• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  * Copyright (C) 2006, 2007 University of Szeged, Hungary
7  *
8  * Authors: Artem Bityutskiy (Битюцкий Артём)
9  *          Adrian Hunter
10  *          Zoltan Sogor
11  */
12 
13 /*
14  * This file implements UBIFS I/O subsystem which provides various I/O-related
15  * helper functions (reading/writing/checking/validating nodes) and implements
16  * write-buffering support. Write buffers help to save space which otherwise
17  * would have been wasted for padding to the nearest minimal I/O unit boundary.
18  * Instead, data first goes to the write-buffer and is flushed when the
19  * buffer is full or when it is not used for some time (by timer). This is
20  * similar to the mechanism is used by JFFS2.
21  *
22  * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
23  * write size (@c->max_write_size). The latter is the maximum amount of bytes
24  * the underlying flash is able to program at a time, and writing in
25  * @c->max_write_size units should presumably be faster. Obviously,
26  * @c->min_io_size <= @c->max_write_size. Write-buffers are of
27  * @c->max_write_size bytes in size for maximum performance. However, when a
28  * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
29  * boundary) which contains data is written, not the whole write-buffer,
30  * because this is more space-efficient.
31  *
32  * This optimization adds few complications to the code. Indeed, on the one
33  * hand, we want to write in optimal @c->max_write_size bytes chunks, which
34  * also means aligning writes at the @c->max_write_size bytes offsets. On the
35  * other hand, we do not want to waste space when synchronizing the write
36  * buffer, so during synchronization we writes in smaller chunks. And this makes
37  * the next write offset to be not aligned to @c->max_write_size bytes. So the
38  * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
39  * to @c->max_write_size bytes again. We do this by temporarily shrinking
40  * write-buffer size (@wbuf->size).
41  *
42  * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
43  * mutexes defined inside these objects. Since sometimes upper-level code
44  * has to lock the write-buffer (e.g. journal space reservation code), many
45  * functions related to write-buffers have "nolock" suffix which means that the
46  * caller has to lock the write-buffer before calling this function.
47  *
48  * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
49  * aligned, UBIFS starts the next node from the aligned address, and the padded
50  * bytes may contain any rubbish. In other words, UBIFS does not put padding
51  * bytes in those small gaps. Common headers of nodes store real node lengths,
52  * not aligned lengths. Indexing nodes also store real lengths in branches.
53  *
54  * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
55  * uses padding nodes or padding bytes, if the padding node does not fit.
56  *
57  * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
58  * they are read from the flash media.
59  */
60 
61 #include <linux/crc32.h>
62 #include <linux/slab.h>
63 #include "ubifs.h"
64 
65 /**
66  * ubifs_ro_mode - switch UBIFS to read read-only mode.
67  * @c: UBIFS file-system description object
68  * @err: error code which is the reason of switching to R/O mode
69  */
ubifs_ro_mode(struct ubifs_info * c,int err)70 void ubifs_ro_mode(struct ubifs_info *c, int err)
71 {
72 	if (!c->ro_error) {
73 		c->ro_error = 1;
74 		c->no_chk_data_crc = 0;
75 		c->vfs_sb->s_flags |= SB_RDONLY;
76 		ubifs_warn(c, "switched to read-only mode, error %d", err);
77 		dump_stack();
78 	}
79 }
80 
81 /*
82  * Below are simple wrappers over UBI I/O functions which include some
83  * additional checks and UBIFS debugging stuff. See corresponding UBI function
84  * for more information.
85  */
86 
ubifs_leb_read(const struct ubifs_info * c,int lnum,void * buf,int offs,int len,int even_ebadmsg)87 int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs,
88 		   int len, int even_ebadmsg)
89 {
90 	int err;
91 
92 	err = ubi_read(c->ubi, lnum, buf, offs, len);
93 	/*
94 	 * In case of %-EBADMSG print the error message only if the
95 	 * @even_ebadmsg is true.
96 	 */
97 	if (err && (err != -EBADMSG || even_ebadmsg)) {
98 		ubifs_err(c, "reading %d bytes from LEB %d:%d failed, error %d",
99 			  len, lnum, offs, err);
100 		dump_stack();
101 	}
102 	return err;
103 }
104 
ubifs_leb_write(struct ubifs_info * c,int lnum,const void * buf,int offs,int len)105 int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
106 		    int len)
107 {
108 	int err;
109 
110 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
111 	if (c->ro_error)
112 		return -EROFS;
113 	if (!dbg_is_tst_rcvry(c))
114 		err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
115 	else
116 		err = dbg_leb_write(c, lnum, buf, offs, len);
117 	if (err) {
118 		ubifs_err(c, "writing %d bytes to LEB %d:%d failed, error %d",
119 			  len, lnum, offs, err);
120 		ubifs_ro_mode(c, err);
121 		dump_stack();
122 	}
123 	return err;
124 }
125 
ubifs_leb_change(struct ubifs_info * c,int lnum,const void * buf,int len)126 int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len)
127 {
128 	int err;
129 
130 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
131 	if (c->ro_error)
132 		return -EROFS;
133 	if (!dbg_is_tst_rcvry(c))
134 		err = ubi_leb_change(c->ubi, lnum, buf, len);
135 	else
136 		err = dbg_leb_change(c, lnum, buf, len);
137 	if (err) {
138 		ubifs_err(c, "changing %d bytes in LEB %d failed, error %d",
139 			  len, lnum, err);
140 		ubifs_ro_mode(c, err);
141 		dump_stack();
142 	}
143 	return err;
144 }
145 
ubifs_leb_unmap(struct ubifs_info * c,int lnum)146 int ubifs_leb_unmap(struct ubifs_info *c, int lnum)
147 {
148 	int err;
149 
150 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
151 	if (c->ro_error)
152 		return -EROFS;
153 	if (!dbg_is_tst_rcvry(c))
154 		err = ubi_leb_unmap(c->ubi, lnum);
155 	else
156 		err = dbg_leb_unmap(c, lnum);
157 	if (err) {
158 		ubifs_err(c, "unmap LEB %d failed, error %d", lnum, err);
159 		ubifs_ro_mode(c, err);
160 		dump_stack();
161 	}
162 	return err;
163 }
164 
ubifs_leb_map(struct ubifs_info * c,int lnum)165 int ubifs_leb_map(struct ubifs_info *c, int lnum)
166 {
167 	int err;
168 
169 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
170 	if (c->ro_error)
171 		return -EROFS;
172 	if (!dbg_is_tst_rcvry(c))
173 		err = ubi_leb_map(c->ubi, lnum);
174 	else
175 		err = dbg_leb_map(c, lnum);
176 	if (err) {
177 		ubifs_err(c, "mapping LEB %d failed, error %d", lnum, err);
178 		ubifs_ro_mode(c, err);
179 		dump_stack();
180 	}
181 	return err;
182 }
183 
ubifs_is_mapped(const struct ubifs_info * c,int lnum)184 int ubifs_is_mapped(const struct ubifs_info *c, int lnum)
185 {
186 	int err;
187 
188 	err = ubi_is_mapped(c->ubi, lnum);
189 	if (err < 0) {
190 		ubifs_err(c, "ubi_is_mapped failed for LEB %d, error %d",
191 			  lnum, err);
192 		dump_stack();
193 	}
194 	return err;
195 }
196 
197 /**
198  * ubifs_check_node - check node.
199  * @c: UBIFS file-system description object
200  * @buf: node to check
201  * @len: node length
202  * @lnum: logical eraseblock number
203  * @offs: offset within the logical eraseblock
204  * @quiet: print no messages
205  * @must_chk_crc: indicates whether to always check the CRC
206  *
207  * This function checks node magic number and CRC checksum. This function also
208  * validates node length to prevent UBIFS from becoming crazy when an attacker
209  * feeds it a file-system image with incorrect nodes. For example, too large
210  * node length in the common header could cause UBIFS to read memory outside of
211  * allocated buffer when checking the CRC checksum.
212  *
213  * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
214  * true, which is controlled by corresponding UBIFS mount option. However, if
215  * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
216  * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
217  * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
218  * is checked. This is because during mounting or re-mounting from R/O mode to
219  * R/W mode we may read journal nodes (when replying the journal or doing the
220  * recovery) and the journal nodes may potentially be corrupted, so checking is
221  * required.
222  *
223  * This function returns zero in case of success and %-EUCLEAN in case of bad
224  * CRC or magic.
225  */
ubifs_check_node(const struct ubifs_info * c,const void * buf,int len,int lnum,int offs,int quiet,int must_chk_crc)226 int ubifs_check_node(const struct ubifs_info *c, const void *buf, int len,
227 		     int lnum, int offs, int quiet, int must_chk_crc)
228 {
229 	int err = -EINVAL, type, node_len;
230 	uint32_t crc, node_crc, magic;
231 	const struct ubifs_ch *ch = buf;
232 
233 	ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
234 	ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
235 
236 	magic = le32_to_cpu(ch->magic);
237 	if (magic != UBIFS_NODE_MAGIC) {
238 		if (!quiet)
239 			ubifs_err(c, "bad magic %#08x, expected %#08x",
240 				  magic, UBIFS_NODE_MAGIC);
241 		err = -EUCLEAN;
242 		goto out;
243 	}
244 
245 	type = ch->node_type;
246 	if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
247 		if (!quiet)
248 			ubifs_err(c, "bad node type %d", type);
249 		goto out;
250 	}
251 
252 	node_len = le32_to_cpu(ch->len);
253 	if (node_len + offs > c->leb_size)
254 		goto out_len;
255 
256 	if (c->ranges[type].max_len == 0) {
257 		if (node_len != c->ranges[type].len)
258 			goto out_len;
259 	} else if (node_len < c->ranges[type].min_len ||
260 		   node_len > c->ranges[type].max_len)
261 		goto out_len;
262 
263 	if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting &&
264 	    !c->remounting_rw && c->no_chk_data_crc)
265 		return 0;
266 
267 	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
268 	node_crc = le32_to_cpu(ch->crc);
269 	if (crc != node_crc) {
270 		if (!quiet)
271 			ubifs_err(c, "bad CRC: calculated %#08x, read %#08x",
272 				  crc, node_crc);
273 		err = -EUCLEAN;
274 		goto out;
275 	}
276 
277 	return 0;
278 
279 out_len:
280 	if (!quiet)
281 		ubifs_err(c, "bad node length %d", node_len);
282 out:
283 	if (!quiet) {
284 		ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
285 		ubifs_dump_node(c, buf, len);
286 		dump_stack();
287 	}
288 	return err;
289 }
290 
291 /**
292  * ubifs_pad - pad flash space.
293  * @c: UBIFS file-system description object
294  * @buf: buffer to put padding to
295  * @pad: how many bytes to pad
296  *
297  * The flash media obliges us to write only in chunks of %c->min_io_size and
298  * when we have to write less data we add padding node to the write-buffer and
299  * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
300  * media is being scanned. If the amount of wasted space is not enough to fit a
301  * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
302  * pattern (%UBIFS_PADDING_BYTE).
303  *
304  * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
305  * used.
306  */
ubifs_pad(const struct ubifs_info * c,void * buf,int pad)307 void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
308 {
309 	uint32_t crc;
310 
311 	ubifs_assert(c, pad >= 0);
312 
313 	if (pad >= UBIFS_PAD_NODE_SZ) {
314 		struct ubifs_ch *ch = buf;
315 		struct ubifs_pad_node *pad_node = buf;
316 
317 		ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
318 		ch->node_type = UBIFS_PAD_NODE;
319 		ch->group_type = UBIFS_NO_NODE_GROUP;
320 		ch->padding[0] = ch->padding[1] = 0;
321 		ch->sqnum = 0;
322 		ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
323 		pad -= UBIFS_PAD_NODE_SZ;
324 		pad_node->pad_len = cpu_to_le32(pad);
325 		crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
326 		ch->crc = cpu_to_le32(crc);
327 		memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
328 	} else if (pad > 0)
329 		/* Too little space, padding node won't fit */
330 		memset(buf, UBIFS_PADDING_BYTE, pad);
331 }
332 
333 /**
334  * next_sqnum - get next sequence number.
335  * @c: UBIFS file-system description object
336  */
next_sqnum(struct ubifs_info * c)337 static unsigned long long next_sqnum(struct ubifs_info *c)
338 {
339 	unsigned long long sqnum;
340 
341 	spin_lock(&c->cnt_lock);
342 	sqnum = ++c->max_sqnum;
343 	spin_unlock(&c->cnt_lock);
344 
345 	if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
346 		if (sqnum >= SQNUM_WATERMARK) {
347 			ubifs_err(c, "sequence number overflow %llu, end of life",
348 				  sqnum);
349 			ubifs_ro_mode(c, -EINVAL);
350 		}
351 		ubifs_warn(c, "running out of sequence numbers, end of life soon");
352 	}
353 
354 	return sqnum;
355 }
356 
ubifs_init_node(struct ubifs_info * c,void * node,int len,int pad)357 void ubifs_init_node(struct ubifs_info *c, void *node, int len, int pad)
358 {
359 	struct ubifs_ch *ch = node;
360 	unsigned long long sqnum = next_sqnum(c);
361 
362 	ubifs_assert(c, len >= UBIFS_CH_SZ);
363 
364 	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
365 	ch->len = cpu_to_le32(len);
366 	ch->group_type = UBIFS_NO_NODE_GROUP;
367 	ch->sqnum = cpu_to_le64(sqnum);
368 	ch->padding[0] = ch->padding[1] = 0;
369 
370 	if (pad) {
371 		len = ALIGN(len, 8);
372 		pad = ALIGN(len, c->min_io_size) - len;
373 		ubifs_pad(c, node + len, pad);
374 	}
375 }
376 
ubifs_crc_node(struct ubifs_info * c,void * node,int len)377 void ubifs_crc_node(struct ubifs_info *c, void *node, int len)
378 {
379 	struct ubifs_ch *ch = node;
380 	uint32_t crc;
381 
382 	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
383 	ch->crc = cpu_to_le32(crc);
384 }
385 
386 /**
387  * ubifs_prepare_node_hmac - prepare node to be written to flash.
388  * @c: UBIFS file-system description object
389  * @node: the node to pad
390  * @len: node length
391  * @hmac_offs: offset of the HMAC in the node
392  * @pad: if the buffer has to be padded
393  *
394  * This function prepares node at @node to be written to the media - it
395  * calculates node CRC, fills the common header, and adds proper padding up to
396  * the next minimum I/O unit if @pad is not zero. if @hmac_offs is positive then
397  * a HMAC is inserted into the node at the given offset.
398  *
399  * This function returns 0 for success or a negative error code otherwise.
400  */
ubifs_prepare_node_hmac(struct ubifs_info * c,void * node,int len,int hmac_offs,int pad)401 int ubifs_prepare_node_hmac(struct ubifs_info *c, void *node, int len,
402 			    int hmac_offs, int pad)
403 {
404 	int err;
405 
406 	ubifs_init_node(c, node, len, pad);
407 
408 	if (hmac_offs > 0) {
409 		err = ubifs_node_insert_hmac(c, node, len, hmac_offs);
410 		if (err)
411 			return err;
412 	}
413 
414 	ubifs_crc_node(c, node, len);
415 
416 	return 0;
417 }
418 
419 /**
420  * ubifs_prepare_node - prepare node to be written to flash.
421  * @c: UBIFS file-system description object
422  * @node: the node to pad
423  * @len: node length
424  * @pad: if the buffer has to be padded
425  *
426  * This function prepares node at @node to be written to the media - it
427  * calculates node CRC, fills the common header, and adds proper padding up to
428  * the next minimum I/O unit if @pad is not zero.
429  */
ubifs_prepare_node(struct ubifs_info * c,void * node,int len,int pad)430 void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
431 {
432 	/*
433 	 * Deliberately ignore return value since this function can only fail
434 	 * when a hmac offset is given.
435 	 */
436 	ubifs_prepare_node_hmac(c, node, len, 0, pad);
437 }
438 
439 /**
440  * ubifs_prep_grp_node - prepare node of a group to be written to flash.
441  * @c: UBIFS file-system description object
442  * @node: the node to pad
443  * @len: node length
444  * @last: indicates the last node of the group
445  *
446  * This function prepares node at @node to be written to the media - it
447  * calculates node CRC and fills the common header.
448  */
ubifs_prep_grp_node(struct ubifs_info * c,void * node,int len,int last)449 void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
450 {
451 	uint32_t crc;
452 	struct ubifs_ch *ch = node;
453 	unsigned long long sqnum = next_sqnum(c);
454 
455 	ubifs_assert(c, len >= UBIFS_CH_SZ);
456 
457 	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
458 	ch->len = cpu_to_le32(len);
459 	if (last)
460 		ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
461 	else
462 		ch->group_type = UBIFS_IN_NODE_GROUP;
463 	ch->sqnum = cpu_to_le64(sqnum);
464 	ch->padding[0] = ch->padding[1] = 0;
465 	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
466 	ch->crc = cpu_to_le32(crc);
467 }
468 
469 /**
470  * wbuf_timer_callback - write-buffer timer callback function.
471  * @timer: timer data (write-buffer descriptor)
472  *
473  * This function is called when the write-buffer timer expires.
474  */
wbuf_timer_callback_nolock(struct hrtimer * timer)475 static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
476 {
477 	struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
478 
479 	dbg_io("jhead %s", dbg_jhead(wbuf->jhead));
480 	wbuf->need_sync = 1;
481 	wbuf->c->need_wbuf_sync = 1;
482 	ubifs_wake_up_bgt(wbuf->c);
483 	return HRTIMER_NORESTART;
484 }
485 
486 /**
487  * new_wbuf_timer - start new write-buffer timer.
488  * @c: UBIFS file-system description object
489  * @wbuf: write-buffer descriptor
490  */
new_wbuf_timer_nolock(struct ubifs_info * c,struct ubifs_wbuf * wbuf)491 static void new_wbuf_timer_nolock(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
492 {
493 	ktime_t softlimit = ms_to_ktime(dirty_writeback_interval * 10);
494 	unsigned long long delta = dirty_writeback_interval;
495 
496 	/* centi to milli, milli to nano, then 10% */
497 	delta *= 10ULL * NSEC_PER_MSEC / 10ULL;
498 
499 	ubifs_assert(c, !hrtimer_active(&wbuf->timer));
500 	ubifs_assert(c, delta <= ULONG_MAX);
501 
502 	if (wbuf->no_timer)
503 		return;
504 	dbg_io("set timer for jhead %s, %llu-%llu millisecs",
505 	       dbg_jhead(wbuf->jhead),
506 	       div_u64(ktime_to_ns(softlimit), USEC_PER_SEC),
507 	       div_u64(ktime_to_ns(softlimit) + delta, USEC_PER_SEC));
508 	hrtimer_start_range_ns(&wbuf->timer, softlimit, delta,
509 			       HRTIMER_MODE_REL);
510 }
511 
512 /**
513  * cancel_wbuf_timer - cancel write-buffer timer.
514  * @wbuf: write-buffer descriptor
515  */
cancel_wbuf_timer_nolock(struct ubifs_wbuf * wbuf)516 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
517 {
518 	if (wbuf->no_timer)
519 		return;
520 	wbuf->need_sync = 0;
521 	hrtimer_cancel(&wbuf->timer);
522 }
523 
524 /**
525  * ubifs_wbuf_sync_nolock - synchronize write-buffer.
526  * @wbuf: write-buffer to synchronize
527  *
528  * This function synchronizes write-buffer @buf and returns zero in case of
529  * success or a negative error code in case of failure.
530  *
531  * Note, although write-buffers are of @c->max_write_size, this function does
532  * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
533  * if the write-buffer is only partially filled with data, only the used part
534  * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
535  * This way we waste less space.
536  */
ubifs_wbuf_sync_nolock(struct ubifs_wbuf * wbuf)537 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
538 {
539 	struct ubifs_info *c = wbuf->c;
540 	int err, dirt, sync_len;
541 
542 	cancel_wbuf_timer_nolock(wbuf);
543 	if (!wbuf->used || wbuf->lnum == -1)
544 		/* Write-buffer is empty or not seeked */
545 		return 0;
546 
547 	dbg_io("LEB %d:%d, %d bytes, jhead %s",
548 	       wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
549 	ubifs_assert(c, !(wbuf->avail & 7));
550 	ubifs_assert(c, wbuf->offs + wbuf->size <= c->leb_size);
551 	ubifs_assert(c, wbuf->size >= c->min_io_size);
552 	ubifs_assert(c, wbuf->size <= c->max_write_size);
553 	ubifs_assert(c, wbuf->size % c->min_io_size == 0);
554 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
555 	if (c->leb_size - wbuf->offs >= c->max_write_size)
556 		ubifs_assert(c, !((wbuf->offs + wbuf->size) % c->max_write_size));
557 
558 	if (c->ro_error)
559 		return -EROFS;
560 
561 	/*
562 	 * Do not write whole write buffer but write only the minimum necessary
563 	 * amount of min. I/O units.
564 	 */
565 	sync_len = ALIGN(wbuf->used, c->min_io_size);
566 	dirt = sync_len - wbuf->used;
567 	if (dirt)
568 		ubifs_pad(c, wbuf->buf + wbuf->used, dirt);
569 	err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len);
570 	if (err)
571 		return err;
572 
573 	spin_lock(&wbuf->lock);
574 	wbuf->offs += sync_len;
575 	/*
576 	 * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
577 	 * But our goal is to optimize writes and make sure we write in
578 	 * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
579 	 * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
580 	 * sure that @wbuf->offs + @wbuf->size is aligned to
581 	 * @c->max_write_size. This way we make sure that after next
582 	 * write-buffer flush we are again at the optimal offset (aligned to
583 	 * @c->max_write_size).
584 	 */
585 	if (c->leb_size - wbuf->offs < c->max_write_size)
586 		wbuf->size = c->leb_size - wbuf->offs;
587 	else if (wbuf->offs & (c->max_write_size - 1))
588 		wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
589 	else
590 		wbuf->size = c->max_write_size;
591 	wbuf->avail = wbuf->size;
592 	wbuf->used = 0;
593 	wbuf->next_ino = 0;
594 	spin_unlock(&wbuf->lock);
595 
596 	if (wbuf->sync_callback)
597 		err = wbuf->sync_callback(c, wbuf->lnum,
598 					  c->leb_size - wbuf->offs, dirt);
599 	return err;
600 }
601 
602 /**
603  * ubifs_wbuf_seek_nolock - seek write-buffer.
604  * @wbuf: write-buffer
605  * @lnum: logical eraseblock number to seek to
606  * @offs: logical eraseblock offset to seek to
607  *
608  * This function targets the write-buffer to logical eraseblock @lnum:@offs.
609  * The write-buffer has to be empty. Returns zero in case of success and a
610  * negative error code in case of failure.
611  */
ubifs_wbuf_seek_nolock(struct ubifs_wbuf * wbuf,int lnum,int offs)612 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs)
613 {
614 	const struct ubifs_info *c = wbuf->c;
615 
616 	dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead));
617 	ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt);
618 	ubifs_assert(c, offs >= 0 && offs <= c->leb_size);
619 	ubifs_assert(c, offs % c->min_io_size == 0 && !(offs & 7));
620 	ubifs_assert(c, lnum != wbuf->lnum);
621 	ubifs_assert(c, wbuf->used == 0);
622 
623 	spin_lock(&wbuf->lock);
624 	wbuf->lnum = lnum;
625 	wbuf->offs = offs;
626 	if (c->leb_size - wbuf->offs < c->max_write_size)
627 		wbuf->size = c->leb_size - wbuf->offs;
628 	else if (wbuf->offs & (c->max_write_size - 1))
629 		wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
630 	else
631 		wbuf->size = c->max_write_size;
632 	wbuf->avail = wbuf->size;
633 	wbuf->used = 0;
634 	spin_unlock(&wbuf->lock);
635 
636 	return 0;
637 }
638 
639 /**
640  * ubifs_bg_wbufs_sync - synchronize write-buffers.
641  * @c: UBIFS file-system description object
642  *
643  * This function is called by background thread to synchronize write-buffers.
644  * Returns zero in case of success and a negative error code in case of
645  * failure.
646  */
ubifs_bg_wbufs_sync(struct ubifs_info * c)647 int ubifs_bg_wbufs_sync(struct ubifs_info *c)
648 {
649 	int err, i;
650 
651 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
652 	if (!c->need_wbuf_sync)
653 		return 0;
654 	c->need_wbuf_sync = 0;
655 
656 	if (c->ro_error) {
657 		err = -EROFS;
658 		goto out_timers;
659 	}
660 
661 	dbg_io("synchronize");
662 	for (i = 0; i < c->jhead_cnt; i++) {
663 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
664 
665 		cond_resched();
666 
667 		/*
668 		 * If the mutex is locked then wbuf is being changed, so
669 		 * synchronization is not necessary.
670 		 */
671 		if (mutex_is_locked(&wbuf->io_mutex))
672 			continue;
673 
674 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
675 		if (!wbuf->need_sync) {
676 			mutex_unlock(&wbuf->io_mutex);
677 			continue;
678 		}
679 
680 		err = ubifs_wbuf_sync_nolock(wbuf);
681 		mutex_unlock(&wbuf->io_mutex);
682 		if (err) {
683 			ubifs_err(c, "cannot sync write-buffer, error %d", err);
684 			ubifs_ro_mode(c, err);
685 			goto out_timers;
686 		}
687 	}
688 
689 	return 0;
690 
691 out_timers:
692 	/* Cancel all timers to prevent repeated errors */
693 	for (i = 0; i < c->jhead_cnt; i++) {
694 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
695 
696 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
697 		cancel_wbuf_timer_nolock(wbuf);
698 		mutex_unlock(&wbuf->io_mutex);
699 	}
700 	return err;
701 }
702 
703 /**
704  * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
705  * @wbuf: write-buffer
706  * @buf: node to write
707  * @len: node length
708  *
709  * This function writes data to flash via write-buffer @wbuf. This means that
710  * the last piece of the node won't reach the flash media immediately if it
711  * does not take whole max. write unit (@c->max_write_size). Instead, the node
712  * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
713  * because more data are appended to the write-buffer).
714  *
715  * This function returns zero in case of success and a negative error code in
716  * case of failure. If the node cannot be written because there is no more
717  * space in this logical eraseblock, %-ENOSPC is returned.
718  */
ubifs_wbuf_write_nolock(struct ubifs_wbuf * wbuf,void * buf,int len)719 int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
720 {
721 	struct ubifs_info *c = wbuf->c;
722 	int err, n, written = 0, aligned_len = ALIGN(len, 8);
723 
724 	dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len,
725 	       dbg_ntype(((struct ubifs_ch *)buf)->node_type),
726 	       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used);
727 	ubifs_assert(c, len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
728 	ubifs_assert(c, wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
729 	ubifs_assert(c, !(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
730 	ubifs_assert(c, wbuf->avail > 0 && wbuf->avail <= wbuf->size);
731 	ubifs_assert(c, wbuf->size >= c->min_io_size);
732 	ubifs_assert(c, wbuf->size <= c->max_write_size);
733 	ubifs_assert(c, wbuf->size % c->min_io_size == 0);
734 	ubifs_assert(c, mutex_is_locked(&wbuf->io_mutex));
735 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
736 	ubifs_assert(c, !c->space_fixup);
737 	if (c->leb_size - wbuf->offs >= c->max_write_size)
738 		ubifs_assert(c, !((wbuf->offs + wbuf->size) % c->max_write_size));
739 
740 	if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
741 		err = -ENOSPC;
742 		goto out;
743 	}
744 
745 	cancel_wbuf_timer_nolock(wbuf);
746 
747 	if (c->ro_error)
748 		return -EROFS;
749 
750 	if (aligned_len <= wbuf->avail) {
751 		/*
752 		 * The node is not very large and fits entirely within
753 		 * write-buffer.
754 		 */
755 		memcpy(wbuf->buf + wbuf->used, buf, len);
756 		if (aligned_len > len) {
757 			ubifs_assert(c, aligned_len - len < 8);
758 			ubifs_pad(c, wbuf->buf + wbuf->used + len, aligned_len - len);
759 		}
760 
761 		if (aligned_len == wbuf->avail) {
762 			dbg_io("flush jhead %s wbuf to LEB %d:%d",
763 			       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
764 			err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf,
765 					      wbuf->offs, wbuf->size);
766 			if (err)
767 				goto out;
768 
769 			spin_lock(&wbuf->lock);
770 			wbuf->offs += wbuf->size;
771 			if (c->leb_size - wbuf->offs >= c->max_write_size)
772 				wbuf->size = c->max_write_size;
773 			else
774 				wbuf->size = c->leb_size - wbuf->offs;
775 			wbuf->avail = wbuf->size;
776 			wbuf->used = 0;
777 			wbuf->next_ino = 0;
778 			spin_unlock(&wbuf->lock);
779 		} else {
780 			spin_lock(&wbuf->lock);
781 			wbuf->avail -= aligned_len;
782 			wbuf->used += aligned_len;
783 			spin_unlock(&wbuf->lock);
784 		}
785 
786 		goto exit;
787 	}
788 
789 	if (wbuf->used) {
790 		/*
791 		 * The node is large enough and does not fit entirely within
792 		 * current available space. We have to fill and flush
793 		 * write-buffer and switch to the next max. write unit.
794 		 */
795 		dbg_io("flush jhead %s wbuf to LEB %d:%d",
796 		       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
797 		memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
798 		err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs,
799 				      wbuf->size);
800 		if (err)
801 			goto out;
802 
803 		wbuf->offs += wbuf->size;
804 		len -= wbuf->avail;
805 		aligned_len -= wbuf->avail;
806 		written += wbuf->avail;
807 	} else if (wbuf->offs & (c->max_write_size - 1)) {
808 		/*
809 		 * The write-buffer offset is not aligned to
810 		 * @c->max_write_size and @wbuf->size is less than
811 		 * @c->max_write_size. Write @wbuf->size bytes to make sure the
812 		 * following writes are done in optimal @c->max_write_size
813 		 * chunks.
814 		 */
815 		dbg_io("write %d bytes to LEB %d:%d",
816 		       wbuf->size, wbuf->lnum, wbuf->offs);
817 		err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs,
818 				      wbuf->size);
819 		if (err)
820 			goto out;
821 
822 		wbuf->offs += wbuf->size;
823 		len -= wbuf->size;
824 		aligned_len -= wbuf->size;
825 		written += wbuf->size;
826 	}
827 
828 	/*
829 	 * The remaining data may take more whole max. write units, so write the
830 	 * remains multiple to max. write unit size directly to the flash media.
831 	 * We align node length to 8-byte boundary because we anyway flash wbuf
832 	 * if the remaining space is less than 8 bytes.
833 	 */
834 	n = aligned_len >> c->max_write_shift;
835 	if (n) {
836 		int m = n - 1;
837 
838 		dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum,
839 		       wbuf->offs);
840 
841 		if (m) {
842 			/* '(n-1)<<c->max_write_shift < len' is always true. */
843 			m <<= c->max_write_shift;
844 			err = ubifs_leb_write(c, wbuf->lnum, buf + written,
845 					      wbuf->offs, m);
846 			if (err)
847 				goto out;
848 			wbuf->offs += m;
849 			aligned_len -= m;
850 			len -= m;
851 			written += m;
852 		}
853 
854 		/*
855 		 * The non-written len of buf may be less than 'n' because
856 		 * parameter 'len' is not 8 bytes aligned, so here we read
857 		 * min(len, n) bytes from buf.
858 		 */
859 		n = 1 << c->max_write_shift;
860 		memcpy(wbuf->buf, buf + written, min(len, n));
861 		if (n > len) {
862 			ubifs_assert(c, n - len < 8);
863 			ubifs_pad(c, wbuf->buf + len, n - len);
864 		}
865 
866 		err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, n);
867 		if (err)
868 			goto out;
869 		wbuf->offs += n;
870 		aligned_len -= n;
871 		len -= min(len, n);
872 		written += n;
873 	}
874 
875 	spin_lock(&wbuf->lock);
876 	if (aligned_len) {
877 		/*
878 		 * And now we have what's left and what does not take whole
879 		 * max. write unit, so write it to the write-buffer and we are
880 		 * done.
881 		 */
882 		memcpy(wbuf->buf, buf + written, len);
883 		if (aligned_len > len) {
884 			ubifs_assert(c, aligned_len - len < 8);
885 			ubifs_pad(c, wbuf->buf + len, aligned_len - len);
886 		}
887 	}
888 
889 	if (c->leb_size - wbuf->offs >= c->max_write_size)
890 		wbuf->size = c->max_write_size;
891 	else
892 		wbuf->size = c->leb_size - wbuf->offs;
893 	wbuf->avail = wbuf->size - aligned_len;
894 	wbuf->used = aligned_len;
895 	wbuf->next_ino = 0;
896 	spin_unlock(&wbuf->lock);
897 
898 exit:
899 	if (wbuf->sync_callback) {
900 		int free = c->leb_size - wbuf->offs - wbuf->used;
901 
902 		err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
903 		if (err)
904 			goto out;
905 	}
906 
907 	if (wbuf->used)
908 		new_wbuf_timer_nolock(c, wbuf);
909 
910 	return 0;
911 
912 out:
913 	ubifs_err(c, "cannot write %d bytes to LEB %d:%d, error %d",
914 		  len, wbuf->lnum, wbuf->offs, err);
915 	ubifs_dump_node(c, buf, written + len);
916 	dump_stack();
917 	ubifs_dump_leb(c, wbuf->lnum);
918 	return err;
919 }
920 
921 /**
922  * ubifs_write_node_hmac - write node to the media.
923  * @c: UBIFS file-system description object
924  * @buf: the node to write
925  * @len: node length
926  * @lnum: logical eraseblock number
927  * @offs: offset within the logical eraseblock
928  * @hmac_offs: offset of the HMAC within the node
929  *
930  * This function automatically fills node magic number, assigns sequence
931  * number, and calculates node CRC checksum. The length of the @buf buffer has
932  * to be aligned to the minimal I/O unit size. This function automatically
933  * appends padding node and padding bytes if needed. Returns zero in case of
934  * success and a negative error code in case of failure.
935  */
ubifs_write_node_hmac(struct ubifs_info * c,void * buf,int len,int lnum,int offs,int hmac_offs)936 int ubifs_write_node_hmac(struct ubifs_info *c, void *buf, int len, int lnum,
937 			  int offs, int hmac_offs)
938 {
939 	int err, buf_len = ALIGN(len, c->min_io_size);
940 
941 	dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
942 	       lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
943 	       buf_len);
944 	ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
945 	ubifs_assert(c, offs % c->min_io_size == 0 && offs < c->leb_size);
946 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
947 	ubifs_assert(c, !c->space_fixup);
948 
949 	if (c->ro_error)
950 		return -EROFS;
951 
952 	err = ubifs_prepare_node_hmac(c, buf, len, hmac_offs, 1);
953 	if (err)
954 		return err;
955 
956 	err = ubifs_leb_write(c, lnum, buf, offs, buf_len);
957 	if (err)
958 		ubifs_dump_node(c, buf, len);
959 
960 	return err;
961 }
962 
963 /**
964  * ubifs_write_node - write node to the media.
965  * @c: UBIFS file-system description object
966  * @buf: the node to write
967  * @len: node length
968  * @lnum: logical eraseblock number
969  * @offs: offset within the logical eraseblock
970  *
971  * This function automatically fills node magic number, assigns sequence
972  * number, and calculates node CRC checksum. The length of the @buf buffer has
973  * to be aligned to the minimal I/O unit size. This function automatically
974  * appends padding node and padding bytes if needed. Returns zero in case of
975  * success and a negative error code in case of failure.
976  */
ubifs_write_node(struct ubifs_info * c,void * buf,int len,int lnum,int offs)977 int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
978 		     int offs)
979 {
980 	return ubifs_write_node_hmac(c, buf, len, lnum, offs, -1);
981 }
982 
983 /**
984  * ubifs_read_node_wbuf - read node from the media or write-buffer.
985  * @wbuf: wbuf to check for un-written data
986  * @buf: buffer to read to
987  * @type: node type
988  * @len: node length
989  * @lnum: logical eraseblock number
990  * @offs: offset within the logical eraseblock
991  *
992  * This function reads a node of known type and length, checks it and stores
993  * in @buf. If the node partially or fully sits in the write-buffer, this
994  * function takes data from the buffer, otherwise it reads the flash media.
995  * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
996  * error code in case of failure.
997  */
ubifs_read_node_wbuf(struct ubifs_wbuf * wbuf,void * buf,int type,int len,int lnum,int offs)998 int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
999 			 int lnum, int offs)
1000 {
1001 	const struct ubifs_info *c = wbuf->c;
1002 	int err, rlen, overlap;
1003 	struct ubifs_ch *ch = buf;
1004 
1005 	dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs,
1006 	       dbg_ntype(type), len, dbg_jhead(wbuf->jhead));
1007 	ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1008 	ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
1009 	ubifs_assert(c, type >= 0 && type < UBIFS_NODE_TYPES_CNT);
1010 
1011 	spin_lock(&wbuf->lock);
1012 	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1013 	if (!overlap) {
1014 		/* We may safely unlock the write-buffer and read the data */
1015 		spin_unlock(&wbuf->lock);
1016 		return ubifs_read_node(c, buf, type, len, lnum, offs);
1017 	}
1018 
1019 	/* Don't read under wbuf */
1020 	rlen = wbuf->offs - offs;
1021 	if (rlen < 0)
1022 		rlen = 0;
1023 
1024 	/* Copy the rest from the write-buffer */
1025 	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1026 	spin_unlock(&wbuf->lock);
1027 
1028 	if (rlen > 0) {
1029 		/* Read everything that goes before write-buffer */
1030 		err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1031 		if (err && err != -EBADMSG)
1032 			return err;
1033 	}
1034 
1035 	if (type != ch->node_type) {
1036 		ubifs_err(c, "bad node type (%d but expected %d)",
1037 			  ch->node_type, type);
1038 		goto out;
1039 	}
1040 
1041 	err = ubifs_check_node(c, buf, len, lnum, offs, 0, 0);
1042 	if (err) {
1043 		ubifs_err(c, "expected node type %d", type);
1044 		return err;
1045 	}
1046 
1047 	rlen = le32_to_cpu(ch->len);
1048 	if (rlen != len) {
1049 		ubifs_err(c, "bad node length %d, expected %d", rlen, len);
1050 		goto out;
1051 	}
1052 
1053 	return 0;
1054 
1055 out:
1056 	ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
1057 	ubifs_dump_node(c, buf, len);
1058 	dump_stack();
1059 	return -EINVAL;
1060 }
1061 
1062 /**
1063  * ubifs_read_node - read node.
1064  * @c: UBIFS file-system description object
1065  * @buf: buffer to read to
1066  * @type: node type
1067  * @len: node length (not aligned)
1068  * @lnum: logical eraseblock number
1069  * @offs: offset within the logical eraseblock
1070  *
1071  * This function reads a node of known type and length, checks it and
1072  * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
1073  * and a negative error code in case of failure.
1074  */
ubifs_read_node(const struct ubifs_info * c,void * buf,int type,int len,int lnum,int offs)1075 int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
1076 		    int lnum, int offs)
1077 {
1078 	int err, l;
1079 	struct ubifs_ch *ch = buf;
1080 
1081 	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
1082 	ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1083 	ubifs_assert(c, len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
1084 	ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
1085 	ubifs_assert(c, type >= 0 && type < UBIFS_NODE_TYPES_CNT);
1086 
1087 	err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
1088 	if (err && err != -EBADMSG)
1089 		return err;
1090 
1091 	if (type != ch->node_type) {
1092 		ubifs_errc(c, "bad node type (%d but expected %d)",
1093 			   ch->node_type, type);
1094 		goto out;
1095 	}
1096 
1097 	err = ubifs_check_node(c, buf, len, lnum, offs, 0, 0);
1098 	if (err) {
1099 		ubifs_errc(c, "expected node type %d", type);
1100 		return err;
1101 	}
1102 
1103 	l = le32_to_cpu(ch->len);
1104 	if (l != len) {
1105 		ubifs_errc(c, "bad node length %d, expected %d", l, len);
1106 		goto out;
1107 	}
1108 
1109 	return 0;
1110 
1111 out:
1112 	ubifs_errc(c, "bad node at LEB %d:%d, LEB mapping status %d", lnum,
1113 		   offs, ubi_is_mapped(c->ubi, lnum));
1114 	if (!c->probing) {
1115 		ubifs_dump_node(c, buf, len);
1116 		dump_stack();
1117 	}
1118 	return -EINVAL;
1119 }
1120 
1121 /**
1122  * ubifs_wbuf_init - initialize write-buffer.
1123  * @c: UBIFS file-system description object
1124  * @wbuf: write-buffer to initialize
1125  *
1126  * This function initializes write-buffer. Returns zero in case of success
1127  * %-ENOMEM in case of failure.
1128  */
ubifs_wbuf_init(struct ubifs_info * c,struct ubifs_wbuf * wbuf)1129 int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
1130 {
1131 	size_t size;
1132 
1133 	wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL);
1134 	if (!wbuf->buf)
1135 		return -ENOMEM;
1136 
1137 	size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
1138 	wbuf->inodes = kmalloc(size, GFP_KERNEL);
1139 	if (!wbuf->inodes) {
1140 		kfree(wbuf->buf);
1141 		wbuf->buf = NULL;
1142 		return -ENOMEM;
1143 	}
1144 
1145 	wbuf->used = 0;
1146 	wbuf->lnum = wbuf->offs = -1;
1147 	/*
1148 	 * If the LEB starts at the max. write size aligned address, then
1149 	 * write-buffer size has to be set to @c->max_write_size. Otherwise,
1150 	 * set it to something smaller so that it ends at the closest max.
1151 	 * write size boundary.
1152 	 */
1153 	size = c->max_write_size - (c->leb_start % c->max_write_size);
1154 	wbuf->avail = wbuf->size = size;
1155 	wbuf->sync_callback = NULL;
1156 	mutex_init(&wbuf->io_mutex);
1157 	spin_lock_init(&wbuf->lock);
1158 	wbuf->c = c;
1159 	wbuf->next_ino = 0;
1160 
1161 	hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1162 	wbuf->timer.function = wbuf_timer_callback_nolock;
1163 	return 0;
1164 }
1165 
1166 /**
1167  * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
1168  * @wbuf: the write-buffer where to add
1169  * @inum: the inode number
1170  *
1171  * This function adds an inode number to the inode array of the write-buffer.
1172  */
ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf * wbuf,ino_t inum)1173 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
1174 {
1175 	if (!wbuf->buf)
1176 		/* NOR flash or something similar */
1177 		return;
1178 
1179 	spin_lock(&wbuf->lock);
1180 	if (wbuf->used)
1181 		wbuf->inodes[wbuf->next_ino++] = inum;
1182 	spin_unlock(&wbuf->lock);
1183 }
1184 
1185 /**
1186  * wbuf_has_ino - returns if the wbuf contains data from the inode.
1187  * @wbuf: the write-buffer
1188  * @inum: the inode number
1189  *
1190  * This function returns with %1 if the write-buffer contains some data from the
1191  * given inode otherwise it returns with %0.
1192  */
wbuf_has_ino(struct ubifs_wbuf * wbuf,ino_t inum)1193 static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
1194 {
1195 	int i, ret = 0;
1196 
1197 	spin_lock(&wbuf->lock);
1198 	for (i = 0; i < wbuf->next_ino; i++)
1199 		if (inum == wbuf->inodes[i]) {
1200 			ret = 1;
1201 			break;
1202 		}
1203 	spin_unlock(&wbuf->lock);
1204 
1205 	return ret;
1206 }
1207 
1208 /**
1209  * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
1210  * @c: UBIFS file-system description object
1211  * @inode: inode to synchronize
1212  *
1213  * This function synchronizes write-buffers which contain nodes belonging to
1214  * @inode. Returns zero in case of success and a negative error code in case of
1215  * failure.
1216  */
ubifs_sync_wbufs_by_inode(struct ubifs_info * c,struct inode * inode)1217 int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
1218 {
1219 	int i, err = 0;
1220 
1221 	for (i = 0; i < c->jhead_cnt; i++) {
1222 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
1223 
1224 		if (i == GCHD)
1225 			/*
1226 			 * GC head is special, do not look at it. Even if the
1227 			 * head contains something related to this inode, it is
1228 			 * a _copy_ of corresponding on-flash node which sits
1229 			 * somewhere else.
1230 			 */
1231 			continue;
1232 
1233 		if (!wbuf_has_ino(wbuf, inode->i_ino))
1234 			continue;
1235 
1236 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1237 		if (wbuf_has_ino(wbuf, inode->i_ino))
1238 			err = ubifs_wbuf_sync_nolock(wbuf);
1239 		mutex_unlock(&wbuf->io_mutex);
1240 
1241 		if (err) {
1242 			ubifs_ro_mode(c, err);
1243 			return err;
1244 		}
1245 	}
1246 	return 0;
1247 }
1248