• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/fs/ext4/page-io.c
4  *
5  * This contains the new page_io functions for ext4
6  *
7  * Written by Theodore Ts'o, 2010.
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/time.h>
12 #include <linux/highuid.h>
13 #include <linux/pagemap.h>
14 #include <linux/quotaops.h>
15 #include <linux/string.h>
16 #include <linux/buffer_head.h>
17 #include <linux/writeback.h>
18 #include <linux/pagevec.h>
19 #include <linux/mpage.h>
20 #include <linux/namei.h>
21 #include <linux/uio.h>
22 #include <linux/bio.h>
23 #include <linux/workqueue.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/mm.h>
27 #include <linux/backing-dev.h>
28 
29 #include "ext4_jbd2.h"
30 #include "xattr.h"
31 #include "acl.h"
32 
33 static struct kmem_cache *io_end_cachep;
34 static struct kmem_cache *io_end_vec_cachep;
35 
ext4_init_pageio(void)36 int __init ext4_init_pageio(void)
37 {
38 	io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
39 	if (io_end_cachep == NULL)
40 		return -ENOMEM;
41 
42 	io_end_vec_cachep = KMEM_CACHE(ext4_io_end_vec, 0);
43 	if (io_end_vec_cachep == NULL) {
44 		kmem_cache_destroy(io_end_cachep);
45 		return -ENOMEM;
46 	}
47 	return 0;
48 }
49 
ext4_exit_pageio(void)50 void ext4_exit_pageio(void)
51 {
52 	kmem_cache_destroy(io_end_cachep);
53 	kmem_cache_destroy(io_end_vec_cachep);
54 }
55 
ext4_alloc_io_end_vec(ext4_io_end_t * io_end)56 struct ext4_io_end_vec *ext4_alloc_io_end_vec(ext4_io_end_t *io_end)
57 {
58 	struct ext4_io_end_vec *io_end_vec;
59 
60 	io_end_vec = kmem_cache_zalloc(io_end_vec_cachep, GFP_NOFS);
61 	if (!io_end_vec)
62 		return ERR_PTR(-ENOMEM);
63 	INIT_LIST_HEAD(&io_end_vec->list);
64 	list_add_tail(&io_end_vec->list, &io_end->list_vec);
65 	return io_end_vec;
66 }
67 
ext4_free_io_end_vec(ext4_io_end_t * io_end)68 static void ext4_free_io_end_vec(ext4_io_end_t *io_end)
69 {
70 	struct ext4_io_end_vec *io_end_vec, *tmp;
71 
72 	if (list_empty(&io_end->list_vec))
73 		return;
74 	list_for_each_entry_safe(io_end_vec, tmp, &io_end->list_vec, list) {
75 		list_del(&io_end_vec->list);
76 		kmem_cache_free(io_end_vec_cachep, io_end_vec);
77 	}
78 }
79 
ext4_last_io_end_vec(ext4_io_end_t * io_end)80 struct ext4_io_end_vec *ext4_last_io_end_vec(ext4_io_end_t *io_end)
81 {
82 	BUG_ON(list_empty(&io_end->list_vec));
83 	return list_last_entry(&io_end->list_vec, struct ext4_io_end_vec, list);
84 }
85 
86 /*
87  * Print an buffer I/O error compatible with the fs/buffer.c.  This
88  * provides compatibility with dmesg scrapers that look for a specific
89  * buffer I/O error message.  We really need a unified error reporting
90  * structure to userspace ala Digital Unix's uerf system, but it's
91  * probably not going to happen in my lifetime, due to LKML politics...
92  */
buffer_io_error(struct buffer_head * bh)93 static void buffer_io_error(struct buffer_head *bh)
94 {
95 	printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n",
96 		       bh->b_bdev,
97 			(unsigned long long)bh->b_blocknr);
98 }
99 
ext4_finish_bio(struct bio * bio)100 static void ext4_finish_bio(struct bio *bio)
101 {
102 	struct bio_vec *bvec;
103 	struct bvec_iter_all iter_all;
104 
105 	bio_for_each_segment_all(bvec, bio, iter_all) {
106 		struct page *page = bvec->bv_page;
107 		struct page *bounce_page = NULL;
108 		struct buffer_head *bh, *head;
109 		unsigned bio_start = bvec->bv_offset;
110 		unsigned bio_end = bio_start + bvec->bv_len;
111 		unsigned under_io = 0;
112 		unsigned long flags;
113 
114 		if (fscrypt_is_bounce_page(page)) {
115 			bounce_page = page;
116 			page = fscrypt_pagecache_page(bounce_page);
117 		}
118 
119 		if (bio->bi_status) {
120 			SetPageError(page);
121 			mapping_set_error(page->mapping, -EIO);
122 		}
123 		bh = head = page_buffers(page);
124 		/*
125 		 * We check all buffers in the page under b_uptodate_lock
126 		 * to avoid races with other end io clearing async_write flags
127 		 */
128 		spin_lock_irqsave(&head->b_uptodate_lock, flags);
129 		do {
130 			if (bh_offset(bh) < bio_start ||
131 			    bh_offset(bh) + bh->b_size > bio_end) {
132 				if (buffer_async_write(bh))
133 					under_io++;
134 				continue;
135 			}
136 			clear_buffer_async_write(bh);
137 			if (bio->bi_status) {
138 				set_buffer_write_io_error(bh);
139 				buffer_io_error(bh);
140 			}
141 		} while ((bh = bh->b_this_page) != head);
142 		spin_unlock_irqrestore(&head->b_uptodate_lock, flags);
143 		if (!under_io) {
144 			fscrypt_free_bounce_page(bounce_page);
145 			end_page_writeback(page);
146 		}
147 	}
148 }
149 
ext4_release_io_end(ext4_io_end_t * io_end)150 static void ext4_release_io_end(ext4_io_end_t *io_end)
151 {
152 	struct bio *bio, *next_bio;
153 
154 	BUG_ON(!list_empty(&io_end->list));
155 	BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
156 	WARN_ON(io_end->handle);
157 
158 	for (bio = io_end->bio; bio; bio = next_bio) {
159 		next_bio = bio->bi_private;
160 		ext4_finish_bio(bio);
161 		bio_put(bio);
162 	}
163 	ext4_free_io_end_vec(io_end);
164 	kmem_cache_free(io_end_cachep, io_end);
165 }
166 
167 /*
168  * Check a range of space and convert unwritten extents to written. Note that
169  * we are protected from truncate touching same part of extent tree by the
170  * fact that truncate code waits for all DIO to finish (thus exclusion from
171  * direct IO is achieved) and also waits for PageWriteback bits. Thus we
172  * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
173  * completed (happens from ext4_free_ioend()).
174  */
ext4_end_io_end(ext4_io_end_t * io_end)175 static int ext4_end_io_end(ext4_io_end_t *io_end)
176 {
177 	struct inode *inode = io_end->inode;
178 	handle_t *handle = io_end->handle;
179 	int ret = 0;
180 
181 	ext4_debug("ext4_end_io_nolock: io_end 0x%p from inode %lu,list->next 0x%p,"
182 		   "list->prev 0x%p\n",
183 		   io_end, inode->i_ino, io_end->list.next, io_end->list.prev);
184 
185 	io_end->handle = NULL;	/* Following call will use up the handle */
186 	ret = ext4_convert_unwritten_io_end_vec(handle, io_end);
187 	if (ret < 0 && !ext4_forced_shutdown(EXT4_SB(inode->i_sb))) {
188 		ext4_msg(inode->i_sb, KERN_EMERG,
189 			 "failed to convert unwritten extents to written "
190 			 "extents -- potential data loss!  "
191 			 "(inode %lu, error %d)", inode->i_ino, ret);
192 	}
193 	ext4_clear_io_unwritten_flag(io_end);
194 	ext4_release_io_end(io_end);
195 	return ret;
196 }
197 
dump_completed_IO(struct inode * inode,struct list_head * head)198 static void dump_completed_IO(struct inode *inode, struct list_head *head)
199 {
200 #ifdef	EXT4FS_DEBUG
201 	struct list_head *cur, *before, *after;
202 	ext4_io_end_t *io_end, *io_end0, *io_end1;
203 
204 	if (list_empty(head))
205 		return;
206 
207 	ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
208 	list_for_each_entry(io_end, head, list) {
209 		cur = &io_end->list;
210 		before = cur->prev;
211 		io_end0 = container_of(before, ext4_io_end_t, list);
212 		after = cur->next;
213 		io_end1 = container_of(after, ext4_io_end_t, list);
214 
215 		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
216 			    io_end, inode->i_ino, io_end0, io_end1);
217 	}
218 #endif
219 }
220 
221 /* Add the io_end to per-inode completed end_io list. */
ext4_add_complete_io(ext4_io_end_t * io_end)222 static void ext4_add_complete_io(ext4_io_end_t *io_end)
223 {
224 	struct ext4_inode_info *ei = EXT4_I(io_end->inode);
225 	struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
226 	struct workqueue_struct *wq;
227 	unsigned long flags;
228 
229 	/* Only reserved conversions from writeback should enter here */
230 	WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
231 	WARN_ON(!io_end->handle && sbi->s_journal);
232 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
233 	wq = sbi->rsv_conversion_wq;
234 	if (list_empty(&ei->i_rsv_conversion_list))
235 		queue_work(wq, &ei->i_rsv_conversion_work);
236 	list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
237 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
238 }
239 
ext4_do_flush_completed_IO(struct inode * inode,struct list_head * head)240 static int ext4_do_flush_completed_IO(struct inode *inode,
241 				      struct list_head *head)
242 {
243 	ext4_io_end_t *io_end;
244 	struct list_head unwritten;
245 	unsigned long flags;
246 	struct ext4_inode_info *ei = EXT4_I(inode);
247 	int err, ret = 0;
248 
249 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
250 	dump_completed_IO(inode, head);
251 	list_replace_init(head, &unwritten);
252 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
253 
254 	while (!list_empty(&unwritten)) {
255 		io_end = list_entry(unwritten.next, ext4_io_end_t, list);
256 		BUG_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
257 		list_del_init(&io_end->list);
258 
259 		err = ext4_end_io_end(io_end);
260 		if (unlikely(!ret && err))
261 			ret = err;
262 	}
263 	return ret;
264 }
265 
266 /*
267  * work on completed IO, to convert unwritten extents to extents
268  */
ext4_end_io_rsv_work(struct work_struct * work)269 void ext4_end_io_rsv_work(struct work_struct *work)
270 {
271 	struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
272 						  i_rsv_conversion_work);
273 	ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
274 }
275 
ext4_init_io_end(struct inode * inode,gfp_t flags)276 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
277 {
278 	ext4_io_end_t *io_end = kmem_cache_zalloc(io_end_cachep, flags);
279 
280 	if (io_end) {
281 		io_end->inode = inode;
282 		INIT_LIST_HEAD(&io_end->list);
283 		INIT_LIST_HEAD(&io_end->list_vec);
284 		atomic_set(&io_end->count, 1);
285 	}
286 	return io_end;
287 }
288 
ext4_put_io_end_defer(ext4_io_end_t * io_end)289 void ext4_put_io_end_defer(ext4_io_end_t *io_end)
290 {
291 	if (atomic_dec_and_test(&io_end->count)) {
292 		if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) ||
293 				list_empty(&io_end->list_vec)) {
294 			ext4_release_io_end(io_end);
295 			return;
296 		}
297 		ext4_add_complete_io(io_end);
298 	}
299 }
300 
ext4_put_io_end(ext4_io_end_t * io_end)301 int ext4_put_io_end(ext4_io_end_t *io_end)
302 {
303 	int err = 0;
304 
305 	if (atomic_dec_and_test(&io_end->count)) {
306 		if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
307 			err = ext4_convert_unwritten_io_end_vec(io_end->handle,
308 								io_end);
309 			io_end->handle = NULL;
310 			ext4_clear_io_unwritten_flag(io_end);
311 		}
312 		ext4_release_io_end(io_end);
313 	}
314 	return err;
315 }
316 
ext4_get_io_end(ext4_io_end_t * io_end)317 ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
318 {
319 	atomic_inc(&io_end->count);
320 	return io_end;
321 }
322 
323 /* BIO completion function for page writeback */
ext4_end_bio(struct bio * bio)324 static void ext4_end_bio(struct bio *bio)
325 {
326 	ext4_io_end_t *io_end = bio->bi_private;
327 	sector_t bi_sector = bio->bi_iter.bi_sector;
328 	char b[BDEVNAME_SIZE];
329 
330 	if (WARN_ONCE(!io_end, "io_end is NULL: %s: sector %Lu len %u err %d\n",
331 		      bio_devname(bio, b),
332 		      (long long) bio->bi_iter.bi_sector,
333 		      (unsigned) bio_sectors(bio),
334 		      bio->bi_status)) {
335 		ext4_finish_bio(bio);
336 		bio_put(bio);
337 		return;
338 	}
339 	bio->bi_end_io = NULL;
340 
341 	if (bio->bi_status) {
342 		struct inode *inode = io_end->inode;
343 
344 		ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
345 			     "starting block %llu)",
346 			     bio->bi_status, inode->i_ino,
347 			     (unsigned long long)
348 			     bi_sector >> (inode->i_blkbits - 9));
349 		mapping_set_error(inode->i_mapping,
350 				blk_status_to_errno(bio->bi_status));
351 	}
352 
353 	if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
354 		/*
355 		 * Link bio into list hanging from io_end. We have to do it
356 		 * atomically as bio completions can be racing against each
357 		 * other.
358 		 */
359 		bio->bi_private = xchg(&io_end->bio, bio);
360 		ext4_put_io_end_defer(io_end);
361 	} else {
362 		/*
363 		 * Drop io_end reference early. Inode can get freed once
364 		 * we finish the bio.
365 		 */
366 		ext4_put_io_end_defer(io_end);
367 		ext4_finish_bio(bio);
368 		bio_put(bio);
369 	}
370 }
371 
ext4_io_submit(struct ext4_io_submit * io)372 void ext4_io_submit(struct ext4_io_submit *io)
373 {
374 	struct bio *bio = io->io_bio;
375 
376 	if (bio) {
377 		int io_op_flags = io->io_wbc->sync_mode == WB_SYNC_ALL ?
378 				  REQ_SYNC : 0;
379 		io->io_bio->bi_write_hint = io->io_end->inode->i_write_hint;
380 		bio_set_op_attrs(io->io_bio, REQ_OP_WRITE, io_op_flags);
381 		submit_bio(io->io_bio);
382 	}
383 	io->io_bio = NULL;
384 }
385 
ext4_io_submit_init(struct ext4_io_submit * io,struct writeback_control * wbc)386 void ext4_io_submit_init(struct ext4_io_submit *io,
387 			 struct writeback_control *wbc)
388 {
389 	io->io_wbc = wbc;
390 	io->io_bio = NULL;
391 	io->io_end = NULL;
392 }
393 
io_submit_init_bio(struct ext4_io_submit * io,struct buffer_head * bh)394 static void io_submit_init_bio(struct ext4_io_submit *io,
395 			       struct buffer_head *bh)
396 {
397 	struct bio *bio;
398 
399 	/*
400 	 * bio_alloc will _always_ be able to allocate a bio if
401 	 * __GFP_DIRECT_RECLAIM is set, see comments for bio_alloc_bioset().
402 	 */
403 	bio = bio_alloc(GFP_NOIO, BIO_MAX_VECS);
404 	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
405 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
406 	bio_set_dev(bio, bh->b_bdev);
407 	bio->bi_end_io = ext4_end_bio;
408 	bio->bi_private = ext4_get_io_end(io->io_end);
409 	io->io_bio = bio;
410 	io->io_next_block = bh->b_blocknr;
411 	wbc_init_bio(io->io_wbc, bio);
412 }
413 
io_submit_add_bh(struct ext4_io_submit * io,struct inode * inode,struct page * pagecache_page,struct page * bounce_page,struct buffer_head * bh)414 static void io_submit_add_bh(struct ext4_io_submit *io,
415 			     struct inode *inode,
416 			     struct page *pagecache_page,
417 			     struct page *bounce_page,
418 			     struct buffer_head *bh)
419 {
420 	int ret;
421 
422 	if (io->io_bio && (bh->b_blocknr != io->io_next_block ||
423 			   !fscrypt_mergeable_bio_bh(io->io_bio, bh))) {
424 submit_and_retry:
425 		ext4_io_submit(io);
426 	}
427 	if (io->io_bio == NULL) {
428 		io_submit_init_bio(io, bh);
429 		io->io_bio->bi_write_hint = inode->i_write_hint;
430 	}
431 	ret = bio_add_page(io->io_bio, bounce_page ?: pagecache_page,
432 			   bh->b_size, bh_offset(bh));
433 	if (ret != bh->b_size)
434 		goto submit_and_retry;
435 	wbc_account_cgroup_owner(io->io_wbc, pagecache_page, bh->b_size);
436 	io->io_next_block++;
437 }
438 
ext4_bio_write_page(struct ext4_io_submit * io,struct page * page,int len,bool keep_towrite)439 int ext4_bio_write_page(struct ext4_io_submit *io,
440 			struct page *page,
441 			int len,
442 			bool keep_towrite)
443 {
444 	struct page *bounce_page = NULL;
445 	struct inode *inode = page->mapping->host;
446 	unsigned block_start;
447 	struct buffer_head *bh, *head;
448 	int ret = 0;
449 	int nr_submitted = 0;
450 	int nr_to_submit = 0;
451 	struct writeback_control *wbc = io->io_wbc;
452 
453 	BUG_ON(!PageLocked(page));
454 	BUG_ON(PageWriteback(page));
455 
456 	if (keep_towrite)
457 		set_page_writeback_keepwrite(page);
458 	else
459 		set_page_writeback(page);
460 	ClearPageError(page);
461 
462 	/*
463 	 * Comments copied from block_write_full_page:
464 	 *
465 	 * The page straddles i_size.  It must be zeroed out on each and every
466 	 * writepage invocation because it may be mmapped.  "A file is mapped
467 	 * in multiples of the page size.  For a file that is not a multiple of
468 	 * the page size, the remaining memory is zeroed when mapped, and
469 	 * writes to that region are not written out to the file."
470 	 */
471 	if (len < PAGE_SIZE)
472 		zero_user_segment(page, len, PAGE_SIZE);
473 	/*
474 	 * In the first loop we prepare and mark buffers to submit. We have to
475 	 * mark all buffers in the page before submitting so that
476 	 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO
477 	 * on the first buffer finishes and we are still working on submitting
478 	 * the second buffer.
479 	 */
480 	bh = head = page_buffers(page);
481 	do {
482 		block_start = bh_offset(bh);
483 		if (block_start >= len) {
484 			clear_buffer_dirty(bh);
485 			set_buffer_uptodate(bh);
486 			continue;
487 		}
488 		if (!buffer_dirty(bh) || buffer_delay(bh) ||
489 		    !buffer_mapped(bh) || buffer_unwritten(bh)) {
490 			/* A hole? We can safely clear the dirty bit */
491 			if (!buffer_mapped(bh))
492 				clear_buffer_dirty(bh);
493 			if (io->io_bio)
494 				ext4_io_submit(io);
495 			continue;
496 		}
497 		if (buffer_new(bh))
498 			clear_buffer_new(bh);
499 		set_buffer_async_write(bh);
500 		nr_to_submit++;
501 	} while ((bh = bh->b_this_page) != head);
502 
503 	bh = head = page_buffers(page);
504 
505 	/*
506 	 * If any blocks are being written to an encrypted file, encrypt them
507 	 * into a bounce page.  For simplicity, just encrypt until the last
508 	 * block which might be needed.  This may cause some unneeded blocks
509 	 * (e.g. holes) to be unnecessarily encrypted, but this is rare and
510 	 * can't happen in the common case of blocksize == PAGE_SIZE.
511 	 */
512 	if (fscrypt_inode_uses_fs_layer_crypto(inode) && nr_to_submit) {
513 		gfp_t gfp_flags = GFP_NOFS;
514 		unsigned int enc_bytes = round_up(len, i_blocksize(inode));
515 
516 		/*
517 		 * Since bounce page allocation uses a mempool, we can only use
518 		 * a waiting mask (i.e. request guaranteed allocation) on the
519 		 * first page of the bio.  Otherwise it can deadlock.
520 		 */
521 		if (io->io_bio)
522 			gfp_flags = GFP_NOWAIT | __GFP_NOWARN;
523 	retry_encrypt:
524 		bounce_page = fscrypt_encrypt_pagecache_blocks(page, enc_bytes,
525 							       0, gfp_flags);
526 		if (IS_ERR(bounce_page)) {
527 			ret = PTR_ERR(bounce_page);
528 			if (ret == -ENOMEM &&
529 			    (io->io_bio || wbc->sync_mode == WB_SYNC_ALL)) {
530 				gfp_flags = GFP_NOFS;
531 				if (io->io_bio)
532 					ext4_io_submit(io);
533 				else
534 					gfp_flags |= __GFP_NOFAIL;
535 				congestion_wait(BLK_RW_ASYNC, HZ/50);
536 				goto retry_encrypt;
537 			}
538 
539 			printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
540 			redirty_page_for_writepage(wbc, page);
541 			do {
542 				clear_buffer_async_write(bh);
543 				bh = bh->b_this_page;
544 			} while (bh != head);
545 			goto unlock;
546 		}
547 	}
548 
549 	/* Now submit buffers to write */
550 	do {
551 		if (!buffer_async_write(bh))
552 			continue;
553 		io_submit_add_bh(io, inode, page, bounce_page, bh);
554 		nr_submitted++;
555 		clear_buffer_dirty(bh);
556 	} while ((bh = bh->b_this_page) != head);
557 
558 unlock:
559 	unlock_page(page);
560 	/* Nothing submitted - we have to end page writeback */
561 	if (!nr_submitted)
562 		end_page_writeback(page);
563 	return ret;
564 }
565