• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * edac_mc kernel module
3  * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *	http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
32 #include <asm/page.h>
33 #include "edac_mc.h"
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
36 
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
38 #include <asm/edac.h>
39 #else
40 #define edac_atomic_scrub(va, size) do { } while (0)
41 #endif
42 
43 int edac_op_state = EDAC_OPSTATE_INVAL;
44 EXPORT_SYMBOL_GPL(edac_op_state);
45 
46 /* lock to memory controller's control array */
47 static DEFINE_MUTEX(mem_ctls_mutex);
48 static LIST_HEAD(mc_devices);
49 
50 /*
51  * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
52  *	apei/ghes and i7core_edac to be used at the same time.
53  */
54 static const char *edac_mc_owner;
55 
error_desc_to_mci(struct edac_raw_error_desc * e)56 static struct mem_ctl_info *error_desc_to_mci(struct edac_raw_error_desc *e)
57 {
58 	return container_of(e, struct mem_ctl_info, error_desc);
59 }
60 
edac_dimm_info_location(struct dimm_info * dimm,char * buf,unsigned int len)61 unsigned int edac_dimm_info_location(struct dimm_info *dimm, char *buf,
62 				     unsigned int len)
63 {
64 	struct mem_ctl_info *mci = dimm->mci;
65 	int i, n, count = 0;
66 	char *p = buf;
67 
68 	for (i = 0; i < mci->n_layers; i++) {
69 		n = snprintf(p, len, "%s %d ",
70 			      edac_layer_name[mci->layers[i].type],
71 			      dimm->location[i]);
72 		p += n;
73 		len -= n;
74 		count += n;
75 		if (!len)
76 			break;
77 	}
78 
79 	return count;
80 }
81 
82 #ifdef CONFIG_EDAC_DEBUG
83 
edac_mc_dump_channel(struct rank_info * chan)84 static void edac_mc_dump_channel(struct rank_info *chan)
85 {
86 	edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
87 	edac_dbg(4, "    channel = %p\n", chan);
88 	edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
89 	edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
90 }
91 
edac_mc_dump_dimm(struct dimm_info * dimm)92 static void edac_mc_dump_dimm(struct dimm_info *dimm)
93 {
94 	char location[80];
95 
96 	if (!dimm->nr_pages)
97 		return;
98 
99 	edac_dimm_info_location(dimm, location, sizeof(location));
100 
101 	edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
102 		 dimm->mci->csbased ? "rank" : "dimm",
103 		 dimm->idx, location, dimm->csrow, dimm->cschannel);
104 	edac_dbg(4, "  dimm = %p\n", dimm);
105 	edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
106 	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
107 	edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
108 	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
109 }
110 
edac_mc_dump_csrow(struct csrow_info * csrow)111 static void edac_mc_dump_csrow(struct csrow_info *csrow)
112 {
113 	edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
114 	edac_dbg(4, "  csrow = %p\n", csrow);
115 	edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
116 	edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
117 	edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
118 	edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
119 	edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
120 	edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
121 }
122 
edac_mc_dump_mci(struct mem_ctl_info * mci)123 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
124 {
125 	edac_dbg(3, "\tmci = %p\n", mci);
126 	edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
127 	edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
128 	edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
129 	edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
130 	edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
131 		 mci->nr_csrows, mci->csrows);
132 	edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
133 		 mci->tot_dimms, mci->dimms);
134 	edac_dbg(3, "\tdev = %p\n", mci->pdev);
135 	edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
136 		 mci->mod_name, mci->ctl_name);
137 	edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
138 }
139 
140 #endif				/* CONFIG_EDAC_DEBUG */
141 
142 const char * const edac_mem_types[] = {
143 	[MEM_EMPTY]	= "Empty",
144 	[MEM_RESERVED]	= "Reserved",
145 	[MEM_UNKNOWN]	= "Unknown",
146 	[MEM_FPM]	= "FPM",
147 	[MEM_EDO]	= "EDO",
148 	[MEM_BEDO]	= "BEDO",
149 	[MEM_SDR]	= "Unbuffered-SDR",
150 	[MEM_RDR]	= "Registered-SDR",
151 	[MEM_DDR]	= "Unbuffered-DDR",
152 	[MEM_RDDR]	= "Registered-DDR",
153 	[MEM_RMBS]	= "RMBS",
154 	[MEM_DDR2]	= "Unbuffered-DDR2",
155 	[MEM_FB_DDR2]	= "FullyBuffered-DDR2",
156 	[MEM_RDDR2]	= "Registered-DDR2",
157 	[MEM_XDR]	= "XDR",
158 	[MEM_DDR3]	= "Unbuffered-DDR3",
159 	[MEM_RDDR3]	= "Registered-DDR3",
160 	[MEM_LRDDR3]	= "Load-Reduced-DDR3-RAM",
161 	[MEM_LPDDR3]	= "Low-Power-DDR3-RAM",
162 	[MEM_DDR4]	= "Unbuffered-DDR4",
163 	[MEM_RDDR4]	= "Registered-DDR4",
164 	[MEM_LPDDR4]	= "Low-Power-DDR4-RAM",
165 	[MEM_LRDDR4]	= "Load-Reduced-DDR4-RAM",
166 	[MEM_DDR5]	= "Unbuffered-DDR5",
167 	[MEM_NVDIMM]	= "Non-volatile-RAM",
168 	[MEM_WIO2]	= "Wide-IO-2",
169 	[MEM_HBM2]	= "High-bandwidth-memory-Gen2",
170 };
171 EXPORT_SYMBOL_GPL(edac_mem_types);
172 
173 /**
174  * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
175  * @p:		pointer to a pointer with the memory offset to be used. At
176  *		return, this will be incremented to point to the next offset
177  * @size:	Size of the data structure to be reserved
178  * @n_elems:	Number of elements that should be reserved
179  *
180  * If 'size' is a constant, the compiler will optimize this whole function
181  * down to either a no-op or the addition of a constant to the value of '*p'.
182  *
183  * The 'p' pointer is absolutely needed to keep the proper advancing
184  * further in memory to the proper offsets when allocating the struct along
185  * with its embedded structs, as edac_device_alloc_ctl_info() does it
186  * above, for example.
187  *
188  * At return, the pointer 'p' will be incremented to be used on a next call
189  * to this function.
190  */
edac_align_ptr(void ** p,unsigned int size,int n_elems)191 void *edac_align_ptr(void **p, unsigned int size, int n_elems)
192 {
193 	unsigned int align, r;
194 	void *ptr = *p;
195 
196 	*p += size * n_elems;
197 
198 	/*
199 	 * 'p' can possibly be an unaligned item X such that sizeof(X) is
200 	 * 'size'.  Adjust 'p' so that its alignment is at least as
201 	 * stringent as what the compiler would provide for X and return
202 	 * the aligned result.
203 	 * Here we assume that the alignment of a "long long" is the most
204 	 * stringent alignment that the compiler will ever provide by default.
205 	 * As far as I know, this is a reasonable assumption.
206 	 */
207 	if (size > sizeof(long))
208 		align = sizeof(long long);
209 	else if (size > sizeof(int))
210 		align = sizeof(long);
211 	else if (size > sizeof(short))
212 		align = sizeof(int);
213 	else if (size > sizeof(char))
214 		align = sizeof(short);
215 	else
216 		return (char *)ptr;
217 
218 	r = (unsigned long)ptr % align;
219 
220 	if (r == 0)
221 		return (char *)ptr;
222 
223 	*p += align - r;
224 
225 	return (void *)(((unsigned long)ptr) + align - r);
226 }
227 
_edac_mc_free(struct mem_ctl_info * mci)228 static void _edac_mc_free(struct mem_ctl_info *mci)
229 {
230 	put_device(&mci->dev);
231 }
232 
mci_release(struct device * dev)233 static void mci_release(struct device *dev)
234 {
235 	struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
236 	struct csrow_info *csr;
237 	int i, chn, row;
238 
239 	if (mci->dimms) {
240 		for (i = 0; i < mci->tot_dimms; i++)
241 			kfree(mci->dimms[i]);
242 		kfree(mci->dimms);
243 	}
244 
245 	if (mci->csrows) {
246 		for (row = 0; row < mci->nr_csrows; row++) {
247 			csr = mci->csrows[row];
248 			if (!csr)
249 				continue;
250 
251 			if (csr->channels) {
252 				for (chn = 0; chn < mci->num_cschannel; chn++)
253 					kfree(csr->channels[chn]);
254 				kfree(csr->channels);
255 			}
256 			kfree(csr);
257 		}
258 		kfree(mci->csrows);
259 	}
260 	kfree(mci);
261 }
262 
edac_mc_alloc_csrows(struct mem_ctl_info * mci)263 static int edac_mc_alloc_csrows(struct mem_ctl_info *mci)
264 {
265 	unsigned int tot_channels = mci->num_cschannel;
266 	unsigned int tot_csrows = mci->nr_csrows;
267 	unsigned int row, chn;
268 
269 	/*
270 	 * Alocate and fill the csrow/channels structs
271 	 */
272 	mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
273 	if (!mci->csrows)
274 		return -ENOMEM;
275 
276 	for (row = 0; row < tot_csrows; row++) {
277 		struct csrow_info *csr;
278 
279 		csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
280 		if (!csr)
281 			return -ENOMEM;
282 
283 		mci->csrows[row] = csr;
284 		csr->csrow_idx = row;
285 		csr->mci = mci;
286 		csr->nr_channels = tot_channels;
287 		csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
288 					GFP_KERNEL);
289 		if (!csr->channels)
290 			return -ENOMEM;
291 
292 		for (chn = 0; chn < tot_channels; chn++) {
293 			struct rank_info *chan;
294 
295 			chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
296 			if (!chan)
297 				return -ENOMEM;
298 
299 			csr->channels[chn] = chan;
300 			chan->chan_idx = chn;
301 			chan->csrow = csr;
302 		}
303 	}
304 
305 	return 0;
306 }
307 
edac_mc_alloc_dimms(struct mem_ctl_info * mci)308 static int edac_mc_alloc_dimms(struct mem_ctl_info *mci)
309 {
310 	unsigned int pos[EDAC_MAX_LAYERS];
311 	unsigned int row, chn, idx;
312 	int layer;
313 	void *p;
314 
315 	/*
316 	 * Allocate and fill the dimm structs
317 	 */
318 	mci->dimms  = kcalloc(mci->tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
319 	if (!mci->dimms)
320 		return -ENOMEM;
321 
322 	memset(&pos, 0, sizeof(pos));
323 	row = 0;
324 	chn = 0;
325 	for (idx = 0; idx < mci->tot_dimms; idx++) {
326 		struct dimm_info *dimm;
327 		struct rank_info *chan;
328 		int n, len;
329 
330 		chan = mci->csrows[row]->channels[chn];
331 
332 		dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
333 		if (!dimm)
334 			return -ENOMEM;
335 		mci->dimms[idx] = dimm;
336 		dimm->mci = mci;
337 		dimm->idx = idx;
338 
339 		/*
340 		 * Copy DIMM location and initialize it.
341 		 */
342 		len = sizeof(dimm->label);
343 		p = dimm->label;
344 		n = snprintf(p, len, "mc#%u", mci->mc_idx);
345 		p += n;
346 		len -= n;
347 		for (layer = 0; layer < mci->n_layers; layer++) {
348 			n = snprintf(p, len, "%s#%u",
349 				     edac_layer_name[mci->layers[layer].type],
350 				     pos[layer]);
351 			p += n;
352 			len -= n;
353 			dimm->location[layer] = pos[layer];
354 
355 			if (len <= 0)
356 				break;
357 		}
358 
359 		/* Link it to the csrows old API data */
360 		chan->dimm = dimm;
361 		dimm->csrow = row;
362 		dimm->cschannel = chn;
363 
364 		/* Increment csrow location */
365 		if (mci->layers[0].is_virt_csrow) {
366 			chn++;
367 			if (chn == mci->num_cschannel) {
368 				chn = 0;
369 				row++;
370 			}
371 		} else {
372 			row++;
373 			if (row == mci->nr_csrows) {
374 				row = 0;
375 				chn++;
376 			}
377 		}
378 
379 		/* Increment dimm location */
380 		for (layer = mci->n_layers - 1; layer >= 0; layer--) {
381 			pos[layer]++;
382 			if (pos[layer] < mci->layers[layer].size)
383 				break;
384 			pos[layer] = 0;
385 		}
386 	}
387 
388 	return 0;
389 }
390 
edac_mc_alloc(unsigned int mc_num,unsigned int n_layers,struct edac_mc_layer * layers,unsigned int sz_pvt)391 struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num,
392 				   unsigned int n_layers,
393 				   struct edac_mc_layer *layers,
394 				   unsigned int sz_pvt)
395 {
396 	struct mem_ctl_info *mci;
397 	struct edac_mc_layer *layer;
398 	unsigned int idx, size, tot_dimms = 1;
399 	unsigned int tot_csrows = 1, tot_channels = 1;
400 	void *pvt, *ptr = NULL;
401 	bool per_rank = false;
402 
403 	if (WARN_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0))
404 		return NULL;
405 
406 	/*
407 	 * Calculate the total amount of dimms and csrows/cschannels while
408 	 * in the old API emulation mode
409 	 */
410 	for (idx = 0; idx < n_layers; idx++) {
411 		tot_dimms *= layers[idx].size;
412 
413 		if (layers[idx].is_virt_csrow)
414 			tot_csrows *= layers[idx].size;
415 		else
416 			tot_channels *= layers[idx].size;
417 
418 		if (layers[idx].type == EDAC_MC_LAYER_CHIP_SELECT)
419 			per_rank = true;
420 	}
421 
422 	/* Figure out the offsets of the various items from the start of an mc
423 	 * structure.  We want the alignment of each item to be at least as
424 	 * stringent as what the compiler would provide if we could simply
425 	 * hardcode everything into a single struct.
426 	 */
427 	mci	= edac_align_ptr(&ptr, sizeof(*mci), 1);
428 	layer	= edac_align_ptr(&ptr, sizeof(*layer), n_layers);
429 	pvt	= edac_align_ptr(&ptr, sz_pvt, 1);
430 	size	= ((unsigned long)pvt) + sz_pvt;
431 
432 	edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
433 		 size,
434 		 tot_dimms,
435 		 per_rank ? "ranks" : "dimms",
436 		 tot_csrows * tot_channels);
437 
438 	mci = kzalloc(size, GFP_KERNEL);
439 	if (mci == NULL)
440 		return NULL;
441 
442 	mci->dev.release = mci_release;
443 	device_initialize(&mci->dev);
444 
445 	/* Adjust pointers so they point within the memory we just allocated
446 	 * rather than an imaginary chunk of memory located at address 0.
447 	 */
448 	layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
449 	pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
450 
451 	/* setup index and various internal pointers */
452 	mci->mc_idx = mc_num;
453 	mci->tot_dimms = tot_dimms;
454 	mci->pvt_info = pvt;
455 	mci->n_layers = n_layers;
456 	mci->layers = layer;
457 	memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
458 	mci->nr_csrows = tot_csrows;
459 	mci->num_cschannel = tot_channels;
460 	mci->csbased = per_rank;
461 
462 	if (edac_mc_alloc_csrows(mci))
463 		goto error;
464 
465 	if (edac_mc_alloc_dimms(mci))
466 		goto error;
467 
468 	mci->op_state = OP_ALLOC;
469 
470 	return mci;
471 
472 error:
473 	_edac_mc_free(mci);
474 
475 	return NULL;
476 }
477 EXPORT_SYMBOL_GPL(edac_mc_alloc);
478 
edac_mc_free(struct mem_ctl_info * mci)479 void edac_mc_free(struct mem_ctl_info *mci)
480 {
481 	edac_dbg(1, "\n");
482 
483 	_edac_mc_free(mci);
484 }
485 EXPORT_SYMBOL_GPL(edac_mc_free);
486 
edac_has_mcs(void)487 bool edac_has_mcs(void)
488 {
489 	bool ret;
490 
491 	mutex_lock(&mem_ctls_mutex);
492 
493 	ret = list_empty(&mc_devices);
494 
495 	mutex_unlock(&mem_ctls_mutex);
496 
497 	return !ret;
498 }
499 EXPORT_SYMBOL_GPL(edac_has_mcs);
500 
501 /* Caller must hold mem_ctls_mutex */
__find_mci_by_dev(struct device * dev)502 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
503 {
504 	struct mem_ctl_info *mci;
505 	struct list_head *item;
506 
507 	edac_dbg(3, "\n");
508 
509 	list_for_each(item, &mc_devices) {
510 		mci = list_entry(item, struct mem_ctl_info, link);
511 
512 		if (mci->pdev == dev)
513 			return mci;
514 	}
515 
516 	return NULL;
517 }
518 
519 /**
520  * find_mci_by_dev
521  *
522  *	scan list of controllers looking for the one that manages
523  *	the 'dev' device
524  * @dev: pointer to a struct device related with the MCI
525  */
find_mci_by_dev(struct device * dev)526 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
527 {
528 	struct mem_ctl_info *ret;
529 
530 	mutex_lock(&mem_ctls_mutex);
531 	ret = __find_mci_by_dev(dev);
532 	mutex_unlock(&mem_ctls_mutex);
533 
534 	return ret;
535 }
536 EXPORT_SYMBOL_GPL(find_mci_by_dev);
537 
538 /*
539  * edac_mc_workq_function
540  *	performs the operation scheduled by a workq request
541  */
edac_mc_workq_function(struct work_struct * work_req)542 static void edac_mc_workq_function(struct work_struct *work_req)
543 {
544 	struct delayed_work *d_work = to_delayed_work(work_req);
545 	struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
546 
547 	mutex_lock(&mem_ctls_mutex);
548 
549 	if (mci->op_state != OP_RUNNING_POLL) {
550 		mutex_unlock(&mem_ctls_mutex);
551 		return;
552 	}
553 
554 	if (edac_op_state == EDAC_OPSTATE_POLL)
555 		mci->edac_check(mci);
556 
557 	mutex_unlock(&mem_ctls_mutex);
558 
559 	/* Queue ourselves again. */
560 	edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
561 }
562 
563 /*
564  * edac_mc_reset_delay_period(unsigned long value)
565  *
566  *	user space has updated our poll period value, need to
567  *	reset our workq delays
568  */
edac_mc_reset_delay_period(unsigned long value)569 void edac_mc_reset_delay_period(unsigned long value)
570 {
571 	struct mem_ctl_info *mci;
572 	struct list_head *item;
573 
574 	mutex_lock(&mem_ctls_mutex);
575 
576 	list_for_each(item, &mc_devices) {
577 		mci = list_entry(item, struct mem_ctl_info, link);
578 
579 		if (mci->op_state == OP_RUNNING_POLL)
580 			edac_mod_work(&mci->work, value);
581 	}
582 	mutex_unlock(&mem_ctls_mutex);
583 }
584 
585 
586 
587 /* Return 0 on success, 1 on failure.
588  * Before calling this function, caller must
589  * assign a unique value to mci->mc_idx.
590  *
591  *	locking model:
592  *
593  *		called with the mem_ctls_mutex lock held
594  */
add_mc_to_global_list(struct mem_ctl_info * mci)595 static int add_mc_to_global_list(struct mem_ctl_info *mci)
596 {
597 	struct list_head *item, *insert_before;
598 	struct mem_ctl_info *p;
599 
600 	insert_before = &mc_devices;
601 
602 	p = __find_mci_by_dev(mci->pdev);
603 	if (unlikely(p != NULL))
604 		goto fail0;
605 
606 	list_for_each(item, &mc_devices) {
607 		p = list_entry(item, struct mem_ctl_info, link);
608 
609 		if (p->mc_idx >= mci->mc_idx) {
610 			if (unlikely(p->mc_idx == mci->mc_idx))
611 				goto fail1;
612 
613 			insert_before = item;
614 			break;
615 		}
616 	}
617 
618 	list_add_tail_rcu(&mci->link, insert_before);
619 	return 0;
620 
621 fail0:
622 	edac_printk(KERN_WARNING, EDAC_MC,
623 		"%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
624 		edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
625 	return 1;
626 
627 fail1:
628 	edac_printk(KERN_WARNING, EDAC_MC,
629 		"bug in low-level driver: attempt to assign\n"
630 		"    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
631 	return 1;
632 }
633 
del_mc_from_global_list(struct mem_ctl_info * mci)634 static int del_mc_from_global_list(struct mem_ctl_info *mci)
635 {
636 	list_del_rcu(&mci->link);
637 
638 	/* these are for safe removal of devices from global list while
639 	 * NMI handlers may be traversing list
640 	 */
641 	synchronize_rcu();
642 	INIT_LIST_HEAD(&mci->link);
643 
644 	return list_empty(&mc_devices);
645 }
646 
edac_mc_find(int idx)647 struct mem_ctl_info *edac_mc_find(int idx)
648 {
649 	struct mem_ctl_info *mci;
650 	struct list_head *item;
651 
652 	mutex_lock(&mem_ctls_mutex);
653 
654 	list_for_each(item, &mc_devices) {
655 		mci = list_entry(item, struct mem_ctl_info, link);
656 		if (mci->mc_idx == idx)
657 			goto unlock;
658 	}
659 
660 	mci = NULL;
661 unlock:
662 	mutex_unlock(&mem_ctls_mutex);
663 	return mci;
664 }
665 EXPORT_SYMBOL(edac_mc_find);
666 
edac_get_owner(void)667 const char *edac_get_owner(void)
668 {
669 	return edac_mc_owner;
670 }
671 EXPORT_SYMBOL_GPL(edac_get_owner);
672 
673 /* FIXME - should a warning be printed if no error detection? correction? */
edac_mc_add_mc_with_groups(struct mem_ctl_info * mci,const struct attribute_group ** groups)674 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
675 			       const struct attribute_group **groups)
676 {
677 	int ret = -EINVAL;
678 	edac_dbg(0, "\n");
679 
680 #ifdef CONFIG_EDAC_DEBUG
681 	if (edac_debug_level >= 3)
682 		edac_mc_dump_mci(mci);
683 
684 	if (edac_debug_level >= 4) {
685 		struct dimm_info *dimm;
686 		int i;
687 
688 		for (i = 0; i < mci->nr_csrows; i++) {
689 			struct csrow_info *csrow = mci->csrows[i];
690 			u32 nr_pages = 0;
691 			int j;
692 
693 			for (j = 0; j < csrow->nr_channels; j++)
694 				nr_pages += csrow->channels[j]->dimm->nr_pages;
695 			if (!nr_pages)
696 				continue;
697 			edac_mc_dump_csrow(csrow);
698 			for (j = 0; j < csrow->nr_channels; j++)
699 				if (csrow->channels[j]->dimm->nr_pages)
700 					edac_mc_dump_channel(csrow->channels[j]);
701 		}
702 
703 		mci_for_each_dimm(mci, dimm)
704 			edac_mc_dump_dimm(dimm);
705 	}
706 #endif
707 	mutex_lock(&mem_ctls_mutex);
708 
709 	if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
710 		ret = -EPERM;
711 		goto fail0;
712 	}
713 
714 	if (add_mc_to_global_list(mci))
715 		goto fail0;
716 
717 	/* set load time so that error rate can be tracked */
718 	mci->start_time = jiffies;
719 
720 	mci->bus = edac_get_sysfs_subsys();
721 
722 	if (edac_create_sysfs_mci_device(mci, groups)) {
723 		edac_mc_printk(mci, KERN_WARNING,
724 			"failed to create sysfs device\n");
725 		goto fail1;
726 	}
727 
728 	if (mci->edac_check) {
729 		mci->op_state = OP_RUNNING_POLL;
730 
731 		INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
732 		edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
733 
734 	} else {
735 		mci->op_state = OP_RUNNING_INTERRUPT;
736 	}
737 
738 	/* Report action taken */
739 	edac_mc_printk(mci, KERN_INFO,
740 		"Giving out device to module %s controller %s: DEV %s (%s)\n",
741 		mci->mod_name, mci->ctl_name, mci->dev_name,
742 		edac_op_state_to_string(mci->op_state));
743 
744 	edac_mc_owner = mci->mod_name;
745 
746 	mutex_unlock(&mem_ctls_mutex);
747 	return 0;
748 
749 fail1:
750 	del_mc_from_global_list(mci);
751 
752 fail0:
753 	mutex_unlock(&mem_ctls_mutex);
754 	return ret;
755 }
756 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
757 
edac_mc_del_mc(struct device * dev)758 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
759 {
760 	struct mem_ctl_info *mci;
761 
762 	edac_dbg(0, "\n");
763 
764 	mutex_lock(&mem_ctls_mutex);
765 
766 	/* find the requested mci struct in the global list */
767 	mci = __find_mci_by_dev(dev);
768 	if (mci == NULL) {
769 		mutex_unlock(&mem_ctls_mutex);
770 		return NULL;
771 	}
772 
773 	/* mark MCI offline: */
774 	mci->op_state = OP_OFFLINE;
775 
776 	if (del_mc_from_global_list(mci))
777 		edac_mc_owner = NULL;
778 
779 	mutex_unlock(&mem_ctls_mutex);
780 
781 	if (mci->edac_check)
782 		edac_stop_work(&mci->work);
783 
784 	/* remove from sysfs */
785 	edac_remove_sysfs_mci_device(mci);
786 
787 	edac_printk(KERN_INFO, EDAC_MC,
788 		"Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
789 		mci->mod_name, mci->ctl_name, edac_dev_name(mci));
790 
791 	return mci;
792 }
793 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
794 
edac_mc_scrub_block(unsigned long page,unsigned long offset,u32 size)795 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
796 				u32 size)
797 {
798 	struct page *pg;
799 	void *virt_addr;
800 	unsigned long flags = 0;
801 
802 	edac_dbg(3, "\n");
803 
804 	/* ECC error page was not in our memory. Ignore it. */
805 	if (!pfn_valid(page))
806 		return;
807 
808 	/* Find the actual page structure then map it and fix */
809 	pg = pfn_to_page(page);
810 
811 	if (PageHighMem(pg))
812 		local_irq_save(flags);
813 
814 	virt_addr = kmap_atomic(pg);
815 
816 	/* Perform architecture specific atomic scrub operation */
817 	edac_atomic_scrub(virt_addr + offset, size);
818 
819 	/* Unmap and complete */
820 	kunmap_atomic(virt_addr);
821 
822 	if (PageHighMem(pg))
823 		local_irq_restore(flags);
824 }
825 
826 /* FIXME - should return -1 */
edac_mc_find_csrow_by_page(struct mem_ctl_info * mci,unsigned long page)827 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
828 {
829 	struct csrow_info **csrows = mci->csrows;
830 	int row, i, j, n;
831 
832 	edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
833 	row = -1;
834 
835 	for (i = 0; i < mci->nr_csrows; i++) {
836 		struct csrow_info *csrow = csrows[i];
837 		n = 0;
838 		for (j = 0; j < csrow->nr_channels; j++) {
839 			struct dimm_info *dimm = csrow->channels[j]->dimm;
840 			n += dimm->nr_pages;
841 		}
842 		if (n == 0)
843 			continue;
844 
845 		edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
846 			 mci->mc_idx,
847 			 csrow->first_page, page, csrow->last_page,
848 			 csrow->page_mask);
849 
850 		if ((page >= csrow->first_page) &&
851 		    (page <= csrow->last_page) &&
852 		    ((page & csrow->page_mask) ==
853 		     (csrow->first_page & csrow->page_mask))) {
854 			row = i;
855 			break;
856 		}
857 	}
858 
859 	if (row == -1)
860 		edac_mc_printk(mci, KERN_ERR,
861 			"could not look up page error address %lx\n",
862 			(unsigned long)page);
863 
864 	return row;
865 }
866 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
867 
868 const char *edac_layer_name[] = {
869 	[EDAC_MC_LAYER_BRANCH] = "branch",
870 	[EDAC_MC_LAYER_CHANNEL] = "channel",
871 	[EDAC_MC_LAYER_SLOT] = "slot",
872 	[EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
873 	[EDAC_MC_LAYER_ALL_MEM] = "memory",
874 };
875 EXPORT_SYMBOL_GPL(edac_layer_name);
876 
edac_inc_ce_error(struct edac_raw_error_desc * e)877 static void edac_inc_ce_error(struct edac_raw_error_desc *e)
878 {
879 	int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
880 	struct mem_ctl_info *mci = error_desc_to_mci(e);
881 	struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
882 
883 	mci->ce_mc += e->error_count;
884 
885 	if (dimm)
886 		dimm->ce_count += e->error_count;
887 	else
888 		mci->ce_noinfo_count += e->error_count;
889 }
890 
edac_inc_ue_error(struct edac_raw_error_desc * e)891 static void edac_inc_ue_error(struct edac_raw_error_desc *e)
892 {
893 	int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
894 	struct mem_ctl_info *mci = error_desc_to_mci(e);
895 	struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
896 
897 	mci->ue_mc += e->error_count;
898 
899 	if (dimm)
900 		dimm->ue_count += e->error_count;
901 	else
902 		mci->ue_noinfo_count += e->error_count;
903 }
904 
edac_ce_error(struct edac_raw_error_desc * e)905 static void edac_ce_error(struct edac_raw_error_desc *e)
906 {
907 	struct mem_ctl_info *mci = error_desc_to_mci(e);
908 	unsigned long remapped_page;
909 
910 	if (edac_mc_get_log_ce()) {
911 		edac_mc_printk(mci, KERN_WARNING,
912 			"%d CE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx%s%s)\n",
913 			e->error_count, e->msg,
914 			*e->msg ? " " : "",
915 			e->label, e->location, e->page_frame_number, e->offset_in_page,
916 			e->grain, e->syndrome,
917 			*e->other_detail ? " - " : "",
918 			e->other_detail);
919 	}
920 
921 	edac_inc_ce_error(e);
922 
923 	if (mci->scrub_mode == SCRUB_SW_SRC) {
924 		/*
925 			* Some memory controllers (called MCs below) can remap
926 			* memory so that it is still available at a different
927 			* address when PCI devices map into memory.
928 			* MC's that can't do this, lose the memory where PCI
929 			* devices are mapped. This mapping is MC-dependent
930 			* and so we call back into the MC driver for it to
931 			* map the MC page to a physical (CPU) page which can
932 			* then be mapped to a virtual page - which can then
933 			* be scrubbed.
934 			*/
935 		remapped_page = mci->ctl_page_to_phys ?
936 			mci->ctl_page_to_phys(mci, e->page_frame_number) :
937 			e->page_frame_number;
938 
939 		edac_mc_scrub_block(remapped_page, e->offset_in_page, e->grain);
940 	}
941 }
942 
edac_ue_error(struct edac_raw_error_desc * e)943 static void edac_ue_error(struct edac_raw_error_desc *e)
944 {
945 	struct mem_ctl_info *mci = error_desc_to_mci(e);
946 
947 	if (edac_mc_get_log_ue()) {
948 		edac_mc_printk(mci, KERN_WARNING,
949 			"%d UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
950 			e->error_count, e->msg,
951 			*e->msg ? " " : "",
952 			e->label, e->location, e->page_frame_number, e->offset_in_page,
953 			e->grain,
954 			*e->other_detail ? " - " : "",
955 			e->other_detail);
956 	}
957 
958 	edac_inc_ue_error(e);
959 
960 	if (edac_mc_get_panic_on_ue()) {
961 		panic("UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
962 			e->msg,
963 			*e->msg ? " " : "",
964 			e->label, e->location, e->page_frame_number, e->offset_in_page,
965 			e->grain,
966 			*e->other_detail ? " - " : "",
967 			e->other_detail);
968 	}
969 }
970 
edac_inc_csrow(struct edac_raw_error_desc * e,int row,int chan)971 static void edac_inc_csrow(struct edac_raw_error_desc *e, int row, int chan)
972 {
973 	struct mem_ctl_info *mci = error_desc_to_mci(e);
974 	enum hw_event_mc_err_type type = e->type;
975 	u16 count = e->error_count;
976 
977 	if (row < 0)
978 		return;
979 
980 	edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
981 
982 	if (type == HW_EVENT_ERR_CORRECTED) {
983 		mci->csrows[row]->ce_count += count;
984 		if (chan >= 0)
985 			mci->csrows[row]->channels[chan]->ce_count += count;
986 	} else {
987 		mci->csrows[row]->ue_count += count;
988 	}
989 }
990 
edac_raw_mc_handle_error(struct edac_raw_error_desc * e)991 void edac_raw_mc_handle_error(struct edac_raw_error_desc *e)
992 {
993 	struct mem_ctl_info *mci = error_desc_to_mci(e);
994 	u8 grain_bits;
995 
996 	/* Sanity-check driver-supplied grain value. */
997 	if (WARN_ON_ONCE(!e->grain))
998 		e->grain = 1;
999 
1000 	grain_bits = fls_long(e->grain - 1);
1001 
1002 	/* Report the error via the trace interface */
1003 	if (IS_ENABLED(CONFIG_RAS))
1004 		trace_mc_event(e->type, e->msg, e->label, e->error_count,
1005 			       mci->mc_idx, e->top_layer, e->mid_layer,
1006 			       e->low_layer,
1007 			       (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
1008 			       grain_bits, e->syndrome, e->other_detail);
1009 
1010 	if (e->type == HW_EVENT_ERR_CORRECTED)
1011 		edac_ce_error(e);
1012 	else
1013 		edac_ue_error(e);
1014 }
1015 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1016 
edac_mc_handle_error(const enum hw_event_mc_err_type type,struct mem_ctl_info * mci,const u16 error_count,const unsigned long page_frame_number,const unsigned long offset_in_page,const unsigned long syndrome,const int top_layer,const int mid_layer,const int low_layer,const char * msg,const char * other_detail)1017 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1018 			  struct mem_ctl_info *mci,
1019 			  const u16 error_count,
1020 			  const unsigned long page_frame_number,
1021 			  const unsigned long offset_in_page,
1022 			  const unsigned long syndrome,
1023 			  const int top_layer,
1024 			  const int mid_layer,
1025 			  const int low_layer,
1026 			  const char *msg,
1027 			  const char *other_detail)
1028 {
1029 	struct dimm_info *dimm;
1030 	char *p;
1031 	int row = -1, chan = -1;
1032 	int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1033 	int i, n_labels = 0;
1034 	struct edac_raw_error_desc *e = &mci->error_desc;
1035 	bool any_memory = true;
1036 
1037 	edac_dbg(3, "MC%d\n", mci->mc_idx);
1038 
1039 	/* Fills the error report buffer */
1040 	memset(e, 0, sizeof (*e));
1041 	e->error_count = error_count;
1042 	e->type = type;
1043 	e->top_layer = top_layer;
1044 	e->mid_layer = mid_layer;
1045 	e->low_layer = low_layer;
1046 	e->page_frame_number = page_frame_number;
1047 	e->offset_in_page = offset_in_page;
1048 	e->syndrome = syndrome;
1049 	/* need valid strings here for both: */
1050 	e->msg = msg ?: "";
1051 	e->other_detail = other_detail ?: "";
1052 
1053 	/*
1054 	 * Check if the event report is consistent and if the memory location is
1055 	 * known. If it is, the DIMM(s) label info will be filled and the DIMM's
1056 	 * error counters will be incremented.
1057 	 */
1058 	for (i = 0; i < mci->n_layers; i++) {
1059 		if (pos[i] >= (int)mci->layers[i].size) {
1060 
1061 			edac_mc_printk(mci, KERN_ERR,
1062 				       "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1063 				       edac_layer_name[mci->layers[i].type],
1064 				       pos[i], mci->layers[i].size);
1065 			/*
1066 			 * Instead of just returning it, let's use what's
1067 			 * known about the error. The increment routines and
1068 			 * the DIMM filter logic will do the right thing by
1069 			 * pointing the likely damaged DIMMs.
1070 			 */
1071 			pos[i] = -1;
1072 		}
1073 		if (pos[i] >= 0)
1074 			any_memory = false;
1075 	}
1076 
1077 	/*
1078 	 * Get the dimm label/grain that applies to the match criteria.
1079 	 * As the error algorithm may not be able to point to just one memory
1080 	 * stick, the logic here will get all possible labels that could
1081 	 * pottentially be affected by the error.
1082 	 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1083 	 * to have only the MC channel and the MC dimm (also called "branch")
1084 	 * but the channel is not known, as the memory is arranged in pairs,
1085 	 * where each memory belongs to a separate channel within the same
1086 	 * branch.
1087 	 */
1088 	p = e->label;
1089 	*p = '\0';
1090 
1091 	mci_for_each_dimm(mci, dimm) {
1092 		if (top_layer >= 0 && top_layer != dimm->location[0])
1093 			continue;
1094 		if (mid_layer >= 0 && mid_layer != dimm->location[1])
1095 			continue;
1096 		if (low_layer >= 0 && low_layer != dimm->location[2])
1097 			continue;
1098 
1099 		/* get the max grain, over the error match range */
1100 		if (dimm->grain > e->grain)
1101 			e->grain = dimm->grain;
1102 
1103 		/*
1104 		 * If the error is memory-controller wide, there's no need to
1105 		 * seek for the affected DIMMs because the whole channel/memory
1106 		 * controller/... may be affected. Also, don't show errors for
1107 		 * empty DIMM slots.
1108 		 */
1109 		if (!dimm->nr_pages)
1110 			continue;
1111 
1112 		n_labels++;
1113 		if (n_labels > EDAC_MAX_LABELS) {
1114 			p = e->label;
1115 			*p = '\0';
1116 		} else {
1117 			if (p != e->label) {
1118 				strcpy(p, OTHER_LABEL);
1119 				p += strlen(OTHER_LABEL);
1120 			}
1121 			strcpy(p, dimm->label);
1122 			p += strlen(p);
1123 		}
1124 
1125 		/*
1126 		 * get csrow/channel of the DIMM, in order to allow
1127 		 * incrementing the compat API counters
1128 		 */
1129 		edac_dbg(4, "%s csrows map: (%d,%d)\n",
1130 			mci->csbased ? "rank" : "dimm",
1131 			dimm->csrow, dimm->cschannel);
1132 		if (row == -1)
1133 			row = dimm->csrow;
1134 		else if (row >= 0 && row != dimm->csrow)
1135 			row = -2;
1136 
1137 		if (chan == -1)
1138 			chan = dimm->cschannel;
1139 		else if (chan >= 0 && chan != dimm->cschannel)
1140 			chan = -2;
1141 	}
1142 
1143 	if (any_memory)
1144 		strcpy(e->label, "any memory");
1145 	else if (!*e->label)
1146 		strcpy(e->label, "unknown memory");
1147 
1148 	edac_inc_csrow(e, row, chan);
1149 
1150 	/* Fill the RAM location data */
1151 	p = e->location;
1152 
1153 	for (i = 0; i < mci->n_layers; i++) {
1154 		if (pos[i] < 0)
1155 			continue;
1156 
1157 		p += sprintf(p, "%s:%d ",
1158 			     edac_layer_name[mci->layers[i].type],
1159 			     pos[i]);
1160 	}
1161 	if (p > e->location)
1162 		*(p - 1) = '\0';
1163 
1164 	edac_raw_mc_handle_error(e);
1165 }
1166 EXPORT_SYMBOL_GPL(edac_mc_handle_error);
1167