1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20 */
21
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49
50 #include <trace/events/ext4.h>
51 #include <trace/events/android_fs.h>
52
ext4_inode_csum(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 struct ext4_inode_info *ei)
55 {
56 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57 __u32 csum;
58 __u16 dummy_csum = 0;
59 int offset = offsetof(struct ext4_inode, i_checksum_lo);
60 unsigned int csum_size = sizeof(dummy_csum);
61
62 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64 offset += csum_size;
65 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66 EXT4_GOOD_OLD_INODE_SIZE - offset);
67
68 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69 offset = offsetof(struct ext4_inode, i_checksum_hi);
70 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71 EXT4_GOOD_OLD_INODE_SIZE,
72 offset - EXT4_GOOD_OLD_INODE_SIZE);
73 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75 csum_size);
76 offset += csum_size;
77 }
78 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79 EXT4_INODE_SIZE(inode->i_sb) - offset);
80 }
81
82 return csum;
83 }
84
ext4_inode_csum_verify(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86 struct ext4_inode_info *ei)
87 {
88 __u32 provided, calculated;
89
90 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91 cpu_to_le32(EXT4_OS_LINUX) ||
92 !ext4_has_metadata_csum(inode->i_sb))
93 return 1;
94
95 provided = le16_to_cpu(raw->i_checksum_lo);
96 calculated = ext4_inode_csum(inode, raw, ei);
97 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100 else
101 calculated &= 0xFFFF;
102
103 return provided == calculated;
104 }
105
ext4_inode_csum_set(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)106 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107 struct ext4_inode_info *ei)
108 {
109 __u32 csum;
110
111 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112 cpu_to_le32(EXT4_OS_LINUX) ||
113 !ext4_has_metadata_csum(inode->i_sb))
114 return;
115
116 csum = ext4_inode_csum(inode, raw, ei);
117 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122
ext4_begin_ordered_truncate(struct inode * inode,loff_t new_size)123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124 loff_t new_size)
125 {
126 trace_ext4_begin_ordered_truncate(inode, new_size);
127 /*
128 * If jinode is zero, then we never opened the file for
129 * writing, so there's no need to call
130 * jbd2_journal_begin_ordered_truncate() since there's no
131 * outstanding writes we need to flush.
132 */
133 if (!EXT4_I(inode)->jinode)
134 return 0;
135 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136 EXT4_I(inode)->jinode,
137 new_size);
138 }
139
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141 unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
144 int pextents);
145
146 /*
147 * Test whether an inode is a fast symlink.
148 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
149 */
ext4_inode_is_fast_symlink(struct inode * inode)150 int ext4_inode_is_fast_symlink(struct inode *inode)
151 {
152 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
153 int ea_blocks = EXT4_I(inode)->i_file_acl ?
154 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
155
156 if (ext4_has_inline_data(inode))
157 return 0;
158
159 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
160 }
161 return S_ISLNK(inode->i_mode) && inode->i_size &&
162 (inode->i_size < EXT4_N_BLOCKS * 4);
163 }
164
165 /*
166 * Called at the last iput() if i_nlink is zero.
167 */
ext4_evict_inode(struct inode * inode)168 void ext4_evict_inode(struct inode *inode)
169 {
170 handle_t *handle;
171 int err;
172 /*
173 * Credits for final inode cleanup and freeing:
174 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
175 * (xattr block freeing), bitmap, group descriptor (inode freeing)
176 */
177 int extra_credits = 6;
178 struct ext4_xattr_inode_array *ea_inode_array = NULL;
179 bool freeze_protected = false;
180
181 trace_ext4_evict_inode(inode);
182
183 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
184 ext4_evict_ea_inode(inode);
185 if (inode->i_nlink) {
186 /*
187 * When journalling data dirty buffers are tracked only in the
188 * journal. So although mm thinks everything is clean and
189 * ready for reaping the inode might still have some pages to
190 * write in the running transaction or waiting to be
191 * checkpointed. Thus calling jbd2_journal_invalidatepage()
192 * (via truncate_inode_pages()) to discard these buffers can
193 * cause data loss. Also even if we did not discard these
194 * buffers, we would have no way to find them after the inode
195 * is reaped and thus user could see stale data if he tries to
196 * read them before the transaction is checkpointed. So be
197 * careful and force everything to disk here... We use
198 * ei->i_datasync_tid to store the newest transaction
199 * containing inode's data.
200 *
201 * Note that directories do not have this problem because they
202 * don't use page cache.
203 */
204 if (inode->i_ino != EXT4_JOURNAL_INO &&
205 ext4_should_journal_data(inode) &&
206 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
207 inode->i_data.nrpages) {
208 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
209 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
210
211 jbd2_complete_transaction(journal, commit_tid);
212 filemap_write_and_wait(&inode->i_data);
213 }
214 truncate_inode_pages_final(&inode->i_data);
215
216 goto no_delete;
217 }
218
219 if (is_bad_inode(inode))
220 goto no_delete;
221 dquot_initialize(inode);
222
223 if (ext4_should_order_data(inode))
224 ext4_begin_ordered_truncate(inode, 0);
225 truncate_inode_pages_final(&inode->i_data);
226
227 /*
228 * For inodes with journalled data, transaction commit could have
229 * dirtied the inode. And for inodes with dioread_nolock, unwritten
230 * extents converting worker could merge extents and also have dirtied
231 * the inode. Flush worker is ignoring it because of I_FREEING flag but
232 * we still need to remove the inode from the writeback lists.
233 */
234 if (!list_empty_careful(&inode->i_io_list))
235 inode_io_list_del(inode);
236
237 /*
238 * Protect us against freezing - iput() caller didn't have to have any
239 * protection against it. When we are in a running transaction though,
240 * we are already protected against freezing and we cannot grab further
241 * protection due to lock ordering constraints.
242 */
243 if (!ext4_journal_current_handle()) {
244 sb_start_intwrite(inode->i_sb);
245 freeze_protected = true;
246 }
247
248 if (!IS_NOQUOTA(inode))
249 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
250
251 /*
252 * Block bitmap, group descriptor, and inode are accounted in both
253 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
254 */
255 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
256 ext4_blocks_for_truncate(inode) + extra_credits - 3);
257 if (IS_ERR(handle)) {
258 ext4_std_error(inode->i_sb, PTR_ERR(handle));
259 /*
260 * If we're going to skip the normal cleanup, we still need to
261 * make sure that the in-core orphan linked list is properly
262 * cleaned up.
263 */
264 ext4_orphan_del(NULL, inode);
265 if (freeze_protected)
266 sb_end_intwrite(inode->i_sb);
267 goto no_delete;
268 }
269
270 if (IS_SYNC(inode))
271 ext4_handle_sync(handle);
272
273 /*
274 * Set inode->i_size to 0 before calling ext4_truncate(). We need
275 * special handling of symlinks here because i_size is used to
276 * determine whether ext4_inode_info->i_data contains symlink data or
277 * block mappings. Setting i_size to 0 will remove its fast symlink
278 * status. Erase i_data so that it becomes a valid empty block map.
279 */
280 if (ext4_inode_is_fast_symlink(inode))
281 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
282 inode->i_size = 0;
283 err = ext4_mark_inode_dirty(handle, inode);
284 if (err) {
285 ext4_warning(inode->i_sb,
286 "couldn't mark inode dirty (err %d)", err);
287 goto stop_handle;
288 }
289 if (inode->i_blocks) {
290 err = ext4_truncate(inode);
291 if (err) {
292 ext4_error_err(inode->i_sb, -err,
293 "couldn't truncate inode %lu (err %d)",
294 inode->i_ino, err);
295 goto stop_handle;
296 }
297 }
298
299 /* Remove xattr references. */
300 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
301 extra_credits);
302 if (err) {
303 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
304 stop_handle:
305 ext4_journal_stop(handle);
306 ext4_orphan_del(NULL, inode);
307 if (freeze_protected)
308 sb_end_intwrite(inode->i_sb);
309 ext4_xattr_inode_array_free(ea_inode_array);
310 goto no_delete;
311 }
312
313 /*
314 * Kill off the orphan record which ext4_truncate created.
315 * AKPM: I think this can be inside the above `if'.
316 * Note that ext4_orphan_del() has to be able to cope with the
317 * deletion of a non-existent orphan - this is because we don't
318 * know if ext4_truncate() actually created an orphan record.
319 * (Well, we could do this if we need to, but heck - it works)
320 */
321 ext4_orphan_del(handle, inode);
322 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
323
324 /*
325 * One subtle ordering requirement: if anything has gone wrong
326 * (transaction abort, IO errors, whatever), then we can still
327 * do these next steps (the fs will already have been marked as
328 * having errors), but we can't free the inode if the mark_dirty
329 * fails.
330 */
331 if (ext4_mark_inode_dirty(handle, inode))
332 /* If that failed, just do the required in-core inode clear. */
333 ext4_clear_inode(inode);
334 else
335 ext4_free_inode(handle, inode);
336 ext4_journal_stop(handle);
337 if (freeze_protected)
338 sb_end_intwrite(inode->i_sb);
339 ext4_xattr_inode_array_free(ea_inode_array);
340 return;
341 no_delete:
342 /*
343 * Check out some where else accidentally dirty the evicting inode,
344 * which may probably cause inode use-after-free issues later.
345 */
346 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
347
348 if (!list_empty(&EXT4_I(inode)->i_fc_list))
349 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
350 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
351 }
352
353 #ifdef CONFIG_QUOTA
ext4_get_reserved_space(struct inode * inode)354 qsize_t *ext4_get_reserved_space(struct inode *inode)
355 {
356 return &EXT4_I(inode)->i_reserved_quota;
357 }
358 #endif
359
360 /*
361 * Called with i_data_sem down, which is important since we can call
362 * ext4_discard_preallocations() from here.
363 */
ext4_da_update_reserve_space(struct inode * inode,int used,int quota_claim)364 void ext4_da_update_reserve_space(struct inode *inode,
365 int used, int quota_claim)
366 {
367 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
368 struct ext4_inode_info *ei = EXT4_I(inode);
369
370 spin_lock(&ei->i_block_reservation_lock);
371 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
372 if (unlikely(used > ei->i_reserved_data_blocks)) {
373 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
374 "with only %d reserved data blocks",
375 __func__, inode->i_ino, used,
376 ei->i_reserved_data_blocks);
377 WARN_ON(1);
378 used = ei->i_reserved_data_blocks;
379 }
380
381 /* Update per-inode reservations */
382 ei->i_reserved_data_blocks -= used;
383 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
384
385 spin_unlock(&ei->i_block_reservation_lock);
386
387 /* Update quota subsystem for data blocks */
388 if (quota_claim)
389 dquot_claim_block(inode, EXT4_C2B(sbi, used));
390 else {
391 /*
392 * We did fallocate with an offset that is already delayed
393 * allocated. So on delayed allocated writeback we should
394 * not re-claim the quota for fallocated blocks.
395 */
396 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
397 }
398
399 /*
400 * If we have done all the pending block allocations and if
401 * there aren't any writers on the inode, we can discard the
402 * inode's preallocations.
403 */
404 if ((ei->i_reserved_data_blocks == 0) &&
405 !inode_is_open_for_write(inode))
406 ext4_discard_preallocations(inode, 0);
407 }
408
__check_block_validity(struct inode * inode,const char * func,unsigned int line,struct ext4_map_blocks * map)409 static int __check_block_validity(struct inode *inode, const char *func,
410 unsigned int line,
411 struct ext4_map_blocks *map)
412 {
413 if (ext4_has_feature_journal(inode->i_sb) &&
414 (inode->i_ino ==
415 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
416 return 0;
417 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
418 ext4_error_inode(inode, func, line, map->m_pblk,
419 "lblock %lu mapped to illegal pblock %llu "
420 "(length %d)", (unsigned long) map->m_lblk,
421 map->m_pblk, map->m_len);
422 return -EFSCORRUPTED;
423 }
424 return 0;
425 }
426
ext4_issue_zeroout(struct inode * inode,ext4_lblk_t lblk,ext4_fsblk_t pblk,ext4_lblk_t len)427 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
428 ext4_lblk_t len)
429 {
430 int ret;
431
432 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
433 return fscrypt_zeroout_range(inode, lblk, pblk, len);
434
435 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
436 if (ret > 0)
437 ret = 0;
438
439 return ret;
440 }
441
442 #define check_block_validity(inode, map) \
443 __check_block_validity((inode), __func__, __LINE__, (map))
444
445 #ifdef ES_AGGRESSIVE_TEST
ext4_map_blocks_es_recheck(handle_t * handle,struct inode * inode,struct ext4_map_blocks * es_map,struct ext4_map_blocks * map,int flags)446 static void ext4_map_blocks_es_recheck(handle_t *handle,
447 struct inode *inode,
448 struct ext4_map_blocks *es_map,
449 struct ext4_map_blocks *map,
450 int flags)
451 {
452 int retval;
453
454 map->m_flags = 0;
455 /*
456 * There is a race window that the result is not the same.
457 * e.g. xfstests #223 when dioread_nolock enables. The reason
458 * is that we lookup a block mapping in extent status tree with
459 * out taking i_data_sem. So at the time the unwritten extent
460 * could be converted.
461 */
462 down_read(&EXT4_I(inode)->i_data_sem);
463 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
464 retval = ext4_ext_map_blocks(handle, inode, map, 0);
465 } else {
466 retval = ext4_ind_map_blocks(handle, inode, map, 0);
467 }
468 up_read((&EXT4_I(inode)->i_data_sem));
469
470 /*
471 * We don't check m_len because extent will be collpased in status
472 * tree. So the m_len might not equal.
473 */
474 if (es_map->m_lblk != map->m_lblk ||
475 es_map->m_flags != map->m_flags ||
476 es_map->m_pblk != map->m_pblk) {
477 printk("ES cache assertion failed for inode: %lu "
478 "es_cached ex [%d/%d/%llu/%x] != "
479 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
480 inode->i_ino, es_map->m_lblk, es_map->m_len,
481 es_map->m_pblk, es_map->m_flags, map->m_lblk,
482 map->m_len, map->m_pblk, map->m_flags,
483 retval, flags);
484 }
485 }
486 #endif /* ES_AGGRESSIVE_TEST */
487
488 /*
489 * The ext4_map_blocks() function tries to look up the requested blocks,
490 * and returns if the blocks are already mapped.
491 *
492 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
493 * and store the allocated blocks in the result buffer head and mark it
494 * mapped.
495 *
496 * If file type is extents based, it will call ext4_ext_map_blocks(),
497 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
498 * based files
499 *
500 * On success, it returns the number of blocks being mapped or allocated. if
501 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
502 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
503 *
504 * It returns 0 if plain look up failed (blocks have not been allocated), in
505 * that case, @map is returned as unmapped but we still do fill map->m_len to
506 * indicate the length of a hole starting at map->m_lblk.
507 *
508 * It returns the error in case of allocation failure.
509 */
ext4_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)510 int ext4_map_blocks(handle_t *handle, struct inode *inode,
511 struct ext4_map_blocks *map, int flags)
512 {
513 struct extent_status es;
514 int retval;
515 int ret = 0;
516 #ifdef ES_AGGRESSIVE_TEST
517 struct ext4_map_blocks orig_map;
518
519 memcpy(&orig_map, map, sizeof(*map));
520 #endif
521
522 map->m_flags = 0;
523 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
524 flags, map->m_len, (unsigned long) map->m_lblk);
525
526 /*
527 * ext4_map_blocks returns an int, and m_len is an unsigned int
528 */
529 if (unlikely(map->m_len > INT_MAX))
530 map->m_len = INT_MAX;
531
532 /* We can handle the block number less than EXT_MAX_BLOCKS */
533 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
534 return -EFSCORRUPTED;
535
536 /* Lookup extent status tree firstly */
537 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
538 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
539 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
540 map->m_pblk = ext4_es_pblock(&es) +
541 map->m_lblk - es.es_lblk;
542 map->m_flags |= ext4_es_is_written(&es) ?
543 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
544 retval = es.es_len - (map->m_lblk - es.es_lblk);
545 if (retval > map->m_len)
546 retval = map->m_len;
547 map->m_len = retval;
548 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
549 map->m_pblk = 0;
550 retval = es.es_len - (map->m_lblk - es.es_lblk);
551 if (retval > map->m_len)
552 retval = map->m_len;
553 map->m_len = retval;
554 retval = 0;
555 } else {
556 BUG();
557 }
558 #ifdef ES_AGGRESSIVE_TEST
559 ext4_map_blocks_es_recheck(handle, inode, map,
560 &orig_map, flags);
561 #endif
562 goto found;
563 }
564
565 /*
566 * Try to see if we can get the block without requesting a new
567 * file system block.
568 */
569 down_read(&EXT4_I(inode)->i_data_sem);
570 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
571 retval = ext4_ext_map_blocks(handle, inode, map, 0);
572 } else {
573 retval = ext4_ind_map_blocks(handle, inode, map, 0);
574 }
575 if (retval > 0) {
576 unsigned int status;
577
578 if (unlikely(retval != map->m_len)) {
579 ext4_warning(inode->i_sb,
580 "ES len assertion failed for inode "
581 "%lu: retval %d != map->m_len %d",
582 inode->i_ino, retval, map->m_len);
583 WARN_ON(1);
584 }
585
586 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
587 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
588 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
589 !(status & EXTENT_STATUS_WRITTEN) &&
590 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
591 map->m_lblk + map->m_len - 1))
592 status |= EXTENT_STATUS_DELAYED;
593 ret = ext4_es_insert_extent(inode, map->m_lblk,
594 map->m_len, map->m_pblk, status);
595 if (ret < 0)
596 retval = ret;
597 }
598 up_read((&EXT4_I(inode)->i_data_sem));
599
600 found:
601 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
602 ret = check_block_validity(inode, map);
603 if (ret != 0)
604 return ret;
605 }
606
607 /* If it is only a block(s) look up */
608 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
609 return retval;
610
611 /*
612 * Returns if the blocks have already allocated
613 *
614 * Note that if blocks have been preallocated
615 * ext4_ext_get_block() returns the create = 0
616 * with buffer head unmapped.
617 */
618 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
619 /*
620 * If we need to convert extent to unwritten
621 * we continue and do the actual work in
622 * ext4_ext_map_blocks()
623 */
624 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
625 return retval;
626
627 /*
628 * Here we clear m_flags because after allocating an new extent,
629 * it will be set again.
630 */
631 map->m_flags &= ~EXT4_MAP_FLAGS;
632
633 /*
634 * New blocks allocate and/or writing to unwritten extent
635 * will possibly result in updating i_data, so we take
636 * the write lock of i_data_sem, and call get_block()
637 * with create == 1 flag.
638 */
639 down_write(&EXT4_I(inode)->i_data_sem);
640
641 /*
642 * We need to check for EXT4 here because migrate
643 * could have changed the inode type in between
644 */
645 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
646 retval = ext4_ext_map_blocks(handle, inode, map, flags);
647 } else {
648 retval = ext4_ind_map_blocks(handle, inode, map, flags);
649
650 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
651 /*
652 * We allocated new blocks which will result in
653 * i_data's format changing. Force the migrate
654 * to fail by clearing migrate flags
655 */
656 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
657 }
658 }
659
660 if (retval > 0) {
661 unsigned int status;
662
663 if (unlikely(retval != map->m_len)) {
664 ext4_warning(inode->i_sb,
665 "ES len assertion failed for inode "
666 "%lu: retval %d != map->m_len %d",
667 inode->i_ino, retval, map->m_len);
668 WARN_ON(1);
669 }
670
671 /*
672 * We have to zeroout blocks before inserting them into extent
673 * status tree. Otherwise someone could look them up there and
674 * use them before they are really zeroed. We also have to
675 * unmap metadata before zeroing as otherwise writeback can
676 * overwrite zeros with stale data from block device.
677 */
678 if (flags & EXT4_GET_BLOCKS_ZERO &&
679 map->m_flags & EXT4_MAP_MAPPED &&
680 map->m_flags & EXT4_MAP_NEW) {
681 ret = ext4_issue_zeroout(inode, map->m_lblk,
682 map->m_pblk, map->m_len);
683 if (ret) {
684 retval = ret;
685 goto out_sem;
686 }
687 }
688
689 /*
690 * If the extent has been zeroed out, we don't need to update
691 * extent status tree.
692 */
693 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
694 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
695 if (ext4_es_is_written(&es))
696 goto out_sem;
697 }
698 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
699 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
700 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
701 !(status & EXTENT_STATUS_WRITTEN) &&
702 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
703 map->m_lblk + map->m_len - 1))
704 status |= EXTENT_STATUS_DELAYED;
705 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
706 map->m_pblk, status);
707 if (ret < 0) {
708 retval = ret;
709 goto out_sem;
710 }
711 }
712
713 out_sem:
714 up_write((&EXT4_I(inode)->i_data_sem));
715 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
716 ret = check_block_validity(inode, map);
717 if (ret != 0)
718 return ret;
719
720 /*
721 * Inodes with freshly allocated blocks where contents will be
722 * visible after transaction commit must be on transaction's
723 * ordered data list.
724 */
725 if (map->m_flags & EXT4_MAP_NEW &&
726 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
727 !(flags & EXT4_GET_BLOCKS_ZERO) &&
728 !ext4_is_quota_file(inode) &&
729 ext4_should_order_data(inode)) {
730 loff_t start_byte =
731 (loff_t)map->m_lblk << inode->i_blkbits;
732 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
733
734 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
735 ret = ext4_jbd2_inode_add_wait(handle, inode,
736 start_byte, length);
737 else
738 ret = ext4_jbd2_inode_add_write(handle, inode,
739 start_byte, length);
740 if (ret)
741 return ret;
742 }
743 }
744 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
745 map->m_flags & EXT4_MAP_MAPPED))
746 ext4_fc_track_range(handle, inode, map->m_lblk,
747 map->m_lblk + map->m_len - 1);
748 if (retval < 0)
749 ext_debug(inode, "failed with err %d\n", retval);
750 return retval;
751 }
752
753 /*
754 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
755 * we have to be careful as someone else may be manipulating b_state as well.
756 */
ext4_update_bh_state(struct buffer_head * bh,unsigned long flags)757 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
758 {
759 unsigned long old_state;
760 unsigned long new_state;
761
762 flags &= EXT4_MAP_FLAGS;
763
764 /* Dummy buffer_head? Set non-atomically. */
765 if (!bh->b_page) {
766 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
767 return;
768 }
769 /*
770 * Someone else may be modifying b_state. Be careful! This is ugly but
771 * once we get rid of using bh as a container for mapping information
772 * to pass to / from get_block functions, this can go away.
773 */
774 do {
775 old_state = READ_ONCE(bh->b_state);
776 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
777 } while (unlikely(
778 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
779 }
780
_ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int flags)781 static int _ext4_get_block(struct inode *inode, sector_t iblock,
782 struct buffer_head *bh, int flags)
783 {
784 struct ext4_map_blocks map;
785 int ret = 0;
786
787 if (ext4_has_inline_data(inode))
788 return -ERANGE;
789
790 map.m_lblk = iblock;
791 map.m_len = bh->b_size >> inode->i_blkbits;
792
793 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
794 flags);
795 if (ret > 0) {
796 map_bh(bh, inode->i_sb, map.m_pblk);
797 ext4_update_bh_state(bh, map.m_flags);
798 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
799 ret = 0;
800 } else if (ret == 0) {
801 /* hole case, need to fill in bh->b_size */
802 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
803 }
804 return ret;
805 }
806
ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)807 int ext4_get_block(struct inode *inode, sector_t iblock,
808 struct buffer_head *bh, int create)
809 {
810 return _ext4_get_block(inode, iblock, bh,
811 create ? EXT4_GET_BLOCKS_CREATE : 0);
812 }
813
814 /*
815 * Get block function used when preparing for buffered write if we require
816 * creating an unwritten extent if blocks haven't been allocated. The extent
817 * will be converted to written after the IO is complete.
818 */
ext4_get_block_unwritten(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)819 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
820 struct buffer_head *bh_result, int create)
821 {
822 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
823 inode->i_ino, create);
824 return _ext4_get_block(inode, iblock, bh_result,
825 EXT4_GET_BLOCKS_IO_CREATE_EXT);
826 }
827
828 /* Maximum number of blocks we map for direct IO at once. */
829 #define DIO_MAX_BLOCKS 4096
830
831 /*
832 * `handle' can be NULL if create is zero
833 */
ext4_getblk(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)834 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
835 ext4_lblk_t block, int map_flags)
836 {
837 struct ext4_map_blocks map;
838 struct buffer_head *bh;
839 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
840 int err;
841
842 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
843 || handle != NULL || create == 0);
844
845 map.m_lblk = block;
846 map.m_len = 1;
847 err = ext4_map_blocks(handle, inode, &map, map_flags);
848
849 if (err == 0)
850 return create ? ERR_PTR(-ENOSPC) : NULL;
851 if (err < 0)
852 return ERR_PTR(err);
853
854 bh = sb_getblk(inode->i_sb, map.m_pblk);
855 if (unlikely(!bh))
856 return ERR_PTR(-ENOMEM);
857 if (map.m_flags & EXT4_MAP_NEW) {
858 ASSERT(create != 0);
859 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
860 || (handle != NULL));
861
862 /*
863 * Now that we do not always journal data, we should
864 * keep in mind whether this should always journal the
865 * new buffer as metadata. For now, regular file
866 * writes use ext4_get_block instead, so it's not a
867 * problem.
868 */
869 lock_buffer(bh);
870 BUFFER_TRACE(bh, "call get_create_access");
871 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
872 EXT4_JTR_NONE);
873 if (unlikely(err)) {
874 unlock_buffer(bh);
875 goto errout;
876 }
877 if (!buffer_uptodate(bh)) {
878 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
879 set_buffer_uptodate(bh);
880 }
881 unlock_buffer(bh);
882 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
883 err = ext4_handle_dirty_metadata(handle, inode, bh);
884 if (unlikely(err))
885 goto errout;
886 } else
887 BUFFER_TRACE(bh, "not a new buffer");
888 return bh;
889 errout:
890 brelse(bh);
891 return ERR_PTR(err);
892 }
893
ext4_bread(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)894 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
895 ext4_lblk_t block, int map_flags)
896 {
897 struct buffer_head *bh;
898 int ret;
899
900 bh = ext4_getblk(handle, inode, block, map_flags);
901 if (IS_ERR(bh))
902 return bh;
903 if (!bh || ext4_buffer_uptodate(bh))
904 return bh;
905
906 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
907 if (ret) {
908 put_bh(bh);
909 return ERR_PTR(ret);
910 }
911 return bh;
912 }
913
914 /* Read a contiguous batch of blocks. */
ext4_bread_batch(struct inode * inode,ext4_lblk_t block,int bh_count,bool wait,struct buffer_head ** bhs)915 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
916 bool wait, struct buffer_head **bhs)
917 {
918 int i, err;
919
920 for (i = 0; i < bh_count; i++) {
921 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
922 if (IS_ERR(bhs[i])) {
923 err = PTR_ERR(bhs[i]);
924 bh_count = i;
925 goto out_brelse;
926 }
927 }
928
929 for (i = 0; i < bh_count; i++)
930 /* Note that NULL bhs[i] is valid because of holes. */
931 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
932 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
933
934 if (!wait)
935 return 0;
936
937 for (i = 0; i < bh_count; i++)
938 if (bhs[i])
939 wait_on_buffer(bhs[i]);
940
941 for (i = 0; i < bh_count; i++) {
942 if (bhs[i] && !buffer_uptodate(bhs[i])) {
943 err = -EIO;
944 goto out_brelse;
945 }
946 }
947 return 0;
948
949 out_brelse:
950 for (i = 0; i < bh_count; i++) {
951 brelse(bhs[i]);
952 bhs[i] = NULL;
953 }
954 return err;
955 }
956
ext4_walk_page_buffers(handle_t * handle,struct inode * inode,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct inode * inode,struct buffer_head * bh))957 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
958 struct buffer_head *head,
959 unsigned from,
960 unsigned to,
961 int *partial,
962 int (*fn)(handle_t *handle, struct inode *inode,
963 struct buffer_head *bh))
964 {
965 struct buffer_head *bh;
966 unsigned block_start, block_end;
967 unsigned blocksize = head->b_size;
968 int err, ret = 0;
969 struct buffer_head *next;
970
971 for (bh = head, block_start = 0;
972 ret == 0 && (bh != head || !block_start);
973 block_start = block_end, bh = next) {
974 next = bh->b_this_page;
975 block_end = block_start + blocksize;
976 if (block_end <= from || block_start >= to) {
977 if (partial && !buffer_uptodate(bh))
978 *partial = 1;
979 continue;
980 }
981 err = (*fn)(handle, inode, bh);
982 if (!ret)
983 ret = err;
984 }
985 return ret;
986 }
987
988 /*
989 * To preserve ordering, it is essential that the hole instantiation and
990 * the data write be encapsulated in a single transaction. We cannot
991 * close off a transaction and start a new one between the ext4_get_block()
992 * and the commit_write(). So doing the jbd2_journal_start at the start of
993 * prepare_write() is the right place.
994 *
995 * Also, this function can nest inside ext4_writepage(). In that case, we
996 * *know* that ext4_writepage() has generated enough buffer credits to do the
997 * whole page. So we won't block on the journal in that case, which is good,
998 * because the caller may be PF_MEMALLOC.
999 *
1000 * By accident, ext4 can be reentered when a transaction is open via
1001 * quota file writes. If we were to commit the transaction while thus
1002 * reentered, there can be a deadlock - we would be holding a quota
1003 * lock, and the commit would never complete if another thread had a
1004 * transaction open and was blocking on the quota lock - a ranking
1005 * violation.
1006 *
1007 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1008 * will _not_ run commit under these circumstances because handle->h_ref
1009 * is elevated. We'll still have enough credits for the tiny quotafile
1010 * write.
1011 */
do_journal_get_write_access(handle_t * handle,struct inode * inode,struct buffer_head * bh)1012 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1013 struct buffer_head *bh)
1014 {
1015 int dirty = buffer_dirty(bh);
1016 int ret;
1017
1018 if (!buffer_mapped(bh) || buffer_freed(bh))
1019 return 0;
1020 /*
1021 * __block_write_begin() could have dirtied some buffers. Clean
1022 * the dirty bit as jbd2_journal_get_write_access() could complain
1023 * otherwise about fs integrity issues. Setting of the dirty bit
1024 * by __block_write_begin() isn't a real problem here as we clear
1025 * the bit before releasing a page lock and thus writeback cannot
1026 * ever write the buffer.
1027 */
1028 if (dirty)
1029 clear_buffer_dirty(bh);
1030 BUFFER_TRACE(bh, "get write access");
1031 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1032 EXT4_JTR_NONE);
1033 if (!ret && dirty)
1034 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1035 return ret;
1036 }
1037
1038 #ifdef CONFIG_FS_ENCRYPTION
ext4_block_write_begin(struct page * page,loff_t pos,unsigned len,get_block_t * get_block)1039 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1040 get_block_t *get_block)
1041 {
1042 unsigned from = pos & (PAGE_SIZE - 1);
1043 unsigned to = from + len;
1044 struct inode *inode = page->mapping->host;
1045 unsigned block_start, block_end;
1046 sector_t block;
1047 int err = 0;
1048 unsigned blocksize = inode->i_sb->s_blocksize;
1049 unsigned bbits;
1050 struct buffer_head *bh, *head, *wait[2];
1051 int nr_wait = 0;
1052 int i;
1053
1054 BUG_ON(!PageLocked(page));
1055 BUG_ON(from > PAGE_SIZE);
1056 BUG_ON(to > PAGE_SIZE);
1057 BUG_ON(from > to);
1058
1059 if (!page_has_buffers(page))
1060 create_empty_buffers(page, blocksize, 0);
1061 head = page_buffers(page);
1062 bbits = ilog2(blocksize);
1063 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1064
1065 for (bh = head, block_start = 0; bh != head || !block_start;
1066 block++, block_start = block_end, bh = bh->b_this_page) {
1067 block_end = block_start + blocksize;
1068 if (block_end <= from || block_start >= to) {
1069 if (PageUptodate(page)) {
1070 set_buffer_uptodate(bh);
1071 }
1072 continue;
1073 }
1074 if (buffer_new(bh))
1075 clear_buffer_new(bh);
1076 if (!buffer_mapped(bh)) {
1077 WARN_ON(bh->b_size != blocksize);
1078 err = get_block(inode, block, bh, 1);
1079 if (err)
1080 break;
1081 if (buffer_new(bh)) {
1082 if (PageUptodate(page)) {
1083 clear_buffer_new(bh);
1084 set_buffer_uptodate(bh);
1085 mark_buffer_dirty(bh);
1086 continue;
1087 }
1088 if (block_end > to || block_start < from)
1089 zero_user_segments(page, to, block_end,
1090 block_start, from);
1091 continue;
1092 }
1093 }
1094 if (PageUptodate(page)) {
1095 set_buffer_uptodate(bh);
1096 continue;
1097 }
1098 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1099 !buffer_unwritten(bh) &&
1100 (block_start < from || block_end > to)) {
1101 ext4_read_bh_lock(bh, 0, false);
1102 wait[nr_wait++] = bh;
1103 }
1104 }
1105 /*
1106 * If we issued read requests, let them complete.
1107 */
1108 for (i = 0; i < nr_wait; i++) {
1109 wait_on_buffer(wait[i]);
1110 if (!buffer_uptodate(wait[i]))
1111 err = -EIO;
1112 }
1113 if (unlikely(err)) {
1114 page_zero_new_buffers(page, from, to);
1115 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1116 for (i = 0; i < nr_wait; i++) {
1117 int err2;
1118
1119 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1120 bh_offset(wait[i]));
1121 if (err2) {
1122 clear_buffer_uptodate(wait[i]);
1123 err = err2;
1124 }
1125 }
1126 }
1127
1128 return err;
1129 }
1130 #endif
1131
ext4_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)1132 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1133 loff_t pos, unsigned len, unsigned flags,
1134 struct page **pagep, void **fsdata)
1135 {
1136 struct inode *inode = mapping->host;
1137 int ret, needed_blocks;
1138 handle_t *handle;
1139 int retries = 0;
1140 struct page *page;
1141 pgoff_t index;
1142 unsigned from, to;
1143
1144 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1145 return -EIO;
1146
1147 if (trace_android_fs_datawrite_start_enabled()) {
1148 char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
1149
1150 path = android_fstrace_get_pathname(pathbuf,
1151 MAX_TRACE_PATHBUF_LEN,
1152 inode);
1153 trace_android_fs_datawrite_start(inode, pos, len,
1154 current->pid, path,
1155 current->comm);
1156 }
1157 trace_ext4_write_begin(inode, pos, len, flags);
1158 /*
1159 * Reserve one block more for addition to orphan list in case
1160 * we allocate blocks but write fails for some reason
1161 */
1162 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1163 index = pos >> PAGE_SHIFT;
1164 from = pos & (PAGE_SIZE - 1);
1165 to = from + len;
1166
1167 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1168 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1169 flags, pagep);
1170 if (ret < 0)
1171 return ret;
1172 if (ret == 1)
1173 return 0;
1174 }
1175
1176 /*
1177 * grab_cache_page_write_begin() can take a long time if the
1178 * system is thrashing due to memory pressure, or if the page
1179 * is being written back. So grab it first before we start
1180 * the transaction handle. This also allows us to allocate
1181 * the page (if needed) without using GFP_NOFS.
1182 */
1183 retry_grab:
1184 page = grab_cache_page_write_begin(mapping, index, flags);
1185 if (!page)
1186 return -ENOMEM;
1187 /*
1188 * The same as page allocation, we prealloc buffer heads before
1189 * starting the handle.
1190 */
1191 if (!page_has_buffers(page))
1192 create_empty_buffers(page, inode->i_sb->s_blocksize, 0);
1193
1194 unlock_page(page);
1195
1196 retry_journal:
1197 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1198 if (IS_ERR(handle)) {
1199 put_page(page);
1200 return PTR_ERR(handle);
1201 }
1202
1203 lock_page(page);
1204 if (page->mapping != mapping) {
1205 /* The page got truncated from under us */
1206 unlock_page(page);
1207 put_page(page);
1208 ext4_journal_stop(handle);
1209 goto retry_grab;
1210 }
1211 /* In case writeback began while the page was unlocked */
1212 wait_for_stable_page(page);
1213
1214 #ifdef CONFIG_FS_ENCRYPTION
1215 if (ext4_should_dioread_nolock(inode))
1216 ret = ext4_block_write_begin(page, pos, len,
1217 ext4_get_block_unwritten);
1218 else
1219 ret = ext4_block_write_begin(page, pos, len,
1220 ext4_get_block);
1221 #else
1222 if (ext4_should_dioread_nolock(inode))
1223 ret = __block_write_begin(page, pos, len,
1224 ext4_get_block_unwritten);
1225 else
1226 ret = __block_write_begin(page, pos, len, ext4_get_block);
1227 #endif
1228 if (!ret && ext4_should_journal_data(inode)) {
1229 ret = ext4_walk_page_buffers(handle, inode,
1230 page_buffers(page), from, to, NULL,
1231 do_journal_get_write_access);
1232 }
1233
1234 if (ret) {
1235 bool extended = (pos + len > inode->i_size) &&
1236 !ext4_verity_in_progress(inode);
1237
1238 unlock_page(page);
1239 /*
1240 * __block_write_begin may have instantiated a few blocks
1241 * outside i_size. Trim these off again. Don't need
1242 * i_size_read because we hold i_mutex.
1243 *
1244 * Add inode to orphan list in case we crash before
1245 * truncate finishes
1246 */
1247 if (extended && ext4_can_truncate(inode))
1248 ext4_orphan_add(handle, inode);
1249
1250 ext4_journal_stop(handle);
1251 if (extended) {
1252 ext4_truncate_failed_write(inode);
1253 /*
1254 * If truncate failed early the inode might
1255 * still be on the orphan list; we need to
1256 * make sure the inode is removed from the
1257 * orphan list in that case.
1258 */
1259 if (inode->i_nlink)
1260 ext4_orphan_del(NULL, inode);
1261 }
1262
1263 if (ret == -ENOSPC &&
1264 ext4_should_retry_alloc(inode->i_sb, &retries))
1265 goto retry_journal;
1266 put_page(page);
1267 return ret;
1268 }
1269 *pagep = page;
1270 return ret;
1271 }
1272
1273 /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct inode * inode,struct buffer_head * bh)1274 static int write_end_fn(handle_t *handle, struct inode *inode,
1275 struct buffer_head *bh)
1276 {
1277 int ret;
1278 if (!buffer_mapped(bh) || buffer_freed(bh))
1279 return 0;
1280 set_buffer_uptodate(bh);
1281 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1282 clear_buffer_meta(bh);
1283 clear_buffer_prio(bh);
1284 return ret;
1285 }
1286
1287 /*
1288 * We need to pick up the new inode size which generic_commit_write gave us
1289 * `file' can be NULL - eg, when called from page_symlink().
1290 *
1291 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1292 * buffers are managed internally.
1293 */
ext4_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1294 static int ext4_write_end(struct file *file,
1295 struct address_space *mapping,
1296 loff_t pos, unsigned len, unsigned copied,
1297 struct page *page, void *fsdata)
1298 {
1299 handle_t *handle = ext4_journal_current_handle();
1300 struct inode *inode = mapping->host;
1301 loff_t old_size = inode->i_size;
1302 int ret = 0, ret2;
1303 int i_size_changed = 0;
1304 bool verity = ext4_verity_in_progress(inode);
1305
1306 trace_android_fs_datawrite_end(inode, pos, len);
1307 trace_ext4_write_end(inode, pos, len, copied);
1308
1309 if (ext4_has_inline_data(inode) &&
1310 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1311 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1312
1313 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1314 /*
1315 * it's important to update i_size while still holding page lock:
1316 * page writeout could otherwise come in and zero beyond i_size.
1317 *
1318 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1319 * blocks are being written past EOF, so skip the i_size update.
1320 */
1321 if (!verity)
1322 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1323 unlock_page(page);
1324 put_page(page);
1325
1326 if (old_size < pos && !verity)
1327 pagecache_isize_extended(inode, old_size, pos);
1328 /*
1329 * Don't mark the inode dirty under page lock. First, it unnecessarily
1330 * makes the holding time of page lock longer. Second, it forces lock
1331 * ordering of page lock and transaction start for journaling
1332 * filesystems.
1333 */
1334 if (i_size_changed)
1335 ret = ext4_mark_inode_dirty(handle, inode);
1336
1337 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1338 /* if we have allocated more blocks and copied
1339 * less. We will have blocks allocated outside
1340 * inode->i_size. So truncate them
1341 */
1342 ext4_orphan_add(handle, inode);
1343
1344 ret2 = ext4_journal_stop(handle);
1345 if (!ret)
1346 ret = ret2;
1347
1348 if (pos + len > inode->i_size && !verity) {
1349 ext4_truncate_failed_write(inode);
1350 /*
1351 * If truncate failed early the inode might still be
1352 * on the orphan list; we need to make sure the inode
1353 * is removed from the orphan list in that case.
1354 */
1355 if (inode->i_nlink)
1356 ext4_orphan_del(NULL, inode);
1357 }
1358
1359 return ret ? ret : copied;
1360 }
1361
1362 /*
1363 * This is a private version of page_zero_new_buffers() which doesn't
1364 * set the buffer to be dirty, since in data=journalled mode we need
1365 * to call ext4_handle_dirty_metadata() instead.
1366 */
ext4_journalled_zero_new_buffers(handle_t * handle,struct inode * inode,struct page * page,unsigned from,unsigned to)1367 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1368 struct inode *inode,
1369 struct page *page,
1370 unsigned from, unsigned to)
1371 {
1372 unsigned int block_start = 0, block_end;
1373 struct buffer_head *head, *bh;
1374
1375 bh = head = page_buffers(page);
1376 do {
1377 block_end = block_start + bh->b_size;
1378 if (buffer_new(bh)) {
1379 if (block_end > from && block_start < to) {
1380 if (!PageUptodate(page)) {
1381 unsigned start, size;
1382
1383 start = max(from, block_start);
1384 size = min(to, block_end) - start;
1385
1386 zero_user(page, start, size);
1387 write_end_fn(handle, inode, bh);
1388 }
1389 clear_buffer_new(bh);
1390 }
1391 }
1392 block_start = block_end;
1393 bh = bh->b_this_page;
1394 } while (bh != head);
1395 }
1396
ext4_journalled_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1397 static int ext4_journalled_write_end(struct file *file,
1398 struct address_space *mapping,
1399 loff_t pos, unsigned len, unsigned copied,
1400 struct page *page, void *fsdata)
1401 {
1402 handle_t *handle = ext4_journal_current_handle();
1403 struct inode *inode = mapping->host;
1404 loff_t old_size = inode->i_size;
1405 int ret = 0, ret2;
1406 int partial = 0;
1407 unsigned from, to;
1408 int size_changed = 0;
1409 bool verity = ext4_verity_in_progress(inode);
1410
1411 trace_android_fs_datawrite_end(inode, pos, len);
1412 trace_ext4_journalled_write_end(inode, pos, len, copied);
1413 from = pos & (PAGE_SIZE - 1);
1414 to = from + len;
1415
1416 BUG_ON(!ext4_handle_valid(handle));
1417
1418 if (ext4_has_inline_data(inode))
1419 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1420
1421 if (unlikely(copied < len) && !PageUptodate(page)) {
1422 copied = 0;
1423 ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1424 } else {
1425 if (unlikely(copied < len))
1426 ext4_journalled_zero_new_buffers(handle, inode, page,
1427 from + copied, to);
1428 ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1429 from, from + copied, &partial,
1430 write_end_fn);
1431 if (!partial)
1432 SetPageUptodate(page);
1433 }
1434 if (!verity)
1435 size_changed = ext4_update_inode_size(inode, pos + copied);
1436 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1437 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1438 unlock_page(page);
1439 put_page(page);
1440
1441 if (old_size < pos && !verity)
1442 pagecache_isize_extended(inode, old_size, pos);
1443
1444 if (size_changed) {
1445 ret2 = ext4_mark_inode_dirty(handle, inode);
1446 if (!ret)
1447 ret = ret2;
1448 }
1449
1450 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1451 /* if we have allocated more blocks and copied
1452 * less. We will have blocks allocated outside
1453 * inode->i_size. So truncate them
1454 */
1455 ext4_orphan_add(handle, inode);
1456
1457 ret2 = ext4_journal_stop(handle);
1458 if (!ret)
1459 ret = ret2;
1460 if (pos + len > inode->i_size && !verity) {
1461 ext4_truncate_failed_write(inode);
1462 /*
1463 * If truncate failed early the inode might still be
1464 * on the orphan list; we need to make sure the inode
1465 * is removed from the orphan list in that case.
1466 */
1467 if (inode->i_nlink)
1468 ext4_orphan_del(NULL, inode);
1469 }
1470
1471 return ret ? ret : copied;
1472 }
1473
1474 /*
1475 * Reserve space for a single cluster
1476 */
ext4_da_reserve_space(struct inode * inode)1477 static int ext4_da_reserve_space(struct inode *inode)
1478 {
1479 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1480 struct ext4_inode_info *ei = EXT4_I(inode);
1481 int ret;
1482
1483 /*
1484 * We will charge metadata quota at writeout time; this saves
1485 * us from metadata over-estimation, though we may go over by
1486 * a small amount in the end. Here we just reserve for data.
1487 */
1488 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1489 if (ret)
1490 return ret;
1491
1492 spin_lock(&ei->i_block_reservation_lock);
1493 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1494 spin_unlock(&ei->i_block_reservation_lock);
1495 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1496 return -ENOSPC;
1497 }
1498 ei->i_reserved_data_blocks++;
1499 trace_ext4_da_reserve_space(inode);
1500 spin_unlock(&ei->i_block_reservation_lock);
1501
1502 return 0; /* success */
1503 }
1504
ext4_da_release_space(struct inode * inode,int to_free)1505 void ext4_da_release_space(struct inode *inode, int to_free)
1506 {
1507 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1508 struct ext4_inode_info *ei = EXT4_I(inode);
1509
1510 if (!to_free)
1511 return; /* Nothing to release, exit */
1512
1513 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1514
1515 trace_ext4_da_release_space(inode, to_free);
1516 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1517 /*
1518 * if there aren't enough reserved blocks, then the
1519 * counter is messed up somewhere. Since this
1520 * function is called from invalidate page, it's
1521 * harmless to return without any action.
1522 */
1523 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1524 "ino %lu, to_free %d with only %d reserved "
1525 "data blocks", inode->i_ino, to_free,
1526 ei->i_reserved_data_blocks);
1527 WARN_ON(1);
1528 to_free = ei->i_reserved_data_blocks;
1529 }
1530 ei->i_reserved_data_blocks -= to_free;
1531
1532 /* update fs dirty data blocks counter */
1533 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1534
1535 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1536
1537 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1538 }
1539
1540 /*
1541 * Delayed allocation stuff
1542 */
1543
1544 struct mpage_da_data {
1545 struct inode *inode;
1546 struct writeback_control *wbc;
1547
1548 pgoff_t first_page; /* The first page to write */
1549 pgoff_t next_page; /* Current page to examine */
1550 pgoff_t last_page; /* Last page to examine */
1551 /*
1552 * Extent to map - this can be after first_page because that can be
1553 * fully mapped. We somewhat abuse m_flags to store whether the extent
1554 * is delalloc or unwritten.
1555 */
1556 struct ext4_map_blocks map;
1557 struct ext4_io_submit io_submit; /* IO submission data */
1558 unsigned int do_map:1;
1559 unsigned int scanned_until_end:1;
1560 };
1561
mpage_release_unused_pages(struct mpage_da_data * mpd,bool invalidate)1562 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1563 bool invalidate)
1564 {
1565 int nr_pages, i;
1566 pgoff_t index, end;
1567 struct pagevec pvec;
1568 struct inode *inode = mpd->inode;
1569 struct address_space *mapping = inode->i_mapping;
1570
1571 /* This is necessary when next_page == 0. */
1572 if (mpd->first_page >= mpd->next_page)
1573 return;
1574
1575 mpd->scanned_until_end = 0;
1576 index = mpd->first_page;
1577 end = mpd->next_page - 1;
1578 if (invalidate) {
1579 ext4_lblk_t start, last;
1580 start = index << (PAGE_SHIFT - inode->i_blkbits);
1581 last = end << (PAGE_SHIFT - inode->i_blkbits);
1582
1583 /*
1584 * avoid racing with extent status tree scans made by
1585 * ext4_insert_delayed_block()
1586 */
1587 down_write(&EXT4_I(inode)->i_data_sem);
1588 ext4_es_remove_extent(inode, start, last - start + 1);
1589 up_write(&EXT4_I(inode)->i_data_sem);
1590 }
1591
1592 pagevec_init(&pvec);
1593 while (index <= end) {
1594 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1595 if (nr_pages == 0)
1596 break;
1597 for (i = 0; i < nr_pages; i++) {
1598 struct page *page = pvec.pages[i];
1599
1600 BUG_ON(!PageLocked(page));
1601 BUG_ON(PageWriteback(page));
1602 if (invalidate) {
1603 if (page_mapped(page))
1604 clear_page_dirty_for_io(page);
1605 block_invalidatepage(page, 0, PAGE_SIZE);
1606 ClearPageUptodate(page);
1607 }
1608 unlock_page(page);
1609 }
1610 pagevec_release(&pvec);
1611 }
1612 }
1613
ext4_print_free_blocks(struct inode * inode)1614 static void ext4_print_free_blocks(struct inode *inode)
1615 {
1616 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1617 struct super_block *sb = inode->i_sb;
1618 struct ext4_inode_info *ei = EXT4_I(inode);
1619
1620 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1621 EXT4_C2B(EXT4_SB(inode->i_sb),
1622 ext4_count_free_clusters(sb)));
1623 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1624 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1625 (long long) EXT4_C2B(EXT4_SB(sb),
1626 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1627 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1628 (long long) EXT4_C2B(EXT4_SB(sb),
1629 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1630 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1631 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1632 ei->i_reserved_data_blocks);
1633 return;
1634 }
1635
ext4_bh_delay_or_unwritten(handle_t * handle,struct inode * inode,struct buffer_head * bh)1636 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1637 struct buffer_head *bh)
1638 {
1639 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1640 }
1641
1642 /*
1643 * ext4_insert_delayed_block - adds a delayed block to the extents status
1644 * tree, incrementing the reserved cluster/block
1645 * count or making a pending reservation
1646 * where needed
1647 *
1648 * @inode - file containing the newly added block
1649 * @lblk - logical block to be added
1650 *
1651 * Returns 0 on success, negative error code on failure.
1652 */
ext4_insert_delayed_block(struct inode * inode,ext4_lblk_t lblk)1653 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1654 {
1655 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1656 int ret;
1657 bool allocated = false;
1658 bool reserved = false;
1659
1660 /*
1661 * If the cluster containing lblk is shared with a delayed,
1662 * written, or unwritten extent in a bigalloc file system, it's
1663 * already been accounted for and does not need to be reserved.
1664 * A pending reservation must be made for the cluster if it's
1665 * shared with a written or unwritten extent and doesn't already
1666 * have one. Written and unwritten extents can be purged from the
1667 * extents status tree if the system is under memory pressure, so
1668 * it's necessary to examine the extent tree if a search of the
1669 * extents status tree doesn't get a match.
1670 */
1671 if (sbi->s_cluster_ratio == 1) {
1672 ret = ext4_da_reserve_space(inode);
1673 if (ret != 0) /* ENOSPC */
1674 goto errout;
1675 reserved = true;
1676 } else { /* bigalloc */
1677 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1678 if (!ext4_es_scan_clu(inode,
1679 &ext4_es_is_mapped, lblk)) {
1680 ret = ext4_clu_mapped(inode,
1681 EXT4_B2C(sbi, lblk));
1682 if (ret < 0)
1683 goto errout;
1684 if (ret == 0) {
1685 ret = ext4_da_reserve_space(inode);
1686 if (ret != 0) /* ENOSPC */
1687 goto errout;
1688 reserved = true;
1689 } else {
1690 allocated = true;
1691 }
1692 } else {
1693 allocated = true;
1694 }
1695 }
1696 }
1697
1698 ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1699 if (ret && reserved)
1700 ext4_da_release_space(inode, 1);
1701
1702 errout:
1703 return ret;
1704 }
1705
1706 /*
1707 * This function is grabs code from the very beginning of
1708 * ext4_map_blocks, but assumes that the caller is from delayed write
1709 * time. This function looks up the requested blocks and sets the
1710 * buffer delay bit under the protection of i_data_sem.
1711 */
ext4_da_map_blocks(struct inode * inode,sector_t iblock,struct ext4_map_blocks * map,struct buffer_head * bh)1712 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1713 struct ext4_map_blocks *map,
1714 struct buffer_head *bh)
1715 {
1716 struct extent_status es;
1717 int retval;
1718 sector_t invalid_block = ~((sector_t) 0xffff);
1719 #ifdef ES_AGGRESSIVE_TEST
1720 struct ext4_map_blocks orig_map;
1721
1722 memcpy(&orig_map, map, sizeof(*map));
1723 #endif
1724
1725 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1726 invalid_block = ~0;
1727
1728 map->m_flags = 0;
1729 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1730 (unsigned long) map->m_lblk);
1731
1732 /* Lookup extent status tree firstly */
1733 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1734 if (ext4_es_is_hole(&es)) {
1735 retval = 0;
1736 down_read(&EXT4_I(inode)->i_data_sem);
1737 goto add_delayed;
1738 }
1739
1740 /*
1741 * Delayed extent could be allocated by fallocate.
1742 * So we need to check it.
1743 */
1744 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1745 map_bh(bh, inode->i_sb, invalid_block);
1746 set_buffer_new(bh);
1747 set_buffer_delay(bh);
1748 return 0;
1749 }
1750
1751 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1752 retval = es.es_len - (iblock - es.es_lblk);
1753 if (retval > map->m_len)
1754 retval = map->m_len;
1755 map->m_len = retval;
1756 if (ext4_es_is_written(&es))
1757 map->m_flags |= EXT4_MAP_MAPPED;
1758 else if (ext4_es_is_unwritten(&es))
1759 map->m_flags |= EXT4_MAP_UNWRITTEN;
1760 else
1761 BUG();
1762
1763 #ifdef ES_AGGRESSIVE_TEST
1764 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1765 #endif
1766 return retval;
1767 }
1768
1769 /*
1770 * Try to see if we can get the block without requesting a new
1771 * file system block.
1772 */
1773 down_read(&EXT4_I(inode)->i_data_sem);
1774 if (ext4_has_inline_data(inode))
1775 retval = 0;
1776 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1777 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1778 else
1779 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1780
1781 add_delayed:
1782 if (retval == 0) {
1783 int ret;
1784
1785 /*
1786 * XXX: __block_prepare_write() unmaps passed block,
1787 * is it OK?
1788 */
1789
1790 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1791 if (ret != 0) {
1792 retval = ret;
1793 goto out_unlock;
1794 }
1795
1796 map_bh(bh, inode->i_sb, invalid_block);
1797 set_buffer_new(bh);
1798 set_buffer_delay(bh);
1799 } else if (retval > 0) {
1800 int ret;
1801 unsigned int status;
1802
1803 if (unlikely(retval != map->m_len)) {
1804 ext4_warning(inode->i_sb,
1805 "ES len assertion failed for inode "
1806 "%lu: retval %d != map->m_len %d",
1807 inode->i_ino, retval, map->m_len);
1808 WARN_ON(1);
1809 }
1810
1811 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1812 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1813 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1814 map->m_pblk, status);
1815 if (ret != 0)
1816 retval = ret;
1817 }
1818
1819 out_unlock:
1820 up_read((&EXT4_I(inode)->i_data_sem));
1821
1822 return retval;
1823 }
1824
1825 /*
1826 * This is a special get_block_t callback which is used by
1827 * ext4_da_write_begin(). It will either return mapped block or
1828 * reserve space for a single block.
1829 *
1830 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1831 * We also have b_blocknr = -1 and b_bdev initialized properly
1832 *
1833 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1834 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1835 * initialized properly.
1836 */
ext4_da_get_block_prep(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)1837 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1838 struct buffer_head *bh, int create)
1839 {
1840 struct ext4_map_blocks map;
1841 int ret = 0;
1842
1843 BUG_ON(create == 0);
1844 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1845
1846 map.m_lblk = iblock;
1847 map.m_len = 1;
1848
1849 /*
1850 * first, we need to know whether the block is allocated already
1851 * preallocated blocks are unmapped but should treated
1852 * the same as allocated blocks.
1853 */
1854 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1855 if (ret <= 0)
1856 return ret;
1857
1858 map_bh(bh, inode->i_sb, map.m_pblk);
1859 ext4_update_bh_state(bh, map.m_flags);
1860
1861 if (buffer_unwritten(bh)) {
1862 /* A delayed write to unwritten bh should be marked
1863 * new and mapped. Mapped ensures that we don't do
1864 * get_block multiple times when we write to the same
1865 * offset and new ensures that we do proper zero out
1866 * for partial write.
1867 */
1868 set_buffer_new(bh);
1869 set_buffer_mapped(bh);
1870 }
1871 return 0;
1872 }
1873
__ext4_journalled_writepage(struct page * page,unsigned int len)1874 static int __ext4_journalled_writepage(struct page *page,
1875 unsigned int len)
1876 {
1877 struct address_space *mapping = page->mapping;
1878 struct inode *inode = mapping->host;
1879 handle_t *handle = NULL;
1880 int ret = 0, err = 0;
1881 int inline_data = ext4_has_inline_data(inode);
1882 struct buffer_head *inode_bh = NULL;
1883 loff_t size;
1884
1885 ClearPageChecked(page);
1886
1887 if (inline_data) {
1888 BUG_ON(page->index != 0);
1889 BUG_ON(len > ext4_get_max_inline_size(inode));
1890 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1891 if (inode_bh == NULL)
1892 goto out;
1893 }
1894 /*
1895 * We need to release the page lock before we start the
1896 * journal, so grab a reference so the page won't disappear
1897 * out from under us.
1898 */
1899 get_page(page);
1900 unlock_page(page);
1901
1902 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1903 ext4_writepage_trans_blocks(inode));
1904 if (IS_ERR(handle)) {
1905 ret = PTR_ERR(handle);
1906 put_page(page);
1907 goto out_no_pagelock;
1908 }
1909 BUG_ON(!ext4_handle_valid(handle));
1910
1911 lock_page(page);
1912 put_page(page);
1913 size = i_size_read(inode);
1914 if (page->mapping != mapping || page_offset(page) > size) {
1915 /* The page got truncated from under us */
1916 ext4_journal_stop(handle);
1917 ret = 0;
1918 goto out;
1919 }
1920
1921 if (inline_data) {
1922 ret = ext4_mark_inode_dirty(handle, inode);
1923 } else {
1924 struct buffer_head *page_bufs = page_buffers(page);
1925
1926 if (page->index == size >> PAGE_SHIFT)
1927 len = size & ~PAGE_MASK;
1928 else
1929 len = PAGE_SIZE;
1930
1931 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1932 NULL, do_journal_get_write_access);
1933
1934 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1935 NULL, write_end_fn);
1936 }
1937 if (ret == 0)
1938 ret = err;
1939 err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1940 if (ret == 0)
1941 ret = err;
1942 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1943 err = ext4_journal_stop(handle);
1944 if (!ret)
1945 ret = err;
1946
1947 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1948 out:
1949 unlock_page(page);
1950 out_no_pagelock:
1951 brelse(inode_bh);
1952 return ret;
1953 }
1954
1955 /*
1956 * Note that we don't need to start a transaction unless we're journaling data
1957 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1958 * need to file the inode to the transaction's list in ordered mode because if
1959 * we are writing back data added by write(), the inode is already there and if
1960 * we are writing back data modified via mmap(), no one guarantees in which
1961 * transaction the data will hit the disk. In case we are journaling data, we
1962 * cannot start transaction directly because transaction start ranks above page
1963 * lock so we have to do some magic.
1964 *
1965 * This function can get called via...
1966 * - ext4_writepages after taking page lock (have journal handle)
1967 * - journal_submit_inode_data_buffers (no journal handle)
1968 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1969 * - grab_page_cache when doing write_begin (have journal handle)
1970 *
1971 * We don't do any block allocation in this function. If we have page with
1972 * multiple blocks we need to write those buffer_heads that are mapped. This
1973 * is important for mmaped based write. So if we do with blocksize 1K
1974 * truncate(f, 1024);
1975 * a = mmap(f, 0, 4096);
1976 * a[0] = 'a';
1977 * truncate(f, 4096);
1978 * we have in the page first buffer_head mapped via page_mkwrite call back
1979 * but other buffer_heads would be unmapped but dirty (dirty done via the
1980 * do_wp_page). So writepage should write the first block. If we modify
1981 * the mmap area beyond 1024 we will again get a page_fault and the
1982 * page_mkwrite callback will do the block allocation and mark the
1983 * buffer_heads mapped.
1984 *
1985 * We redirty the page if we have any buffer_heads that is either delay or
1986 * unwritten in the page.
1987 *
1988 * We can get recursively called as show below.
1989 *
1990 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1991 * ext4_writepage()
1992 *
1993 * But since we don't do any block allocation we should not deadlock.
1994 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1995 */
ext4_writepage(struct page * page,struct writeback_control * wbc)1996 static int ext4_writepage(struct page *page,
1997 struct writeback_control *wbc)
1998 {
1999 int ret = 0;
2000 loff_t size;
2001 unsigned int len;
2002 struct buffer_head *page_bufs = NULL;
2003 struct inode *inode = page->mapping->host;
2004 struct ext4_io_submit io_submit;
2005 bool keep_towrite = false;
2006
2007 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2008 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
2009 unlock_page(page);
2010 return -EIO;
2011 }
2012
2013 trace_ext4_writepage(page);
2014 size = i_size_read(inode);
2015 if (page->index == size >> PAGE_SHIFT &&
2016 !ext4_verity_in_progress(inode))
2017 len = size & ~PAGE_MASK;
2018 else
2019 len = PAGE_SIZE;
2020
2021 /* Should never happen but for bugs in other kernel subsystems */
2022 if (!page_has_buffers(page)) {
2023 ext4_warning_inode(inode,
2024 "page %lu does not have buffers attached", page->index);
2025 ClearPageDirty(page);
2026 unlock_page(page);
2027 return 0;
2028 }
2029
2030 page_bufs = page_buffers(page);
2031 /*
2032 * We cannot do block allocation or other extent handling in this
2033 * function. If there are buffers needing that, we have to redirty
2034 * the page. But we may reach here when we do a journal commit via
2035 * journal_submit_inode_data_buffers() and in that case we must write
2036 * allocated buffers to achieve data=ordered mode guarantees.
2037 *
2038 * Also, if there is only one buffer per page (the fs block
2039 * size == the page size), if one buffer needs block
2040 * allocation or needs to modify the extent tree to clear the
2041 * unwritten flag, we know that the page can't be written at
2042 * all, so we might as well refuse the write immediately.
2043 * Unfortunately if the block size != page size, we can't as
2044 * easily detect this case using ext4_walk_page_buffers(), but
2045 * for the extremely common case, this is an optimization that
2046 * skips a useless round trip through ext4_bio_write_page().
2047 */
2048 if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2049 ext4_bh_delay_or_unwritten)) {
2050 redirty_page_for_writepage(wbc, page);
2051 if ((current->flags & PF_MEMALLOC) ||
2052 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2053 /*
2054 * For memory cleaning there's no point in writing only
2055 * some buffers. So just bail out. Warn if we came here
2056 * from direct reclaim.
2057 */
2058 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2059 == PF_MEMALLOC);
2060 unlock_page(page);
2061 return 0;
2062 }
2063 keep_towrite = true;
2064 }
2065
2066 if (PageChecked(page) && ext4_should_journal_data(inode))
2067 /*
2068 * It's mmapped pagecache. Add buffers and journal it. There
2069 * doesn't seem much point in redirtying the page here.
2070 */
2071 return __ext4_journalled_writepage(page, len);
2072
2073 ext4_io_submit_init(&io_submit, wbc);
2074 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2075 if (!io_submit.io_end) {
2076 redirty_page_for_writepage(wbc, page);
2077 unlock_page(page);
2078 return -ENOMEM;
2079 }
2080 ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2081 ext4_io_submit(&io_submit);
2082 /* Drop io_end reference we got from init */
2083 ext4_put_io_end_defer(io_submit.io_end);
2084 return ret;
2085 }
2086
mpage_submit_page(struct mpage_da_data * mpd,struct page * page)2087 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2088 {
2089 int len;
2090 loff_t size;
2091 int err;
2092
2093 BUG_ON(page->index != mpd->first_page);
2094 clear_page_dirty_for_io(page);
2095 /*
2096 * We have to be very careful here! Nothing protects writeback path
2097 * against i_size changes and the page can be writeably mapped into
2098 * page tables. So an application can be growing i_size and writing
2099 * data through mmap while writeback runs. clear_page_dirty_for_io()
2100 * write-protects our page in page tables and the page cannot get
2101 * written to again until we release page lock. So only after
2102 * clear_page_dirty_for_io() we are safe to sample i_size for
2103 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2104 * on the barrier provided by TestClearPageDirty in
2105 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2106 * after page tables are updated.
2107 */
2108 size = i_size_read(mpd->inode);
2109 if (page->index == size >> PAGE_SHIFT &&
2110 !ext4_verity_in_progress(mpd->inode))
2111 len = size & ~PAGE_MASK;
2112 else
2113 len = PAGE_SIZE;
2114 err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2115 if (!err)
2116 mpd->wbc->nr_to_write--;
2117 mpd->first_page++;
2118
2119 return err;
2120 }
2121
2122 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2123
2124 /*
2125 * mballoc gives us at most this number of blocks...
2126 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2127 * The rest of mballoc seems to handle chunks up to full group size.
2128 */
2129 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2130
2131 /*
2132 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2133 *
2134 * @mpd - extent of blocks
2135 * @lblk - logical number of the block in the file
2136 * @bh - buffer head we want to add to the extent
2137 *
2138 * The function is used to collect contig. blocks in the same state. If the
2139 * buffer doesn't require mapping for writeback and we haven't started the
2140 * extent of buffers to map yet, the function returns 'true' immediately - the
2141 * caller can write the buffer right away. Otherwise the function returns true
2142 * if the block has been added to the extent, false if the block couldn't be
2143 * added.
2144 */
mpage_add_bh_to_extent(struct mpage_da_data * mpd,ext4_lblk_t lblk,struct buffer_head * bh)2145 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2146 struct buffer_head *bh)
2147 {
2148 struct ext4_map_blocks *map = &mpd->map;
2149
2150 /* Buffer that doesn't need mapping for writeback? */
2151 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2152 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2153 /* So far no extent to map => we write the buffer right away */
2154 if (map->m_len == 0)
2155 return true;
2156 return false;
2157 }
2158
2159 /* First block in the extent? */
2160 if (map->m_len == 0) {
2161 /* We cannot map unless handle is started... */
2162 if (!mpd->do_map)
2163 return false;
2164 map->m_lblk = lblk;
2165 map->m_len = 1;
2166 map->m_flags = bh->b_state & BH_FLAGS;
2167 return true;
2168 }
2169
2170 /* Don't go larger than mballoc is willing to allocate */
2171 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2172 return false;
2173
2174 /* Can we merge the block to our big extent? */
2175 if (lblk == map->m_lblk + map->m_len &&
2176 (bh->b_state & BH_FLAGS) == map->m_flags) {
2177 map->m_len++;
2178 return true;
2179 }
2180 return false;
2181 }
2182
2183 /*
2184 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2185 *
2186 * @mpd - extent of blocks for mapping
2187 * @head - the first buffer in the page
2188 * @bh - buffer we should start processing from
2189 * @lblk - logical number of the block in the file corresponding to @bh
2190 *
2191 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2192 * the page for IO if all buffers in this page were mapped and there's no
2193 * accumulated extent of buffers to map or add buffers in the page to the
2194 * extent of buffers to map. The function returns 1 if the caller can continue
2195 * by processing the next page, 0 if it should stop adding buffers to the
2196 * extent to map because we cannot extend it anymore. It can also return value
2197 * < 0 in case of error during IO submission.
2198 */
mpage_process_page_bufs(struct mpage_da_data * mpd,struct buffer_head * head,struct buffer_head * bh,ext4_lblk_t lblk)2199 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2200 struct buffer_head *head,
2201 struct buffer_head *bh,
2202 ext4_lblk_t lblk)
2203 {
2204 struct inode *inode = mpd->inode;
2205 int err;
2206 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2207 >> inode->i_blkbits;
2208
2209 if (ext4_verity_in_progress(inode))
2210 blocks = EXT_MAX_BLOCKS;
2211
2212 do {
2213 BUG_ON(buffer_locked(bh));
2214
2215 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2216 /* Found extent to map? */
2217 if (mpd->map.m_len)
2218 return 0;
2219 /* Buffer needs mapping and handle is not started? */
2220 if (!mpd->do_map)
2221 return 0;
2222 /* Everything mapped so far and we hit EOF */
2223 break;
2224 }
2225 } while (lblk++, (bh = bh->b_this_page) != head);
2226 /* So far everything mapped? Submit the page for IO. */
2227 if (mpd->map.m_len == 0) {
2228 err = mpage_submit_page(mpd, head->b_page);
2229 if (err < 0)
2230 return err;
2231 }
2232 if (lblk >= blocks) {
2233 mpd->scanned_until_end = 1;
2234 return 0;
2235 }
2236 return 1;
2237 }
2238
2239 /*
2240 * mpage_process_page - update page buffers corresponding to changed extent and
2241 * may submit fully mapped page for IO
2242 *
2243 * @mpd - description of extent to map, on return next extent to map
2244 * @m_lblk - logical block mapping.
2245 * @m_pblk - corresponding physical mapping.
2246 * @map_bh - determines on return whether this page requires any further
2247 * mapping or not.
2248 * Scan given page buffers corresponding to changed extent and update buffer
2249 * state according to new extent state.
2250 * We map delalloc buffers to their physical location, clear unwritten bits.
2251 * If the given page is not fully mapped, we update @map to the next extent in
2252 * the given page that needs mapping & return @map_bh as true.
2253 */
mpage_process_page(struct mpage_da_data * mpd,struct page * page,ext4_lblk_t * m_lblk,ext4_fsblk_t * m_pblk,bool * map_bh)2254 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2255 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2256 bool *map_bh)
2257 {
2258 struct buffer_head *head, *bh;
2259 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2260 ext4_lblk_t lblk = *m_lblk;
2261 ext4_fsblk_t pblock = *m_pblk;
2262 int err = 0;
2263 int blkbits = mpd->inode->i_blkbits;
2264 ssize_t io_end_size = 0;
2265 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2266
2267 bh = head = page_buffers(page);
2268 do {
2269 if (lblk < mpd->map.m_lblk)
2270 continue;
2271 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2272 /*
2273 * Buffer after end of mapped extent.
2274 * Find next buffer in the page to map.
2275 */
2276 mpd->map.m_len = 0;
2277 mpd->map.m_flags = 0;
2278 io_end_vec->size += io_end_size;
2279 io_end_size = 0;
2280
2281 err = mpage_process_page_bufs(mpd, head, bh, lblk);
2282 if (err > 0)
2283 err = 0;
2284 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2285 io_end_vec = ext4_alloc_io_end_vec(io_end);
2286 if (IS_ERR(io_end_vec)) {
2287 err = PTR_ERR(io_end_vec);
2288 goto out;
2289 }
2290 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2291 }
2292 *map_bh = true;
2293 goto out;
2294 }
2295 if (buffer_delay(bh)) {
2296 clear_buffer_delay(bh);
2297 bh->b_blocknr = pblock++;
2298 }
2299 clear_buffer_unwritten(bh);
2300 io_end_size += (1 << blkbits);
2301 } while (lblk++, (bh = bh->b_this_page) != head);
2302
2303 io_end_vec->size += io_end_size;
2304 io_end_size = 0;
2305 *map_bh = false;
2306 out:
2307 *m_lblk = lblk;
2308 *m_pblk = pblock;
2309 return err;
2310 }
2311
2312 /*
2313 * mpage_map_buffers - update buffers corresponding to changed extent and
2314 * submit fully mapped pages for IO
2315 *
2316 * @mpd - description of extent to map, on return next extent to map
2317 *
2318 * Scan buffers corresponding to changed extent (we expect corresponding pages
2319 * to be already locked) and update buffer state according to new extent state.
2320 * We map delalloc buffers to their physical location, clear unwritten bits,
2321 * and mark buffers as uninit when we perform writes to unwritten extents
2322 * and do extent conversion after IO is finished. If the last page is not fully
2323 * mapped, we update @map to the next extent in the last page that needs
2324 * mapping. Otherwise we submit the page for IO.
2325 */
mpage_map_and_submit_buffers(struct mpage_da_data * mpd)2326 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2327 {
2328 struct pagevec pvec;
2329 int nr_pages, i;
2330 struct inode *inode = mpd->inode;
2331 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2332 pgoff_t start, end;
2333 ext4_lblk_t lblk;
2334 ext4_fsblk_t pblock;
2335 int err;
2336 bool map_bh = false;
2337
2338 start = mpd->map.m_lblk >> bpp_bits;
2339 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2340 lblk = start << bpp_bits;
2341 pblock = mpd->map.m_pblk;
2342
2343 pagevec_init(&pvec);
2344 while (start <= end) {
2345 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2346 &start, end);
2347 if (nr_pages == 0)
2348 break;
2349 for (i = 0; i < nr_pages; i++) {
2350 struct page *page = pvec.pages[i];
2351
2352 err = mpage_process_page(mpd, page, &lblk, &pblock,
2353 &map_bh);
2354 /*
2355 * If map_bh is true, means page may require further bh
2356 * mapping, or maybe the page was submitted for IO.
2357 * So we return to call further extent mapping.
2358 */
2359 if (err < 0 || map_bh)
2360 goto out;
2361 /* Page fully mapped - let IO run! */
2362 err = mpage_submit_page(mpd, page);
2363 if (err < 0)
2364 goto out;
2365 }
2366 pagevec_release(&pvec);
2367 }
2368 /* Extent fully mapped and matches with page boundary. We are done. */
2369 mpd->map.m_len = 0;
2370 mpd->map.m_flags = 0;
2371 return 0;
2372 out:
2373 pagevec_release(&pvec);
2374 return err;
2375 }
2376
mpage_map_one_extent(handle_t * handle,struct mpage_da_data * mpd)2377 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2378 {
2379 struct inode *inode = mpd->inode;
2380 struct ext4_map_blocks *map = &mpd->map;
2381 int get_blocks_flags;
2382 int err, dioread_nolock;
2383
2384 trace_ext4_da_write_pages_extent(inode, map);
2385 /*
2386 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2387 * to convert an unwritten extent to be initialized (in the case
2388 * where we have written into one or more preallocated blocks). It is
2389 * possible that we're going to need more metadata blocks than
2390 * previously reserved. However we must not fail because we're in
2391 * writeback and there is nothing we can do about it so it might result
2392 * in data loss. So use reserved blocks to allocate metadata if
2393 * possible.
2394 *
2395 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2396 * the blocks in question are delalloc blocks. This indicates
2397 * that the blocks and quotas has already been checked when
2398 * the data was copied into the page cache.
2399 */
2400 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2401 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2402 EXT4_GET_BLOCKS_IO_SUBMIT;
2403 dioread_nolock = ext4_should_dioread_nolock(inode);
2404 if (dioread_nolock)
2405 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2406 if (map->m_flags & BIT(BH_Delay))
2407 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2408
2409 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2410 if (err < 0)
2411 return err;
2412 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2413 if (!mpd->io_submit.io_end->handle &&
2414 ext4_handle_valid(handle)) {
2415 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2416 handle->h_rsv_handle = NULL;
2417 }
2418 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2419 }
2420
2421 BUG_ON(map->m_len == 0);
2422 return 0;
2423 }
2424
2425 /*
2426 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2427 * mpd->len and submit pages underlying it for IO
2428 *
2429 * @handle - handle for journal operations
2430 * @mpd - extent to map
2431 * @give_up_on_write - we set this to true iff there is a fatal error and there
2432 * is no hope of writing the data. The caller should discard
2433 * dirty pages to avoid infinite loops.
2434 *
2435 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2436 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2437 * them to initialized or split the described range from larger unwritten
2438 * extent. Note that we need not map all the described range since allocation
2439 * can return less blocks or the range is covered by more unwritten extents. We
2440 * cannot map more because we are limited by reserved transaction credits. On
2441 * the other hand we always make sure that the last touched page is fully
2442 * mapped so that it can be written out (and thus forward progress is
2443 * guaranteed). After mapping we submit all mapped pages for IO.
2444 */
mpage_map_and_submit_extent(handle_t * handle,struct mpage_da_data * mpd,bool * give_up_on_write)2445 static int mpage_map_and_submit_extent(handle_t *handle,
2446 struct mpage_da_data *mpd,
2447 bool *give_up_on_write)
2448 {
2449 struct inode *inode = mpd->inode;
2450 struct ext4_map_blocks *map = &mpd->map;
2451 int err;
2452 loff_t disksize;
2453 int progress = 0;
2454 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2455 struct ext4_io_end_vec *io_end_vec;
2456
2457 io_end_vec = ext4_alloc_io_end_vec(io_end);
2458 if (IS_ERR(io_end_vec))
2459 return PTR_ERR(io_end_vec);
2460 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2461 do {
2462 err = mpage_map_one_extent(handle, mpd);
2463 if (err < 0) {
2464 struct super_block *sb = inode->i_sb;
2465
2466 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2467 ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2468 goto invalidate_dirty_pages;
2469 /*
2470 * Let the uper layers retry transient errors.
2471 * In the case of ENOSPC, if ext4_count_free_blocks()
2472 * is non-zero, a commit should free up blocks.
2473 */
2474 if ((err == -ENOMEM) ||
2475 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2476 if (progress)
2477 goto update_disksize;
2478 return err;
2479 }
2480 ext4_msg(sb, KERN_CRIT,
2481 "Delayed block allocation failed for "
2482 "inode %lu at logical offset %llu with"
2483 " max blocks %u with error %d",
2484 inode->i_ino,
2485 (unsigned long long)map->m_lblk,
2486 (unsigned)map->m_len, -err);
2487 ext4_msg(sb, KERN_CRIT,
2488 "This should not happen!! Data will "
2489 "be lost\n");
2490 if (err == -ENOSPC)
2491 ext4_print_free_blocks(inode);
2492 invalidate_dirty_pages:
2493 *give_up_on_write = true;
2494 return err;
2495 }
2496 progress = 1;
2497 /*
2498 * Update buffer state, submit mapped pages, and get us new
2499 * extent to map
2500 */
2501 err = mpage_map_and_submit_buffers(mpd);
2502 if (err < 0)
2503 goto update_disksize;
2504 } while (map->m_len);
2505
2506 update_disksize:
2507 /*
2508 * Update on-disk size after IO is submitted. Races with
2509 * truncate are avoided by checking i_size under i_data_sem.
2510 */
2511 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2512 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2513 int err2;
2514 loff_t i_size;
2515
2516 down_write(&EXT4_I(inode)->i_data_sem);
2517 i_size = i_size_read(inode);
2518 if (disksize > i_size)
2519 disksize = i_size;
2520 if (disksize > EXT4_I(inode)->i_disksize)
2521 EXT4_I(inode)->i_disksize = disksize;
2522 up_write(&EXT4_I(inode)->i_data_sem);
2523 err2 = ext4_mark_inode_dirty(handle, inode);
2524 if (err2) {
2525 ext4_error_err(inode->i_sb, -err2,
2526 "Failed to mark inode %lu dirty",
2527 inode->i_ino);
2528 }
2529 if (!err)
2530 err = err2;
2531 }
2532 return err;
2533 }
2534
2535 /*
2536 * Calculate the total number of credits to reserve for one writepages
2537 * iteration. This is called from ext4_writepages(). We map an extent of
2538 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2539 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2540 * bpp - 1 blocks in bpp different extents.
2541 */
ext4_da_writepages_trans_blocks(struct inode * inode)2542 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2543 {
2544 int bpp = ext4_journal_blocks_per_page(inode);
2545
2546 return ext4_meta_trans_blocks(inode,
2547 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2548 }
2549
2550 /*
2551 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2552 * and underlying extent to map
2553 *
2554 * @mpd - where to look for pages
2555 *
2556 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2557 * IO immediately. When we find a page which isn't mapped we start accumulating
2558 * extent of buffers underlying these pages that needs mapping (formed by
2559 * either delayed or unwritten buffers). We also lock the pages containing
2560 * these buffers. The extent found is returned in @mpd structure (starting at
2561 * mpd->lblk with length mpd->len blocks).
2562 *
2563 * Note that this function can attach bios to one io_end structure which are
2564 * neither logically nor physically contiguous. Although it may seem as an
2565 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2566 * case as we need to track IO to all buffers underlying a page in one io_end.
2567 */
mpage_prepare_extent_to_map(struct mpage_da_data * mpd)2568 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2569 {
2570 struct address_space *mapping = mpd->inode->i_mapping;
2571 struct pagevec pvec;
2572 unsigned int nr_pages;
2573 long left = mpd->wbc->nr_to_write;
2574 pgoff_t index = mpd->first_page;
2575 pgoff_t end = mpd->last_page;
2576 xa_mark_t tag;
2577 int i, err = 0;
2578 int blkbits = mpd->inode->i_blkbits;
2579 ext4_lblk_t lblk;
2580 struct buffer_head *head;
2581
2582 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2583 tag = PAGECACHE_TAG_TOWRITE;
2584 else
2585 tag = PAGECACHE_TAG_DIRTY;
2586
2587 pagevec_init(&pvec);
2588 mpd->map.m_len = 0;
2589 mpd->next_page = index;
2590 while (index <= end) {
2591 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2592 tag);
2593 if (nr_pages == 0)
2594 break;
2595
2596 for (i = 0; i < nr_pages; i++) {
2597 struct page *page = pvec.pages[i];
2598
2599 /*
2600 * Accumulated enough dirty pages? This doesn't apply
2601 * to WB_SYNC_ALL mode. For integrity sync we have to
2602 * keep going because someone may be concurrently
2603 * dirtying pages, and we might have synced a lot of
2604 * newly appeared dirty pages, but have not synced all
2605 * of the old dirty pages.
2606 */
2607 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2608 goto out;
2609
2610 /* If we can't merge this page, we are done. */
2611 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2612 goto out;
2613
2614 lock_page(page);
2615 /*
2616 * If the page is no longer dirty, or its mapping no
2617 * longer corresponds to inode we are writing (which
2618 * means it has been truncated or invalidated), or the
2619 * page is already under writeback and we are not doing
2620 * a data integrity writeback, skip the page
2621 */
2622 if (!PageDirty(page) ||
2623 (PageWriteback(page) &&
2624 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2625 unlikely(page->mapping != mapping)) {
2626 unlock_page(page);
2627 continue;
2628 }
2629
2630 wait_on_page_writeback(page);
2631 BUG_ON(PageWriteback(page));
2632
2633 /*
2634 * Should never happen but for buggy code in
2635 * other subsystems that call
2636 * set_page_dirty() without properly warning
2637 * the file system first. See [1] for more
2638 * information.
2639 *
2640 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2641 */
2642 if (!page_has_buffers(page)) {
2643 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index);
2644 ClearPageDirty(page);
2645 unlock_page(page);
2646 continue;
2647 }
2648
2649 if (mpd->map.m_len == 0)
2650 mpd->first_page = page->index;
2651 mpd->next_page = page->index + 1;
2652 /* Add all dirty buffers to mpd */
2653 lblk = ((ext4_lblk_t)page->index) <<
2654 (PAGE_SHIFT - blkbits);
2655 head = page_buffers(page);
2656 err = mpage_process_page_bufs(mpd, head, head, lblk);
2657 if (err <= 0)
2658 goto out;
2659 err = 0;
2660 left--;
2661 }
2662 pagevec_release(&pvec);
2663 cond_resched();
2664 }
2665 mpd->scanned_until_end = 1;
2666 return 0;
2667 out:
2668 pagevec_release(&pvec);
2669 return err;
2670 }
2671
ext4_writepages(struct address_space * mapping,struct writeback_control * wbc)2672 static int ext4_writepages(struct address_space *mapping,
2673 struct writeback_control *wbc)
2674 {
2675 pgoff_t writeback_index = 0;
2676 long nr_to_write = wbc->nr_to_write;
2677 int range_whole = 0;
2678 int cycled = 1;
2679 handle_t *handle = NULL;
2680 struct mpage_da_data mpd;
2681 struct inode *inode = mapping->host;
2682 int needed_blocks, rsv_blocks = 0, ret = 0;
2683 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2684 struct blk_plug plug;
2685 bool give_up_on_write = false;
2686
2687 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2688 return -EIO;
2689
2690 percpu_down_read(&sbi->s_writepages_rwsem);
2691 trace_ext4_writepages(inode, wbc);
2692
2693 /*
2694 * No pages to write? This is mainly a kludge to avoid starting
2695 * a transaction for special inodes like journal inode on last iput()
2696 * because that could violate lock ordering on umount
2697 */
2698 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2699 goto out_writepages;
2700
2701 if (ext4_should_journal_data(inode)) {
2702 ret = generic_writepages(mapping, wbc);
2703 goto out_writepages;
2704 }
2705
2706 /*
2707 * If the filesystem has aborted, it is read-only, so return
2708 * right away instead of dumping stack traces later on that
2709 * will obscure the real source of the problem. We test
2710 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2711 * the latter could be true if the filesystem is mounted
2712 * read-only, and in that case, ext4_writepages should
2713 * *never* be called, so if that ever happens, we would want
2714 * the stack trace.
2715 */
2716 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2717 ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2718 ret = -EROFS;
2719 goto out_writepages;
2720 }
2721
2722 /*
2723 * If we have inline data and arrive here, it means that
2724 * we will soon create the block for the 1st page, so
2725 * we'd better clear the inline data here.
2726 */
2727 if (ext4_has_inline_data(inode)) {
2728 /* Just inode will be modified... */
2729 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2730 if (IS_ERR(handle)) {
2731 ret = PTR_ERR(handle);
2732 goto out_writepages;
2733 }
2734 BUG_ON(ext4_test_inode_state(inode,
2735 EXT4_STATE_MAY_INLINE_DATA));
2736 ext4_destroy_inline_data(handle, inode);
2737 ext4_journal_stop(handle);
2738 }
2739
2740 if (ext4_should_dioread_nolock(inode)) {
2741 /*
2742 * We may need to convert up to one extent per block in
2743 * the page and we may dirty the inode.
2744 */
2745 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2746 PAGE_SIZE >> inode->i_blkbits);
2747 }
2748
2749 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2750 range_whole = 1;
2751
2752 if (wbc->range_cyclic) {
2753 writeback_index = mapping->writeback_index;
2754 if (writeback_index)
2755 cycled = 0;
2756 mpd.first_page = writeback_index;
2757 mpd.last_page = -1;
2758 } else {
2759 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2760 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2761 }
2762
2763 mpd.inode = inode;
2764 mpd.wbc = wbc;
2765 ext4_io_submit_init(&mpd.io_submit, wbc);
2766 retry:
2767 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2768 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2769 blk_start_plug(&plug);
2770
2771 /*
2772 * First writeback pages that don't need mapping - we can avoid
2773 * starting a transaction unnecessarily and also avoid being blocked
2774 * in the block layer on device congestion while having transaction
2775 * started.
2776 */
2777 mpd.do_map = 0;
2778 mpd.scanned_until_end = 0;
2779 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2780 if (!mpd.io_submit.io_end) {
2781 ret = -ENOMEM;
2782 goto unplug;
2783 }
2784 ret = mpage_prepare_extent_to_map(&mpd);
2785 /* Unlock pages we didn't use */
2786 mpage_release_unused_pages(&mpd, false);
2787 /* Submit prepared bio */
2788 ext4_io_submit(&mpd.io_submit);
2789 ext4_put_io_end_defer(mpd.io_submit.io_end);
2790 mpd.io_submit.io_end = NULL;
2791 if (ret < 0)
2792 goto unplug;
2793
2794 while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2795 /* For each extent of pages we use new io_end */
2796 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2797 if (!mpd.io_submit.io_end) {
2798 ret = -ENOMEM;
2799 break;
2800 }
2801
2802 /*
2803 * We have two constraints: We find one extent to map and we
2804 * must always write out whole page (makes a difference when
2805 * blocksize < pagesize) so that we don't block on IO when we
2806 * try to write out the rest of the page. Journalled mode is
2807 * not supported by delalloc.
2808 */
2809 BUG_ON(ext4_should_journal_data(inode));
2810 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2811
2812 /* start a new transaction */
2813 handle = ext4_journal_start_with_reserve(inode,
2814 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2815 if (IS_ERR(handle)) {
2816 ret = PTR_ERR(handle);
2817 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2818 "%ld pages, ino %lu; err %d", __func__,
2819 wbc->nr_to_write, inode->i_ino, ret);
2820 /* Release allocated io_end */
2821 ext4_put_io_end(mpd.io_submit.io_end);
2822 mpd.io_submit.io_end = NULL;
2823 break;
2824 }
2825 mpd.do_map = 1;
2826
2827 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2828 ret = mpage_prepare_extent_to_map(&mpd);
2829 if (!ret && mpd.map.m_len)
2830 ret = mpage_map_and_submit_extent(handle, &mpd,
2831 &give_up_on_write);
2832 /*
2833 * Caution: If the handle is synchronous,
2834 * ext4_journal_stop() can wait for transaction commit
2835 * to finish which may depend on writeback of pages to
2836 * complete or on page lock to be released. In that
2837 * case, we have to wait until after we have
2838 * submitted all the IO, released page locks we hold,
2839 * and dropped io_end reference (for extent conversion
2840 * to be able to complete) before stopping the handle.
2841 */
2842 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2843 ext4_journal_stop(handle);
2844 handle = NULL;
2845 mpd.do_map = 0;
2846 }
2847 /* Unlock pages we didn't use */
2848 mpage_release_unused_pages(&mpd, give_up_on_write);
2849 /* Submit prepared bio */
2850 ext4_io_submit(&mpd.io_submit);
2851
2852 /*
2853 * Drop our io_end reference we got from init. We have
2854 * to be careful and use deferred io_end finishing if
2855 * we are still holding the transaction as we can
2856 * release the last reference to io_end which may end
2857 * up doing unwritten extent conversion.
2858 */
2859 if (handle) {
2860 ext4_put_io_end_defer(mpd.io_submit.io_end);
2861 ext4_journal_stop(handle);
2862 } else
2863 ext4_put_io_end(mpd.io_submit.io_end);
2864 mpd.io_submit.io_end = NULL;
2865
2866 if (ret == -ENOSPC && sbi->s_journal) {
2867 /*
2868 * Commit the transaction which would
2869 * free blocks released in the transaction
2870 * and try again
2871 */
2872 jbd2_journal_force_commit_nested(sbi->s_journal);
2873 ret = 0;
2874 continue;
2875 }
2876 /* Fatal error - ENOMEM, EIO... */
2877 if (ret)
2878 break;
2879 }
2880 unplug:
2881 blk_finish_plug(&plug);
2882 if (!ret && !cycled && wbc->nr_to_write > 0) {
2883 cycled = 1;
2884 mpd.last_page = writeback_index - 1;
2885 mpd.first_page = 0;
2886 goto retry;
2887 }
2888
2889 /* Update index */
2890 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2891 /*
2892 * Set the writeback_index so that range_cyclic
2893 * mode will write it back later
2894 */
2895 mapping->writeback_index = mpd.first_page;
2896
2897 out_writepages:
2898 trace_ext4_writepages_result(inode, wbc, ret,
2899 nr_to_write - wbc->nr_to_write);
2900 percpu_up_read(&sbi->s_writepages_rwsem);
2901 return ret;
2902 }
2903
ext4_dax_writepages(struct address_space * mapping,struct writeback_control * wbc)2904 static int ext4_dax_writepages(struct address_space *mapping,
2905 struct writeback_control *wbc)
2906 {
2907 int ret;
2908 long nr_to_write = wbc->nr_to_write;
2909 struct inode *inode = mapping->host;
2910 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2911
2912 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2913 return -EIO;
2914
2915 percpu_down_read(&sbi->s_writepages_rwsem);
2916 trace_ext4_writepages(inode, wbc);
2917
2918 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2919 trace_ext4_writepages_result(inode, wbc, ret,
2920 nr_to_write - wbc->nr_to_write);
2921 percpu_up_read(&sbi->s_writepages_rwsem);
2922 return ret;
2923 }
2924
ext4_nonda_switch(struct super_block * sb)2925 static int ext4_nonda_switch(struct super_block *sb)
2926 {
2927 s64 free_clusters, dirty_clusters;
2928 struct ext4_sb_info *sbi = EXT4_SB(sb);
2929
2930 /*
2931 * switch to non delalloc mode if we are running low
2932 * on free block. The free block accounting via percpu
2933 * counters can get slightly wrong with percpu_counter_batch getting
2934 * accumulated on each CPU without updating global counters
2935 * Delalloc need an accurate free block accounting. So switch
2936 * to non delalloc when we are near to error range.
2937 */
2938 free_clusters =
2939 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2940 dirty_clusters =
2941 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2942 /*
2943 * Start pushing delalloc when 1/2 of free blocks are dirty.
2944 */
2945 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2946 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2947
2948 if (2 * free_clusters < 3 * dirty_clusters ||
2949 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2950 /*
2951 * free block count is less than 150% of dirty blocks
2952 * or free blocks is less than watermark
2953 */
2954 return 1;
2955 }
2956 return 0;
2957 }
2958
ext4_da_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2959 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2960 loff_t pos, unsigned len, unsigned flags,
2961 struct page **pagep, void **fsdata)
2962 {
2963 int ret, retries = 0;
2964 struct page *page;
2965 pgoff_t index;
2966 struct inode *inode = mapping->host;
2967
2968 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2969 return -EIO;
2970
2971 index = pos >> PAGE_SHIFT;
2972
2973 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2974 ext4_verity_in_progress(inode)) {
2975 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2976 return ext4_write_begin(file, mapping, pos,
2977 len, flags, pagep, fsdata);
2978 }
2979 *fsdata = (void *)0;
2980 if (trace_android_fs_datawrite_start_enabled()) {
2981 char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
2982
2983 path = android_fstrace_get_pathname(pathbuf,
2984 MAX_TRACE_PATHBUF_LEN,
2985 inode);
2986 trace_android_fs_datawrite_start(inode, pos, len,
2987 current->pid,
2988 path, current->comm);
2989 }
2990 trace_ext4_da_write_begin(inode, pos, len, flags);
2991
2992 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2993 ret = ext4_da_write_inline_data_begin(mapping, inode,
2994 pos, len, flags,
2995 pagep, fsdata);
2996 if (ret < 0)
2997 return ret;
2998 if (ret == 1)
2999 return 0;
3000 }
3001
3002 retry:
3003 page = grab_cache_page_write_begin(mapping, index, flags);
3004 if (!page)
3005 return -ENOMEM;
3006
3007 /* In case writeback began while the page was unlocked */
3008 wait_for_stable_page(page);
3009
3010 #ifdef CONFIG_FS_ENCRYPTION
3011 ret = ext4_block_write_begin(page, pos, len,
3012 ext4_da_get_block_prep);
3013 #else
3014 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3015 #endif
3016 if (ret < 0) {
3017 unlock_page(page);
3018 put_page(page);
3019 /*
3020 * block_write_begin may have instantiated a few blocks
3021 * outside i_size. Trim these off again. Don't need
3022 * i_size_read because we hold inode lock.
3023 */
3024 if (pos + len > inode->i_size)
3025 ext4_truncate_failed_write(inode);
3026
3027 if (ret == -ENOSPC &&
3028 ext4_should_retry_alloc(inode->i_sb, &retries))
3029 goto retry;
3030 return ret;
3031 }
3032
3033 *pagep = page;
3034 return ret;
3035 }
3036
3037 /*
3038 * Check if we should update i_disksize
3039 * when write to the end of file but not require block allocation
3040 */
ext4_da_should_update_i_disksize(struct page * page,unsigned long offset)3041 static int ext4_da_should_update_i_disksize(struct page *page,
3042 unsigned long offset)
3043 {
3044 struct buffer_head *bh;
3045 struct inode *inode = page->mapping->host;
3046 unsigned int idx;
3047 int i;
3048
3049 bh = page_buffers(page);
3050 idx = offset >> inode->i_blkbits;
3051
3052 for (i = 0; i < idx; i++)
3053 bh = bh->b_this_page;
3054
3055 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3056 return 0;
3057 return 1;
3058 }
3059
ext4_da_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3060 static int ext4_da_write_end(struct file *file,
3061 struct address_space *mapping,
3062 loff_t pos, unsigned len, unsigned copied,
3063 struct page *page, void *fsdata)
3064 {
3065 struct inode *inode = mapping->host;
3066 loff_t new_i_size;
3067 unsigned long start, end;
3068 int write_mode = (int)(unsigned long)fsdata;
3069
3070 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3071 return ext4_write_end(file, mapping, pos,
3072 len, copied, page, fsdata);
3073
3074 trace_android_fs_datawrite_end(inode, pos, len);
3075 trace_ext4_da_write_end(inode, pos, len, copied);
3076
3077 if (write_mode != CONVERT_INLINE_DATA &&
3078 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3079 ext4_has_inline_data(inode))
3080 return ext4_write_inline_data_end(inode, pos, len, copied, page);
3081
3082 if (unlikely(copied < len) && !PageUptodate(page))
3083 copied = 0;
3084
3085 start = pos & (PAGE_SIZE - 1);
3086 end = start + copied - 1;
3087
3088 /*
3089 * Since we are holding inode lock, we are sure i_disksize <=
3090 * i_size. We also know that if i_disksize < i_size, there are
3091 * delalloc writes pending in the range upto i_size. If the end of
3092 * the current write is <= i_size, there's no need to touch
3093 * i_disksize since writeback will push i_disksize upto i_size
3094 * eventually. If the end of the current write is > i_size and
3095 * inside an allocated block (ext4_da_should_update_i_disksize()
3096 * check), we need to update i_disksize here as neither
3097 * ext4_writepage() nor certain ext4_writepages() paths not
3098 * allocating blocks update i_disksize.
3099 *
3100 * Note that we defer inode dirtying to generic_write_end() /
3101 * ext4_da_write_inline_data_end().
3102 */
3103 new_i_size = pos + copied;
3104 if (copied && new_i_size > inode->i_size &&
3105 ext4_da_should_update_i_disksize(page, end))
3106 ext4_update_i_disksize(inode, new_i_size);
3107
3108 return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3109 }
3110
3111 /*
3112 * Force all delayed allocation blocks to be allocated for a given inode.
3113 */
ext4_alloc_da_blocks(struct inode * inode)3114 int ext4_alloc_da_blocks(struct inode *inode)
3115 {
3116 trace_ext4_alloc_da_blocks(inode);
3117
3118 if (!EXT4_I(inode)->i_reserved_data_blocks)
3119 return 0;
3120
3121 /*
3122 * We do something simple for now. The filemap_flush() will
3123 * also start triggering a write of the data blocks, which is
3124 * not strictly speaking necessary (and for users of
3125 * laptop_mode, not even desirable). However, to do otherwise
3126 * would require replicating code paths in:
3127 *
3128 * ext4_writepages() ->
3129 * write_cache_pages() ---> (via passed in callback function)
3130 * __mpage_da_writepage() -->
3131 * mpage_add_bh_to_extent()
3132 * mpage_da_map_blocks()
3133 *
3134 * The problem is that write_cache_pages(), located in
3135 * mm/page-writeback.c, marks pages clean in preparation for
3136 * doing I/O, which is not desirable if we're not planning on
3137 * doing I/O at all.
3138 *
3139 * We could call write_cache_pages(), and then redirty all of
3140 * the pages by calling redirty_page_for_writepage() but that
3141 * would be ugly in the extreme. So instead we would need to
3142 * replicate parts of the code in the above functions,
3143 * simplifying them because we wouldn't actually intend to
3144 * write out the pages, but rather only collect contiguous
3145 * logical block extents, call the multi-block allocator, and
3146 * then update the buffer heads with the block allocations.
3147 *
3148 * For now, though, we'll cheat by calling filemap_flush(),
3149 * which will map the blocks, and start the I/O, but not
3150 * actually wait for the I/O to complete.
3151 */
3152 return filemap_flush(inode->i_mapping);
3153 }
3154
3155 /*
3156 * bmap() is special. It gets used by applications such as lilo and by
3157 * the swapper to find the on-disk block of a specific piece of data.
3158 *
3159 * Naturally, this is dangerous if the block concerned is still in the
3160 * journal. If somebody makes a swapfile on an ext4 data-journaling
3161 * filesystem and enables swap, then they may get a nasty shock when the
3162 * data getting swapped to that swapfile suddenly gets overwritten by
3163 * the original zero's written out previously to the journal and
3164 * awaiting writeback in the kernel's buffer cache.
3165 *
3166 * So, if we see any bmap calls here on a modified, data-journaled file,
3167 * take extra steps to flush any blocks which might be in the cache.
3168 */
ext4_bmap(struct address_space * mapping,sector_t block)3169 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3170 {
3171 struct inode *inode = mapping->host;
3172 journal_t *journal;
3173 sector_t ret = 0;
3174 int err;
3175
3176 inode_lock_shared(inode);
3177 /*
3178 * We can get here for an inline file via the FIBMAP ioctl
3179 */
3180 if (ext4_has_inline_data(inode))
3181 goto out;
3182
3183 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3184 test_opt(inode->i_sb, DELALLOC)) {
3185 /*
3186 * With delalloc we want to sync the file
3187 * so that we can make sure we allocate
3188 * blocks for file
3189 */
3190 filemap_write_and_wait(mapping);
3191 }
3192
3193 if (EXT4_JOURNAL(inode) &&
3194 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3195 /*
3196 * This is a REALLY heavyweight approach, but the use of
3197 * bmap on dirty files is expected to be extremely rare:
3198 * only if we run lilo or swapon on a freshly made file
3199 * do we expect this to happen.
3200 *
3201 * (bmap requires CAP_SYS_RAWIO so this does not
3202 * represent an unprivileged user DOS attack --- we'd be
3203 * in trouble if mortal users could trigger this path at
3204 * will.)
3205 *
3206 * NB. EXT4_STATE_JDATA is not set on files other than
3207 * regular files. If somebody wants to bmap a directory
3208 * or symlink and gets confused because the buffer
3209 * hasn't yet been flushed to disk, they deserve
3210 * everything they get.
3211 */
3212
3213 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3214 journal = EXT4_JOURNAL(inode);
3215 jbd2_journal_lock_updates(journal);
3216 err = jbd2_journal_flush(journal, 0);
3217 jbd2_journal_unlock_updates(journal);
3218
3219 if (err)
3220 goto out;
3221 }
3222
3223 ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3224
3225 out:
3226 inode_unlock_shared(inode);
3227 return ret;
3228 }
3229
ext4_readpage(struct file * file,struct page * page)3230 static int ext4_readpage(struct file *file, struct page *page)
3231 {
3232 int ret = -EAGAIN;
3233 struct inode *inode = page->mapping->host;
3234
3235 trace_ext4_readpage(page);
3236
3237 if (ext4_has_inline_data(inode))
3238 ret = ext4_readpage_inline(inode, page);
3239
3240 if (ret == -EAGAIN)
3241 return ext4_mpage_readpages(inode, NULL, page);
3242
3243 return ret;
3244 }
3245
ext4_readahead(struct readahead_control * rac)3246 static void ext4_readahead(struct readahead_control *rac)
3247 {
3248 struct inode *inode = rac->mapping->host;
3249
3250 /* If the file has inline data, no need to do readahead. */
3251 if (ext4_has_inline_data(inode))
3252 return;
3253
3254 ext4_mpage_readpages(inode, rac, NULL);
3255 }
3256
ext4_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3257 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3258 unsigned int length)
3259 {
3260 trace_ext4_invalidatepage(page, offset, length);
3261
3262 /* No journalling happens on data buffers when this function is used */
3263 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3264
3265 block_invalidatepage(page, offset, length);
3266 }
3267
__ext4_journalled_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3268 static int __ext4_journalled_invalidatepage(struct page *page,
3269 unsigned int offset,
3270 unsigned int length)
3271 {
3272 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3273
3274 trace_ext4_journalled_invalidatepage(page, offset, length);
3275
3276 /*
3277 * If it's a full truncate we just forget about the pending dirtying
3278 */
3279 if (offset == 0 && length == PAGE_SIZE)
3280 ClearPageChecked(page);
3281
3282 return jbd2_journal_invalidatepage(journal, page, offset, length);
3283 }
3284
3285 /* Wrapper for aops... */
ext4_journalled_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3286 static void ext4_journalled_invalidatepage(struct page *page,
3287 unsigned int offset,
3288 unsigned int length)
3289 {
3290 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3291 }
3292
ext4_releasepage(struct page * page,gfp_t wait)3293 static int ext4_releasepage(struct page *page, gfp_t wait)
3294 {
3295 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3296
3297 trace_ext4_releasepage(page);
3298
3299 /* Page has dirty journalled data -> cannot release */
3300 if (PageChecked(page))
3301 return 0;
3302 if (journal)
3303 return jbd2_journal_try_to_free_buffers(journal, page);
3304 else
3305 return try_to_free_buffers(page);
3306 }
3307
ext4_inode_datasync_dirty(struct inode * inode)3308 static bool ext4_inode_datasync_dirty(struct inode *inode)
3309 {
3310 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3311
3312 if (journal) {
3313 if (jbd2_transaction_committed(journal,
3314 EXT4_I(inode)->i_datasync_tid))
3315 return false;
3316 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3317 return !list_empty(&EXT4_I(inode)->i_fc_list);
3318 return true;
3319 }
3320
3321 /* Any metadata buffers to write? */
3322 if (!list_empty(&inode->i_mapping->private_list))
3323 return true;
3324 return inode->i_state & I_DIRTY_DATASYNC;
3325 }
3326
ext4_set_iomap(struct inode * inode,struct iomap * iomap,struct ext4_map_blocks * map,loff_t offset,loff_t length)3327 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3328 struct ext4_map_blocks *map, loff_t offset,
3329 loff_t length)
3330 {
3331 u8 blkbits = inode->i_blkbits;
3332
3333 /*
3334 * Writes that span EOF might trigger an I/O size update on completion,
3335 * so consider them to be dirty for the purpose of O_DSYNC, even if
3336 * there is no other metadata changes being made or are pending.
3337 */
3338 iomap->flags = 0;
3339 if (ext4_inode_datasync_dirty(inode) ||
3340 offset + length > i_size_read(inode))
3341 iomap->flags |= IOMAP_F_DIRTY;
3342
3343 if (map->m_flags & EXT4_MAP_NEW)
3344 iomap->flags |= IOMAP_F_NEW;
3345
3346 iomap->bdev = inode->i_sb->s_bdev;
3347 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3348 iomap->offset = (u64) map->m_lblk << blkbits;
3349 iomap->length = (u64) map->m_len << blkbits;
3350
3351 if ((map->m_flags & EXT4_MAP_MAPPED) &&
3352 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3353 iomap->flags |= IOMAP_F_MERGED;
3354
3355 /*
3356 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3357 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3358 * set. In order for any allocated unwritten extents to be converted
3359 * into written extents correctly within the ->end_io() handler, we
3360 * need to ensure that the iomap->type is set appropriately. Hence, the
3361 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3362 * been set first.
3363 */
3364 if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3365 iomap->type = IOMAP_UNWRITTEN;
3366 iomap->addr = (u64) map->m_pblk << blkbits;
3367 } else if (map->m_flags & EXT4_MAP_MAPPED) {
3368 iomap->type = IOMAP_MAPPED;
3369 iomap->addr = (u64) map->m_pblk << blkbits;
3370 } else {
3371 iomap->type = IOMAP_HOLE;
3372 iomap->addr = IOMAP_NULL_ADDR;
3373 }
3374 }
3375
ext4_iomap_alloc(struct inode * inode,struct ext4_map_blocks * map,unsigned int flags)3376 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3377 unsigned int flags)
3378 {
3379 handle_t *handle;
3380 u8 blkbits = inode->i_blkbits;
3381 int ret, dio_credits, m_flags = 0, retries = 0;
3382
3383 /*
3384 * Trim the mapping request to the maximum value that we can map at
3385 * once for direct I/O.
3386 */
3387 if (map->m_len > DIO_MAX_BLOCKS)
3388 map->m_len = DIO_MAX_BLOCKS;
3389 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3390
3391 retry:
3392 /*
3393 * Either we allocate blocks and then don't get an unwritten extent, so
3394 * in that case we have reserved enough credits. Or, the blocks are
3395 * already allocated and unwritten. In that case, the extent conversion
3396 * fits into the credits as well.
3397 */
3398 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3399 if (IS_ERR(handle))
3400 return PTR_ERR(handle);
3401
3402 /*
3403 * DAX and direct I/O are the only two operations that are currently
3404 * supported with IOMAP_WRITE.
3405 */
3406 WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3407 if (IS_DAX(inode))
3408 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3409 /*
3410 * We use i_size instead of i_disksize here because delalloc writeback
3411 * can complete at any point during the I/O and subsequently push the
3412 * i_disksize out to i_size. This could be beyond where direct I/O is
3413 * happening and thus expose allocated blocks to direct I/O reads.
3414 */
3415 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3416 m_flags = EXT4_GET_BLOCKS_CREATE;
3417 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3418 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3419
3420 ret = ext4_map_blocks(handle, inode, map, m_flags);
3421
3422 /*
3423 * We cannot fill holes in indirect tree based inodes as that could
3424 * expose stale data in the case of a crash. Use the magic error code
3425 * to fallback to buffered I/O.
3426 */
3427 if (!m_flags && !ret)
3428 ret = -ENOTBLK;
3429
3430 ext4_journal_stop(handle);
3431 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3432 goto retry;
3433
3434 return ret;
3435 }
3436
3437
ext4_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3438 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3439 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3440 {
3441 int ret;
3442 struct ext4_map_blocks map;
3443 u8 blkbits = inode->i_blkbits;
3444
3445 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3446 return -EINVAL;
3447
3448 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3449 return -ERANGE;
3450
3451 /*
3452 * Calculate the first and last logical blocks respectively.
3453 */
3454 map.m_lblk = offset >> blkbits;
3455 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3456 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3457
3458 if (flags & IOMAP_WRITE) {
3459 /*
3460 * We check here if the blocks are already allocated, then we
3461 * don't need to start a journal txn and we can directly return
3462 * the mapping information. This could boost performance
3463 * especially in multi-threaded overwrite requests.
3464 */
3465 if (offset + length <= i_size_read(inode)) {
3466 ret = ext4_map_blocks(NULL, inode, &map, 0);
3467 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3468 goto out;
3469 }
3470 ret = ext4_iomap_alloc(inode, &map, flags);
3471 } else {
3472 ret = ext4_map_blocks(NULL, inode, &map, 0);
3473 }
3474
3475 if (ret < 0)
3476 return ret;
3477 out:
3478 /*
3479 * When inline encryption is enabled, sometimes I/O to an encrypted file
3480 * has to be broken up to guarantee DUN contiguity. Handle this by
3481 * limiting the length of the mapping returned.
3482 */
3483 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3484
3485 ext4_set_iomap(inode, iomap, &map, offset, length);
3486
3487 return 0;
3488 }
3489
ext4_iomap_overwrite_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3490 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3491 loff_t length, unsigned flags, struct iomap *iomap,
3492 struct iomap *srcmap)
3493 {
3494 int ret;
3495
3496 /*
3497 * Even for writes we don't need to allocate blocks, so just pretend
3498 * we are reading to save overhead of starting a transaction.
3499 */
3500 flags &= ~IOMAP_WRITE;
3501 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3502 WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3503 return ret;
3504 }
3505
ext4_iomap_end(struct inode * inode,loff_t offset,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)3506 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3507 ssize_t written, unsigned flags, struct iomap *iomap)
3508 {
3509 /*
3510 * Check to see whether an error occurred while writing out the data to
3511 * the allocated blocks. If so, return the magic error code so that we
3512 * fallback to buffered I/O and attempt to complete the remainder of
3513 * the I/O. Any blocks that may have been allocated in preparation for
3514 * the direct I/O will be reused during buffered I/O.
3515 */
3516 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3517 return -ENOTBLK;
3518
3519 return 0;
3520 }
3521
3522 const struct iomap_ops ext4_iomap_ops = {
3523 .iomap_begin = ext4_iomap_begin,
3524 .iomap_end = ext4_iomap_end,
3525 };
3526
3527 const struct iomap_ops ext4_iomap_overwrite_ops = {
3528 .iomap_begin = ext4_iomap_overwrite_begin,
3529 .iomap_end = ext4_iomap_end,
3530 };
3531
ext4_iomap_is_delalloc(struct inode * inode,struct ext4_map_blocks * map)3532 static bool ext4_iomap_is_delalloc(struct inode *inode,
3533 struct ext4_map_blocks *map)
3534 {
3535 struct extent_status es;
3536 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3537
3538 ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3539 map->m_lblk, end, &es);
3540
3541 if (!es.es_len || es.es_lblk > end)
3542 return false;
3543
3544 if (es.es_lblk > map->m_lblk) {
3545 map->m_len = es.es_lblk - map->m_lblk;
3546 return false;
3547 }
3548
3549 offset = map->m_lblk - es.es_lblk;
3550 map->m_len = es.es_len - offset;
3551
3552 return true;
3553 }
3554
ext4_iomap_begin_report(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)3555 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3556 loff_t length, unsigned int flags,
3557 struct iomap *iomap, struct iomap *srcmap)
3558 {
3559 int ret;
3560 bool delalloc = false;
3561 struct ext4_map_blocks map;
3562 u8 blkbits = inode->i_blkbits;
3563
3564 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3565 return -EINVAL;
3566
3567 if (ext4_has_inline_data(inode)) {
3568 ret = ext4_inline_data_iomap(inode, iomap);
3569 if (ret != -EAGAIN) {
3570 if (ret == 0 && offset >= iomap->length)
3571 ret = -ENOENT;
3572 return ret;
3573 }
3574 }
3575
3576 /*
3577 * Calculate the first and last logical block respectively.
3578 */
3579 map.m_lblk = offset >> blkbits;
3580 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3581 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3582
3583 /*
3584 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3585 * So handle it here itself instead of querying ext4_map_blocks().
3586 * Since ext4_map_blocks() will warn about it and will return
3587 * -EIO error.
3588 */
3589 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3590 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3591
3592 if (offset >= sbi->s_bitmap_maxbytes) {
3593 map.m_flags = 0;
3594 goto set_iomap;
3595 }
3596 }
3597
3598 ret = ext4_map_blocks(NULL, inode, &map, 0);
3599 if (ret < 0)
3600 return ret;
3601 if (ret == 0)
3602 delalloc = ext4_iomap_is_delalloc(inode, &map);
3603
3604 set_iomap:
3605 ext4_set_iomap(inode, iomap, &map, offset, length);
3606 if (delalloc && iomap->type == IOMAP_HOLE)
3607 iomap->type = IOMAP_DELALLOC;
3608
3609 return 0;
3610 }
3611
3612 const struct iomap_ops ext4_iomap_report_ops = {
3613 .iomap_begin = ext4_iomap_begin_report,
3614 };
3615
3616 /*
3617 * Pages can be marked dirty completely asynchronously from ext4's journalling
3618 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3619 * much here because ->set_page_dirty is called under VFS locks. The page is
3620 * not necessarily locked.
3621 *
3622 * We cannot just dirty the page and leave attached buffers clean, because the
3623 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3624 * or jbddirty because all the journalling code will explode.
3625 *
3626 * So what we do is to mark the page "pending dirty" and next time writepage
3627 * is called, propagate that into the buffers appropriately.
3628 */
ext4_journalled_set_page_dirty(struct page * page)3629 static int ext4_journalled_set_page_dirty(struct page *page)
3630 {
3631 SetPageChecked(page);
3632 return __set_page_dirty_nobuffers(page);
3633 }
3634
ext4_set_page_dirty(struct page * page)3635 static int ext4_set_page_dirty(struct page *page)
3636 {
3637 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3638 WARN_ON_ONCE(!page_has_buffers(page));
3639 return __set_page_dirty_buffers(page);
3640 }
3641
ext4_iomap_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)3642 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3643 struct file *file, sector_t *span)
3644 {
3645 return iomap_swapfile_activate(sis, file, span,
3646 &ext4_iomap_report_ops);
3647 }
3648
3649 static const struct address_space_operations ext4_aops = {
3650 .readpage = ext4_readpage,
3651 .readahead = ext4_readahead,
3652 .writepage = ext4_writepage,
3653 .writepages = ext4_writepages,
3654 .write_begin = ext4_write_begin,
3655 .write_end = ext4_write_end,
3656 .set_page_dirty = ext4_set_page_dirty,
3657 .bmap = ext4_bmap,
3658 .invalidatepage = ext4_invalidatepage,
3659 .releasepage = ext4_releasepage,
3660 .direct_IO = noop_direct_IO,
3661 .migratepage = buffer_migrate_page,
3662 .is_partially_uptodate = block_is_partially_uptodate,
3663 .error_remove_page = generic_error_remove_page,
3664 .swap_activate = ext4_iomap_swap_activate,
3665 };
3666
3667 static const struct address_space_operations ext4_journalled_aops = {
3668 .readpage = ext4_readpage,
3669 .readahead = ext4_readahead,
3670 .writepage = ext4_writepage,
3671 .writepages = ext4_writepages,
3672 .write_begin = ext4_write_begin,
3673 .write_end = ext4_journalled_write_end,
3674 .set_page_dirty = ext4_journalled_set_page_dirty,
3675 .bmap = ext4_bmap,
3676 .invalidatepage = ext4_journalled_invalidatepage,
3677 .releasepage = ext4_releasepage,
3678 .direct_IO = noop_direct_IO,
3679 .is_partially_uptodate = block_is_partially_uptodate,
3680 .error_remove_page = generic_error_remove_page,
3681 .swap_activate = ext4_iomap_swap_activate,
3682 };
3683
3684 static const struct address_space_operations ext4_da_aops = {
3685 .readpage = ext4_readpage,
3686 .readahead = ext4_readahead,
3687 .writepage = ext4_writepage,
3688 .writepages = ext4_writepages,
3689 .write_begin = ext4_da_write_begin,
3690 .write_end = ext4_da_write_end,
3691 .set_page_dirty = ext4_set_page_dirty,
3692 .bmap = ext4_bmap,
3693 .invalidatepage = ext4_invalidatepage,
3694 .releasepage = ext4_releasepage,
3695 .direct_IO = noop_direct_IO,
3696 .migratepage = buffer_migrate_page,
3697 .is_partially_uptodate = block_is_partially_uptodate,
3698 .error_remove_page = generic_error_remove_page,
3699 .swap_activate = ext4_iomap_swap_activate,
3700 };
3701
3702 static const struct address_space_operations ext4_dax_aops = {
3703 .writepages = ext4_dax_writepages,
3704 .direct_IO = noop_direct_IO,
3705 .set_page_dirty = __set_page_dirty_no_writeback,
3706 .bmap = ext4_bmap,
3707 .invalidatepage = noop_invalidatepage,
3708 .swap_activate = ext4_iomap_swap_activate,
3709 };
3710
ext4_set_aops(struct inode * inode)3711 void ext4_set_aops(struct inode *inode)
3712 {
3713 switch (ext4_inode_journal_mode(inode)) {
3714 case EXT4_INODE_ORDERED_DATA_MODE:
3715 case EXT4_INODE_WRITEBACK_DATA_MODE:
3716 break;
3717 case EXT4_INODE_JOURNAL_DATA_MODE:
3718 inode->i_mapping->a_ops = &ext4_journalled_aops;
3719 return;
3720 default:
3721 BUG();
3722 }
3723 if (IS_DAX(inode))
3724 inode->i_mapping->a_ops = &ext4_dax_aops;
3725 else if (test_opt(inode->i_sb, DELALLOC))
3726 inode->i_mapping->a_ops = &ext4_da_aops;
3727 else
3728 inode->i_mapping->a_ops = &ext4_aops;
3729 }
3730
__ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3731 static int __ext4_block_zero_page_range(handle_t *handle,
3732 struct address_space *mapping, loff_t from, loff_t length)
3733 {
3734 ext4_fsblk_t index = from >> PAGE_SHIFT;
3735 unsigned offset = from & (PAGE_SIZE-1);
3736 unsigned blocksize, pos;
3737 ext4_lblk_t iblock;
3738 struct inode *inode = mapping->host;
3739 struct buffer_head *bh;
3740 struct page *page;
3741 int err = 0;
3742
3743 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3744 mapping_gfp_constraint(mapping, ~__GFP_FS));
3745 if (!page)
3746 return -ENOMEM;
3747
3748 blocksize = inode->i_sb->s_blocksize;
3749
3750 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3751
3752 if (!page_has_buffers(page))
3753 create_empty_buffers(page, blocksize, 0);
3754
3755 /* Find the buffer that contains "offset" */
3756 bh = page_buffers(page);
3757 pos = blocksize;
3758 while (offset >= pos) {
3759 bh = bh->b_this_page;
3760 iblock++;
3761 pos += blocksize;
3762 }
3763 if (buffer_freed(bh)) {
3764 BUFFER_TRACE(bh, "freed: skip");
3765 goto unlock;
3766 }
3767 if (!buffer_mapped(bh)) {
3768 BUFFER_TRACE(bh, "unmapped");
3769 ext4_get_block(inode, iblock, bh, 0);
3770 /* unmapped? It's a hole - nothing to do */
3771 if (!buffer_mapped(bh)) {
3772 BUFFER_TRACE(bh, "still unmapped");
3773 goto unlock;
3774 }
3775 }
3776
3777 /* Ok, it's mapped. Make sure it's up-to-date */
3778 if (PageUptodate(page))
3779 set_buffer_uptodate(bh);
3780
3781 if (!buffer_uptodate(bh)) {
3782 err = ext4_read_bh_lock(bh, 0, true);
3783 if (err)
3784 goto unlock;
3785 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3786 /* We expect the key to be set. */
3787 BUG_ON(!fscrypt_has_encryption_key(inode));
3788 err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3789 bh_offset(bh));
3790 if (err) {
3791 clear_buffer_uptodate(bh);
3792 goto unlock;
3793 }
3794 }
3795 }
3796 if (ext4_should_journal_data(inode)) {
3797 BUFFER_TRACE(bh, "get write access");
3798 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3799 EXT4_JTR_NONE);
3800 if (err)
3801 goto unlock;
3802 }
3803 zero_user(page, offset, length);
3804 BUFFER_TRACE(bh, "zeroed end of block");
3805
3806 if (ext4_should_journal_data(inode)) {
3807 err = ext4_handle_dirty_metadata(handle, inode, bh);
3808 } else {
3809 err = 0;
3810 mark_buffer_dirty(bh);
3811 if (ext4_should_order_data(inode))
3812 err = ext4_jbd2_inode_add_write(handle, inode, from,
3813 length);
3814 }
3815
3816 unlock:
3817 unlock_page(page);
3818 put_page(page);
3819 return err;
3820 }
3821
3822 /*
3823 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3824 * starting from file offset 'from'. The range to be zero'd must
3825 * be contained with in one block. If the specified range exceeds
3826 * the end of the block it will be shortened to end of the block
3827 * that corresponds to 'from'
3828 */
ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3829 static int ext4_block_zero_page_range(handle_t *handle,
3830 struct address_space *mapping, loff_t from, loff_t length)
3831 {
3832 struct inode *inode = mapping->host;
3833 unsigned offset = from & (PAGE_SIZE-1);
3834 unsigned blocksize = inode->i_sb->s_blocksize;
3835 unsigned max = blocksize - (offset & (blocksize - 1));
3836
3837 /*
3838 * correct length if it does not fall between
3839 * 'from' and the end of the block
3840 */
3841 if (length > max || length < 0)
3842 length = max;
3843
3844 if (IS_DAX(inode)) {
3845 return iomap_zero_range(inode, from, length, NULL,
3846 &ext4_iomap_ops);
3847 }
3848 return __ext4_block_zero_page_range(handle, mapping, from, length);
3849 }
3850
3851 /*
3852 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3853 * up to the end of the block which corresponds to `from'.
3854 * This required during truncate. We need to physically zero the tail end
3855 * of that block so it doesn't yield old data if the file is later grown.
3856 */
ext4_block_truncate_page(handle_t * handle,struct address_space * mapping,loff_t from)3857 static int ext4_block_truncate_page(handle_t *handle,
3858 struct address_space *mapping, loff_t from)
3859 {
3860 unsigned offset = from & (PAGE_SIZE-1);
3861 unsigned length;
3862 unsigned blocksize;
3863 struct inode *inode = mapping->host;
3864
3865 /* If we are processing an encrypted inode during orphan list handling */
3866 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3867 return 0;
3868
3869 blocksize = inode->i_sb->s_blocksize;
3870 length = blocksize - (offset & (blocksize - 1));
3871
3872 return ext4_block_zero_page_range(handle, mapping, from, length);
3873 }
3874
ext4_zero_partial_blocks(handle_t * handle,struct inode * inode,loff_t lstart,loff_t length)3875 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3876 loff_t lstart, loff_t length)
3877 {
3878 struct super_block *sb = inode->i_sb;
3879 struct address_space *mapping = inode->i_mapping;
3880 unsigned partial_start, partial_end;
3881 ext4_fsblk_t start, end;
3882 loff_t byte_end = (lstart + length - 1);
3883 int err = 0;
3884
3885 partial_start = lstart & (sb->s_blocksize - 1);
3886 partial_end = byte_end & (sb->s_blocksize - 1);
3887
3888 start = lstart >> sb->s_blocksize_bits;
3889 end = byte_end >> sb->s_blocksize_bits;
3890
3891 /* Handle partial zero within the single block */
3892 if (start == end &&
3893 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3894 err = ext4_block_zero_page_range(handle, mapping,
3895 lstart, length);
3896 return err;
3897 }
3898 /* Handle partial zero out on the start of the range */
3899 if (partial_start) {
3900 err = ext4_block_zero_page_range(handle, mapping,
3901 lstart, sb->s_blocksize);
3902 if (err)
3903 return err;
3904 }
3905 /* Handle partial zero out on the end of the range */
3906 if (partial_end != sb->s_blocksize - 1)
3907 err = ext4_block_zero_page_range(handle, mapping,
3908 byte_end - partial_end,
3909 partial_end + 1);
3910 return err;
3911 }
3912
ext4_can_truncate(struct inode * inode)3913 int ext4_can_truncate(struct inode *inode)
3914 {
3915 if (S_ISREG(inode->i_mode))
3916 return 1;
3917 if (S_ISDIR(inode->i_mode))
3918 return 1;
3919 if (S_ISLNK(inode->i_mode))
3920 return !ext4_inode_is_fast_symlink(inode);
3921 return 0;
3922 }
3923
3924 /*
3925 * We have to make sure i_disksize gets properly updated before we truncate
3926 * page cache due to hole punching or zero range. Otherwise i_disksize update
3927 * can get lost as it may have been postponed to submission of writeback but
3928 * that will never happen after we truncate page cache.
3929 */
ext4_update_disksize_before_punch(struct inode * inode,loff_t offset,loff_t len)3930 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3931 loff_t len)
3932 {
3933 handle_t *handle;
3934 int ret;
3935
3936 loff_t size = i_size_read(inode);
3937
3938 WARN_ON(!inode_is_locked(inode));
3939 if (offset > size || offset + len < size)
3940 return 0;
3941
3942 if (EXT4_I(inode)->i_disksize >= size)
3943 return 0;
3944
3945 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3946 if (IS_ERR(handle))
3947 return PTR_ERR(handle);
3948 ext4_update_i_disksize(inode, size);
3949 ret = ext4_mark_inode_dirty(handle, inode);
3950 ext4_journal_stop(handle);
3951
3952 return ret;
3953 }
3954
ext4_wait_dax_page(struct inode * inode)3955 static void ext4_wait_dax_page(struct inode *inode)
3956 {
3957 filemap_invalidate_unlock(inode->i_mapping);
3958 schedule();
3959 filemap_invalidate_lock(inode->i_mapping);
3960 }
3961
ext4_break_layouts(struct inode * inode)3962 int ext4_break_layouts(struct inode *inode)
3963 {
3964 struct page *page;
3965 int error;
3966
3967 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3968 return -EINVAL;
3969
3970 do {
3971 page = dax_layout_busy_page(inode->i_mapping);
3972 if (!page)
3973 return 0;
3974
3975 error = ___wait_var_event(&page->_refcount,
3976 atomic_read(&page->_refcount) == 1,
3977 TASK_INTERRUPTIBLE, 0, 0,
3978 ext4_wait_dax_page(inode));
3979 } while (error == 0);
3980
3981 return error;
3982 }
3983
3984 /*
3985 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3986 * associated with the given offset and length
3987 *
3988 * @inode: File inode
3989 * @offset: The offset where the hole will begin
3990 * @len: The length of the hole
3991 *
3992 * Returns: 0 on success or negative on failure
3993 */
3994
ext4_punch_hole(struct file * file,loff_t offset,loff_t length)3995 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3996 {
3997 struct inode *inode = file_inode(file);
3998 struct super_block *sb = inode->i_sb;
3999 ext4_lblk_t first_block, stop_block;
4000 struct address_space *mapping = inode->i_mapping;
4001 loff_t first_block_offset, last_block_offset, max_length;
4002 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4003 handle_t *handle;
4004 unsigned int credits;
4005 int ret = 0, ret2 = 0;
4006
4007 trace_ext4_punch_hole(inode, offset, length, 0);
4008
4009 /*
4010 * Write out all dirty pages to avoid race conditions
4011 * Then release them.
4012 */
4013 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4014 ret = filemap_write_and_wait_range(mapping, offset,
4015 offset + length - 1);
4016 if (ret)
4017 return ret;
4018 }
4019
4020 inode_lock(inode);
4021
4022 /* No need to punch hole beyond i_size */
4023 if (offset >= inode->i_size)
4024 goto out_mutex;
4025
4026 /*
4027 * If the hole extends beyond i_size, set the hole
4028 * to end after the page that contains i_size
4029 */
4030 if (offset + length > inode->i_size) {
4031 length = inode->i_size +
4032 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4033 offset;
4034 }
4035
4036 /*
4037 * For punch hole the length + offset needs to be within one block
4038 * before last range. Adjust the length if it goes beyond that limit.
4039 */
4040 max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
4041 if (offset + length > max_length)
4042 length = max_length - offset;
4043
4044 if (offset & (sb->s_blocksize - 1) ||
4045 (offset + length) & (sb->s_blocksize - 1)) {
4046 /*
4047 * Attach jinode to inode for jbd2 if we do any zeroing of
4048 * partial block
4049 */
4050 ret = ext4_inode_attach_jinode(inode);
4051 if (ret < 0)
4052 goto out_mutex;
4053
4054 }
4055
4056 /* Wait all existing dio workers, newcomers will block on i_mutex */
4057 inode_dio_wait(inode);
4058
4059 ret = file_modified(file);
4060 if (ret)
4061 goto out_mutex;
4062
4063 /*
4064 * Prevent page faults from reinstantiating pages we have released from
4065 * page cache.
4066 */
4067 filemap_invalidate_lock(mapping);
4068
4069 ret = ext4_break_layouts(inode);
4070 if (ret)
4071 goto out_dio;
4072
4073 first_block_offset = round_up(offset, sb->s_blocksize);
4074 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4075
4076 /* Now release the pages and zero block aligned part of pages*/
4077 if (last_block_offset > first_block_offset) {
4078 ret = ext4_update_disksize_before_punch(inode, offset, length);
4079 if (ret)
4080 goto out_dio;
4081 truncate_pagecache_range(inode, first_block_offset,
4082 last_block_offset);
4083 }
4084
4085 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4086 credits = ext4_writepage_trans_blocks(inode);
4087 else
4088 credits = ext4_blocks_for_truncate(inode);
4089 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4090 if (IS_ERR(handle)) {
4091 ret = PTR_ERR(handle);
4092 ext4_std_error(sb, ret);
4093 goto out_dio;
4094 }
4095
4096 ret = ext4_zero_partial_blocks(handle, inode, offset,
4097 length);
4098 if (ret)
4099 goto out_stop;
4100
4101 first_block = (offset + sb->s_blocksize - 1) >>
4102 EXT4_BLOCK_SIZE_BITS(sb);
4103 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4104
4105 /* If there are blocks to remove, do it */
4106 if (stop_block > first_block) {
4107
4108 down_write(&EXT4_I(inode)->i_data_sem);
4109 ext4_discard_preallocations(inode, 0);
4110
4111 ret = ext4_es_remove_extent(inode, first_block,
4112 stop_block - first_block);
4113 if (ret) {
4114 up_write(&EXT4_I(inode)->i_data_sem);
4115 goto out_stop;
4116 }
4117
4118 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4119 ret = ext4_ext_remove_space(inode, first_block,
4120 stop_block - 1);
4121 else
4122 ret = ext4_ind_remove_space(handle, inode, first_block,
4123 stop_block);
4124
4125 up_write(&EXT4_I(inode)->i_data_sem);
4126 }
4127 ext4_fc_track_range(handle, inode, first_block, stop_block);
4128 if (IS_SYNC(inode))
4129 ext4_handle_sync(handle);
4130
4131 inode->i_mtime = inode->i_ctime = current_time(inode);
4132 ret2 = ext4_mark_inode_dirty(handle, inode);
4133 if (unlikely(ret2))
4134 ret = ret2;
4135 if (ret >= 0)
4136 ext4_update_inode_fsync_trans(handle, inode, 1);
4137 out_stop:
4138 ext4_journal_stop(handle);
4139 out_dio:
4140 filemap_invalidate_unlock(mapping);
4141 out_mutex:
4142 inode_unlock(inode);
4143 return ret;
4144 }
4145
ext4_inode_attach_jinode(struct inode * inode)4146 int ext4_inode_attach_jinode(struct inode *inode)
4147 {
4148 struct ext4_inode_info *ei = EXT4_I(inode);
4149 struct jbd2_inode *jinode;
4150
4151 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4152 return 0;
4153
4154 jinode = jbd2_alloc_inode(GFP_KERNEL);
4155 spin_lock(&inode->i_lock);
4156 if (!ei->jinode) {
4157 if (!jinode) {
4158 spin_unlock(&inode->i_lock);
4159 return -ENOMEM;
4160 }
4161 ei->jinode = jinode;
4162 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4163 jinode = NULL;
4164 }
4165 spin_unlock(&inode->i_lock);
4166 if (unlikely(jinode != NULL))
4167 jbd2_free_inode(jinode);
4168 return 0;
4169 }
4170
4171 /*
4172 * ext4_truncate()
4173 *
4174 * We block out ext4_get_block() block instantiations across the entire
4175 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4176 * simultaneously on behalf of the same inode.
4177 *
4178 * As we work through the truncate and commit bits of it to the journal there
4179 * is one core, guiding principle: the file's tree must always be consistent on
4180 * disk. We must be able to restart the truncate after a crash.
4181 *
4182 * The file's tree may be transiently inconsistent in memory (although it
4183 * probably isn't), but whenever we close off and commit a journal transaction,
4184 * the contents of (the filesystem + the journal) must be consistent and
4185 * restartable. It's pretty simple, really: bottom up, right to left (although
4186 * left-to-right works OK too).
4187 *
4188 * Note that at recovery time, journal replay occurs *before* the restart of
4189 * truncate against the orphan inode list.
4190 *
4191 * The committed inode has the new, desired i_size (which is the same as
4192 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4193 * that this inode's truncate did not complete and it will again call
4194 * ext4_truncate() to have another go. So there will be instantiated blocks
4195 * to the right of the truncation point in a crashed ext4 filesystem. But
4196 * that's fine - as long as they are linked from the inode, the post-crash
4197 * ext4_truncate() run will find them and release them.
4198 */
ext4_truncate(struct inode * inode)4199 int ext4_truncate(struct inode *inode)
4200 {
4201 struct ext4_inode_info *ei = EXT4_I(inode);
4202 unsigned int credits;
4203 int err = 0, err2;
4204 handle_t *handle;
4205 struct address_space *mapping = inode->i_mapping;
4206
4207 /*
4208 * There is a possibility that we're either freeing the inode
4209 * or it's a completely new inode. In those cases we might not
4210 * have i_mutex locked because it's not necessary.
4211 */
4212 if (!(inode->i_state & (I_NEW|I_FREEING)))
4213 WARN_ON(!inode_is_locked(inode));
4214 trace_ext4_truncate_enter(inode);
4215
4216 if (!ext4_can_truncate(inode))
4217 goto out_trace;
4218
4219 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4220 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4221
4222 if (ext4_has_inline_data(inode)) {
4223 int has_inline = 1;
4224
4225 err = ext4_inline_data_truncate(inode, &has_inline);
4226 if (err || has_inline)
4227 goto out_trace;
4228 }
4229
4230 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4231 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4232 err = ext4_inode_attach_jinode(inode);
4233 if (err)
4234 goto out_trace;
4235 }
4236
4237 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4238 credits = ext4_writepage_trans_blocks(inode);
4239 else
4240 credits = ext4_blocks_for_truncate(inode);
4241
4242 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4243 if (IS_ERR(handle)) {
4244 err = PTR_ERR(handle);
4245 goto out_trace;
4246 }
4247
4248 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4249 ext4_block_truncate_page(handle, mapping, inode->i_size);
4250
4251 /*
4252 * We add the inode to the orphan list, so that if this
4253 * truncate spans multiple transactions, and we crash, we will
4254 * resume the truncate when the filesystem recovers. It also
4255 * marks the inode dirty, to catch the new size.
4256 *
4257 * Implication: the file must always be in a sane, consistent
4258 * truncatable state while each transaction commits.
4259 */
4260 err = ext4_orphan_add(handle, inode);
4261 if (err)
4262 goto out_stop;
4263
4264 down_write(&EXT4_I(inode)->i_data_sem);
4265
4266 ext4_discard_preallocations(inode, 0);
4267
4268 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4269 err = ext4_ext_truncate(handle, inode);
4270 else
4271 ext4_ind_truncate(handle, inode);
4272
4273 up_write(&ei->i_data_sem);
4274 if (err)
4275 goto out_stop;
4276
4277 if (IS_SYNC(inode))
4278 ext4_handle_sync(handle);
4279
4280 out_stop:
4281 /*
4282 * If this was a simple ftruncate() and the file will remain alive,
4283 * then we need to clear up the orphan record which we created above.
4284 * However, if this was a real unlink then we were called by
4285 * ext4_evict_inode(), and we allow that function to clean up the
4286 * orphan info for us.
4287 */
4288 if (inode->i_nlink)
4289 ext4_orphan_del(handle, inode);
4290
4291 inode->i_mtime = inode->i_ctime = current_time(inode);
4292 err2 = ext4_mark_inode_dirty(handle, inode);
4293 if (unlikely(err2 && !err))
4294 err = err2;
4295 ext4_journal_stop(handle);
4296
4297 out_trace:
4298 trace_ext4_truncate_exit(inode);
4299 return err;
4300 }
4301
4302 /*
4303 * ext4_get_inode_loc returns with an extra refcount against the inode's
4304 * underlying buffer_head on success. If 'in_mem' is true, we have all
4305 * data in memory that is needed to recreate the on-disk version of this
4306 * inode.
4307 */
__ext4_get_inode_loc(struct super_block * sb,unsigned long ino,struct ext4_iloc * iloc,int in_mem,ext4_fsblk_t * ret_block)4308 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4309 struct ext4_iloc *iloc, int in_mem,
4310 ext4_fsblk_t *ret_block)
4311 {
4312 struct ext4_group_desc *gdp;
4313 struct buffer_head *bh;
4314 ext4_fsblk_t block;
4315 struct blk_plug plug;
4316 int inodes_per_block, inode_offset;
4317
4318 iloc->bh = NULL;
4319 if (ino < EXT4_ROOT_INO ||
4320 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4321 return -EFSCORRUPTED;
4322
4323 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4324 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4325 if (!gdp)
4326 return -EIO;
4327
4328 /*
4329 * Figure out the offset within the block group inode table
4330 */
4331 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4332 inode_offset = ((ino - 1) %
4333 EXT4_INODES_PER_GROUP(sb));
4334 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4335
4336 block = ext4_inode_table(sb, gdp);
4337 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4338 (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4339 ext4_error(sb, "Invalid inode table block %llu in "
4340 "block_group %u", block, iloc->block_group);
4341 return -EFSCORRUPTED;
4342 }
4343 block += (inode_offset / inodes_per_block);
4344
4345 bh = sb_getblk(sb, block);
4346 if (unlikely(!bh))
4347 return -ENOMEM;
4348 if (ext4_buffer_uptodate(bh))
4349 goto has_buffer;
4350
4351 lock_buffer(bh);
4352 if (ext4_buffer_uptodate(bh)) {
4353 /* Someone brought it uptodate while we waited */
4354 unlock_buffer(bh);
4355 goto has_buffer;
4356 }
4357
4358 /*
4359 * If we have all information of the inode in memory and this
4360 * is the only valid inode in the block, we need not read the
4361 * block.
4362 */
4363 if (in_mem) {
4364 struct buffer_head *bitmap_bh;
4365 int i, start;
4366
4367 start = inode_offset & ~(inodes_per_block - 1);
4368
4369 /* Is the inode bitmap in cache? */
4370 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4371 if (unlikely(!bitmap_bh))
4372 goto make_io;
4373
4374 /*
4375 * If the inode bitmap isn't in cache then the
4376 * optimisation may end up performing two reads instead
4377 * of one, so skip it.
4378 */
4379 if (!buffer_uptodate(bitmap_bh)) {
4380 brelse(bitmap_bh);
4381 goto make_io;
4382 }
4383 for (i = start; i < start + inodes_per_block; i++) {
4384 if (i == inode_offset)
4385 continue;
4386 if (ext4_test_bit(i, bitmap_bh->b_data))
4387 break;
4388 }
4389 brelse(bitmap_bh);
4390 if (i == start + inodes_per_block) {
4391 /* all other inodes are free, so skip I/O */
4392 memset(bh->b_data, 0, bh->b_size);
4393 set_buffer_uptodate(bh);
4394 unlock_buffer(bh);
4395 goto has_buffer;
4396 }
4397 }
4398
4399 make_io:
4400 /*
4401 * If we need to do any I/O, try to pre-readahead extra
4402 * blocks from the inode table.
4403 */
4404 blk_start_plug(&plug);
4405 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4406 ext4_fsblk_t b, end, table;
4407 unsigned num;
4408 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4409
4410 table = ext4_inode_table(sb, gdp);
4411 /* s_inode_readahead_blks is always a power of 2 */
4412 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4413 if (table > b)
4414 b = table;
4415 end = b + ra_blks;
4416 num = EXT4_INODES_PER_GROUP(sb);
4417 if (ext4_has_group_desc_csum(sb))
4418 num -= ext4_itable_unused_count(sb, gdp);
4419 table += num / inodes_per_block;
4420 if (end > table)
4421 end = table;
4422 while (b <= end)
4423 ext4_sb_breadahead_unmovable(sb, b++);
4424 }
4425
4426 /*
4427 * There are other valid inodes in the buffer, this inode
4428 * has in-inode xattrs, or we don't have this inode in memory.
4429 * Read the block from disk.
4430 */
4431 trace_ext4_load_inode(sb, ino);
4432 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4433 blk_finish_plug(&plug);
4434 wait_on_buffer(bh);
4435 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4436 if (!buffer_uptodate(bh)) {
4437 if (ret_block)
4438 *ret_block = block;
4439 brelse(bh);
4440 return -EIO;
4441 }
4442 has_buffer:
4443 iloc->bh = bh;
4444 return 0;
4445 }
4446
__ext4_get_inode_loc_noinmem(struct inode * inode,struct ext4_iloc * iloc)4447 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4448 struct ext4_iloc *iloc)
4449 {
4450 ext4_fsblk_t err_blk = 0;
4451 int ret;
4452
4453 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc, 0,
4454 &err_blk);
4455
4456 if (ret == -EIO)
4457 ext4_error_inode_block(inode, err_blk, EIO,
4458 "unable to read itable block");
4459
4460 return ret;
4461 }
4462
ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc)4463 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4464 {
4465 ext4_fsblk_t err_blk = 0;
4466 int ret;
4467
4468 /* We have all inode data except xattrs in memory here. */
4469 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc,
4470 !ext4_test_inode_state(inode, EXT4_STATE_XATTR), &err_blk);
4471
4472 if (ret == -EIO)
4473 ext4_error_inode_block(inode, err_blk, EIO,
4474 "unable to read itable block");
4475
4476 return ret;
4477 }
4478
4479
ext4_get_fc_inode_loc(struct super_block * sb,unsigned long ino,struct ext4_iloc * iloc)4480 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4481 struct ext4_iloc *iloc)
4482 {
4483 return __ext4_get_inode_loc(sb, ino, iloc, 0, NULL);
4484 }
4485
ext4_should_enable_dax(struct inode * inode)4486 static bool ext4_should_enable_dax(struct inode *inode)
4487 {
4488 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4489
4490 if (test_opt2(inode->i_sb, DAX_NEVER))
4491 return false;
4492 if (!S_ISREG(inode->i_mode))
4493 return false;
4494 if (ext4_should_journal_data(inode))
4495 return false;
4496 if (ext4_has_inline_data(inode))
4497 return false;
4498 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4499 return false;
4500 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4501 return false;
4502 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4503 return false;
4504 if (test_opt(inode->i_sb, DAX_ALWAYS))
4505 return true;
4506
4507 return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4508 }
4509
ext4_set_inode_flags(struct inode * inode,bool init)4510 void ext4_set_inode_flags(struct inode *inode, bool init)
4511 {
4512 unsigned int flags = EXT4_I(inode)->i_flags;
4513 unsigned int new_fl = 0;
4514
4515 WARN_ON_ONCE(IS_DAX(inode) && init);
4516
4517 if (flags & EXT4_SYNC_FL)
4518 new_fl |= S_SYNC;
4519 if (flags & EXT4_APPEND_FL)
4520 new_fl |= S_APPEND;
4521 if (flags & EXT4_IMMUTABLE_FL)
4522 new_fl |= S_IMMUTABLE;
4523 if (flags & EXT4_NOATIME_FL)
4524 new_fl |= S_NOATIME;
4525 if (flags & EXT4_DIRSYNC_FL)
4526 new_fl |= S_DIRSYNC;
4527
4528 /* Because of the way inode_set_flags() works we must preserve S_DAX
4529 * here if already set. */
4530 new_fl |= (inode->i_flags & S_DAX);
4531 if (init && ext4_should_enable_dax(inode))
4532 new_fl |= S_DAX;
4533
4534 if (flags & EXT4_ENCRYPT_FL)
4535 new_fl |= S_ENCRYPTED;
4536 if (flags & EXT4_CASEFOLD_FL)
4537 new_fl |= S_CASEFOLD;
4538 if (flags & EXT4_VERITY_FL)
4539 new_fl |= S_VERITY;
4540 inode_set_flags(inode, new_fl,
4541 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4542 S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4543 }
4544
ext4_inode_blocks(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4545 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4546 struct ext4_inode_info *ei)
4547 {
4548 blkcnt_t i_blocks ;
4549 struct inode *inode = &(ei->vfs_inode);
4550 struct super_block *sb = inode->i_sb;
4551
4552 if (ext4_has_feature_huge_file(sb)) {
4553 /* we are using combined 48 bit field */
4554 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4555 le32_to_cpu(raw_inode->i_blocks_lo);
4556 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4557 /* i_blocks represent file system block size */
4558 return i_blocks << (inode->i_blkbits - 9);
4559 } else {
4560 return i_blocks;
4561 }
4562 } else {
4563 return le32_to_cpu(raw_inode->i_blocks_lo);
4564 }
4565 }
4566
ext4_iget_extra_inode(struct inode * inode,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4567 static inline int ext4_iget_extra_inode(struct inode *inode,
4568 struct ext4_inode *raw_inode,
4569 struct ext4_inode_info *ei)
4570 {
4571 __le32 *magic = (void *)raw_inode +
4572 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4573
4574 if (EXT4_INODE_HAS_XATTR_SPACE(inode) &&
4575 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4576 int err;
4577
4578 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4579 err = ext4_find_inline_data_nolock(inode);
4580 if (!err && ext4_has_inline_data(inode))
4581 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4582 return err;
4583 } else
4584 EXT4_I(inode)->i_inline_off = 0;
4585 return 0;
4586 }
4587
ext4_get_projid(struct inode * inode,kprojid_t * projid)4588 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4589 {
4590 if (!ext4_has_feature_project(inode->i_sb))
4591 return -EOPNOTSUPP;
4592 *projid = EXT4_I(inode)->i_projid;
4593 return 0;
4594 }
4595
4596 /*
4597 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4598 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4599 * set.
4600 */
ext4_inode_set_iversion_queried(struct inode * inode,u64 val)4601 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4602 {
4603 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4604 inode_set_iversion_raw(inode, val);
4605 else
4606 inode_set_iversion_queried(inode, val);
4607 }
ext4_inode_peek_iversion(const struct inode * inode)4608 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4609 {
4610 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4611 return inode_peek_iversion_raw(inode);
4612 else
4613 return inode_peek_iversion(inode);
4614 }
4615
check_igot_inode(struct inode * inode,ext4_iget_flags flags)4616 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4617
4618 {
4619 if (flags & EXT4_IGET_EA_INODE) {
4620 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4621 return "missing EA_INODE flag";
4622 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4623 EXT4_I(inode)->i_file_acl)
4624 return "ea_inode with extended attributes";
4625 } else {
4626 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4627 return "unexpected EA_INODE flag";
4628 }
4629 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4630 return "unexpected bad inode w/o EXT4_IGET_BAD";
4631 return NULL;
4632 }
4633
__ext4_iget(struct super_block * sb,unsigned long ino,ext4_iget_flags flags,const char * function,unsigned int line)4634 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4635 ext4_iget_flags flags, const char *function,
4636 unsigned int line)
4637 {
4638 struct ext4_iloc iloc;
4639 struct ext4_inode *raw_inode;
4640 struct ext4_inode_info *ei;
4641 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4642 struct inode *inode;
4643 const char *err_str;
4644 journal_t *journal = EXT4_SB(sb)->s_journal;
4645 long ret;
4646 loff_t size;
4647 int block;
4648 uid_t i_uid;
4649 gid_t i_gid;
4650 projid_t i_projid;
4651
4652 if ((!(flags & EXT4_IGET_SPECIAL) &&
4653 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4654 ino == le32_to_cpu(es->s_usr_quota_inum) ||
4655 ino == le32_to_cpu(es->s_grp_quota_inum) ||
4656 ino == le32_to_cpu(es->s_prj_quota_inum) ||
4657 ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4658 (ino < EXT4_ROOT_INO) ||
4659 (ino > le32_to_cpu(es->s_inodes_count))) {
4660 if (flags & EXT4_IGET_HANDLE)
4661 return ERR_PTR(-ESTALE);
4662 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4663 "inode #%lu: comm %s: iget: illegal inode #",
4664 ino, current->comm);
4665 return ERR_PTR(-EFSCORRUPTED);
4666 }
4667
4668 inode = iget_locked(sb, ino);
4669 if (!inode)
4670 return ERR_PTR(-ENOMEM);
4671 if (!(inode->i_state & I_NEW)) {
4672 if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4673 ext4_error_inode(inode, function, line, 0, err_str);
4674 iput(inode);
4675 return ERR_PTR(-EFSCORRUPTED);
4676 }
4677 return inode;
4678 }
4679
4680 ei = EXT4_I(inode);
4681 iloc.bh = NULL;
4682
4683 ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4684 if (ret < 0)
4685 goto bad_inode;
4686 raw_inode = ext4_raw_inode(&iloc);
4687
4688 if ((flags & EXT4_IGET_HANDLE) &&
4689 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4690 ret = -ESTALE;
4691 goto bad_inode;
4692 }
4693
4694 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4695 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4696 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4697 EXT4_INODE_SIZE(inode->i_sb) ||
4698 (ei->i_extra_isize & 3)) {
4699 ext4_error_inode(inode, function, line, 0,
4700 "iget: bad extra_isize %u "
4701 "(inode size %u)",
4702 ei->i_extra_isize,
4703 EXT4_INODE_SIZE(inode->i_sb));
4704 ret = -EFSCORRUPTED;
4705 goto bad_inode;
4706 }
4707 } else
4708 ei->i_extra_isize = 0;
4709
4710 /* Precompute checksum seed for inode metadata */
4711 if (ext4_has_metadata_csum(sb)) {
4712 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4713 __u32 csum;
4714 __le32 inum = cpu_to_le32(inode->i_ino);
4715 __le32 gen = raw_inode->i_generation;
4716 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4717 sizeof(inum));
4718 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4719 sizeof(gen));
4720 }
4721
4722 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4723 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4724 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4725 ext4_error_inode_err(inode, function, line, 0,
4726 EFSBADCRC, "iget: checksum invalid");
4727 ret = -EFSBADCRC;
4728 goto bad_inode;
4729 }
4730
4731 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4732 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4733 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4734 if (ext4_has_feature_project(sb) &&
4735 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4736 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4737 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4738 else
4739 i_projid = EXT4_DEF_PROJID;
4740
4741 if (!(test_opt(inode->i_sb, NO_UID32))) {
4742 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4743 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4744 }
4745 i_uid_write(inode, i_uid);
4746 i_gid_write(inode, i_gid);
4747 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4748 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4749
4750 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4751 ei->i_inline_off = 0;
4752 ei->i_dir_start_lookup = 0;
4753 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4754 /* We now have enough fields to check if the inode was active or not.
4755 * This is needed because nfsd might try to access dead inodes
4756 * the test is that same one that e2fsck uses
4757 * NeilBrown 1999oct15
4758 */
4759 if (inode->i_nlink == 0) {
4760 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4761 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4762 ino != EXT4_BOOT_LOADER_INO) {
4763 /* this inode is deleted or unallocated */
4764 if (flags & EXT4_IGET_SPECIAL) {
4765 ext4_error_inode(inode, function, line, 0,
4766 "iget: special inode unallocated");
4767 ret = -EFSCORRUPTED;
4768 } else
4769 ret = -ESTALE;
4770 goto bad_inode;
4771 }
4772 /* The only unlinked inodes we let through here have
4773 * valid i_mode and are being read by the orphan
4774 * recovery code: that's fine, we're about to complete
4775 * the process of deleting those.
4776 * OR it is the EXT4_BOOT_LOADER_INO which is
4777 * not initialized on a new filesystem. */
4778 }
4779 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4780 ext4_set_inode_flags(inode, true);
4781 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4782 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4783 if (ext4_has_feature_64bit(sb))
4784 ei->i_file_acl |=
4785 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4786 inode->i_size = ext4_isize(sb, raw_inode);
4787 if ((size = i_size_read(inode)) < 0) {
4788 ext4_error_inode(inode, function, line, 0,
4789 "iget: bad i_size value: %lld", size);
4790 ret = -EFSCORRUPTED;
4791 goto bad_inode;
4792 }
4793 /*
4794 * If dir_index is not enabled but there's dir with INDEX flag set,
4795 * we'd normally treat htree data as empty space. But with metadata
4796 * checksumming that corrupts checksums so forbid that.
4797 */
4798 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4799 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4800 ext4_error_inode(inode, function, line, 0,
4801 "iget: Dir with htree data on filesystem without dir_index feature.");
4802 ret = -EFSCORRUPTED;
4803 goto bad_inode;
4804 }
4805 ei->i_disksize = inode->i_size;
4806 #ifdef CONFIG_QUOTA
4807 ei->i_reserved_quota = 0;
4808 #endif
4809 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4810 ei->i_block_group = iloc.block_group;
4811 ei->i_last_alloc_group = ~0;
4812 /*
4813 * NOTE! The in-memory inode i_data array is in little-endian order
4814 * even on big-endian machines: we do NOT byteswap the block numbers!
4815 */
4816 for (block = 0; block < EXT4_N_BLOCKS; block++)
4817 ei->i_data[block] = raw_inode->i_block[block];
4818 INIT_LIST_HEAD(&ei->i_orphan);
4819 ext4_fc_init_inode(&ei->vfs_inode);
4820
4821 /*
4822 * Set transaction id's of transactions that have to be committed
4823 * to finish f[data]sync. We set them to currently running transaction
4824 * as we cannot be sure that the inode or some of its metadata isn't
4825 * part of the transaction - the inode could have been reclaimed and
4826 * now it is reread from disk.
4827 */
4828 if (journal) {
4829 transaction_t *transaction;
4830 tid_t tid;
4831
4832 read_lock(&journal->j_state_lock);
4833 if (journal->j_running_transaction)
4834 transaction = journal->j_running_transaction;
4835 else
4836 transaction = journal->j_committing_transaction;
4837 if (transaction)
4838 tid = transaction->t_tid;
4839 else
4840 tid = journal->j_commit_sequence;
4841 read_unlock(&journal->j_state_lock);
4842 ei->i_sync_tid = tid;
4843 ei->i_datasync_tid = tid;
4844 }
4845
4846 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4847 if (ei->i_extra_isize == 0) {
4848 /* The extra space is currently unused. Use it. */
4849 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4850 ei->i_extra_isize = sizeof(struct ext4_inode) -
4851 EXT4_GOOD_OLD_INODE_SIZE;
4852 } else {
4853 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4854 if (ret)
4855 goto bad_inode;
4856 }
4857 }
4858
4859 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4860 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4861 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4862 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4863
4864 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4865 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4866
4867 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4868 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4869 ivers |=
4870 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4871 }
4872 ext4_inode_set_iversion_queried(inode, ivers);
4873 }
4874
4875 ret = 0;
4876 if (ei->i_file_acl &&
4877 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4878 ext4_error_inode(inode, function, line, 0,
4879 "iget: bad extended attribute block %llu",
4880 ei->i_file_acl);
4881 ret = -EFSCORRUPTED;
4882 goto bad_inode;
4883 } else if (!ext4_has_inline_data(inode)) {
4884 /* validate the block references in the inode */
4885 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4886 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4887 (S_ISLNK(inode->i_mode) &&
4888 !ext4_inode_is_fast_symlink(inode)))) {
4889 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4890 ret = ext4_ext_check_inode(inode);
4891 else
4892 ret = ext4_ind_check_inode(inode);
4893 }
4894 }
4895 if (ret)
4896 goto bad_inode;
4897
4898 if (S_ISREG(inode->i_mode)) {
4899 inode->i_op = &ext4_file_inode_operations;
4900 inode->i_fop = &ext4_file_operations;
4901 ext4_set_aops(inode);
4902 } else if (S_ISDIR(inode->i_mode)) {
4903 inode->i_op = &ext4_dir_inode_operations;
4904 inode->i_fop = &ext4_dir_operations;
4905 } else if (S_ISLNK(inode->i_mode)) {
4906 /* VFS does not allow setting these so must be corruption */
4907 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4908 ext4_error_inode(inode, function, line, 0,
4909 "iget: immutable or append flags "
4910 "not allowed on symlinks");
4911 ret = -EFSCORRUPTED;
4912 goto bad_inode;
4913 }
4914 if (IS_ENCRYPTED(inode)) {
4915 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4916 ext4_set_aops(inode);
4917 } else if (ext4_inode_is_fast_symlink(inode)) {
4918 inode->i_link = (char *)ei->i_data;
4919 inode->i_op = &ext4_fast_symlink_inode_operations;
4920 nd_terminate_link(ei->i_data, inode->i_size,
4921 sizeof(ei->i_data) - 1);
4922 } else {
4923 inode->i_op = &ext4_symlink_inode_operations;
4924 ext4_set_aops(inode);
4925 }
4926 inode_nohighmem(inode);
4927 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4928 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4929 inode->i_op = &ext4_special_inode_operations;
4930 if (raw_inode->i_block[0])
4931 init_special_inode(inode, inode->i_mode,
4932 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4933 else
4934 init_special_inode(inode, inode->i_mode,
4935 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4936 } else if (ino == EXT4_BOOT_LOADER_INO) {
4937 make_bad_inode(inode);
4938 } else {
4939 ret = -EFSCORRUPTED;
4940 ext4_error_inode(inode, function, line, 0,
4941 "iget: bogus i_mode (%o)", inode->i_mode);
4942 goto bad_inode;
4943 }
4944 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4945 ext4_error_inode(inode, function, line, 0,
4946 "casefold flag without casefold feature");
4947 if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4948 ext4_error_inode(inode, function, line, 0, err_str);
4949 ret = -EFSCORRUPTED;
4950 goto bad_inode;
4951 }
4952
4953 brelse(iloc.bh);
4954 unlock_new_inode(inode);
4955 return inode;
4956
4957 bad_inode:
4958 brelse(iloc.bh);
4959 iget_failed(inode);
4960 return ERR_PTR(ret);
4961 }
4962
ext4_inode_blocks_set(handle_t * handle,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4963 static int ext4_inode_blocks_set(handle_t *handle,
4964 struct ext4_inode *raw_inode,
4965 struct ext4_inode_info *ei)
4966 {
4967 struct inode *inode = &(ei->vfs_inode);
4968 u64 i_blocks = READ_ONCE(inode->i_blocks);
4969 struct super_block *sb = inode->i_sb;
4970
4971 if (i_blocks <= ~0U) {
4972 /*
4973 * i_blocks can be represented in a 32 bit variable
4974 * as multiple of 512 bytes
4975 */
4976 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4977 raw_inode->i_blocks_high = 0;
4978 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4979 return 0;
4980 }
4981
4982 /*
4983 * This should never happen since sb->s_maxbytes should not have
4984 * allowed this, sb->s_maxbytes was set according to the huge_file
4985 * feature in ext4_fill_super().
4986 */
4987 if (!ext4_has_feature_huge_file(sb))
4988 return -EFSCORRUPTED;
4989
4990 if (i_blocks <= 0xffffffffffffULL) {
4991 /*
4992 * i_blocks can be represented in a 48 bit variable
4993 * as multiple of 512 bytes
4994 */
4995 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4996 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4997 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4998 } else {
4999 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5000 /* i_block is stored in file system block size */
5001 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5002 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5003 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5004 }
5005 return 0;
5006 }
5007
__ext4_update_other_inode_time(struct super_block * sb,unsigned long orig_ino,unsigned long ino,struct ext4_inode * raw_inode)5008 static void __ext4_update_other_inode_time(struct super_block *sb,
5009 unsigned long orig_ino,
5010 unsigned long ino,
5011 struct ext4_inode *raw_inode)
5012 {
5013 struct inode *inode;
5014
5015 inode = find_inode_by_ino_rcu(sb, ino);
5016 if (!inode)
5017 return;
5018
5019 if (!inode_is_dirtytime_only(inode))
5020 return;
5021
5022 spin_lock(&inode->i_lock);
5023 if (inode_is_dirtytime_only(inode)) {
5024 struct ext4_inode_info *ei = EXT4_I(inode);
5025
5026 inode->i_state &= ~I_DIRTY_TIME;
5027 spin_unlock(&inode->i_lock);
5028
5029 spin_lock(&ei->i_raw_lock);
5030 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5031 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5032 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5033 ext4_inode_csum_set(inode, raw_inode, ei);
5034 spin_unlock(&ei->i_raw_lock);
5035 trace_ext4_other_inode_update_time(inode, orig_ino);
5036 return;
5037 }
5038 spin_unlock(&inode->i_lock);
5039 }
5040
5041 /*
5042 * Opportunistically update the other time fields for other inodes in
5043 * the same inode table block.
5044 */
ext4_update_other_inodes_time(struct super_block * sb,unsigned long orig_ino,char * buf)5045 static void ext4_update_other_inodes_time(struct super_block *sb,
5046 unsigned long orig_ino, char *buf)
5047 {
5048 unsigned long ino;
5049 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5050 int inode_size = EXT4_INODE_SIZE(sb);
5051
5052 /*
5053 * Calculate the first inode in the inode table block. Inode
5054 * numbers are one-based. That is, the first inode in a block
5055 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5056 */
5057 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5058 rcu_read_lock();
5059 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5060 if (ino == orig_ino)
5061 continue;
5062 __ext4_update_other_inode_time(sb, orig_ino, ino,
5063 (struct ext4_inode *)buf);
5064 }
5065 rcu_read_unlock();
5066 }
5067
5068 /*
5069 * Post the struct inode info into an on-disk inode location in the
5070 * buffer-cache. This gobbles the caller's reference to the
5071 * buffer_head in the inode location struct.
5072 *
5073 * The caller must have write access to iloc->bh.
5074 */
ext4_do_update_inode(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5075 static int ext4_do_update_inode(handle_t *handle,
5076 struct inode *inode,
5077 struct ext4_iloc *iloc)
5078 {
5079 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5080 struct ext4_inode_info *ei = EXT4_I(inode);
5081 struct buffer_head *bh = iloc->bh;
5082 struct super_block *sb = inode->i_sb;
5083 int err = 0, block;
5084 int need_datasync = 0, set_large_file = 0;
5085 uid_t i_uid;
5086 gid_t i_gid;
5087 projid_t i_projid;
5088
5089 spin_lock(&ei->i_raw_lock);
5090
5091 /*
5092 * For fields not tracked in the in-memory inode, initialise them
5093 * to zero for new inodes.
5094 */
5095 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5096 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5097
5098 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5099
5100 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5101 i_uid = i_uid_read(inode);
5102 i_gid = i_gid_read(inode);
5103 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5104 if (!(test_opt(inode->i_sb, NO_UID32))) {
5105 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5106 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5107 /*
5108 * Fix up interoperability with old kernels. Otherwise,
5109 * old inodes get re-used with the upper 16 bits of the
5110 * uid/gid intact.
5111 */
5112 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5113 raw_inode->i_uid_high = 0;
5114 raw_inode->i_gid_high = 0;
5115 } else {
5116 raw_inode->i_uid_high =
5117 cpu_to_le16(high_16_bits(i_uid));
5118 raw_inode->i_gid_high =
5119 cpu_to_le16(high_16_bits(i_gid));
5120 }
5121 } else {
5122 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5123 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5124 raw_inode->i_uid_high = 0;
5125 raw_inode->i_gid_high = 0;
5126 }
5127 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5128
5129 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5130 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5131 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5132 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5133
5134 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5135 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5136 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5137 raw_inode->i_file_acl_high =
5138 cpu_to_le16(ei->i_file_acl >> 32);
5139 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5140 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5141 ext4_isize_set(raw_inode, ei->i_disksize);
5142 need_datasync = 1;
5143 }
5144 if (ei->i_disksize > 0x7fffffffULL) {
5145 if (!ext4_has_feature_large_file(sb) ||
5146 EXT4_SB(sb)->s_es->s_rev_level ==
5147 cpu_to_le32(EXT4_GOOD_OLD_REV))
5148 set_large_file = 1;
5149 }
5150 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5151 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5152 if (old_valid_dev(inode->i_rdev)) {
5153 raw_inode->i_block[0] =
5154 cpu_to_le32(old_encode_dev(inode->i_rdev));
5155 raw_inode->i_block[1] = 0;
5156 } else {
5157 raw_inode->i_block[0] = 0;
5158 raw_inode->i_block[1] =
5159 cpu_to_le32(new_encode_dev(inode->i_rdev));
5160 raw_inode->i_block[2] = 0;
5161 }
5162 } else if (!ext4_has_inline_data(inode)) {
5163 for (block = 0; block < EXT4_N_BLOCKS; block++)
5164 raw_inode->i_block[block] = ei->i_data[block];
5165 }
5166
5167 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5168 u64 ivers = ext4_inode_peek_iversion(inode);
5169
5170 raw_inode->i_disk_version = cpu_to_le32(ivers);
5171 if (ei->i_extra_isize) {
5172 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5173 raw_inode->i_version_hi =
5174 cpu_to_le32(ivers >> 32);
5175 raw_inode->i_extra_isize =
5176 cpu_to_le16(ei->i_extra_isize);
5177 }
5178 }
5179
5180 if (i_projid != EXT4_DEF_PROJID &&
5181 !ext4_has_feature_project(inode->i_sb))
5182 err = err ?: -EFSCORRUPTED;
5183
5184 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5185 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5186 raw_inode->i_projid = cpu_to_le32(i_projid);
5187
5188 ext4_inode_csum_set(inode, raw_inode, ei);
5189 spin_unlock(&ei->i_raw_lock);
5190 if (err) {
5191 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5192 goto out_brelse;
5193 }
5194
5195 if (inode->i_sb->s_flags & SB_LAZYTIME)
5196 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5197 bh->b_data);
5198
5199 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5200 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5201 if (err)
5202 goto out_error;
5203 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5204 if (set_large_file) {
5205 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5206 err = ext4_journal_get_write_access(handle, sb,
5207 EXT4_SB(sb)->s_sbh,
5208 EXT4_JTR_NONE);
5209 if (err)
5210 goto out_error;
5211 lock_buffer(EXT4_SB(sb)->s_sbh);
5212 ext4_set_feature_large_file(sb);
5213 ext4_superblock_csum_set(sb);
5214 unlock_buffer(EXT4_SB(sb)->s_sbh);
5215 ext4_handle_sync(handle);
5216 err = ext4_handle_dirty_metadata(handle, NULL,
5217 EXT4_SB(sb)->s_sbh);
5218 }
5219 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5220 out_error:
5221 ext4_std_error(inode->i_sb, err);
5222 out_brelse:
5223 brelse(bh);
5224 return err;
5225 }
5226
5227 /*
5228 * ext4_write_inode()
5229 *
5230 * We are called from a few places:
5231 *
5232 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5233 * Here, there will be no transaction running. We wait for any running
5234 * transaction to commit.
5235 *
5236 * - Within flush work (sys_sync(), kupdate and such).
5237 * We wait on commit, if told to.
5238 *
5239 * - Within iput_final() -> write_inode_now()
5240 * We wait on commit, if told to.
5241 *
5242 * In all cases it is actually safe for us to return without doing anything,
5243 * because the inode has been copied into a raw inode buffer in
5244 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5245 * writeback.
5246 *
5247 * Note that we are absolutely dependent upon all inode dirtiers doing the
5248 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5249 * which we are interested.
5250 *
5251 * It would be a bug for them to not do this. The code:
5252 *
5253 * mark_inode_dirty(inode)
5254 * stuff();
5255 * inode->i_size = expr;
5256 *
5257 * is in error because write_inode() could occur while `stuff()' is running,
5258 * and the new i_size will be lost. Plus the inode will no longer be on the
5259 * superblock's dirty inode list.
5260 */
ext4_write_inode(struct inode * inode,struct writeback_control * wbc)5261 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5262 {
5263 int err;
5264
5265 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5266 sb_rdonly(inode->i_sb))
5267 return 0;
5268
5269 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5270 return -EIO;
5271
5272 if (EXT4_SB(inode->i_sb)->s_journal) {
5273 if (ext4_journal_current_handle()) {
5274 ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5275 dump_stack();
5276 return -EIO;
5277 }
5278
5279 /*
5280 * No need to force transaction in WB_SYNC_NONE mode. Also
5281 * ext4_sync_fs() will force the commit after everything is
5282 * written.
5283 */
5284 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5285 return 0;
5286
5287 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5288 EXT4_I(inode)->i_sync_tid);
5289 } else {
5290 struct ext4_iloc iloc;
5291
5292 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5293 if (err)
5294 return err;
5295 /*
5296 * sync(2) will flush the whole buffer cache. No need to do
5297 * it here separately for each inode.
5298 */
5299 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5300 sync_dirty_buffer(iloc.bh);
5301 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5302 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5303 "IO error syncing inode");
5304 err = -EIO;
5305 }
5306 brelse(iloc.bh);
5307 }
5308 return err;
5309 }
5310
5311 /*
5312 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5313 * buffers that are attached to a page stradding i_size and are undergoing
5314 * commit. In that case we have to wait for commit to finish and try again.
5315 */
ext4_wait_for_tail_page_commit(struct inode * inode)5316 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5317 {
5318 struct page *page;
5319 unsigned offset;
5320 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5321 tid_t commit_tid = 0;
5322 int ret;
5323
5324 offset = inode->i_size & (PAGE_SIZE - 1);
5325 /*
5326 * If the page is fully truncated, we don't need to wait for any commit
5327 * (and we even should not as __ext4_journalled_invalidatepage() may
5328 * strip all buffers from the page but keep the page dirty which can then
5329 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5330 * buffers). Also we don't need to wait for any commit if all buffers in
5331 * the page remain valid. This is most beneficial for the common case of
5332 * blocksize == PAGESIZE.
5333 */
5334 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5335 return;
5336 while (1) {
5337 page = find_lock_page(inode->i_mapping,
5338 inode->i_size >> PAGE_SHIFT);
5339 if (!page)
5340 return;
5341 ret = __ext4_journalled_invalidatepage(page, offset,
5342 PAGE_SIZE - offset);
5343 unlock_page(page);
5344 put_page(page);
5345 if (ret != -EBUSY)
5346 return;
5347 commit_tid = 0;
5348 read_lock(&journal->j_state_lock);
5349 if (journal->j_committing_transaction)
5350 commit_tid = journal->j_committing_transaction->t_tid;
5351 read_unlock(&journal->j_state_lock);
5352 if (commit_tid)
5353 jbd2_log_wait_commit(journal, commit_tid);
5354 }
5355 }
5356
5357 /*
5358 * ext4_setattr()
5359 *
5360 * Called from notify_change.
5361 *
5362 * We want to trap VFS attempts to truncate the file as soon as
5363 * possible. In particular, we want to make sure that when the VFS
5364 * shrinks i_size, we put the inode on the orphan list and modify
5365 * i_disksize immediately, so that during the subsequent flushing of
5366 * dirty pages and freeing of disk blocks, we can guarantee that any
5367 * commit will leave the blocks being flushed in an unused state on
5368 * disk. (On recovery, the inode will get truncated and the blocks will
5369 * be freed, so we have a strong guarantee that no future commit will
5370 * leave these blocks visible to the user.)
5371 *
5372 * Another thing we have to assure is that if we are in ordered mode
5373 * and inode is still attached to the committing transaction, we must
5374 * we start writeout of all the dirty pages which are being truncated.
5375 * This way we are sure that all the data written in the previous
5376 * transaction are already on disk (truncate waits for pages under
5377 * writeback).
5378 *
5379 * Called with inode->i_mutex down.
5380 */
ext4_setattr(struct user_namespace * mnt_userns,struct dentry * dentry,struct iattr * attr)5381 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5382 struct iattr *attr)
5383 {
5384 struct inode *inode = d_inode(dentry);
5385 int error, rc = 0;
5386 int orphan = 0;
5387 const unsigned int ia_valid = attr->ia_valid;
5388
5389 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5390 return -EIO;
5391
5392 if (unlikely(IS_IMMUTABLE(inode)))
5393 return -EPERM;
5394
5395 if (unlikely(IS_APPEND(inode) &&
5396 (ia_valid & (ATTR_MODE | ATTR_UID |
5397 ATTR_GID | ATTR_TIMES_SET))))
5398 return -EPERM;
5399
5400 error = setattr_prepare(mnt_userns, dentry, attr);
5401 if (error)
5402 return error;
5403
5404 error = fscrypt_prepare_setattr(dentry, attr);
5405 if (error)
5406 return error;
5407
5408 error = fsverity_prepare_setattr(dentry, attr);
5409 if (error)
5410 return error;
5411
5412 if (is_quota_modification(inode, attr)) {
5413 error = dquot_initialize(inode);
5414 if (error)
5415 return error;
5416 }
5417
5418 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5419 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5420 handle_t *handle;
5421
5422 /* (user+group)*(old+new) structure, inode write (sb,
5423 * inode block, ? - but truncate inode update has it) */
5424 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5425 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5426 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5427 if (IS_ERR(handle)) {
5428 error = PTR_ERR(handle);
5429 goto err_out;
5430 }
5431
5432 /* dquot_transfer() calls back ext4_get_inode_usage() which
5433 * counts xattr inode references.
5434 */
5435 down_read(&EXT4_I(inode)->xattr_sem);
5436 error = dquot_transfer(inode, attr);
5437 up_read(&EXT4_I(inode)->xattr_sem);
5438
5439 if (error) {
5440 ext4_journal_stop(handle);
5441 return error;
5442 }
5443 /* Update corresponding info in inode so that everything is in
5444 * one transaction */
5445 if (attr->ia_valid & ATTR_UID)
5446 inode->i_uid = attr->ia_uid;
5447 if (attr->ia_valid & ATTR_GID)
5448 inode->i_gid = attr->ia_gid;
5449 error = ext4_mark_inode_dirty(handle, inode);
5450 ext4_journal_stop(handle);
5451 if (unlikely(error)) {
5452 return error;
5453 }
5454 }
5455
5456 if (attr->ia_valid & ATTR_SIZE) {
5457 handle_t *handle;
5458 loff_t oldsize = inode->i_size;
5459 loff_t old_disksize;
5460 int shrink = (attr->ia_size < inode->i_size);
5461
5462 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5463 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5464
5465 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5466 return -EFBIG;
5467 }
5468 }
5469 if (!S_ISREG(inode->i_mode)) {
5470 return -EINVAL;
5471 }
5472
5473 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5474 inode_inc_iversion(inode);
5475
5476 if (shrink) {
5477 if (ext4_should_order_data(inode)) {
5478 error = ext4_begin_ordered_truncate(inode,
5479 attr->ia_size);
5480 if (error)
5481 goto err_out;
5482 }
5483 /*
5484 * Blocks are going to be removed from the inode. Wait
5485 * for dio in flight.
5486 */
5487 inode_dio_wait(inode);
5488 }
5489
5490 filemap_invalidate_lock(inode->i_mapping);
5491
5492 rc = ext4_break_layouts(inode);
5493 if (rc) {
5494 filemap_invalidate_unlock(inode->i_mapping);
5495 goto err_out;
5496 }
5497
5498 if (attr->ia_size != inode->i_size) {
5499 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5500 if (IS_ERR(handle)) {
5501 error = PTR_ERR(handle);
5502 goto out_mmap_sem;
5503 }
5504 if (ext4_handle_valid(handle) && shrink) {
5505 error = ext4_orphan_add(handle, inode);
5506 orphan = 1;
5507 }
5508 /*
5509 * Update c/mtime on truncate up, ext4_truncate() will
5510 * update c/mtime in shrink case below
5511 */
5512 if (!shrink) {
5513 inode->i_mtime = current_time(inode);
5514 inode->i_ctime = inode->i_mtime;
5515 }
5516
5517 if (shrink)
5518 ext4_fc_track_range(handle, inode,
5519 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5520 inode->i_sb->s_blocksize_bits,
5521 EXT_MAX_BLOCKS - 1);
5522 else
5523 ext4_fc_track_range(
5524 handle, inode,
5525 (oldsize > 0 ? oldsize - 1 : oldsize) >>
5526 inode->i_sb->s_blocksize_bits,
5527 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5528 inode->i_sb->s_blocksize_bits);
5529
5530 down_write(&EXT4_I(inode)->i_data_sem);
5531 old_disksize = EXT4_I(inode)->i_disksize;
5532 EXT4_I(inode)->i_disksize = attr->ia_size;
5533 rc = ext4_mark_inode_dirty(handle, inode);
5534 if (!error)
5535 error = rc;
5536 /*
5537 * We have to update i_size under i_data_sem together
5538 * with i_disksize to avoid races with writeback code
5539 * running ext4_wb_update_i_disksize().
5540 */
5541 if (!error)
5542 i_size_write(inode, attr->ia_size);
5543 else
5544 EXT4_I(inode)->i_disksize = old_disksize;
5545 up_write(&EXT4_I(inode)->i_data_sem);
5546 ext4_journal_stop(handle);
5547 if (error)
5548 goto out_mmap_sem;
5549 if (!shrink) {
5550 pagecache_isize_extended(inode, oldsize,
5551 inode->i_size);
5552 } else if (ext4_should_journal_data(inode)) {
5553 ext4_wait_for_tail_page_commit(inode);
5554 }
5555 }
5556
5557 /*
5558 * Truncate pagecache after we've waited for commit
5559 * in data=journal mode to make pages freeable.
5560 */
5561 truncate_pagecache(inode, inode->i_size);
5562 /*
5563 * Call ext4_truncate() even if i_size didn't change to
5564 * truncate possible preallocated blocks.
5565 */
5566 if (attr->ia_size <= oldsize) {
5567 rc = ext4_truncate(inode);
5568 if (rc)
5569 error = rc;
5570 }
5571 out_mmap_sem:
5572 filemap_invalidate_unlock(inode->i_mapping);
5573 }
5574
5575 if (!error) {
5576 setattr_copy(mnt_userns, inode, attr);
5577 mark_inode_dirty(inode);
5578 }
5579
5580 /*
5581 * If the call to ext4_truncate failed to get a transaction handle at
5582 * all, we need to clean up the in-core orphan list manually.
5583 */
5584 if (orphan && inode->i_nlink)
5585 ext4_orphan_del(NULL, inode);
5586
5587 if (!error && (ia_valid & ATTR_MODE))
5588 rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5589
5590 err_out:
5591 if (error)
5592 ext4_std_error(inode->i_sb, error);
5593 if (!error)
5594 error = rc;
5595 return error;
5596 }
5597
ext4_getattr(struct user_namespace * mnt_userns,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5598 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5599 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5600 {
5601 struct inode *inode = d_inode(path->dentry);
5602 struct ext4_inode *raw_inode;
5603 struct ext4_inode_info *ei = EXT4_I(inode);
5604 unsigned int flags;
5605
5606 if ((request_mask & STATX_BTIME) &&
5607 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5608 stat->result_mask |= STATX_BTIME;
5609 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5610 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5611 }
5612
5613 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5614 if (flags & EXT4_APPEND_FL)
5615 stat->attributes |= STATX_ATTR_APPEND;
5616 if (flags & EXT4_COMPR_FL)
5617 stat->attributes |= STATX_ATTR_COMPRESSED;
5618 if (flags & EXT4_ENCRYPT_FL)
5619 stat->attributes |= STATX_ATTR_ENCRYPTED;
5620 if (flags & EXT4_IMMUTABLE_FL)
5621 stat->attributes |= STATX_ATTR_IMMUTABLE;
5622 if (flags & EXT4_NODUMP_FL)
5623 stat->attributes |= STATX_ATTR_NODUMP;
5624 if (flags & EXT4_VERITY_FL)
5625 stat->attributes |= STATX_ATTR_VERITY;
5626
5627 stat->attributes_mask |= (STATX_ATTR_APPEND |
5628 STATX_ATTR_COMPRESSED |
5629 STATX_ATTR_ENCRYPTED |
5630 STATX_ATTR_IMMUTABLE |
5631 STATX_ATTR_NODUMP |
5632 STATX_ATTR_VERITY);
5633
5634 generic_fillattr(mnt_userns, inode, stat);
5635 return 0;
5636 }
5637
ext4_file_getattr(struct user_namespace * mnt_userns,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5638 int ext4_file_getattr(struct user_namespace *mnt_userns,
5639 const struct path *path, struct kstat *stat,
5640 u32 request_mask, unsigned int query_flags)
5641 {
5642 struct inode *inode = d_inode(path->dentry);
5643 u64 delalloc_blocks;
5644
5645 ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5646
5647 /*
5648 * If there is inline data in the inode, the inode will normally not
5649 * have data blocks allocated (it may have an external xattr block).
5650 * Report at least one sector for such files, so tools like tar, rsync,
5651 * others don't incorrectly think the file is completely sparse.
5652 */
5653 if (unlikely(ext4_has_inline_data(inode)))
5654 stat->blocks += (stat->size + 511) >> 9;
5655
5656 /*
5657 * We can't update i_blocks if the block allocation is delayed
5658 * otherwise in the case of system crash before the real block
5659 * allocation is done, we will have i_blocks inconsistent with
5660 * on-disk file blocks.
5661 * We always keep i_blocks updated together with real
5662 * allocation. But to not confuse with user, stat
5663 * will return the blocks that include the delayed allocation
5664 * blocks for this file.
5665 */
5666 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5667 EXT4_I(inode)->i_reserved_data_blocks);
5668 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5669 return 0;
5670 }
5671
ext4_index_trans_blocks(struct inode * inode,int lblocks,int pextents)5672 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5673 int pextents)
5674 {
5675 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5676 return ext4_ind_trans_blocks(inode, lblocks);
5677 return ext4_ext_index_trans_blocks(inode, pextents);
5678 }
5679
5680 /*
5681 * Account for index blocks, block groups bitmaps and block group
5682 * descriptor blocks if modify datablocks and index blocks
5683 * worse case, the indexs blocks spread over different block groups
5684 *
5685 * If datablocks are discontiguous, they are possible to spread over
5686 * different block groups too. If they are contiguous, with flexbg,
5687 * they could still across block group boundary.
5688 *
5689 * Also account for superblock, inode, quota and xattr blocks
5690 */
ext4_meta_trans_blocks(struct inode * inode,int lblocks,int pextents)5691 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5692 int pextents)
5693 {
5694 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5695 int gdpblocks;
5696 int idxblocks;
5697 int ret = 0;
5698
5699 /*
5700 * How many index blocks need to touch to map @lblocks logical blocks
5701 * to @pextents physical extents?
5702 */
5703 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5704
5705 ret = idxblocks;
5706
5707 /*
5708 * Now let's see how many group bitmaps and group descriptors need
5709 * to account
5710 */
5711 groups = idxblocks + pextents;
5712 gdpblocks = groups;
5713 if (groups > ngroups)
5714 groups = ngroups;
5715 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5716 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5717
5718 /* bitmaps and block group descriptor blocks */
5719 ret += groups + gdpblocks;
5720
5721 /* Blocks for super block, inode, quota and xattr blocks */
5722 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5723
5724 return ret;
5725 }
5726
5727 /*
5728 * Calculate the total number of credits to reserve to fit
5729 * the modification of a single pages into a single transaction,
5730 * which may include multiple chunks of block allocations.
5731 *
5732 * This could be called via ext4_write_begin()
5733 *
5734 * We need to consider the worse case, when
5735 * one new block per extent.
5736 */
ext4_writepage_trans_blocks(struct inode * inode)5737 int ext4_writepage_trans_blocks(struct inode *inode)
5738 {
5739 int bpp = ext4_journal_blocks_per_page(inode);
5740 int ret;
5741
5742 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5743
5744 /* Account for data blocks for journalled mode */
5745 if (ext4_should_journal_data(inode))
5746 ret += bpp;
5747 return ret;
5748 }
5749
5750 /*
5751 * Calculate the journal credits for a chunk of data modification.
5752 *
5753 * This is called from DIO, fallocate or whoever calling
5754 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5755 *
5756 * journal buffers for data blocks are not included here, as DIO
5757 * and fallocate do no need to journal data buffers.
5758 */
ext4_chunk_trans_blocks(struct inode * inode,int nrblocks)5759 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5760 {
5761 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5762 }
5763
5764 /*
5765 * The caller must have previously called ext4_reserve_inode_write().
5766 * Give this, we know that the caller already has write access to iloc->bh.
5767 */
ext4_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5768 int ext4_mark_iloc_dirty(handle_t *handle,
5769 struct inode *inode, struct ext4_iloc *iloc)
5770 {
5771 int err = 0;
5772
5773 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5774 put_bh(iloc->bh);
5775 return -EIO;
5776 }
5777 ext4_fc_track_inode(handle, inode);
5778
5779 /*
5780 * ea_inodes are using i_version for storing reference count, don't
5781 * mess with it
5782 */
5783 if (IS_I_VERSION(inode) &&
5784 !(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
5785 inode_inc_iversion(inode);
5786
5787 /* the do_update_inode consumes one bh->b_count */
5788 get_bh(iloc->bh);
5789
5790 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5791 err = ext4_do_update_inode(handle, inode, iloc);
5792 put_bh(iloc->bh);
5793 return err;
5794 }
5795
5796 /*
5797 * On success, We end up with an outstanding reference count against
5798 * iloc->bh. This _must_ be cleaned up later.
5799 */
5800
5801 int
ext4_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5802 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5803 struct ext4_iloc *iloc)
5804 {
5805 int err;
5806
5807 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5808 return -EIO;
5809
5810 err = ext4_get_inode_loc(inode, iloc);
5811 if (!err) {
5812 BUFFER_TRACE(iloc->bh, "get_write_access");
5813 err = ext4_journal_get_write_access(handle, inode->i_sb,
5814 iloc->bh, EXT4_JTR_NONE);
5815 if (err) {
5816 brelse(iloc->bh);
5817 iloc->bh = NULL;
5818 }
5819 }
5820 ext4_std_error(inode->i_sb, err);
5821 return err;
5822 }
5823
__ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc,handle_t * handle,int * no_expand)5824 static int __ext4_expand_extra_isize(struct inode *inode,
5825 unsigned int new_extra_isize,
5826 struct ext4_iloc *iloc,
5827 handle_t *handle, int *no_expand)
5828 {
5829 struct ext4_inode *raw_inode;
5830 struct ext4_xattr_ibody_header *header;
5831 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5832 struct ext4_inode_info *ei = EXT4_I(inode);
5833 int error;
5834
5835 /* this was checked at iget time, but double check for good measure */
5836 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5837 (ei->i_extra_isize & 3)) {
5838 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5839 ei->i_extra_isize,
5840 EXT4_INODE_SIZE(inode->i_sb));
5841 return -EFSCORRUPTED;
5842 }
5843 if ((new_extra_isize < ei->i_extra_isize) ||
5844 (new_extra_isize < 4) ||
5845 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5846 return -EINVAL; /* Should never happen */
5847
5848 raw_inode = ext4_raw_inode(iloc);
5849
5850 header = IHDR(inode, raw_inode);
5851
5852 /* No extended attributes present */
5853 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5854 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5855 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5856 EXT4_I(inode)->i_extra_isize, 0,
5857 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5858 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5859 return 0;
5860 }
5861
5862 /*
5863 * We may need to allocate external xattr block so we need quotas
5864 * initialized. Here we can be called with various locks held so we
5865 * cannot affort to initialize quotas ourselves. So just bail.
5866 */
5867 if (dquot_initialize_needed(inode))
5868 return -EAGAIN;
5869
5870 /* try to expand with EAs present */
5871 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5872 raw_inode, handle);
5873 if (error) {
5874 /*
5875 * Inode size expansion failed; don't try again
5876 */
5877 *no_expand = 1;
5878 }
5879
5880 return error;
5881 }
5882
5883 /*
5884 * Expand an inode by new_extra_isize bytes.
5885 * Returns 0 on success or negative error number on failure.
5886 */
ext4_try_to_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc iloc,handle_t * handle)5887 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5888 unsigned int new_extra_isize,
5889 struct ext4_iloc iloc,
5890 handle_t *handle)
5891 {
5892 int no_expand;
5893 int error;
5894
5895 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5896 return -EOVERFLOW;
5897
5898 /*
5899 * In nojournal mode, we can immediately attempt to expand
5900 * the inode. When journaled, we first need to obtain extra
5901 * buffer credits since we may write into the EA block
5902 * with this same handle. If journal_extend fails, then it will
5903 * only result in a minor loss of functionality for that inode.
5904 * If this is felt to be critical, then e2fsck should be run to
5905 * force a large enough s_min_extra_isize.
5906 */
5907 if (ext4_journal_extend(handle,
5908 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5909 return -ENOSPC;
5910
5911 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5912 return -EBUSY;
5913
5914 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5915 handle, &no_expand);
5916 ext4_write_unlock_xattr(inode, &no_expand);
5917
5918 return error;
5919 }
5920
ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc)5921 int ext4_expand_extra_isize(struct inode *inode,
5922 unsigned int new_extra_isize,
5923 struct ext4_iloc *iloc)
5924 {
5925 handle_t *handle;
5926 int no_expand;
5927 int error, rc;
5928
5929 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5930 brelse(iloc->bh);
5931 return -EOVERFLOW;
5932 }
5933
5934 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5935 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5936 if (IS_ERR(handle)) {
5937 error = PTR_ERR(handle);
5938 brelse(iloc->bh);
5939 return error;
5940 }
5941
5942 ext4_write_lock_xattr(inode, &no_expand);
5943
5944 BUFFER_TRACE(iloc->bh, "get_write_access");
5945 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5946 EXT4_JTR_NONE);
5947 if (error) {
5948 brelse(iloc->bh);
5949 goto out_unlock;
5950 }
5951
5952 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5953 handle, &no_expand);
5954
5955 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5956 if (!error)
5957 error = rc;
5958
5959 out_unlock:
5960 ext4_write_unlock_xattr(inode, &no_expand);
5961 ext4_journal_stop(handle);
5962 return error;
5963 }
5964
5965 /*
5966 * What we do here is to mark the in-core inode as clean with respect to inode
5967 * dirtiness (it may still be data-dirty).
5968 * This means that the in-core inode may be reaped by prune_icache
5969 * without having to perform any I/O. This is a very good thing,
5970 * because *any* task may call prune_icache - even ones which
5971 * have a transaction open against a different journal.
5972 *
5973 * Is this cheating? Not really. Sure, we haven't written the
5974 * inode out, but prune_icache isn't a user-visible syncing function.
5975 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5976 * we start and wait on commits.
5977 */
__ext4_mark_inode_dirty(handle_t * handle,struct inode * inode,const char * func,unsigned int line)5978 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5979 const char *func, unsigned int line)
5980 {
5981 struct ext4_iloc iloc;
5982 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5983 int err;
5984
5985 might_sleep();
5986 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5987 err = ext4_reserve_inode_write(handle, inode, &iloc);
5988 if (err)
5989 goto out;
5990
5991 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5992 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5993 iloc, handle);
5994
5995 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5996 out:
5997 if (unlikely(err))
5998 ext4_error_inode_err(inode, func, line, 0, err,
5999 "mark_inode_dirty error");
6000 return err;
6001 }
6002
6003 /*
6004 * ext4_dirty_inode() is called from __mark_inode_dirty()
6005 *
6006 * We're really interested in the case where a file is being extended.
6007 * i_size has been changed by generic_commit_write() and we thus need
6008 * to include the updated inode in the current transaction.
6009 *
6010 * Also, dquot_alloc_block() will always dirty the inode when blocks
6011 * are allocated to the file.
6012 *
6013 * If the inode is marked synchronous, we don't honour that here - doing
6014 * so would cause a commit on atime updates, which we don't bother doing.
6015 * We handle synchronous inodes at the highest possible level.
6016 */
ext4_dirty_inode(struct inode * inode,int flags)6017 void ext4_dirty_inode(struct inode *inode, int flags)
6018 {
6019 handle_t *handle;
6020
6021 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6022 if (IS_ERR(handle))
6023 return;
6024 ext4_mark_inode_dirty(handle, inode);
6025 ext4_journal_stop(handle);
6026 }
6027
ext4_change_inode_journal_flag(struct inode * inode,int val)6028 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6029 {
6030 journal_t *journal;
6031 handle_t *handle;
6032 int err;
6033 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6034
6035 /*
6036 * We have to be very careful here: changing a data block's
6037 * journaling status dynamically is dangerous. If we write a
6038 * data block to the journal, change the status and then delete
6039 * that block, we risk forgetting to revoke the old log record
6040 * from the journal and so a subsequent replay can corrupt data.
6041 * So, first we make sure that the journal is empty and that
6042 * nobody is changing anything.
6043 */
6044
6045 journal = EXT4_JOURNAL(inode);
6046 if (!journal)
6047 return 0;
6048 if (is_journal_aborted(journal))
6049 return -EROFS;
6050
6051 /* Wait for all existing dio workers */
6052 inode_dio_wait(inode);
6053
6054 /*
6055 * Before flushing the journal and switching inode's aops, we have
6056 * to flush all dirty data the inode has. There can be outstanding
6057 * delayed allocations, there can be unwritten extents created by
6058 * fallocate or buffered writes in dioread_nolock mode covered by
6059 * dirty data which can be converted only after flushing the dirty
6060 * data (and journalled aops don't know how to handle these cases).
6061 */
6062 if (val) {
6063 filemap_invalidate_lock(inode->i_mapping);
6064 err = filemap_write_and_wait(inode->i_mapping);
6065 if (err < 0) {
6066 filemap_invalidate_unlock(inode->i_mapping);
6067 return err;
6068 }
6069 }
6070
6071 percpu_down_write(&sbi->s_writepages_rwsem);
6072 jbd2_journal_lock_updates(journal);
6073
6074 /*
6075 * OK, there are no updates running now, and all cached data is
6076 * synced to disk. We are now in a completely consistent state
6077 * which doesn't have anything in the journal, and we know that
6078 * no filesystem updates are running, so it is safe to modify
6079 * the inode's in-core data-journaling state flag now.
6080 */
6081
6082 if (val)
6083 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6084 else {
6085 err = jbd2_journal_flush(journal, 0);
6086 if (err < 0) {
6087 jbd2_journal_unlock_updates(journal);
6088 percpu_up_write(&sbi->s_writepages_rwsem);
6089 return err;
6090 }
6091 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6092 }
6093 ext4_set_aops(inode);
6094
6095 jbd2_journal_unlock_updates(journal);
6096 percpu_up_write(&sbi->s_writepages_rwsem);
6097
6098 if (val)
6099 filemap_invalidate_unlock(inode->i_mapping);
6100
6101 /* Finally we can mark the inode as dirty. */
6102
6103 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6104 if (IS_ERR(handle))
6105 return PTR_ERR(handle);
6106
6107 ext4_fc_mark_ineligible(inode->i_sb,
6108 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6109 err = ext4_mark_inode_dirty(handle, inode);
6110 ext4_handle_sync(handle);
6111 ext4_journal_stop(handle);
6112 ext4_std_error(inode->i_sb, err);
6113
6114 return err;
6115 }
6116
ext4_bh_unmapped(handle_t * handle,struct inode * inode,struct buffer_head * bh)6117 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6118 struct buffer_head *bh)
6119 {
6120 return !buffer_mapped(bh);
6121 }
6122
ext4_page_mkwrite(struct vm_fault * vmf)6123 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6124 {
6125 struct vm_area_struct *vma = vmf->vma;
6126 struct page *page = vmf->page;
6127 loff_t size;
6128 unsigned long len;
6129 int err;
6130 vm_fault_t ret;
6131 struct file *file = vma->vm_file;
6132 struct inode *inode = file_inode(file);
6133 struct address_space *mapping = inode->i_mapping;
6134 handle_t *handle;
6135 get_block_t *get_block;
6136 int retries = 0;
6137
6138 if (unlikely(IS_IMMUTABLE(inode)))
6139 return VM_FAULT_SIGBUS;
6140
6141 sb_start_pagefault(inode->i_sb);
6142 file_update_time(vma->vm_file);
6143
6144 filemap_invalidate_lock_shared(mapping);
6145
6146 err = ext4_convert_inline_data(inode);
6147 if (err)
6148 goto out_ret;
6149
6150 /*
6151 * On data journalling we skip straight to the transaction handle:
6152 * there's no delalloc; page truncated will be checked later; the
6153 * early return w/ all buffers mapped (calculates size/len) can't
6154 * be used; and there's no dioread_nolock, so only ext4_get_block.
6155 */
6156 if (ext4_should_journal_data(inode))
6157 goto retry_alloc;
6158
6159 /* Delalloc case is easy... */
6160 if (test_opt(inode->i_sb, DELALLOC) &&
6161 !ext4_nonda_switch(inode->i_sb)) {
6162 do {
6163 err = block_page_mkwrite(vma, vmf,
6164 ext4_da_get_block_prep);
6165 } while (err == -ENOSPC &&
6166 ext4_should_retry_alloc(inode->i_sb, &retries));
6167 goto out_ret;
6168 }
6169
6170 lock_page(page);
6171 size = i_size_read(inode);
6172 /* Page got truncated from under us? */
6173 if (page->mapping != mapping || page_offset(page) > size) {
6174 unlock_page(page);
6175 ret = VM_FAULT_NOPAGE;
6176 goto out;
6177 }
6178
6179 if (page->index == size >> PAGE_SHIFT)
6180 len = size & ~PAGE_MASK;
6181 else
6182 len = PAGE_SIZE;
6183 /*
6184 * Return if we have all the buffers mapped. This avoids the need to do
6185 * journal_start/journal_stop which can block and take a long time
6186 *
6187 * This cannot be done for data journalling, as we have to add the
6188 * inode to the transaction's list to writeprotect pages on commit.
6189 */
6190 if (page_has_buffers(page)) {
6191 if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
6192 0, len, NULL,
6193 ext4_bh_unmapped)) {
6194 /* Wait so that we don't change page under IO */
6195 wait_for_stable_page(page);
6196 ret = VM_FAULT_LOCKED;
6197 goto out;
6198 }
6199 }
6200 unlock_page(page);
6201 /* OK, we need to fill the hole... */
6202 if (ext4_should_dioread_nolock(inode))
6203 get_block = ext4_get_block_unwritten;
6204 else
6205 get_block = ext4_get_block;
6206 retry_alloc:
6207 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6208 ext4_writepage_trans_blocks(inode));
6209 if (IS_ERR(handle)) {
6210 ret = VM_FAULT_SIGBUS;
6211 goto out;
6212 }
6213 /*
6214 * Data journalling can't use block_page_mkwrite() because it
6215 * will set_buffer_dirty() before do_journal_get_write_access()
6216 * thus might hit warning messages for dirty metadata buffers.
6217 */
6218 if (!ext4_should_journal_data(inode)) {
6219 err = block_page_mkwrite(vma, vmf, get_block);
6220 } else {
6221 lock_page(page);
6222 size = i_size_read(inode);
6223 /* Page got truncated from under us? */
6224 if (page->mapping != mapping || page_offset(page) > size) {
6225 ret = VM_FAULT_NOPAGE;
6226 goto out_error;
6227 }
6228
6229 if (page->index == size >> PAGE_SHIFT)
6230 len = size & ~PAGE_MASK;
6231 else
6232 len = PAGE_SIZE;
6233
6234 err = __block_write_begin(page, 0, len, ext4_get_block);
6235 if (!err) {
6236 ret = VM_FAULT_SIGBUS;
6237 if (ext4_walk_page_buffers(handle, inode,
6238 page_buffers(page), 0, len, NULL,
6239 do_journal_get_write_access))
6240 goto out_error;
6241 if (ext4_walk_page_buffers(handle, inode,
6242 page_buffers(page), 0, len, NULL,
6243 write_end_fn))
6244 goto out_error;
6245 if (ext4_jbd2_inode_add_write(handle, inode,
6246 page_offset(page), len))
6247 goto out_error;
6248 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6249 } else {
6250 unlock_page(page);
6251 }
6252 }
6253 ext4_journal_stop(handle);
6254 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6255 goto retry_alloc;
6256 out_ret:
6257 ret = block_page_mkwrite_return(err);
6258 out:
6259 filemap_invalidate_unlock_shared(mapping);
6260 sb_end_pagefault(inode->i_sb);
6261 return ret;
6262 out_error:
6263 unlock_page(page);
6264 ext4_journal_stop(handle);
6265 goto out;
6266 }
6267