1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2018 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include "net_driver.h"
12 #include "efx.h"
13 #include "nic_common.h"
14 #include "tx_common.h"
15
efx_tx_cb_page_count(struct efx_tx_queue * tx_queue)16 static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue)
17 {
18 return DIV_ROUND_UP(tx_queue->ptr_mask + 1,
19 PAGE_SIZE >> EFX_TX_CB_ORDER);
20 }
21
efx_probe_tx_queue(struct efx_tx_queue * tx_queue)22 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
23 {
24 struct efx_nic *efx = tx_queue->efx;
25 unsigned int entries;
26 int rc;
27
28 /* Create the smallest power-of-two aligned ring */
29 entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
30 EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
31 tx_queue->ptr_mask = entries - 1;
32
33 netif_dbg(efx, probe, efx->net_dev,
34 "creating TX queue %d size %#x mask %#x\n",
35 tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
36
37 /* Allocate software ring */
38 tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
39 GFP_KERNEL);
40 if (!tx_queue->buffer)
41 return -ENOMEM;
42
43 tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue),
44 sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
45 if (!tx_queue->cb_page) {
46 rc = -ENOMEM;
47 goto fail1;
48 }
49
50 /* Allocate hardware ring, determine TXQ type */
51 rc = efx_nic_probe_tx(tx_queue);
52 if (rc)
53 goto fail2;
54
55 tx_queue->channel->tx_queue_by_type[tx_queue->type] = tx_queue;
56 return 0;
57
58 fail2:
59 kfree(tx_queue->cb_page);
60 tx_queue->cb_page = NULL;
61 fail1:
62 kfree(tx_queue->buffer);
63 tx_queue->buffer = NULL;
64 return rc;
65 }
66
efx_init_tx_queue(struct efx_tx_queue * tx_queue)67 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
68 {
69 struct efx_nic *efx = tx_queue->efx;
70
71 netif_dbg(efx, drv, efx->net_dev,
72 "initialising TX queue %d\n", tx_queue->queue);
73
74 tx_queue->insert_count = 0;
75 tx_queue->notify_count = 0;
76 tx_queue->write_count = 0;
77 tx_queue->packet_write_count = 0;
78 tx_queue->old_write_count = 0;
79 tx_queue->read_count = 0;
80 tx_queue->old_read_count = 0;
81 tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
82 tx_queue->xmit_pending = false;
83 tx_queue->timestamping = (efx_ptp_use_mac_tx_timestamps(efx) &&
84 tx_queue->channel == efx_ptp_channel(efx));
85 tx_queue->completed_timestamp_major = 0;
86 tx_queue->completed_timestamp_minor = 0;
87
88 tx_queue->xdp_tx = efx_channel_is_xdp_tx(tx_queue->channel);
89 tx_queue->tso_version = 0;
90
91 /* Set up TX descriptor ring */
92 efx_nic_init_tx(tx_queue);
93
94 tx_queue->initialised = true;
95 }
96
efx_fini_tx_queue(struct efx_tx_queue * tx_queue)97 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
98 {
99 struct efx_tx_buffer *buffer;
100
101 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
102 "shutting down TX queue %d\n", tx_queue->queue);
103
104 tx_queue->initialised = false;
105
106 if (!tx_queue->buffer)
107 return;
108
109 /* Free any buffers left in the ring */
110 while (tx_queue->read_count != tx_queue->write_count) {
111 unsigned int pkts_compl = 0, bytes_compl = 0;
112
113 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
114 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
115
116 ++tx_queue->read_count;
117 }
118 tx_queue->xmit_pending = false;
119 netdev_tx_reset_queue(tx_queue->core_txq);
120 }
121
efx_remove_tx_queue(struct efx_tx_queue * tx_queue)122 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
123 {
124 int i;
125
126 if (!tx_queue->buffer)
127 return;
128
129 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
130 "destroying TX queue %d\n", tx_queue->queue);
131 efx_nic_remove_tx(tx_queue);
132
133 if (tx_queue->cb_page) {
134 for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++)
135 efx_nic_free_buffer(tx_queue->efx,
136 &tx_queue->cb_page[i]);
137 kfree(tx_queue->cb_page);
138 tx_queue->cb_page = NULL;
139 }
140
141 kfree(tx_queue->buffer);
142 tx_queue->buffer = NULL;
143 tx_queue->channel->tx_queue_by_type[tx_queue->type] = NULL;
144 }
145
efx_dequeue_buffer(struct efx_tx_queue * tx_queue,struct efx_tx_buffer * buffer,unsigned int * pkts_compl,unsigned int * bytes_compl)146 void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
147 struct efx_tx_buffer *buffer,
148 unsigned int *pkts_compl,
149 unsigned int *bytes_compl)
150 {
151 if (buffer->unmap_len) {
152 struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
153 dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
154
155 if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
156 dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
157 DMA_TO_DEVICE);
158 else
159 dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
160 DMA_TO_DEVICE);
161 buffer->unmap_len = 0;
162 }
163
164 if (buffer->flags & EFX_TX_BUF_SKB) {
165 struct sk_buff *skb = (struct sk_buff *)buffer->skb;
166
167 EFX_WARN_ON_PARANOID(!pkts_compl || !bytes_compl);
168 (*pkts_compl)++;
169 (*bytes_compl) += skb->len;
170 if (tx_queue->timestamping &&
171 (tx_queue->completed_timestamp_major ||
172 tx_queue->completed_timestamp_minor)) {
173 struct skb_shared_hwtstamps hwtstamp;
174
175 hwtstamp.hwtstamp =
176 efx_ptp_nic_to_kernel_time(tx_queue);
177 skb_tstamp_tx(skb, &hwtstamp);
178
179 tx_queue->completed_timestamp_major = 0;
180 tx_queue->completed_timestamp_minor = 0;
181 }
182 dev_consume_skb_any((struct sk_buff *)buffer->skb);
183 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
184 "TX queue %d transmission id %x complete\n",
185 tx_queue->queue, tx_queue->read_count);
186 } else if (buffer->flags & EFX_TX_BUF_XDP) {
187 xdp_return_frame_rx_napi(buffer->xdpf);
188 }
189
190 buffer->len = 0;
191 buffer->flags = 0;
192 }
193
194 /* Remove packets from the TX queue
195 *
196 * This removes packets from the TX queue, up to and including the
197 * specified index.
198 */
efx_dequeue_buffers(struct efx_tx_queue * tx_queue,unsigned int index,unsigned int * pkts_compl,unsigned int * bytes_compl)199 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
200 unsigned int index,
201 unsigned int *pkts_compl,
202 unsigned int *bytes_compl)
203 {
204 struct efx_nic *efx = tx_queue->efx;
205 unsigned int stop_index, read_ptr;
206
207 stop_index = (index + 1) & tx_queue->ptr_mask;
208 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
209
210 while (read_ptr != stop_index) {
211 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
212
213 if (!efx_tx_buffer_in_use(buffer)) {
214 netif_err(efx, tx_err, efx->net_dev,
215 "TX queue %d spurious TX completion id %d\n",
216 tx_queue->queue, read_ptr);
217 efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
218 return;
219 }
220
221 efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
222
223 ++tx_queue->read_count;
224 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
225 }
226 }
227
efx_xmit_done_check_empty(struct efx_tx_queue * tx_queue)228 void efx_xmit_done_check_empty(struct efx_tx_queue *tx_queue)
229 {
230 if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
231 tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
232 if (tx_queue->read_count == tx_queue->old_write_count) {
233 /* Ensure that read_count is flushed. */
234 smp_mb();
235 tx_queue->empty_read_count =
236 tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
237 }
238 }
239 }
240
efx_xmit_done(struct efx_tx_queue * tx_queue,unsigned int index)241 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
242 {
243 unsigned int fill_level, pkts_compl = 0, bytes_compl = 0;
244 struct efx_nic *efx = tx_queue->efx;
245
246 EFX_WARN_ON_ONCE_PARANOID(index > tx_queue->ptr_mask);
247
248 efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
249 tx_queue->pkts_compl += pkts_compl;
250 tx_queue->bytes_compl += bytes_compl;
251
252 if (pkts_compl > 1)
253 ++tx_queue->merge_events;
254
255 /* See if we need to restart the netif queue. This memory
256 * barrier ensures that we write read_count (inside
257 * efx_dequeue_buffers()) before reading the queue status.
258 */
259 smp_mb();
260 if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
261 likely(efx->port_enabled) &&
262 likely(netif_device_present(efx->net_dev))) {
263 fill_level = efx_channel_tx_fill_level(tx_queue->channel);
264 if (fill_level <= efx->txq_wake_thresh)
265 netif_tx_wake_queue(tx_queue->core_txq);
266 }
267
268 efx_xmit_done_check_empty(tx_queue);
269 }
270
271 /* Remove buffers put into a tx_queue for the current packet.
272 * None of the buffers must have an skb attached.
273 */
efx_enqueue_unwind(struct efx_tx_queue * tx_queue,unsigned int insert_count)274 void efx_enqueue_unwind(struct efx_tx_queue *tx_queue,
275 unsigned int insert_count)
276 {
277 struct efx_tx_buffer *buffer;
278 unsigned int bytes_compl = 0;
279 unsigned int pkts_compl = 0;
280
281 /* Work backwards until we hit the original insert pointer value */
282 while (tx_queue->insert_count != insert_count) {
283 --tx_queue->insert_count;
284 buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
285 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
286 }
287 }
288
efx_tx_map_chunk(struct efx_tx_queue * tx_queue,dma_addr_t dma_addr,size_t len)289 struct efx_tx_buffer *efx_tx_map_chunk(struct efx_tx_queue *tx_queue,
290 dma_addr_t dma_addr, size_t len)
291 {
292 const struct efx_nic_type *nic_type = tx_queue->efx->type;
293 struct efx_tx_buffer *buffer;
294 unsigned int dma_len;
295
296 /* Map the fragment taking account of NIC-dependent DMA limits. */
297 do {
298 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
299
300 if (nic_type->tx_limit_len)
301 dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
302 else
303 dma_len = len;
304
305 buffer->len = dma_len;
306 buffer->dma_addr = dma_addr;
307 buffer->flags = EFX_TX_BUF_CONT;
308 len -= dma_len;
309 dma_addr += dma_len;
310 ++tx_queue->insert_count;
311 } while (len);
312
313 return buffer;
314 }
315
efx_tx_tso_header_length(struct sk_buff * skb)316 int efx_tx_tso_header_length(struct sk_buff *skb)
317 {
318 size_t header_len;
319
320 if (skb->encapsulation)
321 header_len = skb_inner_transport_header(skb) -
322 skb->data +
323 (inner_tcp_hdr(skb)->doff << 2u);
324 else
325 header_len = skb_transport_header(skb) - skb->data +
326 (tcp_hdr(skb)->doff << 2u);
327 return header_len;
328 }
329
330 /* Map all data from an SKB for DMA and create descriptors on the queue. */
efx_tx_map_data(struct efx_tx_queue * tx_queue,struct sk_buff * skb,unsigned int segment_count)331 int efx_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
332 unsigned int segment_count)
333 {
334 struct efx_nic *efx = tx_queue->efx;
335 struct device *dma_dev = &efx->pci_dev->dev;
336 unsigned int frag_index, nr_frags;
337 dma_addr_t dma_addr, unmap_addr;
338 unsigned short dma_flags;
339 size_t len, unmap_len;
340
341 nr_frags = skb_shinfo(skb)->nr_frags;
342 frag_index = 0;
343
344 /* Map header data. */
345 len = skb_headlen(skb);
346 dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
347 dma_flags = EFX_TX_BUF_MAP_SINGLE;
348 unmap_len = len;
349 unmap_addr = dma_addr;
350
351 if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
352 return -EIO;
353
354 if (segment_count) {
355 /* For TSO we need to put the header in to a separate
356 * descriptor. Map this separately if necessary.
357 */
358 size_t header_len = efx_tx_tso_header_length(skb);
359
360 if (header_len != len) {
361 tx_queue->tso_long_headers++;
362 efx_tx_map_chunk(tx_queue, dma_addr, header_len);
363 len -= header_len;
364 dma_addr += header_len;
365 }
366 }
367
368 /* Add descriptors for each fragment. */
369 do {
370 struct efx_tx_buffer *buffer;
371 skb_frag_t *fragment;
372
373 buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
374
375 /* The final descriptor for a fragment is responsible for
376 * unmapping the whole fragment.
377 */
378 buffer->flags = EFX_TX_BUF_CONT | dma_flags;
379 buffer->unmap_len = unmap_len;
380 buffer->dma_offset = buffer->dma_addr - unmap_addr;
381
382 if (frag_index >= nr_frags) {
383 /* Store SKB details with the final buffer for
384 * the completion.
385 */
386 buffer->skb = skb;
387 buffer->flags = EFX_TX_BUF_SKB | dma_flags;
388 return 0;
389 }
390
391 /* Move on to the next fragment. */
392 fragment = &skb_shinfo(skb)->frags[frag_index++];
393 len = skb_frag_size(fragment);
394 dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
395 DMA_TO_DEVICE);
396 dma_flags = 0;
397 unmap_len = len;
398 unmap_addr = dma_addr;
399
400 if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
401 return -EIO;
402 } while (1);
403 }
404
efx_tx_max_skb_descs(struct efx_nic * efx)405 unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
406 {
407 /* Header and payload descriptor for each output segment, plus
408 * one for every input fragment boundary within a segment
409 */
410 unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
411
412 /* Possibly one more per segment for option descriptors */
413 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
414 max_descs += EFX_TSO_MAX_SEGS;
415
416 /* Possibly more for PCIe page boundaries within input fragments */
417 if (PAGE_SIZE > EFX_PAGE_SIZE)
418 max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
419 DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
420
421 return max_descs;
422 }
423
424 /*
425 * Fallback to software TSO.
426 *
427 * This is used if we are unable to send a GSO packet through hardware TSO.
428 * This should only ever happen due to per-queue restrictions - unsupported
429 * packets should first be filtered by the feature flags.
430 *
431 * Returns 0 on success, error code otherwise.
432 */
efx_tx_tso_fallback(struct efx_tx_queue * tx_queue,struct sk_buff * skb)433 int efx_tx_tso_fallback(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
434 {
435 struct sk_buff *segments, *next;
436
437 segments = skb_gso_segment(skb, 0);
438 if (IS_ERR(segments))
439 return PTR_ERR(segments);
440
441 dev_consume_skb_any(skb);
442
443 skb_list_walk_safe(segments, skb, next) {
444 skb_mark_not_on_list(skb);
445 efx_enqueue_skb(tx_queue, skb);
446 }
447
448 return 0;
449 }
450