• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * fs/ext4/fast_commit.c
5  *
6  * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
7  *
8  * Ext4 fast commits routines.
9  */
10 #include "ext4.h"
11 #include "ext4_jbd2.h"
12 #include "ext4_extents.h"
13 #include "mballoc.h"
14 
15 /*
16  * Ext4 Fast Commits
17  * -----------------
18  *
19  * Ext4 fast commits implement fine grained journalling for Ext4.
20  *
21  * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22  * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23  * TLV during the recovery phase. For the scenarios for which we currently
24  * don't have replay code, fast commit falls back to full commits.
25  * Fast commits record delta in one of the following three categories.
26  *
27  * (A) Directory entry updates:
28  *
29  * - EXT4_FC_TAG_UNLINK		- records directory entry unlink
30  * - EXT4_FC_TAG_LINK		- records directory entry link
31  * - EXT4_FC_TAG_CREAT		- records inode and directory entry creation
32  *
33  * (B) File specific data range updates:
34  *
35  * - EXT4_FC_TAG_ADD_RANGE	- records addition of new blocks to an inode
36  * - EXT4_FC_TAG_DEL_RANGE	- records deletion of blocks from an inode
37  *
38  * (C) Inode metadata (mtime / ctime etc):
39  *
40  * - EXT4_FC_TAG_INODE		- record the inode that should be replayed
41  *				  during recovery. Note that iblocks field is
42  *				  not replayed and instead derived during
43  *				  replay.
44  * Commit Operation
45  * ----------------
46  * With fast commits, we maintain all the directory entry operations in the
47  * order in which they are issued in an in-memory queue. This queue is flushed
48  * to disk during the commit operation. We also maintain a list of inodes
49  * that need to be committed during a fast commit in another in memory queue of
50  * inodes. During the commit operation, we commit in the following order:
51  *
52  * [1] Lock inodes for any further data updates by setting COMMITTING state
53  * [2] Submit data buffers of all the inodes
54  * [3] Wait for [2] to complete
55  * [4] Commit all the directory entry updates in the fast commit space
56  * [5] Commit all the changed inode structures
57  * [6] Write tail tag (this tag ensures the atomicity, please read the following
58  *     section for more details).
59  * [7] Wait for [4], [5] and [6] to complete.
60  *
61  * All the inode updates must call ext4_fc_start_update() before starting an
62  * update. If such an ongoing update is present, fast commit waits for it to
63  * complete. The completion of such an update is marked by
64  * ext4_fc_stop_update().
65  *
66  * Fast Commit Ineligibility
67  * -------------------------
68  *
69  * Not all operations are supported by fast commits today (e.g extended
70  * attributes). Fast commit ineligibility is marked by calling
71  * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back
72  * to full commit.
73  *
74  * Atomicity of commits
75  * --------------------
76  * In order to guarantee atomicity during the commit operation, fast commit
77  * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
78  * tag contains CRC of the contents and TID of the transaction after which
79  * this fast commit should be applied. Recovery code replays fast commit
80  * logs only if there's at least 1 valid tail present. For every fast commit
81  * operation, there is 1 tail. This means, we may end up with multiple tails
82  * in the fast commit space. Here's an example:
83  *
84  * - Create a new file A and remove existing file B
85  * - fsync()
86  * - Append contents to file A
87  * - Truncate file A
88  * - fsync()
89  *
90  * The fast commit space at the end of above operations would look like this:
91  *      [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
92  *             |<---  Fast Commit 1   --->|<---      Fast Commit 2     ---->|
93  *
94  * Replay code should thus check for all the valid tails in the FC area.
95  *
96  * Fast Commit Replay Idempotence
97  * ------------------------------
98  *
99  * Fast commits tags are idempotent in nature provided the recovery code follows
100  * certain rules. The guiding principle that the commit path follows while
101  * committing is that it stores the result of a particular operation instead of
102  * storing the procedure.
103  *
104  * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a'
105  * was associated with inode 10. During fast commit, instead of storing this
106  * operation as a procedure "rename a to b", we store the resulting file system
107  * state as a "series" of outcomes:
108  *
109  * - Link dirent b to inode 10
110  * - Unlink dirent a
111  * - Inode <10> with valid refcount
112  *
113  * Now when recovery code runs, it needs "enforce" this state on the file
114  * system. This is what guarantees idempotence of fast commit replay.
115  *
116  * Let's take an example of a procedure that is not idempotent and see how fast
117  * commits make it idempotent. Consider following sequence of operations:
118  *
119  *     rm A;    mv B A;    read A
120  *  (x)     (y)        (z)
121  *
122  * (x), (y) and (z) are the points at which we can crash. If we store this
123  * sequence of operations as is then the replay is not idempotent. Let's say
124  * while in replay, we crash at (z). During the second replay, file A (which was
125  * actually created as a result of "mv B A" operation) would get deleted. Thus,
126  * file named A would be absent when we try to read A. So, this sequence of
127  * operations is not idempotent. However, as mentioned above, instead of storing
128  * the procedure fast commits store the outcome of each procedure. Thus the fast
129  * commit log for above procedure would be as follows:
130  *
131  * (Let's assume dirent A was linked to inode 10 and dirent B was linked to
132  * inode 11 before the replay)
133  *
134  *    [Unlink A]   [Link A to inode 11]   [Unlink B]   [Inode 11]
135  * (w)          (x)                    (y)          (z)
136  *
137  * If we crash at (z), we will have file A linked to inode 11. During the second
138  * replay, we will remove file A (inode 11). But we will create it back and make
139  * it point to inode 11. We won't find B, so we'll just skip that step. At this
140  * point, the refcount for inode 11 is not reliable, but that gets fixed by the
141  * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled
142  * similarly. Thus, by converting a non-idempotent procedure into a series of
143  * idempotent outcomes, fast commits ensured idempotence during the replay.
144  *
145  * TODOs
146  * -----
147  *
148  * 0) Fast commit replay path hardening: Fast commit replay code should use
149  *    journal handles to make sure all the updates it does during the replay
150  *    path are atomic. With that if we crash during fast commit replay, after
151  *    trying to do recovery again, we will find a file system where fast commit
152  *    area is invalid (because new full commit would be found). In order to deal
153  *    with that, fast commit replay code should ensure that the "FC_REPLAY"
154  *    superblock state is persisted before starting the replay, so that after
155  *    the crash, fast commit recovery code can look at that flag and perform
156  *    fast commit recovery even if that area is invalidated by later full
157  *    commits.
158  *
159  * 1) Make fast commit atomic updates more fine grained. Today, a fast commit
160  *    eligible update must be protected within ext4_fc_start_update() and
161  *    ext4_fc_stop_update(). These routines are called at much higher
162  *    routines. This can be made more fine grained by combining with
163  *    ext4_journal_start().
164  *
165  * 2) Same above for ext4_fc_start_ineligible() and ext4_fc_stop_ineligible()
166  *
167  * 3) Handle more ineligible cases.
168  */
169 
170 #include <trace/events/ext4.h>
171 static struct kmem_cache *ext4_fc_dentry_cachep;
172 
ext4_end_buffer_io_sync(struct buffer_head * bh,int uptodate)173 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
174 {
175 	BUFFER_TRACE(bh, "");
176 	if (uptodate) {
177 		ext4_debug("%s: Block %lld up-to-date",
178 			   __func__, bh->b_blocknr);
179 		set_buffer_uptodate(bh);
180 	} else {
181 		ext4_debug("%s: Block %lld not up-to-date",
182 			   __func__, bh->b_blocknr);
183 		clear_buffer_uptodate(bh);
184 	}
185 
186 	unlock_buffer(bh);
187 }
188 
ext4_fc_reset_inode(struct inode * inode)189 static inline void ext4_fc_reset_inode(struct inode *inode)
190 {
191 	struct ext4_inode_info *ei = EXT4_I(inode);
192 
193 	ei->i_fc_lblk_start = 0;
194 	ei->i_fc_lblk_len = 0;
195 }
196 
ext4_fc_init_inode(struct inode * inode)197 void ext4_fc_init_inode(struct inode *inode)
198 {
199 	struct ext4_inode_info *ei = EXT4_I(inode);
200 
201 	ext4_fc_reset_inode(inode);
202 	ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
203 	INIT_LIST_HEAD(&ei->i_fc_list);
204 	init_waitqueue_head(&ei->i_fc_wait);
205 	atomic_set(&ei->i_fc_updates, 0);
206 }
207 
208 /* This function must be called with sbi->s_fc_lock held. */
ext4_fc_wait_committing_inode(struct inode * inode)209 static void ext4_fc_wait_committing_inode(struct inode *inode)
210 __releases(&EXT4_SB(inode->i_sb)->s_fc_lock)
211 {
212 	wait_queue_head_t *wq;
213 	struct ext4_inode_info *ei = EXT4_I(inode);
214 
215 #if (BITS_PER_LONG < 64)
216 	DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
217 			EXT4_STATE_FC_COMMITTING);
218 	wq = bit_waitqueue(&ei->i_state_flags,
219 				EXT4_STATE_FC_COMMITTING);
220 #else
221 	DEFINE_WAIT_BIT(wait, &ei->i_flags,
222 			EXT4_STATE_FC_COMMITTING);
223 	wq = bit_waitqueue(&ei->i_flags,
224 				EXT4_STATE_FC_COMMITTING);
225 #endif
226 	lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock);
227 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
228 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
229 	schedule();
230 	finish_wait(wq, &wait.wq_entry);
231 }
232 
233 /*
234  * Inform Ext4's fast about start of an inode update
235  *
236  * This function is called by the high level call VFS callbacks before
237  * performing any inode update. This function blocks if there's an ongoing
238  * fast commit on the inode in question.
239  */
ext4_fc_start_update(struct inode * inode)240 void ext4_fc_start_update(struct inode *inode)
241 {
242 	struct ext4_inode_info *ei = EXT4_I(inode);
243 
244 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
245 	    (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
246 		return;
247 
248 restart:
249 	spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
250 	if (list_empty(&ei->i_fc_list))
251 		goto out;
252 
253 	if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
254 		ext4_fc_wait_committing_inode(inode);
255 		goto restart;
256 	}
257 out:
258 	atomic_inc(&ei->i_fc_updates);
259 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
260 }
261 
262 /*
263  * Stop inode update and wake up waiting fast commits if any.
264  */
ext4_fc_stop_update(struct inode * inode)265 void ext4_fc_stop_update(struct inode *inode)
266 {
267 	struct ext4_inode_info *ei = EXT4_I(inode);
268 
269 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
270 	    (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
271 		return;
272 
273 	if (atomic_dec_and_test(&ei->i_fc_updates))
274 		wake_up_all(&ei->i_fc_wait);
275 }
276 
277 /*
278  * Remove inode from fast commit list. If the inode is being committed
279  * we wait until inode commit is done.
280  */
ext4_fc_del(struct inode * inode)281 void ext4_fc_del(struct inode *inode)
282 {
283 	struct ext4_inode_info *ei = EXT4_I(inode);
284 
285 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
286 	    (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
287 		return;
288 
289 restart:
290 	spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
291 	if (list_empty(&ei->i_fc_list)) {
292 		spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
293 		return;
294 	}
295 
296 	if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
297 		ext4_fc_wait_committing_inode(inode);
298 		goto restart;
299 	}
300 	list_del_init(&ei->i_fc_list);
301 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
302 }
303 
304 /*
305  * Mark file system as fast commit ineligible, and record latest
306  * ineligible transaction tid. This means until the recorded
307  * transaction, commit operation would result in a full jbd2 commit.
308  */
ext4_fc_mark_ineligible(struct super_block * sb,int reason,handle_t * handle)309 void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle)
310 {
311 	struct ext4_sb_info *sbi = EXT4_SB(sb);
312 	tid_t tid;
313 
314 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
315 	    (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
316 		return;
317 
318 	ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
319 	if (handle && !IS_ERR(handle))
320 		tid = handle->h_transaction->t_tid;
321 	else {
322 		read_lock(&sbi->s_journal->j_state_lock);
323 		tid = sbi->s_journal->j_running_transaction ?
324 				sbi->s_journal->j_running_transaction->t_tid : 0;
325 		read_unlock(&sbi->s_journal->j_state_lock);
326 	}
327 	spin_lock(&sbi->s_fc_lock);
328 	if (sbi->s_fc_ineligible_tid < tid)
329 		sbi->s_fc_ineligible_tid = tid;
330 	spin_unlock(&sbi->s_fc_lock);
331 	WARN_ON(reason >= EXT4_FC_REASON_MAX);
332 	sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
333 }
334 
335 /*
336  * Generic fast commit tracking function. If this is the first time this we are
337  * called after a full commit, we initialize fast commit fields and then call
338  * __fc_track_fn() with update = 0. If we have already been called after a full
339  * commit, we pass update = 1. Based on that, the track function can determine
340  * if it needs to track a field for the first time or if it needs to just
341  * update the previously tracked value.
342  *
343  * If enqueue is set, this function enqueues the inode in fast commit list.
344  */
ext4_fc_track_template(handle_t * handle,struct inode * inode,int (* __fc_track_fn)(struct inode *,void *,bool),void * args,int enqueue)345 static int ext4_fc_track_template(
346 	handle_t *handle, struct inode *inode,
347 	int (*__fc_track_fn)(struct inode *, void *, bool),
348 	void *args, int enqueue)
349 {
350 	bool update = false;
351 	struct ext4_inode_info *ei = EXT4_I(inode);
352 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
353 	tid_t tid = 0;
354 	int ret;
355 
356 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
357 	    (sbi->s_mount_state & EXT4_FC_REPLAY))
358 		return -EOPNOTSUPP;
359 
360 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
361 		return -EINVAL;
362 
363 	tid = handle->h_transaction->t_tid;
364 	mutex_lock(&ei->i_fc_lock);
365 	if (tid == ei->i_sync_tid) {
366 		update = true;
367 	} else {
368 		ext4_fc_reset_inode(inode);
369 		ei->i_sync_tid = tid;
370 	}
371 	ret = __fc_track_fn(inode, args, update);
372 	mutex_unlock(&ei->i_fc_lock);
373 
374 	if (!enqueue)
375 		return ret;
376 
377 	spin_lock(&sbi->s_fc_lock);
378 	if (list_empty(&EXT4_I(inode)->i_fc_list))
379 		list_add_tail(&EXT4_I(inode)->i_fc_list,
380 				(sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
381 				 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ?
382 				&sbi->s_fc_q[FC_Q_STAGING] :
383 				&sbi->s_fc_q[FC_Q_MAIN]);
384 	spin_unlock(&sbi->s_fc_lock);
385 
386 	return ret;
387 }
388 
389 struct __track_dentry_update_args {
390 	struct dentry *dentry;
391 	int op;
392 };
393 
394 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
__track_dentry_update(struct inode * inode,void * arg,bool update)395 static int __track_dentry_update(struct inode *inode, void *arg, bool update)
396 {
397 	struct ext4_fc_dentry_update *node;
398 	struct ext4_inode_info *ei = EXT4_I(inode);
399 	struct __track_dentry_update_args *dentry_update =
400 		(struct __track_dentry_update_args *)arg;
401 	struct dentry *dentry = dentry_update->dentry;
402 	struct inode *dir = dentry->d_parent->d_inode;
403 	struct super_block *sb = inode->i_sb;
404 	struct ext4_sb_info *sbi = EXT4_SB(sb);
405 
406 	mutex_unlock(&ei->i_fc_lock);
407 
408 	if (IS_ENCRYPTED(dir)) {
409 		ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME,
410 					NULL);
411 		mutex_lock(&ei->i_fc_lock);
412 		return -EOPNOTSUPP;
413 	}
414 
415 	node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
416 	if (!node) {
417 		ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, NULL);
418 		mutex_lock(&ei->i_fc_lock);
419 		return -ENOMEM;
420 	}
421 
422 	node->fcd_op = dentry_update->op;
423 	node->fcd_parent = dir->i_ino;
424 	node->fcd_ino = inode->i_ino;
425 	if (dentry->d_name.len > DNAME_INLINE_LEN) {
426 		node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS);
427 		if (!node->fcd_name.name) {
428 			kmem_cache_free(ext4_fc_dentry_cachep, node);
429 			ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, NULL);
430 			mutex_lock(&ei->i_fc_lock);
431 			return -ENOMEM;
432 		}
433 		memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
434 			dentry->d_name.len);
435 	} else {
436 		memcpy(node->fcd_iname, dentry->d_name.name,
437 			dentry->d_name.len);
438 		node->fcd_name.name = node->fcd_iname;
439 	}
440 	node->fcd_name.len = dentry->d_name.len;
441 
442 	spin_lock(&sbi->s_fc_lock);
443 	if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
444 		sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING)
445 		list_add_tail(&node->fcd_list,
446 				&sbi->s_fc_dentry_q[FC_Q_STAGING]);
447 	else
448 		list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
449 	spin_unlock(&sbi->s_fc_lock);
450 	mutex_lock(&ei->i_fc_lock);
451 
452 	return 0;
453 }
454 
__ext4_fc_track_unlink(handle_t * handle,struct inode * inode,struct dentry * dentry)455 void __ext4_fc_track_unlink(handle_t *handle,
456 		struct inode *inode, struct dentry *dentry)
457 {
458 	struct __track_dentry_update_args args;
459 	int ret;
460 
461 	args.dentry = dentry;
462 	args.op = EXT4_FC_TAG_UNLINK;
463 
464 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
465 					(void *)&args, 0);
466 	trace_ext4_fc_track_unlink(inode, dentry, ret);
467 }
468 
ext4_fc_track_unlink(handle_t * handle,struct dentry * dentry)469 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
470 {
471 	__ext4_fc_track_unlink(handle, d_inode(dentry), dentry);
472 }
473 
__ext4_fc_track_link(handle_t * handle,struct inode * inode,struct dentry * dentry)474 void __ext4_fc_track_link(handle_t *handle,
475 	struct inode *inode, struct dentry *dentry)
476 {
477 	struct __track_dentry_update_args args;
478 	int ret;
479 
480 	args.dentry = dentry;
481 	args.op = EXT4_FC_TAG_LINK;
482 
483 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
484 					(void *)&args, 0);
485 	trace_ext4_fc_track_link(inode, dentry, ret);
486 }
487 
ext4_fc_track_link(handle_t * handle,struct dentry * dentry)488 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
489 {
490 	__ext4_fc_track_link(handle, d_inode(dentry), dentry);
491 }
492 
__ext4_fc_track_create(handle_t * handle,struct inode * inode,struct dentry * dentry)493 void __ext4_fc_track_create(handle_t *handle, struct inode *inode,
494 			  struct dentry *dentry)
495 {
496 	struct __track_dentry_update_args args;
497 	int ret;
498 
499 	args.dentry = dentry;
500 	args.op = EXT4_FC_TAG_CREAT;
501 
502 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
503 					(void *)&args, 0);
504 	trace_ext4_fc_track_create(inode, dentry, ret);
505 }
506 
ext4_fc_track_create(handle_t * handle,struct dentry * dentry)507 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
508 {
509 	__ext4_fc_track_create(handle, d_inode(dentry), dentry);
510 }
511 
512 /* __track_fn for inode tracking */
__track_inode(struct inode * inode,void * arg,bool update)513 static int __track_inode(struct inode *inode, void *arg, bool update)
514 {
515 	if (update)
516 		return -EEXIST;
517 
518 	EXT4_I(inode)->i_fc_lblk_len = 0;
519 
520 	return 0;
521 }
522 
ext4_fc_track_inode(handle_t * handle,struct inode * inode)523 void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
524 {
525 	int ret;
526 
527 	if (S_ISDIR(inode->i_mode))
528 		return;
529 
530 	if (ext4_should_journal_data(inode)) {
531 		ext4_fc_mark_ineligible(inode->i_sb,
532 					EXT4_FC_REASON_INODE_JOURNAL_DATA, handle);
533 		return;
534 	}
535 
536 	ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
537 	trace_ext4_fc_track_inode(inode, ret);
538 }
539 
540 struct __track_range_args {
541 	ext4_lblk_t start, end;
542 };
543 
544 /* __track_fn for tracking data updates */
__track_range(struct inode * inode,void * arg,bool update)545 static int __track_range(struct inode *inode, void *arg, bool update)
546 {
547 	struct ext4_inode_info *ei = EXT4_I(inode);
548 	ext4_lblk_t oldstart;
549 	struct __track_range_args *__arg =
550 		(struct __track_range_args *)arg;
551 
552 	if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
553 		ext4_debug("Special inode %ld being modified\n", inode->i_ino);
554 		return -ECANCELED;
555 	}
556 
557 	oldstart = ei->i_fc_lblk_start;
558 
559 	if (update && ei->i_fc_lblk_len > 0) {
560 		ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
561 		ei->i_fc_lblk_len =
562 			max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
563 				ei->i_fc_lblk_start + 1;
564 	} else {
565 		ei->i_fc_lblk_start = __arg->start;
566 		ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
567 	}
568 
569 	return 0;
570 }
571 
ext4_fc_track_range(handle_t * handle,struct inode * inode,ext4_lblk_t start,ext4_lblk_t end)572 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
573 			 ext4_lblk_t end)
574 {
575 	struct __track_range_args args;
576 	int ret;
577 
578 	if (S_ISDIR(inode->i_mode))
579 		return;
580 
581 	args.start = start;
582 	args.end = end;
583 
584 	ret = ext4_fc_track_template(handle, inode,  __track_range, &args, 1);
585 
586 	trace_ext4_fc_track_range(inode, start, end, ret);
587 }
588 
ext4_fc_submit_bh(struct super_block * sb,bool is_tail)589 static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail)
590 {
591 	int write_flags = REQ_SYNC;
592 	struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
593 
594 	/* Add REQ_FUA | REQ_PREFLUSH only its tail */
595 	if (test_opt(sb, BARRIER) && is_tail)
596 		write_flags |= REQ_FUA | REQ_PREFLUSH;
597 	lock_buffer(bh);
598 	set_buffer_dirty(bh);
599 	set_buffer_uptodate(bh);
600 	bh->b_end_io = ext4_end_buffer_io_sync;
601 	submit_bh(REQ_OP_WRITE, write_flags, bh);
602 	EXT4_SB(sb)->s_fc_bh = NULL;
603 }
604 
605 /* Ext4 commit path routines */
606 
607 /* memcpy to fc reserved space and update CRC */
ext4_fc_memcpy(struct super_block * sb,void * dst,const void * src,int len,u32 * crc)608 static void *ext4_fc_memcpy(struct super_block *sb, void *dst, const void *src,
609 				int len, u32 *crc)
610 {
611 	if (crc)
612 		*crc = ext4_chksum(EXT4_SB(sb), *crc, src, len);
613 	return memcpy(dst, src, len);
614 }
615 
616 /* memzero and update CRC */
ext4_fc_memzero(struct super_block * sb,void * dst,int len,u32 * crc)617 static void *ext4_fc_memzero(struct super_block *sb, void *dst, int len,
618 				u32 *crc)
619 {
620 	void *ret;
621 
622 	ret = memset(dst, 0, len);
623 	if (crc)
624 		*crc = ext4_chksum(EXT4_SB(sb), *crc, dst, len);
625 	return ret;
626 }
627 
628 /*
629  * Allocate len bytes on a fast commit buffer.
630  *
631  * During the commit time this function is used to manage fast commit
632  * block space. We don't split a fast commit log onto different
633  * blocks. So this function makes sure that if there's not enough space
634  * on the current block, the remaining space in the current block is
635  * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
636  * new block is from jbd2 and CRC is updated to reflect the padding
637  * we added.
638  */
ext4_fc_reserve_space(struct super_block * sb,int len,u32 * crc)639 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
640 {
641 	struct ext4_fc_tl tl;
642 	struct ext4_sb_info *sbi = EXT4_SB(sb);
643 	struct buffer_head *bh;
644 	int bsize = sbi->s_journal->j_blocksize;
645 	int ret, off = sbi->s_fc_bytes % bsize;
646 	int remaining;
647 	u8 *dst;
648 
649 	/*
650 	 * If 'len' is too long to fit in any block alongside a PAD tlv, then we
651 	 * cannot fulfill the request.
652 	 */
653 	if (len > bsize - EXT4_FC_TAG_BASE_LEN)
654 		return NULL;
655 
656 	if (!sbi->s_fc_bh) {
657 		ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
658 		if (ret)
659 			return NULL;
660 		sbi->s_fc_bh = bh;
661 	}
662 	dst = sbi->s_fc_bh->b_data + off;
663 
664 	/*
665 	 * Allocate the bytes in the current block if we can do so while still
666 	 * leaving enough space for a PAD tlv.
667 	 */
668 	remaining = bsize - EXT4_FC_TAG_BASE_LEN - off;
669 	if (len <= remaining) {
670 		sbi->s_fc_bytes += len;
671 		return dst;
672 	}
673 
674 	/*
675 	 * Else, terminate the current block with a PAD tlv, then allocate a new
676 	 * block and allocate the bytes at the start of that new block.
677 	 */
678 
679 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
680 	tl.fc_len = cpu_to_le16(remaining);
681 	ext4_fc_memcpy(sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, crc);
682 	ext4_fc_memzero(sb, dst + EXT4_FC_TAG_BASE_LEN, remaining, crc);
683 
684 	ext4_fc_submit_bh(sb, false);
685 
686 	ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
687 	if (ret)
688 		return NULL;
689 	sbi->s_fc_bh = bh;
690 	sbi->s_fc_bytes += bsize - off + len;
691 	return sbi->s_fc_bh->b_data;
692 }
693 
694 /*
695  * Complete a fast commit by writing tail tag.
696  *
697  * Writing tail tag marks the end of a fast commit. In order to guarantee
698  * atomicity, after writing tail tag, even if there's space remaining
699  * in the block, next commit shouldn't use it. That's why tail tag
700  * has the length as that of the remaining space on the block.
701  */
ext4_fc_write_tail(struct super_block * sb,u32 crc)702 static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
703 {
704 	struct ext4_sb_info *sbi = EXT4_SB(sb);
705 	struct ext4_fc_tl tl;
706 	struct ext4_fc_tail tail;
707 	int off, bsize = sbi->s_journal->j_blocksize;
708 	u8 *dst;
709 
710 	/*
711 	 * ext4_fc_reserve_space takes care of allocating an extra block if
712 	 * there's no enough space on this block for accommodating this tail.
713 	 */
714 	dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(tail), &crc);
715 	if (!dst)
716 		return -ENOSPC;
717 
718 	off = sbi->s_fc_bytes % bsize;
719 
720 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
721 	tl.fc_len = cpu_to_le16(bsize - off + sizeof(struct ext4_fc_tail));
722 	sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
723 
724 	ext4_fc_memcpy(sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, &crc);
725 	dst += EXT4_FC_TAG_BASE_LEN;
726 	tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
727 	ext4_fc_memcpy(sb, dst, &tail.fc_tid, sizeof(tail.fc_tid), &crc);
728 	dst += sizeof(tail.fc_tid);
729 	tail.fc_crc = cpu_to_le32(crc);
730 	ext4_fc_memcpy(sb, dst, &tail.fc_crc, sizeof(tail.fc_crc), NULL);
731 	dst += sizeof(tail.fc_crc);
732 	memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */
733 
734 	ext4_fc_submit_bh(sb, true);
735 
736 	return 0;
737 }
738 
739 /*
740  * Adds tag, length, value and updates CRC. Returns true if tlv was added.
741  * Returns false if there's not enough space.
742  */
ext4_fc_add_tlv(struct super_block * sb,u16 tag,u16 len,u8 * val,u32 * crc)743 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
744 			   u32 *crc)
745 {
746 	struct ext4_fc_tl tl;
747 	u8 *dst;
748 
749 	dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + len, crc);
750 	if (!dst)
751 		return false;
752 
753 	tl.fc_tag = cpu_to_le16(tag);
754 	tl.fc_len = cpu_to_le16(len);
755 
756 	ext4_fc_memcpy(sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, crc);
757 	ext4_fc_memcpy(sb, dst + EXT4_FC_TAG_BASE_LEN, val, len, crc);
758 
759 	return true;
760 }
761 
762 /* Same as above, but adds dentry tlv. */
ext4_fc_add_dentry_tlv(struct super_block * sb,u32 * crc,struct ext4_fc_dentry_update * fc_dentry)763 static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc,
764 				   struct ext4_fc_dentry_update *fc_dentry)
765 {
766 	struct ext4_fc_dentry_info fcd;
767 	struct ext4_fc_tl tl;
768 	int dlen = fc_dentry->fcd_name.len;
769 	u8 *dst = ext4_fc_reserve_space(sb,
770 			EXT4_FC_TAG_BASE_LEN + sizeof(fcd) + dlen, crc);
771 
772 	if (!dst)
773 		return false;
774 
775 	fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent);
776 	fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino);
777 	tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op);
778 	tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
779 	ext4_fc_memcpy(sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, crc);
780 	dst += EXT4_FC_TAG_BASE_LEN;
781 	ext4_fc_memcpy(sb, dst, &fcd, sizeof(fcd), crc);
782 	dst += sizeof(fcd);
783 	ext4_fc_memcpy(sb, dst, fc_dentry->fcd_name.name, dlen, crc);
784 	dst += dlen;
785 
786 	return true;
787 }
788 
789 /*
790  * Writes inode in the fast commit space under TLV with tag @tag.
791  * Returns 0 on success, error on failure.
792  */
ext4_fc_write_inode(struct inode * inode,u32 * crc)793 static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
794 {
795 	struct ext4_inode_info *ei = EXT4_I(inode);
796 	int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
797 	int ret;
798 	struct ext4_iloc iloc;
799 	struct ext4_fc_inode fc_inode;
800 	struct ext4_fc_tl tl;
801 	u8 *dst;
802 
803 	ret = ext4_get_inode_loc(inode, &iloc);
804 	if (ret)
805 		return ret;
806 
807 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
808 		inode_len += ei->i_extra_isize;
809 
810 	fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
811 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
812 	tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
813 
814 	ret = -ECANCELED;
815 	dst = ext4_fc_reserve_space(inode->i_sb,
816 		EXT4_FC_TAG_BASE_LEN + inode_len + sizeof(fc_inode.fc_ino), crc);
817 	if (!dst)
818 		goto err;
819 
820 	if (!ext4_fc_memcpy(inode->i_sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, crc))
821 		goto err;
822 	dst += EXT4_FC_TAG_BASE_LEN;
823 	if (!ext4_fc_memcpy(inode->i_sb, dst, &fc_inode, sizeof(fc_inode), crc))
824 		goto err;
825 	dst += sizeof(fc_inode);
826 	if (!ext4_fc_memcpy(inode->i_sb, dst, (u8 *)ext4_raw_inode(&iloc),
827 					inode_len, crc))
828 		goto err;
829 	ret = 0;
830 err:
831 	brelse(iloc.bh);
832 	return ret;
833 }
834 
835 /*
836  * Writes updated data ranges for the inode in question. Updates CRC.
837  * Returns 0 on success, error otherwise.
838  */
ext4_fc_write_inode_data(struct inode * inode,u32 * crc)839 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
840 {
841 	ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
842 	struct ext4_inode_info *ei = EXT4_I(inode);
843 	struct ext4_map_blocks map;
844 	struct ext4_fc_add_range fc_ext;
845 	struct ext4_fc_del_range lrange;
846 	struct ext4_extent *ex;
847 	int ret;
848 
849 	mutex_lock(&ei->i_fc_lock);
850 	if (ei->i_fc_lblk_len == 0) {
851 		mutex_unlock(&ei->i_fc_lock);
852 		return 0;
853 	}
854 	old_blk_size = ei->i_fc_lblk_start;
855 	new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
856 	ei->i_fc_lblk_len = 0;
857 	mutex_unlock(&ei->i_fc_lock);
858 
859 	cur_lblk_off = old_blk_size;
860 	ext4_debug("will try writing %d to %d for inode %ld\n",
861 		   cur_lblk_off, new_blk_size, inode->i_ino);
862 
863 	while (cur_lblk_off <= new_blk_size) {
864 		map.m_lblk = cur_lblk_off;
865 		map.m_len = new_blk_size - cur_lblk_off + 1;
866 		ret = ext4_map_blocks(NULL, inode, &map, 0);
867 		if (ret < 0)
868 			return -ECANCELED;
869 
870 		if (map.m_len == 0) {
871 			cur_lblk_off++;
872 			continue;
873 		}
874 
875 		if (ret == 0) {
876 			lrange.fc_ino = cpu_to_le32(inode->i_ino);
877 			lrange.fc_lblk = cpu_to_le32(map.m_lblk);
878 			lrange.fc_len = cpu_to_le32(map.m_len);
879 			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
880 					    sizeof(lrange), (u8 *)&lrange, crc))
881 				return -ENOSPC;
882 		} else {
883 			unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ?
884 				EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN;
885 
886 			/* Limit the number of blocks in one extent */
887 			map.m_len = min(max, map.m_len);
888 
889 			fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
890 			ex = (struct ext4_extent *)&fc_ext.fc_ex;
891 			ex->ee_block = cpu_to_le32(map.m_lblk);
892 			ex->ee_len = cpu_to_le16(map.m_len);
893 			ext4_ext_store_pblock(ex, map.m_pblk);
894 			if (map.m_flags & EXT4_MAP_UNWRITTEN)
895 				ext4_ext_mark_unwritten(ex);
896 			else
897 				ext4_ext_mark_initialized(ex);
898 			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
899 					    sizeof(fc_ext), (u8 *)&fc_ext, crc))
900 				return -ENOSPC;
901 		}
902 
903 		cur_lblk_off += map.m_len;
904 	}
905 
906 	return 0;
907 }
908 
909 
910 /* Submit data for all the fast commit inodes */
ext4_fc_submit_inode_data_all(journal_t * journal)911 static int ext4_fc_submit_inode_data_all(journal_t *journal)
912 {
913 	struct super_block *sb = (struct super_block *)(journal->j_private);
914 	struct ext4_sb_info *sbi = EXT4_SB(sb);
915 	struct ext4_inode_info *ei;
916 	int ret = 0;
917 
918 	spin_lock(&sbi->s_fc_lock);
919 	list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
920 		ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
921 		while (atomic_read(&ei->i_fc_updates)) {
922 			DEFINE_WAIT(wait);
923 
924 			prepare_to_wait(&ei->i_fc_wait, &wait,
925 						TASK_UNINTERRUPTIBLE);
926 			if (atomic_read(&ei->i_fc_updates)) {
927 				spin_unlock(&sbi->s_fc_lock);
928 				schedule();
929 				spin_lock(&sbi->s_fc_lock);
930 			}
931 			finish_wait(&ei->i_fc_wait, &wait);
932 		}
933 		spin_unlock(&sbi->s_fc_lock);
934 		ret = jbd2_submit_inode_data(ei->jinode);
935 		if (ret)
936 			return ret;
937 		spin_lock(&sbi->s_fc_lock);
938 	}
939 	spin_unlock(&sbi->s_fc_lock);
940 
941 	return ret;
942 }
943 
944 /* Wait for completion of data for all the fast commit inodes */
ext4_fc_wait_inode_data_all(journal_t * journal)945 static int ext4_fc_wait_inode_data_all(journal_t *journal)
946 {
947 	struct super_block *sb = (struct super_block *)(journal->j_private);
948 	struct ext4_sb_info *sbi = EXT4_SB(sb);
949 	struct ext4_inode_info *pos, *n;
950 	int ret = 0;
951 
952 	spin_lock(&sbi->s_fc_lock);
953 	list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
954 		if (!ext4_test_inode_state(&pos->vfs_inode,
955 					   EXT4_STATE_FC_COMMITTING))
956 			continue;
957 		spin_unlock(&sbi->s_fc_lock);
958 
959 		ret = jbd2_wait_inode_data(journal, pos->jinode);
960 		if (ret)
961 			return ret;
962 		spin_lock(&sbi->s_fc_lock);
963 	}
964 	spin_unlock(&sbi->s_fc_lock);
965 
966 	return 0;
967 }
968 
969 /* Commit all the directory entry updates */
ext4_fc_commit_dentry_updates(journal_t * journal,u32 * crc)970 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
971 __acquires(&sbi->s_fc_lock)
972 __releases(&sbi->s_fc_lock)
973 {
974 	struct super_block *sb = (struct super_block *)(journal->j_private);
975 	struct ext4_sb_info *sbi = EXT4_SB(sb);
976 	struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n;
977 	struct inode *inode;
978 	struct ext4_inode_info *ei, *ei_n;
979 	int ret;
980 
981 	if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
982 		return 0;
983 	list_for_each_entry_safe(fc_dentry, fc_dentry_n,
984 				 &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) {
985 		if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
986 			spin_unlock(&sbi->s_fc_lock);
987 			if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
988 				ret = -ENOSPC;
989 				goto lock_and_exit;
990 			}
991 			spin_lock(&sbi->s_fc_lock);
992 			continue;
993 		}
994 
995 		inode = NULL;
996 		list_for_each_entry_safe(ei, ei_n, &sbi->s_fc_q[FC_Q_MAIN],
997 					 i_fc_list) {
998 			if (ei->vfs_inode.i_ino == fc_dentry->fcd_ino) {
999 				inode = &ei->vfs_inode;
1000 				break;
1001 			}
1002 		}
1003 		/*
1004 		 * If we don't find inode in our list, then it was deleted,
1005 		 * in which case, we don't need to record it's create tag.
1006 		 */
1007 		if (!inode)
1008 			continue;
1009 		spin_unlock(&sbi->s_fc_lock);
1010 
1011 		/*
1012 		 * We first write the inode and then the create dirent. This
1013 		 * allows the recovery code to create an unnamed inode first
1014 		 * and then link it to a directory entry. This allows us
1015 		 * to use namei.c routines almost as is and simplifies
1016 		 * the recovery code.
1017 		 */
1018 		ret = ext4_fc_write_inode(inode, crc);
1019 		if (ret)
1020 			goto lock_and_exit;
1021 
1022 		ret = ext4_fc_write_inode_data(inode, crc);
1023 		if (ret)
1024 			goto lock_and_exit;
1025 
1026 		if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1027 			ret = -ENOSPC;
1028 			goto lock_and_exit;
1029 		}
1030 
1031 		spin_lock(&sbi->s_fc_lock);
1032 	}
1033 	return 0;
1034 lock_and_exit:
1035 	spin_lock(&sbi->s_fc_lock);
1036 	return ret;
1037 }
1038 
ext4_fc_perform_commit(journal_t * journal)1039 static int ext4_fc_perform_commit(journal_t *journal)
1040 {
1041 	struct super_block *sb = (struct super_block *)(journal->j_private);
1042 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1043 	struct ext4_inode_info *iter;
1044 	struct ext4_fc_head head;
1045 	struct inode *inode;
1046 	struct blk_plug plug;
1047 	int ret = 0;
1048 	u32 crc = 0;
1049 
1050 	ret = ext4_fc_submit_inode_data_all(journal);
1051 	if (ret)
1052 		return ret;
1053 
1054 	ret = ext4_fc_wait_inode_data_all(journal);
1055 	if (ret)
1056 		return ret;
1057 
1058 	/*
1059 	 * If file system device is different from journal device, issue a cache
1060 	 * flush before we start writing fast commit blocks.
1061 	 */
1062 	if (journal->j_fs_dev != journal->j_dev)
1063 		blkdev_issue_flush(journal->j_fs_dev);
1064 
1065 	blk_start_plug(&plug);
1066 	if (sbi->s_fc_bytes == 0) {
1067 		/*
1068 		 * Add a head tag only if this is the first fast commit
1069 		 * in this TID.
1070 		 */
1071 		head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1072 		head.fc_tid = cpu_to_le32(
1073 			sbi->s_journal->j_running_transaction->t_tid);
1074 		if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1075 			(u8 *)&head, &crc)) {
1076 			ret = -ENOSPC;
1077 			goto out;
1078 		}
1079 	}
1080 
1081 	spin_lock(&sbi->s_fc_lock);
1082 	ret = ext4_fc_commit_dentry_updates(journal, &crc);
1083 	if (ret) {
1084 		spin_unlock(&sbi->s_fc_lock);
1085 		goto out;
1086 	}
1087 
1088 	list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1089 		inode = &iter->vfs_inode;
1090 		if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1091 			continue;
1092 
1093 		spin_unlock(&sbi->s_fc_lock);
1094 		ret = ext4_fc_write_inode_data(inode, &crc);
1095 		if (ret)
1096 			goto out;
1097 		ret = ext4_fc_write_inode(inode, &crc);
1098 		if (ret)
1099 			goto out;
1100 		spin_lock(&sbi->s_fc_lock);
1101 	}
1102 	spin_unlock(&sbi->s_fc_lock);
1103 
1104 	ret = ext4_fc_write_tail(sb, crc);
1105 
1106 out:
1107 	blk_finish_plug(&plug);
1108 	return ret;
1109 }
1110 
ext4_fc_update_stats(struct super_block * sb,int status,u64 commit_time,int nblks)1111 static void ext4_fc_update_stats(struct super_block *sb, int status,
1112 				 u64 commit_time, int nblks)
1113 {
1114 	struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats;
1115 
1116 	ext4_debug("Fast commit ended with status = %d", status);
1117 	if (status == EXT4_FC_STATUS_OK) {
1118 		stats->fc_num_commits++;
1119 		stats->fc_numblks += nblks;
1120 		if (likely(stats->s_fc_avg_commit_time))
1121 			stats->s_fc_avg_commit_time =
1122 				(commit_time +
1123 				 stats->s_fc_avg_commit_time * 3) / 4;
1124 		else
1125 			stats->s_fc_avg_commit_time = commit_time;
1126 	} else if (status == EXT4_FC_STATUS_FAILED ||
1127 		   status == EXT4_FC_STATUS_INELIGIBLE) {
1128 		if (status == EXT4_FC_STATUS_FAILED)
1129 			stats->fc_failed_commits++;
1130 		stats->fc_ineligible_commits++;
1131 	} else {
1132 		stats->fc_skipped_commits++;
1133 	}
1134 	trace_ext4_fc_commit_stop(sb, nblks, status);
1135 }
1136 
1137 /*
1138  * The main commit entry point. Performs a fast commit for transaction
1139  * commit_tid if needed. If it's not possible to perform a fast commit
1140  * due to various reasons, we fall back to full commit. Returns 0
1141  * on success, error otherwise.
1142  */
ext4_fc_commit(journal_t * journal,tid_t commit_tid)1143 int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1144 {
1145 	struct super_block *sb = (struct super_block *)(journal->j_private);
1146 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1147 	int nblks = 0, ret, bsize = journal->j_blocksize;
1148 	int subtid = atomic_read(&sbi->s_fc_subtid);
1149 	int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0;
1150 	ktime_t start_time, commit_time;
1151 
1152 	trace_ext4_fc_commit_start(sb);
1153 
1154 	start_time = ktime_get();
1155 
1156 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
1157 		return jbd2_complete_transaction(journal, commit_tid);
1158 
1159 restart_fc:
1160 	ret = jbd2_fc_begin_commit(journal, commit_tid);
1161 	if (ret == -EALREADY) {
1162 		/* There was an ongoing commit, check if we need to restart */
1163 		if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1164 			commit_tid > journal->j_commit_sequence)
1165 			goto restart_fc;
1166 		ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0);
1167 		return 0;
1168 	} else if (ret) {
1169 		/*
1170 		 * Commit couldn't start. Just update stats and perform a
1171 		 * full commit.
1172 		 */
1173 		ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0);
1174 		return jbd2_complete_transaction(journal, commit_tid);
1175 	}
1176 
1177 	/*
1178 	 * After establishing journal barrier via jbd2_fc_begin_commit(), check
1179 	 * if we are fast commit ineligible.
1180 	 */
1181 	if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) {
1182 		status = EXT4_FC_STATUS_INELIGIBLE;
1183 		goto fallback;
1184 	}
1185 
1186 	fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1187 	ret = ext4_fc_perform_commit(journal);
1188 	if (ret < 0) {
1189 		status = EXT4_FC_STATUS_FAILED;
1190 		goto fallback;
1191 	}
1192 	nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1193 	ret = jbd2_fc_wait_bufs(journal, nblks);
1194 	if (ret < 0) {
1195 		status = EXT4_FC_STATUS_FAILED;
1196 		goto fallback;
1197 	}
1198 	atomic_inc(&sbi->s_fc_subtid);
1199 	ret = jbd2_fc_end_commit(journal);
1200 	/*
1201 	 * weight the commit time higher than the average time so we
1202 	 * don't react too strongly to vast changes in the commit time
1203 	 */
1204 	commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1205 	ext4_fc_update_stats(sb, status, commit_time, nblks);
1206 	return ret;
1207 
1208 fallback:
1209 	ret = jbd2_fc_end_commit_fallback(journal);
1210 	ext4_fc_update_stats(sb, status, 0, 0);
1211 	return ret;
1212 }
1213 
1214 /*
1215  * Fast commit cleanup routine. This is called after every fast commit and
1216  * full commit. full is true if we are called after a full commit.
1217  */
ext4_fc_cleanup(journal_t * journal,int full,tid_t tid)1218 static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid)
1219 {
1220 	struct super_block *sb = journal->j_private;
1221 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1222 	struct ext4_inode_info *iter, *iter_n;
1223 	struct ext4_fc_dentry_update *fc_dentry;
1224 
1225 	if (full && sbi->s_fc_bh)
1226 		sbi->s_fc_bh = NULL;
1227 
1228 	jbd2_fc_release_bufs(journal);
1229 
1230 	spin_lock(&sbi->s_fc_lock);
1231 	list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN],
1232 				 i_fc_list) {
1233 		list_del_init(&iter->i_fc_list);
1234 		ext4_clear_inode_state(&iter->vfs_inode,
1235 				       EXT4_STATE_FC_COMMITTING);
1236 		if (iter->i_sync_tid <= tid)
1237 			ext4_fc_reset_inode(&iter->vfs_inode);
1238 		/* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1239 		smp_mb();
1240 #if (BITS_PER_LONG < 64)
1241 		wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1242 #else
1243 		wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1244 #endif
1245 	}
1246 
1247 	while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1248 		fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1249 					     struct ext4_fc_dentry_update,
1250 					     fcd_list);
1251 		list_del_init(&fc_dentry->fcd_list);
1252 		spin_unlock(&sbi->s_fc_lock);
1253 
1254 		if (fc_dentry->fcd_name.name &&
1255 			fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
1256 			kfree(fc_dentry->fcd_name.name);
1257 		kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1258 		spin_lock(&sbi->s_fc_lock);
1259 	}
1260 
1261 	list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1262 				&sbi->s_fc_dentry_q[FC_Q_MAIN]);
1263 	list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1264 				&sbi->s_fc_q[FC_Q_MAIN]);
1265 
1266 	if (tid >= sbi->s_fc_ineligible_tid) {
1267 		sbi->s_fc_ineligible_tid = 0;
1268 		ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
1269 	}
1270 
1271 	if (full)
1272 		sbi->s_fc_bytes = 0;
1273 	spin_unlock(&sbi->s_fc_lock);
1274 	trace_ext4_fc_stats(sb);
1275 }
1276 
1277 /* Ext4 Replay Path Routines */
1278 
1279 /* Helper struct for dentry replay routines */
1280 struct dentry_info_args {
1281 	int parent_ino, dname_len, ino, inode_len;
1282 	char *dname;
1283 };
1284 
1285 /* Same as struct ext4_fc_tl, but uses native endianness fields */
1286 struct ext4_fc_tl_mem {
1287 	u16 fc_tag;
1288 	u16 fc_len;
1289 };
1290 
tl_to_darg(struct dentry_info_args * darg,struct ext4_fc_tl_mem * tl,u8 * val)1291 static inline void tl_to_darg(struct dentry_info_args *darg,
1292 			      struct ext4_fc_tl_mem *tl, u8 *val)
1293 {
1294 	struct ext4_fc_dentry_info fcd;
1295 
1296 	memcpy(&fcd, val, sizeof(fcd));
1297 
1298 	darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino);
1299 	darg->ino = le32_to_cpu(fcd.fc_ino);
1300 	darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname);
1301 	darg->dname_len = tl->fc_len - sizeof(struct ext4_fc_dentry_info);
1302 }
1303 
ext4_fc_get_tl(struct ext4_fc_tl_mem * tl,u8 * val)1304 static inline void ext4_fc_get_tl(struct ext4_fc_tl_mem *tl, u8 *val)
1305 {
1306 	struct ext4_fc_tl tl_disk;
1307 
1308 	memcpy(&tl_disk, val, EXT4_FC_TAG_BASE_LEN);
1309 	tl->fc_len = le16_to_cpu(tl_disk.fc_len);
1310 	tl->fc_tag = le16_to_cpu(tl_disk.fc_tag);
1311 }
1312 
1313 /* Unlink replay function */
ext4_fc_replay_unlink(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1314 static int ext4_fc_replay_unlink(struct super_block *sb,
1315 				 struct ext4_fc_tl_mem *tl, u8 *val)
1316 {
1317 	struct inode *inode, *old_parent;
1318 	struct qstr entry;
1319 	struct dentry_info_args darg;
1320 	int ret = 0;
1321 
1322 	tl_to_darg(&darg, tl, val);
1323 
1324 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1325 			darg.parent_ino, darg.dname_len);
1326 
1327 	entry.name = darg.dname;
1328 	entry.len = darg.dname_len;
1329 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1330 
1331 	if (IS_ERR(inode)) {
1332 		ext4_debug("Inode %d not found", darg.ino);
1333 		return 0;
1334 	}
1335 
1336 	old_parent = ext4_iget(sb, darg.parent_ino,
1337 				EXT4_IGET_NORMAL);
1338 	if (IS_ERR(old_parent)) {
1339 		ext4_debug("Dir with inode %d not found", darg.parent_ino);
1340 		iput(inode);
1341 		return 0;
1342 	}
1343 
1344 	ret = __ext4_unlink(old_parent, &entry, inode, NULL);
1345 	/* -ENOENT ok coz it might not exist anymore. */
1346 	if (ret == -ENOENT)
1347 		ret = 0;
1348 	iput(old_parent);
1349 	iput(inode);
1350 	return ret;
1351 }
1352 
ext4_fc_replay_link_internal(struct super_block * sb,struct dentry_info_args * darg,struct inode * inode)1353 static int ext4_fc_replay_link_internal(struct super_block *sb,
1354 				struct dentry_info_args *darg,
1355 				struct inode *inode)
1356 {
1357 	struct inode *dir = NULL;
1358 	struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1359 	struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1360 	int ret = 0;
1361 
1362 	dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1363 	if (IS_ERR(dir)) {
1364 		ext4_debug("Dir with inode %d not found.", darg->parent_ino);
1365 		dir = NULL;
1366 		goto out;
1367 	}
1368 
1369 	dentry_dir = d_obtain_alias(dir);
1370 	if (IS_ERR(dentry_dir)) {
1371 		ext4_debug("Failed to obtain dentry");
1372 		dentry_dir = NULL;
1373 		goto out;
1374 	}
1375 
1376 	dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1377 	if (!dentry_inode) {
1378 		ext4_debug("Inode dentry not created.");
1379 		ret = -ENOMEM;
1380 		goto out;
1381 	}
1382 
1383 	ret = __ext4_link(dir, inode, dentry_inode);
1384 	/*
1385 	 * It's possible that link already existed since data blocks
1386 	 * for the dir in question got persisted before we crashed OR
1387 	 * we replayed this tag and crashed before the entire replay
1388 	 * could complete.
1389 	 */
1390 	if (ret && ret != -EEXIST) {
1391 		ext4_debug("Failed to link\n");
1392 		goto out;
1393 	}
1394 
1395 	ret = 0;
1396 out:
1397 	if (dentry_dir) {
1398 		d_drop(dentry_dir);
1399 		dput(dentry_dir);
1400 	} else if (dir) {
1401 		iput(dir);
1402 	}
1403 	if (dentry_inode) {
1404 		d_drop(dentry_inode);
1405 		dput(dentry_inode);
1406 	}
1407 
1408 	return ret;
1409 }
1410 
1411 /* Link replay function */
ext4_fc_replay_link(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1412 static int ext4_fc_replay_link(struct super_block *sb,
1413 			       struct ext4_fc_tl_mem *tl, u8 *val)
1414 {
1415 	struct inode *inode;
1416 	struct dentry_info_args darg;
1417 	int ret = 0;
1418 
1419 	tl_to_darg(&darg, tl, val);
1420 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1421 			darg.parent_ino, darg.dname_len);
1422 
1423 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1424 	if (IS_ERR(inode)) {
1425 		ext4_debug("Inode not found.");
1426 		return 0;
1427 	}
1428 
1429 	ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1430 	iput(inode);
1431 	return ret;
1432 }
1433 
1434 /*
1435  * Record all the modified inodes during replay. We use this later to setup
1436  * block bitmaps correctly.
1437  */
ext4_fc_record_modified_inode(struct super_block * sb,int ino)1438 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1439 {
1440 	struct ext4_fc_replay_state *state;
1441 	int i;
1442 
1443 	state = &EXT4_SB(sb)->s_fc_replay_state;
1444 	for (i = 0; i < state->fc_modified_inodes_used; i++)
1445 		if (state->fc_modified_inodes[i] == ino)
1446 			return 0;
1447 	if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1448 		int *fc_modified_inodes;
1449 
1450 		fc_modified_inodes = krealloc(state->fc_modified_inodes,
1451 				sizeof(int) * (state->fc_modified_inodes_size +
1452 				EXT4_FC_REPLAY_REALLOC_INCREMENT),
1453 				GFP_KERNEL);
1454 		if (!fc_modified_inodes)
1455 			return -ENOMEM;
1456 		state->fc_modified_inodes = fc_modified_inodes;
1457 		state->fc_modified_inodes_size +=
1458 			EXT4_FC_REPLAY_REALLOC_INCREMENT;
1459 	}
1460 	state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1461 	return 0;
1462 }
1463 
1464 /*
1465  * Inode replay function
1466  */
ext4_fc_replay_inode(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1467 static int ext4_fc_replay_inode(struct super_block *sb,
1468 				struct ext4_fc_tl_mem *tl, u8 *val)
1469 {
1470 	struct ext4_fc_inode fc_inode;
1471 	struct ext4_inode *raw_inode;
1472 	struct ext4_inode *raw_fc_inode;
1473 	struct inode *inode = NULL;
1474 	struct ext4_iloc iloc;
1475 	int inode_len, ino, ret, tag = tl->fc_tag;
1476 	struct ext4_extent_header *eh;
1477 
1478 	memcpy(&fc_inode, val, sizeof(fc_inode));
1479 
1480 	ino = le32_to_cpu(fc_inode.fc_ino);
1481 	trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1482 
1483 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1484 	if (!IS_ERR(inode)) {
1485 		ext4_ext_clear_bb(inode);
1486 		iput(inode);
1487 	}
1488 	inode = NULL;
1489 
1490 	ret = ext4_fc_record_modified_inode(sb, ino);
1491 	if (ret)
1492 		goto out;
1493 
1494 	raw_fc_inode = (struct ext4_inode *)
1495 		(val + offsetof(struct ext4_fc_inode, fc_raw_inode));
1496 	ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1497 	if (ret)
1498 		goto out;
1499 
1500 	inode_len = tl->fc_len - sizeof(struct ext4_fc_inode);
1501 	raw_inode = ext4_raw_inode(&iloc);
1502 
1503 	memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1504 	memcpy(&raw_inode->i_generation, &raw_fc_inode->i_generation,
1505 		inode_len - offsetof(struct ext4_inode, i_generation));
1506 	if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1507 		eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1508 		if (eh->eh_magic != EXT4_EXT_MAGIC) {
1509 			memset(eh, 0, sizeof(*eh));
1510 			eh->eh_magic = EXT4_EXT_MAGIC;
1511 			eh->eh_max = cpu_to_le16(
1512 				(sizeof(raw_inode->i_block) -
1513 				 sizeof(struct ext4_extent_header))
1514 				 / sizeof(struct ext4_extent));
1515 		}
1516 	} else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1517 		memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1518 			sizeof(raw_inode->i_block));
1519 	}
1520 
1521 	/* Immediately update the inode on disk. */
1522 	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1523 	if (ret)
1524 		goto out;
1525 	ret = sync_dirty_buffer(iloc.bh);
1526 	if (ret)
1527 		goto out;
1528 	ret = ext4_mark_inode_used(sb, ino);
1529 	if (ret)
1530 		goto out;
1531 
1532 	/* Given that we just wrote the inode on disk, this SHOULD succeed. */
1533 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1534 	if (IS_ERR(inode)) {
1535 		ext4_debug("Inode not found.");
1536 		return -EFSCORRUPTED;
1537 	}
1538 
1539 	/*
1540 	 * Our allocator could have made different decisions than before
1541 	 * crashing. This should be fixed but until then, we calculate
1542 	 * the number of blocks the inode.
1543 	 */
1544 	ext4_ext_replay_set_iblocks(inode);
1545 
1546 	inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1547 	ext4_reset_inode_seed(inode);
1548 
1549 	ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1550 	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1551 	sync_dirty_buffer(iloc.bh);
1552 	brelse(iloc.bh);
1553 out:
1554 	iput(inode);
1555 	if (!ret)
1556 		blkdev_issue_flush(sb->s_bdev);
1557 
1558 	return 0;
1559 }
1560 
1561 /*
1562  * Dentry create replay function.
1563  *
1564  * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1565  * inode for which we are trying to create a dentry here, should already have
1566  * been replayed before we start here.
1567  */
ext4_fc_replay_create(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1568 static int ext4_fc_replay_create(struct super_block *sb,
1569 				 struct ext4_fc_tl_mem *tl, u8 *val)
1570 {
1571 	int ret = 0;
1572 	struct inode *inode = NULL;
1573 	struct inode *dir = NULL;
1574 	struct dentry_info_args darg;
1575 
1576 	tl_to_darg(&darg, tl, val);
1577 
1578 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1579 			darg.parent_ino, darg.dname_len);
1580 
1581 	/* This takes care of update group descriptor and other metadata */
1582 	ret = ext4_mark_inode_used(sb, darg.ino);
1583 	if (ret)
1584 		goto out;
1585 
1586 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1587 	if (IS_ERR(inode)) {
1588 		ext4_debug("inode %d not found.", darg.ino);
1589 		inode = NULL;
1590 		ret = -EINVAL;
1591 		goto out;
1592 	}
1593 
1594 	if (S_ISDIR(inode->i_mode)) {
1595 		/*
1596 		 * If we are creating a directory, we need to make sure that the
1597 		 * dot and dot dot dirents are setup properly.
1598 		 */
1599 		dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1600 		if (IS_ERR(dir)) {
1601 			ext4_debug("Dir %d not found.", darg.ino);
1602 			goto out;
1603 		}
1604 		ret = ext4_init_new_dir(NULL, dir, inode);
1605 		iput(dir);
1606 		if (ret) {
1607 			ret = 0;
1608 			goto out;
1609 		}
1610 	}
1611 	ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1612 	if (ret)
1613 		goto out;
1614 	set_nlink(inode, 1);
1615 	ext4_mark_inode_dirty(NULL, inode);
1616 out:
1617 	if (inode)
1618 		iput(inode);
1619 	return ret;
1620 }
1621 
1622 /*
1623  * Record physical disk regions which are in use as per fast commit area,
1624  * and used by inodes during replay phase. Our simple replay phase
1625  * allocator excludes these regions from allocation.
1626  */
ext4_fc_record_regions(struct super_block * sb,int ino,ext4_lblk_t lblk,ext4_fsblk_t pblk,int len,int replay)1627 int ext4_fc_record_regions(struct super_block *sb, int ino,
1628 		ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay)
1629 {
1630 	struct ext4_fc_replay_state *state;
1631 	struct ext4_fc_alloc_region *region;
1632 
1633 	state = &EXT4_SB(sb)->s_fc_replay_state;
1634 	/*
1635 	 * during replay phase, the fc_regions_valid may not same as
1636 	 * fc_regions_used, update it when do new additions.
1637 	 */
1638 	if (replay && state->fc_regions_used != state->fc_regions_valid)
1639 		state->fc_regions_used = state->fc_regions_valid;
1640 	if (state->fc_regions_used == state->fc_regions_size) {
1641 		struct ext4_fc_alloc_region *fc_regions;
1642 
1643 		fc_regions = krealloc(state->fc_regions,
1644 				      sizeof(struct ext4_fc_alloc_region) *
1645 				      (state->fc_regions_size +
1646 				       EXT4_FC_REPLAY_REALLOC_INCREMENT),
1647 				      GFP_KERNEL);
1648 		if (!fc_regions)
1649 			return -ENOMEM;
1650 		state->fc_regions_size +=
1651 			EXT4_FC_REPLAY_REALLOC_INCREMENT;
1652 		state->fc_regions = fc_regions;
1653 	}
1654 	region = &state->fc_regions[state->fc_regions_used++];
1655 	region->ino = ino;
1656 	region->lblk = lblk;
1657 	region->pblk = pblk;
1658 	region->len = len;
1659 
1660 	if (replay)
1661 		state->fc_regions_valid++;
1662 
1663 	return 0;
1664 }
1665 
1666 /* Replay add range tag */
ext4_fc_replay_add_range(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1667 static int ext4_fc_replay_add_range(struct super_block *sb,
1668 				    struct ext4_fc_tl_mem *tl, u8 *val)
1669 {
1670 	struct ext4_fc_add_range fc_add_ex;
1671 	struct ext4_extent newex, *ex;
1672 	struct inode *inode;
1673 	ext4_lblk_t start, cur;
1674 	int remaining, len;
1675 	ext4_fsblk_t start_pblk;
1676 	struct ext4_map_blocks map;
1677 	struct ext4_ext_path *path = NULL;
1678 	int ret;
1679 
1680 	memcpy(&fc_add_ex, val, sizeof(fc_add_ex));
1681 	ex = (struct ext4_extent *)&fc_add_ex.fc_ex;
1682 
1683 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1684 		le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block),
1685 		ext4_ext_get_actual_len(ex));
1686 
1687 	inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL);
1688 	if (IS_ERR(inode)) {
1689 		ext4_debug("Inode not found.");
1690 		return 0;
1691 	}
1692 
1693 	ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1694 	if (ret)
1695 		goto out;
1696 
1697 	start = le32_to_cpu(ex->ee_block);
1698 	start_pblk = ext4_ext_pblock(ex);
1699 	len = ext4_ext_get_actual_len(ex);
1700 
1701 	cur = start;
1702 	remaining = len;
1703 	ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1704 		  start, start_pblk, len, ext4_ext_is_unwritten(ex),
1705 		  inode->i_ino);
1706 
1707 	while (remaining > 0) {
1708 		map.m_lblk = cur;
1709 		map.m_len = remaining;
1710 		map.m_pblk = 0;
1711 		ret = ext4_map_blocks(NULL, inode, &map, 0);
1712 
1713 		if (ret < 0)
1714 			goto out;
1715 
1716 		if (ret == 0) {
1717 			/* Range is not mapped */
1718 			path = ext4_find_extent(inode, cur, NULL, 0);
1719 			if (IS_ERR(path))
1720 				goto out;
1721 			memset(&newex, 0, sizeof(newex));
1722 			newex.ee_block = cpu_to_le32(cur);
1723 			ext4_ext_store_pblock(
1724 				&newex, start_pblk + cur - start);
1725 			newex.ee_len = cpu_to_le16(map.m_len);
1726 			if (ext4_ext_is_unwritten(ex))
1727 				ext4_ext_mark_unwritten(&newex);
1728 			down_write(&EXT4_I(inode)->i_data_sem);
1729 			ret = ext4_ext_insert_extent(
1730 				NULL, inode, &path, &newex, 0);
1731 			up_write((&EXT4_I(inode)->i_data_sem));
1732 			ext4_ext_drop_refs(path);
1733 			kfree(path);
1734 			if (ret)
1735 				goto out;
1736 			goto next;
1737 		}
1738 
1739 		if (start_pblk + cur - start != map.m_pblk) {
1740 			/*
1741 			 * Logical to physical mapping changed. This can happen
1742 			 * if this range was removed and then reallocated to
1743 			 * map to new physical blocks during a fast commit.
1744 			 */
1745 			ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1746 					ext4_ext_is_unwritten(ex),
1747 					start_pblk + cur - start);
1748 			if (ret)
1749 				goto out;
1750 			/*
1751 			 * Mark the old blocks as free since they aren't used
1752 			 * anymore. We maintain an array of all the modified
1753 			 * inodes. In case these blocks are still used at either
1754 			 * a different logical range in the same inode or in
1755 			 * some different inode, we will mark them as allocated
1756 			 * at the end of the FC replay using our array of
1757 			 * modified inodes.
1758 			 */
1759 			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1760 			goto next;
1761 		}
1762 
1763 		/* Range is mapped and needs a state change */
1764 		ext4_debug("Converting from %ld to %d %lld",
1765 				map.m_flags & EXT4_MAP_UNWRITTEN,
1766 			ext4_ext_is_unwritten(ex), map.m_pblk);
1767 		ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1768 					ext4_ext_is_unwritten(ex), map.m_pblk);
1769 		if (ret)
1770 			goto out;
1771 		/*
1772 		 * We may have split the extent tree while toggling the state.
1773 		 * Try to shrink the extent tree now.
1774 		 */
1775 		ext4_ext_replay_shrink_inode(inode, start + len);
1776 next:
1777 		cur += map.m_len;
1778 		remaining -= map.m_len;
1779 	}
1780 	ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1781 					sb->s_blocksize_bits);
1782 out:
1783 	iput(inode);
1784 	return 0;
1785 }
1786 
1787 /* Replay DEL_RANGE tag */
1788 static int
ext4_fc_replay_del_range(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1789 ext4_fc_replay_del_range(struct super_block *sb,
1790 			 struct ext4_fc_tl_mem *tl, u8 *val)
1791 {
1792 	struct inode *inode;
1793 	struct ext4_fc_del_range lrange;
1794 	struct ext4_map_blocks map;
1795 	ext4_lblk_t cur, remaining;
1796 	int ret;
1797 
1798 	memcpy(&lrange, val, sizeof(lrange));
1799 	cur = le32_to_cpu(lrange.fc_lblk);
1800 	remaining = le32_to_cpu(lrange.fc_len);
1801 
1802 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1803 		le32_to_cpu(lrange.fc_ino), cur, remaining);
1804 
1805 	inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL);
1806 	if (IS_ERR(inode)) {
1807 		ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino));
1808 		return 0;
1809 	}
1810 
1811 	ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1812 	if (ret)
1813 		goto out;
1814 
1815 	ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n",
1816 			inode->i_ino, le32_to_cpu(lrange.fc_lblk),
1817 			le32_to_cpu(lrange.fc_len));
1818 	while (remaining > 0) {
1819 		map.m_lblk = cur;
1820 		map.m_len = remaining;
1821 
1822 		ret = ext4_map_blocks(NULL, inode, &map, 0);
1823 		if (ret < 0)
1824 			goto out;
1825 		if (ret > 0) {
1826 			remaining -= ret;
1827 			cur += ret;
1828 			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1829 		} else {
1830 			remaining -= map.m_len;
1831 			cur += map.m_len;
1832 		}
1833 	}
1834 
1835 	down_write(&EXT4_I(inode)->i_data_sem);
1836 	ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk),
1837 				le32_to_cpu(lrange.fc_lblk) +
1838 				le32_to_cpu(lrange.fc_len) - 1);
1839 	up_write(&EXT4_I(inode)->i_data_sem);
1840 	if (ret)
1841 		goto out;
1842 	ext4_ext_replay_shrink_inode(inode,
1843 		i_size_read(inode) >> sb->s_blocksize_bits);
1844 	ext4_mark_inode_dirty(NULL, inode);
1845 out:
1846 	iput(inode);
1847 	return 0;
1848 }
1849 
ext4_fc_set_bitmaps_and_counters(struct super_block * sb)1850 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1851 {
1852 	struct ext4_fc_replay_state *state;
1853 	struct inode *inode;
1854 	struct ext4_ext_path *path = NULL;
1855 	struct ext4_map_blocks map;
1856 	int i, ret, j;
1857 	ext4_lblk_t cur, end;
1858 
1859 	state = &EXT4_SB(sb)->s_fc_replay_state;
1860 	for (i = 0; i < state->fc_modified_inodes_used; i++) {
1861 		inode = ext4_iget(sb, state->fc_modified_inodes[i],
1862 			EXT4_IGET_NORMAL);
1863 		if (IS_ERR(inode)) {
1864 			ext4_debug("Inode %d not found.",
1865 				state->fc_modified_inodes[i]);
1866 			continue;
1867 		}
1868 		cur = 0;
1869 		end = EXT_MAX_BLOCKS;
1870 		while (cur < end) {
1871 			map.m_lblk = cur;
1872 			map.m_len = end - cur;
1873 
1874 			ret = ext4_map_blocks(NULL, inode, &map, 0);
1875 			if (ret < 0)
1876 				break;
1877 
1878 			if (ret > 0) {
1879 				path = ext4_find_extent(inode, map.m_lblk, NULL, 0);
1880 				if (!IS_ERR(path)) {
1881 					for (j = 0; j < path->p_depth; j++)
1882 						ext4_mb_mark_bb(inode->i_sb,
1883 							path[j].p_block, 1, 1);
1884 					ext4_ext_drop_refs(path);
1885 					kfree(path);
1886 				}
1887 				cur += ret;
1888 				ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1889 							map.m_len, 1);
1890 			} else {
1891 				cur = cur + (map.m_len ? map.m_len : 1);
1892 			}
1893 		}
1894 		iput(inode);
1895 	}
1896 }
1897 
1898 /*
1899  * Check if block is in excluded regions for block allocation. The simple
1900  * allocator that runs during replay phase is calls this function to see
1901  * if it is okay to use a block.
1902  */
ext4_fc_replay_check_excluded(struct super_block * sb,ext4_fsblk_t blk)1903 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1904 {
1905 	int i;
1906 	struct ext4_fc_replay_state *state;
1907 
1908 	state = &EXT4_SB(sb)->s_fc_replay_state;
1909 	for (i = 0; i < state->fc_regions_valid; i++) {
1910 		if (state->fc_regions[i].ino == 0 ||
1911 			state->fc_regions[i].len == 0)
1912 			continue;
1913 		if (blk >= state->fc_regions[i].pblk &&
1914 		    blk < state->fc_regions[i].pblk + state->fc_regions[i].len)
1915 			return true;
1916 	}
1917 	return false;
1918 }
1919 
1920 /* Cleanup function called after replay */
ext4_fc_replay_cleanup(struct super_block * sb)1921 void ext4_fc_replay_cleanup(struct super_block *sb)
1922 {
1923 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1924 
1925 	sbi->s_mount_state &= ~EXT4_FC_REPLAY;
1926 	kfree(sbi->s_fc_replay_state.fc_regions);
1927 	kfree(sbi->s_fc_replay_state.fc_modified_inodes);
1928 }
1929 
ext4_fc_value_len_isvalid(struct ext4_sb_info * sbi,int tag,int len)1930 static bool ext4_fc_value_len_isvalid(struct ext4_sb_info *sbi,
1931 				      int tag, int len)
1932 {
1933 	switch (tag) {
1934 	case EXT4_FC_TAG_ADD_RANGE:
1935 		return len == sizeof(struct ext4_fc_add_range);
1936 	case EXT4_FC_TAG_DEL_RANGE:
1937 		return len == sizeof(struct ext4_fc_del_range);
1938 	case EXT4_FC_TAG_CREAT:
1939 	case EXT4_FC_TAG_LINK:
1940 	case EXT4_FC_TAG_UNLINK:
1941 		len -= sizeof(struct ext4_fc_dentry_info);
1942 		return len >= 1 && len <= EXT4_NAME_LEN;
1943 	case EXT4_FC_TAG_INODE:
1944 		len -= sizeof(struct ext4_fc_inode);
1945 		return len >= EXT4_GOOD_OLD_INODE_SIZE &&
1946 			len <= sbi->s_inode_size;
1947 	case EXT4_FC_TAG_PAD:
1948 		return true; /* padding can have any length */
1949 	case EXT4_FC_TAG_TAIL:
1950 		return len >= sizeof(struct ext4_fc_tail);
1951 	case EXT4_FC_TAG_HEAD:
1952 		return len == sizeof(struct ext4_fc_head);
1953 	}
1954 	return false;
1955 }
1956 
1957 /*
1958  * Recovery Scan phase handler
1959  *
1960  * This function is called during the scan phase and is responsible
1961  * for doing following things:
1962  * - Make sure the fast commit area has valid tags for replay
1963  * - Count number of tags that need to be replayed by the replay handler
1964  * - Verify CRC
1965  * - Create a list of excluded blocks for allocation during replay phase
1966  *
1967  * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
1968  * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
1969  * to indicate that scan has finished and JBD2 can now start replay phase.
1970  * It returns a negative error to indicate that there was an error. At the end
1971  * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
1972  * to indicate the number of tags that need to replayed during the replay phase.
1973  */
ext4_fc_replay_scan(journal_t * journal,struct buffer_head * bh,int off,tid_t expected_tid)1974 static int ext4_fc_replay_scan(journal_t *journal,
1975 				struct buffer_head *bh, int off,
1976 				tid_t expected_tid)
1977 {
1978 	struct super_block *sb = journal->j_private;
1979 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1980 	struct ext4_fc_replay_state *state;
1981 	int ret = JBD2_FC_REPLAY_CONTINUE;
1982 	struct ext4_fc_add_range ext;
1983 	struct ext4_fc_tl_mem tl;
1984 	struct ext4_fc_tail tail;
1985 	__u8 *start, *end, *cur, *val;
1986 	struct ext4_fc_head head;
1987 	struct ext4_extent *ex;
1988 
1989 	state = &sbi->s_fc_replay_state;
1990 
1991 	start = (u8 *)bh->b_data;
1992 	end = start + journal->j_blocksize;
1993 
1994 	if (state->fc_replay_expected_off == 0) {
1995 		state->fc_cur_tag = 0;
1996 		state->fc_replay_num_tags = 0;
1997 		state->fc_crc = 0;
1998 		state->fc_regions = NULL;
1999 		state->fc_regions_valid = state->fc_regions_used =
2000 			state->fc_regions_size = 0;
2001 		/* Check if we can stop early */
2002 		if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
2003 			!= EXT4_FC_TAG_HEAD)
2004 			return 0;
2005 	}
2006 
2007 	if (off != state->fc_replay_expected_off) {
2008 		ret = -EFSCORRUPTED;
2009 		goto out_err;
2010 	}
2011 
2012 	state->fc_replay_expected_off++;
2013 	for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2014 	     cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2015 		ext4_fc_get_tl(&tl, cur);
2016 		val = cur + EXT4_FC_TAG_BASE_LEN;
2017 		if (tl.fc_len > end - val ||
2018 		    !ext4_fc_value_len_isvalid(sbi, tl.fc_tag, tl.fc_len)) {
2019 			ret = state->fc_replay_num_tags ?
2020 				JBD2_FC_REPLAY_STOP : -ECANCELED;
2021 			goto out_err;
2022 		}
2023 		ext4_debug("Scan phase, tag:%s, blk %lld\n",
2024 			   tag2str(tl.fc_tag), bh->b_blocknr);
2025 		switch (tl.fc_tag) {
2026 		case EXT4_FC_TAG_ADD_RANGE:
2027 			memcpy(&ext, val, sizeof(ext));
2028 			ex = (struct ext4_extent *)&ext.fc_ex;
2029 			ret = ext4_fc_record_regions(sb,
2030 				le32_to_cpu(ext.fc_ino),
2031 				le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
2032 				ext4_ext_get_actual_len(ex), 0);
2033 			if (ret < 0)
2034 				break;
2035 			ret = JBD2_FC_REPLAY_CONTINUE;
2036 			fallthrough;
2037 		case EXT4_FC_TAG_DEL_RANGE:
2038 		case EXT4_FC_TAG_LINK:
2039 		case EXT4_FC_TAG_UNLINK:
2040 		case EXT4_FC_TAG_CREAT:
2041 		case EXT4_FC_TAG_INODE:
2042 		case EXT4_FC_TAG_PAD:
2043 			state->fc_cur_tag++;
2044 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2045 				EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2046 			break;
2047 		case EXT4_FC_TAG_TAIL:
2048 			state->fc_cur_tag++;
2049 			memcpy(&tail, val, sizeof(tail));
2050 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2051 						EXT4_FC_TAG_BASE_LEN +
2052 						offsetof(struct ext4_fc_tail,
2053 						fc_crc));
2054 			if (le32_to_cpu(tail.fc_tid) == expected_tid &&
2055 				le32_to_cpu(tail.fc_crc) == state->fc_crc) {
2056 				state->fc_replay_num_tags = state->fc_cur_tag;
2057 				state->fc_regions_valid =
2058 					state->fc_regions_used;
2059 			} else {
2060 				ret = state->fc_replay_num_tags ?
2061 					JBD2_FC_REPLAY_STOP : -EFSBADCRC;
2062 			}
2063 			state->fc_crc = 0;
2064 			break;
2065 		case EXT4_FC_TAG_HEAD:
2066 			memcpy(&head, val, sizeof(head));
2067 			if (le32_to_cpu(head.fc_features) &
2068 				~EXT4_FC_SUPPORTED_FEATURES) {
2069 				ret = -EOPNOTSUPP;
2070 				break;
2071 			}
2072 			if (le32_to_cpu(head.fc_tid) != expected_tid) {
2073 				ret = JBD2_FC_REPLAY_STOP;
2074 				break;
2075 			}
2076 			state->fc_cur_tag++;
2077 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2078 				EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2079 			break;
2080 		default:
2081 			ret = state->fc_replay_num_tags ?
2082 				JBD2_FC_REPLAY_STOP : -ECANCELED;
2083 		}
2084 		if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2085 			break;
2086 	}
2087 
2088 out_err:
2089 	trace_ext4_fc_replay_scan(sb, ret, off);
2090 	return ret;
2091 }
2092 
2093 /*
2094  * Main recovery path entry point.
2095  * The meaning of return codes is similar as above.
2096  */
ext4_fc_replay(journal_t * journal,struct buffer_head * bh,enum passtype pass,int off,tid_t expected_tid)2097 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2098 				enum passtype pass, int off, tid_t expected_tid)
2099 {
2100 	struct super_block *sb = journal->j_private;
2101 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2102 	struct ext4_fc_tl_mem tl;
2103 	__u8 *start, *end, *cur, *val;
2104 	int ret = JBD2_FC_REPLAY_CONTINUE;
2105 	struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2106 	struct ext4_fc_tail tail;
2107 
2108 	if (pass == PASS_SCAN) {
2109 		state->fc_current_pass = PASS_SCAN;
2110 		return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2111 	}
2112 
2113 	if (state->fc_current_pass != pass) {
2114 		state->fc_current_pass = pass;
2115 		sbi->s_mount_state |= EXT4_FC_REPLAY;
2116 	}
2117 	if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2118 		ext4_debug("Replay stops\n");
2119 		ext4_fc_set_bitmaps_and_counters(sb);
2120 		return 0;
2121 	}
2122 
2123 #ifdef CONFIG_EXT4_DEBUG
2124 	if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2125 		pr_warn("Dropping fc block %d because max_replay set\n", off);
2126 		return JBD2_FC_REPLAY_STOP;
2127 	}
2128 #endif
2129 
2130 	start = (u8 *)bh->b_data;
2131 	end = start + journal->j_blocksize;
2132 
2133 	for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2134 	     cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2135 		ext4_fc_get_tl(&tl, cur);
2136 		val = cur + EXT4_FC_TAG_BASE_LEN;
2137 
2138 		if (state->fc_replay_num_tags == 0) {
2139 			ret = JBD2_FC_REPLAY_STOP;
2140 			ext4_fc_set_bitmaps_and_counters(sb);
2141 			break;
2142 		}
2143 
2144 		ext4_debug("Replay phase, tag:%s\n", tag2str(tl.fc_tag));
2145 		state->fc_replay_num_tags--;
2146 		switch (tl.fc_tag) {
2147 		case EXT4_FC_TAG_LINK:
2148 			ret = ext4_fc_replay_link(sb, &tl, val);
2149 			break;
2150 		case EXT4_FC_TAG_UNLINK:
2151 			ret = ext4_fc_replay_unlink(sb, &tl, val);
2152 			break;
2153 		case EXT4_FC_TAG_ADD_RANGE:
2154 			ret = ext4_fc_replay_add_range(sb, &tl, val);
2155 			break;
2156 		case EXT4_FC_TAG_CREAT:
2157 			ret = ext4_fc_replay_create(sb, &tl, val);
2158 			break;
2159 		case EXT4_FC_TAG_DEL_RANGE:
2160 			ret = ext4_fc_replay_del_range(sb, &tl, val);
2161 			break;
2162 		case EXT4_FC_TAG_INODE:
2163 			ret = ext4_fc_replay_inode(sb, &tl, val);
2164 			break;
2165 		case EXT4_FC_TAG_PAD:
2166 			trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2167 					     tl.fc_len, 0);
2168 			break;
2169 		case EXT4_FC_TAG_TAIL:
2170 			trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL,
2171 					     0, tl.fc_len, 0);
2172 			memcpy(&tail, val, sizeof(tail));
2173 			WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid);
2174 			break;
2175 		case EXT4_FC_TAG_HEAD:
2176 			break;
2177 		default:
2178 			trace_ext4_fc_replay(sb, tl.fc_tag, 0, tl.fc_len, 0);
2179 			ret = -ECANCELED;
2180 			break;
2181 		}
2182 		if (ret < 0)
2183 			break;
2184 		ret = JBD2_FC_REPLAY_CONTINUE;
2185 	}
2186 	return ret;
2187 }
2188 
ext4_fc_init(struct super_block * sb,journal_t * journal)2189 void ext4_fc_init(struct super_block *sb, journal_t *journal)
2190 {
2191 	/*
2192 	 * We set replay callback even if fast commit disabled because we may
2193 	 * could still have fast commit blocks that need to be replayed even if
2194 	 * fast commit has now been turned off.
2195 	 */
2196 	journal->j_fc_replay_callback = ext4_fc_replay;
2197 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2198 		return;
2199 	journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2200 }
2201 
2202 static const char * const fc_ineligible_reasons[] = {
2203 	[EXT4_FC_REASON_XATTR] = "Extended attributes changed",
2204 	[EXT4_FC_REASON_CROSS_RENAME] = "Cross rename",
2205 	[EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed",
2206 	[EXT4_FC_REASON_NOMEM] = "Insufficient memory",
2207 	[EXT4_FC_REASON_SWAP_BOOT] = "Swap boot",
2208 	[EXT4_FC_REASON_RESIZE] = "Resize",
2209 	[EXT4_FC_REASON_RENAME_DIR] = "Dir renamed",
2210 	[EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op",
2211 	[EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling",
2212 	[EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename",
2213 };
2214 
ext4_fc_info_show(struct seq_file * seq,void * v)2215 int ext4_fc_info_show(struct seq_file *seq, void *v)
2216 {
2217 	struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2218 	struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2219 	int i;
2220 
2221 	if (v != SEQ_START_TOKEN)
2222 		return 0;
2223 
2224 	seq_printf(seq,
2225 		"fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2226 		   stats->fc_num_commits, stats->fc_ineligible_commits,
2227 		   stats->fc_numblks,
2228 		   div_u64(stats->s_fc_avg_commit_time, 1000));
2229 	seq_puts(seq, "Ineligible reasons:\n");
2230 	for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2231 		seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2232 			stats->fc_ineligible_reason_count[i]);
2233 
2234 	return 0;
2235 }
2236 
ext4_fc_init_dentry_cache(void)2237 int __init ext4_fc_init_dentry_cache(void)
2238 {
2239 	ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2240 					   SLAB_RECLAIM_ACCOUNT);
2241 
2242 	if (ext4_fc_dentry_cachep == NULL)
2243 		return -ENOMEM;
2244 
2245 	return 0;
2246 }
2247 
ext4_fc_destroy_dentry_cache(void)2248 void ext4_fc_destroy_dentry_cache(void)
2249 {
2250 	kmem_cache_destroy(ext4_fc_dentry_cachep);
2251 }
2252