1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1995 Linus Torvalds
4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6 */
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */
9 #include <linux/kdebug.h> /* oops_begin/end, ... */
10 #include <linux/extable.h> /* search_exception_tables */
11 #include <linux/memblock.h> /* max_low_pfn */
12 #include <linux/kfence.h> /* kfence_handle_page_fault */
13 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
14 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
15 #include <linux/perf_event.h> /* perf_sw_event */
16 #include <linux/hugetlb.h> /* hstate_index_to_shift */
17 #include <linux/prefetch.h> /* prefetchw */
18 #include <linux/context_tracking.h> /* exception_enter(), ... */
19 #include <linux/uaccess.h> /* faulthandler_disabled() */
20 #include <linux/efi.h> /* efi_crash_gracefully_on_page_fault()*/
21 #include <linux/mm_types.h>
22
23 #include <asm/cpufeature.h> /* boot_cpu_has, ... */
24 #include <asm/traps.h> /* dotraplinkage, ... */
25 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
26 #include <asm/vsyscall.h> /* emulate_vsyscall */
27 #include <asm/vm86.h> /* struct vm86 */
28 #include <asm/mmu_context.h> /* vma_pkey() */
29 #include <asm/efi.h> /* efi_crash_gracefully_on_page_fault()*/
30 #include <asm/desc.h> /* store_idt(), ... */
31 #include <asm/cpu_entry_area.h> /* exception stack */
32 #include <asm/pgtable_areas.h> /* VMALLOC_START, ... */
33 #include <asm/kvm_para.h> /* kvm_handle_async_pf */
34 #include <asm/vdso.h> /* fixup_vdso_exception() */
35 #include <asm/irq_stack.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <asm/trace/exceptions.h>
39
40 /*
41 * Returns 0 if mmiotrace is disabled, or if the fault is not
42 * handled by mmiotrace:
43 */
44 static nokprobe_inline int
kmmio_fault(struct pt_regs * regs,unsigned long addr)45 kmmio_fault(struct pt_regs *regs, unsigned long addr)
46 {
47 if (unlikely(is_kmmio_active()))
48 if (kmmio_handler(regs, addr) == 1)
49 return -1;
50 return 0;
51 }
52
53 /*
54 * Prefetch quirks:
55 *
56 * 32-bit mode:
57 *
58 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
59 * Check that here and ignore it. This is AMD erratum #91.
60 *
61 * 64-bit mode:
62 *
63 * Sometimes the CPU reports invalid exceptions on prefetch.
64 * Check that here and ignore it.
65 *
66 * Opcode checker based on code by Richard Brunner.
67 */
68 static inline int
check_prefetch_opcode(struct pt_regs * regs,unsigned char * instr,unsigned char opcode,int * prefetch)69 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
70 unsigned char opcode, int *prefetch)
71 {
72 unsigned char instr_hi = opcode & 0xf0;
73 unsigned char instr_lo = opcode & 0x0f;
74
75 switch (instr_hi) {
76 case 0x20:
77 case 0x30:
78 /*
79 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
80 * In X86_64 long mode, the CPU will signal invalid
81 * opcode if some of these prefixes are present so
82 * X86_64 will never get here anyway
83 */
84 return ((instr_lo & 7) == 0x6);
85 #ifdef CONFIG_X86_64
86 case 0x40:
87 /*
88 * In 64-bit mode 0x40..0x4F are valid REX prefixes
89 */
90 return (!user_mode(regs) || user_64bit_mode(regs));
91 #endif
92 case 0x60:
93 /* 0x64 thru 0x67 are valid prefixes in all modes. */
94 return (instr_lo & 0xC) == 0x4;
95 case 0xF0:
96 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
97 return !instr_lo || (instr_lo>>1) == 1;
98 case 0x00:
99 /* Prefetch instruction is 0x0F0D or 0x0F18 */
100 if (get_kernel_nofault(opcode, instr))
101 return 0;
102
103 *prefetch = (instr_lo == 0xF) &&
104 (opcode == 0x0D || opcode == 0x18);
105 return 0;
106 default:
107 return 0;
108 }
109 }
110
is_amd_k8_pre_npt(void)111 static bool is_amd_k8_pre_npt(void)
112 {
113 struct cpuinfo_x86 *c = &boot_cpu_data;
114
115 return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) &&
116 c->x86_vendor == X86_VENDOR_AMD &&
117 c->x86 == 0xf && c->x86_model < 0x40);
118 }
119
120 static int
is_prefetch(struct pt_regs * regs,unsigned long error_code,unsigned long addr)121 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
122 {
123 unsigned char *max_instr;
124 unsigned char *instr;
125 int prefetch = 0;
126
127 /* Erratum #91 affects AMD K8, pre-NPT CPUs */
128 if (!is_amd_k8_pre_npt())
129 return 0;
130
131 /*
132 * If it was a exec (instruction fetch) fault on NX page, then
133 * do not ignore the fault:
134 */
135 if (error_code & X86_PF_INSTR)
136 return 0;
137
138 instr = (void *)convert_ip_to_linear(current, regs);
139 max_instr = instr + 15;
140
141 /*
142 * This code has historically always bailed out if IP points to a
143 * not-present page (e.g. due to a race). No one has ever
144 * complained about this.
145 */
146 pagefault_disable();
147
148 while (instr < max_instr) {
149 unsigned char opcode;
150
151 if (user_mode(regs)) {
152 if (get_user(opcode, instr))
153 break;
154 } else {
155 if (get_kernel_nofault(opcode, instr))
156 break;
157 }
158
159 instr++;
160
161 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
162 break;
163 }
164
165 pagefault_enable();
166 return prefetch;
167 }
168
169 DEFINE_SPINLOCK(pgd_lock);
170 LIST_HEAD(pgd_list);
171
172 #ifdef CONFIG_X86_32
vmalloc_sync_one(pgd_t * pgd,unsigned long address)173 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
174 {
175 unsigned index = pgd_index(address);
176 pgd_t *pgd_k;
177 p4d_t *p4d, *p4d_k;
178 pud_t *pud, *pud_k;
179 pmd_t *pmd, *pmd_k;
180
181 pgd += index;
182 pgd_k = init_mm.pgd + index;
183
184 if (!pgd_present(*pgd_k))
185 return NULL;
186
187 /*
188 * set_pgd(pgd, *pgd_k); here would be useless on PAE
189 * and redundant with the set_pmd() on non-PAE. As would
190 * set_p4d/set_pud.
191 */
192 p4d = p4d_offset(pgd, address);
193 p4d_k = p4d_offset(pgd_k, address);
194 if (!p4d_present(*p4d_k))
195 return NULL;
196
197 pud = pud_offset(p4d, address);
198 pud_k = pud_offset(p4d_k, address);
199 if (!pud_present(*pud_k))
200 return NULL;
201
202 pmd = pmd_offset(pud, address);
203 pmd_k = pmd_offset(pud_k, address);
204
205 if (pmd_present(*pmd) != pmd_present(*pmd_k))
206 set_pmd(pmd, *pmd_k);
207
208 if (!pmd_present(*pmd_k))
209 return NULL;
210 else
211 BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
212
213 return pmd_k;
214 }
215
216 /*
217 * Handle a fault on the vmalloc or module mapping area
218 *
219 * This is needed because there is a race condition between the time
220 * when the vmalloc mapping code updates the PMD to the point in time
221 * where it synchronizes this update with the other page-tables in the
222 * system.
223 *
224 * In this race window another thread/CPU can map an area on the same
225 * PMD, finds it already present and does not synchronize it with the
226 * rest of the system yet. As a result v[mz]alloc might return areas
227 * which are not mapped in every page-table in the system, causing an
228 * unhandled page-fault when they are accessed.
229 */
vmalloc_fault(unsigned long address)230 static noinline int vmalloc_fault(unsigned long address)
231 {
232 unsigned long pgd_paddr;
233 pmd_t *pmd_k;
234 pte_t *pte_k;
235
236 /* Make sure we are in vmalloc area: */
237 if (!(address >= VMALLOC_START && address < VMALLOC_END))
238 return -1;
239
240 /*
241 * Synchronize this task's top level page-table
242 * with the 'reference' page table.
243 *
244 * Do _not_ use "current" here. We might be inside
245 * an interrupt in the middle of a task switch..
246 */
247 pgd_paddr = read_cr3_pa();
248 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
249 if (!pmd_k)
250 return -1;
251
252 if (pmd_large(*pmd_k))
253 return 0;
254
255 pte_k = pte_offset_kernel(pmd_k, address);
256 if (!pte_present(*pte_k))
257 return -1;
258
259 return 0;
260 }
261 NOKPROBE_SYMBOL(vmalloc_fault);
262
arch_sync_kernel_mappings(unsigned long start,unsigned long end)263 void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
264 {
265 unsigned long addr;
266
267 for (addr = start & PMD_MASK;
268 addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
269 addr += PMD_SIZE) {
270 struct page *page;
271
272 spin_lock(&pgd_lock);
273 list_for_each_entry(page, &pgd_list, lru) {
274 spinlock_t *pgt_lock;
275
276 /* the pgt_lock only for Xen */
277 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
278
279 spin_lock(pgt_lock);
280 vmalloc_sync_one(page_address(page), addr);
281 spin_unlock(pgt_lock);
282 }
283 spin_unlock(&pgd_lock);
284 }
285 }
286
low_pfn(unsigned long pfn)287 static bool low_pfn(unsigned long pfn)
288 {
289 return pfn < max_low_pfn;
290 }
291
dump_pagetable(unsigned long address)292 static void dump_pagetable(unsigned long address)
293 {
294 pgd_t *base = __va(read_cr3_pa());
295 pgd_t *pgd = &base[pgd_index(address)];
296 p4d_t *p4d;
297 pud_t *pud;
298 pmd_t *pmd;
299 pte_t *pte;
300
301 #ifdef CONFIG_X86_PAE
302 pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
303 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
304 goto out;
305 #define pr_pde pr_cont
306 #else
307 #define pr_pde pr_info
308 #endif
309 p4d = p4d_offset(pgd, address);
310 pud = pud_offset(p4d, address);
311 pmd = pmd_offset(pud, address);
312 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
313 #undef pr_pde
314
315 /*
316 * We must not directly access the pte in the highpte
317 * case if the page table is located in highmem.
318 * And let's rather not kmap-atomic the pte, just in case
319 * it's allocated already:
320 */
321 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
322 goto out;
323
324 pte = pte_offset_kernel(pmd, address);
325 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
326 out:
327 pr_cont("\n");
328 }
329
330 #else /* CONFIG_X86_64: */
331
332 #ifdef CONFIG_CPU_SUP_AMD
333 static const char errata93_warning[] =
334 KERN_ERR
335 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
336 "******* Working around it, but it may cause SEGVs or burn power.\n"
337 "******* Please consider a BIOS update.\n"
338 "******* Disabling USB legacy in the BIOS may also help.\n";
339 #endif
340
bad_address(void * p)341 static int bad_address(void *p)
342 {
343 unsigned long dummy;
344
345 return get_kernel_nofault(dummy, (unsigned long *)p);
346 }
347
dump_pagetable(unsigned long address)348 static void dump_pagetable(unsigned long address)
349 {
350 pgd_t *base = __va(read_cr3_pa());
351 pgd_t *pgd = base + pgd_index(address);
352 p4d_t *p4d;
353 pud_t *pud;
354 pmd_t *pmd;
355 pte_t *pte;
356
357 if (bad_address(pgd))
358 goto bad;
359
360 pr_info("PGD %lx ", pgd_val(*pgd));
361
362 if (!pgd_present(*pgd))
363 goto out;
364
365 p4d = p4d_offset(pgd, address);
366 if (bad_address(p4d))
367 goto bad;
368
369 pr_cont("P4D %lx ", p4d_val(*p4d));
370 if (!p4d_present(*p4d) || p4d_large(*p4d))
371 goto out;
372
373 pud = pud_offset(p4d, address);
374 if (bad_address(pud))
375 goto bad;
376
377 pr_cont("PUD %lx ", pud_val(*pud));
378 if (!pud_present(*pud) || pud_large(*pud))
379 goto out;
380
381 pmd = pmd_offset(pud, address);
382 if (bad_address(pmd))
383 goto bad;
384
385 pr_cont("PMD %lx ", pmd_val(*pmd));
386 if (!pmd_present(*pmd) || pmd_large(*pmd))
387 goto out;
388
389 pte = pte_offset_kernel(pmd, address);
390 if (bad_address(pte))
391 goto bad;
392
393 pr_cont("PTE %lx", pte_val(*pte));
394 out:
395 pr_cont("\n");
396 return;
397 bad:
398 pr_info("BAD\n");
399 }
400
401 #endif /* CONFIG_X86_64 */
402
403 /*
404 * Workaround for K8 erratum #93 & buggy BIOS.
405 *
406 * BIOS SMM functions are required to use a specific workaround
407 * to avoid corruption of the 64bit RIP register on C stepping K8.
408 *
409 * A lot of BIOS that didn't get tested properly miss this.
410 *
411 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
412 * Try to work around it here.
413 *
414 * Note we only handle faults in kernel here.
415 * Does nothing on 32-bit.
416 */
is_errata93(struct pt_regs * regs,unsigned long address)417 static int is_errata93(struct pt_regs *regs, unsigned long address)
418 {
419 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
420 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
421 || boot_cpu_data.x86 != 0xf)
422 return 0;
423
424 if (user_mode(regs))
425 return 0;
426
427 if (address != regs->ip)
428 return 0;
429
430 if ((address >> 32) != 0)
431 return 0;
432
433 address |= 0xffffffffUL << 32;
434 if ((address >= (u64)_stext && address <= (u64)_etext) ||
435 (address >= MODULES_VADDR && address <= MODULES_END)) {
436 printk_once(errata93_warning);
437 regs->ip = address;
438 return 1;
439 }
440 #endif
441 return 0;
442 }
443
444 /*
445 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
446 * to illegal addresses >4GB.
447 *
448 * We catch this in the page fault handler because these addresses
449 * are not reachable. Just detect this case and return. Any code
450 * segment in LDT is compatibility mode.
451 */
is_errata100(struct pt_regs * regs,unsigned long address)452 static int is_errata100(struct pt_regs *regs, unsigned long address)
453 {
454 #ifdef CONFIG_X86_64
455 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
456 return 1;
457 #endif
458 return 0;
459 }
460
461 /* Pentium F0 0F C7 C8 bug workaround: */
is_f00f_bug(struct pt_regs * regs,unsigned long error_code,unsigned long address)462 static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code,
463 unsigned long address)
464 {
465 #ifdef CONFIG_X86_F00F_BUG
466 if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) &&
467 idt_is_f00f_address(address)) {
468 handle_invalid_op(regs);
469 return 1;
470 }
471 #endif
472 return 0;
473 }
474
show_ldttss(const struct desc_ptr * gdt,const char * name,u16 index)475 static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
476 {
477 u32 offset = (index >> 3) * sizeof(struct desc_struct);
478 unsigned long addr;
479 struct ldttss_desc desc;
480
481 if (index == 0) {
482 pr_alert("%s: NULL\n", name);
483 return;
484 }
485
486 if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
487 pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
488 return;
489 }
490
491 if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
492 sizeof(struct ldttss_desc))) {
493 pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
494 name, index);
495 return;
496 }
497
498 addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
499 #ifdef CONFIG_X86_64
500 addr |= ((u64)desc.base3 << 32);
501 #endif
502 pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
503 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
504 }
505
506 static void
show_fault_oops(struct pt_regs * regs,unsigned long error_code,unsigned long address)507 show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
508 {
509 if (!oops_may_print())
510 return;
511
512 if (error_code & X86_PF_INSTR) {
513 unsigned int level;
514 pgd_t *pgd;
515 pte_t *pte;
516
517 pgd = __va(read_cr3_pa());
518 pgd += pgd_index(address);
519
520 pte = lookup_address_in_pgd(pgd, address, &level);
521
522 if (pte && pte_present(*pte) && !pte_exec(*pte))
523 pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
524 from_kuid(&init_user_ns, current_uid()));
525 if (pte && pte_present(*pte) && pte_exec(*pte) &&
526 (pgd_flags(*pgd) & _PAGE_USER) &&
527 (__read_cr4() & X86_CR4_SMEP))
528 pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
529 from_kuid(&init_user_ns, current_uid()));
530 }
531
532 if (address < PAGE_SIZE && !user_mode(regs))
533 pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
534 (void *)address);
535 else
536 pr_alert("BUG: unable to handle page fault for address: %px\n",
537 (void *)address);
538
539 pr_alert("#PF: %s %s in %s mode\n",
540 (error_code & X86_PF_USER) ? "user" : "supervisor",
541 (error_code & X86_PF_INSTR) ? "instruction fetch" :
542 (error_code & X86_PF_WRITE) ? "write access" :
543 "read access",
544 user_mode(regs) ? "user" : "kernel");
545 pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
546 !(error_code & X86_PF_PROT) ? "not-present page" :
547 (error_code & X86_PF_RSVD) ? "reserved bit violation" :
548 (error_code & X86_PF_PK) ? "protection keys violation" :
549 "permissions violation");
550
551 if (!(error_code & X86_PF_USER) && user_mode(regs)) {
552 struct desc_ptr idt, gdt;
553 u16 ldtr, tr;
554
555 /*
556 * This can happen for quite a few reasons. The more obvious
557 * ones are faults accessing the GDT, or LDT. Perhaps
558 * surprisingly, if the CPU tries to deliver a benign or
559 * contributory exception from user code and gets a page fault
560 * during delivery, the page fault can be delivered as though
561 * it originated directly from user code. This could happen
562 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
563 * kernel or IST stack.
564 */
565 store_idt(&idt);
566
567 /* Usable even on Xen PV -- it's just slow. */
568 native_store_gdt(&gdt);
569
570 pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
571 idt.address, idt.size, gdt.address, gdt.size);
572
573 store_ldt(ldtr);
574 show_ldttss(&gdt, "LDTR", ldtr);
575
576 store_tr(tr);
577 show_ldttss(&gdt, "TR", tr);
578 }
579
580 dump_pagetable(address);
581 }
582
583 static noinline void
pgtable_bad(struct pt_regs * regs,unsigned long error_code,unsigned long address)584 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
585 unsigned long address)
586 {
587 struct task_struct *tsk;
588 unsigned long flags;
589 int sig;
590
591 flags = oops_begin();
592 tsk = current;
593 sig = SIGKILL;
594
595 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
596 tsk->comm, address);
597 dump_pagetable(address);
598
599 if (__die("Bad pagetable", regs, error_code))
600 sig = 0;
601
602 oops_end(flags, regs, sig);
603 }
604
sanitize_error_code(unsigned long address,unsigned long * error_code)605 static void sanitize_error_code(unsigned long address,
606 unsigned long *error_code)
607 {
608 /*
609 * To avoid leaking information about the kernel page
610 * table layout, pretend that user-mode accesses to
611 * kernel addresses are always protection faults.
612 *
613 * NB: This means that failed vsyscalls with vsyscall=none
614 * will have the PROT bit. This doesn't leak any
615 * information and does not appear to cause any problems.
616 */
617 if (address >= TASK_SIZE_MAX)
618 *error_code |= X86_PF_PROT;
619 }
620
set_signal_archinfo(unsigned long address,unsigned long error_code)621 static void set_signal_archinfo(unsigned long address,
622 unsigned long error_code)
623 {
624 struct task_struct *tsk = current;
625
626 tsk->thread.trap_nr = X86_TRAP_PF;
627 tsk->thread.error_code = error_code | X86_PF_USER;
628 tsk->thread.cr2 = address;
629 }
630
631 static noinline void
page_fault_oops(struct pt_regs * regs,unsigned long error_code,unsigned long address)632 page_fault_oops(struct pt_regs *regs, unsigned long error_code,
633 unsigned long address)
634 {
635 #ifdef CONFIG_VMAP_STACK
636 struct stack_info info;
637 #endif
638 unsigned long flags;
639 int sig;
640
641 if (user_mode(regs)) {
642 /*
643 * Implicit kernel access from user mode? Skip the stack
644 * overflow and EFI special cases.
645 */
646 goto oops;
647 }
648
649 #ifdef CONFIG_VMAP_STACK
650 /*
651 * Stack overflow? During boot, we can fault near the initial
652 * stack in the direct map, but that's not an overflow -- check
653 * that we're in vmalloc space to avoid this.
654 */
655 if (is_vmalloc_addr((void *)address) &&
656 get_stack_guard_info((void *)address, &info)) {
657 /*
658 * We're likely to be running with very little stack space
659 * left. It's plausible that we'd hit this condition but
660 * double-fault even before we get this far, in which case
661 * we're fine: the double-fault handler will deal with it.
662 *
663 * We don't want to make it all the way into the oops code
664 * and then double-fault, though, because we're likely to
665 * break the console driver and lose most of the stack dump.
666 */
667 call_on_stack(__this_cpu_ist_top_va(DF) - sizeof(void*),
668 handle_stack_overflow,
669 ASM_CALL_ARG3,
670 , [arg1] "r" (regs), [arg2] "r" (address), [arg3] "r" (&info));
671
672 unreachable();
673 }
674 #endif
675
676 /*
677 * Buggy firmware could access regions which might page fault. If
678 * this happens, EFI has a special OOPS path that will try to
679 * avoid hanging the system.
680 */
681 if (IS_ENABLED(CONFIG_EFI))
682 efi_crash_gracefully_on_page_fault(address);
683
684 /* Only not-present faults should be handled by KFENCE. */
685 if (!(error_code & X86_PF_PROT) &&
686 kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs))
687 return;
688
689 oops:
690 /*
691 * Oops. The kernel tried to access some bad page. We'll have to
692 * terminate things with extreme prejudice:
693 */
694 flags = oops_begin();
695
696 show_fault_oops(regs, error_code, address);
697
698 if (task_stack_end_corrupted(current))
699 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
700
701 sig = SIGKILL;
702 if (__die("Oops", regs, error_code))
703 sig = 0;
704
705 /* Executive summary in case the body of the oops scrolled away */
706 printk(KERN_DEFAULT "CR2: %016lx\n", address);
707
708 oops_end(flags, regs, sig);
709 }
710
711 static noinline void
kernelmode_fixup_or_oops(struct pt_regs * regs,unsigned long error_code,unsigned long address,int signal,int si_code,u32 pkey)712 kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code,
713 unsigned long address, int signal, int si_code,
714 u32 pkey)
715 {
716 WARN_ON_ONCE(user_mode(regs));
717
718 /* Are we prepared to handle this kernel fault? */
719 if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
720 /*
721 * Any interrupt that takes a fault gets the fixup. This makes
722 * the below recursive fault logic only apply to a faults from
723 * task context.
724 */
725 if (in_interrupt())
726 return;
727
728 /*
729 * Per the above we're !in_interrupt(), aka. task context.
730 *
731 * In this case we need to make sure we're not recursively
732 * faulting through the emulate_vsyscall() logic.
733 */
734 if (current->thread.sig_on_uaccess_err && signal) {
735 sanitize_error_code(address, &error_code);
736
737 set_signal_archinfo(address, error_code);
738
739 if (si_code == SEGV_PKUERR) {
740 force_sig_pkuerr((void __user *)address, pkey);
741 } else {
742 /* XXX: hwpoison faults will set the wrong code. */
743 force_sig_fault(signal, si_code, (void __user *)address);
744 }
745 }
746
747 /*
748 * Barring that, we can do the fixup and be happy.
749 */
750 return;
751 }
752
753 /*
754 * AMD erratum #91 manifests as a spurious page fault on a PREFETCH
755 * instruction.
756 */
757 if (is_prefetch(regs, error_code, address))
758 return;
759
760 page_fault_oops(regs, error_code, address);
761 }
762
763 /*
764 * Print out info about fatal segfaults, if the show_unhandled_signals
765 * sysctl is set:
766 */
767 static inline void
show_signal_msg(struct pt_regs * regs,unsigned long error_code,unsigned long address,struct task_struct * tsk)768 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
769 unsigned long address, struct task_struct *tsk)
770 {
771 const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
772
773 if (!unhandled_signal(tsk, SIGSEGV))
774 return;
775
776 if (!printk_ratelimit())
777 return;
778
779 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
780 loglvl, tsk->comm, task_pid_nr(tsk), address,
781 (void *)regs->ip, (void *)regs->sp, error_code);
782
783 print_vma_addr(KERN_CONT " in ", regs->ip);
784
785 printk(KERN_CONT "\n");
786
787 show_opcodes(regs, loglvl);
788 }
789
790 /*
791 * The (legacy) vsyscall page is the long page in the kernel portion
792 * of the address space that has user-accessible permissions.
793 */
is_vsyscall_vaddr(unsigned long vaddr)794 static bool is_vsyscall_vaddr(unsigned long vaddr)
795 {
796 return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
797 }
798
799 static void
__bad_area_nosemaphore(struct pt_regs * regs,unsigned long error_code,unsigned long address,u32 pkey,int si_code)800 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
801 unsigned long address, u32 pkey, int si_code)
802 {
803 struct task_struct *tsk = current;
804
805 if (!user_mode(regs)) {
806 kernelmode_fixup_or_oops(regs, error_code, address,
807 SIGSEGV, si_code, pkey);
808 return;
809 }
810
811 if (!(error_code & X86_PF_USER)) {
812 /* Implicit user access to kernel memory -- just oops */
813 page_fault_oops(regs, error_code, address);
814 return;
815 }
816
817 /*
818 * User mode accesses just cause a SIGSEGV.
819 * It's possible to have interrupts off here:
820 */
821 local_irq_enable();
822
823 /*
824 * Valid to do another page fault here because this one came
825 * from user space:
826 */
827 if (is_prefetch(regs, error_code, address))
828 return;
829
830 if (is_errata100(regs, address))
831 return;
832
833 sanitize_error_code(address, &error_code);
834
835 if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
836 return;
837
838 if (likely(show_unhandled_signals))
839 show_signal_msg(regs, error_code, address, tsk);
840
841 set_signal_archinfo(address, error_code);
842
843 if (si_code == SEGV_PKUERR)
844 force_sig_pkuerr((void __user *)address, pkey);
845 else
846 force_sig_fault(SIGSEGV, si_code, (void __user *)address);
847
848 local_irq_disable();
849 }
850
851 static noinline void
bad_area_nosemaphore(struct pt_regs * regs,unsigned long error_code,unsigned long address)852 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
853 unsigned long address)
854 {
855 __bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
856 }
857
858 static void
__bad_area(struct pt_regs * regs,unsigned long error_code,unsigned long address,u32 pkey,int si_code)859 __bad_area(struct pt_regs *regs, unsigned long error_code,
860 unsigned long address, u32 pkey, int si_code)
861 {
862 struct mm_struct *mm = current->mm;
863 /*
864 * Something tried to access memory that isn't in our memory map..
865 * Fix it, but check if it's kernel or user first..
866 */
867 mmap_read_unlock(mm);
868
869 __bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
870 }
871
872 static noinline void
bad_area(struct pt_regs * regs,unsigned long error_code,unsigned long address)873 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
874 {
875 __bad_area(regs, error_code, address, 0, SEGV_MAPERR);
876 }
877
bad_area_access_from_pkeys(unsigned long error_code,struct vm_area_struct * vma)878 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
879 struct vm_area_struct *vma)
880 {
881 /* This code is always called on the current mm */
882 bool foreign = false;
883
884 if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
885 return false;
886 if (error_code & X86_PF_PK)
887 return true;
888 /* this checks permission keys on the VMA: */
889 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
890 (error_code & X86_PF_INSTR), foreign))
891 return true;
892 return false;
893 }
894
895 static noinline void
bad_area_access_error(struct pt_regs * regs,unsigned long error_code,unsigned long address,struct vm_area_struct * vma)896 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
897 unsigned long address, struct vm_area_struct *vma)
898 {
899 /*
900 * This OSPKE check is not strictly necessary at runtime.
901 * But, doing it this way allows compiler optimizations
902 * if pkeys are compiled out.
903 */
904 if (bad_area_access_from_pkeys(error_code, vma)) {
905 /*
906 * A protection key fault means that the PKRU value did not allow
907 * access to some PTE. Userspace can figure out what PKRU was
908 * from the XSAVE state. This function captures the pkey from
909 * the vma and passes it to userspace so userspace can discover
910 * which protection key was set on the PTE.
911 *
912 * If we get here, we know that the hardware signaled a X86_PF_PK
913 * fault and that there was a VMA once we got in the fault
914 * handler. It does *not* guarantee that the VMA we find here
915 * was the one that we faulted on.
916 *
917 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
918 * 2. T1 : set PKRU to deny access to pkey=4, touches page
919 * 3. T1 : faults...
920 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
921 * 5. T1 : enters fault handler, takes mmap_lock, etc...
922 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
923 * faulted on a pte with its pkey=4.
924 */
925 u32 pkey = vma_pkey(vma);
926
927 __bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
928 } else {
929 __bad_area(regs, error_code, address, 0, SEGV_ACCERR);
930 }
931 }
932
933 static void
do_sigbus(struct pt_regs * regs,unsigned long error_code,unsigned long address,vm_fault_t fault)934 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
935 vm_fault_t fault)
936 {
937 /* Kernel mode? Handle exceptions or die: */
938 if (!user_mode(regs)) {
939 kernelmode_fixup_or_oops(regs, error_code, address,
940 SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY);
941 return;
942 }
943
944 /* User-space => ok to do another page fault: */
945 if (is_prefetch(regs, error_code, address))
946 return;
947
948 sanitize_error_code(address, &error_code);
949
950 if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
951 return;
952
953 set_signal_archinfo(address, error_code);
954
955 #ifdef CONFIG_MEMORY_FAILURE
956 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
957 struct task_struct *tsk = current;
958 unsigned lsb = 0;
959
960 pr_err(
961 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
962 tsk->comm, tsk->pid, address);
963 if (fault & VM_FAULT_HWPOISON_LARGE)
964 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
965 if (fault & VM_FAULT_HWPOISON)
966 lsb = PAGE_SHIFT;
967 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
968 return;
969 }
970 #endif
971 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
972 }
973
spurious_kernel_fault_check(unsigned long error_code,pte_t * pte)974 static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
975 {
976 if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
977 return 0;
978
979 if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
980 return 0;
981
982 return 1;
983 }
984
985 /*
986 * Handle a spurious fault caused by a stale TLB entry.
987 *
988 * This allows us to lazily refresh the TLB when increasing the
989 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
990 * eagerly is very expensive since that implies doing a full
991 * cross-processor TLB flush, even if no stale TLB entries exist
992 * on other processors.
993 *
994 * Spurious faults may only occur if the TLB contains an entry with
995 * fewer permission than the page table entry. Non-present (P = 0)
996 * and reserved bit (R = 1) faults are never spurious.
997 *
998 * There are no security implications to leaving a stale TLB when
999 * increasing the permissions on a page.
1000 *
1001 * Returns non-zero if a spurious fault was handled, zero otherwise.
1002 *
1003 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1004 * (Optional Invalidation).
1005 */
1006 static noinline int
spurious_kernel_fault(unsigned long error_code,unsigned long address)1007 spurious_kernel_fault(unsigned long error_code, unsigned long address)
1008 {
1009 pgd_t *pgd;
1010 p4d_t *p4d;
1011 pud_t *pud;
1012 pmd_t *pmd;
1013 pte_t *pte;
1014 int ret;
1015
1016 /*
1017 * Only writes to RO or instruction fetches from NX may cause
1018 * spurious faults.
1019 *
1020 * These could be from user or supervisor accesses but the TLB
1021 * is only lazily flushed after a kernel mapping protection
1022 * change, so user accesses are not expected to cause spurious
1023 * faults.
1024 */
1025 if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1026 error_code != (X86_PF_INSTR | X86_PF_PROT))
1027 return 0;
1028
1029 pgd = init_mm.pgd + pgd_index(address);
1030 if (!pgd_present(*pgd))
1031 return 0;
1032
1033 p4d = p4d_offset(pgd, address);
1034 if (!p4d_present(*p4d))
1035 return 0;
1036
1037 if (p4d_large(*p4d))
1038 return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1039
1040 pud = pud_offset(p4d, address);
1041 if (!pud_present(*pud))
1042 return 0;
1043
1044 if (pud_large(*pud))
1045 return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1046
1047 pmd = pmd_offset(pud, address);
1048 if (!pmd_present(*pmd))
1049 return 0;
1050
1051 if (pmd_large(*pmd))
1052 return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1053
1054 pte = pte_offset_kernel(pmd, address);
1055 if (!pte_present(*pte))
1056 return 0;
1057
1058 ret = spurious_kernel_fault_check(error_code, pte);
1059 if (!ret)
1060 return 0;
1061
1062 /*
1063 * Make sure we have permissions in PMD.
1064 * If not, then there's a bug in the page tables:
1065 */
1066 ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1067 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1068
1069 return ret;
1070 }
1071 NOKPROBE_SYMBOL(spurious_kernel_fault);
1072
1073 int show_unhandled_signals = 1;
1074
1075 static inline int
access_error(unsigned long error_code,struct vm_area_struct * vma)1076 access_error(unsigned long error_code, struct vm_area_struct *vma)
1077 {
1078 /* This is only called for the current mm, so: */
1079 bool foreign = false;
1080
1081 /*
1082 * Read or write was blocked by protection keys. This is
1083 * always an unconditional error and can never result in
1084 * a follow-up action to resolve the fault, like a COW.
1085 */
1086 if (error_code & X86_PF_PK)
1087 return 1;
1088
1089 /*
1090 * SGX hardware blocked the access. This usually happens
1091 * when the enclave memory contents have been destroyed, like
1092 * after a suspend/resume cycle. In any case, the kernel can't
1093 * fix the cause of the fault. Handle the fault as an access
1094 * error even in cases where no actual access violation
1095 * occurred. This allows userspace to rebuild the enclave in
1096 * response to the signal.
1097 */
1098 if (unlikely(error_code & X86_PF_SGX))
1099 return 1;
1100
1101 /*
1102 * Make sure to check the VMA so that we do not perform
1103 * faults just to hit a X86_PF_PK as soon as we fill in a
1104 * page.
1105 */
1106 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1107 (error_code & X86_PF_INSTR), foreign))
1108 return 1;
1109
1110 if (error_code & X86_PF_WRITE) {
1111 /* write, present and write, not present: */
1112 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1113 return 1;
1114 return 0;
1115 }
1116
1117 /* read, present: */
1118 if (unlikely(error_code & X86_PF_PROT))
1119 return 1;
1120
1121 /* read, not present: */
1122 if (unlikely(!vma_is_accessible(vma)))
1123 return 1;
1124
1125 return 0;
1126 }
1127
fault_in_kernel_space(unsigned long address)1128 bool fault_in_kernel_space(unsigned long address)
1129 {
1130 /*
1131 * On 64-bit systems, the vsyscall page is at an address above
1132 * TASK_SIZE_MAX, but is not considered part of the kernel
1133 * address space.
1134 */
1135 if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1136 return false;
1137
1138 return address >= TASK_SIZE_MAX;
1139 }
1140
1141 /*
1142 * Called for all faults where 'address' is part of the kernel address
1143 * space. Might get called for faults that originate from *code* that
1144 * ran in userspace or the kernel.
1145 */
1146 static void
do_kern_addr_fault(struct pt_regs * regs,unsigned long hw_error_code,unsigned long address)1147 do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1148 unsigned long address)
1149 {
1150 /*
1151 * Protection keys exceptions only happen on user pages. We
1152 * have no user pages in the kernel portion of the address
1153 * space, so do not expect them here.
1154 */
1155 WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1156
1157 #ifdef CONFIG_X86_32
1158 /*
1159 * We can fault-in kernel-space virtual memory on-demand. The
1160 * 'reference' page table is init_mm.pgd.
1161 *
1162 * NOTE! We MUST NOT take any locks for this case. We may
1163 * be in an interrupt or a critical region, and should
1164 * only copy the information from the master page table,
1165 * nothing more.
1166 *
1167 * Before doing this on-demand faulting, ensure that the
1168 * fault is not any of the following:
1169 * 1. A fault on a PTE with a reserved bit set.
1170 * 2. A fault caused by a user-mode access. (Do not demand-
1171 * fault kernel memory due to user-mode accesses).
1172 * 3. A fault caused by a page-level protection violation.
1173 * (A demand fault would be on a non-present page which
1174 * would have X86_PF_PROT==0).
1175 *
1176 * This is only needed to close a race condition on x86-32 in
1177 * the vmalloc mapping/unmapping code. See the comment above
1178 * vmalloc_fault() for details. On x86-64 the race does not
1179 * exist as the vmalloc mappings don't need to be synchronized
1180 * there.
1181 */
1182 if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1183 if (vmalloc_fault(address) >= 0)
1184 return;
1185 }
1186 #endif
1187
1188 if (is_f00f_bug(regs, hw_error_code, address))
1189 return;
1190
1191 /* Was the fault spurious, caused by lazy TLB invalidation? */
1192 if (spurious_kernel_fault(hw_error_code, address))
1193 return;
1194
1195 /* kprobes don't want to hook the spurious faults: */
1196 if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1197 return;
1198
1199 /*
1200 * Note, despite being a "bad area", there are quite a few
1201 * acceptable reasons to get here, such as erratum fixups
1202 * and handling kernel code that can fault, like get_user().
1203 *
1204 * Don't take the mm semaphore here. If we fixup a prefetch
1205 * fault we could otherwise deadlock:
1206 */
1207 bad_area_nosemaphore(regs, hw_error_code, address);
1208 }
1209 NOKPROBE_SYMBOL(do_kern_addr_fault);
1210
1211 /*
1212 * Handle faults in the user portion of the address space. Nothing in here
1213 * should check X86_PF_USER without a specific justification: for almost
1214 * all purposes, we should treat a normal kernel access to user memory
1215 * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction.
1216 * The one exception is AC flag handling, which is, per the x86
1217 * architecture, special for WRUSS.
1218 */
1219 static inline
do_user_addr_fault(struct pt_regs * regs,unsigned long error_code,unsigned long address)1220 void do_user_addr_fault(struct pt_regs *regs,
1221 unsigned long error_code,
1222 unsigned long address)
1223 {
1224 struct vm_area_struct *vma;
1225 struct task_struct *tsk;
1226 struct mm_struct *mm;
1227 vm_fault_t fault;
1228 unsigned int flags = FAULT_FLAG_DEFAULT;
1229 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
1230 struct vm_area_struct pvma;
1231 unsigned long seq;
1232 #endif
1233
1234 tsk = current;
1235 mm = tsk->mm;
1236
1237 if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) {
1238 /*
1239 * Whoops, this is kernel mode code trying to execute from
1240 * user memory. Unless this is AMD erratum #93, which
1241 * corrupts RIP such that it looks like a user address,
1242 * this is unrecoverable. Don't even try to look up the
1243 * VMA or look for extable entries.
1244 */
1245 if (is_errata93(regs, address))
1246 return;
1247
1248 page_fault_oops(regs, error_code, address);
1249 return;
1250 }
1251
1252 /* kprobes don't want to hook the spurious faults: */
1253 if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1254 return;
1255
1256 /*
1257 * Reserved bits are never expected to be set on
1258 * entries in the user portion of the page tables.
1259 */
1260 if (unlikely(error_code & X86_PF_RSVD))
1261 pgtable_bad(regs, error_code, address);
1262
1263 /*
1264 * If SMAP is on, check for invalid kernel (supervisor) access to user
1265 * pages in the user address space. The odd case here is WRUSS,
1266 * which, according to the preliminary documentation, does not respect
1267 * SMAP and will have the USER bit set so, in all cases, SMAP
1268 * enforcement appears to be consistent with the USER bit.
1269 */
1270 if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1271 !(error_code & X86_PF_USER) &&
1272 !(regs->flags & X86_EFLAGS_AC))) {
1273 /*
1274 * No extable entry here. This was a kernel access to an
1275 * invalid pointer. get_kernel_nofault() will not get here.
1276 */
1277 page_fault_oops(regs, error_code, address);
1278 return;
1279 }
1280
1281 /*
1282 * If we're in an interrupt, have no user context or are running
1283 * in a region with pagefaults disabled then we must not take the fault
1284 */
1285 if (unlikely(faulthandler_disabled() || !mm)) {
1286 bad_area_nosemaphore(regs, error_code, address);
1287 return;
1288 }
1289
1290 /*
1291 * It's safe to allow irq's after cr2 has been saved and the
1292 * vmalloc fault has been handled.
1293 *
1294 * User-mode registers count as a user access even for any
1295 * potential system fault or CPU buglet:
1296 */
1297 if (user_mode(regs)) {
1298 local_irq_enable();
1299 flags |= FAULT_FLAG_USER;
1300 } else {
1301 if (regs->flags & X86_EFLAGS_IF)
1302 local_irq_enable();
1303 }
1304
1305 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1306
1307 if (error_code & X86_PF_WRITE)
1308 flags |= FAULT_FLAG_WRITE;
1309 if (error_code & X86_PF_INSTR)
1310 flags |= FAULT_FLAG_INSTRUCTION;
1311
1312 #ifdef CONFIG_X86_64
1313 /*
1314 * Faults in the vsyscall page might need emulation. The
1315 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1316 * considered to be part of the user address space.
1317 *
1318 * The vsyscall page does not have a "real" VMA, so do this
1319 * emulation before we go searching for VMAs.
1320 *
1321 * PKRU never rejects instruction fetches, so we don't need
1322 * to consider the PF_PK bit.
1323 */
1324 if (is_vsyscall_vaddr(address)) {
1325 if (emulate_vsyscall(error_code, regs, address))
1326 return;
1327 }
1328 #endif
1329
1330 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
1331 /*
1332 * No need to try speculative faults for kernel or
1333 * single threaded user space.
1334 */
1335 if (!(flags & FAULT_FLAG_USER) || atomic_read(&mm->mm_users) == 1)
1336 goto no_spf;
1337
1338 count_vm_event(SPF_ATTEMPT);
1339 seq = mmap_seq_read_start(mm);
1340 if (seq & 1) {
1341 count_vm_spf_event(SPF_ABORT_ODD);
1342 goto spf_abort;
1343 }
1344 vma = get_vma(mm, address);
1345 if (!vma) {
1346 count_vm_spf_event(SPF_ABORT_UNMAPPED);
1347 goto spf_abort;
1348 }
1349
1350 if (!vma_can_speculate(vma, flags)) {
1351 put_vma(vma);
1352 count_vm_spf_event(SPF_ABORT_NO_SPECULATE);
1353 goto spf_abort;
1354 }
1355 pvma = *vma;
1356 if (!mmap_seq_read_check(mm, seq, SPF_ABORT_VMA_COPY)) {
1357 put_vma(vma);
1358 goto spf_abort;
1359 }
1360 if (unlikely(access_error(error_code, &pvma))) {
1361 put_vma(vma);
1362 count_vm_spf_event(SPF_ABORT_ACCESS_ERROR);
1363 goto spf_abort;
1364 }
1365 fault = do_handle_mm_fault(&pvma, address,
1366 flags | FAULT_FLAG_SPECULATIVE, seq, regs);
1367 put_vma(vma);
1368
1369 if (!(fault & VM_FAULT_RETRY))
1370 goto done;
1371
1372 /* Quick path to respond to signals */
1373 if (fault_signal_pending(fault, regs)) {
1374 if (!user_mode(regs))
1375 kernelmode_fixup_or_oops(regs, error_code, address,
1376 SIGBUS, BUS_ADRERR,
1377 ARCH_DEFAULT_PKEY);
1378 return;
1379 }
1380
1381 spf_abort:
1382 count_vm_event(SPF_ABORT);
1383 no_spf:
1384
1385 #endif /* CONFIG_SPECULATIVE_PAGE_FAULT */
1386
1387 /*
1388 * Kernel-mode access to the user address space should only occur
1389 * on well-defined single instructions listed in the exception
1390 * tables. But, an erroneous kernel fault occurring outside one of
1391 * those areas which also holds mmap_lock might deadlock attempting
1392 * to validate the fault against the address space.
1393 *
1394 * Only do the expensive exception table search when we might be at
1395 * risk of a deadlock. This happens if we
1396 * 1. Failed to acquire mmap_lock, and
1397 * 2. The access did not originate in userspace.
1398 */
1399 if (unlikely(!mmap_read_trylock(mm))) {
1400 if (!user_mode(regs) && !search_exception_tables(regs->ip)) {
1401 /*
1402 * Fault from code in kernel from
1403 * which we do not expect faults.
1404 */
1405 bad_area_nosemaphore(regs, error_code, address);
1406 return;
1407 }
1408 retry:
1409 mmap_read_lock(mm);
1410 } else {
1411 /*
1412 * The above down_read_trylock() might have succeeded in
1413 * which case we'll have missed the might_sleep() from
1414 * down_read():
1415 */
1416 might_sleep();
1417 }
1418
1419 vma = find_vma(mm, address);
1420 if (unlikely(!vma)) {
1421 bad_area(regs, error_code, address);
1422 return;
1423 }
1424 if (likely(vma->vm_start <= address))
1425 goto good_area;
1426 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1427 bad_area(regs, error_code, address);
1428 return;
1429 }
1430 if (unlikely(expand_stack(vma, address))) {
1431 bad_area(regs, error_code, address);
1432 return;
1433 }
1434
1435 /*
1436 * Ok, we have a good vm_area for this memory access, so
1437 * we can handle it..
1438 */
1439 good_area:
1440 if (unlikely(access_error(error_code, vma))) {
1441 bad_area_access_error(regs, error_code, address, vma);
1442 return;
1443 }
1444
1445 /*
1446 * If for any reason at all we couldn't handle the fault,
1447 * make sure we exit gracefully rather than endlessly redo
1448 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1449 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1450 *
1451 * Note that handle_userfault() may also release and reacquire mmap_lock
1452 * (and not return with VM_FAULT_RETRY), when returning to userland to
1453 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1454 * (potentially after handling any pending signal during the return to
1455 * userland). The return to userland is identified whenever
1456 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1457 */
1458 fault = handle_mm_fault(vma, address, flags, regs);
1459
1460 if (fault_signal_pending(fault, regs)) {
1461 /*
1462 * Quick path to respond to signals. The core mm code
1463 * has unlocked the mm for us if we get here.
1464 */
1465 if (!user_mode(regs))
1466 kernelmode_fixup_or_oops(regs, error_code, address,
1467 SIGBUS, BUS_ADRERR,
1468 ARCH_DEFAULT_PKEY);
1469 return;
1470 }
1471
1472 /*
1473 * If we need to retry the mmap_lock has already been released,
1474 * and if there is a fatal signal pending there is no guarantee
1475 * that we made any progress. Handle this case first.
1476 */
1477 if (unlikely((fault & VM_FAULT_RETRY) &&
1478 (flags & FAULT_FLAG_ALLOW_RETRY))) {
1479 flags |= FAULT_FLAG_TRIED;
1480 goto retry;
1481 }
1482
1483 mmap_read_unlock(mm);
1484 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
1485 done:
1486 #endif
1487 if (likely(!(fault & VM_FAULT_ERROR)))
1488 return;
1489
1490 if (fatal_signal_pending(current) && !user_mode(regs)) {
1491 kernelmode_fixup_or_oops(regs, error_code, address,
1492 0, 0, ARCH_DEFAULT_PKEY);
1493 return;
1494 }
1495
1496 if (fault & VM_FAULT_OOM) {
1497 /* Kernel mode? Handle exceptions or die: */
1498 if (!user_mode(regs)) {
1499 kernelmode_fixup_or_oops(regs, error_code, address,
1500 SIGSEGV, SEGV_MAPERR,
1501 ARCH_DEFAULT_PKEY);
1502 return;
1503 }
1504
1505 /*
1506 * We ran out of memory, call the OOM killer, and return the
1507 * userspace (which will retry the fault, or kill us if we got
1508 * oom-killed):
1509 */
1510 pagefault_out_of_memory();
1511 } else {
1512 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1513 VM_FAULT_HWPOISON_LARGE))
1514 do_sigbus(regs, error_code, address, fault);
1515 else if (fault & VM_FAULT_SIGSEGV)
1516 bad_area_nosemaphore(regs, error_code, address);
1517 else
1518 BUG();
1519 }
1520 }
1521 NOKPROBE_SYMBOL(do_user_addr_fault);
1522
1523 static __always_inline void
trace_page_fault_entries(struct pt_regs * regs,unsigned long error_code,unsigned long address)1524 trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1525 unsigned long address)
1526 {
1527 if (!trace_pagefault_enabled())
1528 return;
1529
1530 if (user_mode(regs))
1531 trace_page_fault_user(address, regs, error_code);
1532 else
1533 trace_page_fault_kernel(address, regs, error_code);
1534 }
1535
1536 static __always_inline void
handle_page_fault(struct pt_regs * regs,unsigned long error_code,unsigned long address)1537 handle_page_fault(struct pt_regs *regs, unsigned long error_code,
1538 unsigned long address)
1539 {
1540 trace_page_fault_entries(regs, error_code, address);
1541
1542 if (unlikely(kmmio_fault(regs, address)))
1543 return;
1544
1545 /* Was the fault on kernel-controlled part of the address space? */
1546 if (unlikely(fault_in_kernel_space(address))) {
1547 do_kern_addr_fault(regs, error_code, address);
1548 } else {
1549 do_user_addr_fault(regs, error_code, address);
1550 /*
1551 * User address page fault handling might have reenabled
1552 * interrupts. Fixing up all potential exit points of
1553 * do_user_addr_fault() and its leaf functions is just not
1554 * doable w/o creating an unholy mess or turning the code
1555 * upside down.
1556 */
1557 local_irq_disable();
1558 }
1559 }
1560
DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)1561 DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
1562 {
1563 unsigned long address = read_cr2();
1564 irqentry_state_t state;
1565
1566 prefetchw(¤t->mm->mmap_lock);
1567
1568 /*
1569 * KVM uses #PF vector to deliver 'page not present' events to guests
1570 * (asynchronous page fault mechanism). The event happens when a
1571 * userspace task is trying to access some valid (from guest's point of
1572 * view) memory which is not currently mapped by the host (e.g. the
1573 * memory is swapped out). Note, the corresponding "page ready" event
1574 * which is injected when the memory becomes available, is delivered via
1575 * an interrupt mechanism and not a #PF exception
1576 * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
1577 *
1578 * We are relying on the interrupted context being sane (valid RSP,
1579 * relevant locks not held, etc.), which is fine as long as the
1580 * interrupted context had IF=1. We are also relying on the KVM
1581 * async pf type field and CR2 being read consistently instead of
1582 * getting values from real and async page faults mixed up.
1583 *
1584 * Fingers crossed.
1585 *
1586 * The async #PF handling code takes care of idtentry handling
1587 * itself.
1588 */
1589 if (kvm_handle_async_pf(regs, (u32)address))
1590 return;
1591
1592 /*
1593 * Entry handling for valid #PF from kernel mode is slightly
1594 * different: RCU is already watching and rcu_irq_enter() must not
1595 * be invoked because a kernel fault on a user space address might
1596 * sleep.
1597 *
1598 * In case the fault hit a RCU idle region the conditional entry
1599 * code reenabled RCU to avoid subsequent wreckage which helps
1600 * debuggability.
1601 */
1602 state = irqentry_enter(regs);
1603
1604 instrumentation_begin();
1605 handle_page_fault(regs, error_code, address);
1606 instrumentation_end();
1607
1608 irqentry_exit(regs, state);
1609 }
1610