• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
4  *
5  * Parts came from builtin-{top,stat,record}.c, see those files for further
6  * copyright notes.
7  */
8 
9 #include <byteswap.h>
10 #include <errno.h>
11 #include <inttypes.h>
12 #include <linux/bitops.h>
13 #include <api/fs/fs.h>
14 #include <api/fs/tracing_path.h>
15 #include <traceevent/event-parse.h>
16 #include <linux/hw_breakpoint.h>
17 #include <linux/perf_event.h>
18 #include <linux/compiler.h>
19 #include <linux/err.h>
20 #include <linux/zalloc.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
24 #include <dirent.h>
25 #include <stdlib.h>
26 #include <perf/evsel.h>
27 #include "asm/bug.h"
28 #include "bpf_counter.h"
29 #include "callchain.h"
30 #include "cgroup.h"
31 #include "counts.h"
32 #include "event.h"
33 #include "evsel.h"
34 #include "util/env.h"
35 #include "util/evsel_config.h"
36 #include "util/evsel_fprintf.h"
37 #include "evlist.h"
38 #include <perf/cpumap.h>
39 #include "thread_map.h"
40 #include "target.h"
41 #include "perf_regs.h"
42 #include "record.h"
43 #include "debug.h"
44 #include "trace-event.h"
45 #include "stat.h"
46 #include "string2.h"
47 #include "memswap.h"
48 #include "util.h"
49 #include "hashmap.h"
50 #include "pmu-hybrid.h"
51 #include "../perf-sys.h"
52 #include "util/parse-branch-options.h"
53 #include <internal/xyarray.h>
54 #include <internal/lib.h>
55 
56 #include <linux/ctype.h>
57 
58 struct perf_missing_features perf_missing_features;
59 
60 static clockid_t clockid;
61 
evsel__no_extra_init(struct evsel * evsel __maybe_unused)62 static int evsel__no_extra_init(struct evsel *evsel __maybe_unused)
63 {
64 	return 0;
65 }
66 
test_attr__ready(void)67 void __weak test_attr__ready(void) { }
68 
evsel__no_extra_fini(struct evsel * evsel __maybe_unused)69 static void evsel__no_extra_fini(struct evsel *evsel __maybe_unused)
70 {
71 }
72 
73 static struct {
74 	size_t	size;
75 	int	(*init)(struct evsel *evsel);
76 	void	(*fini)(struct evsel *evsel);
77 } perf_evsel__object = {
78 	.size = sizeof(struct evsel),
79 	.init = evsel__no_extra_init,
80 	.fini = evsel__no_extra_fini,
81 };
82 
evsel__object_config(size_t object_size,int (* init)(struct evsel * evsel),void (* fini)(struct evsel * evsel))83 int evsel__object_config(size_t object_size, int (*init)(struct evsel *evsel),
84 			 void (*fini)(struct evsel *evsel))
85 {
86 
87 	if (object_size == 0)
88 		goto set_methods;
89 
90 	if (perf_evsel__object.size > object_size)
91 		return -EINVAL;
92 
93 	perf_evsel__object.size = object_size;
94 
95 set_methods:
96 	if (init != NULL)
97 		perf_evsel__object.init = init;
98 
99 	if (fini != NULL)
100 		perf_evsel__object.fini = fini;
101 
102 	return 0;
103 }
104 
105 #define FD(e, x, y) (*(int *)xyarray__entry(e->core.fd, x, y))
106 
__evsel__sample_size(u64 sample_type)107 int __evsel__sample_size(u64 sample_type)
108 {
109 	u64 mask = sample_type & PERF_SAMPLE_MASK;
110 	int size = 0;
111 	int i;
112 
113 	for (i = 0; i < 64; i++) {
114 		if (mask & (1ULL << i))
115 			size++;
116 	}
117 
118 	size *= sizeof(u64);
119 
120 	return size;
121 }
122 
123 /**
124  * __perf_evsel__calc_id_pos - calculate id_pos.
125  * @sample_type: sample type
126  *
127  * This function returns the position of the event id (PERF_SAMPLE_ID or
128  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
129  * perf_record_sample.
130  */
__perf_evsel__calc_id_pos(u64 sample_type)131 static int __perf_evsel__calc_id_pos(u64 sample_type)
132 {
133 	int idx = 0;
134 
135 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
136 		return 0;
137 
138 	if (!(sample_type & PERF_SAMPLE_ID))
139 		return -1;
140 
141 	if (sample_type & PERF_SAMPLE_IP)
142 		idx += 1;
143 
144 	if (sample_type & PERF_SAMPLE_TID)
145 		idx += 1;
146 
147 	if (sample_type & PERF_SAMPLE_TIME)
148 		idx += 1;
149 
150 	if (sample_type & PERF_SAMPLE_ADDR)
151 		idx += 1;
152 
153 	return idx;
154 }
155 
156 /**
157  * __perf_evsel__calc_is_pos - calculate is_pos.
158  * @sample_type: sample type
159  *
160  * This function returns the position (counting backwards) of the event id
161  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
162  * sample_id_all is used there is an id sample appended to non-sample events.
163  */
__perf_evsel__calc_is_pos(u64 sample_type)164 static int __perf_evsel__calc_is_pos(u64 sample_type)
165 {
166 	int idx = 1;
167 
168 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
169 		return 1;
170 
171 	if (!(sample_type & PERF_SAMPLE_ID))
172 		return -1;
173 
174 	if (sample_type & PERF_SAMPLE_CPU)
175 		idx += 1;
176 
177 	if (sample_type & PERF_SAMPLE_STREAM_ID)
178 		idx += 1;
179 
180 	return idx;
181 }
182 
evsel__calc_id_pos(struct evsel * evsel)183 void evsel__calc_id_pos(struct evsel *evsel)
184 {
185 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->core.attr.sample_type);
186 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->core.attr.sample_type);
187 }
188 
__evsel__set_sample_bit(struct evsel * evsel,enum perf_event_sample_format bit)189 void __evsel__set_sample_bit(struct evsel *evsel,
190 				  enum perf_event_sample_format bit)
191 {
192 	if (!(evsel->core.attr.sample_type & bit)) {
193 		evsel->core.attr.sample_type |= bit;
194 		evsel->sample_size += sizeof(u64);
195 		evsel__calc_id_pos(evsel);
196 	}
197 }
198 
__evsel__reset_sample_bit(struct evsel * evsel,enum perf_event_sample_format bit)199 void __evsel__reset_sample_bit(struct evsel *evsel,
200 				    enum perf_event_sample_format bit)
201 {
202 	if (evsel->core.attr.sample_type & bit) {
203 		evsel->core.attr.sample_type &= ~bit;
204 		evsel->sample_size -= sizeof(u64);
205 		evsel__calc_id_pos(evsel);
206 	}
207 }
208 
evsel__set_sample_id(struct evsel * evsel,bool can_sample_identifier)209 void evsel__set_sample_id(struct evsel *evsel,
210 			       bool can_sample_identifier)
211 {
212 	if (can_sample_identifier) {
213 		evsel__reset_sample_bit(evsel, ID);
214 		evsel__set_sample_bit(evsel, IDENTIFIER);
215 	} else {
216 		evsel__set_sample_bit(evsel, ID);
217 	}
218 	evsel->core.attr.read_format |= PERF_FORMAT_ID;
219 }
220 
221 /**
222  * evsel__is_function_event - Return whether given evsel is a function
223  * trace event
224  *
225  * @evsel - evsel selector to be tested
226  *
227  * Return %true if event is function trace event
228  */
evsel__is_function_event(struct evsel * evsel)229 bool evsel__is_function_event(struct evsel *evsel)
230 {
231 #define FUNCTION_EVENT "ftrace:function"
232 
233 	return evsel->name &&
234 	       !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
235 
236 #undef FUNCTION_EVENT
237 }
238 
evsel__init(struct evsel * evsel,struct perf_event_attr * attr,int idx)239 void evsel__init(struct evsel *evsel,
240 		 struct perf_event_attr *attr, int idx)
241 {
242 	perf_evsel__init(&evsel->core, attr, idx);
243 	evsel->tracking	   = !idx;
244 	evsel->unit	   = "";
245 	evsel->scale	   = 1.0;
246 	evsel->max_events  = ULONG_MAX;
247 	evsel->evlist	   = NULL;
248 	evsel->bpf_obj	   = NULL;
249 	evsel->bpf_fd	   = -1;
250 	INIT_LIST_HEAD(&evsel->config_terms);
251 	INIT_LIST_HEAD(&evsel->bpf_counter_list);
252 	perf_evsel__object.init(evsel);
253 	evsel->sample_size = __evsel__sample_size(attr->sample_type);
254 	evsel__calc_id_pos(evsel);
255 	evsel->cmdline_group_boundary = false;
256 	evsel->metric_expr   = NULL;
257 	evsel->metric_name   = NULL;
258 	evsel->metric_events = NULL;
259 	evsel->per_pkg_mask  = NULL;
260 	evsel->collect_stat  = false;
261 	evsel->pmu_name      = NULL;
262 }
263 
evsel__new_idx(struct perf_event_attr * attr,int idx)264 struct evsel *evsel__new_idx(struct perf_event_attr *attr, int idx)
265 {
266 	struct evsel *evsel = zalloc(perf_evsel__object.size);
267 
268 	if (!evsel)
269 		return NULL;
270 	evsel__init(evsel, attr, idx);
271 
272 	if (evsel__is_bpf_output(evsel)) {
273 		evsel->core.attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
274 					    PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
275 		evsel->core.attr.sample_period = 1;
276 	}
277 
278 	if (evsel__is_clock(evsel)) {
279 		/*
280 		 * The evsel->unit points to static alias->unit
281 		 * so it's ok to use static string in here.
282 		 */
283 		static const char *unit = "msec";
284 
285 		evsel->unit = unit;
286 		evsel->scale = 1e-6;
287 	}
288 
289 	return evsel;
290 }
291 
perf_event_can_profile_kernel(void)292 static bool perf_event_can_profile_kernel(void)
293 {
294 	return perf_event_paranoid_check(1);
295 }
296 
evsel__new_cycles(bool precise,__u32 type,__u64 config)297 struct evsel *evsel__new_cycles(bool precise, __u32 type, __u64 config)
298 {
299 	struct perf_event_attr attr = {
300 		.type	= type,
301 		.config	= config,
302 		.exclude_kernel	= !perf_event_can_profile_kernel(),
303 	};
304 	struct evsel *evsel;
305 
306 	event_attr_init(&attr);
307 
308 	if (!precise)
309 		goto new_event;
310 
311 	/*
312 	 * Now let the usual logic to set up the perf_event_attr defaults
313 	 * to kick in when we return and before perf_evsel__open() is called.
314 	 */
315 new_event:
316 	evsel = evsel__new(&attr);
317 	if (evsel == NULL)
318 		goto out;
319 
320 	evsel->precise_max = true;
321 
322 	/* use asprintf() because free(evsel) assumes name is allocated */
323 	if (asprintf(&evsel->name, "cycles%s%s%.*s",
324 		     (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
325 		     attr.exclude_kernel ? "u" : "",
326 		     attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
327 		goto error_free;
328 out:
329 	return evsel;
330 error_free:
331 	evsel__delete(evsel);
332 	evsel = NULL;
333 	goto out;
334 }
335 
copy_config_terms(struct list_head * dst,struct list_head * src)336 int copy_config_terms(struct list_head *dst, struct list_head *src)
337 {
338 	struct evsel_config_term *pos, *tmp;
339 
340 	list_for_each_entry(pos, src, list) {
341 		tmp = malloc(sizeof(*tmp));
342 		if (tmp == NULL)
343 			return -ENOMEM;
344 
345 		*tmp = *pos;
346 		if (tmp->free_str) {
347 			tmp->val.str = strdup(pos->val.str);
348 			if (tmp->val.str == NULL) {
349 				free(tmp);
350 				return -ENOMEM;
351 			}
352 		}
353 		list_add_tail(&tmp->list, dst);
354 	}
355 	return 0;
356 }
357 
evsel__copy_config_terms(struct evsel * dst,struct evsel * src)358 static int evsel__copy_config_terms(struct evsel *dst, struct evsel *src)
359 {
360 	return copy_config_terms(&dst->config_terms, &src->config_terms);
361 }
362 
363 /**
364  * evsel__clone - create a new evsel copied from @orig
365  * @orig: original evsel
366  *
367  * The assumption is that @orig is not configured nor opened yet.
368  * So we only care about the attributes that can be set while it's parsed.
369  */
evsel__clone(struct evsel * orig)370 struct evsel *evsel__clone(struct evsel *orig)
371 {
372 	struct evsel *evsel;
373 
374 	BUG_ON(orig->core.fd);
375 	BUG_ON(orig->counts);
376 	BUG_ON(orig->priv);
377 	BUG_ON(orig->per_pkg_mask);
378 
379 	/* cannot handle BPF objects for now */
380 	if (orig->bpf_obj)
381 		return NULL;
382 
383 	evsel = evsel__new(&orig->core.attr);
384 	if (evsel == NULL)
385 		return NULL;
386 
387 	evsel->core.cpus = perf_cpu_map__get(orig->core.cpus);
388 	evsel->core.own_cpus = perf_cpu_map__get(orig->core.own_cpus);
389 	evsel->core.threads = perf_thread_map__get(orig->core.threads);
390 	evsel->core.nr_members = orig->core.nr_members;
391 	evsel->core.system_wide = orig->core.system_wide;
392 
393 	if (orig->name) {
394 		evsel->name = strdup(orig->name);
395 		if (evsel->name == NULL)
396 			goto out_err;
397 	}
398 	if (orig->group_name) {
399 		evsel->group_name = strdup(orig->group_name);
400 		if (evsel->group_name == NULL)
401 			goto out_err;
402 	}
403 	if (orig->pmu_name) {
404 		evsel->pmu_name = strdup(orig->pmu_name);
405 		if (evsel->pmu_name == NULL)
406 			goto out_err;
407 	}
408 	if (orig->filter) {
409 		evsel->filter = strdup(orig->filter);
410 		if (evsel->filter == NULL)
411 			goto out_err;
412 	}
413 	evsel->cgrp = cgroup__get(orig->cgrp);
414 	evsel->tp_format = orig->tp_format;
415 	evsel->handler = orig->handler;
416 	evsel->core.leader = orig->core.leader;
417 
418 	evsel->max_events = orig->max_events;
419 	evsel->tool_event = orig->tool_event;
420 	evsel->unit = orig->unit;
421 	evsel->scale = orig->scale;
422 	evsel->snapshot = orig->snapshot;
423 	evsel->per_pkg = orig->per_pkg;
424 	evsel->percore = orig->percore;
425 	evsel->precise_max = orig->precise_max;
426 	evsel->use_uncore_alias = orig->use_uncore_alias;
427 	evsel->is_libpfm_event = orig->is_libpfm_event;
428 
429 	evsel->exclude_GH = orig->exclude_GH;
430 	evsel->sample_read = orig->sample_read;
431 	evsel->auto_merge_stats = orig->auto_merge_stats;
432 	evsel->collect_stat = orig->collect_stat;
433 	evsel->weak_group = orig->weak_group;
434 	evsel->use_config_name = orig->use_config_name;
435 
436 	if (evsel__copy_config_terms(evsel, orig) < 0)
437 		goto out_err;
438 
439 	return evsel;
440 
441 out_err:
442 	evsel__delete(evsel);
443 	return NULL;
444 }
445 
446 /*
447  * Returns pointer with encoded error via <linux/err.h> interface.
448  */
evsel__newtp_idx(const char * sys,const char * name,int idx)449 struct evsel *evsel__newtp_idx(const char *sys, const char *name, int idx)
450 {
451 	struct evsel *evsel = zalloc(perf_evsel__object.size);
452 	int err = -ENOMEM;
453 
454 	if (evsel == NULL) {
455 		goto out_err;
456 	} else {
457 		struct perf_event_attr attr = {
458 			.type	       = PERF_TYPE_TRACEPOINT,
459 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
460 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
461 		};
462 
463 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
464 			goto out_free;
465 
466 		evsel->tp_format = trace_event__tp_format(sys, name);
467 		if (IS_ERR(evsel->tp_format)) {
468 			err = PTR_ERR(evsel->tp_format);
469 			goto out_free;
470 		}
471 
472 		event_attr_init(&attr);
473 		attr.config = evsel->tp_format->id;
474 		attr.sample_period = 1;
475 		evsel__init(evsel, &attr, idx);
476 	}
477 
478 	return evsel;
479 
480 out_free:
481 	zfree(&evsel->name);
482 	free(evsel);
483 out_err:
484 	return ERR_PTR(err);
485 }
486 
487 const char *evsel__hw_names[PERF_COUNT_HW_MAX] = {
488 	"cycles",
489 	"instructions",
490 	"cache-references",
491 	"cache-misses",
492 	"branches",
493 	"branch-misses",
494 	"bus-cycles",
495 	"stalled-cycles-frontend",
496 	"stalled-cycles-backend",
497 	"ref-cycles",
498 };
499 
500 char *evsel__bpf_counter_events;
501 
evsel__match_bpf_counter_events(const char * name)502 bool evsel__match_bpf_counter_events(const char *name)
503 {
504 	int name_len;
505 	bool match;
506 	char *ptr;
507 
508 	if (!evsel__bpf_counter_events)
509 		return false;
510 
511 	ptr = strstr(evsel__bpf_counter_events, name);
512 	name_len = strlen(name);
513 
514 	/* check name matches a full token in evsel__bpf_counter_events */
515 	match = (ptr != NULL) &&
516 		((ptr == evsel__bpf_counter_events) || (*(ptr - 1) == ',')) &&
517 		((*(ptr + name_len) == ',') || (*(ptr + name_len) == '\0'));
518 
519 	return match;
520 }
521 
__evsel__hw_name(u64 config)522 static const char *__evsel__hw_name(u64 config)
523 {
524 	if (config < PERF_COUNT_HW_MAX && evsel__hw_names[config])
525 		return evsel__hw_names[config];
526 
527 	return "unknown-hardware";
528 }
529 
evsel__add_modifiers(struct evsel * evsel,char * bf,size_t size)530 static int evsel__add_modifiers(struct evsel *evsel, char *bf, size_t size)
531 {
532 	int colon = 0, r = 0;
533 	struct perf_event_attr *attr = &evsel->core.attr;
534 	bool exclude_guest_default = false;
535 
536 #define MOD_PRINT(context, mod)	do {					\
537 		if (!attr->exclude_##context) {				\
538 			if (!colon) colon = ++r;			\
539 			r += scnprintf(bf + r, size - r, "%c", mod);	\
540 		} } while(0)
541 
542 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
543 		MOD_PRINT(kernel, 'k');
544 		MOD_PRINT(user, 'u');
545 		MOD_PRINT(hv, 'h');
546 		exclude_guest_default = true;
547 	}
548 
549 	if (attr->precise_ip) {
550 		if (!colon)
551 			colon = ++r;
552 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
553 		exclude_guest_default = true;
554 	}
555 
556 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
557 		MOD_PRINT(host, 'H');
558 		MOD_PRINT(guest, 'G');
559 	}
560 #undef MOD_PRINT
561 	if (colon)
562 		bf[colon - 1] = ':';
563 	return r;
564 }
565 
evsel__hw_name(struct evsel * evsel,char * bf,size_t size)566 static int evsel__hw_name(struct evsel *evsel, char *bf, size_t size)
567 {
568 	int r = scnprintf(bf, size, "%s", __evsel__hw_name(evsel->core.attr.config));
569 	return r + evsel__add_modifiers(evsel, bf + r, size - r);
570 }
571 
572 const char *evsel__sw_names[PERF_COUNT_SW_MAX] = {
573 	"cpu-clock",
574 	"task-clock",
575 	"page-faults",
576 	"context-switches",
577 	"cpu-migrations",
578 	"minor-faults",
579 	"major-faults",
580 	"alignment-faults",
581 	"emulation-faults",
582 	"dummy",
583 };
584 
__evsel__sw_name(u64 config)585 static const char *__evsel__sw_name(u64 config)
586 {
587 	if (config < PERF_COUNT_SW_MAX && evsel__sw_names[config])
588 		return evsel__sw_names[config];
589 	return "unknown-software";
590 }
591 
evsel__sw_name(struct evsel * evsel,char * bf,size_t size)592 static int evsel__sw_name(struct evsel *evsel, char *bf, size_t size)
593 {
594 	int r = scnprintf(bf, size, "%s", __evsel__sw_name(evsel->core.attr.config));
595 	return r + evsel__add_modifiers(evsel, bf + r, size - r);
596 }
597 
__evsel__bp_name(char * bf,size_t size,u64 addr,u64 type)598 static int __evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
599 {
600 	int r;
601 
602 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
603 
604 	if (type & HW_BREAKPOINT_R)
605 		r += scnprintf(bf + r, size - r, "r");
606 
607 	if (type & HW_BREAKPOINT_W)
608 		r += scnprintf(bf + r, size - r, "w");
609 
610 	if (type & HW_BREAKPOINT_X)
611 		r += scnprintf(bf + r, size - r, "x");
612 
613 	return r;
614 }
615 
evsel__bp_name(struct evsel * evsel,char * bf,size_t size)616 static int evsel__bp_name(struct evsel *evsel, char *bf, size_t size)
617 {
618 	struct perf_event_attr *attr = &evsel->core.attr;
619 	int r = __evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
620 	return r + evsel__add_modifiers(evsel, bf + r, size - r);
621 }
622 
623 const char *evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX][EVSEL__MAX_ALIASES] = {
624  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
625  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
626  { "LLC",	"L2",							},
627  { "dTLB",	"d-tlb",	"Data-TLB",				},
628  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
629  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
630  { "node",								},
631 };
632 
633 const char *evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX][EVSEL__MAX_ALIASES] = {
634  { "load",	"loads",	"read",					},
635  { "store",	"stores",	"write",				},
636  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
637 };
638 
639 const char *evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX][EVSEL__MAX_ALIASES] = {
640  { "refs",	"Reference",	"ops",		"access",		},
641  { "misses",	"miss",							},
642 };
643 
644 #define C(x)		PERF_COUNT_HW_CACHE_##x
645 #define CACHE_READ	(1 << C(OP_READ))
646 #define CACHE_WRITE	(1 << C(OP_WRITE))
647 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
648 #define COP(x)		(1 << x)
649 
650 /*
651  * cache operation stat
652  * L1I : Read and prefetch only
653  * ITLB and BPU : Read-only
654  */
655 static unsigned long evsel__hw_cache_stat[C(MAX)] = {
656  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
657  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
658  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
659  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
660  [C(ITLB)]	= (CACHE_READ),
661  [C(BPU)]	= (CACHE_READ),
662  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
663 };
664 
evsel__is_cache_op_valid(u8 type,u8 op)665 bool evsel__is_cache_op_valid(u8 type, u8 op)
666 {
667 	if (evsel__hw_cache_stat[type] & COP(op))
668 		return true;	/* valid */
669 	else
670 		return false;	/* invalid */
671 }
672 
__evsel__hw_cache_type_op_res_name(u8 type,u8 op,u8 result,char * bf,size_t size)673 int __evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, char *bf, size_t size)
674 {
675 	if (result) {
676 		return scnprintf(bf, size, "%s-%s-%s", evsel__hw_cache[type][0],
677 				 evsel__hw_cache_op[op][0],
678 				 evsel__hw_cache_result[result][0]);
679 	}
680 
681 	return scnprintf(bf, size, "%s-%s", evsel__hw_cache[type][0],
682 			 evsel__hw_cache_op[op][1]);
683 }
684 
__evsel__hw_cache_name(u64 config,char * bf,size_t size)685 static int __evsel__hw_cache_name(u64 config, char *bf, size_t size)
686 {
687 	u8 op, result, type = (config >>  0) & 0xff;
688 	const char *err = "unknown-ext-hardware-cache-type";
689 
690 	if (type >= PERF_COUNT_HW_CACHE_MAX)
691 		goto out_err;
692 
693 	op = (config >>  8) & 0xff;
694 	err = "unknown-ext-hardware-cache-op";
695 	if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
696 		goto out_err;
697 
698 	result = (config >> 16) & 0xff;
699 	err = "unknown-ext-hardware-cache-result";
700 	if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
701 		goto out_err;
702 
703 	err = "invalid-cache";
704 	if (!evsel__is_cache_op_valid(type, op))
705 		goto out_err;
706 
707 	return __evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
708 out_err:
709 	return scnprintf(bf, size, "%s", err);
710 }
711 
evsel__hw_cache_name(struct evsel * evsel,char * bf,size_t size)712 static int evsel__hw_cache_name(struct evsel *evsel, char *bf, size_t size)
713 {
714 	int ret = __evsel__hw_cache_name(evsel->core.attr.config, bf, size);
715 	return ret + evsel__add_modifiers(evsel, bf + ret, size - ret);
716 }
717 
evsel__raw_name(struct evsel * evsel,char * bf,size_t size)718 static int evsel__raw_name(struct evsel *evsel, char *bf, size_t size)
719 {
720 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->core.attr.config);
721 	return ret + evsel__add_modifiers(evsel, bf + ret, size - ret);
722 }
723 
evsel__tool_name(char * bf,size_t size)724 static int evsel__tool_name(char *bf, size_t size)
725 {
726 	int ret = scnprintf(bf, size, "duration_time");
727 	return ret;
728 }
729 
evsel__name(struct evsel * evsel)730 const char *evsel__name(struct evsel *evsel)
731 {
732 	char bf[128];
733 
734 	if (!evsel)
735 		goto out_unknown;
736 
737 	if (evsel->name)
738 		return evsel->name;
739 
740 	switch (evsel->core.attr.type) {
741 	case PERF_TYPE_RAW:
742 		evsel__raw_name(evsel, bf, sizeof(bf));
743 		break;
744 
745 	case PERF_TYPE_HARDWARE:
746 		evsel__hw_name(evsel, bf, sizeof(bf));
747 		break;
748 
749 	case PERF_TYPE_HW_CACHE:
750 		evsel__hw_cache_name(evsel, bf, sizeof(bf));
751 		break;
752 
753 	case PERF_TYPE_SOFTWARE:
754 		if (evsel->tool_event)
755 			evsel__tool_name(bf, sizeof(bf));
756 		else
757 			evsel__sw_name(evsel, bf, sizeof(bf));
758 		break;
759 
760 	case PERF_TYPE_TRACEPOINT:
761 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
762 		break;
763 
764 	case PERF_TYPE_BREAKPOINT:
765 		evsel__bp_name(evsel, bf, sizeof(bf));
766 		break;
767 
768 	default:
769 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
770 			  evsel->core.attr.type);
771 		break;
772 	}
773 
774 	evsel->name = strdup(bf);
775 
776 	if (evsel->name)
777 		return evsel->name;
778 out_unknown:
779 	return "unknown";
780 }
781 
evsel__group_name(struct evsel * evsel)782 const char *evsel__group_name(struct evsel *evsel)
783 {
784 	return evsel->group_name ?: "anon group";
785 }
786 
787 /*
788  * Returns the group details for the specified leader,
789  * with following rules.
790  *
791  *  For record -e '{cycles,instructions}'
792  *    'anon group { cycles:u, instructions:u }'
793  *
794  *  For record -e 'cycles,instructions' and report --group
795  *    'cycles:u, instructions:u'
796  */
evsel__group_desc(struct evsel * evsel,char * buf,size_t size)797 int evsel__group_desc(struct evsel *evsel, char *buf, size_t size)
798 {
799 	int ret = 0;
800 	struct evsel *pos;
801 	const char *group_name = evsel__group_name(evsel);
802 
803 	if (!evsel->forced_leader)
804 		ret = scnprintf(buf, size, "%s { ", group_name);
805 
806 	ret += scnprintf(buf + ret, size - ret, "%s", evsel__name(evsel));
807 
808 	for_each_group_member(pos, evsel)
809 		ret += scnprintf(buf + ret, size - ret, ", %s", evsel__name(pos));
810 
811 	if (!evsel->forced_leader)
812 		ret += scnprintf(buf + ret, size - ret, " }");
813 
814 	return ret;
815 }
816 
__evsel__config_callchain(struct evsel * evsel,struct record_opts * opts,struct callchain_param * param)817 static void __evsel__config_callchain(struct evsel *evsel, struct record_opts *opts,
818 				      struct callchain_param *param)
819 {
820 	bool function = evsel__is_function_event(evsel);
821 	struct perf_event_attr *attr = &evsel->core.attr;
822 
823 	evsel__set_sample_bit(evsel, CALLCHAIN);
824 
825 	attr->sample_max_stack = param->max_stack;
826 
827 	if (opts->kernel_callchains)
828 		attr->exclude_callchain_user = 1;
829 	if (opts->user_callchains)
830 		attr->exclude_callchain_kernel = 1;
831 	if (param->record_mode == CALLCHAIN_LBR) {
832 		if (!opts->branch_stack) {
833 			if (attr->exclude_user) {
834 				pr_warning("LBR callstack option is only available "
835 					   "to get user callchain information. "
836 					   "Falling back to framepointers.\n");
837 			} else {
838 				evsel__set_sample_bit(evsel, BRANCH_STACK);
839 				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
840 							PERF_SAMPLE_BRANCH_CALL_STACK |
841 							PERF_SAMPLE_BRANCH_NO_CYCLES |
842 							PERF_SAMPLE_BRANCH_NO_FLAGS |
843 							PERF_SAMPLE_BRANCH_HW_INDEX;
844 			}
845 		} else
846 			 pr_warning("Cannot use LBR callstack with branch stack. "
847 				    "Falling back to framepointers.\n");
848 	}
849 
850 	if (param->record_mode == CALLCHAIN_DWARF) {
851 		if (!function) {
852 			evsel__set_sample_bit(evsel, REGS_USER);
853 			evsel__set_sample_bit(evsel, STACK_USER);
854 			if (opts->sample_user_regs && DWARF_MINIMAL_REGS != PERF_REGS_MASK) {
855 				attr->sample_regs_user |= DWARF_MINIMAL_REGS;
856 				pr_warning("WARNING: The use of --call-graph=dwarf may require all the user registers, "
857 					   "specifying a subset with --user-regs may render DWARF unwinding unreliable, "
858 					   "so the minimal registers set (IP, SP) is explicitly forced.\n");
859 			} else {
860 				attr->sample_regs_user |= PERF_REGS_MASK;
861 			}
862 			attr->sample_stack_user = param->dump_size;
863 			attr->exclude_callchain_user = 1;
864 		} else {
865 			pr_info("Cannot use DWARF unwind for function trace event,"
866 				" falling back to framepointers.\n");
867 		}
868 	}
869 
870 	if (function) {
871 		pr_info("Disabling user space callchains for function trace event.\n");
872 		attr->exclude_callchain_user = 1;
873 	}
874 }
875 
evsel__config_callchain(struct evsel * evsel,struct record_opts * opts,struct callchain_param * param)876 void evsel__config_callchain(struct evsel *evsel, struct record_opts *opts,
877 			     struct callchain_param *param)
878 {
879 	if (param->enabled)
880 		return __evsel__config_callchain(evsel, opts, param);
881 }
882 
evsel__reset_callgraph(struct evsel * evsel,struct callchain_param * param)883 static void evsel__reset_callgraph(struct evsel *evsel, struct callchain_param *param)
884 {
885 	struct perf_event_attr *attr = &evsel->core.attr;
886 
887 	evsel__reset_sample_bit(evsel, CALLCHAIN);
888 	if (param->record_mode == CALLCHAIN_LBR) {
889 		evsel__reset_sample_bit(evsel, BRANCH_STACK);
890 		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
891 					      PERF_SAMPLE_BRANCH_CALL_STACK |
892 					      PERF_SAMPLE_BRANCH_HW_INDEX);
893 	}
894 	if (param->record_mode == CALLCHAIN_DWARF) {
895 		evsel__reset_sample_bit(evsel, REGS_USER);
896 		evsel__reset_sample_bit(evsel, STACK_USER);
897 	}
898 }
899 
evsel__apply_config_terms(struct evsel * evsel,struct record_opts * opts,bool track)900 static void evsel__apply_config_terms(struct evsel *evsel,
901 				      struct record_opts *opts, bool track)
902 {
903 	struct evsel_config_term *term;
904 	struct list_head *config_terms = &evsel->config_terms;
905 	struct perf_event_attr *attr = &evsel->core.attr;
906 	/* callgraph default */
907 	struct callchain_param param = {
908 		.record_mode = callchain_param.record_mode,
909 	};
910 	u32 dump_size = 0;
911 	int max_stack = 0;
912 	const char *callgraph_buf = NULL;
913 
914 	list_for_each_entry(term, config_terms, list) {
915 		switch (term->type) {
916 		case EVSEL__CONFIG_TERM_PERIOD:
917 			if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
918 				attr->sample_period = term->val.period;
919 				attr->freq = 0;
920 				evsel__reset_sample_bit(evsel, PERIOD);
921 			}
922 			break;
923 		case EVSEL__CONFIG_TERM_FREQ:
924 			if (!(term->weak && opts->user_freq != UINT_MAX)) {
925 				attr->sample_freq = term->val.freq;
926 				attr->freq = 1;
927 				evsel__set_sample_bit(evsel, PERIOD);
928 			}
929 			break;
930 		case EVSEL__CONFIG_TERM_TIME:
931 			if (term->val.time)
932 				evsel__set_sample_bit(evsel, TIME);
933 			else
934 				evsel__reset_sample_bit(evsel, TIME);
935 			break;
936 		case EVSEL__CONFIG_TERM_CALLGRAPH:
937 			callgraph_buf = term->val.str;
938 			break;
939 		case EVSEL__CONFIG_TERM_BRANCH:
940 			if (term->val.str && strcmp(term->val.str, "no")) {
941 				evsel__set_sample_bit(evsel, BRANCH_STACK);
942 				parse_branch_str(term->val.str,
943 						 &attr->branch_sample_type);
944 			} else
945 				evsel__reset_sample_bit(evsel, BRANCH_STACK);
946 			break;
947 		case EVSEL__CONFIG_TERM_STACK_USER:
948 			dump_size = term->val.stack_user;
949 			break;
950 		case EVSEL__CONFIG_TERM_MAX_STACK:
951 			max_stack = term->val.max_stack;
952 			break;
953 		case EVSEL__CONFIG_TERM_MAX_EVENTS:
954 			evsel->max_events = term->val.max_events;
955 			break;
956 		case EVSEL__CONFIG_TERM_INHERIT:
957 			/*
958 			 * attr->inherit should has already been set by
959 			 * evsel__config. If user explicitly set
960 			 * inherit using config terms, override global
961 			 * opt->no_inherit setting.
962 			 */
963 			attr->inherit = term->val.inherit ? 1 : 0;
964 			break;
965 		case EVSEL__CONFIG_TERM_OVERWRITE:
966 			attr->write_backward = term->val.overwrite ? 1 : 0;
967 			break;
968 		case EVSEL__CONFIG_TERM_DRV_CFG:
969 			break;
970 		case EVSEL__CONFIG_TERM_PERCORE:
971 			break;
972 		case EVSEL__CONFIG_TERM_AUX_OUTPUT:
973 			attr->aux_output = term->val.aux_output ? 1 : 0;
974 			break;
975 		case EVSEL__CONFIG_TERM_AUX_SAMPLE_SIZE:
976 			/* Already applied by auxtrace */
977 			break;
978 		case EVSEL__CONFIG_TERM_CFG_CHG:
979 			break;
980 		default:
981 			break;
982 		}
983 	}
984 
985 	/* User explicitly set per-event callgraph, clear the old setting and reset. */
986 	if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
987 		bool sample_address = false;
988 
989 		if (max_stack) {
990 			param.max_stack = max_stack;
991 			if (callgraph_buf == NULL)
992 				callgraph_buf = "fp";
993 		}
994 
995 		/* parse callgraph parameters */
996 		if (callgraph_buf != NULL) {
997 			if (!strcmp(callgraph_buf, "no")) {
998 				param.enabled = false;
999 				param.record_mode = CALLCHAIN_NONE;
1000 			} else {
1001 				param.enabled = true;
1002 				if (parse_callchain_record(callgraph_buf, &param)) {
1003 					pr_err("per-event callgraph setting for %s failed. "
1004 					       "Apply callgraph global setting for it\n",
1005 					       evsel->name);
1006 					return;
1007 				}
1008 				if (param.record_mode == CALLCHAIN_DWARF)
1009 					sample_address = true;
1010 			}
1011 		}
1012 		if (dump_size > 0) {
1013 			dump_size = round_up(dump_size, sizeof(u64));
1014 			param.dump_size = dump_size;
1015 		}
1016 
1017 		/* If global callgraph set, clear it */
1018 		if (callchain_param.enabled)
1019 			evsel__reset_callgraph(evsel, &callchain_param);
1020 
1021 		/* set perf-event callgraph */
1022 		if (param.enabled) {
1023 			if (sample_address) {
1024 				evsel__set_sample_bit(evsel, ADDR);
1025 				evsel__set_sample_bit(evsel, DATA_SRC);
1026 				evsel->core.attr.mmap_data = track;
1027 			}
1028 			evsel__config_callchain(evsel, opts, &param);
1029 		}
1030 	}
1031 }
1032 
__evsel__get_config_term(struct evsel * evsel,enum evsel_term_type type)1033 struct evsel_config_term *__evsel__get_config_term(struct evsel *evsel, enum evsel_term_type type)
1034 {
1035 	struct evsel_config_term *term, *found_term = NULL;
1036 
1037 	list_for_each_entry(term, &evsel->config_terms, list) {
1038 		if (term->type == type)
1039 			found_term = term;
1040 	}
1041 
1042 	return found_term;
1043 }
1044 
arch_evsel__set_sample_weight(struct evsel * evsel)1045 void __weak arch_evsel__set_sample_weight(struct evsel *evsel)
1046 {
1047 	evsel__set_sample_bit(evsel, WEIGHT);
1048 }
1049 
evsel__set_default_freq_period(struct record_opts * opts,struct perf_event_attr * attr)1050 static void evsel__set_default_freq_period(struct record_opts *opts,
1051 					   struct perf_event_attr *attr)
1052 {
1053 	if (opts->freq) {
1054 		attr->freq = 1;
1055 		attr->sample_freq = opts->freq;
1056 	} else {
1057 		attr->sample_period = opts->default_interval;
1058 	}
1059 }
1060 
1061 /*
1062  * The enable_on_exec/disabled value strategy:
1063  *
1064  *  1) For any type of traced program:
1065  *    - all independent events and group leaders are disabled
1066  *    - all group members are enabled
1067  *
1068  *     Group members are ruled by group leaders. They need to
1069  *     be enabled, because the group scheduling relies on that.
1070  *
1071  *  2) For traced programs executed by perf:
1072  *     - all independent events and group leaders have
1073  *       enable_on_exec set
1074  *     - we don't specifically enable or disable any event during
1075  *       the record command
1076  *
1077  *     Independent events and group leaders are initially disabled
1078  *     and get enabled by exec. Group members are ruled by group
1079  *     leaders as stated in 1).
1080  *
1081  *  3) For traced programs attached by perf (pid/tid):
1082  *     - we specifically enable or disable all events during
1083  *       the record command
1084  *
1085  *     When attaching events to already running traced we
1086  *     enable/disable events specifically, as there's no
1087  *     initial traced exec call.
1088  */
evsel__config(struct evsel * evsel,struct record_opts * opts,struct callchain_param * callchain)1089 void evsel__config(struct evsel *evsel, struct record_opts *opts,
1090 		   struct callchain_param *callchain)
1091 {
1092 	struct evsel *leader = evsel__leader(evsel);
1093 	struct perf_event_attr *attr = &evsel->core.attr;
1094 	int track = evsel->tracking;
1095 	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
1096 
1097 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
1098 	attr->inherit	    = !opts->no_inherit;
1099 	attr->write_backward = opts->overwrite ? 1 : 0;
1100 
1101 	evsel__set_sample_bit(evsel, IP);
1102 	evsel__set_sample_bit(evsel, TID);
1103 
1104 	if (evsel->sample_read) {
1105 		evsel__set_sample_bit(evsel, READ);
1106 
1107 		/*
1108 		 * We need ID even in case of single event, because
1109 		 * PERF_SAMPLE_READ process ID specific data.
1110 		 */
1111 		evsel__set_sample_id(evsel, false);
1112 
1113 		/*
1114 		 * Apply group format only if we belong to group
1115 		 * with more than one members.
1116 		 */
1117 		if (leader->core.nr_members > 1) {
1118 			attr->read_format |= PERF_FORMAT_GROUP;
1119 			attr->inherit = 0;
1120 		}
1121 	}
1122 
1123 	/*
1124 	 * We default some events to have a default interval. But keep
1125 	 * it a weak assumption overridable by the user.
1126 	 */
1127 	if ((evsel->is_libpfm_event && !attr->sample_period) ||
1128 	    (!evsel->is_libpfm_event && (!attr->sample_period ||
1129 					 opts->user_freq != UINT_MAX ||
1130 					 opts->user_interval != ULLONG_MAX)))
1131 		evsel__set_default_freq_period(opts, attr);
1132 
1133 	/*
1134 	 * If attr->freq was set (here or earlier), ask for period
1135 	 * to be sampled.
1136 	 */
1137 	if (attr->freq)
1138 		evsel__set_sample_bit(evsel, PERIOD);
1139 
1140 	if (opts->no_samples)
1141 		attr->sample_freq = 0;
1142 
1143 	if (opts->inherit_stat) {
1144 		evsel->core.attr.read_format |=
1145 			PERF_FORMAT_TOTAL_TIME_ENABLED |
1146 			PERF_FORMAT_TOTAL_TIME_RUNNING |
1147 			PERF_FORMAT_ID;
1148 		attr->inherit_stat = 1;
1149 	}
1150 
1151 	if (opts->sample_address) {
1152 		evsel__set_sample_bit(evsel, ADDR);
1153 		attr->mmap_data = track;
1154 	}
1155 
1156 	/*
1157 	 * We don't allow user space callchains for  function trace
1158 	 * event, due to issues with page faults while tracing page
1159 	 * fault handler and its overall trickiness nature.
1160 	 */
1161 	if (evsel__is_function_event(evsel))
1162 		evsel->core.attr.exclude_callchain_user = 1;
1163 
1164 	if (callchain && callchain->enabled && !evsel->no_aux_samples)
1165 		evsel__config_callchain(evsel, opts, callchain);
1166 
1167 	if (opts->sample_intr_regs && !evsel->no_aux_samples &&
1168 	    !evsel__is_dummy_event(evsel)) {
1169 		attr->sample_regs_intr = opts->sample_intr_regs;
1170 		evsel__set_sample_bit(evsel, REGS_INTR);
1171 	}
1172 
1173 	if (opts->sample_user_regs && !evsel->no_aux_samples &&
1174 	    !evsel__is_dummy_event(evsel)) {
1175 		attr->sample_regs_user |= opts->sample_user_regs;
1176 		evsel__set_sample_bit(evsel, REGS_USER);
1177 	}
1178 
1179 	if (target__has_cpu(&opts->target) || opts->sample_cpu)
1180 		evsel__set_sample_bit(evsel, CPU);
1181 
1182 	/*
1183 	 * When the user explicitly disabled time don't force it here.
1184 	 */
1185 	if (opts->sample_time &&
1186 	    (!perf_missing_features.sample_id_all &&
1187 	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
1188 	     opts->sample_time_set)))
1189 		evsel__set_sample_bit(evsel, TIME);
1190 
1191 	if (opts->raw_samples && !evsel->no_aux_samples) {
1192 		evsel__set_sample_bit(evsel, TIME);
1193 		evsel__set_sample_bit(evsel, RAW);
1194 		evsel__set_sample_bit(evsel, CPU);
1195 	}
1196 
1197 	if (opts->sample_address)
1198 		evsel__set_sample_bit(evsel, DATA_SRC);
1199 
1200 	if (opts->sample_phys_addr)
1201 		evsel__set_sample_bit(evsel, PHYS_ADDR);
1202 
1203 	if (opts->no_buffering) {
1204 		attr->watermark = 0;
1205 		attr->wakeup_events = 1;
1206 	}
1207 	if (opts->branch_stack && !evsel->no_aux_samples) {
1208 		evsel__set_sample_bit(evsel, BRANCH_STACK);
1209 		attr->branch_sample_type = opts->branch_stack;
1210 	}
1211 
1212 	if (opts->sample_weight)
1213 		arch_evsel__set_sample_weight(evsel);
1214 
1215 	attr->task     = track;
1216 	attr->mmap     = track;
1217 	attr->mmap2    = track && !perf_missing_features.mmap2;
1218 	attr->comm     = track;
1219 	attr->build_id = track && opts->build_id;
1220 
1221 	/*
1222 	 * ksymbol is tracked separately with text poke because it needs to be
1223 	 * system wide and enabled immediately.
1224 	 */
1225 	if (!opts->text_poke)
1226 		attr->ksymbol = track && !perf_missing_features.ksymbol;
1227 	attr->bpf_event = track && !opts->no_bpf_event && !perf_missing_features.bpf;
1228 
1229 	if (opts->record_namespaces)
1230 		attr->namespaces  = track;
1231 
1232 	if (opts->record_cgroup) {
1233 		attr->cgroup = track && !perf_missing_features.cgroup;
1234 		evsel__set_sample_bit(evsel, CGROUP);
1235 	}
1236 
1237 	if (opts->sample_data_page_size)
1238 		evsel__set_sample_bit(evsel, DATA_PAGE_SIZE);
1239 
1240 	if (opts->sample_code_page_size)
1241 		evsel__set_sample_bit(evsel, CODE_PAGE_SIZE);
1242 
1243 	if (opts->record_switch_events)
1244 		attr->context_switch = track;
1245 
1246 	if (opts->sample_transaction)
1247 		evsel__set_sample_bit(evsel, TRANSACTION);
1248 
1249 	if (opts->running_time) {
1250 		evsel->core.attr.read_format |=
1251 			PERF_FORMAT_TOTAL_TIME_ENABLED |
1252 			PERF_FORMAT_TOTAL_TIME_RUNNING;
1253 	}
1254 
1255 	/*
1256 	 * XXX see the function comment above
1257 	 *
1258 	 * Disabling only independent events or group leaders,
1259 	 * keeping group members enabled.
1260 	 */
1261 	if (evsel__is_group_leader(evsel))
1262 		attr->disabled = 1;
1263 
1264 	/*
1265 	 * Setting enable_on_exec for independent events and
1266 	 * group leaders for traced executed by perf.
1267 	 */
1268 	if (target__none(&opts->target) && evsel__is_group_leader(evsel) &&
1269 	    !opts->initial_delay)
1270 		attr->enable_on_exec = 1;
1271 
1272 	if (evsel->immediate) {
1273 		attr->disabled = 0;
1274 		attr->enable_on_exec = 0;
1275 	}
1276 
1277 	clockid = opts->clockid;
1278 	if (opts->use_clockid) {
1279 		attr->use_clockid = 1;
1280 		attr->clockid = opts->clockid;
1281 	}
1282 
1283 	if (evsel->precise_max)
1284 		attr->precise_ip = 3;
1285 
1286 	if (opts->all_user) {
1287 		attr->exclude_kernel = 1;
1288 		attr->exclude_user   = 0;
1289 	}
1290 
1291 	if (opts->all_kernel) {
1292 		attr->exclude_kernel = 0;
1293 		attr->exclude_user   = 1;
1294 	}
1295 
1296 	if (evsel->core.own_cpus || evsel->unit)
1297 		evsel->core.attr.read_format |= PERF_FORMAT_ID;
1298 
1299 	/*
1300 	 * Apply event specific term settings,
1301 	 * it overloads any global configuration.
1302 	 */
1303 	evsel__apply_config_terms(evsel, opts, track);
1304 
1305 	evsel->ignore_missing_thread = opts->ignore_missing_thread;
1306 
1307 	/* The --period option takes the precedence. */
1308 	if (opts->period_set) {
1309 		if (opts->period)
1310 			evsel__set_sample_bit(evsel, PERIOD);
1311 		else
1312 			evsel__reset_sample_bit(evsel, PERIOD);
1313 	}
1314 
1315 	/*
1316 	 * A dummy event never triggers any actual counter and therefore
1317 	 * cannot be used with branch_stack.
1318 	 *
1319 	 * For initial_delay, a dummy event is added implicitly.
1320 	 * The software event will trigger -EOPNOTSUPP error out,
1321 	 * if BRANCH_STACK bit is set.
1322 	 */
1323 	if (evsel__is_dummy_event(evsel))
1324 		evsel__reset_sample_bit(evsel, BRANCH_STACK);
1325 }
1326 
evsel__set_filter(struct evsel * evsel,const char * filter)1327 int evsel__set_filter(struct evsel *evsel, const char *filter)
1328 {
1329 	char *new_filter = strdup(filter);
1330 
1331 	if (new_filter != NULL) {
1332 		free(evsel->filter);
1333 		evsel->filter = new_filter;
1334 		return 0;
1335 	}
1336 
1337 	return -1;
1338 }
1339 
evsel__append_filter(struct evsel * evsel,const char * fmt,const char * filter)1340 static int evsel__append_filter(struct evsel *evsel, const char *fmt, const char *filter)
1341 {
1342 	char *new_filter;
1343 
1344 	if (evsel->filter == NULL)
1345 		return evsel__set_filter(evsel, filter);
1346 
1347 	if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1348 		free(evsel->filter);
1349 		evsel->filter = new_filter;
1350 		return 0;
1351 	}
1352 
1353 	return -1;
1354 }
1355 
evsel__append_tp_filter(struct evsel * evsel,const char * filter)1356 int evsel__append_tp_filter(struct evsel *evsel, const char *filter)
1357 {
1358 	return evsel__append_filter(evsel, "(%s) && (%s)", filter);
1359 }
1360 
evsel__append_addr_filter(struct evsel * evsel,const char * filter)1361 int evsel__append_addr_filter(struct evsel *evsel, const char *filter)
1362 {
1363 	return evsel__append_filter(evsel, "%s,%s", filter);
1364 }
1365 
1366 /* Caller has to clear disabled after going through all CPUs. */
evsel__enable_cpu(struct evsel * evsel,int cpu)1367 int evsel__enable_cpu(struct evsel *evsel, int cpu)
1368 {
1369 	return perf_evsel__enable_cpu(&evsel->core, cpu);
1370 }
1371 
evsel__enable(struct evsel * evsel)1372 int evsel__enable(struct evsel *evsel)
1373 {
1374 	int err = perf_evsel__enable(&evsel->core);
1375 
1376 	if (!err)
1377 		evsel->disabled = false;
1378 	return err;
1379 }
1380 
1381 /* Caller has to set disabled after going through all CPUs. */
evsel__disable_cpu(struct evsel * evsel,int cpu)1382 int evsel__disable_cpu(struct evsel *evsel, int cpu)
1383 {
1384 	return perf_evsel__disable_cpu(&evsel->core, cpu);
1385 }
1386 
evsel__disable(struct evsel * evsel)1387 int evsel__disable(struct evsel *evsel)
1388 {
1389 	int err = perf_evsel__disable(&evsel->core);
1390 	/*
1391 	 * We mark it disabled here so that tools that disable a event can
1392 	 * ignore events after they disable it. I.e. the ring buffer may have
1393 	 * already a few more events queued up before the kernel got the stop
1394 	 * request.
1395 	 */
1396 	if (!err)
1397 		evsel->disabled = true;
1398 
1399 	return err;
1400 }
1401 
free_config_terms(struct list_head * config_terms)1402 void free_config_terms(struct list_head *config_terms)
1403 {
1404 	struct evsel_config_term *term, *h;
1405 
1406 	list_for_each_entry_safe(term, h, config_terms, list) {
1407 		list_del_init(&term->list);
1408 		if (term->free_str)
1409 			zfree(&term->val.str);
1410 		free(term);
1411 	}
1412 }
1413 
evsel__free_config_terms(struct evsel * evsel)1414 static void evsel__free_config_terms(struct evsel *evsel)
1415 {
1416 	free_config_terms(&evsel->config_terms);
1417 }
1418 
evsel__exit(struct evsel * evsel)1419 void evsel__exit(struct evsel *evsel)
1420 {
1421 	assert(list_empty(&evsel->core.node));
1422 	assert(evsel->evlist == NULL);
1423 	bpf_counter__destroy(evsel);
1424 	evsel__free_counts(evsel);
1425 	perf_evsel__free_fd(&evsel->core);
1426 	perf_evsel__free_id(&evsel->core);
1427 	evsel__free_config_terms(evsel);
1428 	cgroup__put(evsel->cgrp);
1429 	perf_cpu_map__put(evsel->core.cpus);
1430 	perf_cpu_map__put(evsel->core.own_cpus);
1431 	perf_thread_map__put(evsel->core.threads);
1432 	zfree(&evsel->group_name);
1433 	zfree(&evsel->name);
1434 	zfree(&evsel->pmu_name);
1435 	evsel__zero_per_pkg(evsel);
1436 	hashmap__free(evsel->per_pkg_mask);
1437 	evsel->per_pkg_mask = NULL;
1438 	zfree(&evsel->metric_events);
1439 	perf_evsel__object.fini(evsel);
1440 }
1441 
evsel__delete(struct evsel * evsel)1442 void evsel__delete(struct evsel *evsel)
1443 {
1444 	evsel__exit(evsel);
1445 	free(evsel);
1446 }
1447 
evsel__compute_deltas(struct evsel * evsel,int cpu,int thread,struct perf_counts_values * count)1448 void evsel__compute_deltas(struct evsel *evsel, int cpu, int thread,
1449 			   struct perf_counts_values *count)
1450 {
1451 	struct perf_counts_values tmp;
1452 
1453 	if (!evsel->prev_raw_counts)
1454 		return;
1455 
1456 	if (cpu == -1) {
1457 		tmp = evsel->prev_raw_counts->aggr;
1458 		evsel->prev_raw_counts->aggr = *count;
1459 	} else {
1460 		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1461 		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1462 	}
1463 
1464 	count->val = count->val - tmp.val;
1465 	count->ena = count->ena - tmp.ena;
1466 	count->run = count->run - tmp.run;
1467 }
1468 
perf_counts_values__scale(struct perf_counts_values * count,bool scale,s8 * pscaled)1469 void perf_counts_values__scale(struct perf_counts_values *count,
1470 			       bool scale, s8 *pscaled)
1471 {
1472 	s8 scaled = 0;
1473 
1474 	if (scale) {
1475 		if (count->run == 0) {
1476 			scaled = -1;
1477 			count->val = 0;
1478 		} else if (count->run < count->ena) {
1479 			scaled = 1;
1480 			count->val = (u64)((double) count->val * count->ena / count->run);
1481 		}
1482 	}
1483 
1484 	if (pscaled)
1485 		*pscaled = scaled;
1486 }
1487 
evsel__read_one(struct evsel * evsel,int cpu,int thread)1488 static int evsel__read_one(struct evsel *evsel, int cpu, int thread)
1489 {
1490 	struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1491 
1492 	return perf_evsel__read(&evsel->core, cpu, thread, count);
1493 }
1494 
evsel__set_count(struct evsel * counter,int cpu,int thread,u64 val,u64 ena,u64 run)1495 static void evsel__set_count(struct evsel *counter, int cpu, int thread, u64 val, u64 ena, u64 run)
1496 {
1497 	struct perf_counts_values *count;
1498 
1499 	count = perf_counts(counter->counts, cpu, thread);
1500 
1501 	count->val    = val;
1502 	count->ena    = ena;
1503 	count->run    = run;
1504 
1505 	perf_counts__set_loaded(counter->counts, cpu, thread, true);
1506 }
1507 
evsel__process_group_data(struct evsel * leader,int cpu,int thread,u64 * data)1508 static int evsel__process_group_data(struct evsel *leader, int cpu, int thread, u64 *data)
1509 {
1510 	u64 read_format = leader->core.attr.read_format;
1511 	struct sample_read_value *v;
1512 	u64 nr, ena = 0, run = 0, i;
1513 
1514 	nr = *data++;
1515 
1516 	if (nr != (u64) leader->core.nr_members)
1517 		return -EINVAL;
1518 
1519 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1520 		ena = *data++;
1521 
1522 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1523 		run = *data++;
1524 
1525 	v = (struct sample_read_value *) data;
1526 
1527 	evsel__set_count(leader, cpu, thread, v[0].value, ena, run);
1528 
1529 	for (i = 1; i < nr; i++) {
1530 		struct evsel *counter;
1531 
1532 		counter = evlist__id2evsel(leader->evlist, v[i].id);
1533 		if (!counter)
1534 			return -EINVAL;
1535 
1536 		evsel__set_count(counter, cpu, thread, v[i].value, ena, run);
1537 	}
1538 
1539 	return 0;
1540 }
1541 
evsel__read_group(struct evsel * leader,int cpu,int thread)1542 static int evsel__read_group(struct evsel *leader, int cpu, int thread)
1543 {
1544 	struct perf_stat_evsel *ps = leader->stats;
1545 	u64 read_format = leader->core.attr.read_format;
1546 	int size = perf_evsel__read_size(&leader->core);
1547 	u64 *data = ps->group_data;
1548 
1549 	if (!(read_format & PERF_FORMAT_ID))
1550 		return -EINVAL;
1551 
1552 	if (!evsel__is_group_leader(leader))
1553 		return -EINVAL;
1554 
1555 	if (!data) {
1556 		data = zalloc(size);
1557 		if (!data)
1558 			return -ENOMEM;
1559 
1560 		ps->group_data = data;
1561 	}
1562 
1563 	if (FD(leader, cpu, thread) < 0)
1564 		return -EINVAL;
1565 
1566 	if (readn(FD(leader, cpu, thread), data, size) <= 0)
1567 		return -errno;
1568 
1569 	return evsel__process_group_data(leader, cpu, thread, data);
1570 }
1571 
evsel__read_counter(struct evsel * evsel,int cpu,int thread)1572 int evsel__read_counter(struct evsel *evsel, int cpu, int thread)
1573 {
1574 	u64 read_format = evsel->core.attr.read_format;
1575 
1576 	if (read_format & PERF_FORMAT_GROUP)
1577 		return evsel__read_group(evsel, cpu, thread);
1578 
1579 	return evsel__read_one(evsel, cpu, thread);
1580 }
1581 
__evsel__read_on_cpu(struct evsel * evsel,int cpu,int thread,bool scale)1582 int __evsel__read_on_cpu(struct evsel *evsel, int cpu, int thread, bool scale)
1583 {
1584 	struct perf_counts_values count;
1585 	size_t nv = scale ? 3 : 1;
1586 
1587 	if (FD(evsel, cpu, thread) < 0)
1588 		return -EINVAL;
1589 
1590 	if (evsel->counts == NULL && evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1591 		return -ENOMEM;
1592 
1593 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1594 		return -errno;
1595 
1596 	evsel__compute_deltas(evsel, cpu, thread, &count);
1597 	perf_counts_values__scale(&count, scale, NULL);
1598 	*perf_counts(evsel->counts, cpu, thread) = count;
1599 	return 0;
1600 }
1601 
evsel__match_other_cpu(struct evsel * evsel,struct evsel * other,int cpu)1602 static int evsel__match_other_cpu(struct evsel *evsel, struct evsel *other,
1603 				  int cpu)
1604 {
1605 	int cpuid;
1606 
1607 	cpuid = perf_cpu_map__cpu(evsel->core.cpus, cpu);
1608 	return perf_cpu_map__idx(other->core.cpus, cpuid);
1609 }
1610 
evsel__hybrid_group_cpu(struct evsel * evsel,int cpu)1611 static int evsel__hybrid_group_cpu(struct evsel *evsel, int cpu)
1612 {
1613 	struct evsel *leader = evsel__leader(evsel);
1614 
1615 	if ((evsel__is_hybrid(evsel) && !evsel__is_hybrid(leader)) ||
1616 	    (!evsel__is_hybrid(evsel) && evsel__is_hybrid(leader))) {
1617 		return evsel__match_other_cpu(evsel, leader, cpu);
1618 	}
1619 
1620 	return cpu;
1621 }
1622 
get_group_fd(struct evsel * evsel,int cpu,int thread)1623 static int get_group_fd(struct evsel *evsel, int cpu, int thread)
1624 {
1625 	struct evsel *leader = evsel__leader(evsel);
1626 	int fd;
1627 
1628 	if (evsel__is_group_leader(evsel))
1629 		return -1;
1630 
1631 	/*
1632 	 * Leader must be already processed/open,
1633 	 * if not it's a bug.
1634 	 */
1635 	BUG_ON(!leader->core.fd);
1636 
1637 	cpu = evsel__hybrid_group_cpu(evsel, cpu);
1638 	if (cpu == -1)
1639 		return -1;
1640 
1641 	fd = FD(leader, cpu, thread);
1642 	BUG_ON(fd == -1);
1643 
1644 	return fd;
1645 }
1646 
evsel__remove_fd(struct evsel * pos,int nr_cpus,int nr_threads,int thread_idx)1647 static void evsel__remove_fd(struct evsel *pos, int nr_cpus, int nr_threads, int thread_idx)
1648 {
1649 	for (int cpu = 0; cpu < nr_cpus; cpu++)
1650 		for (int thread = thread_idx; thread < nr_threads - 1; thread++)
1651 			FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
1652 }
1653 
update_fds(struct evsel * evsel,int nr_cpus,int cpu_idx,int nr_threads,int thread_idx)1654 static int update_fds(struct evsel *evsel,
1655 		      int nr_cpus, int cpu_idx,
1656 		      int nr_threads, int thread_idx)
1657 {
1658 	struct evsel *pos;
1659 
1660 	if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
1661 		return -EINVAL;
1662 
1663 	evlist__for_each_entry(evsel->evlist, pos) {
1664 		nr_cpus = pos != evsel ? nr_cpus : cpu_idx;
1665 
1666 		evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
1667 
1668 		/*
1669 		 * Since fds for next evsel has not been created,
1670 		 * there is no need to iterate whole event list.
1671 		 */
1672 		if (pos == evsel)
1673 			break;
1674 	}
1675 	return 0;
1676 }
1677 
evsel__ignore_missing_thread(struct evsel * evsel,int nr_cpus,int cpu,struct perf_thread_map * threads,int thread,int err)1678 bool evsel__ignore_missing_thread(struct evsel *evsel,
1679 				  int nr_cpus, int cpu,
1680 				  struct perf_thread_map *threads,
1681 				  int thread, int err)
1682 {
1683 	pid_t ignore_pid = perf_thread_map__pid(threads, thread);
1684 
1685 	if (!evsel->ignore_missing_thread)
1686 		return false;
1687 
1688 	/* The system wide setup does not work with threads. */
1689 	if (evsel->core.system_wide)
1690 		return false;
1691 
1692 	/* The -ESRCH is perf event syscall errno for pid's not found. */
1693 	if (err != -ESRCH)
1694 		return false;
1695 
1696 	/* If there's only one thread, let it fail. */
1697 	if (threads->nr == 1)
1698 		return false;
1699 
1700 	/*
1701 	 * We should remove fd for missing_thread first
1702 	 * because thread_map__remove() will decrease threads->nr.
1703 	 */
1704 	if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
1705 		return false;
1706 
1707 	if (thread_map__remove(threads, thread))
1708 		return false;
1709 
1710 	pr_warning("WARNING: Ignored open failure for pid %d\n",
1711 		   ignore_pid);
1712 	return true;
1713 }
1714 
__open_attr__fprintf(FILE * fp,const char * name,const char * val,void * priv __maybe_unused)1715 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1716 				void *priv __maybe_unused)
1717 {
1718 	return fprintf(fp, "  %-32s %s\n", name, val);
1719 }
1720 
display_attr(struct perf_event_attr * attr)1721 static void display_attr(struct perf_event_attr *attr)
1722 {
1723 	if (verbose >= 2 || debug_peo_args) {
1724 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1725 		fprintf(stderr, "perf_event_attr:\n");
1726 		perf_event_attr__fprintf(stderr, attr, __open_attr__fprintf, NULL);
1727 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1728 	}
1729 }
1730 
evsel__precise_ip_fallback(struct evsel * evsel)1731 bool evsel__precise_ip_fallback(struct evsel *evsel)
1732 {
1733 	/* Do not try less precise if not requested. */
1734 	if (!evsel->precise_max)
1735 		return false;
1736 
1737 	/*
1738 	 * We tried all the precise_ip values, and it's
1739 	 * still failing, so leave it to standard fallback.
1740 	 */
1741 	if (!evsel->core.attr.precise_ip) {
1742 		evsel->core.attr.precise_ip = evsel->precise_ip_original;
1743 		return false;
1744 	}
1745 
1746 	if (!evsel->precise_ip_original)
1747 		evsel->precise_ip_original = evsel->core.attr.precise_ip;
1748 
1749 	evsel->core.attr.precise_ip--;
1750 	pr_debug2_peo("decreasing precise_ip by one (%d)\n", evsel->core.attr.precise_ip);
1751 	display_attr(&evsel->core.attr);
1752 	return true;
1753 }
1754 
1755 static struct perf_cpu_map *empty_cpu_map;
1756 static struct perf_thread_map *empty_thread_map;
1757 
__evsel__prepare_open(struct evsel * evsel,struct perf_cpu_map * cpus,struct perf_thread_map * threads)1758 static int __evsel__prepare_open(struct evsel *evsel, struct perf_cpu_map *cpus,
1759 		struct perf_thread_map *threads)
1760 {
1761 	int nthreads;
1762 
1763 	if ((perf_missing_features.write_backward && evsel->core.attr.write_backward) ||
1764 	    (perf_missing_features.aux_output     && evsel->core.attr.aux_output))
1765 		return -EINVAL;
1766 
1767 	if (cpus == NULL) {
1768 		if (empty_cpu_map == NULL) {
1769 			empty_cpu_map = perf_cpu_map__dummy_new();
1770 			if (empty_cpu_map == NULL)
1771 				return -ENOMEM;
1772 		}
1773 
1774 		cpus = empty_cpu_map;
1775 	}
1776 
1777 	if (threads == NULL) {
1778 		if (empty_thread_map == NULL) {
1779 			empty_thread_map = thread_map__new_by_tid(-1);
1780 			if (empty_thread_map == NULL)
1781 				return -ENOMEM;
1782 		}
1783 
1784 		threads = empty_thread_map;
1785 	}
1786 
1787 	if (evsel->core.system_wide)
1788 		nthreads = 1;
1789 	else
1790 		nthreads = threads->nr;
1791 
1792 	if (evsel->core.fd == NULL &&
1793 	    perf_evsel__alloc_fd(&evsel->core, cpus->nr, nthreads) < 0)
1794 		return -ENOMEM;
1795 
1796 	evsel->open_flags = PERF_FLAG_FD_CLOEXEC;
1797 	if (evsel->cgrp)
1798 		evsel->open_flags |= PERF_FLAG_PID_CGROUP;
1799 
1800 	return 0;
1801 }
1802 
evsel__disable_missing_features(struct evsel * evsel)1803 static void evsel__disable_missing_features(struct evsel *evsel)
1804 {
1805 	if (perf_missing_features.weight_struct) {
1806 		evsel__set_sample_bit(evsel, WEIGHT);
1807 		evsel__reset_sample_bit(evsel, WEIGHT_STRUCT);
1808 	}
1809 	if (perf_missing_features.clockid_wrong)
1810 		evsel->core.attr.clockid = CLOCK_MONOTONIC; /* should always work */
1811 	if (perf_missing_features.clockid) {
1812 		evsel->core.attr.use_clockid = 0;
1813 		evsel->core.attr.clockid = 0;
1814 	}
1815 	if (perf_missing_features.cloexec)
1816 		evsel->open_flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1817 	if (perf_missing_features.mmap2)
1818 		evsel->core.attr.mmap2 = 0;
1819 	if (perf_missing_features.exclude_guest)
1820 		evsel->core.attr.exclude_guest = evsel->core.attr.exclude_host = 0;
1821 	if (perf_missing_features.lbr_flags)
1822 		evsel->core.attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1823 				     PERF_SAMPLE_BRANCH_NO_CYCLES);
1824 	if (perf_missing_features.group_read && evsel->core.attr.inherit)
1825 		evsel->core.attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1826 	if (perf_missing_features.ksymbol)
1827 		evsel->core.attr.ksymbol = 0;
1828 	if (perf_missing_features.bpf)
1829 		evsel->core.attr.bpf_event = 0;
1830 	if (perf_missing_features.branch_hw_idx)
1831 		evsel->core.attr.branch_sample_type &= ~PERF_SAMPLE_BRANCH_HW_INDEX;
1832 	if (perf_missing_features.sample_id_all)
1833 		evsel->core.attr.sample_id_all = 0;
1834 }
1835 
evsel__prepare_open(struct evsel * evsel,struct perf_cpu_map * cpus,struct perf_thread_map * threads)1836 int evsel__prepare_open(struct evsel *evsel, struct perf_cpu_map *cpus,
1837 			struct perf_thread_map *threads)
1838 {
1839 	int err;
1840 
1841 	err = __evsel__prepare_open(evsel, cpus, threads);
1842 	if (err)
1843 		return err;
1844 
1845 	evsel__disable_missing_features(evsel);
1846 
1847 	return err;
1848 }
1849 
evsel__detect_missing_features(struct evsel * evsel)1850 bool evsel__detect_missing_features(struct evsel *evsel)
1851 {
1852 	/*
1853 	 * Must probe features in the order they were added to the
1854 	 * perf_event_attr interface.
1855 	 */
1856 	if (!perf_missing_features.weight_struct &&
1857 	    (evsel->core.attr.sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) {
1858 		perf_missing_features.weight_struct = true;
1859 		pr_debug2("switching off weight struct support\n");
1860 		return true;
1861 	} else if (!perf_missing_features.code_page_size &&
1862 	    (evsel->core.attr.sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)) {
1863 		perf_missing_features.code_page_size = true;
1864 		pr_debug2_peo("Kernel has no PERF_SAMPLE_CODE_PAGE_SIZE support, bailing out\n");
1865 		return false;
1866 	} else if (!perf_missing_features.data_page_size &&
1867 	    (evsel->core.attr.sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)) {
1868 		perf_missing_features.data_page_size = true;
1869 		pr_debug2_peo("Kernel has no PERF_SAMPLE_DATA_PAGE_SIZE support, bailing out\n");
1870 		return false;
1871 	} else if (!perf_missing_features.cgroup && evsel->core.attr.cgroup) {
1872 		perf_missing_features.cgroup = true;
1873 		pr_debug2_peo("Kernel has no cgroup sampling support, bailing out\n");
1874 		return false;
1875 	} else if (!perf_missing_features.branch_hw_idx &&
1876 	    (evsel->core.attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX)) {
1877 		perf_missing_features.branch_hw_idx = true;
1878 		pr_debug2("switching off branch HW index support\n");
1879 		return true;
1880 	} else if (!perf_missing_features.aux_output && evsel->core.attr.aux_output) {
1881 		perf_missing_features.aux_output = true;
1882 		pr_debug2_peo("Kernel has no attr.aux_output support, bailing out\n");
1883 		return false;
1884 	} else if (!perf_missing_features.bpf && evsel->core.attr.bpf_event) {
1885 		perf_missing_features.bpf = true;
1886 		pr_debug2_peo("switching off bpf_event\n");
1887 		return true;
1888 	} else if (!perf_missing_features.ksymbol && evsel->core.attr.ksymbol) {
1889 		perf_missing_features.ksymbol = true;
1890 		pr_debug2_peo("switching off ksymbol\n");
1891 		return true;
1892 	} else if (!perf_missing_features.write_backward && evsel->core.attr.write_backward) {
1893 		perf_missing_features.write_backward = true;
1894 		pr_debug2_peo("switching off write_backward\n");
1895 		return false;
1896 	} else if (!perf_missing_features.clockid_wrong && evsel->core.attr.use_clockid) {
1897 		perf_missing_features.clockid_wrong = true;
1898 		pr_debug2_peo("switching off clockid\n");
1899 		return true;
1900 	} else if (!perf_missing_features.clockid && evsel->core.attr.use_clockid) {
1901 		perf_missing_features.clockid = true;
1902 		pr_debug2_peo("switching off use_clockid\n");
1903 		return true;
1904 	} else if (!perf_missing_features.cloexec && (evsel->open_flags & PERF_FLAG_FD_CLOEXEC)) {
1905 		perf_missing_features.cloexec = true;
1906 		pr_debug2_peo("switching off cloexec flag\n");
1907 		return true;
1908 	} else if (!perf_missing_features.mmap2 && evsel->core.attr.mmap2) {
1909 		perf_missing_features.mmap2 = true;
1910 		pr_debug2_peo("switching off mmap2\n");
1911 		return true;
1912 	} else if (!perf_missing_features.exclude_guest &&
1913 		   (evsel->core.attr.exclude_guest || evsel->core.attr.exclude_host)) {
1914 		perf_missing_features.exclude_guest = true;
1915 		pr_debug2_peo("switching off exclude_guest, exclude_host\n");
1916 		return true;
1917 	} else if (!perf_missing_features.sample_id_all) {
1918 		perf_missing_features.sample_id_all = true;
1919 		pr_debug2_peo("switching off sample_id_all\n");
1920 		return true;
1921 	} else if (!perf_missing_features.lbr_flags &&
1922 			(evsel->core.attr.branch_sample_type &
1923 			 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1924 			  PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1925 		perf_missing_features.lbr_flags = true;
1926 		pr_debug2_peo("switching off branch sample type no (cycles/flags)\n");
1927 		return true;
1928 	} else if (!perf_missing_features.group_read &&
1929 		    evsel->core.attr.inherit &&
1930 		   (evsel->core.attr.read_format & PERF_FORMAT_GROUP) &&
1931 		   evsel__is_group_leader(evsel)) {
1932 		perf_missing_features.group_read = true;
1933 		pr_debug2_peo("switching off group read\n");
1934 		return true;
1935 	} else {
1936 		return false;
1937 	}
1938 }
1939 
evsel__increase_rlimit(enum rlimit_action * set_rlimit)1940 bool evsel__increase_rlimit(enum rlimit_action *set_rlimit)
1941 {
1942 	int old_errno;
1943 	struct rlimit l;
1944 
1945 	if (*set_rlimit < INCREASED_MAX) {
1946 		old_errno = errno;
1947 
1948 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1949 			if (*set_rlimit == NO_CHANGE) {
1950 				l.rlim_cur = l.rlim_max;
1951 			} else {
1952 				l.rlim_cur = l.rlim_max + 1000;
1953 				l.rlim_max = l.rlim_cur;
1954 			}
1955 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1956 				(*set_rlimit) += 1;
1957 				errno = old_errno;
1958 				return true;
1959 			}
1960 		}
1961 		errno = old_errno;
1962 	}
1963 
1964 	return false;
1965 }
1966 
evsel__open_cpu(struct evsel * evsel,struct perf_cpu_map * cpus,struct perf_thread_map * threads,int start_cpu,int end_cpu)1967 static int evsel__open_cpu(struct evsel *evsel, struct perf_cpu_map *cpus,
1968 		struct perf_thread_map *threads,
1969 		int start_cpu, int end_cpu)
1970 {
1971 	int cpu, thread, nthreads;
1972 	int pid = -1, err, old_errno;
1973 	enum rlimit_action set_rlimit = NO_CHANGE;
1974 
1975 	err = __evsel__prepare_open(evsel, cpus, threads);
1976 	if (err)
1977 		return err;
1978 
1979 	if (cpus == NULL)
1980 		cpus = empty_cpu_map;
1981 
1982 	if (threads == NULL)
1983 		threads = empty_thread_map;
1984 
1985 	if (evsel->core.system_wide)
1986 		nthreads = 1;
1987 	else
1988 		nthreads = threads->nr;
1989 
1990 	if (evsel->cgrp)
1991 		pid = evsel->cgrp->fd;
1992 
1993 fallback_missing_features:
1994 	evsel__disable_missing_features(evsel);
1995 
1996 	display_attr(&evsel->core.attr);
1997 
1998 	for (cpu = start_cpu; cpu < end_cpu; cpu++) {
1999 
2000 		for (thread = 0; thread < nthreads; thread++) {
2001 			int fd, group_fd;
2002 retry_open:
2003 			if (thread >= nthreads)
2004 				break;
2005 
2006 			if (!evsel->cgrp && !evsel->core.system_wide)
2007 				pid = perf_thread_map__pid(threads, thread);
2008 
2009 			group_fd = get_group_fd(evsel, cpu, thread);
2010 
2011 			test_attr__ready();
2012 
2013 			pr_debug2_peo("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx",
2014 				pid, cpus->map[cpu], group_fd, evsel->open_flags);
2015 
2016 			fd = sys_perf_event_open(&evsel->core.attr, pid, cpus->map[cpu],
2017 						group_fd, evsel->open_flags);
2018 
2019 			FD(evsel, cpu, thread) = fd;
2020 
2021 			if (fd < 0) {
2022 				err = -errno;
2023 
2024 				pr_debug2_peo("\nsys_perf_event_open failed, error %d\n",
2025 					  err);
2026 				goto try_fallback;
2027 			}
2028 
2029 			bpf_counter__install_pe(evsel, cpu, fd);
2030 
2031 			if (unlikely(test_attr__enabled)) {
2032 				test_attr__open(&evsel->core.attr, pid, cpus->map[cpu],
2033 						fd, group_fd, evsel->open_flags);
2034 			}
2035 
2036 			pr_debug2_peo(" = %d\n", fd);
2037 
2038 			if (evsel->bpf_fd >= 0) {
2039 				int evt_fd = fd;
2040 				int bpf_fd = evsel->bpf_fd;
2041 
2042 				err = ioctl(evt_fd,
2043 					    PERF_EVENT_IOC_SET_BPF,
2044 					    bpf_fd);
2045 				if (err && errno != EEXIST) {
2046 					pr_err("failed to attach bpf fd %d: %s\n",
2047 					       bpf_fd, strerror(errno));
2048 					err = -EINVAL;
2049 					goto out_close;
2050 				}
2051 			}
2052 
2053 			set_rlimit = NO_CHANGE;
2054 
2055 			/*
2056 			 * If we succeeded but had to kill clockid, fail and
2057 			 * have evsel__open_strerror() print us a nice error.
2058 			 */
2059 			if (perf_missing_features.clockid ||
2060 			    perf_missing_features.clockid_wrong) {
2061 				err = -EINVAL;
2062 				goto out_close;
2063 			}
2064 		}
2065 	}
2066 
2067 	return 0;
2068 
2069 try_fallback:
2070 	if (evsel__precise_ip_fallback(evsel))
2071 		goto retry_open;
2072 
2073 	if (evsel__ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
2074 		/* We just removed 1 thread, so lower the upper nthreads limit. */
2075 		nthreads--;
2076 
2077 		/* ... and pretend like nothing have happened. */
2078 		err = 0;
2079 		goto retry_open;
2080 	}
2081 	/*
2082 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
2083 	 * of them try to increase the limits.
2084 	 */
2085 	if (err == -EMFILE && evsel__increase_rlimit(&set_rlimit))
2086 		goto retry_open;
2087 
2088 	if (err != -EINVAL || cpu > 0 || thread > 0)
2089 		goto out_close;
2090 
2091 	if (evsel__detect_missing_features(evsel))
2092 		goto fallback_missing_features;
2093 out_close:
2094 	if (err)
2095 		threads->err_thread = thread;
2096 
2097 	old_errno = errno;
2098 	do {
2099 		while (--thread >= 0) {
2100 			if (FD(evsel, cpu, thread) >= 0)
2101 				close(FD(evsel, cpu, thread));
2102 			FD(evsel, cpu, thread) = -1;
2103 		}
2104 		thread = nthreads;
2105 	} while (--cpu >= 0);
2106 	errno = old_errno;
2107 	return err;
2108 }
2109 
evsel__open(struct evsel * evsel,struct perf_cpu_map * cpus,struct perf_thread_map * threads)2110 int evsel__open(struct evsel *evsel, struct perf_cpu_map *cpus,
2111 		struct perf_thread_map *threads)
2112 {
2113 	return evsel__open_cpu(evsel, cpus, threads, 0, cpus ? cpus->nr : 1);
2114 }
2115 
evsel__close(struct evsel * evsel)2116 void evsel__close(struct evsel *evsel)
2117 {
2118 	perf_evsel__close(&evsel->core);
2119 	perf_evsel__free_id(&evsel->core);
2120 }
2121 
evsel__open_per_cpu(struct evsel * evsel,struct perf_cpu_map * cpus,int cpu)2122 int evsel__open_per_cpu(struct evsel *evsel, struct perf_cpu_map *cpus, int cpu)
2123 {
2124 	if (cpu == -1)
2125 		return evsel__open_cpu(evsel, cpus, NULL, 0,
2126 					cpus ? cpus->nr : 1);
2127 
2128 	return evsel__open_cpu(evsel, cpus, NULL, cpu, cpu + 1);
2129 }
2130 
evsel__open_per_thread(struct evsel * evsel,struct perf_thread_map * threads)2131 int evsel__open_per_thread(struct evsel *evsel, struct perf_thread_map *threads)
2132 {
2133 	return evsel__open(evsel, NULL, threads);
2134 }
2135 
perf_evsel__parse_id_sample(const struct evsel * evsel,const union perf_event * event,struct perf_sample * sample)2136 static int perf_evsel__parse_id_sample(const struct evsel *evsel,
2137 				       const union perf_event *event,
2138 				       struct perf_sample *sample)
2139 {
2140 	u64 type = evsel->core.attr.sample_type;
2141 	const __u64 *array = event->sample.array;
2142 	bool swapped = evsel->needs_swap;
2143 	union u64_swap u;
2144 
2145 	array += ((event->header.size -
2146 		   sizeof(event->header)) / sizeof(u64)) - 1;
2147 
2148 	if (type & PERF_SAMPLE_IDENTIFIER) {
2149 		sample->id = *array;
2150 		array--;
2151 	}
2152 
2153 	if (type & PERF_SAMPLE_CPU) {
2154 		u.val64 = *array;
2155 		if (swapped) {
2156 			/* undo swap of u64, then swap on individual u32s */
2157 			u.val64 = bswap_64(u.val64);
2158 			u.val32[0] = bswap_32(u.val32[0]);
2159 		}
2160 
2161 		sample->cpu = u.val32[0];
2162 		array--;
2163 	}
2164 
2165 	if (type & PERF_SAMPLE_STREAM_ID) {
2166 		sample->stream_id = *array;
2167 		array--;
2168 	}
2169 
2170 	if (type & PERF_SAMPLE_ID) {
2171 		sample->id = *array;
2172 		array--;
2173 	}
2174 
2175 	if (type & PERF_SAMPLE_TIME) {
2176 		sample->time = *array;
2177 		array--;
2178 	}
2179 
2180 	if (type & PERF_SAMPLE_TID) {
2181 		u.val64 = *array;
2182 		if (swapped) {
2183 			/* undo swap of u64, then swap on individual u32s */
2184 			u.val64 = bswap_64(u.val64);
2185 			u.val32[0] = bswap_32(u.val32[0]);
2186 			u.val32[1] = bswap_32(u.val32[1]);
2187 		}
2188 
2189 		sample->pid = u.val32[0];
2190 		sample->tid = u.val32[1];
2191 		array--;
2192 	}
2193 
2194 	return 0;
2195 }
2196 
overflow(const void * endp,u16 max_size,const void * offset,u64 size)2197 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
2198 			    u64 size)
2199 {
2200 	return size > max_size || offset + size > endp;
2201 }
2202 
2203 #define OVERFLOW_CHECK(offset, size, max_size)				\
2204 	do {								\
2205 		if (overflow(endp, (max_size), (offset), (size)))	\
2206 			return -EFAULT;					\
2207 	} while (0)
2208 
2209 #define OVERFLOW_CHECK_u64(offset) \
2210 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2211 
2212 static int
perf_event__check_size(union perf_event * event,unsigned int sample_size)2213 perf_event__check_size(union perf_event *event, unsigned int sample_size)
2214 {
2215 	/*
2216 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2217 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
2218 	 * check the format does not go past the end of the event.
2219 	 */
2220 	if (sample_size + sizeof(event->header) > event->header.size)
2221 		return -EFAULT;
2222 
2223 	return 0;
2224 }
2225 
arch_perf_parse_sample_weight(struct perf_sample * data,const __u64 * array,u64 type __maybe_unused)2226 void __weak arch_perf_parse_sample_weight(struct perf_sample *data,
2227 					  const __u64 *array,
2228 					  u64 type __maybe_unused)
2229 {
2230 	data->weight = *array;
2231 }
2232 
evsel__parse_sample(struct evsel * evsel,union perf_event * event,struct perf_sample * data)2233 int evsel__parse_sample(struct evsel *evsel, union perf_event *event,
2234 			struct perf_sample *data)
2235 {
2236 	u64 type = evsel->core.attr.sample_type;
2237 	bool swapped = evsel->needs_swap;
2238 	const __u64 *array;
2239 	u16 max_size = event->header.size;
2240 	const void *endp = (void *)event + max_size;
2241 	u64 sz;
2242 
2243 	/*
2244 	 * used for cross-endian analysis. See git commit 65014ab3
2245 	 * for why this goofiness is needed.
2246 	 */
2247 	union u64_swap u;
2248 
2249 	memset(data, 0, sizeof(*data));
2250 	data->cpu = data->pid = data->tid = -1;
2251 	data->stream_id = data->id = data->time = -1ULL;
2252 	data->period = evsel->core.attr.sample_period;
2253 	data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2254 	data->misc    = event->header.misc;
2255 	data->id = -1ULL;
2256 	data->data_src = PERF_MEM_DATA_SRC_NONE;
2257 
2258 	if (event->header.type != PERF_RECORD_SAMPLE) {
2259 		if (!evsel->core.attr.sample_id_all)
2260 			return 0;
2261 		return perf_evsel__parse_id_sample(evsel, event, data);
2262 	}
2263 
2264 	array = event->sample.array;
2265 
2266 	if (perf_event__check_size(event, evsel->sample_size))
2267 		return -EFAULT;
2268 
2269 	if (type & PERF_SAMPLE_IDENTIFIER) {
2270 		data->id = *array;
2271 		array++;
2272 	}
2273 
2274 	if (type & PERF_SAMPLE_IP) {
2275 		data->ip = *array;
2276 		array++;
2277 	}
2278 
2279 	if (type & PERF_SAMPLE_TID) {
2280 		u.val64 = *array;
2281 		if (swapped) {
2282 			/* undo swap of u64, then swap on individual u32s */
2283 			u.val64 = bswap_64(u.val64);
2284 			u.val32[0] = bswap_32(u.val32[0]);
2285 			u.val32[1] = bswap_32(u.val32[1]);
2286 		}
2287 
2288 		data->pid = u.val32[0];
2289 		data->tid = u.val32[1];
2290 		array++;
2291 	}
2292 
2293 	if (type & PERF_SAMPLE_TIME) {
2294 		data->time = *array;
2295 		array++;
2296 	}
2297 
2298 	if (type & PERF_SAMPLE_ADDR) {
2299 		data->addr = *array;
2300 		array++;
2301 	}
2302 
2303 	if (type & PERF_SAMPLE_ID) {
2304 		data->id = *array;
2305 		array++;
2306 	}
2307 
2308 	if (type & PERF_SAMPLE_STREAM_ID) {
2309 		data->stream_id = *array;
2310 		array++;
2311 	}
2312 
2313 	if (type & PERF_SAMPLE_CPU) {
2314 
2315 		u.val64 = *array;
2316 		if (swapped) {
2317 			/* undo swap of u64, then swap on individual u32s */
2318 			u.val64 = bswap_64(u.val64);
2319 			u.val32[0] = bswap_32(u.val32[0]);
2320 		}
2321 
2322 		data->cpu = u.val32[0];
2323 		array++;
2324 	}
2325 
2326 	if (type & PERF_SAMPLE_PERIOD) {
2327 		data->period = *array;
2328 		array++;
2329 	}
2330 
2331 	if (type & PERF_SAMPLE_READ) {
2332 		u64 read_format = evsel->core.attr.read_format;
2333 
2334 		OVERFLOW_CHECK_u64(array);
2335 		if (read_format & PERF_FORMAT_GROUP)
2336 			data->read.group.nr = *array;
2337 		else
2338 			data->read.one.value = *array;
2339 
2340 		array++;
2341 
2342 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2343 			OVERFLOW_CHECK_u64(array);
2344 			data->read.time_enabled = *array;
2345 			array++;
2346 		}
2347 
2348 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2349 			OVERFLOW_CHECK_u64(array);
2350 			data->read.time_running = *array;
2351 			array++;
2352 		}
2353 
2354 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2355 		if (read_format & PERF_FORMAT_GROUP) {
2356 			const u64 max_group_nr = UINT64_MAX /
2357 					sizeof(struct sample_read_value);
2358 
2359 			if (data->read.group.nr > max_group_nr)
2360 				return -EFAULT;
2361 			sz = data->read.group.nr *
2362 			     sizeof(struct sample_read_value);
2363 			OVERFLOW_CHECK(array, sz, max_size);
2364 			data->read.group.values =
2365 					(struct sample_read_value *)array;
2366 			array = (void *)array + sz;
2367 		} else {
2368 			OVERFLOW_CHECK_u64(array);
2369 			data->read.one.id = *array;
2370 			array++;
2371 		}
2372 	}
2373 
2374 	if (type & PERF_SAMPLE_CALLCHAIN) {
2375 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2376 
2377 		OVERFLOW_CHECK_u64(array);
2378 		data->callchain = (struct ip_callchain *)array++;
2379 		if (data->callchain->nr > max_callchain_nr)
2380 			return -EFAULT;
2381 		sz = data->callchain->nr * sizeof(u64);
2382 		OVERFLOW_CHECK(array, sz, max_size);
2383 		array = (void *)array + sz;
2384 	}
2385 
2386 	if (type & PERF_SAMPLE_RAW) {
2387 		OVERFLOW_CHECK_u64(array);
2388 		u.val64 = *array;
2389 
2390 		/*
2391 		 * Undo swap of u64, then swap on individual u32s,
2392 		 * get the size of the raw area and undo all of the
2393 		 * swap. The pevent interface handles endianness by
2394 		 * itself.
2395 		 */
2396 		if (swapped) {
2397 			u.val64 = bswap_64(u.val64);
2398 			u.val32[0] = bswap_32(u.val32[0]);
2399 			u.val32[1] = bswap_32(u.val32[1]);
2400 		}
2401 		data->raw_size = u.val32[0];
2402 
2403 		/*
2404 		 * The raw data is aligned on 64bits including the
2405 		 * u32 size, so it's safe to use mem_bswap_64.
2406 		 */
2407 		if (swapped)
2408 			mem_bswap_64((void *) array, data->raw_size);
2409 
2410 		array = (void *)array + sizeof(u32);
2411 
2412 		OVERFLOW_CHECK(array, data->raw_size, max_size);
2413 		data->raw_data = (void *)array;
2414 		array = (void *)array + data->raw_size;
2415 	}
2416 
2417 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2418 		const u64 max_branch_nr = UINT64_MAX /
2419 					  sizeof(struct branch_entry);
2420 
2421 		OVERFLOW_CHECK_u64(array);
2422 		data->branch_stack = (struct branch_stack *)array++;
2423 
2424 		if (data->branch_stack->nr > max_branch_nr)
2425 			return -EFAULT;
2426 
2427 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
2428 		if (evsel__has_branch_hw_idx(evsel))
2429 			sz += sizeof(u64);
2430 		else
2431 			data->no_hw_idx = true;
2432 		OVERFLOW_CHECK(array, sz, max_size);
2433 		array = (void *)array + sz;
2434 	}
2435 
2436 	if (type & PERF_SAMPLE_REGS_USER) {
2437 		OVERFLOW_CHECK_u64(array);
2438 		data->user_regs.abi = *array;
2439 		array++;
2440 
2441 		if (data->user_regs.abi) {
2442 			u64 mask = evsel->core.attr.sample_regs_user;
2443 
2444 			sz = hweight64(mask) * sizeof(u64);
2445 			OVERFLOW_CHECK(array, sz, max_size);
2446 			data->user_regs.mask = mask;
2447 			data->user_regs.regs = (u64 *)array;
2448 			array = (void *)array + sz;
2449 		}
2450 	}
2451 
2452 	if (type & PERF_SAMPLE_STACK_USER) {
2453 		OVERFLOW_CHECK_u64(array);
2454 		sz = *array++;
2455 
2456 		data->user_stack.offset = ((char *)(array - 1)
2457 					  - (char *) event);
2458 
2459 		if (!sz) {
2460 			data->user_stack.size = 0;
2461 		} else {
2462 			OVERFLOW_CHECK(array, sz, max_size);
2463 			data->user_stack.data = (char *)array;
2464 			array = (void *)array + sz;
2465 			OVERFLOW_CHECK_u64(array);
2466 			data->user_stack.size = *array++;
2467 			if (WARN_ONCE(data->user_stack.size > sz,
2468 				      "user stack dump failure\n"))
2469 				return -EFAULT;
2470 		}
2471 	}
2472 
2473 	if (type & PERF_SAMPLE_WEIGHT_TYPE) {
2474 		OVERFLOW_CHECK_u64(array);
2475 		arch_perf_parse_sample_weight(data, array, type);
2476 		array++;
2477 	}
2478 
2479 	if (type & PERF_SAMPLE_DATA_SRC) {
2480 		OVERFLOW_CHECK_u64(array);
2481 		data->data_src = *array;
2482 		array++;
2483 	}
2484 
2485 	if (type & PERF_SAMPLE_TRANSACTION) {
2486 		OVERFLOW_CHECK_u64(array);
2487 		data->transaction = *array;
2488 		array++;
2489 	}
2490 
2491 	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2492 	if (type & PERF_SAMPLE_REGS_INTR) {
2493 		OVERFLOW_CHECK_u64(array);
2494 		data->intr_regs.abi = *array;
2495 		array++;
2496 
2497 		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2498 			u64 mask = evsel->core.attr.sample_regs_intr;
2499 
2500 			sz = hweight64(mask) * sizeof(u64);
2501 			OVERFLOW_CHECK(array, sz, max_size);
2502 			data->intr_regs.mask = mask;
2503 			data->intr_regs.regs = (u64 *)array;
2504 			array = (void *)array + sz;
2505 		}
2506 	}
2507 
2508 	data->phys_addr = 0;
2509 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2510 		data->phys_addr = *array;
2511 		array++;
2512 	}
2513 
2514 	data->cgroup = 0;
2515 	if (type & PERF_SAMPLE_CGROUP) {
2516 		data->cgroup = *array;
2517 		array++;
2518 	}
2519 
2520 	data->data_page_size = 0;
2521 	if (type & PERF_SAMPLE_DATA_PAGE_SIZE) {
2522 		data->data_page_size = *array;
2523 		array++;
2524 	}
2525 
2526 	data->code_page_size = 0;
2527 	if (type & PERF_SAMPLE_CODE_PAGE_SIZE) {
2528 		data->code_page_size = *array;
2529 		array++;
2530 	}
2531 
2532 	if (type & PERF_SAMPLE_AUX) {
2533 		OVERFLOW_CHECK_u64(array);
2534 		sz = *array++;
2535 
2536 		OVERFLOW_CHECK(array, sz, max_size);
2537 		/* Undo swap of data */
2538 		if (swapped)
2539 			mem_bswap_64((char *)array, sz);
2540 		data->aux_sample.size = sz;
2541 		data->aux_sample.data = (char *)array;
2542 		array = (void *)array + sz;
2543 	}
2544 
2545 	return 0;
2546 }
2547 
evsel__parse_sample_timestamp(struct evsel * evsel,union perf_event * event,u64 * timestamp)2548 int evsel__parse_sample_timestamp(struct evsel *evsel, union perf_event *event,
2549 				  u64 *timestamp)
2550 {
2551 	u64 type = evsel->core.attr.sample_type;
2552 	const __u64 *array;
2553 
2554 	if (!(type & PERF_SAMPLE_TIME))
2555 		return -1;
2556 
2557 	if (event->header.type != PERF_RECORD_SAMPLE) {
2558 		struct perf_sample data = {
2559 			.time = -1ULL,
2560 		};
2561 
2562 		if (!evsel->core.attr.sample_id_all)
2563 			return -1;
2564 		if (perf_evsel__parse_id_sample(evsel, event, &data))
2565 			return -1;
2566 
2567 		*timestamp = data.time;
2568 		return 0;
2569 	}
2570 
2571 	array = event->sample.array;
2572 
2573 	if (perf_event__check_size(event, evsel->sample_size))
2574 		return -EFAULT;
2575 
2576 	if (type & PERF_SAMPLE_IDENTIFIER)
2577 		array++;
2578 
2579 	if (type & PERF_SAMPLE_IP)
2580 		array++;
2581 
2582 	if (type & PERF_SAMPLE_TID)
2583 		array++;
2584 
2585 	if (type & PERF_SAMPLE_TIME)
2586 		*timestamp = *array;
2587 
2588 	return 0;
2589 }
2590 
evsel__field(struct evsel * evsel,const char * name)2591 struct tep_format_field *evsel__field(struct evsel *evsel, const char *name)
2592 {
2593 	return tep_find_field(evsel->tp_format, name);
2594 }
2595 
evsel__rawptr(struct evsel * evsel,struct perf_sample * sample,const char * name)2596 void *evsel__rawptr(struct evsel *evsel, struct perf_sample *sample, const char *name)
2597 {
2598 	struct tep_format_field *field = evsel__field(evsel, name);
2599 	int offset;
2600 
2601 	if (!field)
2602 		return NULL;
2603 
2604 	offset = field->offset;
2605 
2606 	if (field->flags & TEP_FIELD_IS_DYNAMIC) {
2607 		offset = *(int *)(sample->raw_data + field->offset);
2608 		offset &= 0xffff;
2609 	}
2610 
2611 	return sample->raw_data + offset;
2612 }
2613 
format_field__intval(struct tep_format_field * field,struct perf_sample * sample,bool needs_swap)2614 u64 format_field__intval(struct tep_format_field *field, struct perf_sample *sample,
2615 			 bool needs_swap)
2616 {
2617 	u64 value;
2618 	void *ptr = sample->raw_data + field->offset;
2619 
2620 	switch (field->size) {
2621 	case 1:
2622 		return *(u8 *)ptr;
2623 	case 2:
2624 		value = *(u16 *)ptr;
2625 		break;
2626 	case 4:
2627 		value = *(u32 *)ptr;
2628 		break;
2629 	case 8:
2630 		memcpy(&value, ptr, sizeof(u64));
2631 		break;
2632 	default:
2633 		return 0;
2634 	}
2635 
2636 	if (!needs_swap)
2637 		return value;
2638 
2639 	switch (field->size) {
2640 	case 2:
2641 		return bswap_16(value);
2642 	case 4:
2643 		return bswap_32(value);
2644 	case 8:
2645 		return bswap_64(value);
2646 	default:
2647 		return 0;
2648 	}
2649 
2650 	return 0;
2651 }
2652 
evsel__intval(struct evsel * evsel,struct perf_sample * sample,const char * name)2653 u64 evsel__intval(struct evsel *evsel, struct perf_sample *sample, const char *name)
2654 {
2655 	struct tep_format_field *field = evsel__field(evsel, name);
2656 
2657 	if (!field)
2658 		return 0;
2659 
2660 	return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2661 }
2662 
evsel__fallback(struct evsel * evsel,int err,char * msg,size_t msgsize)2663 bool evsel__fallback(struct evsel *evsel, int err, char *msg, size_t msgsize)
2664 {
2665 	int paranoid;
2666 
2667 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2668 	    evsel->core.attr.type   == PERF_TYPE_HARDWARE &&
2669 	    evsel->core.attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2670 		/*
2671 		 * If it's cycles then fall back to hrtimer based
2672 		 * cpu-clock-tick sw counter, which is always available even if
2673 		 * no PMU support.
2674 		 *
2675 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2676 		 * b0a873e).
2677 		 */
2678 		scnprintf(msg, msgsize, "%s",
2679 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2680 
2681 		evsel->core.attr.type   = PERF_TYPE_SOFTWARE;
2682 		evsel->core.attr.config = PERF_COUNT_SW_CPU_CLOCK;
2683 
2684 		zfree(&evsel->name);
2685 		return true;
2686 	} else if (err == EACCES && !evsel->core.attr.exclude_kernel &&
2687 		   (paranoid = perf_event_paranoid()) > 1) {
2688 		const char *name = evsel__name(evsel);
2689 		char *new_name;
2690 		const char *sep = ":";
2691 
2692 		/* If event has exclude user then don't exclude kernel. */
2693 		if (evsel->core.attr.exclude_user)
2694 			return false;
2695 
2696 		/* Is there already the separator in the name. */
2697 		if (strchr(name, '/') ||
2698 		    (strchr(name, ':') && !evsel->is_libpfm_event))
2699 			sep = "";
2700 
2701 		if (asprintf(&new_name, "%s%su", name, sep) < 0)
2702 			return false;
2703 
2704 		if (evsel->name)
2705 			free(evsel->name);
2706 		evsel->name = new_name;
2707 		scnprintf(msg, msgsize, "kernel.perf_event_paranoid=%d, trying "
2708 			  "to fall back to excluding kernel and hypervisor "
2709 			  " samples", paranoid);
2710 		evsel->core.attr.exclude_kernel = 1;
2711 		evsel->core.attr.exclude_hv     = 1;
2712 
2713 		return true;
2714 	}
2715 
2716 	return false;
2717 }
2718 
find_process(const char * name)2719 static bool find_process(const char *name)
2720 {
2721 	size_t len = strlen(name);
2722 	DIR *dir;
2723 	struct dirent *d;
2724 	int ret = -1;
2725 
2726 	dir = opendir(procfs__mountpoint());
2727 	if (!dir)
2728 		return false;
2729 
2730 	/* Walk through the directory. */
2731 	while (ret && (d = readdir(dir)) != NULL) {
2732 		char path[PATH_MAX];
2733 		char *data;
2734 		size_t size;
2735 
2736 		if ((d->d_type != DT_DIR) ||
2737 		     !strcmp(".", d->d_name) ||
2738 		     !strcmp("..", d->d_name))
2739 			continue;
2740 
2741 		scnprintf(path, sizeof(path), "%s/%s/comm",
2742 			  procfs__mountpoint(), d->d_name);
2743 
2744 		if (filename__read_str(path, &data, &size))
2745 			continue;
2746 
2747 		ret = strncmp(name, data, len);
2748 		free(data);
2749 	}
2750 
2751 	closedir(dir);
2752 	return ret ? false : true;
2753 }
2754 
evsel__open_strerror(struct evsel * evsel,struct target * target,int err,char * msg,size_t size)2755 int evsel__open_strerror(struct evsel *evsel, struct target *target,
2756 			 int err, char *msg, size_t size)
2757 {
2758 	char sbuf[STRERR_BUFSIZE];
2759 	int printed = 0, enforced = 0;
2760 
2761 	switch (err) {
2762 	case EPERM:
2763 	case EACCES:
2764 		printed += scnprintf(msg + printed, size - printed,
2765 			"Access to performance monitoring and observability operations is limited.\n");
2766 
2767 		if (!sysfs__read_int("fs/selinux/enforce", &enforced)) {
2768 			if (enforced) {
2769 				printed += scnprintf(msg + printed, size - printed,
2770 					"Enforced MAC policy settings (SELinux) can limit access to performance\n"
2771 					"monitoring and observability operations. Inspect system audit records for\n"
2772 					"more perf_event access control information and adjusting the policy.\n");
2773 			}
2774 		}
2775 
2776 		if (err == EPERM)
2777 			printed += scnprintf(msg, size,
2778 				"No permission to enable %s event.\n\n", evsel__name(evsel));
2779 
2780 		return scnprintf(msg + printed, size - printed,
2781 		 "Consider adjusting /proc/sys/kernel/perf_event_paranoid setting to open\n"
2782 		 "access to performance monitoring and observability operations for processes\n"
2783 		 "without CAP_PERFMON, CAP_SYS_PTRACE or CAP_SYS_ADMIN Linux capability.\n"
2784 		 "More information can be found at 'Perf events and tool security' document:\n"
2785 		 "https://www.kernel.org/doc/html/latest/admin-guide/perf-security.html\n"
2786 		 "perf_event_paranoid setting is %d:\n"
2787 		 "  -1: Allow use of (almost) all events by all users\n"
2788 		 "      Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2789 		 ">= 0: Disallow raw and ftrace function tracepoint access\n"
2790 		 ">= 1: Disallow CPU event access\n"
2791 		 ">= 2: Disallow kernel profiling\n"
2792 		 "To make the adjusted perf_event_paranoid setting permanent preserve it\n"
2793 		 "in /etc/sysctl.conf (e.g. kernel.perf_event_paranoid = <setting>)",
2794 		 perf_event_paranoid());
2795 	case ENOENT:
2796 		return scnprintf(msg, size, "The %s event is not supported.", evsel__name(evsel));
2797 	case EMFILE:
2798 		return scnprintf(msg, size, "%s",
2799 			 "Too many events are opened.\n"
2800 			 "Probably the maximum number of open file descriptors has been reached.\n"
2801 			 "Hint: Try again after reducing the number of events.\n"
2802 			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2803 	case ENOMEM:
2804 		if (evsel__has_callchain(evsel) &&
2805 		    access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2806 			return scnprintf(msg, size,
2807 					 "Not enough memory to setup event with callchain.\n"
2808 					 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2809 					 "Hint: Current value: %d", sysctl__max_stack());
2810 		break;
2811 	case ENODEV:
2812 		if (target->cpu_list)
2813 			return scnprintf(msg, size, "%s",
2814 	 "No such device - did you specify an out-of-range profile CPU?");
2815 		break;
2816 	case EOPNOTSUPP:
2817 		if (evsel->core.attr.aux_output)
2818 			return scnprintf(msg, size,
2819 	"%s: PMU Hardware doesn't support 'aux_output' feature",
2820 					 evsel__name(evsel));
2821 		if (evsel->core.attr.sample_period != 0)
2822 			return scnprintf(msg, size,
2823 	"%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
2824 					 evsel__name(evsel));
2825 		if (evsel->core.attr.precise_ip)
2826 			return scnprintf(msg, size, "%s",
2827 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2828 #if defined(__i386__) || defined(__x86_64__)
2829 		if (evsel->core.attr.type == PERF_TYPE_HARDWARE)
2830 			return scnprintf(msg, size, "%s",
2831 	"No hardware sampling interrupt available.\n");
2832 #endif
2833 		break;
2834 	case EBUSY:
2835 		if (find_process("oprofiled"))
2836 			return scnprintf(msg, size,
2837 	"The PMU counters are busy/taken by another profiler.\n"
2838 	"We found oprofile daemon running, please stop it and try again.");
2839 		break;
2840 	case EINVAL:
2841 		if (evsel->core.attr.sample_type & PERF_SAMPLE_CODE_PAGE_SIZE && perf_missing_features.code_page_size)
2842 			return scnprintf(msg, size, "Asking for the code page size isn't supported by this kernel.");
2843 		if (evsel->core.attr.sample_type & PERF_SAMPLE_DATA_PAGE_SIZE && perf_missing_features.data_page_size)
2844 			return scnprintf(msg, size, "Asking for the data page size isn't supported by this kernel.");
2845 		if (evsel->core.attr.write_backward && perf_missing_features.write_backward)
2846 			return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2847 		if (perf_missing_features.clockid)
2848 			return scnprintf(msg, size, "clockid feature not supported.");
2849 		if (perf_missing_features.clockid_wrong)
2850 			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2851 		if (perf_missing_features.aux_output)
2852 			return scnprintf(msg, size, "The 'aux_output' feature is not supported, update the kernel.");
2853 		break;
2854 	case ENODATA:
2855 		return scnprintf(msg, size, "Cannot collect data source with the load latency event alone. "
2856 				 "Please add an auxiliary event in front of the load latency event.");
2857 	default:
2858 		break;
2859 	}
2860 
2861 	return scnprintf(msg, size,
2862 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2863 	"/bin/dmesg | grep -i perf may provide additional information.\n",
2864 			 err, str_error_r(err, sbuf, sizeof(sbuf)), evsel__name(evsel));
2865 }
2866 
evsel__env(struct evsel * evsel)2867 struct perf_env *evsel__env(struct evsel *evsel)
2868 {
2869 	if (evsel && evsel->evlist)
2870 		return evsel->evlist->env;
2871 	return &perf_env;
2872 }
2873 
store_evsel_ids(struct evsel * evsel,struct evlist * evlist)2874 static int store_evsel_ids(struct evsel *evsel, struct evlist *evlist)
2875 {
2876 	int cpu, thread;
2877 
2878 	for (cpu = 0; cpu < xyarray__max_x(evsel->core.fd); cpu++) {
2879 		for (thread = 0; thread < xyarray__max_y(evsel->core.fd);
2880 		     thread++) {
2881 			int fd = FD(evsel, cpu, thread);
2882 
2883 			if (perf_evlist__id_add_fd(&evlist->core, &evsel->core,
2884 						   cpu, thread, fd) < 0)
2885 				return -1;
2886 		}
2887 	}
2888 
2889 	return 0;
2890 }
2891 
evsel__store_ids(struct evsel * evsel,struct evlist * evlist)2892 int evsel__store_ids(struct evsel *evsel, struct evlist *evlist)
2893 {
2894 	struct perf_cpu_map *cpus = evsel->core.cpus;
2895 	struct perf_thread_map *threads = evsel->core.threads;
2896 
2897 	if (perf_evsel__alloc_id(&evsel->core, cpus->nr, threads->nr))
2898 		return -ENOMEM;
2899 
2900 	return store_evsel_ids(evsel, evlist);
2901 }
2902 
evsel__zero_per_pkg(struct evsel * evsel)2903 void evsel__zero_per_pkg(struct evsel *evsel)
2904 {
2905 	struct hashmap_entry *cur;
2906 	size_t bkt;
2907 
2908 	if (evsel->per_pkg_mask) {
2909 		hashmap__for_each_entry(evsel->per_pkg_mask, cur, bkt)
2910 			free((char *)cur->key);
2911 
2912 		hashmap__clear(evsel->per_pkg_mask);
2913 	}
2914 }
2915 
evsel__is_hybrid(struct evsel * evsel)2916 bool evsel__is_hybrid(struct evsel *evsel)
2917 {
2918 	return evsel->pmu_name && perf_pmu__is_hybrid(evsel->pmu_name);
2919 }
2920 
evsel__leader(struct evsel * evsel)2921 struct evsel *evsel__leader(struct evsel *evsel)
2922 {
2923 	return container_of(evsel->core.leader, struct evsel, core);
2924 }
2925 
evsel__has_leader(struct evsel * evsel,struct evsel * leader)2926 bool evsel__has_leader(struct evsel *evsel, struct evsel *leader)
2927 {
2928 	return evsel->core.leader == &leader->core;
2929 }
2930 
evsel__is_leader(struct evsel * evsel)2931 bool evsel__is_leader(struct evsel *evsel)
2932 {
2933 	return evsel__has_leader(evsel, evsel);
2934 }
2935 
evsel__set_leader(struct evsel * evsel,struct evsel * leader)2936 void evsel__set_leader(struct evsel *evsel, struct evsel *leader)
2937 {
2938 	evsel->core.leader = &leader->core;
2939 }
2940