev)
379 {
380 struct s_smc *smc = netdev_priv(dev);
381 skfddi_priv *bp = &smc->os;
382 int err = -EIO;
383
384 pr_debug("entering skfp_driver_init\n");
385
386 // set the io address in private structures
387 bp->base_addr = dev->base_addr;
388
389 // Get the interrupt level from the PCI Configuration Table
390 smc->hw.irq = dev->irq;
391
392 spin_lock_init(&bp->DriverLock);
393
394 // Allocate invalid frame
395 bp->LocalRxBuffer = dma_alloc_coherent(&bp->pdev.dev, MAX_FRAME_SIZE,
396 &bp->LocalRxBufferDMA,
397 GFP_ATOMIC);
398 if (!bp->LocalRxBuffer) {
399 printk("could not allocate mem for ");
400 printk("LocalRxBuffer: %d byte\n", MAX_FRAME_SIZE);
401 goto fail;
402 }
403
404 // Determine the required size of the 'shared' memory area.
405 bp->SharedMemSize = mac_drv_check_space();
406 pr_debug("Memory for HWM: %ld\n", bp->SharedMemSize);
407 if (bp->SharedMemSize > 0) {
408 bp->SharedMemSize += 16; // for descriptor alignment
409
410 bp->SharedMemAddr = dma_alloc_coherent(&bp->pdev.dev,
411 bp->SharedMemSize,
412 &bp->SharedMemDMA,
413 GFP_ATOMIC);
414 if (!bp->SharedMemAddr) {
415 printk("could not allocate mem for ");
416 printk("hardware module: %ld byte\n",
417 bp->SharedMemSize);
418 goto fail;
419 }
420
421 } else {
422 bp->SharedMemAddr = NULL;
423 }
424
425 bp->SharedMemHeap = 0;
426
427 card_stop(smc); // Reset adapter.
428
429 pr_debug("mac_drv_init()..\n");
430 if (mac_drv_init(smc) != 0) {
431 pr_debug("mac_drv_init() failed\n");
432 goto fail;
433 }
434 read_address(smc, NULL);
435 pr_debug("HW-Addr: %pMF\n", smc->hw.fddi_canon_addr.a);
436 memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, ETH_ALEN);
437
438 smt_reset_defaults(smc, 0);
439
440 return 0;
441
442 fail:
443 if (bp->SharedMemAddr) {
444 dma_free_coherent(&bp->pdev.dev,
445 bp->SharedMemSize,
446 bp->SharedMemAddr,
447 bp->SharedMemDMA);
448 bp->SharedMemAddr = NULL;
449 }
450 if (bp->LocalRxBuffer) {
451 dma_free_coherent(&bp->pdev.dev, MAX_FRAME_SIZE,
452 bp->LocalRxBuffer, bp->LocalRxBufferDMA);
453 bp->LocalRxBuffer = NULL;
454 }
455 return err;
456 } // skfp_driver_init
457
458
459 /*
460 * =============
461 * = skfp_open =
462 * =============
463 *
464 * Overview:
465 * Opens the adapter
466 *
467 * Returns:
468 * Condition code
469 *
470 * Arguments:
471 * dev - pointer to device information
472 *
473 * Functional Description:
474 * This function brings the adapter to an operational state.
475 *
476 * Return Codes:
477 * 0 - Adapter was successfully opened
478 * -EAGAIN - Could not register IRQ
479 */
skfp_open(struct net_device * dev)480 static int skfp_open(struct net_device *dev)
481 {
482 struct s_smc *smc = netdev_priv(dev);
483 int err;
484
485 pr_debug("entering skfp_open\n");
486 /* Register IRQ - support shared interrupts by passing device ptr */
487 err = request_irq(dev->irq, skfp_interrupt, IRQF_SHARED,
488 dev->name, dev);
489 if (err)
490 return err;
491
492 /*
493 * Set current address to factory MAC address
494 *
495 * Note: We've already done this step in skfp_driver_init.
496 * However, it's possible that a user has set a node
497 * address override, then closed and reopened the
498 * adapter. Unless we reset the device address field
499 * now, we'll continue to use the existing modified
500 * address.
501 */
502 read_address(smc, NULL);
503 memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, ETH_ALEN);
504
505 init_smt(smc, NULL);
506 smt_online(smc, 1);
507 STI_FBI();
508
509 /* Clear local multicast address tables */
510 mac_clear_multicast(smc);
511
512 /* Disable promiscuous filter settings */
513 mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
514
515 netif_start_queue(dev);
516 return 0;
517 } // skfp_open
518
519
520 /*
521 * ==============
522 * = skfp_close =
523 * ==============
524 *
525 * Overview:
526 * Closes the device/module.
527 *
528 * Returns:
529 * Condition code
530 *
531 * Arguments:
532 * dev - pointer to device information
533 *
534 * Functional Description:
535 * This routine closes the adapter and brings it to a safe state.
536 * The interrupt service routine is deregistered with the OS.
537 * The adapter can be opened again with another call to skfp_open().
538 *
539 * Return Codes:
540 * Always return 0.
541 *
542 * Assumptions:
543 * No further requests for this adapter are made after this routine is
544 * called. skfp_open() can be called to reset and reinitialize the
545 * adapter.
546 */
skfp_close(struct net_device * dev)547 static int skfp_close(struct net_device *dev)
548 {
549 struct s_smc *smc = netdev_priv(dev);
550 skfddi_priv *bp = &smc->os;
551
552 CLI_FBI();
553 smt_reset_defaults(smc, 1);
554 card_stop(smc);
555 mac_drv_clear_tx_queue(smc);
556 mac_drv_clear_rx_queue(smc);
557
558 netif_stop_queue(dev);
559 /* Deregister (free) IRQ */
560 free_irq(dev->irq, dev);
561
562 skb_queue_purge(&bp->SendSkbQueue);
563 bp->QueueSkb = MAX_TX_QUEUE_LEN;
564
565 return 0;
566 } // skfp_close
567
568
569 /*
570 * ==================
571 * = skfp_interrupt =
572 * ==================
573 *
574 * Overview:
575 * Interrupt processing routine
576 *
577 * Returns:
578 * None
579 *
580 * Arguments:
581 * irq - interrupt vector
582 * dev_id - pointer to device information
583 *
584 * Functional Description:
585 * This routine calls the interrupt processing routine for this adapter. It
586 * disables and reenables adapter interrupts, as appropriate. We can support
587 * shared interrupts since the incoming dev_id pointer provides our device
588 * structure context. All the real work is done in the hardware module.
589 *
590 * Return Codes:
591 * None
592 *
593 * Assumptions:
594 * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
595 * on Intel-based systems) is done by the operating system outside this
596 * routine.
597 *
598 * System interrupts are enabled through this call.
599 *
600 * Side Effects:
601 * Interrupts are disabled, then reenabled at the adapter.
602 */
603
skfp_interrupt(int irq,void * dev_id)604 static irqreturn_t skfp_interrupt(int irq, void *dev_id)
605 {
606 struct net_device *dev = dev_id;
607 struct s_smc *smc; /* private board structure pointer */
608 skfddi_priv *bp;
609
610 smc = netdev_priv(dev);
611 bp = &smc->os;
612
613 // IRQs enabled or disabled ?
614 if (inpd(ADDR(B0_IMSK)) == 0) {
615 // IRQs are disabled: must be shared interrupt
616 return IRQ_NONE;
617 }
618 // Note: At this point, IRQs are enabled.
619 if ((inpd(ISR_A) & smc->hw.is_imask) == 0) { // IRQ?
620 // Adapter did not issue an IRQ: must be shared interrupt
621 return IRQ_NONE;
622 }
623 CLI_FBI(); // Disable IRQs from our adapter.
624 spin_lock(&bp->DriverLock);
625
626 // Call interrupt handler in hardware module (HWM).
627 fddi_isr(smc);
628
629 if (smc->os.ResetRequested) {
630 ResetAdapter(smc);
631 smc->os.ResetRequested = FALSE;
632 }
633 spin_unlock(&bp->DriverLock);
634 STI_FBI(); // Enable IRQs from our adapter.
635
636 return IRQ_HANDLED;
637 } // skfp_interrupt
638
639
640 /*
641 * ======================
642 * = skfp_ctl_get_stats =
643 * ======================
644 *
645 * Overview:
646 * Get statistics for FDDI adapter
647 *
648 * Returns:
649 * Pointer to FDDI statistics structure
650 *
651 * Arguments:
652 * dev - pointer to device information
653 *
654 * Functional Description:
655 * Gets current MIB objects from adapter, then
656 * returns FDDI statistics structure as defined
657 * in if_fddi.h.
658 *
659 * Note: Since the FDDI statistics structure is
660 * still new and the device structure doesn't
661 * have an FDDI-specific get statistics handler,
662 * we'll return the FDDI statistics structure as
663 * a pointer to an Ethernet statistics structure.
664 * That way, at least the first part of the statistics
665 * structure can be decoded properly.
666 * We'll have to pay attention to this routine as the
667 * device structure becomes more mature and LAN media
668 * independent.
669 *
670 */
skfp_ctl_get_stats(struct net_device * dev)671 static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev)
672 {
673 struct s_smc *bp = netdev_priv(dev);
674
675 /* Fill the bp->stats structure with driver-maintained counters */
676
677 bp->os.MacStat.port_bs_flag[0] = 0x1234;
678 bp->os.MacStat.port_bs_flag[1] = 0x5678;
679 // goos: need to fill out fddi statistic
680 #if 0
681 /* Get FDDI SMT MIB objects */
682
683 /* Fill the bp->stats structure with the SMT MIB object values */
684
685 memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
686 bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
687 bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
688 bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
689 memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
690 bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
691 bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
692 bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
693 bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
694 bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
695 bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
696 bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
697 bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
698 bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
699 bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
700 bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
701 bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
702 bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
703 bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
704 bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
705 bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
706 bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
707 bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
708 bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
709 bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
710 bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
711 bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
712 bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
713 bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
714 memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
715 memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
716 memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
717 memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
718 bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
719 bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
720 bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
721 memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
722 bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
723 bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
724 bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
725 bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
726 bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
727 bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
728 bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
729 bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
730 bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
731 bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
732 bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
733 bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
734 bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
735 bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
736 bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
737 bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
738 memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
739 bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
740 bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
741 bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
742 bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
743 bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
744 bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
745 bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
746 bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
747 bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
748 bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
749 memcpy(&bp->stats.port_requested_paths[0 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
750 memcpy(&bp->stats.port_requested_paths[1 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
751 bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
752 bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
753 bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
754 bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
755 bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
756 bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
757 bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
758 bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
759 bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
760 bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
761 bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
762 bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
763 bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
764 bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
765 bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
766 bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
767 bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
768 bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
769 bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
770 bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
771 bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
772 bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
773 bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
774 bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
775 bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
776 bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
777
778
779 /* Fill the bp->stats structure with the FDDI counter values */
780
781 bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
782 bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
783 bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
784 bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
785 bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
786 bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
787 bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
788 bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
789 bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
790 bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
791 bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
792
793 #endif
794 return (struct net_device_stats *)&bp->os.MacStat;
795 } // ctl_get_stat
796
797
798 /*
799 * ==============================
800 * = skfp_ctl_set_multicast_list =
801 * ==============================
802 *
803 * Overview:
804 * Enable/Disable LLC frame promiscuous mode reception
805 * on the adapter and/or update multicast address table.
806 *
807 * Returns:
808 * None
809 *
810 * Arguments:
811 * dev - pointer to device information
812 *
813 * Functional Description:
814 * This function acquires the driver lock and only calls
815 * skfp_ctl_set_multicast_list_wo_lock then.
816 * This routine follows a fairly simple algorithm for setting the
817 * adapter filters and CAM:
818 *
819 * if IFF_PROMISC flag is set
820 * enable promiscuous mode
821 * else
822 * disable promiscuous mode
823 * if number of multicast addresses <= max. multicast number
824 * add mc addresses to adapter table
825 * else
826 * enable promiscuous mode
827 * update adapter filters
828 *
829 * Assumptions:
830 * Multicast addresses are presented in canonical (LSB) format.
831 *
832 * Side Effects:
833 * On-board adapter filters are updated.
834 */
skfp_ctl_set_multicast_list(struct net_device * dev)835 static void skfp_ctl_set_multicast_list(struct net_device *dev)
836 {
837 struct s_smc *smc = netdev_priv(dev);
838 skfddi_priv *bp = &smc->os;
839 unsigned long Flags;
840
841 spin_lock_irqsave(&bp->DriverLock, Flags);
842 skfp_ctl_set_multicast_list_wo_lock(dev);
843 spin_unlock_irqrestore(&bp->DriverLock, Flags);
844 } // skfp_ctl_set_multicast_list
845
846
847
skfp_ctl_set_multicast_list_wo_lock(struct net_device * dev)848 static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev)
849 {
850 struct s_smc *smc = netdev_priv(dev);
851 struct netdev_hw_addr *ha;
852
853 /* Enable promiscuous mode, if necessary */
854 if (dev->flags & IFF_PROMISC) {
855 mac_drv_rx_mode(smc, RX_ENABLE_PROMISC);
856 pr_debug("PROMISCUOUS MODE ENABLED\n");
857 }
858 /* Else, update multicast address table */
859 else {
860 mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
861 pr_debug("PROMISCUOUS MODE DISABLED\n");
862
863 // Reset all MC addresses
864 mac_clear_multicast(smc);
865 mac_drv_rx_mode(smc, RX_DISABLE_ALLMULTI);
866
867 if (dev->flags & IFF_ALLMULTI) {
868 mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
869 pr_debug("ENABLE ALL MC ADDRESSES\n");
870 } else if (!netdev_mc_empty(dev)) {
871 if (netdev_mc_count(dev) <= FPMAX_MULTICAST) {
872 /* use exact filtering */
873
874 // point to first multicast addr
875 netdev_for_each_mc_addr(ha, dev) {
876 mac_add_multicast(smc,
877 (struct fddi_addr *)ha->addr,
878 1);
879
880 pr_debug("ENABLE MC ADDRESS: %pMF\n",
881 ha->addr);
882 }
883
884 } else { // more MC addresses than HW supports
885
886 mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
887 pr_debug("ENABLE ALL MC ADDRESSES\n");
888 }
889 } else { // no MC addresses
890
891 pr_debug("DISABLE ALL MC ADDRESSES\n");
892 }
893
894 /* Update adapter filters */
895 mac_update_multicast(smc);
896 }
897 } // skfp_ctl_set_multicast_list_wo_lock
898
899
900 /*
901 * ===========================
902 * = skfp_ctl_set_mac_address =
903 * ===========================
904 *
905 * Overview:
906 * set new mac address on adapter and update dev_addr field in device table.
907 *
908 * Returns:
909 * None
910 *
911 * Arguments:
912 * dev - pointer to device information
913 * addr - pointer to sockaddr structure containing unicast address to set
914 *
915 * Assumptions:
916 * The address pointed to by addr->sa_data is a valid unicast
917 * address and is presented in canonical (LSB) format.
918 */
skfp_ctl_set_mac_address(struct net_device * dev,void * addr)919 static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr)
920 {
921 struct s_smc *smc = netdev_priv(dev);
922 struct sockaddr *p_sockaddr = (struct sockaddr *) addr;
923 skfddi_priv *bp = &smc->os;
924 unsigned long Flags;
925
926
927 memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);
928 spin_lock_irqsave(&bp->DriverLock, Flags);
929 ResetAdapter(smc);
930 spin_unlock_irqrestore(&bp->DriverLock, Flags);
931
932 return 0; /* always return zero */
933 } // skfp_ctl_set_mac_address
934
935
936 /*
937 * =======================
938 * = skfp_siocdevprivate =
939 * =======================
940 *
941 * Overview:
942 *
943 * Perform IOCTL call functions here. Some are privileged operations and the
944 * effective uid is checked in those cases.
945 *
946 * Returns:
947 * status value
948 * 0 - success
949 * other - failure
950 *
951 * Arguments:
952 * dev - pointer to device information
953 * rq - pointer to ioctl request structure
954 * cmd - ?
955 *
956 */
957
958
skfp_siocdevprivate(struct net_device * dev,struct ifreq * rq,void __user * data,int cmd)959 static int skfp_siocdevprivate(struct net_device *dev, struct ifreq *rq, void __user *data, int cmd)
960 {
961 struct s_smc *smc = netdev_priv(dev);
962 skfddi_priv *lp = &smc->os;
963 struct s_skfp_ioctl ioc;
964 int status = 0;
965
966 if (copy_from_user(&ioc, data, sizeof(struct s_skfp_ioctl)))
967 return -EFAULT;
968
969 if (in_compat_syscall())
970 return -EOPNOTSUPP;
971
972 switch (ioc.cmd) {
973 case SKFP_GET_STATS: /* Get the driver statistics */
974 ioc.len = sizeof(lp->MacStat);
975 status = copy_to_user(ioc.data, skfp_ctl_get_stats(dev), ioc.len)
976 ? -EFAULT : 0;
977 break;
978 case SKFP_CLR_STATS: /* Zero out the driver statistics */
979 if (!capable(CAP_NET_ADMIN)) {
980 status = -EPERM;
981 } else {
982 memset(&lp->MacStat, 0, sizeof(lp->MacStat));
983 }
984 break;
985 default:
986 printk("ioctl for %s: unknown cmd: %04x\n", dev->name, ioc.cmd);
987 status = -EOPNOTSUPP;
988
989 } // switch
990
991 return status;
992 } // skfp_ioctl
993
994
995 /*
996 * =====================
997 * = skfp_send_pkt =
998 * =====================
999 *
1000 * Overview:
1001 * Queues a packet for transmission and try to transmit it.
1002 *
1003 * Returns:
1004 * Condition code
1005 *
1006 * Arguments:
1007 * skb - pointer to sk_buff to queue for transmission
1008 * dev - pointer to device information
1009 *
1010 * Functional Description:
1011 * Here we assume that an incoming skb transmit request
1012 * is contained in a single physically contiguous buffer
1013 * in which the virtual address of the start of packet
1014 * (skb->data) can be converted to a physical address
1015 * by using pci_map_single().
1016 *
1017 * We have an internal queue for packets we can not send
1018 * immediately. Packets in this queue can be given to the
1019 * adapter if transmit buffers are freed.
1020 *
1021 * We can't free the skb until after it's been DMA'd
1022 * out by the adapter, so we'll keep it in the driver and
1023 * return it in mac_drv_tx_complete.
1024 *
1025 * Return Codes:
1026 * 0 - driver has queued and/or sent packet
1027 * 1 - caller should requeue the sk_buff for later transmission
1028 *
1029 * Assumptions:
1030 * The entire packet is stored in one physically
1031 * contiguous buffer which is not cached and whose
1032 * 32-bit physical address can be determined.
1033 *
1034 * It's vital that this routine is NOT reentered for the
1035 * same board and that the OS is not in another section of
1036 * code (eg. skfp_interrupt) for the same board on a
1037 * different thread.
1038 *
1039 * Side Effects:
1040 * None
1041 */
skfp_send_pkt(struct sk_buff * skb,struct net_device * dev)1042 static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
1043 struct net_device *dev)
1044 {
1045 struct s_smc *smc = netdev_priv(dev);
1046 skfddi_priv *bp = &smc->os;
1047
1048 pr_debug("skfp_send_pkt\n");
1049
1050 /*
1051 * Verify that incoming transmit request is OK
1052 *
1053 * Note: The packet size check is consistent with other
1054 * Linux device drivers, although the correct packet
1055 * size should be verified before calling the
1056 * transmit routine.
1057 */
1058
1059 if (!(skb->len >= FDDI_K_LLC_ZLEN && skb->len <= FDDI_K_LLC_LEN)) {
1060 bp->MacStat.gen.tx_errors++; /* bump error counter */
1061 // dequeue packets from xmt queue and send them
1062 netif_start_queue(dev);
1063 dev_kfree_skb(skb);
1064 return NETDEV_TX_OK; /* return "success" */
1065 }
1066 if (bp->QueueSkb == 0) { // return with tbusy set: queue full
1067
1068 netif_stop_queue(dev);
1069 return NETDEV_TX_BUSY;
1070 }
1071 bp->QueueSkb--;
1072 skb_queue_tail(&bp->SendSkbQueue, skb);
1073 send_queued_packets(netdev_priv(dev));
1074 if (bp->QueueSkb == 0) {
1075 netif_stop_queue(dev);
1076 }
1077 return NETDEV_TX_OK;
1078
1079 } // skfp_send_pkt
1080
1081
1082 /*
1083 * =======================
1084 * = send_queued_packets =
1085 * =======================
1086 *
1087 * Overview:
1088 * Send packets from the driver queue as long as there are some and
1089 * transmit resources are available.
1090 *
1091 * Returns:
1092 * None
1093 *
1094 * Arguments:
1095 * smc - pointer to smc (adapter) structure
1096 *
1097 * Functional Description:
1098 * Take a packet from queue if there is any. If not, then we are done.
1099 * Check if there are resources to send the packet. If not, requeue it
1100 * and exit.
1101 * Set packet descriptor flags and give packet to adapter.
1102 * Check if any send resources can be freed (we do not use the
1103 * transmit complete interrupt).
1104 */
send_queued_packets(struct s_smc * smc)1105 static void send_queued_packets(struct s_smc *smc)
1106 {
1107 skfddi_priv *bp = &smc->os;
1108 struct sk_buff *skb;
1109 unsigned char fc;
1110 int queue;
1111 struct s_smt_fp_txd *txd; // Current TxD.
1112 dma_addr_t dma_address;
1113 unsigned long Flags;
1114
1115 int frame_status; // HWM tx frame status.
1116
1117 pr_debug("send queued packets\n");
1118 for (;;) {
1119 // send first buffer from queue
1120 skb = skb_dequeue(&bp->SendSkbQueue);
1121
1122 if (!skb) {
1123 pr_debug("queue empty\n");
1124 return;
1125 } // queue empty !
1126
1127 spin_lock_irqsave(&bp->DriverLock, Flags);
1128 fc = skb->data[0];
1129 queue = (fc & FC_SYNC_BIT) ? QUEUE_S : QUEUE_A0;
1130 #ifdef ESS
1131 // Check if the frame may/must be sent as a synchronous frame.
1132
1133 if ((fc & ~(FC_SYNC_BIT | FC_LLC_PRIOR)) == FC_ASYNC_LLC) {
1134 // It's an LLC frame.
1135 if (!smc->ess.sync_bw_available)
1136 fc &= ~FC_SYNC_BIT; // No bandwidth available.
1137
1138 else { // Bandwidth is available.
1139
1140 if (smc->mib.fddiESSSynchTxMode) {
1141 // Send as sync. frame.
1142 fc |= FC_SYNC_BIT;
1143 }
1144 }
1145 }
1146 #endif // ESS
1147 frame_status = hwm_tx_init(smc, fc, 1, skb->len, queue);
1148
1149 if ((frame_status & (LOC_TX | LAN_TX)) == 0) {
1150 // Unable to send the frame.
1151
1152 if ((frame_status & RING_DOWN) != 0) {
1153 // Ring is down.
1154 pr_debug("Tx attempt while ring down.\n");
1155 } else if ((frame_status & OUT_OF_TXD) != 0) {
1156 pr_debug("%s: out of TXDs.\n", bp->dev->name);
1157 } else {
1158 pr_debug("%s: out of transmit resources",
1159 bp->dev->name);
1160 }
1161
1162 // Note: We will retry the operation as soon as
1163 // transmit resources become available.
1164 skb_queue_head(&bp->SendSkbQueue, skb);
1165 spin_unlock_irqrestore(&bp->DriverLock, Flags);
1166 return; // Packet has been queued.
1167
1168 } // if (unable to send frame)
1169
1170 bp->QueueSkb++; // one packet less in local queue
1171
1172 // source address in packet ?
1173 CheckSourceAddress(skb->data, smc->hw.fddi_canon_addr.a);
1174
1175 txd = (struct s_smt_fp_txd *) HWM_GET_CURR_TXD(smc, queue);
1176
1177 dma_address = dma_map_single(&(&bp->pdev)->dev, skb->data,
1178 skb->len, DMA_TO_DEVICE);
1179 if (frame_status & LAN_TX) {
1180 txd->txd_os.skb = skb; // save skb
1181 txd->txd_os.dma_addr = dma_address; // save dma mapping
1182 }
1183 hwm_tx_frag(smc, skb->data, dma_address, skb->len,
1184 frame_status | FIRST_FRAG | LAST_FRAG | EN_IRQ_EOF);
1185
1186 if (!(frame_status & LAN_TX)) { // local only frame
1187 dma_unmap_single(&(&bp->pdev)->dev, dma_address,
1188 skb->len, DMA_TO_DEVICE);
1189 dev_kfree_skb_irq(skb);
1190 }
1191 spin_unlock_irqrestore(&bp->DriverLock, Flags);
1192 } // for
1193
1194 return; // never reached
1195
1196 } // send_queued_packets
1197
1198
1199 /************************
1200 *
1201 * CheckSourceAddress
1202 *
1203 * Verify if the source address is set. Insert it if necessary.
1204 *
1205 ************************/
CheckSourceAddress(unsigned char * frame,unsigned char * hw_addr)1206 static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr)
1207 {
1208 unsigned char SRBit;
1209
1210 if ((((unsigned long) frame[1 + 6]) & ~0x01) != 0) // source routing bit
1211
1212 return;
1213 if ((unsigned short) frame[1 + 10] != 0)
1214 return;
1215 SRBit = frame[1 + 6] & 0x01;
1216 memcpy(&frame[1 + 6], hw_addr, ETH_ALEN);
1217 frame[8] |= SRBit;
1218 } // CheckSourceAddress
1219
1220
1221 /************************
1222 *
1223 * ResetAdapter
1224 *
1225 * Reset the adapter and bring it back to operational mode.
1226 * Args
1227 * smc - A pointer to the SMT context struct.
1228 * Out
1229 * Nothing.
1230 *
1231 ************************/
ResetAdapter(struct s_smc * smc)1232 static void ResetAdapter(struct s_smc *smc)
1233 {
1234
1235 pr_debug("[fddi: ResetAdapter]\n");
1236
1237 // Stop the adapter.
1238
1239 card_stop(smc); // Stop all activity.
1240
1241 // Clear the transmit and receive descriptor queues.
1242 mac_drv_clear_tx_queue(smc);
1243 mac_drv_clear_rx_queue(smc);
1244
1245 // Restart the adapter.
1246
1247 smt_reset_defaults(smc, 1); // Initialize the SMT module.
1248
1249 init_smt(smc, (smc->os.dev)->dev_addr); // Initialize the hardware.
1250
1251 smt_online(smc, 1); // Insert into the ring again.
1252 STI_FBI();
1253
1254 // Restore original receive mode (multicasts, promiscuous, etc.).
1255 skfp_ctl_set_multicast_list_wo_lock(smc->os.dev);
1256 } // ResetAdapter
1257
1258
1259 //--------------- functions called by hardware module ----------------
1260
1261 /************************
1262 *
1263 * llc_restart_tx
1264 *
1265 * The hardware driver calls this routine when the transmit complete
1266 * interrupt bits (end of frame) for the synchronous or asynchronous
1267 * queue is set.
1268 *
1269 * NOTE The hardware driver calls this function also if no packets are queued.
1270 * The routine must be able to handle this case.
1271 * Args
1272 * smc - A pointer to the SMT context struct.
1273 * Out
1274 * Nothing.
1275 *
1276 ************************/
llc_restart_tx(struct s_smc * smc)1277 void llc_restart_tx(struct s_smc *smc)
1278 {
1279 skfddi_priv *bp = &smc->os;
1280
1281 pr_debug("[llc_restart_tx]\n");
1282
1283 // Try to send queued packets
1284 spin_unlock(&bp->DriverLock);
1285 send_queued_packets(smc);
1286 spin_lock(&bp->DriverLock);
1287 netif_start_queue(bp->dev);// system may send again if it was blocked
1288
1289 } // llc_restart_tx
1290
1291
1292 /************************
1293 *
1294 * mac_drv_get_space
1295 *
1296 * The hardware module calls this function to allocate the memory
1297 * for the SMT MBufs if the define MB_OUTSIDE_SMC is specified.
1298 * Args
1299 * smc - A pointer to the SMT context struct.
1300 *
1301 * size - Size of memory in bytes to allocate.
1302 * Out
1303 * != 0 A pointer to the virtual address of the allocated memory.
1304 * == 0 Allocation error.
1305 *
1306 ************************/
mac_drv_get_space(struct s_smc * smc,unsigned int size)1307 void *mac_drv_get_space(struct s_smc *smc, unsigned int size)
1308 {
1309 void *virt;
1310
1311 pr_debug("mac_drv_get_space (%d bytes), ", size);
1312 virt = (void *) (smc->os.SharedMemAddr + smc->os.SharedMemHeap);
1313
1314 if ((smc->os.SharedMemHeap + size) > smc->os.SharedMemSize) {
1315 printk("Unexpected SMT memory size requested: %d\n", size);
1316 return NULL;
1317 }
1318 smc->os.SharedMemHeap += size; // Move heap pointer.
1319
1320 pr_debug("mac_drv_get_space end\n");
1321 pr_debug("virt addr: %lx\n", (ulong) virt);
1322 pr_debug("bus addr: %lx\n", (ulong)
1323 (smc->os.SharedMemDMA +
1324 ((char *) virt - (char *)smc->os.SharedMemAddr)));
1325 return virt;
1326 } // mac_drv_get_space
1327
1328
1329 /************************
1330 *
1331 * mac_drv_get_desc_mem
1332 *
1333 * This function is called by the hardware dependent module.
1334 * It allocates the memory for the RxD and TxD descriptors.
1335 *
1336 * This memory must be non-cached, non-movable and non-swappable.
1337 * This memory should start at a physical page boundary.
1338 * Args
1339 * smc - A pointer to the SMT context struct.
1340 *
1341 * size - Size of memory in bytes to allocate.
1342 * Out
1343 * != 0 A pointer to the virtual address of the allocated memory.
1344 * == 0 Allocation error.
1345 *
1346 ************************/
mac_drv_get_desc_mem(struct s_smc * smc,unsigned int size)1347 void *mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size)
1348 {
1349
1350 char *virt;
1351
1352 pr_debug("mac_drv_get_desc_mem\n");
1353
1354 // Descriptor memory must be aligned on 16-byte boundary.
1355
1356 virt = mac_drv_get_space(smc, size);
1357
1358 size = (u_int) (16 - (((unsigned long) virt) & 15UL));
1359 size = size % 16;
1360
1361 pr_debug("Allocate %u bytes alignment gap ", size);
1362 pr_debug("for descriptor memory.\n");
1363
1364 if (!mac_drv_get_space(smc, size)) {
1365 printk("fddi: Unable to align descriptor memory.\n");
1366 return NULL;
1367 }
1368 return virt + size;
1369 } // mac_drv_get_desc_mem
1370
1371
1372 /************************
1373 *
1374 * mac_drv_virt2phys
1375 *
1376 * Get the physical address of a given virtual address.
1377 * Args
1378 * smc - A pointer to the SMT context struct.
1379 *
1380 * virt - A (virtual) pointer into our 'shared' memory area.
1381 * Out
1382 * Physical address of the given virtual address.
1383 *
1384 ************************/
mac_drv_virt2phys(struct s_smc * smc,void * virt)1385 unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt)
1386 {
1387 return smc->os.SharedMemDMA +
1388 ((char *) virt - (char *)smc->os.SharedMemAddr);
1389 } // mac_drv_virt2phys
1390
1391
1392 /************************
1393 *
1394 * dma_master
1395 *
1396 * The HWM calls this function, when the driver leads through a DMA
1397 * transfer. If the OS-specific module must prepare the system hardware
1398 * for the DMA transfer, it should do it in this function.
1399 *
1400 * The hardware module calls this dma_master if it wants to send an SMT
1401 * frame. This means that the virt address passed in here is part of
1402 * the 'shared' memory area.
1403 * Args
1404 * smc - A pointer to the SMT context struct.
1405 *
1406 * virt - The virtual address of the data.
1407 *
1408 * len - The length in bytes of the data.
1409 *
1410 * flag - Indicates the transmit direction and the buffer type:
1411 * DMA_RD (0x01) system RAM ==> adapter buffer memory
1412 * DMA_WR (0x02) adapter buffer memory ==> system RAM
1413 * SMT_BUF (0x80) SMT buffer
1414 *
1415 * >> NOTE: SMT_BUF and DMA_RD are always set for PCI. <<
1416 * Out
1417 * Returns the pyhsical address for the DMA transfer.
1418 *
1419 ************************/
dma_master(struct s_smc * smc,void * virt,int len,int flag)1420 u_long dma_master(struct s_smc * smc, void *virt, int len, int flag)
1421 {
1422 return smc->os.SharedMemDMA +
1423 ((char *) virt - (char *)smc->os.SharedMemAddr);
1424 } // dma_master
1425
1426
1427 /************************
1428 *
1429 * dma_complete
1430 *
1431 * The hardware module calls this routine when it has completed a DMA
1432 * transfer. If the operating system dependent module has set up the DMA
1433 * channel via dma_master() (e.g. Windows NT or AIX) it should clean up
1434 * the DMA channel.
1435 * Args
1436 * smc - A pointer to the SMT context struct.
1437 *
1438 * descr - A pointer to a TxD or RxD, respectively.
1439 *
1440 * flag - Indicates the DMA transfer direction / SMT buffer:
1441 * DMA_RD (0x01) system RAM ==> adapter buffer memory
1442 * DMA_WR (0x02) adapter buffer memory ==> system RAM
1443 * SMT_BUF (0x80) SMT buffer (managed by HWM)
1444 * Out
1445 * Nothing.
1446 *
1447 ************************/
dma_complete(struct s_smc * smc,volatile union s_fp_descr * descr,int flag)1448 void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, int flag)
1449 {
1450 /* For TX buffers, there are two cases. If it is an SMT transmit
1451 * buffer, there is nothing to do since we use consistent memory
1452 * for the 'shared' memory area. The other case is for normal
1453 * transmit packets given to us by the networking stack, and in
1454 * that case we cleanup the PCI DMA mapping in mac_drv_tx_complete
1455 * below.
1456 *
1457 * For RX buffers, we have to unmap dynamic PCI DMA mappings here
1458 * because the hardware module is about to potentially look at
1459 * the contents of the buffer. If we did not call the PCI DMA
1460 * unmap first, the hardware module could read inconsistent data.
1461 */
1462 if (flag & DMA_WR) {
1463 skfddi_priv *bp = &smc->os;
1464 volatile struct s_smt_fp_rxd *r = &descr->r;
1465
1466 /* If SKB is NULL, we used the local buffer. */
1467 if (r->rxd_os.skb && r->rxd_os.dma_addr) {
1468 int MaxFrameSize = bp->MaxFrameSize;
1469
1470 dma_unmap_single(&(&bp->pdev)->dev,
1471 r->rxd_os.dma_addr, MaxFrameSize,
1472 DMA_FROM_DEVICE);
1473 r->rxd_os.dma_addr = 0;
1474 }
1475 }
1476 } // dma_complete
1477
1478
1479 /************************
1480 *
1481 * mac_drv_tx_complete
1482 *
1483 * Transmit of a packet is complete. Release the tx staging buffer.
1484 *
1485 * Args
1486 * smc - A pointer to the SMT context struct.
1487 *
1488 * txd - A pointer to the last TxD which is used by the frame.
1489 * Out
1490 * Returns nothing.
1491 *
1492 ************************/
mac_drv_tx_complete(struct s_smc * smc,volatile struct s_smt_fp_txd * txd)1493 void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd)
1494 {
1495 struct sk_buff *skb;
1496
1497 pr_debug("entering mac_drv_tx_complete\n");
1498 // Check if this TxD points to a skb
1499
1500 if (!(skb = txd->txd_os.skb)) {
1501 pr_debug("TXD with no skb assigned.\n");
1502 return;
1503 }
1504 txd->txd_os.skb = NULL;
1505
1506 // release the DMA mapping
1507 dma_unmap_single(&(&smc->os.pdev)->dev, txd->txd_os.dma_addr,
1508 skb->len, DMA_TO_DEVICE);
1509 txd->txd_os.dma_addr = 0;
1510
1511 smc->os.MacStat.gen.tx_packets++; // Count transmitted packets.
1512 smc->os.MacStat.gen.tx_bytes+=skb->len; // Count bytes
1513
1514 // free the skb
1515 dev_kfree_skb_irq(skb);
1516
1517 pr_debug("leaving mac_drv_tx_complete\n");
1518 } // mac_drv_tx_complete
1519
1520
1521 /************************
1522 *
1523 * dump packets to logfile
1524 *
1525 ************************/
1526 #ifdef DUMPPACKETS
dump_data(unsigned char * Data,int length)1527 void dump_data(unsigned char *Data, int length)
1528 {
1529 printk(KERN_INFO "---Packet start---\n");
1530 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_NONE, 16, 1, Data, min_t(size_t, length, 64), false);
1531 printk(KERN_INFO "------------------\n");
1532 } // dump_data
1533 #else
1534 #define dump_data(data,len)
1535 #endif // DUMPPACKETS
1536
1537 /************************
1538 *
1539 * mac_drv_rx_complete
1540 *
1541 * The hardware module calls this function if an LLC frame is received
1542 * in a receive buffer. Also the SMT, NSA, and directed beacon frames
1543 * from the network will be passed to the LLC layer by this function
1544 * if passing is enabled.
1545 *
1546 * mac_drv_rx_complete forwards the frame to the LLC layer if it should
1547 * be received. It also fills the RxD ring with new receive buffers if
1548 * some can be queued.
1549 * Args
1550 * smc - A pointer to the SMT context struct.
1551 *
1552 * rxd - A pointer to the first RxD which is used by the receive frame.
1553 *
1554 * frag_count - Count of RxDs used by the received frame.
1555 *
1556 * len - Frame length.
1557 * Out
1558 * Nothing.
1559 *
1560 ************************/
mac_drv_rx_complete(struct s_smc * smc,volatile struct s_smt_fp_rxd * rxd,int frag_count,int len)1561 void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1562 int frag_count, int len)
1563 {
1564 skfddi_priv *bp = &smc->os;
1565 struct sk_buff *skb;
1566 unsigned char *virt, *cp;
1567 unsigned short ri;
1568 u_int RifLength;
1569
1570 pr_debug("entering mac_drv_rx_complete (len=%d)\n", len);
1571 if (frag_count != 1) { // This is not allowed to happen.
1572
1573 printk("fddi: Multi-fragment receive!\n");
1574 goto RequeueRxd; // Re-use the given RXD(s).
1575
1576 }
1577 skb = rxd->rxd_os.skb;
1578 if (!skb) {
1579 pr_debug("No skb in rxd\n");
1580 smc->os.MacStat.gen.rx_errors++;
1581 goto RequeueRxd;
1582 }
1583 virt = skb->data;
1584
1585 // The DMA mapping was released in dma_complete above.
1586
1587 dump_data(skb->data, len);
1588
1589 /*
1590 * FDDI Frame format:
1591 * +-------+-------+-------+------------+--------+------------+
1592 * | FC[1] | DA[6] | SA[6] | RIF[0..18] | LLC[3] | Data[0..n] |
1593 * +-------+-------+-------+------------+--------+------------+
1594 *
1595 * FC = Frame Control
1596 * DA = Destination Address
1597 * SA = Source Address
1598 * RIF = Routing Information Field
1599 * LLC = Logical Link Control
1600 */
1601
1602 // Remove Routing Information Field (RIF), if present.
1603
1604 if ((virt[1 + 6] & FDDI_RII) == 0)
1605 RifLength = 0;
1606 else {
1607 int n;
1608 // goos: RIF removal has still to be tested
1609 pr_debug("RIF found\n");
1610 // Get RIF length from Routing Control (RC) field.
1611 cp = virt + FDDI_MAC_HDR_LEN; // Point behind MAC header.
1612
1613 ri = ntohs(*((__be16 *) cp));
1614 RifLength = ri & FDDI_RCF_LEN_MASK;
1615 if (len < (int) (FDDI_MAC_HDR_LEN + RifLength)) {
1616 printk("fddi: Invalid RIF.\n");
1617 goto RequeueRxd; // Discard the frame.
1618
1619 }
1620 virt[1 + 6] &= ~FDDI_RII; // Clear RII bit.
1621 // regions overlap
1622
1623 virt = cp + RifLength;
1624 for (n = FDDI_MAC_HDR_LEN; n; n--)
1625 *--virt = *--cp;
1626 // adjust sbd->data pointer
1627 skb_pull(skb, RifLength);
1628 len -= RifLength;
1629 RifLength = 0;
1630 }
1631
1632 // Count statistics.
1633 smc->os.MacStat.gen.rx_packets++; // Count indicated receive
1634 // packets.
1635 smc->os.MacStat.gen.rx_bytes+=len; // Count bytes.
1636
1637 // virt points to header again
1638 if (virt[1] & 0x01) { // Check group (multicast) bit.
1639
1640 smc->os.MacStat.gen.multicast++;
1641 }
1642
1643 // deliver frame to system
1644 rxd->rxd_os.skb = NULL;
1645 skb_trim(skb, len);
1646 skb->protocol = fddi_type_trans(skb, bp->dev);
1647
1648 netif_rx(skb);
1649
1650 HWM_RX_CHECK(smc, RX_LOW_WATERMARK);
1651 return;
1652
1653 RequeueRxd:
1654 pr_debug("Rx: re-queue RXD.\n");
1655 mac_drv_requeue_rxd(smc, rxd, frag_count);
1656 smc->os.MacStat.gen.rx_errors++; // Count receive packets
1657 // not indicated.
1658
1659 } // mac_drv_rx_complete
1660
1661
1662 /************************
1663 *
1664 * mac_drv_requeue_rxd
1665 *
1666 * The hardware module calls this function to request the OS-specific
1667 * module to queue the receive buffer(s) represented by the pointer
1668 * to the RxD and the frag_count into the receive queue again. This
1669 * buffer was filled with an invalid frame or an SMT frame.
1670 * Args
1671 * smc - A pointer to the SMT context struct.
1672 *
1673 * rxd - A pointer to the first RxD which is used by the receive frame.
1674 *
1675 * frag_count - Count of RxDs used by the received frame.
1676 * Out
1677 * Nothing.
1678 *
1679 ************************/
mac_drv_requeue_rxd(struct s_smc * smc,volatile struct s_smt_fp_rxd * rxd,int frag_count)1680 void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1681 int frag_count)
1682 {
1683 volatile struct s_smt_fp_rxd *next_rxd;
1684 volatile struct s_smt_fp_rxd *src_rxd;
1685 struct sk_buff *skb;
1686 int MaxFrameSize;
1687 unsigned char *v_addr;
1688 dma_addr_t b_addr;
1689
1690 if (frag_count != 1) // This is not allowed to happen.
1691
1692 printk("fddi: Multi-fragment requeue!\n");
1693
1694 MaxFrameSize = smc->os.MaxFrameSize;
1695 src_rxd = rxd;
1696 for (; frag_count > 0; frag_count--) {
1697 next_rxd = src_rxd->rxd_next;
1698 rxd = HWM_GET_CURR_RXD(smc);
1699
1700 skb = src_rxd->rxd_os.skb;
1701 if (skb == NULL) { // this should not happen
1702
1703 pr_debug("Requeue with no skb in rxd!\n");
1704 skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1705 if (skb) {
1706 // we got a skb
1707 rxd->rxd_os.skb = skb;
1708 skb_reserve(skb, 3);
1709 skb_put(skb, MaxFrameSize);
1710 v_addr = skb->data;
1711 b_addr = dma_map_single(&(&smc->os.pdev)->dev,
1712 v_addr, MaxFrameSize,
1713 DMA_FROM_DEVICE);
1714 rxd->rxd_os.dma_addr = b_addr;
1715 } else {
1716 // no skb available, use local buffer
1717 pr_debug("Queueing invalid buffer!\n");
1718 rxd->rxd_os.skb = NULL;
1719 v_addr = smc->os.LocalRxBuffer;
1720 b_addr = smc->os.LocalRxBufferDMA;
1721 }
1722 } else {
1723 // we use skb from old rxd
1724 rxd->rxd_os.skb = skb;
1725 v_addr = skb->data;
1726 b_addr = dma_map_single(&(&smc->os.pdev)->dev, v_addr,
1727 MaxFrameSize, DMA_FROM_DEVICE);
1728 rxd->rxd_os.dma_addr = b_addr;
1729 }
1730 hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1731 FIRST_FRAG | LAST_FRAG);
1732
1733 src_rxd = next_rxd;
1734 }
1735 } // mac_drv_requeue_rxd
1736
1737
1738 /************************
1739 *
1740 * mac_drv_fill_rxd
1741 *
1742 * The hardware module calls this function at initialization time
1743 * to fill the RxD ring with receive buffers. It is also called by
1744 * mac_drv_rx_complete if rx_free is large enough to queue some new
1745 * receive buffers into the RxD ring. mac_drv_fill_rxd queues new
1746 * receive buffers as long as enough RxDs and receive buffers are
1747 * available.
1748 * Args
1749 * smc - A pointer to the SMT context struct.
1750 * Out
1751 * Nothing.
1752 *
1753 ************************/
mac_drv_fill_rxd(struct s_smc * smc)1754 void mac_drv_fill_rxd(struct s_smc *smc)
1755 {
1756 int MaxFrameSize;
1757 unsigned char *v_addr;
1758 unsigned long b_addr;
1759 struct sk_buff *skb;
1760 volatile struct s_smt_fp_rxd *rxd;
1761
1762 pr_debug("entering mac_drv_fill_rxd\n");
1763
1764 // Walk through the list of free receive buffers, passing receive
1765 // buffers to the HWM as long as RXDs are available.
1766
1767 MaxFrameSize = smc->os.MaxFrameSize;
1768 // Check if there is any RXD left.
1769 while (HWM_GET_RX_FREE(smc) > 0) {
1770 pr_debug(".\n");
1771
1772 rxd = HWM_GET_CURR_RXD(smc);
1773 skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1774 if (skb) {
1775 // we got a skb
1776 skb_reserve(skb, 3);
1777 skb_put(skb, MaxFrameSize);
1778 v_addr = skb->data;
1779 b_addr = dma_map_single(&(&smc->os.pdev)->dev, v_addr,
1780 MaxFrameSize, DMA_FROM_DEVICE);
1781 rxd->rxd_os.dma_addr = b_addr;
1782 } else {
1783 // no skb available, use local buffer
1784 // System has run out of buffer memory, but we want to
1785 // keep the receiver running in hope of better times.
1786 // Multiple descriptors may point to this local buffer,
1787 // so data in it must be considered invalid.
1788 pr_debug("Queueing invalid buffer!\n");
1789 v_addr = smc->os.LocalRxBuffer;
1790 b_addr = smc->os.LocalRxBufferDMA;
1791 }
1792
1793 rxd->rxd_os.skb = skb;
1794
1795 // Pass receive buffer to HWM.
1796 hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1797 FIRST_FRAG | LAST_FRAG);
1798 }
1799 pr_debug("leaving mac_drv_fill_rxd\n");
1800 } // mac_drv_fill_rxd
1801
1802
1803 /************************
1804 *
1805 * mac_drv_clear_rxd
1806 *
1807 * The hardware module calls this function to release unused
1808 * receive buffers.
1809 * Args
1810 * smc - A pointer to the SMT context struct.
1811 *
1812 * rxd - A pointer to the first RxD which is used by the receive buffer.
1813 *
1814 * frag_count - Count of RxDs used by the receive buffer.
1815 * Out
1816 * Nothing.
1817 *
1818 ************************/
mac_drv_clear_rxd(struct s_smc * smc,volatile struct s_smt_fp_rxd * rxd,int frag_count)1819 void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1820 int frag_count)
1821 {
1822
1823 struct sk_buff *skb;
1824
1825 pr_debug("entering mac_drv_clear_rxd\n");
1826
1827 if (frag_count != 1) // This is not allowed to happen.
1828
1829 printk("fddi: Multi-fragment clear!\n");
1830
1831 for (; frag_count > 0; frag_count--) {
1832 skb = rxd->rxd_os.skb;
1833 if (skb != NULL) {
1834 skfddi_priv *bp = &smc->os;
1835 int MaxFrameSize = bp->MaxFrameSize;
1836
1837 dma_unmap_single(&(&bp->pdev)->dev,
1838 rxd->rxd_os.dma_addr, MaxFrameSize,
1839 DMA_FROM_DEVICE);
1840
1841 dev_kfree_skb(skb);
1842 rxd->rxd_os.skb = NULL;
1843 }
1844 rxd = rxd->rxd_next; // Next RXD.
1845
1846 }
1847 } // mac_drv_clear_rxd
1848
1849
1850 /************************
1851 *
1852 * mac_drv_rx_init
1853 *
1854 * The hardware module calls this routine when an SMT or NSA frame of the
1855 * local SMT should be delivered to the LLC layer.
1856 *
1857 * It is necessary to have this function, because there is no other way to
1858 * copy the contents of SMT MBufs into receive buffers.
1859 *
1860 * mac_drv_rx_init allocates the required target memory for this frame,
1861 * and receives the frame fragment by fragment by calling mac_drv_rx_frag.
1862 * Args
1863 * smc - A pointer to the SMT context struct.
1864 *
1865 * len - The length (in bytes) of the received frame (FC, DA, SA, Data).
1866 *
1867 * fc - The Frame Control field of the received frame.
1868 *
1869 * look_ahead - A pointer to the lookahead data buffer (may be NULL).
1870 *
1871 * la_len - The length of the lookahead data stored in the lookahead
1872 * buffer (may be zero).
1873 * Out
1874 * Always returns zero (0).
1875 *
1876 ************************/
mac_drv_rx_init(struct s_smc * smc,int len,int fc,char * look_ahead,int la_len)1877 int mac_drv_rx_init(struct s_smc *smc, int len, int fc,
1878 char *look_ahead, int la_len)
1879 {
1880 struct sk_buff *skb;
1881
1882 pr_debug("entering mac_drv_rx_init(len=%d)\n", len);
1883
1884 // "Received" a SMT or NSA frame of the local SMT.
1885
1886 if (len != la_len || len < FDDI_MAC_HDR_LEN || !look_ahead) {
1887 pr_debug("fddi: Discard invalid local SMT frame\n");
1888 pr_debug(" len=%d, la_len=%d, (ULONG) look_ahead=%08lXh.\n",
1889 len, la_len, (unsigned long) look_ahead);
1890 return 0;
1891 }
1892 skb = alloc_skb(len + 3, GFP_ATOMIC);
1893 if (!skb) {
1894 pr_debug("fddi: Local SMT: skb memory exhausted.\n");
1895 return 0;
1896 }
1897 skb_reserve(skb, 3);
1898 skb_put(skb, len);
1899 skb_copy_to_linear_data(skb, look_ahead, len);
1900
1901 // deliver frame to system
1902 skb->protocol = fddi_type_trans(skb, smc->os.dev);
1903 netif_rx(skb);
1904
1905 return 0;
1906 } // mac_drv_rx_init
1907
1908
1909 /************************
1910 *
1911 * smt_timer_poll
1912 *
1913 * This routine is called periodically by the SMT module to clean up the
1914 * driver.
1915 *
1916 * Return any queued frames back to the upper protocol layers if the ring
1917 * is down.
1918 * Args
1919 * smc - A pointer to the SMT context struct.
1920 * Out
1921 * Nothing.
1922 *
1923 ************************/
smt_timer_poll(struct s_smc * smc)1924 void smt_timer_poll(struct s_smc *smc)
1925 {
1926 } // smt_timer_poll
1927
1928
1929 /************************
1930 *
1931 * ring_status_indication
1932 *
1933 * This function indicates a change of the ring state.
1934 * Args
1935 * smc - A pointer to the SMT context struct.
1936 *
1937 * status - The current ring status.
1938 * Out
1939 * Nothing.
1940 *
1941 ************************/
ring_status_indication(struct s_smc * smc,u_long status)1942 void ring_status_indication(struct s_smc *smc, u_long status)
1943 {
1944 pr_debug("ring_status_indication( ");
1945 if (status & RS_RES15)
1946 pr_debug("RS_RES15 ");
1947 if (status & RS_HARDERROR)
1948 pr_debug("RS_HARDERROR ");
1949 if (status & RS_SOFTERROR)
1950 pr_debug("RS_SOFTERROR ");
1951 if (status & RS_BEACON)
1952 pr_debug("RS_BEACON ");
1953 if (status & RS_PATHTEST)
1954 pr_debug("RS_PATHTEST ");
1955 if (status & RS_SELFTEST)
1956 pr_debug("RS_SELFTEST ");
1957 if (status & RS_RES9)
1958 pr_debug("RS_RES9 ");
1959 if (status & RS_DISCONNECT)
1960 pr_debug("RS_DISCONNECT ");
1961 if (status & RS_RES7)
1962 pr_debug("RS_RES7 ");
1963 if (status & RS_DUPADDR)
1964 pr_debug("RS_DUPADDR ");
1965 if (status & RS_NORINGOP)
1966 pr_debug("RS_NORINGOP ");
1967 if (status & RS_VERSION)
1968 pr_debug("RS_VERSION ");
1969 if (status & RS_STUCKBYPASSS)
1970 pr_debug("RS_STUCKBYPASSS ");
1971 if (status & RS_EVENT)
1972 pr_debug("RS_EVENT ");
1973 if (status & RS_RINGOPCHANGE)
1974 pr_debug("RS_RINGOPCHANGE ");
1975 if (status & RS_RES0)
1976 pr_debug("RS_RES0 ");
1977 pr_debug("]\n");
1978 } // ring_status_indication
1979
1980
1981 /************************
1982 *
1983 * smt_get_time
1984 *
1985 * Gets the current time from the system.
1986 * Args
1987 * None.
1988 * Out
1989 * The current time in TICKS_PER_SECOND.
1990 *
1991 * TICKS_PER_SECOND has the unit 'count of timer ticks per second'. It is
1992 * defined in "targetos.h". The definition of TICKS_PER_SECOND must comply
1993 * to the time returned by smt_get_time().
1994 *
1995 ************************/
smt_get_time(void)1996 unsigned long smt_get_time(void)
1997 {
1998 return jiffies;
1999 } // smt_get_time
2000
2001
2002 /************************
2003 *
2004 * smt_stat_counter
2005 *
2006 * Status counter update (ring_op, fifo full).
2007 * Args
2008 * smc - A pointer to the SMT context struct.
2009 *
2010 * stat - = 0: A ring operational change occurred.
2011 * = 1: The FORMAC FIFO buffer is full / FIFO overflow.
2012 * Out
2013 * Nothing.
2014 *
2015 ************************/
smt_stat_counter(struct s_smc * smc,int stat)2016 void smt_stat_counter(struct s_smc *smc, int stat)
2017 {
2018 // BOOLEAN RingIsUp ;
2019
2020 pr_debug("smt_stat_counter\n");
2021 switch (stat) {
2022 case 0:
2023 pr_debug("Ring operational change.\n");
2024 break;
2025 case 1:
2026 pr_debug("Receive fifo overflow.\n");
2027 smc->os.MacStat.gen.rx_errors++;
2028 break;
2029 default:
2030 pr_debug("Unknown status (%d).\n", stat);
2031 break;
2032 }
2033 } // smt_stat_counter
2034
2035
2036 /************************
2037 *
2038 * cfm_state_change
2039 *
2040 * Sets CFM state in custom statistics.
2041 * Args
2042 * smc - A pointer to the SMT context struct.
2043 *
2044 * c_state - Possible values are:
2045 *
2046 * EC0_OUT, EC1_IN, EC2_TRACE, EC3_LEAVE, EC4_PATH_TEST,
2047 * EC5_INSERT, EC6_CHECK, EC7_DEINSERT
2048 * Out
2049 * Nothing.
2050 *
2051 ************************/
cfm_state_change(struct s_smc * smc,int c_state)2052 void cfm_state_change(struct s_smc *smc, int c_state)
2053 {
2054 #ifdef DRIVERDEBUG
2055 char *s;
2056
2057 switch (c_state) {
2058 case SC0_ISOLATED:
2059 s = "SC0_ISOLATED";
2060 break;
2061 case SC1_WRAP_A:
2062 s = "SC1_WRAP_A";
2063 break;
2064 case SC2_WRAP_B:
2065 s = "SC2_WRAP_B";
2066 break;
2067 case SC4_THRU_A:
2068 s = "SC4_THRU_A";
2069 break;
2070 case SC5_THRU_B:
2071 s = "SC5_THRU_B";
2072 break;
2073 case SC7_WRAP_S:
2074 s = "SC7_WRAP_S";
2075 break;
2076 case SC9_C_WRAP_A:
2077 s = "SC9_C_WRAP_A";
2078 break;
2079 case SC10_C_WRAP_B:
2080 s = "SC10_C_WRAP_B";
2081 break;
2082 case SC11_C_WRAP_S:
2083 s = "SC11_C_WRAP_S";
2084 break;
2085 default:
2086 pr_debug("cfm_state_change: unknown %d\n", c_state);
2087 return;
2088 }
2089 pr_debug("cfm_state_change: %s\n", s);
2090 #endif // DRIVERDEBUG
2091 } // cfm_state_change
2092
2093
2094 /************************
2095 *
2096 * ecm_state_change
2097 *
2098 * Sets ECM state in custom statistics.
2099 * Args
2100 * smc - A pointer to the SMT context struct.
2101 *
2102 * e_state - Possible values are:
2103 *
2104 * SC0_ISOLATED, SC1_WRAP_A (5), SC2_WRAP_B (6), SC4_THRU_A (12),
2105 * SC5_THRU_B (7), SC7_WRAP_S (8)
2106 * Out
2107 * Nothing.
2108 *
2109 ************************/
ecm_state_change(struct s_smc * smc,int e_state)2110 void ecm_state_change(struct s_smc *smc, int e_state)
2111 {
2112 #ifdef DRIVERDEBUG
2113 char *s;
2114
2115 switch (e_state) {
2116 case EC0_OUT:
2117 s = "EC0_OUT";
2118 break;
2119 case EC1_IN:
2120 s = "EC1_IN";
2121 break;
2122 case EC2_TRACE:
2123 s = "EC2_TRACE";
2124 break;
2125 case EC3_LEAVE:
2126 s = "EC3_LEAVE";
2127 break;
2128 case EC4_PATH_TEST:
2129 s = "EC4_PATH_TEST";
2130 break;
2131 case EC5_INSERT:
2132 s = "EC5_INSERT";
2133 break;
2134 case EC6_CHECK:
2135 s = "EC6_CHECK";
2136 break;
2137 case EC7_DEINSERT:
2138 s = "EC7_DEINSERT";
2139 break;
2140 default:
2141 s = "unknown";
2142 break;
2143 }
2144 pr_debug("ecm_state_change: %s\n", s);
2145 #endif //DRIVERDEBUG
2146 } // ecm_state_change
2147
2148
2149 /************************
2150 *
2151 * rmt_state_change
2152 *
2153 * Sets RMT state in custom statistics.
2154 * Args
2155 * smc - A pointer to the SMT context struct.
2156 *
2157 * r_state - Possible values are:
2158 *
2159 * RM0_ISOLATED, RM1_NON_OP, RM2_RING_OP, RM3_DETECT,
2160 * RM4_NON_OP_DUP, RM5_RING_OP_DUP, RM6_DIRECTED, RM7_TRACE
2161 * Out
2162 * Nothing.
2163 *
2164 ************************/
rmt_state_change(struct s_smc * smc,int r_state)2165 void rmt_state_change(struct s_smc *smc, int r_state)
2166 {
2167 #ifdef DRIVERDEBUG
2168 char *s;
2169
2170 switch (r_state) {
2171 case RM0_ISOLATED:
2172 s = "RM0_ISOLATED";
2173 break;
2174 case RM1_NON_OP:
2175 s = "RM1_NON_OP - not operational";
2176 break;
2177 case RM2_RING_OP:
2178 s = "RM2_RING_OP - ring operational";
2179 break;
2180 case RM3_DETECT:
2181 s = "RM3_DETECT - detect dupl addresses";
2182 break;
2183 case RM4_NON_OP_DUP:
2184 s = "RM4_NON_OP_DUP - dupl. addr detected";
2185 break;
2186 case RM5_RING_OP_DUP:
2187 s = "RM5_RING_OP_DUP - ring oper. with dupl. addr";
2188 break;
2189 case RM6_DIRECTED:
2190 s = "RM6_DIRECTED - sending directed beacons";
2191 break;
2192 case RM7_TRACE:
2193 s = "RM7_TRACE - trace initiated";
2194 break;
2195 default:
2196 s = "unknown";
2197 break;
2198 }
2199 pr_debug("[rmt_state_change: %s]\n", s);
2200 #endif // DRIVERDEBUG
2201 } // rmt_state_change
2202
2203
2204 /************************
2205 *
2206 * drv_reset_indication
2207 *
2208 * This function is called by the SMT when it has detected a severe
2209 * hardware problem. The driver should perform a reset on the adapter
2210 * as soon as possible, but not from within this function.
2211 * Args
2212 * smc - A pointer to the SMT context struct.
2213 * Out
2214 * Nothing.
2215 *
2216 ************************/
drv_reset_indication(struct s_smc * smc)2217 void drv_reset_indication(struct s_smc *smc)
2218 {
2219 pr_debug("entering drv_reset_indication\n");
2220
2221 smc->os.ResetRequested = TRUE; // Set flag.
2222
2223 } // drv_reset_indication
2224
2225 static struct pci_driver skfddi_pci_driver = {
2226 .name = "skfddi",
2227 .id_table = skfddi_pci_tbl,
2228 .probe = skfp_init_one,
2229 .remove = skfp_remove_one,
2230 };
2231
2232 module_pci_driver(skfddi_pci_driver);
2233