1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 */
19
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 #include <linux/unicode.h>
46 #include <linux/part_stat.h>
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
49
50 #include "ext4.h"
51 #include "ext4_extents.h" /* Needed for trace points definition */
52 #include "ext4_jbd2.h"
53 #include "xattr.h"
54 #include "acl.h"
55 #include "mballoc.h"
56 #include "fsmap.h"
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ext4.h>
60
61 static struct ext4_lazy_init *ext4_li_info;
62 static DEFINE_MUTEX(ext4_li_mtx);
63 static struct ratelimit_state ext4_mount_msg_ratelimit;
64
65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66 unsigned long journal_devnum);
67 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68 static void ext4_update_super(struct super_block *sb);
69 static int ext4_commit_super(struct super_block *sb);
70 static int ext4_mark_recovery_complete(struct super_block *sb,
71 struct ext4_super_block *es);
72 static int ext4_clear_journal_err(struct super_block *sb,
73 struct ext4_super_block *es);
74 static int ext4_sync_fs(struct super_block *sb, int wait);
75 static int ext4_remount(struct super_block *sb, int *flags, char *data);
76 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
77 static int ext4_unfreeze(struct super_block *sb);
78 static int ext4_freeze(struct super_block *sb);
79 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
80 const char *dev_name, void *data);
81 static inline int ext2_feature_set_ok(struct super_block *sb);
82 static inline int ext3_feature_set_ok(struct super_block *sb);
83 static void ext4_destroy_lazyinit_thread(void);
84 static void ext4_unregister_li_request(struct super_block *sb);
85 static void ext4_clear_request_list(void);
86 static struct inode *ext4_get_journal_inode(struct super_block *sb,
87 unsigned int journal_inum);
88
89 /*
90 * Lock ordering
91 *
92 * page fault path:
93 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
94 * -> page lock -> i_data_sem (rw)
95 *
96 * buffered write path:
97 * sb_start_write -> i_mutex -> mmap_lock
98 * sb_start_write -> i_mutex -> transaction start -> page lock ->
99 * i_data_sem (rw)
100 *
101 * truncate:
102 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
103 * page lock
104 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
105 * i_data_sem (rw)
106 *
107 * direct IO:
108 * sb_start_write -> i_mutex -> mmap_lock
109 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
110 *
111 * writepages:
112 * transaction start -> page lock(s) -> i_data_sem (rw)
113 */
114
115 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
116 static struct file_system_type ext2_fs_type = {
117 .owner = THIS_MODULE,
118 .name = "ext2",
119 .mount = ext4_mount,
120 .kill_sb = kill_block_super,
121 .fs_flags = FS_REQUIRES_DEV,
122 };
123 MODULE_ALIAS_FS("ext2");
124 MODULE_ALIAS("ext2");
125 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
126 #else
127 #define IS_EXT2_SB(sb) (0)
128 #endif
129
130
131 static struct file_system_type ext3_fs_type = {
132 .owner = THIS_MODULE,
133 .name = "ext3",
134 .mount = ext4_mount,
135 .kill_sb = kill_block_super,
136 .fs_flags = FS_REQUIRES_DEV,
137 };
138 MODULE_ALIAS_FS("ext3");
139 MODULE_ALIAS("ext3");
140 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
141
142
__ext4_read_bh(struct buffer_head * bh,int op_flags,bh_end_io_t * end_io)143 static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags,
144 bh_end_io_t *end_io)
145 {
146 /*
147 * buffer's verified bit is no longer valid after reading from
148 * disk again due to write out error, clear it to make sure we
149 * recheck the buffer contents.
150 */
151 clear_buffer_verified(bh);
152
153 bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
154 get_bh(bh);
155 submit_bh(REQ_OP_READ, op_flags, bh);
156 }
157
ext4_read_bh_nowait(struct buffer_head * bh,int op_flags,bh_end_io_t * end_io)158 void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags,
159 bh_end_io_t *end_io)
160 {
161 BUG_ON(!buffer_locked(bh));
162
163 if (ext4_buffer_uptodate(bh)) {
164 unlock_buffer(bh);
165 return;
166 }
167 __ext4_read_bh(bh, op_flags, end_io);
168 }
169
ext4_read_bh(struct buffer_head * bh,int op_flags,bh_end_io_t * end_io)170 int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io)
171 {
172 BUG_ON(!buffer_locked(bh));
173
174 if (ext4_buffer_uptodate(bh)) {
175 unlock_buffer(bh);
176 return 0;
177 }
178
179 __ext4_read_bh(bh, op_flags, end_io);
180
181 wait_on_buffer(bh);
182 if (buffer_uptodate(bh))
183 return 0;
184 return -EIO;
185 }
186
ext4_read_bh_lock(struct buffer_head * bh,int op_flags,bool wait)187 int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait)
188 {
189 lock_buffer(bh);
190 if (!wait) {
191 ext4_read_bh_nowait(bh, op_flags, NULL);
192 return 0;
193 }
194 return ext4_read_bh(bh, op_flags, NULL);
195 }
196
197 /*
198 * This works like __bread_gfp() except it uses ERR_PTR for error
199 * returns. Currently with sb_bread it's impossible to distinguish
200 * between ENOMEM and EIO situations (since both result in a NULL
201 * return.
202 */
__ext4_sb_bread_gfp(struct super_block * sb,sector_t block,int op_flags,gfp_t gfp)203 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
204 sector_t block, int op_flags,
205 gfp_t gfp)
206 {
207 struct buffer_head *bh;
208 int ret;
209
210 bh = sb_getblk_gfp(sb, block, gfp);
211 if (bh == NULL)
212 return ERR_PTR(-ENOMEM);
213 if (ext4_buffer_uptodate(bh))
214 return bh;
215
216 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
217 if (ret) {
218 put_bh(bh);
219 return ERR_PTR(ret);
220 }
221 return bh;
222 }
223
ext4_sb_bread(struct super_block * sb,sector_t block,int op_flags)224 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
225 int op_flags)
226 {
227 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
228 }
229
ext4_sb_bread_unmovable(struct super_block * sb,sector_t block)230 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
231 sector_t block)
232 {
233 return __ext4_sb_bread_gfp(sb, block, 0, 0);
234 }
235
ext4_sb_breadahead_unmovable(struct super_block * sb,sector_t block)236 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
237 {
238 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
239
240 if (likely(bh)) {
241 if (trylock_buffer(bh))
242 ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL);
243 brelse(bh);
244 }
245 }
246
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)247 static int ext4_verify_csum_type(struct super_block *sb,
248 struct ext4_super_block *es)
249 {
250 if (!ext4_has_feature_metadata_csum(sb))
251 return 1;
252
253 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
254 }
255
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)256 static __le32 ext4_superblock_csum(struct super_block *sb,
257 struct ext4_super_block *es)
258 {
259 struct ext4_sb_info *sbi = EXT4_SB(sb);
260 int offset = offsetof(struct ext4_super_block, s_checksum);
261 __u32 csum;
262
263 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
264
265 return cpu_to_le32(csum);
266 }
267
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)268 static int ext4_superblock_csum_verify(struct super_block *sb,
269 struct ext4_super_block *es)
270 {
271 if (!ext4_has_metadata_csum(sb))
272 return 1;
273
274 return es->s_checksum == ext4_superblock_csum(sb, es);
275 }
276
ext4_superblock_csum_set(struct super_block * sb)277 void ext4_superblock_csum_set(struct super_block *sb)
278 {
279 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
280
281 if (!ext4_has_metadata_csum(sb))
282 return;
283
284 es->s_checksum = ext4_superblock_csum(sb, es);
285 }
286
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)287 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
288 struct ext4_group_desc *bg)
289 {
290 return le32_to_cpu(bg->bg_block_bitmap_lo) |
291 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
292 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
293 }
294
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)295 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
296 struct ext4_group_desc *bg)
297 {
298 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
299 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
300 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
301 }
302
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)303 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
304 struct ext4_group_desc *bg)
305 {
306 return le32_to_cpu(bg->bg_inode_table_lo) |
307 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
308 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
309 }
310
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)311 __u32 ext4_free_group_clusters(struct super_block *sb,
312 struct ext4_group_desc *bg)
313 {
314 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
315 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
316 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
317 }
318
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)319 __u32 ext4_free_inodes_count(struct super_block *sb,
320 struct ext4_group_desc *bg)
321 {
322 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
323 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
324 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
325 }
326
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)327 __u32 ext4_used_dirs_count(struct super_block *sb,
328 struct ext4_group_desc *bg)
329 {
330 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
331 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
332 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
333 }
334
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)335 __u32 ext4_itable_unused_count(struct super_block *sb,
336 struct ext4_group_desc *bg)
337 {
338 return le16_to_cpu(bg->bg_itable_unused_lo) |
339 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
340 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
341 }
342
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)343 void ext4_block_bitmap_set(struct super_block *sb,
344 struct ext4_group_desc *bg, ext4_fsblk_t blk)
345 {
346 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
347 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
348 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
349 }
350
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)351 void ext4_inode_bitmap_set(struct super_block *sb,
352 struct ext4_group_desc *bg, ext4_fsblk_t blk)
353 {
354 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
355 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
356 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
357 }
358
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)359 void ext4_inode_table_set(struct super_block *sb,
360 struct ext4_group_desc *bg, ext4_fsblk_t blk)
361 {
362 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
363 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
364 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
365 }
366
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)367 void ext4_free_group_clusters_set(struct super_block *sb,
368 struct ext4_group_desc *bg, __u32 count)
369 {
370 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
371 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
372 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
373 }
374
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)375 void ext4_free_inodes_set(struct super_block *sb,
376 struct ext4_group_desc *bg, __u32 count)
377 {
378 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
379 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
380 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
381 }
382
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)383 void ext4_used_dirs_set(struct super_block *sb,
384 struct ext4_group_desc *bg, __u32 count)
385 {
386 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
387 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
388 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
389 }
390
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)391 void ext4_itable_unused_set(struct super_block *sb,
392 struct ext4_group_desc *bg, __u32 count)
393 {
394 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
395 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
396 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
397 }
398
__ext4_update_tstamp(__le32 * lo,__u8 * hi,time64_t now)399 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
400 {
401 now = clamp_val(now, 0, (1ull << 40) - 1);
402
403 *lo = cpu_to_le32(lower_32_bits(now));
404 *hi = upper_32_bits(now);
405 }
406
__ext4_get_tstamp(__le32 * lo,__u8 * hi)407 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
408 {
409 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
410 }
411 #define ext4_update_tstamp(es, tstamp) \
412 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
413 ktime_get_real_seconds())
414 #define ext4_get_tstamp(es, tstamp) \
415 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
416
417 /*
418 * The del_gendisk() function uninitializes the disk-specific data
419 * structures, including the bdi structure, without telling anyone
420 * else. Once this happens, any attempt to call mark_buffer_dirty()
421 * (for example, by ext4_commit_super), will cause a kernel OOPS.
422 * This is a kludge to prevent these oops until we can put in a proper
423 * hook in del_gendisk() to inform the VFS and file system layers.
424 */
block_device_ejected(struct super_block * sb)425 static int block_device_ejected(struct super_block *sb)
426 {
427 struct inode *bd_inode = sb->s_bdev->bd_inode;
428 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
429
430 return bdi->dev == NULL;
431 }
432
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)433 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
434 {
435 struct super_block *sb = journal->j_private;
436 struct ext4_sb_info *sbi = EXT4_SB(sb);
437 int error = is_journal_aborted(journal);
438 struct ext4_journal_cb_entry *jce;
439
440 BUG_ON(txn->t_state == T_FINISHED);
441
442 ext4_process_freed_data(sb, txn->t_tid);
443
444 spin_lock(&sbi->s_md_lock);
445 while (!list_empty(&txn->t_private_list)) {
446 jce = list_entry(txn->t_private_list.next,
447 struct ext4_journal_cb_entry, jce_list);
448 list_del_init(&jce->jce_list);
449 spin_unlock(&sbi->s_md_lock);
450 jce->jce_func(sb, jce, error);
451 spin_lock(&sbi->s_md_lock);
452 }
453 spin_unlock(&sbi->s_md_lock);
454 }
455
456 /*
457 * This writepage callback for write_cache_pages()
458 * takes care of a few cases after page cleaning.
459 *
460 * write_cache_pages() already checks for dirty pages
461 * and calls clear_page_dirty_for_io(), which we want,
462 * to write protect the pages.
463 *
464 * However, we may have to redirty a page (see below.)
465 */
ext4_journalled_writepage_callback(struct page * page,struct writeback_control * wbc,void * data)466 static int ext4_journalled_writepage_callback(struct page *page,
467 struct writeback_control *wbc,
468 void *data)
469 {
470 transaction_t *transaction = (transaction_t *) data;
471 struct buffer_head *bh, *head;
472 struct journal_head *jh;
473
474 bh = head = page_buffers(page);
475 do {
476 /*
477 * We have to redirty a page in these cases:
478 * 1) If buffer is dirty, it means the page was dirty because it
479 * contains a buffer that needs checkpointing. So the dirty bit
480 * needs to be preserved so that checkpointing writes the buffer
481 * properly.
482 * 2) If buffer is not part of the committing transaction
483 * (we may have just accidentally come across this buffer because
484 * inode range tracking is not exact) or if the currently running
485 * transaction already contains this buffer as well, dirty bit
486 * needs to be preserved so that the buffer gets writeprotected
487 * properly on running transaction's commit.
488 */
489 jh = bh2jh(bh);
490 if (buffer_dirty(bh) ||
491 (jh && (jh->b_transaction != transaction ||
492 jh->b_next_transaction))) {
493 redirty_page_for_writepage(wbc, page);
494 goto out;
495 }
496 } while ((bh = bh->b_this_page) != head);
497
498 out:
499 return AOP_WRITEPAGE_ACTIVATE;
500 }
501
ext4_journalled_submit_inode_data_buffers(struct jbd2_inode * jinode)502 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
503 {
504 struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
505 struct writeback_control wbc = {
506 .sync_mode = WB_SYNC_ALL,
507 .nr_to_write = LONG_MAX,
508 .range_start = jinode->i_dirty_start,
509 .range_end = jinode->i_dirty_end,
510 };
511
512 return write_cache_pages(mapping, &wbc,
513 ext4_journalled_writepage_callback,
514 jinode->i_transaction);
515 }
516
ext4_journal_submit_inode_data_buffers(struct jbd2_inode * jinode)517 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
518 {
519 int ret;
520
521 if (ext4_should_journal_data(jinode->i_vfs_inode))
522 ret = ext4_journalled_submit_inode_data_buffers(jinode);
523 else
524 ret = jbd2_journal_submit_inode_data_buffers(jinode);
525
526 return ret;
527 }
528
ext4_journal_finish_inode_data_buffers(struct jbd2_inode * jinode)529 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
530 {
531 int ret = 0;
532
533 if (!ext4_should_journal_data(jinode->i_vfs_inode))
534 ret = jbd2_journal_finish_inode_data_buffers(jinode);
535
536 return ret;
537 }
538
system_going_down(void)539 static bool system_going_down(void)
540 {
541 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
542 || system_state == SYSTEM_RESTART;
543 }
544
545 struct ext4_err_translation {
546 int code;
547 int errno;
548 };
549
550 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
551
552 static struct ext4_err_translation err_translation[] = {
553 EXT4_ERR_TRANSLATE(EIO),
554 EXT4_ERR_TRANSLATE(ENOMEM),
555 EXT4_ERR_TRANSLATE(EFSBADCRC),
556 EXT4_ERR_TRANSLATE(EFSCORRUPTED),
557 EXT4_ERR_TRANSLATE(ENOSPC),
558 EXT4_ERR_TRANSLATE(ENOKEY),
559 EXT4_ERR_TRANSLATE(EROFS),
560 EXT4_ERR_TRANSLATE(EFBIG),
561 EXT4_ERR_TRANSLATE(EEXIST),
562 EXT4_ERR_TRANSLATE(ERANGE),
563 EXT4_ERR_TRANSLATE(EOVERFLOW),
564 EXT4_ERR_TRANSLATE(EBUSY),
565 EXT4_ERR_TRANSLATE(ENOTDIR),
566 EXT4_ERR_TRANSLATE(ENOTEMPTY),
567 EXT4_ERR_TRANSLATE(ESHUTDOWN),
568 EXT4_ERR_TRANSLATE(EFAULT),
569 };
570
ext4_errno_to_code(int errno)571 static int ext4_errno_to_code(int errno)
572 {
573 int i;
574
575 for (i = 0; i < ARRAY_SIZE(err_translation); i++)
576 if (err_translation[i].errno == errno)
577 return err_translation[i].code;
578 return EXT4_ERR_UNKNOWN;
579 }
580
save_error_info(struct super_block * sb,int error,__u32 ino,__u64 block,const char * func,unsigned int line)581 static void save_error_info(struct super_block *sb, int error,
582 __u32 ino, __u64 block,
583 const char *func, unsigned int line)
584 {
585 struct ext4_sb_info *sbi = EXT4_SB(sb);
586
587 /* We default to EFSCORRUPTED error... */
588 if (error == 0)
589 error = EFSCORRUPTED;
590
591 spin_lock(&sbi->s_error_lock);
592 sbi->s_add_error_count++;
593 sbi->s_last_error_code = error;
594 sbi->s_last_error_line = line;
595 sbi->s_last_error_ino = ino;
596 sbi->s_last_error_block = block;
597 sbi->s_last_error_func = func;
598 sbi->s_last_error_time = ktime_get_real_seconds();
599 if (!sbi->s_first_error_time) {
600 sbi->s_first_error_code = error;
601 sbi->s_first_error_line = line;
602 sbi->s_first_error_ino = ino;
603 sbi->s_first_error_block = block;
604 sbi->s_first_error_func = func;
605 sbi->s_first_error_time = sbi->s_last_error_time;
606 }
607 spin_unlock(&sbi->s_error_lock);
608 }
609
610 /* Deal with the reporting of failure conditions on a filesystem such as
611 * inconsistencies detected or read IO failures.
612 *
613 * On ext2, we can store the error state of the filesystem in the
614 * superblock. That is not possible on ext4, because we may have other
615 * write ordering constraints on the superblock which prevent us from
616 * writing it out straight away; and given that the journal is about to
617 * be aborted, we can't rely on the current, or future, transactions to
618 * write out the superblock safely.
619 *
620 * We'll just use the jbd2_journal_abort() error code to record an error in
621 * the journal instead. On recovery, the journal will complain about
622 * that error until we've noted it down and cleared it.
623 *
624 * If force_ro is set, we unconditionally force the filesystem into an
625 * ABORT|READONLY state, unless the error response on the fs has been set to
626 * panic in which case we take the easy way out and panic immediately. This is
627 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
628 * at a critical moment in log management.
629 */
ext4_handle_error(struct super_block * sb,bool force_ro,int error,__u32 ino,__u64 block,const char * func,unsigned int line)630 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
631 __u32 ino, __u64 block,
632 const char *func, unsigned int line)
633 {
634 journal_t *journal = EXT4_SB(sb)->s_journal;
635 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
636
637 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
638 if (test_opt(sb, WARN_ON_ERROR))
639 WARN_ON_ONCE(1);
640
641 if (!continue_fs && !sb_rdonly(sb)) {
642 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
643 if (journal)
644 jbd2_journal_abort(journal, -EIO);
645 }
646
647 if (!bdev_read_only(sb->s_bdev)) {
648 save_error_info(sb, error, ino, block, func, line);
649 /*
650 * In case the fs should keep running, we need to writeout
651 * superblock through the journal. Due to lock ordering
652 * constraints, it may not be safe to do it right here so we
653 * defer superblock flushing to a workqueue.
654 */
655 if (continue_fs && journal)
656 schedule_work(&EXT4_SB(sb)->s_error_work);
657 else
658 ext4_commit_super(sb);
659 }
660
661 /*
662 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
663 * could panic during 'reboot -f' as the underlying device got already
664 * disabled.
665 */
666 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
667 panic("EXT4-fs (device %s): panic forced after error\n",
668 sb->s_id);
669 }
670
671 if (sb_rdonly(sb) || continue_fs)
672 return;
673
674 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
675 /*
676 * Make sure updated value of ->s_mount_flags will be visible before
677 * ->s_flags update
678 */
679 smp_wmb();
680 sb->s_flags |= SB_RDONLY;
681 }
682
flush_stashed_error_work(struct work_struct * work)683 static void flush_stashed_error_work(struct work_struct *work)
684 {
685 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
686 s_error_work);
687 journal_t *journal = sbi->s_journal;
688 handle_t *handle;
689
690 /*
691 * If the journal is still running, we have to write out superblock
692 * through the journal to avoid collisions of other journalled sb
693 * updates.
694 *
695 * We use directly jbd2 functions here to avoid recursing back into
696 * ext4 error handling code during handling of previous errors.
697 */
698 if (!sb_rdonly(sbi->s_sb) && journal) {
699 struct buffer_head *sbh = sbi->s_sbh;
700 handle = jbd2_journal_start(journal, 1);
701 if (IS_ERR(handle))
702 goto write_directly;
703 if (jbd2_journal_get_write_access(handle, sbh)) {
704 jbd2_journal_stop(handle);
705 goto write_directly;
706 }
707 ext4_update_super(sbi->s_sb);
708 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
709 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
710 "superblock detected");
711 clear_buffer_write_io_error(sbh);
712 set_buffer_uptodate(sbh);
713 }
714
715 if (jbd2_journal_dirty_metadata(handle, sbh)) {
716 jbd2_journal_stop(handle);
717 goto write_directly;
718 }
719 jbd2_journal_stop(handle);
720 ext4_notify_error_sysfs(sbi);
721 return;
722 }
723 write_directly:
724 /*
725 * Write through journal failed. Write sb directly to get error info
726 * out and hope for the best.
727 */
728 ext4_commit_super(sbi->s_sb);
729 ext4_notify_error_sysfs(sbi);
730 }
731
732 #define ext4_error_ratelimit(sb) \
733 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
734 "EXT4-fs error")
735
__ext4_error(struct super_block * sb,const char * function,unsigned int line,bool force_ro,int error,__u64 block,const char * fmt,...)736 void __ext4_error(struct super_block *sb, const char *function,
737 unsigned int line, bool force_ro, int error, __u64 block,
738 const char *fmt, ...)
739 {
740 struct va_format vaf;
741 va_list args;
742
743 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
744 return;
745
746 trace_ext4_error(sb, function, line);
747 if (ext4_error_ratelimit(sb)) {
748 va_start(args, fmt);
749 vaf.fmt = fmt;
750 vaf.va = &args;
751 printk(KERN_CRIT
752 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
753 sb->s_id, function, line, current->comm, &vaf);
754 va_end(args);
755 }
756 ext4_handle_error(sb, force_ro, error, 0, block, function, line);
757 }
758
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,int error,const char * fmt,...)759 void __ext4_error_inode(struct inode *inode, const char *function,
760 unsigned int line, ext4_fsblk_t block, int error,
761 const char *fmt, ...)
762 {
763 va_list args;
764 struct va_format vaf;
765
766 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
767 return;
768
769 trace_ext4_error(inode->i_sb, function, line);
770 if (ext4_error_ratelimit(inode->i_sb)) {
771 va_start(args, fmt);
772 vaf.fmt = fmt;
773 vaf.va = &args;
774 if (block)
775 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
776 "inode #%lu: block %llu: comm %s: %pV\n",
777 inode->i_sb->s_id, function, line, inode->i_ino,
778 block, current->comm, &vaf);
779 else
780 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
781 "inode #%lu: comm %s: %pV\n",
782 inode->i_sb->s_id, function, line, inode->i_ino,
783 current->comm, &vaf);
784 va_end(args);
785 }
786 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
787 function, line);
788 }
789
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)790 void __ext4_error_file(struct file *file, const char *function,
791 unsigned int line, ext4_fsblk_t block,
792 const char *fmt, ...)
793 {
794 va_list args;
795 struct va_format vaf;
796 struct inode *inode = file_inode(file);
797 char pathname[80], *path;
798
799 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
800 return;
801
802 trace_ext4_error(inode->i_sb, function, line);
803 if (ext4_error_ratelimit(inode->i_sb)) {
804 path = file_path(file, pathname, sizeof(pathname));
805 if (IS_ERR(path))
806 path = "(unknown)";
807 va_start(args, fmt);
808 vaf.fmt = fmt;
809 vaf.va = &args;
810 if (block)
811 printk(KERN_CRIT
812 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
813 "block %llu: comm %s: path %s: %pV\n",
814 inode->i_sb->s_id, function, line, inode->i_ino,
815 block, current->comm, path, &vaf);
816 else
817 printk(KERN_CRIT
818 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
819 "comm %s: path %s: %pV\n",
820 inode->i_sb->s_id, function, line, inode->i_ino,
821 current->comm, path, &vaf);
822 va_end(args);
823 }
824 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
825 function, line);
826 }
827
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])828 const char *ext4_decode_error(struct super_block *sb, int errno,
829 char nbuf[16])
830 {
831 char *errstr = NULL;
832
833 switch (errno) {
834 case -EFSCORRUPTED:
835 errstr = "Corrupt filesystem";
836 break;
837 case -EFSBADCRC:
838 errstr = "Filesystem failed CRC";
839 break;
840 case -EIO:
841 errstr = "IO failure";
842 break;
843 case -ENOMEM:
844 errstr = "Out of memory";
845 break;
846 case -EROFS:
847 if (!sb || (EXT4_SB(sb)->s_journal &&
848 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
849 errstr = "Journal has aborted";
850 else
851 errstr = "Readonly filesystem";
852 break;
853 default:
854 /* If the caller passed in an extra buffer for unknown
855 * errors, textualise them now. Else we just return
856 * NULL. */
857 if (nbuf) {
858 /* Check for truncated error codes... */
859 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
860 errstr = nbuf;
861 }
862 break;
863 }
864
865 return errstr;
866 }
867
868 /* __ext4_std_error decodes expected errors from journaling functions
869 * automatically and invokes the appropriate error response. */
870
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)871 void __ext4_std_error(struct super_block *sb, const char *function,
872 unsigned int line, int errno)
873 {
874 char nbuf[16];
875 const char *errstr;
876
877 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
878 return;
879
880 /* Special case: if the error is EROFS, and we're not already
881 * inside a transaction, then there's really no point in logging
882 * an error. */
883 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
884 return;
885
886 if (ext4_error_ratelimit(sb)) {
887 errstr = ext4_decode_error(sb, errno, nbuf);
888 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
889 sb->s_id, function, line, errstr);
890 }
891
892 ext4_handle_error(sb, false, -errno, 0, 0, function, line);
893 }
894
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)895 void __ext4_msg(struct super_block *sb,
896 const char *prefix, const char *fmt, ...)
897 {
898 struct va_format vaf;
899 va_list args;
900
901 atomic_inc(&EXT4_SB(sb)->s_msg_count);
902 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
903 return;
904
905 va_start(args, fmt);
906 vaf.fmt = fmt;
907 vaf.va = &args;
908 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
909 va_end(args);
910 }
911
ext4_warning_ratelimit(struct super_block * sb)912 static int ext4_warning_ratelimit(struct super_block *sb)
913 {
914 atomic_inc(&EXT4_SB(sb)->s_warning_count);
915 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
916 "EXT4-fs warning");
917 }
918
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)919 void __ext4_warning(struct super_block *sb, const char *function,
920 unsigned int line, const char *fmt, ...)
921 {
922 struct va_format vaf;
923 va_list args;
924
925 if (!ext4_warning_ratelimit(sb))
926 return;
927
928 va_start(args, fmt);
929 vaf.fmt = fmt;
930 vaf.va = &args;
931 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
932 sb->s_id, function, line, &vaf);
933 va_end(args);
934 }
935
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)936 void __ext4_warning_inode(const struct inode *inode, const char *function,
937 unsigned int line, const char *fmt, ...)
938 {
939 struct va_format vaf;
940 va_list args;
941
942 if (!ext4_warning_ratelimit(inode->i_sb))
943 return;
944
945 va_start(args, fmt);
946 vaf.fmt = fmt;
947 vaf.va = &args;
948 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
949 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
950 function, line, inode->i_ino, current->comm, &vaf);
951 va_end(args);
952 }
953
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)954 void __ext4_grp_locked_error(const char *function, unsigned int line,
955 struct super_block *sb, ext4_group_t grp,
956 unsigned long ino, ext4_fsblk_t block,
957 const char *fmt, ...)
958 __releases(bitlock)
959 __acquires(bitlock)
960 {
961 struct va_format vaf;
962 va_list args;
963
964 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
965 return;
966
967 trace_ext4_error(sb, function, line);
968 if (ext4_error_ratelimit(sb)) {
969 va_start(args, fmt);
970 vaf.fmt = fmt;
971 vaf.va = &args;
972 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
973 sb->s_id, function, line, grp);
974 if (ino)
975 printk(KERN_CONT "inode %lu: ", ino);
976 if (block)
977 printk(KERN_CONT "block %llu:",
978 (unsigned long long) block);
979 printk(KERN_CONT "%pV\n", &vaf);
980 va_end(args);
981 }
982
983 if (test_opt(sb, ERRORS_CONT)) {
984 if (test_opt(sb, WARN_ON_ERROR))
985 WARN_ON_ONCE(1);
986 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
987 if (!bdev_read_only(sb->s_bdev)) {
988 save_error_info(sb, EFSCORRUPTED, ino, block, function,
989 line);
990 schedule_work(&EXT4_SB(sb)->s_error_work);
991 }
992 return;
993 }
994 ext4_unlock_group(sb, grp);
995 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
996 /*
997 * We only get here in the ERRORS_RO case; relocking the group
998 * may be dangerous, but nothing bad will happen since the
999 * filesystem will have already been marked read/only and the
1000 * journal has been aborted. We return 1 as a hint to callers
1001 * who might what to use the return value from
1002 * ext4_grp_locked_error() to distinguish between the
1003 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1004 * aggressively from the ext4 function in question, with a
1005 * more appropriate error code.
1006 */
1007 ext4_lock_group(sb, grp);
1008 return;
1009 }
1010
ext4_mark_group_bitmap_corrupted(struct super_block * sb,ext4_group_t group,unsigned int flags)1011 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1012 ext4_group_t group,
1013 unsigned int flags)
1014 {
1015 struct ext4_sb_info *sbi = EXT4_SB(sb);
1016 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1017 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1018 int ret;
1019
1020 if (!grp || !gdp)
1021 return;
1022 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1023 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1024 &grp->bb_state);
1025 if (!ret)
1026 percpu_counter_sub(&sbi->s_freeclusters_counter,
1027 grp->bb_free);
1028 }
1029
1030 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1031 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1032 &grp->bb_state);
1033 if (!ret && gdp) {
1034 int count;
1035
1036 count = ext4_free_inodes_count(sb, gdp);
1037 percpu_counter_sub(&sbi->s_freeinodes_counter,
1038 count);
1039 }
1040 }
1041 }
1042
ext4_update_dynamic_rev(struct super_block * sb)1043 void ext4_update_dynamic_rev(struct super_block *sb)
1044 {
1045 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1046
1047 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1048 return;
1049
1050 ext4_warning(sb,
1051 "updating to rev %d because of new feature flag, "
1052 "running e2fsck is recommended",
1053 EXT4_DYNAMIC_REV);
1054
1055 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1056 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1057 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1058 /* leave es->s_feature_*compat flags alone */
1059 /* es->s_uuid will be set by e2fsck if empty */
1060
1061 /*
1062 * The rest of the superblock fields should be zero, and if not it
1063 * means they are likely already in use, so leave them alone. We
1064 * can leave it up to e2fsck to clean up any inconsistencies there.
1065 */
1066 }
1067
1068 /*
1069 * Open the external journal device
1070 */
ext4_blkdev_get(dev_t dev,struct super_block * sb)1071 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
1072 {
1073 struct block_device *bdev;
1074
1075 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
1076 if (IS_ERR(bdev))
1077 goto fail;
1078 return bdev;
1079
1080 fail:
1081 ext4_msg(sb, KERN_ERR,
1082 "failed to open journal device unknown-block(%u,%u) %ld",
1083 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
1084 return NULL;
1085 }
1086
1087 /*
1088 * Release the journal device
1089 */
ext4_blkdev_put(struct block_device * bdev)1090 static void ext4_blkdev_put(struct block_device *bdev)
1091 {
1092 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1093 }
1094
ext4_blkdev_remove(struct ext4_sb_info * sbi)1095 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
1096 {
1097 struct block_device *bdev;
1098 bdev = sbi->s_journal_bdev;
1099 if (bdev) {
1100 /*
1101 * Invalidate the journal device's buffers. We don't want them
1102 * floating about in memory - the physical journal device may
1103 * hotswapped, and it breaks the `ro-after' testing code.
1104 */
1105 invalidate_bdev(bdev);
1106 ext4_blkdev_put(bdev);
1107 sbi->s_journal_bdev = NULL;
1108 }
1109 }
1110
orphan_list_entry(struct list_head * l)1111 static inline struct inode *orphan_list_entry(struct list_head *l)
1112 {
1113 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1114 }
1115
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)1116 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1117 {
1118 struct list_head *l;
1119
1120 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1121 le32_to_cpu(sbi->s_es->s_last_orphan));
1122
1123 printk(KERN_ERR "sb_info orphan list:\n");
1124 list_for_each(l, &sbi->s_orphan) {
1125 struct inode *inode = orphan_list_entry(l);
1126 printk(KERN_ERR " "
1127 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1128 inode->i_sb->s_id, inode->i_ino, inode,
1129 inode->i_mode, inode->i_nlink,
1130 NEXT_ORPHAN(inode));
1131 }
1132 }
1133
1134 #ifdef CONFIG_QUOTA
1135 static int ext4_quota_off(struct super_block *sb, int type);
1136
ext4_quota_off_umount(struct super_block * sb)1137 static inline void ext4_quota_off_umount(struct super_block *sb)
1138 {
1139 int type;
1140
1141 /* Use our quota_off function to clear inode flags etc. */
1142 for (type = 0; type < EXT4_MAXQUOTAS; type++)
1143 ext4_quota_off(sb, type);
1144 }
1145
1146 /*
1147 * This is a helper function which is used in the mount/remount
1148 * codepaths (which holds s_umount) to fetch the quota file name.
1149 */
get_qf_name(struct super_block * sb,struct ext4_sb_info * sbi,int type)1150 static inline char *get_qf_name(struct super_block *sb,
1151 struct ext4_sb_info *sbi,
1152 int type)
1153 {
1154 return rcu_dereference_protected(sbi->s_qf_names[type],
1155 lockdep_is_held(&sb->s_umount));
1156 }
1157 #else
ext4_quota_off_umount(struct super_block * sb)1158 static inline void ext4_quota_off_umount(struct super_block *sb)
1159 {
1160 }
1161 #endif
1162
ext4_put_super(struct super_block * sb)1163 static void ext4_put_super(struct super_block *sb)
1164 {
1165 struct ext4_sb_info *sbi = EXT4_SB(sb);
1166 struct ext4_super_block *es = sbi->s_es;
1167 struct buffer_head **group_desc;
1168 struct flex_groups **flex_groups;
1169 int aborted = 0;
1170 int i, err;
1171
1172 /*
1173 * Unregister sysfs before destroying jbd2 journal.
1174 * Since we could still access attr_journal_task attribute via sysfs
1175 * path which could have sbi->s_journal->j_task as NULL
1176 * Unregister sysfs before flush sbi->s_error_work.
1177 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1178 * read metadata verify failed then will queue error work.
1179 * flush_stashed_error_work will call start_this_handle may trigger
1180 * BUG_ON.
1181 */
1182 ext4_unregister_sysfs(sb);
1183
1184 ext4_unregister_li_request(sb);
1185 ext4_quota_off_umount(sb);
1186
1187 flush_work(&sbi->s_error_work);
1188 destroy_workqueue(sbi->rsv_conversion_wq);
1189 ext4_release_orphan_info(sb);
1190
1191 if (sbi->s_journal) {
1192 aborted = is_journal_aborted(sbi->s_journal);
1193 err = jbd2_journal_destroy(sbi->s_journal);
1194 sbi->s_journal = NULL;
1195 if ((err < 0) && !aborted) {
1196 ext4_abort(sb, -err, "Couldn't clean up the journal");
1197 }
1198 }
1199
1200 ext4_es_unregister_shrinker(sbi);
1201 del_timer_sync(&sbi->s_err_report);
1202 ext4_release_system_zone(sb);
1203 ext4_mb_release(sb);
1204 ext4_ext_release(sb);
1205
1206 if (!sb_rdonly(sb) && !aborted) {
1207 ext4_clear_feature_journal_needs_recovery(sb);
1208 ext4_clear_feature_orphan_present(sb);
1209 es->s_state = cpu_to_le16(sbi->s_mount_state);
1210 }
1211 if (!sb_rdonly(sb))
1212 ext4_commit_super(sb);
1213
1214 rcu_read_lock();
1215 group_desc = rcu_dereference(sbi->s_group_desc);
1216 for (i = 0; i < sbi->s_gdb_count; i++)
1217 brelse(group_desc[i]);
1218 kvfree(group_desc);
1219 flex_groups = rcu_dereference(sbi->s_flex_groups);
1220 if (flex_groups) {
1221 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1222 kvfree(flex_groups[i]);
1223 kvfree(flex_groups);
1224 }
1225 rcu_read_unlock();
1226 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1227 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1228 percpu_counter_destroy(&sbi->s_dirs_counter);
1229 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1230 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1231 percpu_free_rwsem(&sbi->s_writepages_rwsem);
1232 #ifdef CONFIG_QUOTA
1233 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1234 kfree(get_qf_name(sb, sbi, i));
1235 #endif
1236
1237 /* Debugging code just in case the in-memory inode orphan list
1238 * isn't empty. The on-disk one can be non-empty if we've
1239 * detected an error and taken the fs readonly, but the
1240 * in-memory list had better be clean by this point. */
1241 if (!list_empty(&sbi->s_orphan))
1242 dump_orphan_list(sb, sbi);
1243 ASSERT(list_empty(&sbi->s_orphan));
1244
1245 sync_blockdev(sb->s_bdev);
1246 invalidate_bdev(sb->s_bdev);
1247 if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
1248 sync_blockdev(sbi->s_journal_bdev);
1249 ext4_blkdev_remove(sbi);
1250 }
1251
1252 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1253 sbi->s_ea_inode_cache = NULL;
1254
1255 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1256 sbi->s_ea_block_cache = NULL;
1257
1258 ext4_stop_mmpd(sbi);
1259
1260 brelse(sbi->s_sbh);
1261 sb->s_fs_info = NULL;
1262 /*
1263 * Now that we are completely done shutting down the
1264 * superblock, we need to actually destroy the kobject.
1265 */
1266 kobject_put(&sbi->s_kobj);
1267 wait_for_completion(&sbi->s_kobj_unregister);
1268 if (sbi->s_chksum_driver)
1269 crypto_free_shash(sbi->s_chksum_driver);
1270 kfree(sbi->s_blockgroup_lock);
1271 fs_put_dax(sbi->s_daxdev);
1272 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1273 #ifdef CONFIG_UNICODE
1274 utf8_unload(sb->s_encoding);
1275 #endif
1276 kfree(sbi);
1277 }
1278
1279 static struct kmem_cache *ext4_inode_cachep;
1280
1281 /*
1282 * Called inside transaction, so use GFP_NOFS
1283 */
ext4_alloc_inode(struct super_block * sb)1284 static struct inode *ext4_alloc_inode(struct super_block *sb)
1285 {
1286 struct ext4_inode_info *ei;
1287
1288 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1289 if (!ei)
1290 return NULL;
1291
1292 inode_set_iversion(&ei->vfs_inode, 1);
1293 ei->i_flags = 0;
1294 spin_lock_init(&ei->i_raw_lock);
1295 INIT_LIST_HEAD(&ei->i_prealloc_list);
1296 atomic_set(&ei->i_prealloc_active, 0);
1297 spin_lock_init(&ei->i_prealloc_lock);
1298 ext4_es_init_tree(&ei->i_es_tree);
1299 rwlock_init(&ei->i_es_lock);
1300 INIT_LIST_HEAD(&ei->i_es_list);
1301 ei->i_es_all_nr = 0;
1302 ei->i_es_shk_nr = 0;
1303 ei->i_es_shrink_lblk = 0;
1304 ei->i_reserved_data_blocks = 0;
1305 spin_lock_init(&(ei->i_block_reservation_lock));
1306 ext4_init_pending_tree(&ei->i_pending_tree);
1307 #ifdef CONFIG_QUOTA
1308 ei->i_reserved_quota = 0;
1309 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1310 #endif
1311 ei->jinode = NULL;
1312 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1313 spin_lock_init(&ei->i_completed_io_lock);
1314 ei->i_sync_tid = 0;
1315 ei->i_datasync_tid = 0;
1316 atomic_set(&ei->i_unwritten, 0);
1317 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1318 ext4_fc_init_inode(&ei->vfs_inode);
1319 mutex_init(&ei->i_fc_lock);
1320 return &ei->vfs_inode;
1321 }
1322
ext4_drop_inode(struct inode * inode)1323 static int ext4_drop_inode(struct inode *inode)
1324 {
1325 int drop = generic_drop_inode(inode);
1326
1327 if (!drop)
1328 drop = fscrypt_drop_inode(inode);
1329
1330 trace_ext4_drop_inode(inode, drop);
1331 return drop;
1332 }
1333
ext4_free_in_core_inode(struct inode * inode)1334 static void ext4_free_in_core_inode(struct inode *inode)
1335 {
1336 fscrypt_free_inode(inode);
1337 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1338 pr_warn("%s: inode %ld still in fc list",
1339 __func__, inode->i_ino);
1340 }
1341 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1342 }
1343
ext4_destroy_inode(struct inode * inode)1344 static void ext4_destroy_inode(struct inode *inode)
1345 {
1346 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1347 ext4_msg(inode->i_sb, KERN_ERR,
1348 "Inode %lu (%p): orphan list check failed!",
1349 inode->i_ino, EXT4_I(inode));
1350 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1351 EXT4_I(inode), sizeof(struct ext4_inode_info),
1352 true);
1353 dump_stack();
1354 }
1355
1356 if (EXT4_I(inode)->i_reserved_data_blocks)
1357 ext4_msg(inode->i_sb, KERN_ERR,
1358 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1359 inode->i_ino, EXT4_I(inode),
1360 EXT4_I(inode)->i_reserved_data_blocks);
1361 }
1362
init_once(void * foo)1363 static void init_once(void *foo)
1364 {
1365 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1366
1367 INIT_LIST_HEAD(&ei->i_orphan);
1368 init_rwsem(&ei->xattr_sem);
1369 init_rwsem(&ei->i_data_sem);
1370 inode_init_once(&ei->vfs_inode);
1371 ext4_fc_init_inode(&ei->vfs_inode);
1372 }
1373
init_inodecache(void)1374 static int __init init_inodecache(void)
1375 {
1376 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1377 sizeof(struct ext4_inode_info), 0,
1378 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1379 SLAB_ACCOUNT),
1380 offsetof(struct ext4_inode_info, i_data),
1381 sizeof_field(struct ext4_inode_info, i_data),
1382 init_once);
1383 if (ext4_inode_cachep == NULL)
1384 return -ENOMEM;
1385 return 0;
1386 }
1387
destroy_inodecache(void)1388 static void destroy_inodecache(void)
1389 {
1390 /*
1391 * Make sure all delayed rcu free inodes are flushed before we
1392 * destroy cache.
1393 */
1394 rcu_barrier();
1395 kmem_cache_destroy(ext4_inode_cachep);
1396 }
1397
ext4_clear_inode(struct inode * inode)1398 void ext4_clear_inode(struct inode *inode)
1399 {
1400 ext4_fc_del(inode);
1401 invalidate_inode_buffers(inode);
1402 clear_inode(inode);
1403 ext4_discard_preallocations(inode, 0);
1404 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1405 dquot_drop(inode);
1406 if (EXT4_I(inode)->jinode) {
1407 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1408 EXT4_I(inode)->jinode);
1409 jbd2_free_inode(EXT4_I(inode)->jinode);
1410 EXT4_I(inode)->jinode = NULL;
1411 }
1412 fscrypt_put_encryption_info(inode);
1413 fsverity_cleanup_inode(inode);
1414 }
1415
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1416 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1417 u64 ino, u32 generation)
1418 {
1419 struct inode *inode;
1420
1421 /*
1422 * Currently we don't know the generation for parent directory, so
1423 * a generation of 0 means "accept any"
1424 */
1425 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1426 if (IS_ERR(inode))
1427 return ERR_CAST(inode);
1428 if (generation && inode->i_generation != generation) {
1429 iput(inode);
1430 return ERR_PTR(-ESTALE);
1431 }
1432
1433 return inode;
1434 }
1435
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1436 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1437 int fh_len, int fh_type)
1438 {
1439 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1440 ext4_nfs_get_inode);
1441 }
1442
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1443 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1444 int fh_len, int fh_type)
1445 {
1446 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1447 ext4_nfs_get_inode);
1448 }
1449
ext4_nfs_commit_metadata(struct inode * inode)1450 static int ext4_nfs_commit_metadata(struct inode *inode)
1451 {
1452 struct writeback_control wbc = {
1453 .sync_mode = WB_SYNC_ALL
1454 };
1455
1456 trace_ext4_nfs_commit_metadata(inode);
1457 return ext4_write_inode(inode, &wbc);
1458 }
1459
1460 #ifdef CONFIG_FS_ENCRYPTION
ext4_get_context(struct inode * inode,void * ctx,size_t len)1461 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1462 {
1463 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1464 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1465 }
1466
ext4_set_context(struct inode * inode,const void * ctx,size_t len,void * fs_data)1467 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1468 void *fs_data)
1469 {
1470 handle_t *handle = fs_data;
1471 int res, res2, credits, retries = 0;
1472
1473 /*
1474 * Encrypting the root directory is not allowed because e2fsck expects
1475 * lost+found to exist and be unencrypted, and encrypting the root
1476 * directory would imply encrypting the lost+found directory as well as
1477 * the filename "lost+found" itself.
1478 */
1479 if (inode->i_ino == EXT4_ROOT_INO)
1480 return -EPERM;
1481
1482 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1483 return -EINVAL;
1484
1485 if (ext4_test_inode_flag(inode, EXT4_INODE_DAX))
1486 return -EOPNOTSUPP;
1487
1488 res = ext4_convert_inline_data(inode);
1489 if (res)
1490 return res;
1491
1492 /*
1493 * If a journal handle was specified, then the encryption context is
1494 * being set on a new inode via inheritance and is part of a larger
1495 * transaction to create the inode. Otherwise the encryption context is
1496 * being set on an existing inode in its own transaction. Only in the
1497 * latter case should the "retry on ENOSPC" logic be used.
1498 */
1499
1500 if (handle) {
1501 res = ext4_xattr_set_handle(handle, inode,
1502 EXT4_XATTR_INDEX_ENCRYPTION,
1503 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1504 ctx, len, 0);
1505 if (!res) {
1506 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1507 ext4_clear_inode_state(inode,
1508 EXT4_STATE_MAY_INLINE_DATA);
1509 /*
1510 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1511 * S_DAX may be disabled
1512 */
1513 ext4_set_inode_flags(inode, false);
1514 }
1515 return res;
1516 }
1517
1518 res = dquot_initialize(inode);
1519 if (res)
1520 return res;
1521 retry:
1522 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1523 &credits);
1524 if (res)
1525 return res;
1526
1527 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1528 if (IS_ERR(handle))
1529 return PTR_ERR(handle);
1530
1531 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1532 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1533 ctx, len, 0);
1534 if (!res) {
1535 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1536 /*
1537 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1538 * S_DAX may be disabled
1539 */
1540 ext4_set_inode_flags(inode, false);
1541 res = ext4_mark_inode_dirty(handle, inode);
1542 if (res)
1543 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1544 }
1545 res2 = ext4_journal_stop(handle);
1546
1547 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1548 goto retry;
1549 if (!res)
1550 res = res2;
1551 return res;
1552 }
1553
ext4_get_dummy_policy(struct super_block * sb)1554 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb)
1555 {
1556 return EXT4_SB(sb)->s_dummy_enc_policy.policy;
1557 }
1558
ext4_has_stable_inodes(struct super_block * sb)1559 static bool ext4_has_stable_inodes(struct super_block *sb)
1560 {
1561 return ext4_has_feature_stable_inodes(sb);
1562 }
1563
ext4_get_ino_and_lblk_bits(struct super_block * sb,int * ino_bits_ret,int * lblk_bits_ret)1564 static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1565 int *ino_bits_ret, int *lblk_bits_ret)
1566 {
1567 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1568 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1569 }
1570
1571 static const struct fscrypt_operations ext4_cryptops = {
1572 .key_prefix = "ext4:",
1573 .get_context = ext4_get_context,
1574 .set_context = ext4_set_context,
1575 .get_dummy_policy = ext4_get_dummy_policy,
1576 .empty_dir = ext4_empty_dir,
1577 .has_stable_inodes = ext4_has_stable_inodes,
1578 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits,
1579 };
1580 #endif
1581
1582 #ifdef CONFIG_QUOTA
1583 static const char * const quotatypes[] = INITQFNAMES;
1584 #define QTYPE2NAME(t) (quotatypes[t])
1585
1586 static int ext4_write_dquot(struct dquot *dquot);
1587 static int ext4_acquire_dquot(struct dquot *dquot);
1588 static int ext4_release_dquot(struct dquot *dquot);
1589 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1590 static int ext4_write_info(struct super_block *sb, int type);
1591 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1592 const struct path *path);
1593 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1594 size_t len, loff_t off);
1595 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1596 const char *data, size_t len, loff_t off);
1597 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1598 unsigned int flags);
1599
ext4_get_dquots(struct inode * inode)1600 static struct dquot **ext4_get_dquots(struct inode *inode)
1601 {
1602 return EXT4_I(inode)->i_dquot;
1603 }
1604
1605 static const struct dquot_operations ext4_quota_operations = {
1606 .get_reserved_space = ext4_get_reserved_space,
1607 .write_dquot = ext4_write_dquot,
1608 .acquire_dquot = ext4_acquire_dquot,
1609 .release_dquot = ext4_release_dquot,
1610 .mark_dirty = ext4_mark_dquot_dirty,
1611 .write_info = ext4_write_info,
1612 .alloc_dquot = dquot_alloc,
1613 .destroy_dquot = dquot_destroy,
1614 .get_projid = ext4_get_projid,
1615 .get_inode_usage = ext4_get_inode_usage,
1616 .get_next_id = dquot_get_next_id,
1617 };
1618
1619 static const struct quotactl_ops ext4_qctl_operations = {
1620 .quota_on = ext4_quota_on,
1621 .quota_off = ext4_quota_off,
1622 .quota_sync = dquot_quota_sync,
1623 .get_state = dquot_get_state,
1624 .set_info = dquot_set_dqinfo,
1625 .get_dqblk = dquot_get_dqblk,
1626 .set_dqblk = dquot_set_dqblk,
1627 .get_nextdqblk = dquot_get_next_dqblk,
1628 };
1629 #endif
1630
1631 static const struct super_operations ext4_sops = {
1632 .alloc_inode = ext4_alloc_inode,
1633 .free_inode = ext4_free_in_core_inode,
1634 .destroy_inode = ext4_destroy_inode,
1635 .write_inode = ext4_write_inode,
1636 .dirty_inode = ext4_dirty_inode,
1637 .drop_inode = ext4_drop_inode,
1638 .evict_inode = ext4_evict_inode,
1639 .put_super = ext4_put_super,
1640 .sync_fs = ext4_sync_fs,
1641 .freeze_fs = ext4_freeze,
1642 .unfreeze_fs = ext4_unfreeze,
1643 .statfs = ext4_statfs,
1644 .remount_fs = ext4_remount,
1645 .show_options = ext4_show_options,
1646 #ifdef CONFIG_QUOTA
1647 .quota_read = ext4_quota_read,
1648 .quota_write = ext4_quota_write,
1649 .get_dquots = ext4_get_dquots,
1650 #endif
1651 };
1652
1653 static const struct export_operations ext4_export_ops = {
1654 .fh_to_dentry = ext4_fh_to_dentry,
1655 .fh_to_parent = ext4_fh_to_parent,
1656 .get_parent = ext4_get_parent,
1657 .commit_metadata = ext4_nfs_commit_metadata,
1658 };
1659
1660 enum {
1661 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1662 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1663 Opt_nouid32, Opt_debug, Opt_removed,
1664 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1665 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1666 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1667 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1668 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1669 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1670 Opt_inlinecrypt,
1671 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1672 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1673 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1674 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version,
1675 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1676 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1677 Opt_nowarn_on_error, Opt_mblk_io_submit,
1678 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1679 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1680 Opt_inode_readahead_blks, Opt_journal_ioprio,
1681 Opt_dioread_nolock, Opt_dioread_lock,
1682 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1683 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1684 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1685 #ifdef CONFIG_EXT4_DEBUG
1686 Opt_fc_debug_max_replay, Opt_fc_debug_force
1687 #endif
1688 };
1689
1690 static const match_table_t tokens = {
1691 {Opt_bsd_df, "bsddf"},
1692 {Opt_minix_df, "minixdf"},
1693 {Opt_grpid, "grpid"},
1694 {Opt_grpid, "bsdgroups"},
1695 {Opt_nogrpid, "nogrpid"},
1696 {Opt_nogrpid, "sysvgroups"},
1697 {Opt_resgid, "resgid=%u"},
1698 {Opt_resuid, "resuid=%u"},
1699 {Opt_sb, "sb=%u"},
1700 {Opt_err_cont, "errors=continue"},
1701 {Opt_err_panic, "errors=panic"},
1702 {Opt_err_ro, "errors=remount-ro"},
1703 {Opt_nouid32, "nouid32"},
1704 {Opt_debug, "debug"},
1705 {Opt_removed, "oldalloc"},
1706 {Opt_removed, "orlov"},
1707 {Opt_user_xattr, "user_xattr"},
1708 {Opt_nouser_xattr, "nouser_xattr"},
1709 {Opt_acl, "acl"},
1710 {Opt_noacl, "noacl"},
1711 {Opt_noload, "norecovery"},
1712 {Opt_noload, "noload"},
1713 {Opt_removed, "nobh"},
1714 {Opt_removed, "bh"},
1715 {Opt_commit, "commit=%u"},
1716 {Opt_min_batch_time, "min_batch_time=%u"},
1717 {Opt_max_batch_time, "max_batch_time=%u"},
1718 {Opt_journal_dev, "journal_dev=%u"},
1719 {Opt_journal_path, "journal_path=%s"},
1720 {Opt_journal_checksum, "journal_checksum"},
1721 {Opt_nojournal_checksum, "nojournal_checksum"},
1722 {Opt_journal_async_commit, "journal_async_commit"},
1723 {Opt_abort, "abort"},
1724 {Opt_data_journal, "data=journal"},
1725 {Opt_data_ordered, "data=ordered"},
1726 {Opt_data_writeback, "data=writeback"},
1727 {Opt_data_err_abort, "data_err=abort"},
1728 {Opt_data_err_ignore, "data_err=ignore"},
1729 {Opt_offusrjquota, "usrjquota="},
1730 {Opt_usrjquota, "usrjquota=%s"},
1731 {Opt_offgrpjquota, "grpjquota="},
1732 {Opt_grpjquota, "grpjquota=%s"},
1733 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1734 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1735 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1736 {Opt_grpquota, "grpquota"},
1737 {Opt_noquota, "noquota"},
1738 {Opt_quota, "quota"},
1739 {Opt_usrquota, "usrquota"},
1740 {Opt_prjquota, "prjquota"},
1741 {Opt_barrier, "barrier=%u"},
1742 {Opt_barrier, "barrier"},
1743 {Opt_nobarrier, "nobarrier"},
1744 {Opt_i_version, "i_version"},
1745 {Opt_dax, "dax"},
1746 {Opt_dax_always, "dax=always"},
1747 {Opt_dax_inode, "dax=inode"},
1748 {Opt_dax_never, "dax=never"},
1749 {Opt_stripe, "stripe=%u"},
1750 {Opt_delalloc, "delalloc"},
1751 {Opt_warn_on_error, "warn_on_error"},
1752 {Opt_nowarn_on_error, "nowarn_on_error"},
1753 {Opt_lazytime, "lazytime"},
1754 {Opt_nolazytime, "nolazytime"},
1755 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1756 {Opt_nodelalloc, "nodelalloc"},
1757 {Opt_removed, "mblk_io_submit"},
1758 {Opt_removed, "nomblk_io_submit"},
1759 {Opt_block_validity, "block_validity"},
1760 {Opt_noblock_validity, "noblock_validity"},
1761 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1762 {Opt_journal_ioprio, "journal_ioprio=%u"},
1763 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1764 {Opt_auto_da_alloc, "auto_da_alloc"},
1765 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1766 {Opt_dioread_nolock, "dioread_nolock"},
1767 {Opt_dioread_lock, "nodioread_nolock"},
1768 {Opt_dioread_lock, "dioread_lock"},
1769 {Opt_discard, "discard"},
1770 {Opt_nodiscard, "nodiscard"},
1771 {Opt_init_itable, "init_itable=%u"},
1772 {Opt_init_itable, "init_itable"},
1773 {Opt_noinit_itable, "noinit_itable"},
1774 #ifdef CONFIG_EXT4_DEBUG
1775 {Opt_fc_debug_force, "fc_debug_force"},
1776 {Opt_fc_debug_max_replay, "fc_debug_max_replay=%u"},
1777 #endif
1778 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1779 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
1780 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1781 {Opt_inlinecrypt, "inlinecrypt"},
1782 {Opt_nombcache, "nombcache"},
1783 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1784 {Opt_removed, "prefetch_block_bitmaps"},
1785 {Opt_no_prefetch_block_bitmaps, "no_prefetch_block_bitmaps"},
1786 {Opt_mb_optimize_scan, "mb_optimize_scan=%d"},
1787 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1788 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1789 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1790 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1791 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1792 {Opt_err, NULL},
1793 };
1794
get_sb_block(void ** data)1795 static ext4_fsblk_t get_sb_block(void **data)
1796 {
1797 ext4_fsblk_t sb_block;
1798 char *options = (char *) *data;
1799
1800 if (!options || strncmp(options, "sb=", 3) != 0)
1801 return 1; /* Default location */
1802
1803 options += 3;
1804 /* TODO: use simple_strtoll with >32bit ext4 */
1805 sb_block = simple_strtoul(options, &options, 0);
1806 if (*options && *options != ',') {
1807 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1808 (char *) *data);
1809 return 1;
1810 }
1811 if (*options == ',')
1812 options++;
1813 *data = (void *) options;
1814
1815 return sb_block;
1816 }
1817
1818 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1819 #define DEFAULT_MB_OPTIMIZE_SCAN (-1)
1820
1821 static const char deprecated_msg[] =
1822 "Mount option \"%s\" will be removed by %s\n"
1823 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1824
1825 #ifdef CONFIG_QUOTA
set_qf_name(struct super_block * sb,int qtype,substring_t * args)1826 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1827 {
1828 struct ext4_sb_info *sbi = EXT4_SB(sb);
1829 char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1830 int ret = -1;
1831
1832 if (sb_any_quota_loaded(sb) && !old_qname) {
1833 ext4_msg(sb, KERN_ERR,
1834 "Cannot change journaled "
1835 "quota options when quota turned on");
1836 return -1;
1837 }
1838 if (ext4_has_feature_quota(sb)) {
1839 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1840 "ignored when QUOTA feature is enabled");
1841 return 1;
1842 }
1843 qname = match_strdup(args);
1844 if (!qname) {
1845 ext4_msg(sb, KERN_ERR,
1846 "Not enough memory for storing quotafile name");
1847 return -1;
1848 }
1849 if (old_qname) {
1850 if (strcmp(old_qname, qname) == 0)
1851 ret = 1;
1852 else
1853 ext4_msg(sb, KERN_ERR,
1854 "%s quota file already specified",
1855 QTYPE2NAME(qtype));
1856 goto errout;
1857 }
1858 if (strchr(qname, '/')) {
1859 ext4_msg(sb, KERN_ERR,
1860 "quotafile must be on filesystem root");
1861 goto errout;
1862 }
1863 rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1864 set_opt(sb, QUOTA);
1865 return 1;
1866 errout:
1867 kfree(qname);
1868 return ret;
1869 }
1870
clear_qf_name(struct super_block * sb,int qtype)1871 static int clear_qf_name(struct super_block *sb, int qtype)
1872 {
1873
1874 struct ext4_sb_info *sbi = EXT4_SB(sb);
1875 char *old_qname = get_qf_name(sb, sbi, qtype);
1876
1877 if (sb_any_quota_loaded(sb) && old_qname) {
1878 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1879 " when quota turned on");
1880 return -1;
1881 }
1882 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1883 synchronize_rcu();
1884 kfree(old_qname);
1885 return 1;
1886 }
1887 #endif
1888
1889 #define MOPT_SET 0x0001
1890 #define MOPT_CLEAR 0x0002
1891 #define MOPT_NOSUPPORT 0x0004
1892 #define MOPT_EXPLICIT 0x0008
1893 #define MOPT_CLEAR_ERR 0x0010
1894 #define MOPT_GTE0 0x0020
1895 #ifdef CONFIG_QUOTA
1896 #define MOPT_Q 0
1897 #define MOPT_QFMT 0x0040
1898 #else
1899 #define MOPT_Q MOPT_NOSUPPORT
1900 #define MOPT_QFMT MOPT_NOSUPPORT
1901 #endif
1902 #define MOPT_DATAJ 0x0080
1903 #define MOPT_NO_EXT2 0x0100
1904 #define MOPT_NO_EXT3 0x0200
1905 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1906 #define MOPT_STRING 0x0400
1907 #define MOPT_SKIP 0x0800
1908 #define MOPT_2 0x1000
1909
1910 static const struct mount_opts {
1911 int token;
1912 int mount_opt;
1913 int flags;
1914 } ext4_mount_opts[] = {
1915 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1916 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1917 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1918 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1919 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1920 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1921 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1922 MOPT_EXT4_ONLY | MOPT_SET},
1923 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1924 MOPT_EXT4_ONLY | MOPT_CLEAR},
1925 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1926 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1927 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1928 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1929 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1930 MOPT_EXT4_ONLY | MOPT_CLEAR},
1931 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1932 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1933 {Opt_commit, 0, MOPT_NO_EXT2},
1934 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1935 MOPT_EXT4_ONLY | MOPT_CLEAR},
1936 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1937 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1938 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1939 EXT4_MOUNT_JOURNAL_CHECKSUM),
1940 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1941 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1942 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1943 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1944 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1945 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1946 MOPT_NO_EXT2},
1947 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1948 MOPT_NO_EXT2},
1949 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1950 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1951 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1952 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1953 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1954 {Opt_commit, 0, MOPT_GTE0},
1955 {Opt_max_batch_time, 0, MOPT_GTE0},
1956 {Opt_min_batch_time, 0, MOPT_GTE0},
1957 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1958 {Opt_init_itable, 0, MOPT_GTE0},
1959 {Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP},
1960 {Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS,
1961 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1962 {Opt_dax_inode, EXT4_MOUNT2_DAX_INODE,
1963 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1964 {Opt_dax_never, EXT4_MOUNT2_DAX_NEVER,
1965 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1966 {Opt_stripe, 0, MOPT_GTE0},
1967 {Opt_resuid, 0, MOPT_GTE0},
1968 {Opt_resgid, 0, MOPT_GTE0},
1969 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1970 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1971 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1972 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1973 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1974 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1975 MOPT_NO_EXT2 | MOPT_DATAJ},
1976 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1977 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1978 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1979 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1980 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1981 #else
1982 {Opt_acl, 0, MOPT_NOSUPPORT},
1983 {Opt_noacl, 0, MOPT_NOSUPPORT},
1984 #endif
1985 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1986 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1987 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1988 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1989 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1990 MOPT_SET | MOPT_Q},
1991 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1992 MOPT_SET | MOPT_Q},
1993 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1994 MOPT_SET | MOPT_Q},
1995 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1996 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1997 MOPT_CLEAR | MOPT_Q},
1998 {Opt_usrjquota, 0, MOPT_Q | MOPT_STRING},
1999 {Opt_grpjquota, 0, MOPT_Q | MOPT_STRING},
2000 {Opt_offusrjquota, 0, MOPT_Q},
2001 {Opt_offgrpjquota, 0, MOPT_Q},
2002 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
2003 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
2004 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
2005 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
2006 {Opt_test_dummy_encryption, 0, MOPT_STRING},
2007 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
2008 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
2009 MOPT_SET},
2010 {Opt_mb_optimize_scan, EXT4_MOUNT2_MB_OPTIMIZE_SCAN, MOPT_GTE0},
2011 #ifdef CONFIG_EXT4_DEBUG
2012 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
2013 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
2014 {Opt_fc_debug_max_replay, 0, MOPT_GTE0},
2015 #endif
2016 {Opt_err, 0, 0}
2017 };
2018
2019 #ifdef CONFIG_UNICODE
2020 static const struct ext4_sb_encodings {
2021 __u16 magic;
2022 char *name;
2023 char *version;
2024 } ext4_sb_encoding_map[] = {
2025 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
2026 };
2027
ext4_sb_read_encoding(const struct ext4_super_block * es,const struct ext4_sb_encodings ** encoding,__u16 * flags)2028 static int ext4_sb_read_encoding(const struct ext4_super_block *es,
2029 const struct ext4_sb_encodings **encoding,
2030 __u16 *flags)
2031 {
2032 __u16 magic = le16_to_cpu(es->s_encoding);
2033 int i;
2034
2035 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
2036 if (magic == ext4_sb_encoding_map[i].magic)
2037 break;
2038
2039 if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
2040 return -EINVAL;
2041
2042 *encoding = &ext4_sb_encoding_map[i];
2043 *flags = le16_to_cpu(es->s_encoding_flags);
2044
2045 return 0;
2046 }
2047 #endif
2048
ext4_set_test_dummy_encryption(struct super_block * sb,const char * opt,const substring_t * arg,bool is_remount)2049 static int ext4_set_test_dummy_encryption(struct super_block *sb,
2050 const char *opt,
2051 const substring_t *arg,
2052 bool is_remount)
2053 {
2054 #ifdef CONFIG_FS_ENCRYPTION
2055 struct ext4_sb_info *sbi = EXT4_SB(sb);
2056 int err;
2057
2058 if (!ext4_has_feature_encrypt(sb)) {
2059 ext4_msg(sb, KERN_WARNING,
2060 "test_dummy_encryption requires encrypt feature");
2061 return -1;
2062 }
2063
2064 /*
2065 * This mount option is just for testing, and it's not worthwhile to
2066 * implement the extra complexity (e.g. RCU protection) that would be
2067 * needed to allow it to be set or changed during remount. We do allow
2068 * it to be specified during remount, but only if there is no change.
2069 */
2070 if (is_remount && !sbi->s_dummy_enc_policy.policy) {
2071 ext4_msg(sb, KERN_WARNING,
2072 "Can't set test_dummy_encryption on remount");
2073 return -1;
2074 }
2075 err = fscrypt_set_test_dummy_encryption(sb, arg->from,
2076 &sbi->s_dummy_enc_policy);
2077 if (err) {
2078 if (err == -EEXIST)
2079 ext4_msg(sb, KERN_WARNING,
2080 "Can't change test_dummy_encryption on remount");
2081 else if (err == -EINVAL)
2082 ext4_msg(sb, KERN_WARNING,
2083 "Value of option \"%s\" is unrecognized", opt);
2084 else
2085 ext4_msg(sb, KERN_WARNING,
2086 "Error processing option \"%s\" [%d]",
2087 opt, err);
2088 return -1;
2089 }
2090 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2091 return 1;
2092 #else
2093 ext4_msg(sb, KERN_WARNING,
2094 "test_dummy_encryption option not supported");
2095 return -1;
2096
2097 #endif
2098 }
2099
2100 struct ext4_parsed_options {
2101 unsigned long journal_devnum;
2102 unsigned int journal_ioprio;
2103 int mb_optimize_scan;
2104 };
2105
handle_mount_opt(struct super_block * sb,char * opt,int token,substring_t * args,struct ext4_parsed_options * parsed_opts,int is_remount)2106 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
2107 substring_t *args, struct ext4_parsed_options *parsed_opts,
2108 int is_remount)
2109 {
2110 struct ext4_sb_info *sbi = EXT4_SB(sb);
2111 const struct mount_opts *m;
2112 kuid_t uid;
2113 kgid_t gid;
2114 int arg = 0;
2115
2116 #ifdef CONFIG_QUOTA
2117 if (token == Opt_usrjquota)
2118 return set_qf_name(sb, USRQUOTA, &args[0]);
2119 else if (token == Opt_grpjquota)
2120 return set_qf_name(sb, GRPQUOTA, &args[0]);
2121 else if (token == Opt_offusrjquota)
2122 return clear_qf_name(sb, USRQUOTA);
2123 else if (token == Opt_offgrpjquota)
2124 return clear_qf_name(sb, GRPQUOTA);
2125 #endif
2126 switch (token) {
2127 case Opt_noacl:
2128 case Opt_nouser_xattr:
2129 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
2130 break;
2131 case Opt_sb:
2132 return 1; /* handled by get_sb_block() */
2133 case Opt_removed:
2134 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
2135 return 1;
2136 case Opt_abort:
2137 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
2138 return 1;
2139 case Opt_i_version:
2140 sb->s_flags |= SB_I_VERSION;
2141 return 1;
2142 case Opt_lazytime:
2143 sb->s_flags |= SB_LAZYTIME;
2144 return 1;
2145 case Opt_nolazytime:
2146 sb->s_flags &= ~SB_LAZYTIME;
2147 return 1;
2148 case Opt_inlinecrypt:
2149 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2150 sb->s_flags |= SB_INLINECRYPT;
2151 #else
2152 ext4_msg(sb, KERN_ERR, "inline encryption not supported");
2153 #endif
2154 return 1;
2155 }
2156
2157 for (m = ext4_mount_opts; m->token != Opt_err; m++)
2158 if (token == m->token)
2159 break;
2160
2161 if (m->token == Opt_err) {
2162 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
2163 "or missing value", opt);
2164 return -1;
2165 }
2166
2167 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2168 ext4_msg(sb, KERN_ERR,
2169 "Mount option \"%s\" incompatible with ext2", opt);
2170 return -1;
2171 }
2172 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2173 ext4_msg(sb, KERN_ERR,
2174 "Mount option \"%s\" incompatible with ext3", opt);
2175 return -1;
2176 }
2177
2178 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
2179 return -1;
2180 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
2181 return -1;
2182 if (m->flags & MOPT_EXPLICIT) {
2183 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2184 set_opt2(sb, EXPLICIT_DELALLOC);
2185 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2186 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
2187 } else
2188 return -1;
2189 }
2190 if (m->flags & MOPT_CLEAR_ERR)
2191 clear_opt(sb, ERRORS_MASK);
2192 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
2193 ext4_msg(sb, KERN_ERR, "Cannot change quota "
2194 "options when quota turned on");
2195 return -1;
2196 }
2197
2198 if (m->flags & MOPT_NOSUPPORT) {
2199 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
2200 } else if (token == Opt_commit) {
2201 if (arg == 0)
2202 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
2203 else if (arg > INT_MAX / HZ) {
2204 ext4_msg(sb, KERN_ERR,
2205 "Invalid commit interval %d, "
2206 "must be smaller than %d",
2207 arg, INT_MAX / HZ);
2208 return -1;
2209 }
2210 sbi->s_commit_interval = HZ * arg;
2211 } else if (token == Opt_debug_want_extra_isize) {
2212 if ((arg & 1) ||
2213 (arg < 4) ||
2214 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
2215 ext4_msg(sb, KERN_ERR,
2216 "Invalid want_extra_isize %d", arg);
2217 return -1;
2218 }
2219 sbi->s_want_extra_isize = arg;
2220 } else if (token == Opt_max_batch_time) {
2221 sbi->s_max_batch_time = arg;
2222 } else if (token == Opt_min_batch_time) {
2223 sbi->s_min_batch_time = arg;
2224 } else if (token == Opt_inode_readahead_blks) {
2225 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
2226 ext4_msg(sb, KERN_ERR,
2227 "EXT4-fs: inode_readahead_blks must be "
2228 "0 or a power of 2 smaller than 2^31");
2229 return -1;
2230 }
2231 sbi->s_inode_readahead_blks = arg;
2232 } else if (token == Opt_init_itable) {
2233 set_opt(sb, INIT_INODE_TABLE);
2234 if (!args->from)
2235 arg = EXT4_DEF_LI_WAIT_MULT;
2236 sbi->s_li_wait_mult = arg;
2237 } else if (token == Opt_max_dir_size_kb) {
2238 sbi->s_max_dir_size_kb = arg;
2239 #ifdef CONFIG_EXT4_DEBUG
2240 } else if (token == Opt_fc_debug_max_replay) {
2241 sbi->s_fc_debug_max_replay = arg;
2242 #endif
2243 } else if (token == Opt_stripe) {
2244 sbi->s_stripe = arg;
2245 } else if (token == Opt_resuid) {
2246 uid = make_kuid(current_user_ns(), arg);
2247 if (!uid_valid(uid)) {
2248 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
2249 return -1;
2250 }
2251 sbi->s_resuid = uid;
2252 } else if (token == Opt_resgid) {
2253 gid = make_kgid(current_user_ns(), arg);
2254 if (!gid_valid(gid)) {
2255 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
2256 return -1;
2257 }
2258 sbi->s_resgid = gid;
2259 } else if (token == Opt_journal_dev) {
2260 if (is_remount) {
2261 ext4_msg(sb, KERN_ERR,
2262 "Cannot specify journal on remount");
2263 return -1;
2264 }
2265 parsed_opts->journal_devnum = arg;
2266 } else if (token == Opt_journal_path) {
2267 char *journal_path;
2268 struct inode *journal_inode;
2269 struct path path;
2270 int error;
2271
2272 if (is_remount) {
2273 ext4_msg(sb, KERN_ERR,
2274 "Cannot specify journal on remount");
2275 return -1;
2276 }
2277 journal_path = match_strdup(&args[0]);
2278 if (!journal_path) {
2279 ext4_msg(sb, KERN_ERR, "error: could not dup "
2280 "journal device string");
2281 return -1;
2282 }
2283
2284 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
2285 if (error) {
2286 ext4_msg(sb, KERN_ERR, "error: could not find "
2287 "journal device path: error %d", error);
2288 kfree(journal_path);
2289 return -1;
2290 }
2291
2292 journal_inode = d_inode(path.dentry);
2293 if (!S_ISBLK(journal_inode->i_mode)) {
2294 ext4_msg(sb, KERN_ERR, "error: journal path %s "
2295 "is not a block device", journal_path);
2296 path_put(&path);
2297 kfree(journal_path);
2298 return -1;
2299 }
2300
2301 parsed_opts->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2302 path_put(&path);
2303 kfree(journal_path);
2304 } else if (token == Opt_journal_ioprio) {
2305 if (arg > 7) {
2306 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
2307 " (must be 0-7)");
2308 return -1;
2309 }
2310 parsed_opts->journal_ioprio =
2311 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
2312 } else if (token == Opt_test_dummy_encryption) {
2313 return ext4_set_test_dummy_encryption(sb, opt, &args[0],
2314 is_remount);
2315 } else if (m->flags & MOPT_DATAJ) {
2316 if (is_remount) {
2317 if (!sbi->s_journal)
2318 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
2319 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
2320 ext4_msg(sb, KERN_ERR,
2321 "Cannot change data mode on remount");
2322 return -1;
2323 }
2324 } else {
2325 clear_opt(sb, DATA_FLAGS);
2326 sbi->s_mount_opt |= m->mount_opt;
2327 }
2328 #ifdef CONFIG_QUOTA
2329 } else if (m->flags & MOPT_QFMT) {
2330 if (sb_any_quota_loaded(sb) &&
2331 sbi->s_jquota_fmt != m->mount_opt) {
2332 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2333 "quota options when quota turned on");
2334 return -1;
2335 }
2336 if (ext4_has_feature_quota(sb)) {
2337 ext4_msg(sb, KERN_INFO,
2338 "Quota format mount options ignored "
2339 "when QUOTA feature is enabled");
2340 return 1;
2341 }
2342 sbi->s_jquota_fmt = m->mount_opt;
2343 #endif
2344 } else if (token == Opt_dax || token == Opt_dax_always ||
2345 token == Opt_dax_inode || token == Opt_dax_never) {
2346 #ifdef CONFIG_FS_DAX
2347 switch (token) {
2348 case Opt_dax:
2349 case Opt_dax_always:
2350 if (is_remount &&
2351 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2352 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2353 fail_dax_change_remount:
2354 ext4_msg(sb, KERN_ERR, "can't change "
2355 "dax mount option while remounting");
2356 return -1;
2357 }
2358 if (is_remount &&
2359 (test_opt(sb, DATA_FLAGS) ==
2360 EXT4_MOUNT_JOURNAL_DATA)) {
2361 ext4_msg(sb, KERN_ERR, "can't mount with "
2362 "both data=journal and dax");
2363 return -1;
2364 }
2365 ext4_msg(sb, KERN_WARNING,
2366 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2367 sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS;
2368 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2369 break;
2370 case Opt_dax_never:
2371 if (is_remount &&
2372 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2373 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS)))
2374 goto fail_dax_change_remount;
2375 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2376 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2377 break;
2378 case Opt_dax_inode:
2379 if (is_remount &&
2380 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2381 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2382 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE)))
2383 goto fail_dax_change_remount;
2384 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2385 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2386 /* Strictly for printing options */
2387 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE;
2388 break;
2389 }
2390 #else
2391 ext4_msg(sb, KERN_INFO, "dax option not supported");
2392 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2393 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2394 return -1;
2395 #endif
2396 } else if (token == Opt_data_err_abort) {
2397 sbi->s_mount_opt |= m->mount_opt;
2398 } else if (token == Opt_data_err_ignore) {
2399 sbi->s_mount_opt &= ~m->mount_opt;
2400 } else if (token == Opt_mb_optimize_scan) {
2401 if (arg != 0 && arg != 1) {
2402 ext4_msg(sb, KERN_WARNING,
2403 "mb_optimize_scan should be set to 0 or 1.");
2404 return -1;
2405 }
2406 parsed_opts->mb_optimize_scan = arg;
2407 } else {
2408 if (!args->from)
2409 arg = 1;
2410 if (m->flags & MOPT_CLEAR)
2411 arg = !arg;
2412 else if (unlikely(!(m->flags & MOPT_SET))) {
2413 ext4_msg(sb, KERN_WARNING,
2414 "buggy handling of option %s", opt);
2415 WARN_ON(1);
2416 return -1;
2417 }
2418 if (m->flags & MOPT_2) {
2419 if (arg != 0)
2420 sbi->s_mount_opt2 |= m->mount_opt;
2421 else
2422 sbi->s_mount_opt2 &= ~m->mount_opt;
2423 } else {
2424 if (arg != 0)
2425 sbi->s_mount_opt |= m->mount_opt;
2426 else
2427 sbi->s_mount_opt &= ~m->mount_opt;
2428 }
2429 }
2430 return 1;
2431 }
2432
parse_options(char * options,struct super_block * sb,struct ext4_parsed_options * ret_opts,int is_remount)2433 static int parse_options(char *options, struct super_block *sb,
2434 struct ext4_parsed_options *ret_opts,
2435 int is_remount)
2436 {
2437 struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb);
2438 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2439 substring_t args[MAX_OPT_ARGS];
2440 int token;
2441
2442 if (!options)
2443 return 1;
2444
2445 while ((p = strsep(&options, ",")) != NULL) {
2446 if (!*p)
2447 continue;
2448 /*
2449 * Initialize args struct so we know whether arg was
2450 * found; some options take optional arguments.
2451 */
2452 args[0].to = args[0].from = NULL;
2453 token = match_token(p, tokens, args);
2454 if (handle_mount_opt(sb, p, token, args, ret_opts,
2455 is_remount) < 0)
2456 return 0;
2457 }
2458 #ifdef CONFIG_QUOTA
2459 /*
2460 * We do the test below only for project quotas. 'usrquota' and
2461 * 'grpquota' mount options are allowed even without quota feature
2462 * to support legacy quotas in quota files.
2463 */
2464 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2465 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2466 "Cannot enable project quota enforcement.");
2467 return 0;
2468 }
2469 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2470 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2471 if (usr_qf_name || grp_qf_name) {
2472 if (test_opt(sb, USRQUOTA) && usr_qf_name)
2473 clear_opt(sb, USRQUOTA);
2474
2475 if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2476 clear_opt(sb, GRPQUOTA);
2477
2478 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2479 ext4_msg(sb, KERN_ERR, "old and new quota "
2480 "format mixing");
2481 return 0;
2482 }
2483
2484 if (!sbi->s_jquota_fmt) {
2485 ext4_msg(sb, KERN_ERR, "journaled quota format "
2486 "not specified");
2487 return 0;
2488 }
2489 }
2490 #endif
2491 if (test_opt(sb, DIOREAD_NOLOCK)) {
2492 int blocksize =
2493 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2494 if (blocksize < PAGE_SIZE)
2495 ext4_msg(sb, KERN_WARNING, "Warning: mounting with an "
2496 "experimental mount option 'dioread_nolock' "
2497 "for blocksize < PAGE_SIZE");
2498 }
2499 return 1;
2500 }
2501
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)2502 static inline void ext4_show_quota_options(struct seq_file *seq,
2503 struct super_block *sb)
2504 {
2505 #if defined(CONFIG_QUOTA)
2506 struct ext4_sb_info *sbi = EXT4_SB(sb);
2507 char *usr_qf_name, *grp_qf_name;
2508
2509 if (sbi->s_jquota_fmt) {
2510 char *fmtname = "";
2511
2512 switch (sbi->s_jquota_fmt) {
2513 case QFMT_VFS_OLD:
2514 fmtname = "vfsold";
2515 break;
2516 case QFMT_VFS_V0:
2517 fmtname = "vfsv0";
2518 break;
2519 case QFMT_VFS_V1:
2520 fmtname = "vfsv1";
2521 break;
2522 }
2523 seq_printf(seq, ",jqfmt=%s", fmtname);
2524 }
2525
2526 rcu_read_lock();
2527 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2528 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2529 if (usr_qf_name)
2530 seq_show_option(seq, "usrjquota", usr_qf_name);
2531 if (grp_qf_name)
2532 seq_show_option(seq, "grpjquota", grp_qf_name);
2533 rcu_read_unlock();
2534 #endif
2535 }
2536
token2str(int token)2537 static const char *token2str(int token)
2538 {
2539 const struct match_token *t;
2540
2541 for (t = tokens; t->token != Opt_err; t++)
2542 if (t->token == token && !strchr(t->pattern, '='))
2543 break;
2544 return t->pattern;
2545 }
2546
2547 /*
2548 * Show an option if
2549 * - it's set to a non-default value OR
2550 * - if the per-sb default is different from the global default
2551 */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)2552 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2553 int nodefs)
2554 {
2555 struct ext4_sb_info *sbi = EXT4_SB(sb);
2556 struct ext4_super_block *es = sbi->s_es;
2557 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2558 const struct mount_opts *m;
2559 char sep = nodefs ? '\n' : ',';
2560
2561 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2562 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2563
2564 if (sbi->s_sb_block != 1)
2565 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2566
2567 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2568 int want_set = m->flags & MOPT_SET;
2569 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2570 (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP)
2571 continue;
2572 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2573 continue; /* skip if same as the default */
2574 if ((want_set &&
2575 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2576 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2577 continue; /* select Opt_noFoo vs Opt_Foo */
2578 SEQ_OPTS_PRINT("%s", token2str(m->token));
2579 }
2580
2581 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2582 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2583 SEQ_OPTS_PRINT("resuid=%u",
2584 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2585 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2586 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2587 SEQ_OPTS_PRINT("resgid=%u",
2588 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2589 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2590 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2591 SEQ_OPTS_PUTS("errors=remount-ro");
2592 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2593 SEQ_OPTS_PUTS("errors=continue");
2594 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2595 SEQ_OPTS_PUTS("errors=panic");
2596 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2597 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2598 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2599 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2600 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2601 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2602 if (sb->s_flags & SB_I_VERSION)
2603 SEQ_OPTS_PUTS("i_version");
2604 if (nodefs || sbi->s_stripe)
2605 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2606 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2607 (sbi->s_mount_opt ^ def_mount_opt)) {
2608 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2609 SEQ_OPTS_PUTS("data=journal");
2610 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2611 SEQ_OPTS_PUTS("data=ordered");
2612 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2613 SEQ_OPTS_PUTS("data=writeback");
2614 }
2615 if (nodefs ||
2616 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2617 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2618 sbi->s_inode_readahead_blks);
2619
2620 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2621 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2622 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2623 if (nodefs || sbi->s_max_dir_size_kb)
2624 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2625 if (test_opt(sb, DATA_ERR_ABORT))
2626 SEQ_OPTS_PUTS("data_err=abort");
2627
2628 fscrypt_show_test_dummy_encryption(seq, sep, sb);
2629
2630 if (sb->s_flags & SB_INLINECRYPT)
2631 SEQ_OPTS_PUTS("inlinecrypt");
2632
2633 if (test_opt(sb, DAX_ALWAYS)) {
2634 if (IS_EXT2_SB(sb))
2635 SEQ_OPTS_PUTS("dax");
2636 else
2637 SEQ_OPTS_PUTS("dax=always");
2638 } else if (test_opt2(sb, DAX_NEVER)) {
2639 SEQ_OPTS_PUTS("dax=never");
2640 } else if (test_opt2(sb, DAX_INODE)) {
2641 SEQ_OPTS_PUTS("dax=inode");
2642 }
2643 ext4_show_quota_options(seq, sb);
2644 return 0;
2645 }
2646
ext4_show_options(struct seq_file * seq,struct dentry * root)2647 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2648 {
2649 return _ext4_show_options(seq, root->d_sb, 0);
2650 }
2651
ext4_seq_options_show(struct seq_file * seq,void * offset)2652 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2653 {
2654 struct super_block *sb = seq->private;
2655 int rc;
2656
2657 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2658 rc = _ext4_show_options(seq, sb, 1);
2659 seq_puts(seq, "\n");
2660 return rc;
2661 }
2662
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)2663 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2664 int read_only)
2665 {
2666 struct ext4_sb_info *sbi = EXT4_SB(sb);
2667 int err = 0;
2668
2669 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2670 ext4_msg(sb, KERN_ERR, "revision level too high, "
2671 "forcing read-only mode");
2672 err = -EROFS;
2673 goto done;
2674 }
2675 if (read_only)
2676 goto done;
2677 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2678 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2679 "running e2fsck is recommended");
2680 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2681 ext4_msg(sb, KERN_WARNING,
2682 "warning: mounting fs with errors, "
2683 "running e2fsck is recommended");
2684 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2685 le16_to_cpu(es->s_mnt_count) >=
2686 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2687 ext4_msg(sb, KERN_WARNING,
2688 "warning: maximal mount count reached, "
2689 "running e2fsck is recommended");
2690 else if (le32_to_cpu(es->s_checkinterval) &&
2691 (ext4_get_tstamp(es, s_lastcheck) +
2692 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2693 ext4_msg(sb, KERN_WARNING,
2694 "warning: checktime reached, "
2695 "running e2fsck is recommended");
2696 if (!sbi->s_journal)
2697 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2698 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2699 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2700 le16_add_cpu(&es->s_mnt_count, 1);
2701 ext4_update_tstamp(es, s_mtime);
2702 if (sbi->s_journal) {
2703 ext4_set_feature_journal_needs_recovery(sb);
2704 if (ext4_has_feature_orphan_file(sb))
2705 ext4_set_feature_orphan_present(sb);
2706 }
2707
2708 err = ext4_commit_super(sb);
2709 done:
2710 if (test_opt(sb, DEBUG))
2711 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2712 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2713 sb->s_blocksize,
2714 sbi->s_groups_count,
2715 EXT4_BLOCKS_PER_GROUP(sb),
2716 EXT4_INODES_PER_GROUP(sb),
2717 sbi->s_mount_opt, sbi->s_mount_opt2);
2718
2719 cleancache_init_fs(sb);
2720 return err;
2721 }
2722
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)2723 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2724 {
2725 struct ext4_sb_info *sbi = EXT4_SB(sb);
2726 struct flex_groups **old_groups, **new_groups;
2727 int size, i, j;
2728
2729 if (!sbi->s_log_groups_per_flex)
2730 return 0;
2731
2732 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2733 if (size <= sbi->s_flex_groups_allocated)
2734 return 0;
2735
2736 new_groups = kvzalloc(roundup_pow_of_two(size *
2737 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
2738 if (!new_groups) {
2739 ext4_msg(sb, KERN_ERR,
2740 "not enough memory for %d flex group pointers", size);
2741 return -ENOMEM;
2742 }
2743 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2744 new_groups[i] = kvzalloc(roundup_pow_of_two(
2745 sizeof(struct flex_groups)),
2746 GFP_KERNEL);
2747 if (!new_groups[i]) {
2748 for (j = sbi->s_flex_groups_allocated; j < i; j++)
2749 kvfree(new_groups[j]);
2750 kvfree(new_groups);
2751 ext4_msg(sb, KERN_ERR,
2752 "not enough memory for %d flex groups", size);
2753 return -ENOMEM;
2754 }
2755 }
2756 rcu_read_lock();
2757 old_groups = rcu_dereference(sbi->s_flex_groups);
2758 if (old_groups)
2759 memcpy(new_groups, old_groups,
2760 (sbi->s_flex_groups_allocated *
2761 sizeof(struct flex_groups *)));
2762 rcu_read_unlock();
2763 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2764 sbi->s_flex_groups_allocated = size;
2765 if (old_groups)
2766 ext4_kvfree_array_rcu(old_groups);
2767 return 0;
2768 }
2769
ext4_fill_flex_info(struct super_block * sb)2770 static int ext4_fill_flex_info(struct super_block *sb)
2771 {
2772 struct ext4_sb_info *sbi = EXT4_SB(sb);
2773 struct ext4_group_desc *gdp = NULL;
2774 struct flex_groups *fg;
2775 ext4_group_t flex_group;
2776 int i, err;
2777
2778 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2779 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2780 sbi->s_log_groups_per_flex = 0;
2781 return 1;
2782 }
2783
2784 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2785 if (err)
2786 goto failed;
2787
2788 for (i = 0; i < sbi->s_groups_count; i++) {
2789 gdp = ext4_get_group_desc(sb, i, NULL);
2790
2791 flex_group = ext4_flex_group(sbi, i);
2792 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2793 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2794 atomic64_add(ext4_free_group_clusters(sb, gdp),
2795 &fg->free_clusters);
2796 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
2797 }
2798
2799 return 1;
2800 failed:
2801 return 0;
2802 }
2803
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2804 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2805 struct ext4_group_desc *gdp)
2806 {
2807 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2808 __u16 crc = 0;
2809 __le32 le_group = cpu_to_le32(block_group);
2810 struct ext4_sb_info *sbi = EXT4_SB(sb);
2811
2812 if (ext4_has_metadata_csum(sbi->s_sb)) {
2813 /* Use new metadata_csum algorithm */
2814 __u32 csum32;
2815 __u16 dummy_csum = 0;
2816
2817 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2818 sizeof(le_group));
2819 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2820 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2821 sizeof(dummy_csum));
2822 offset += sizeof(dummy_csum);
2823 if (offset < sbi->s_desc_size)
2824 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2825 sbi->s_desc_size - offset);
2826
2827 crc = csum32 & 0xFFFF;
2828 goto out;
2829 }
2830
2831 /* old crc16 code */
2832 if (!ext4_has_feature_gdt_csum(sb))
2833 return 0;
2834
2835 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2836 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2837 crc = crc16(crc, (__u8 *)gdp, offset);
2838 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2839 /* for checksum of struct ext4_group_desc do the rest...*/
2840 if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
2841 crc = crc16(crc, (__u8 *)gdp + offset,
2842 sbi->s_desc_size - offset);
2843
2844 out:
2845 return cpu_to_le16(crc);
2846 }
2847
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2848 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2849 struct ext4_group_desc *gdp)
2850 {
2851 if (ext4_has_group_desc_csum(sb) &&
2852 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2853 return 0;
2854
2855 return 1;
2856 }
2857
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2858 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2859 struct ext4_group_desc *gdp)
2860 {
2861 if (!ext4_has_group_desc_csum(sb))
2862 return;
2863 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2864 }
2865
2866 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)2867 static int ext4_check_descriptors(struct super_block *sb,
2868 ext4_fsblk_t sb_block,
2869 ext4_group_t *first_not_zeroed)
2870 {
2871 struct ext4_sb_info *sbi = EXT4_SB(sb);
2872 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2873 ext4_fsblk_t last_block;
2874 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2875 ext4_fsblk_t block_bitmap;
2876 ext4_fsblk_t inode_bitmap;
2877 ext4_fsblk_t inode_table;
2878 int flexbg_flag = 0;
2879 ext4_group_t i, grp = sbi->s_groups_count;
2880
2881 if (ext4_has_feature_flex_bg(sb))
2882 flexbg_flag = 1;
2883
2884 ext4_debug("Checking group descriptors");
2885
2886 for (i = 0; i < sbi->s_groups_count; i++) {
2887 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2888
2889 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2890 last_block = ext4_blocks_count(sbi->s_es) - 1;
2891 else
2892 last_block = first_block +
2893 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2894
2895 if ((grp == sbi->s_groups_count) &&
2896 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2897 grp = i;
2898
2899 block_bitmap = ext4_block_bitmap(sb, gdp);
2900 if (block_bitmap == sb_block) {
2901 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2902 "Block bitmap for group %u overlaps "
2903 "superblock", i);
2904 if (!sb_rdonly(sb))
2905 return 0;
2906 }
2907 if (block_bitmap >= sb_block + 1 &&
2908 block_bitmap <= last_bg_block) {
2909 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2910 "Block bitmap for group %u overlaps "
2911 "block group descriptors", i);
2912 if (!sb_rdonly(sb))
2913 return 0;
2914 }
2915 if (block_bitmap < first_block || block_bitmap > last_block) {
2916 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2917 "Block bitmap for group %u not in group "
2918 "(block %llu)!", i, block_bitmap);
2919 return 0;
2920 }
2921 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2922 if (inode_bitmap == sb_block) {
2923 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2924 "Inode bitmap for group %u overlaps "
2925 "superblock", i);
2926 if (!sb_rdonly(sb))
2927 return 0;
2928 }
2929 if (inode_bitmap >= sb_block + 1 &&
2930 inode_bitmap <= last_bg_block) {
2931 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2932 "Inode bitmap for group %u overlaps "
2933 "block group descriptors", i);
2934 if (!sb_rdonly(sb))
2935 return 0;
2936 }
2937 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2938 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2939 "Inode bitmap for group %u not in group "
2940 "(block %llu)!", i, inode_bitmap);
2941 return 0;
2942 }
2943 inode_table = ext4_inode_table(sb, gdp);
2944 if (inode_table == sb_block) {
2945 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2946 "Inode table for group %u overlaps "
2947 "superblock", i);
2948 if (!sb_rdonly(sb))
2949 return 0;
2950 }
2951 if (inode_table >= sb_block + 1 &&
2952 inode_table <= last_bg_block) {
2953 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2954 "Inode table for group %u overlaps "
2955 "block group descriptors", i);
2956 if (!sb_rdonly(sb))
2957 return 0;
2958 }
2959 if (inode_table < first_block ||
2960 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2961 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2962 "Inode table for group %u not in group "
2963 "(block %llu)!", i, inode_table);
2964 return 0;
2965 }
2966 ext4_lock_group(sb, i);
2967 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2968 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2969 "Checksum for group %u failed (%u!=%u)",
2970 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2971 gdp)), le16_to_cpu(gdp->bg_checksum));
2972 if (!sb_rdonly(sb)) {
2973 ext4_unlock_group(sb, i);
2974 return 0;
2975 }
2976 }
2977 ext4_unlock_group(sb, i);
2978 if (!flexbg_flag)
2979 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2980 }
2981 if (NULL != first_not_zeroed)
2982 *first_not_zeroed = grp;
2983 return 1;
2984 }
2985
2986 /*
2987 * Maximal extent format file size.
2988 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2989 * extent format containers, within a sector_t, and within i_blocks
2990 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2991 * so that won't be a limiting factor.
2992 *
2993 * However there is other limiting factor. We do store extents in the form
2994 * of starting block and length, hence the resulting length of the extent
2995 * covering maximum file size must fit into on-disk format containers as
2996 * well. Given that length is always by 1 unit bigger than max unit (because
2997 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2998 *
2999 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3000 */
ext4_max_size(int blkbits,int has_huge_files)3001 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3002 {
3003 loff_t res;
3004 loff_t upper_limit = MAX_LFS_FILESIZE;
3005
3006 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3007
3008 if (!has_huge_files) {
3009 upper_limit = (1LL << 32) - 1;
3010
3011 /* total blocks in file system block size */
3012 upper_limit >>= (blkbits - 9);
3013 upper_limit <<= blkbits;
3014 }
3015
3016 /*
3017 * 32-bit extent-start container, ee_block. We lower the maxbytes
3018 * by one fs block, so ee_len can cover the extent of maximum file
3019 * size
3020 */
3021 res = (1LL << 32) - 1;
3022 res <<= blkbits;
3023
3024 /* Sanity check against vm- & vfs- imposed limits */
3025 if (res > upper_limit)
3026 res = upper_limit;
3027
3028 return res;
3029 }
3030
3031 /*
3032 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
3033 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3034 * We need to be 1 filesystem block less than the 2^48 sector limit.
3035 */
ext4_max_bitmap_size(int bits,int has_huge_files)3036 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3037 {
3038 unsigned long long upper_limit, res = EXT4_NDIR_BLOCKS;
3039 int meta_blocks;
3040
3041 /*
3042 * This is calculated to be the largest file size for a dense, block
3043 * mapped file such that the file's total number of 512-byte sectors,
3044 * including data and all indirect blocks, does not exceed (2^48 - 1).
3045 *
3046 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3047 * number of 512-byte sectors of the file.
3048 */
3049 if (!has_huge_files) {
3050 /*
3051 * !has_huge_files or implies that the inode i_block field
3052 * represents total file blocks in 2^32 512-byte sectors ==
3053 * size of vfs inode i_blocks * 8
3054 */
3055 upper_limit = (1LL << 32) - 1;
3056
3057 /* total blocks in file system block size */
3058 upper_limit >>= (bits - 9);
3059
3060 } else {
3061 /*
3062 * We use 48 bit ext4_inode i_blocks
3063 * With EXT4_HUGE_FILE_FL set the i_blocks
3064 * represent total number of blocks in
3065 * file system block size
3066 */
3067 upper_limit = (1LL << 48) - 1;
3068
3069 }
3070
3071 /* indirect blocks */
3072 meta_blocks = 1;
3073 /* double indirect blocks */
3074 meta_blocks += 1 + (1LL << (bits-2));
3075 /* tripple indirect blocks */
3076 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
3077
3078 upper_limit -= meta_blocks;
3079 upper_limit <<= bits;
3080
3081 res += 1LL << (bits-2);
3082 res += 1LL << (2*(bits-2));
3083 res += 1LL << (3*(bits-2));
3084 res <<= bits;
3085 if (res > upper_limit)
3086 res = upper_limit;
3087
3088 if (res > MAX_LFS_FILESIZE)
3089 res = MAX_LFS_FILESIZE;
3090
3091 return (loff_t)res;
3092 }
3093
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)3094 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3095 ext4_fsblk_t logical_sb_block, int nr)
3096 {
3097 struct ext4_sb_info *sbi = EXT4_SB(sb);
3098 ext4_group_t bg, first_meta_bg;
3099 int has_super = 0;
3100
3101 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3102
3103 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3104 return logical_sb_block + nr + 1;
3105 bg = sbi->s_desc_per_block * nr;
3106 if (ext4_bg_has_super(sb, bg))
3107 has_super = 1;
3108
3109 /*
3110 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3111 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
3112 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3113 * compensate.
3114 */
3115 if (sb->s_blocksize == 1024 && nr == 0 &&
3116 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3117 has_super++;
3118
3119 return (has_super + ext4_group_first_block_no(sb, bg));
3120 }
3121
3122 /**
3123 * ext4_get_stripe_size: Get the stripe size.
3124 * @sbi: In memory super block info
3125 *
3126 * If we have specified it via mount option, then
3127 * use the mount option value. If the value specified at mount time is
3128 * greater than the blocks per group use the super block value.
3129 * If the super block value is greater than blocks per group return 0.
3130 * Allocator needs it be less than blocks per group.
3131 *
3132 */
ext4_get_stripe_size(struct ext4_sb_info * sbi)3133 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3134 {
3135 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3136 unsigned long stripe_width =
3137 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3138 int ret;
3139
3140 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3141 ret = sbi->s_stripe;
3142 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3143 ret = stripe_width;
3144 else if (stride && stride <= sbi->s_blocks_per_group)
3145 ret = stride;
3146 else
3147 ret = 0;
3148
3149 /*
3150 * If the stripe width is 1, this makes no sense and
3151 * we set it to 0 to turn off stripe handling code.
3152 */
3153 if (ret <= 1)
3154 ret = 0;
3155
3156 return ret;
3157 }
3158
3159 /*
3160 * Check whether this filesystem can be mounted based on
3161 * the features present and the RDONLY/RDWR mount requested.
3162 * Returns 1 if this filesystem can be mounted as requested,
3163 * 0 if it cannot be.
3164 */
ext4_feature_set_ok(struct super_block * sb,int readonly)3165 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3166 {
3167 if (ext4_has_unknown_ext4_incompat_features(sb)) {
3168 ext4_msg(sb, KERN_ERR,
3169 "Couldn't mount because of "
3170 "unsupported optional features (%x)",
3171 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3172 ~EXT4_FEATURE_INCOMPAT_SUPP));
3173 return 0;
3174 }
3175
3176 #ifndef CONFIG_UNICODE
3177 if (ext4_has_feature_casefold(sb)) {
3178 ext4_msg(sb, KERN_ERR,
3179 "Filesystem with casefold feature cannot be "
3180 "mounted without CONFIG_UNICODE");
3181 return 0;
3182 }
3183 #endif
3184
3185 if (readonly)
3186 return 1;
3187
3188 if (ext4_has_feature_readonly(sb)) {
3189 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3190 sb->s_flags |= SB_RDONLY;
3191 return 1;
3192 }
3193
3194 /* Check that feature set is OK for a read-write mount */
3195 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3196 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3197 "unsupported optional features (%x)",
3198 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3199 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3200 return 0;
3201 }
3202 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3203 ext4_msg(sb, KERN_ERR,
3204 "Can't support bigalloc feature without "
3205 "extents feature\n");
3206 return 0;
3207 }
3208
3209 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3210 if (!readonly && (ext4_has_feature_quota(sb) ||
3211 ext4_has_feature_project(sb))) {
3212 ext4_msg(sb, KERN_ERR,
3213 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3214 return 0;
3215 }
3216 #endif /* CONFIG_QUOTA */
3217 return 1;
3218 }
3219
3220 /*
3221 * This function is called once a day if we have errors logged
3222 * on the file system
3223 */
print_daily_error_info(struct timer_list * t)3224 static void print_daily_error_info(struct timer_list *t)
3225 {
3226 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3227 struct super_block *sb = sbi->s_sb;
3228 struct ext4_super_block *es = sbi->s_es;
3229
3230 if (es->s_error_count)
3231 /* fsck newer than v1.41.13 is needed to clean this condition. */
3232 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3233 le32_to_cpu(es->s_error_count));
3234 if (es->s_first_error_time) {
3235 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3236 sb->s_id,
3237 ext4_get_tstamp(es, s_first_error_time),
3238 (int) sizeof(es->s_first_error_func),
3239 es->s_first_error_func,
3240 le32_to_cpu(es->s_first_error_line));
3241 if (es->s_first_error_ino)
3242 printk(KERN_CONT ": inode %u",
3243 le32_to_cpu(es->s_first_error_ino));
3244 if (es->s_first_error_block)
3245 printk(KERN_CONT ": block %llu", (unsigned long long)
3246 le64_to_cpu(es->s_first_error_block));
3247 printk(KERN_CONT "\n");
3248 }
3249 if (es->s_last_error_time) {
3250 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3251 sb->s_id,
3252 ext4_get_tstamp(es, s_last_error_time),
3253 (int) sizeof(es->s_last_error_func),
3254 es->s_last_error_func,
3255 le32_to_cpu(es->s_last_error_line));
3256 if (es->s_last_error_ino)
3257 printk(KERN_CONT ": inode %u",
3258 le32_to_cpu(es->s_last_error_ino));
3259 if (es->s_last_error_block)
3260 printk(KERN_CONT ": block %llu", (unsigned long long)
3261 le64_to_cpu(es->s_last_error_block));
3262 printk(KERN_CONT "\n");
3263 }
3264 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3265 }
3266
3267 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)3268 static int ext4_run_li_request(struct ext4_li_request *elr)
3269 {
3270 struct ext4_group_desc *gdp = NULL;
3271 struct super_block *sb = elr->lr_super;
3272 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3273 ext4_group_t group = elr->lr_next_group;
3274 unsigned int prefetch_ios = 0;
3275 int ret = 0;
3276 u64 start_time;
3277
3278 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3279 elr->lr_next_group = ext4_mb_prefetch(sb, group,
3280 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3281 if (prefetch_ios)
3282 ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3283 prefetch_ios);
3284 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3285 prefetch_ios);
3286 if (group >= elr->lr_next_group) {
3287 ret = 1;
3288 if (elr->lr_first_not_zeroed != ngroups &&
3289 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3290 elr->lr_next_group = elr->lr_first_not_zeroed;
3291 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3292 ret = 0;
3293 }
3294 }
3295 return ret;
3296 }
3297
3298 for (; group < ngroups; group++) {
3299 gdp = ext4_get_group_desc(sb, group, NULL);
3300 if (!gdp) {
3301 ret = 1;
3302 break;
3303 }
3304
3305 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3306 break;
3307 }
3308
3309 if (group >= ngroups)
3310 ret = 1;
3311
3312 if (!ret) {
3313 start_time = ktime_get_real_ns();
3314 ret = ext4_init_inode_table(sb, group,
3315 elr->lr_timeout ? 0 : 1);
3316 trace_ext4_lazy_itable_init(sb, group);
3317 if (elr->lr_timeout == 0) {
3318 elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3319 EXT4_SB(elr->lr_super)->s_li_wait_mult);
3320 }
3321 elr->lr_next_sched = jiffies + elr->lr_timeout;
3322 elr->lr_next_group = group + 1;
3323 }
3324 return ret;
3325 }
3326
3327 /*
3328 * Remove lr_request from the list_request and free the
3329 * request structure. Should be called with li_list_mtx held
3330 */
ext4_remove_li_request(struct ext4_li_request * elr)3331 static void ext4_remove_li_request(struct ext4_li_request *elr)
3332 {
3333 if (!elr)
3334 return;
3335
3336 list_del(&elr->lr_request);
3337 EXT4_SB(elr->lr_super)->s_li_request = NULL;
3338 kfree(elr);
3339 }
3340
ext4_unregister_li_request(struct super_block * sb)3341 static void ext4_unregister_li_request(struct super_block *sb)
3342 {
3343 mutex_lock(&ext4_li_mtx);
3344 if (!ext4_li_info) {
3345 mutex_unlock(&ext4_li_mtx);
3346 return;
3347 }
3348
3349 mutex_lock(&ext4_li_info->li_list_mtx);
3350 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3351 mutex_unlock(&ext4_li_info->li_list_mtx);
3352 mutex_unlock(&ext4_li_mtx);
3353 }
3354
3355 static struct task_struct *ext4_lazyinit_task;
3356
3357 /*
3358 * This is the function where ext4lazyinit thread lives. It walks
3359 * through the request list searching for next scheduled filesystem.
3360 * When such a fs is found, run the lazy initialization request
3361 * (ext4_rn_li_request) and keep track of the time spend in this
3362 * function. Based on that time we compute next schedule time of
3363 * the request. When walking through the list is complete, compute
3364 * next waking time and put itself into sleep.
3365 */
ext4_lazyinit_thread(void * arg)3366 static int ext4_lazyinit_thread(void *arg)
3367 {
3368 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3369 struct list_head *pos, *n;
3370 struct ext4_li_request *elr;
3371 unsigned long next_wakeup, cur;
3372
3373 BUG_ON(NULL == eli);
3374 set_freezable();
3375
3376 cont_thread:
3377 while (true) {
3378 next_wakeup = MAX_JIFFY_OFFSET;
3379
3380 mutex_lock(&eli->li_list_mtx);
3381 if (list_empty(&eli->li_request_list)) {
3382 mutex_unlock(&eli->li_list_mtx);
3383 goto exit_thread;
3384 }
3385 list_for_each_safe(pos, n, &eli->li_request_list) {
3386 int err = 0;
3387 int progress = 0;
3388 elr = list_entry(pos, struct ext4_li_request,
3389 lr_request);
3390
3391 if (time_before(jiffies, elr->lr_next_sched)) {
3392 if (time_before(elr->lr_next_sched, next_wakeup))
3393 next_wakeup = elr->lr_next_sched;
3394 continue;
3395 }
3396 if (down_read_trylock(&elr->lr_super->s_umount)) {
3397 if (sb_start_write_trylock(elr->lr_super)) {
3398 progress = 1;
3399 /*
3400 * We hold sb->s_umount, sb can not
3401 * be removed from the list, it is
3402 * now safe to drop li_list_mtx
3403 */
3404 mutex_unlock(&eli->li_list_mtx);
3405 err = ext4_run_li_request(elr);
3406 sb_end_write(elr->lr_super);
3407 mutex_lock(&eli->li_list_mtx);
3408 n = pos->next;
3409 }
3410 up_read((&elr->lr_super->s_umount));
3411 }
3412 /* error, remove the lazy_init job */
3413 if (err) {
3414 ext4_remove_li_request(elr);
3415 continue;
3416 }
3417 if (!progress) {
3418 elr->lr_next_sched = jiffies +
3419 (prandom_u32()
3420 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3421 }
3422 if (time_before(elr->lr_next_sched, next_wakeup))
3423 next_wakeup = elr->lr_next_sched;
3424 }
3425 mutex_unlock(&eli->li_list_mtx);
3426
3427 try_to_freeze();
3428
3429 cur = jiffies;
3430 if ((time_after_eq(cur, next_wakeup)) ||
3431 (MAX_JIFFY_OFFSET == next_wakeup)) {
3432 cond_resched();
3433 continue;
3434 }
3435
3436 schedule_timeout_interruptible(next_wakeup - cur);
3437
3438 if (kthread_should_stop()) {
3439 ext4_clear_request_list();
3440 goto exit_thread;
3441 }
3442 }
3443
3444 exit_thread:
3445 /*
3446 * It looks like the request list is empty, but we need
3447 * to check it under the li_list_mtx lock, to prevent any
3448 * additions into it, and of course we should lock ext4_li_mtx
3449 * to atomically free the list and ext4_li_info, because at
3450 * this point another ext4 filesystem could be registering
3451 * new one.
3452 */
3453 mutex_lock(&ext4_li_mtx);
3454 mutex_lock(&eli->li_list_mtx);
3455 if (!list_empty(&eli->li_request_list)) {
3456 mutex_unlock(&eli->li_list_mtx);
3457 mutex_unlock(&ext4_li_mtx);
3458 goto cont_thread;
3459 }
3460 mutex_unlock(&eli->li_list_mtx);
3461 kfree(ext4_li_info);
3462 ext4_li_info = NULL;
3463 mutex_unlock(&ext4_li_mtx);
3464
3465 return 0;
3466 }
3467
ext4_clear_request_list(void)3468 static void ext4_clear_request_list(void)
3469 {
3470 struct list_head *pos, *n;
3471 struct ext4_li_request *elr;
3472
3473 mutex_lock(&ext4_li_info->li_list_mtx);
3474 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3475 elr = list_entry(pos, struct ext4_li_request,
3476 lr_request);
3477 ext4_remove_li_request(elr);
3478 }
3479 mutex_unlock(&ext4_li_info->li_list_mtx);
3480 }
3481
ext4_run_lazyinit_thread(void)3482 static int ext4_run_lazyinit_thread(void)
3483 {
3484 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3485 ext4_li_info, "ext4lazyinit");
3486 if (IS_ERR(ext4_lazyinit_task)) {
3487 int err = PTR_ERR(ext4_lazyinit_task);
3488 ext4_clear_request_list();
3489 kfree(ext4_li_info);
3490 ext4_li_info = NULL;
3491 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3492 "initialization thread\n",
3493 err);
3494 return err;
3495 }
3496 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3497 return 0;
3498 }
3499
3500 /*
3501 * Check whether it make sense to run itable init. thread or not.
3502 * If there is at least one uninitialized inode table, return
3503 * corresponding group number, else the loop goes through all
3504 * groups and return total number of groups.
3505 */
ext4_has_uninit_itable(struct super_block * sb)3506 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3507 {
3508 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3509 struct ext4_group_desc *gdp = NULL;
3510
3511 if (!ext4_has_group_desc_csum(sb))
3512 return ngroups;
3513
3514 for (group = 0; group < ngroups; group++) {
3515 gdp = ext4_get_group_desc(sb, group, NULL);
3516 if (!gdp)
3517 continue;
3518
3519 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3520 break;
3521 }
3522
3523 return group;
3524 }
3525
ext4_li_info_new(void)3526 static int ext4_li_info_new(void)
3527 {
3528 struct ext4_lazy_init *eli = NULL;
3529
3530 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3531 if (!eli)
3532 return -ENOMEM;
3533
3534 INIT_LIST_HEAD(&eli->li_request_list);
3535 mutex_init(&eli->li_list_mtx);
3536
3537 eli->li_state |= EXT4_LAZYINIT_QUIT;
3538
3539 ext4_li_info = eli;
3540
3541 return 0;
3542 }
3543
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3544 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3545 ext4_group_t start)
3546 {
3547 struct ext4_li_request *elr;
3548
3549 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3550 if (!elr)
3551 return NULL;
3552
3553 elr->lr_super = sb;
3554 elr->lr_first_not_zeroed = start;
3555 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3556 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3557 elr->lr_next_group = start;
3558 } else {
3559 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3560 }
3561
3562 /*
3563 * Randomize first schedule time of the request to
3564 * spread the inode table initialization requests
3565 * better.
3566 */
3567 elr->lr_next_sched = jiffies + (prandom_u32() %
3568 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3569 return elr;
3570 }
3571
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)3572 int ext4_register_li_request(struct super_block *sb,
3573 ext4_group_t first_not_zeroed)
3574 {
3575 struct ext4_sb_info *sbi = EXT4_SB(sb);
3576 struct ext4_li_request *elr = NULL;
3577 ext4_group_t ngroups = sbi->s_groups_count;
3578 int ret = 0;
3579
3580 mutex_lock(&ext4_li_mtx);
3581 if (sbi->s_li_request != NULL) {
3582 /*
3583 * Reset timeout so it can be computed again, because
3584 * s_li_wait_mult might have changed.
3585 */
3586 sbi->s_li_request->lr_timeout = 0;
3587 goto out;
3588 }
3589
3590 if (sb_rdonly(sb) ||
3591 (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
3592 (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
3593 goto out;
3594
3595 elr = ext4_li_request_new(sb, first_not_zeroed);
3596 if (!elr) {
3597 ret = -ENOMEM;
3598 goto out;
3599 }
3600
3601 if (NULL == ext4_li_info) {
3602 ret = ext4_li_info_new();
3603 if (ret)
3604 goto out;
3605 }
3606
3607 mutex_lock(&ext4_li_info->li_list_mtx);
3608 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3609 mutex_unlock(&ext4_li_info->li_list_mtx);
3610
3611 sbi->s_li_request = elr;
3612 /*
3613 * set elr to NULL here since it has been inserted to
3614 * the request_list and the removal and free of it is
3615 * handled by ext4_clear_request_list from now on.
3616 */
3617 elr = NULL;
3618
3619 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3620 ret = ext4_run_lazyinit_thread();
3621 if (ret)
3622 goto out;
3623 }
3624 out:
3625 mutex_unlock(&ext4_li_mtx);
3626 if (ret)
3627 kfree(elr);
3628 return ret;
3629 }
3630
3631 /*
3632 * We do not need to lock anything since this is called on
3633 * module unload.
3634 */
ext4_destroy_lazyinit_thread(void)3635 static void ext4_destroy_lazyinit_thread(void)
3636 {
3637 /*
3638 * If thread exited earlier
3639 * there's nothing to be done.
3640 */
3641 if (!ext4_li_info || !ext4_lazyinit_task)
3642 return;
3643
3644 kthread_stop(ext4_lazyinit_task);
3645 }
3646
set_journal_csum_feature_set(struct super_block * sb)3647 static int set_journal_csum_feature_set(struct super_block *sb)
3648 {
3649 int ret = 1;
3650 int compat, incompat;
3651 struct ext4_sb_info *sbi = EXT4_SB(sb);
3652
3653 if (ext4_has_metadata_csum(sb)) {
3654 /* journal checksum v3 */
3655 compat = 0;
3656 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3657 } else {
3658 /* journal checksum v1 */
3659 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3660 incompat = 0;
3661 }
3662
3663 jbd2_journal_clear_features(sbi->s_journal,
3664 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3665 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3666 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3667 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3668 ret = jbd2_journal_set_features(sbi->s_journal,
3669 compat, 0,
3670 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3671 incompat);
3672 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3673 ret = jbd2_journal_set_features(sbi->s_journal,
3674 compat, 0,
3675 incompat);
3676 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3677 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3678 } else {
3679 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3680 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3681 }
3682
3683 return ret;
3684 }
3685
3686 /*
3687 * Note: calculating the overhead so we can be compatible with
3688 * historical BSD practice is quite difficult in the face of
3689 * clusters/bigalloc. This is because multiple metadata blocks from
3690 * different block group can end up in the same allocation cluster.
3691 * Calculating the exact overhead in the face of clustered allocation
3692 * requires either O(all block bitmaps) in memory or O(number of block
3693 * groups**2) in time. We will still calculate the superblock for
3694 * older file systems --- and if we come across with a bigalloc file
3695 * system with zero in s_overhead_clusters the estimate will be close to
3696 * correct especially for very large cluster sizes --- but for newer
3697 * file systems, it's better to calculate this figure once at mkfs
3698 * time, and store it in the superblock. If the superblock value is
3699 * present (even for non-bigalloc file systems), we will use it.
3700 */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)3701 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3702 char *buf)
3703 {
3704 struct ext4_sb_info *sbi = EXT4_SB(sb);
3705 struct ext4_group_desc *gdp;
3706 ext4_fsblk_t first_block, last_block, b;
3707 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3708 int s, j, count = 0;
3709 int has_super = ext4_bg_has_super(sb, grp);
3710
3711 if (!ext4_has_feature_bigalloc(sb))
3712 return (has_super + ext4_bg_num_gdb(sb, grp) +
3713 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
3714 sbi->s_itb_per_group + 2);
3715
3716 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3717 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3718 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3719 for (i = 0; i < ngroups; i++) {
3720 gdp = ext4_get_group_desc(sb, i, NULL);
3721 b = ext4_block_bitmap(sb, gdp);
3722 if (b >= first_block && b <= last_block) {
3723 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3724 count++;
3725 }
3726 b = ext4_inode_bitmap(sb, gdp);
3727 if (b >= first_block && b <= last_block) {
3728 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3729 count++;
3730 }
3731 b = ext4_inode_table(sb, gdp);
3732 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3733 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3734 int c = EXT4_B2C(sbi, b - first_block);
3735 ext4_set_bit(c, buf);
3736 count++;
3737 }
3738 if (i != grp)
3739 continue;
3740 s = 0;
3741 if (ext4_bg_has_super(sb, grp)) {
3742 ext4_set_bit(s++, buf);
3743 count++;
3744 }
3745 j = ext4_bg_num_gdb(sb, grp);
3746 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3747 ext4_error(sb, "Invalid number of block group "
3748 "descriptor blocks: %d", j);
3749 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3750 }
3751 count += j;
3752 for (; j > 0; j--)
3753 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3754 }
3755 if (!count)
3756 return 0;
3757 return EXT4_CLUSTERS_PER_GROUP(sb) -
3758 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3759 }
3760
3761 /*
3762 * Compute the overhead and stash it in sbi->s_overhead
3763 */
ext4_calculate_overhead(struct super_block * sb)3764 int ext4_calculate_overhead(struct super_block *sb)
3765 {
3766 struct ext4_sb_info *sbi = EXT4_SB(sb);
3767 struct ext4_super_block *es = sbi->s_es;
3768 struct inode *j_inode;
3769 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3770 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3771 ext4_fsblk_t overhead = 0;
3772 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3773
3774 if (!buf)
3775 return -ENOMEM;
3776
3777 /*
3778 * Compute the overhead (FS structures). This is constant
3779 * for a given filesystem unless the number of block groups
3780 * changes so we cache the previous value until it does.
3781 */
3782
3783 /*
3784 * All of the blocks before first_data_block are overhead
3785 */
3786 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3787
3788 /*
3789 * Add the overhead found in each block group
3790 */
3791 for (i = 0; i < ngroups; i++) {
3792 int blks;
3793
3794 blks = count_overhead(sb, i, buf);
3795 overhead += blks;
3796 if (blks)
3797 memset(buf, 0, PAGE_SIZE);
3798 cond_resched();
3799 }
3800
3801 /*
3802 * Add the internal journal blocks whether the journal has been
3803 * loaded or not
3804 */
3805 if (sbi->s_journal && !sbi->s_journal_bdev)
3806 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
3807 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
3808 /* j_inum for internal journal is non-zero */
3809 j_inode = ext4_get_journal_inode(sb, j_inum);
3810 if (j_inode) {
3811 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3812 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3813 iput(j_inode);
3814 } else {
3815 ext4_msg(sb, KERN_ERR, "can't get journal size");
3816 }
3817 }
3818 sbi->s_overhead = overhead;
3819 smp_wmb();
3820 free_page((unsigned long) buf);
3821 return 0;
3822 }
3823
ext4_set_resv_clusters(struct super_block * sb)3824 static void ext4_set_resv_clusters(struct super_block *sb)
3825 {
3826 ext4_fsblk_t resv_clusters;
3827 struct ext4_sb_info *sbi = EXT4_SB(sb);
3828
3829 /*
3830 * There's no need to reserve anything when we aren't using extents.
3831 * The space estimates are exact, there are no unwritten extents,
3832 * hole punching doesn't need new metadata... This is needed especially
3833 * to keep ext2/3 backward compatibility.
3834 */
3835 if (!ext4_has_feature_extents(sb))
3836 return;
3837 /*
3838 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3839 * This should cover the situations where we can not afford to run
3840 * out of space like for example punch hole, or converting
3841 * unwritten extents in delalloc path. In most cases such
3842 * allocation would require 1, or 2 blocks, higher numbers are
3843 * very rare.
3844 */
3845 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3846 sbi->s_cluster_bits);
3847
3848 do_div(resv_clusters, 50);
3849 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3850
3851 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3852 }
3853
ext4_quota_mode(struct super_block * sb)3854 static const char *ext4_quota_mode(struct super_block *sb)
3855 {
3856 #ifdef CONFIG_QUOTA
3857 if (!ext4_quota_capable(sb))
3858 return "none";
3859
3860 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
3861 return "journalled";
3862 else
3863 return "writeback";
3864 #else
3865 return "disabled";
3866 #endif
3867 }
3868
ext4_setup_csum_trigger(struct super_block * sb,enum ext4_journal_trigger_type type,void (* trigger)(struct jbd2_buffer_trigger_type * type,struct buffer_head * bh,void * mapped_data,size_t size))3869 static void ext4_setup_csum_trigger(struct super_block *sb,
3870 enum ext4_journal_trigger_type type,
3871 void (*trigger)(
3872 struct jbd2_buffer_trigger_type *type,
3873 struct buffer_head *bh,
3874 void *mapped_data,
3875 size_t size))
3876 {
3877 struct ext4_sb_info *sbi = EXT4_SB(sb);
3878
3879 sbi->s_journal_triggers[type].sb = sb;
3880 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
3881 }
3882
ext4_fill_super(struct super_block * sb,void * data,int silent)3883 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3884 {
3885 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3886 char *orig_data = kstrdup(data, GFP_KERNEL);
3887 struct buffer_head *bh, **group_desc;
3888 struct ext4_super_block *es = NULL;
3889 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3890 struct flex_groups **flex_groups;
3891 ext4_fsblk_t block;
3892 ext4_fsblk_t sb_block = get_sb_block(&data);
3893 ext4_fsblk_t logical_sb_block;
3894 unsigned long offset = 0;
3895 unsigned long def_mount_opts;
3896 struct inode *root;
3897 const char *descr;
3898 int ret = -ENOMEM;
3899 int blocksize, clustersize;
3900 unsigned int db_count;
3901 unsigned int i;
3902 int needs_recovery, has_huge_files;
3903 __u64 blocks_count;
3904 int err = 0;
3905 ext4_group_t first_not_zeroed;
3906 struct ext4_parsed_options parsed_opts;
3907
3908 /* Set defaults for the variables that will be set during parsing */
3909 parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3910 parsed_opts.journal_devnum = 0;
3911 parsed_opts.mb_optimize_scan = DEFAULT_MB_OPTIMIZE_SCAN;
3912
3913 if ((data && !orig_data) || !sbi)
3914 goto out_free_base;
3915
3916 sbi->s_daxdev = dax_dev;
3917 sbi->s_blockgroup_lock =
3918 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3919 if (!sbi->s_blockgroup_lock)
3920 goto out_free_base;
3921
3922 sb->s_fs_info = sbi;
3923 sbi->s_sb = sb;
3924 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3925 sbi->s_sb_block = sb_block;
3926 sbi->s_sectors_written_start =
3927 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
3928
3929 /* Cleanup superblock name */
3930 strreplace(sb->s_id, '/', '!');
3931
3932 /* -EINVAL is default */
3933 ret = -EINVAL;
3934 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3935 if (!blocksize) {
3936 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3937 goto out_fail;
3938 }
3939
3940 /*
3941 * The ext4 superblock will not be buffer aligned for other than 1kB
3942 * block sizes. We need to calculate the offset from buffer start.
3943 */
3944 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3945 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3946 offset = do_div(logical_sb_block, blocksize);
3947 } else {
3948 logical_sb_block = sb_block;
3949 }
3950
3951 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
3952 if (IS_ERR(bh)) {
3953 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3954 ret = PTR_ERR(bh);
3955 goto out_fail;
3956 }
3957 /*
3958 * Note: s_es must be initialized as soon as possible because
3959 * some ext4 macro-instructions depend on its value
3960 */
3961 es = (struct ext4_super_block *) (bh->b_data + offset);
3962 sbi->s_es = es;
3963 sb->s_magic = le16_to_cpu(es->s_magic);
3964 if (sb->s_magic != EXT4_SUPER_MAGIC)
3965 goto cantfind_ext4;
3966 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3967
3968 /* Warn if metadata_csum and gdt_csum are both set. */
3969 if (ext4_has_feature_metadata_csum(sb) &&
3970 ext4_has_feature_gdt_csum(sb))
3971 ext4_warning(sb, "metadata_csum and uninit_bg are "
3972 "redundant flags; please run fsck.");
3973
3974 /* Check for a known checksum algorithm */
3975 if (!ext4_verify_csum_type(sb, es)) {
3976 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3977 "unknown checksum algorithm.");
3978 silent = 1;
3979 goto cantfind_ext4;
3980 }
3981 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
3982 ext4_orphan_file_block_trigger);
3983
3984 /* Load the checksum driver */
3985 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3986 if (IS_ERR(sbi->s_chksum_driver)) {
3987 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3988 ret = PTR_ERR(sbi->s_chksum_driver);
3989 sbi->s_chksum_driver = NULL;
3990 goto failed_mount;
3991 }
3992
3993 /* Check superblock checksum */
3994 if (!ext4_superblock_csum_verify(sb, es)) {
3995 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3996 "invalid superblock checksum. Run e2fsck?");
3997 silent = 1;
3998 ret = -EFSBADCRC;
3999 goto cantfind_ext4;
4000 }
4001
4002 /* Precompute checksum seed for all metadata */
4003 if (ext4_has_feature_csum_seed(sb))
4004 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4005 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4006 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4007 sizeof(es->s_uuid));
4008
4009 /* Set defaults before we parse the mount options */
4010 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4011 set_opt(sb, INIT_INODE_TABLE);
4012 if (def_mount_opts & EXT4_DEFM_DEBUG)
4013 set_opt(sb, DEBUG);
4014 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4015 set_opt(sb, GRPID);
4016 if (def_mount_opts & EXT4_DEFM_UID16)
4017 set_opt(sb, NO_UID32);
4018 /* xattr user namespace & acls are now defaulted on */
4019 set_opt(sb, XATTR_USER);
4020 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4021 set_opt(sb, POSIX_ACL);
4022 #endif
4023 if (ext4_has_feature_fast_commit(sb))
4024 set_opt2(sb, JOURNAL_FAST_COMMIT);
4025 /* don't forget to enable journal_csum when metadata_csum is enabled. */
4026 if (ext4_has_metadata_csum(sb))
4027 set_opt(sb, JOURNAL_CHECKSUM);
4028
4029 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4030 set_opt(sb, JOURNAL_DATA);
4031 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4032 set_opt(sb, ORDERED_DATA);
4033 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4034 set_opt(sb, WRITEBACK_DATA);
4035
4036 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
4037 set_opt(sb, ERRORS_PANIC);
4038 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
4039 set_opt(sb, ERRORS_CONT);
4040 else
4041 set_opt(sb, ERRORS_RO);
4042 /* block_validity enabled by default; disable with noblock_validity */
4043 set_opt(sb, BLOCK_VALIDITY);
4044 if (def_mount_opts & EXT4_DEFM_DISCARD)
4045 set_opt(sb, DISCARD);
4046
4047 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
4048 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
4049 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
4050 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
4051 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
4052
4053 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4054 set_opt(sb, BARRIER);
4055
4056 /*
4057 * enable delayed allocation by default
4058 * Use -o nodelalloc to turn it off
4059 */
4060 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4061 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4062 set_opt(sb, DELALLOC);
4063
4064 /*
4065 * set default s_li_wait_mult for lazyinit, for the case there is
4066 * no mount option specified.
4067 */
4068 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
4069
4070 if (le32_to_cpu(es->s_log_block_size) >
4071 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4072 ext4_msg(sb, KERN_ERR,
4073 "Invalid log block size: %u",
4074 le32_to_cpu(es->s_log_block_size));
4075 goto failed_mount;
4076 }
4077 if (le32_to_cpu(es->s_log_cluster_size) >
4078 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4079 ext4_msg(sb, KERN_ERR,
4080 "Invalid log cluster size: %u",
4081 le32_to_cpu(es->s_log_cluster_size));
4082 goto failed_mount;
4083 }
4084
4085 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4086
4087 if (blocksize == PAGE_SIZE)
4088 set_opt(sb, DIOREAD_NOLOCK);
4089
4090 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4091 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4092 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4093 } else {
4094 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4095 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4096 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4097 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4098 sbi->s_first_ino);
4099 goto failed_mount;
4100 }
4101 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4102 (!is_power_of_2(sbi->s_inode_size)) ||
4103 (sbi->s_inode_size > blocksize)) {
4104 ext4_msg(sb, KERN_ERR,
4105 "unsupported inode size: %d",
4106 sbi->s_inode_size);
4107 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
4108 goto failed_mount;
4109 }
4110 /*
4111 * i_atime_extra is the last extra field available for
4112 * [acm]times in struct ext4_inode. Checking for that
4113 * field should suffice to ensure we have extra space
4114 * for all three.
4115 */
4116 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4117 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4118 sb->s_time_gran = 1;
4119 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4120 } else {
4121 sb->s_time_gran = NSEC_PER_SEC;
4122 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4123 }
4124 sb->s_time_min = EXT4_TIMESTAMP_MIN;
4125 }
4126 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4127 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4128 EXT4_GOOD_OLD_INODE_SIZE;
4129 if (ext4_has_feature_extra_isize(sb)) {
4130 unsigned v, max = (sbi->s_inode_size -
4131 EXT4_GOOD_OLD_INODE_SIZE);
4132
4133 v = le16_to_cpu(es->s_want_extra_isize);
4134 if (v > max) {
4135 ext4_msg(sb, KERN_ERR,
4136 "bad s_want_extra_isize: %d", v);
4137 goto failed_mount;
4138 }
4139 if (sbi->s_want_extra_isize < v)
4140 sbi->s_want_extra_isize = v;
4141
4142 v = le16_to_cpu(es->s_min_extra_isize);
4143 if (v > max) {
4144 ext4_msg(sb, KERN_ERR,
4145 "bad s_min_extra_isize: %d", v);
4146 goto failed_mount;
4147 }
4148 if (sbi->s_want_extra_isize < v)
4149 sbi->s_want_extra_isize = v;
4150 }
4151 }
4152
4153 if (sbi->s_es->s_mount_opts[0]) {
4154 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
4155 sizeof(sbi->s_es->s_mount_opts),
4156 GFP_KERNEL);
4157 if (!s_mount_opts)
4158 goto failed_mount;
4159 if (!parse_options(s_mount_opts, sb, &parsed_opts, 0)) {
4160 ext4_msg(sb, KERN_WARNING,
4161 "failed to parse options in superblock: %s",
4162 s_mount_opts);
4163 }
4164 kfree(s_mount_opts);
4165 }
4166 sbi->s_def_mount_opt = sbi->s_mount_opt;
4167 if (!parse_options((char *) data, sb, &parsed_opts, 0))
4168 goto failed_mount;
4169
4170 #ifdef CONFIG_UNICODE
4171 if (ext4_has_feature_casefold(sb) && !sb->s_encoding) {
4172 const struct ext4_sb_encodings *encoding_info;
4173 struct unicode_map *encoding;
4174 __u16 encoding_flags;
4175
4176 if (ext4_sb_read_encoding(es, &encoding_info,
4177 &encoding_flags)) {
4178 ext4_msg(sb, KERN_ERR,
4179 "Encoding requested by superblock is unknown");
4180 goto failed_mount;
4181 }
4182
4183 encoding = utf8_load(encoding_info->version);
4184 if (IS_ERR(encoding)) {
4185 ext4_msg(sb, KERN_ERR,
4186 "can't mount with superblock charset: %s-%s "
4187 "not supported by the kernel. flags: 0x%x.",
4188 encoding_info->name, encoding_info->version,
4189 encoding_flags);
4190 goto failed_mount;
4191 }
4192 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4193 "%s-%s with flags 0x%hx", encoding_info->name,
4194 encoding_info->version?:"\b", encoding_flags);
4195
4196 sb->s_encoding = encoding;
4197 sb->s_encoding_flags = encoding_flags;
4198 }
4199 #endif
4200
4201 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4202 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n");
4203 /* can't mount with both data=journal and dioread_nolock. */
4204 clear_opt(sb, DIOREAD_NOLOCK);
4205 clear_opt2(sb, JOURNAL_FAST_COMMIT);
4206 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4207 ext4_msg(sb, KERN_ERR, "can't mount with "
4208 "both data=journal and delalloc");
4209 goto failed_mount;
4210 }
4211 if (test_opt(sb, DAX_ALWAYS)) {
4212 ext4_msg(sb, KERN_ERR, "can't mount with "
4213 "both data=journal and dax");
4214 goto failed_mount;
4215 }
4216 if (ext4_has_feature_encrypt(sb)) {
4217 ext4_msg(sb, KERN_WARNING,
4218 "encrypted files will use data=ordered "
4219 "instead of data journaling mode");
4220 }
4221 if (test_opt(sb, DELALLOC))
4222 clear_opt(sb, DELALLOC);
4223 } else {
4224 sb->s_iflags |= SB_I_CGROUPWB;
4225 }
4226
4227 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4228 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
4229
4230 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4231 (ext4_has_compat_features(sb) ||
4232 ext4_has_ro_compat_features(sb) ||
4233 ext4_has_incompat_features(sb)))
4234 ext4_msg(sb, KERN_WARNING,
4235 "feature flags set on rev 0 fs, "
4236 "running e2fsck is recommended");
4237
4238 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4239 set_opt2(sb, HURD_COMPAT);
4240 if (ext4_has_feature_64bit(sb)) {
4241 ext4_msg(sb, KERN_ERR,
4242 "The Hurd can't support 64-bit file systems");
4243 goto failed_mount;
4244 }
4245
4246 /*
4247 * ea_inode feature uses l_i_version field which is not
4248 * available in HURD_COMPAT mode.
4249 */
4250 if (ext4_has_feature_ea_inode(sb)) {
4251 ext4_msg(sb, KERN_ERR,
4252 "ea_inode feature is not supported for Hurd");
4253 goto failed_mount;
4254 }
4255 }
4256
4257 if (IS_EXT2_SB(sb)) {
4258 if (ext2_feature_set_ok(sb))
4259 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4260 "using the ext4 subsystem");
4261 else {
4262 /*
4263 * If we're probing be silent, if this looks like
4264 * it's actually an ext[34] filesystem.
4265 */
4266 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4267 goto failed_mount;
4268 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4269 "to feature incompatibilities");
4270 goto failed_mount;
4271 }
4272 }
4273
4274 if (IS_EXT3_SB(sb)) {
4275 if (ext3_feature_set_ok(sb))
4276 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4277 "using the ext4 subsystem");
4278 else {
4279 /*
4280 * If we're probing be silent, if this looks like
4281 * it's actually an ext4 filesystem.
4282 */
4283 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4284 goto failed_mount;
4285 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4286 "to feature incompatibilities");
4287 goto failed_mount;
4288 }
4289 }
4290
4291 /*
4292 * Check feature flags regardless of the revision level, since we
4293 * previously didn't change the revision level when setting the flags,
4294 * so there is a chance incompat flags are set on a rev 0 filesystem.
4295 */
4296 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4297 goto failed_mount;
4298
4299 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4300 ext4_msg(sb, KERN_ERR,
4301 "Number of reserved GDT blocks insanely large: %d",
4302 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4303 goto failed_mount;
4304 }
4305
4306 if (dax_supported(dax_dev, sb->s_bdev, blocksize, 0,
4307 bdev_nr_sectors(sb->s_bdev)))
4308 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4309
4310 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4311 if (ext4_has_feature_inline_data(sb)) {
4312 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4313 " that may contain inline data");
4314 goto failed_mount;
4315 }
4316 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4317 ext4_msg(sb, KERN_ERR,
4318 "DAX unsupported by block device.");
4319 goto failed_mount;
4320 }
4321 }
4322
4323 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4324 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4325 es->s_encryption_level);
4326 goto failed_mount;
4327 }
4328
4329 if (sb->s_blocksize != blocksize) {
4330 /*
4331 * bh must be released before kill_bdev(), otherwise
4332 * it won't be freed and its page also. kill_bdev()
4333 * is called by sb_set_blocksize().
4334 */
4335 brelse(bh);
4336 /* Validate the filesystem blocksize */
4337 if (!sb_set_blocksize(sb, blocksize)) {
4338 ext4_msg(sb, KERN_ERR, "bad block size %d",
4339 blocksize);
4340 bh = NULL;
4341 goto failed_mount;
4342 }
4343
4344 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4345 offset = do_div(logical_sb_block, blocksize);
4346 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4347 if (IS_ERR(bh)) {
4348 ext4_msg(sb, KERN_ERR,
4349 "Can't read superblock on 2nd try");
4350 ret = PTR_ERR(bh);
4351 bh = NULL;
4352 goto failed_mount;
4353 }
4354 es = (struct ext4_super_block *)(bh->b_data + offset);
4355 sbi->s_es = es;
4356 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4357 ext4_msg(sb, KERN_ERR,
4358 "Magic mismatch, very weird!");
4359 goto failed_mount;
4360 }
4361 }
4362
4363 has_huge_files = ext4_has_feature_huge_file(sb);
4364 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4365 has_huge_files);
4366 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4367
4368 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4369 if (ext4_has_feature_64bit(sb)) {
4370 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4371 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4372 !is_power_of_2(sbi->s_desc_size)) {
4373 ext4_msg(sb, KERN_ERR,
4374 "unsupported descriptor size %lu",
4375 sbi->s_desc_size);
4376 goto failed_mount;
4377 }
4378 } else
4379 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4380
4381 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4382 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4383
4384 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4385 if (sbi->s_inodes_per_block == 0)
4386 goto cantfind_ext4;
4387 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4388 sbi->s_inodes_per_group > blocksize * 8) {
4389 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4390 sbi->s_inodes_per_group);
4391 goto failed_mount;
4392 }
4393 sbi->s_itb_per_group = sbi->s_inodes_per_group /
4394 sbi->s_inodes_per_block;
4395 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4396 sbi->s_sbh = bh;
4397 sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
4398 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4399 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4400
4401 for (i = 0; i < 4; i++)
4402 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4403 sbi->s_def_hash_version = es->s_def_hash_version;
4404 if (ext4_has_feature_dir_index(sb)) {
4405 i = le32_to_cpu(es->s_flags);
4406 if (i & EXT2_FLAGS_UNSIGNED_HASH)
4407 sbi->s_hash_unsigned = 3;
4408 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4409 #ifdef __CHAR_UNSIGNED__
4410 if (!sb_rdonly(sb))
4411 es->s_flags |=
4412 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4413 sbi->s_hash_unsigned = 3;
4414 #else
4415 if (!sb_rdonly(sb))
4416 es->s_flags |=
4417 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4418 #endif
4419 }
4420 }
4421
4422 /* Handle clustersize */
4423 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4424 if (ext4_has_feature_bigalloc(sb)) {
4425 if (clustersize < blocksize) {
4426 ext4_msg(sb, KERN_ERR,
4427 "cluster size (%d) smaller than "
4428 "block size (%d)", clustersize, blocksize);
4429 goto failed_mount;
4430 }
4431 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4432 le32_to_cpu(es->s_log_block_size);
4433 sbi->s_clusters_per_group =
4434 le32_to_cpu(es->s_clusters_per_group);
4435 if (sbi->s_clusters_per_group > blocksize * 8) {
4436 ext4_msg(sb, KERN_ERR,
4437 "#clusters per group too big: %lu",
4438 sbi->s_clusters_per_group);
4439 goto failed_mount;
4440 }
4441 if (sbi->s_blocks_per_group !=
4442 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4443 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4444 "clusters per group (%lu) inconsistent",
4445 sbi->s_blocks_per_group,
4446 sbi->s_clusters_per_group);
4447 goto failed_mount;
4448 }
4449 } else {
4450 if (clustersize != blocksize) {
4451 ext4_msg(sb, KERN_ERR,
4452 "fragment/cluster size (%d) != "
4453 "block size (%d)", clustersize, blocksize);
4454 goto failed_mount;
4455 }
4456 if (sbi->s_blocks_per_group > blocksize * 8) {
4457 ext4_msg(sb, KERN_ERR,
4458 "#blocks per group too big: %lu",
4459 sbi->s_blocks_per_group);
4460 goto failed_mount;
4461 }
4462 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4463 sbi->s_cluster_bits = 0;
4464 }
4465 sbi->s_cluster_ratio = clustersize / blocksize;
4466
4467 /* Do we have standard group size of clustersize * 8 blocks ? */
4468 if (sbi->s_blocks_per_group == clustersize << 3)
4469 set_opt2(sb, STD_GROUP_SIZE);
4470
4471 /*
4472 * Test whether we have more sectors than will fit in sector_t,
4473 * and whether the max offset is addressable by the page cache.
4474 */
4475 err = generic_check_addressable(sb->s_blocksize_bits,
4476 ext4_blocks_count(es));
4477 if (err) {
4478 ext4_msg(sb, KERN_ERR, "filesystem"
4479 " too large to mount safely on this system");
4480 goto failed_mount;
4481 }
4482
4483 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4484 goto cantfind_ext4;
4485
4486 /* check blocks count against device size */
4487 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4488 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4489 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4490 "exceeds size of device (%llu blocks)",
4491 ext4_blocks_count(es), blocks_count);
4492 goto failed_mount;
4493 }
4494
4495 /*
4496 * It makes no sense for the first data block to be beyond the end
4497 * of the filesystem.
4498 */
4499 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4500 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4501 "block %u is beyond end of filesystem (%llu)",
4502 le32_to_cpu(es->s_first_data_block),
4503 ext4_blocks_count(es));
4504 goto failed_mount;
4505 }
4506 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4507 (sbi->s_cluster_ratio == 1)) {
4508 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4509 "block is 0 with a 1k block and cluster size");
4510 goto failed_mount;
4511 }
4512
4513 blocks_count = (ext4_blocks_count(es) -
4514 le32_to_cpu(es->s_first_data_block) +
4515 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4516 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4517 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4518 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4519 "(block count %llu, first data block %u, "
4520 "blocks per group %lu)", blocks_count,
4521 ext4_blocks_count(es),
4522 le32_to_cpu(es->s_first_data_block),
4523 EXT4_BLOCKS_PER_GROUP(sb));
4524 goto failed_mount;
4525 }
4526 sbi->s_groups_count = blocks_count;
4527 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4528 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4529 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4530 le32_to_cpu(es->s_inodes_count)) {
4531 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4532 le32_to_cpu(es->s_inodes_count),
4533 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4534 ret = -EINVAL;
4535 goto failed_mount;
4536 }
4537 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4538 EXT4_DESC_PER_BLOCK(sb);
4539 if (ext4_has_feature_meta_bg(sb)) {
4540 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4541 ext4_msg(sb, KERN_WARNING,
4542 "first meta block group too large: %u "
4543 "(group descriptor block count %u)",
4544 le32_to_cpu(es->s_first_meta_bg), db_count);
4545 goto failed_mount;
4546 }
4547 }
4548 rcu_assign_pointer(sbi->s_group_desc,
4549 kvmalloc_array(db_count,
4550 sizeof(struct buffer_head *),
4551 GFP_KERNEL));
4552 if (sbi->s_group_desc == NULL) {
4553 ext4_msg(sb, KERN_ERR, "not enough memory");
4554 ret = -ENOMEM;
4555 goto failed_mount;
4556 }
4557
4558 bgl_lock_init(sbi->s_blockgroup_lock);
4559
4560 /* Pre-read the descriptors into the buffer cache */
4561 for (i = 0; i < db_count; i++) {
4562 block = descriptor_loc(sb, logical_sb_block, i);
4563 ext4_sb_breadahead_unmovable(sb, block);
4564 }
4565
4566 for (i = 0; i < db_count; i++) {
4567 struct buffer_head *bh;
4568
4569 block = descriptor_loc(sb, logical_sb_block, i);
4570 bh = ext4_sb_bread_unmovable(sb, block);
4571 if (IS_ERR(bh)) {
4572 ext4_msg(sb, KERN_ERR,
4573 "can't read group descriptor %d", i);
4574 db_count = i;
4575 ret = PTR_ERR(bh);
4576 goto failed_mount2;
4577 }
4578 rcu_read_lock();
4579 rcu_dereference(sbi->s_group_desc)[i] = bh;
4580 rcu_read_unlock();
4581 }
4582 sbi->s_gdb_count = db_count;
4583 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4584 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4585 ret = -EFSCORRUPTED;
4586 goto failed_mount2;
4587 }
4588
4589 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4590 spin_lock_init(&sbi->s_error_lock);
4591 INIT_WORK(&sbi->s_error_work, flush_stashed_error_work);
4592
4593 /* Register extent status tree shrinker */
4594 if (ext4_es_register_shrinker(sbi))
4595 goto failed_mount3;
4596
4597 sbi->s_stripe = ext4_get_stripe_size(sbi);
4598 sbi->s_extent_max_zeroout_kb = 32;
4599
4600 /*
4601 * set up enough so that it can read an inode
4602 */
4603 sb->s_op = &ext4_sops;
4604 sb->s_export_op = &ext4_export_ops;
4605 sb->s_xattr = ext4_xattr_handlers;
4606 #ifdef CONFIG_FS_ENCRYPTION
4607 sb->s_cop = &ext4_cryptops;
4608 #endif
4609 #ifdef CONFIG_FS_VERITY
4610 sb->s_vop = &ext4_verityops;
4611 #endif
4612 #ifdef CONFIG_QUOTA
4613 sb->dq_op = &ext4_quota_operations;
4614 if (ext4_has_feature_quota(sb))
4615 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4616 else
4617 sb->s_qcop = &ext4_qctl_operations;
4618 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4619 #endif
4620 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4621
4622 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4623 mutex_init(&sbi->s_orphan_lock);
4624
4625 /* Initialize fast commit stuff */
4626 atomic_set(&sbi->s_fc_subtid, 0);
4627 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4628 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4629 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4630 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4631 sbi->s_fc_bytes = 0;
4632 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4633 sbi->s_fc_ineligible_tid = 0;
4634 spin_lock_init(&sbi->s_fc_lock);
4635 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4636 sbi->s_fc_replay_state.fc_regions = NULL;
4637 sbi->s_fc_replay_state.fc_regions_size = 0;
4638 sbi->s_fc_replay_state.fc_regions_used = 0;
4639 sbi->s_fc_replay_state.fc_regions_valid = 0;
4640 sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4641 sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4642 sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4643
4644 sb->s_root = NULL;
4645
4646 needs_recovery = (es->s_last_orphan != 0 ||
4647 ext4_has_feature_orphan_present(sb) ||
4648 ext4_has_feature_journal_needs_recovery(sb));
4649
4650 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
4651 err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
4652 if (err)
4653 goto failed_mount3a;
4654 }
4655
4656 /*
4657 * The first inode we look at is the journal inode. Don't try
4658 * root first: it may be modified in the journal!
4659 */
4660 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4661 err = ext4_load_journal(sb, es, parsed_opts.journal_devnum);
4662 if (err)
4663 goto failed_mount3a;
4664 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4665 ext4_has_feature_journal_needs_recovery(sb)) {
4666 ext4_msg(sb, KERN_ERR, "required journal recovery "
4667 "suppressed and not mounted read-only");
4668 goto failed_mount3a;
4669 } else {
4670 /* Nojournal mode, all journal mount options are illegal */
4671 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4672 ext4_msg(sb, KERN_ERR, "can't mount with "
4673 "journal_async_commit, fs mounted w/o journal");
4674 goto failed_mount3a;
4675 }
4676
4677 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4678 ext4_msg(sb, KERN_ERR, "can't mount with "
4679 "journal_checksum, fs mounted w/o journal");
4680 goto failed_mount3a;
4681 }
4682 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4683 ext4_msg(sb, KERN_ERR, "can't mount with "
4684 "commit=%lu, fs mounted w/o journal",
4685 sbi->s_commit_interval / HZ);
4686 goto failed_mount3a;
4687 }
4688 if (EXT4_MOUNT_DATA_FLAGS &
4689 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4690 ext4_msg(sb, KERN_ERR, "can't mount with "
4691 "data=, fs mounted w/o journal");
4692 goto failed_mount3a;
4693 }
4694 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4695 clear_opt(sb, JOURNAL_CHECKSUM);
4696 clear_opt(sb, DATA_FLAGS);
4697 clear_opt2(sb, JOURNAL_FAST_COMMIT);
4698 sbi->s_journal = NULL;
4699 needs_recovery = 0;
4700 goto no_journal;
4701 }
4702
4703 if (ext4_has_feature_64bit(sb) &&
4704 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4705 JBD2_FEATURE_INCOMPAT_64BIT)) {
4706 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4707 goto failed_mount_wq;
4708 }
4709
4710 if (!set_journal_csum_feature_set(sb)) {
4711 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4712 "feature set");
4713 goto failed_mount_wq;
4714 }
4715
4716 if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4717 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4718 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4719 ext4_msg(sb, KERN_ERR,
4720 "Failed to set fast commit journal feature");
4721 goto failed_mount_wq;
4722 }
4723
4724 /* We have now updated the journal if required, so we can
4725 * validate the data journaling mode. */
4726 switch (test_opt(sb, DATA_FLAGS)) {
4727 case 0:
4728 /* No mode set, assume a default based on the journal
4729 * capabilities: ORDERED_DATA if the journal can
4730 * cope, else JOURNAL_DATA
4731 */
4732 if (jbd2_journal_check_available_features
4733 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4734 set_opt(sb, ORDERED_DATA);
4735 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4736 } else {
4737 set_opt(sb, JOURNAL_DATA);
4738 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4739 }
4740 break;
4741
4742 case EXT4_MOUNT_ORDERED_DATA:
4743 case EXT4_MOUNT_WRITEBACK_DATA:
4744 if (!jbd2_journal_check_available_features
4745 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4746 ext4_msg(sb, KERN_ERR, "Journal does not support "
4747 "requested data journaling mode");
4748 goto failed_mount_wq;
4749 }
4750 break;
4751 default:
4752 break;
4753 }
4754
4755 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4756 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4757 ext4_msg(sb, KERN_ERR, "can't mount with "
4758 "journal_async_commit in data=ordered mode");
4759 goto failed_mount_wq;
4760 }
4761
4762 set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio);
4763
4764 sbi->s_journal->j_submit_inode_data_buffers =
4765 ext4_journal_submit_inode_data_buffers;
4766 sbi->s_journal->j_finish_inode_data_buffers =
4767 ext4_journal_finish_inode_data_buffers;
4768
4769 no_journal:
4770 if (!test_opt(sb, NO_MBCACHE)) {
4771 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4772 if (!sbi->s_ea_block_cache) {
4773 ext4_msg(sb, KERN_ERR,
4774 "Failed to create ea_block_cache");
4775 goto failed_mount_wq;
4776 }
4777
4778 if (ext4_has_feature_ea_inode(sb)) {
4779 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4780 if (!sbi->s_ea_inode_cache) {
4781 ext4_msg(sb, KERN_ERR,
4782 "Failed to create ea_inode_cache");
4783 goto failed_mount_wq;
4784 }
4785 }
4786 }
4787
4788 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
4789 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
4790 goto failed_mount_wq;
4791 }
4792
4793 /*
4794 * Get the # of file system overhead blocks from the
4795 * superblock if present.
4796 */
4797 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4798 /* ignore the precalculated value if it is ridiculous */
4799 if (sbi->s_overhead > ext4_blocks_count(es))
4800 sbi->s_overhead = 0;
4801 /*
4802 * If the bigalloc feature is not enabled recalculating the
4803 * overhead doesn't take long, so we might as well just redo
4804 * it to make sure we are using the correct value.
4805 */
4806 if (!ext4_has_feature_bigalloc(sb))
4807 sbi->s_overhead = 0;
4808 if (sbi->s_overhead == 0) {
4809 err = ext4_calculate_overhead(sb);
4810 if (err)
4811 goto failed_mount_wq;
4812 }
4813
4814 /*
4815 * The maximum number of concurrent works can be high and
4816 * concurrency isn't really necessary. Limit it to 1.
4817 */
4818 EXT4_SB(sb)->rsv_conversion_wq =
4819 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4820 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4821 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4822 ret = -ENOMEM;
4823 goto failed_mount4;
4824 }
4825
4826 /*
4827 * The jbd2_journal_load will have done any necessary log recovery,
4828 * so we can safely mount the rest of the filesystem now.
4829 */
4830
4831 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4832 if (IS_ERR(root)) {
4833 ext4_msg(sb, KERN_ERR, "get root inode failed");
4834 ret = PTR_ERR(root);
4835 root = NULL;
4836 goto failed_mount4;
4837 }
4838 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4839 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4840 iput(root);
4841 goto failed_mount4;
4842 }
4843
4844 sb->s_root = d_make_root(root);
4845 if (!sb->s_root) {
4846 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4847 ret = -ENOMEM;
4848 goto failed_mount4;
4849 }
4850
4851 ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4852 if (ret == -EROFS) {
4853 sb->s_flags |= SB_RDONLY;
4854 ret = 0;
4855 } else if (ret)
4856 goto failed_mount4a;
4857
4858 ext4_set_resv_clusters(sb);
4859
4860 if (test_opt(sb, BLOCK_VALIDITY)) {
4861 err = ext4_setup_system_zone(sb);
4862 if (err) {
4863 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4864 "zone (%d)", err);
4865 goto failed_mount4a;
4866 }
4867 }
4868 ext4_fc_replay_cleanup(sb);
4869
4870 ext4_ext_init(sb);
4871
4872 /*
4873 * Enable optimize_scan if number of groups is > threshold. This can be
4874 * turned off by passing "mb_optimize_scan=0". This can also be
4875 * turned on forcefully by passing "mb_optimize_scan=1".
4876 */
4877 if (parsed_opts.mb_optimize_scan == 1)
4878 set_opt2(sb, MB_OPTIMIZE_SCAN);
4879 else if (parsed_opts.mb_optimize_scan == 0)
4880 clear_opt2(sb, MB_OPTIMIZE_SCAN);
4881 else if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
4882 set_opt2(sb, MB_OPTIMIZE_SCAN);
4883
4884 err = ext4_mb_init(sb);
4885 if (err) {
4886 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4887 err);
4888 goto failed_mount5;
4889 }
4890
4891 /*
4892 * We can only set up the journal commit callback once
4893 * mballoc is initialized
4894 */
4895 if (sbi->s_journal)
4896 sbi->s_journal->j_commit_callback =
4897 ext4_journal_commit_callback;
4898
4899 block = ext4_count_free_clusters(sb);
4900 ext4_free_blocks_count_set(sbi->s_es,
4901 EXT4_C2B(sbi, block));
4902 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4903 GFP_KERNEL);
4904 if (!err) {
4905 unsigned long freei = ext4_count_free_inodes(sb);
4906 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4907 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4908 GFP_KERNEL);
4909 }
4910 if (!err)
4911 err = percpu_counter_init(&sbi->s_dirs_counter,
4912 ext4_count_dirs(sb), GFP_KERNEL);
4913 if (!err)
4914 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4915 GFP_KERNEL);
4916 if (!err)
4917 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
4918 GFP_KERNEL);
4919 if (!err)
4920 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
4921
4922 if (err) {
4923 ext4_msg(sb, KERN_ERR, "insufficient memory");
4924 goto failed_mount6;
4925 }
4926
4927 if (ext4_has_feature_flex_bg(sb))
4928 if (!ext4_fill_flex_info(sb)) {
4929 ext4_msg(sb, KERN_ERR,
4930 "unable to initialize "
4931 "flex_bg meta info!");
4932 ret = -ENOMEM;
4933 goto failed_mount6;
4934 }
4935
4936 err = ext4_register_li_request(sb, first_not_zeroed);
4937 if (err)
4938 goto failed_mount6;
4939
4940 err = ext4_register_sysfs(sb);
4941 if (err)
4942 goto failed_mount7;
4943
4944 err = ext4_init_orphan_info(sb);
4945 if (err)
4946 goto failed_mount8;
4947 #ifdef CONFIG_QUOTA
4948 /* Enable quota usage during mount. */
4949 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4950 err = ext4_enable_quotas(sb);
4951 if (err)
4952 goto failed_mount9;
4953 }
4954 #endif /* CONFIG_QUOTA */
4955
4956 /*
4957 * Save the original bdev mapping's wb_err value which could be
4958 * used to detect the metadata async write error.
4959 */
4960 spin_lock_init(&sbi->s_bdev_wb_lock);
4961 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
4962 &sbi->s_bdev_wb_err);
4963 sb->s_bdev->bd_super = sb;
4964 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4965 ext4_orphan_cleanup(sb, es);
4966 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4967 /*
4968 * Update the checksum after updating free space/inode counters and
4969 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
4970 * checksum in the buffer cache until it is written out and
4971 * e2fsprogs programs trying to open a file system immediately
4972 * after it is mounted can fail.
4973 */
4974 ext4_superblock_csum_set(sb);
4975 if (needs_recovery) {
4976 ext4_msg(sb, KERN_INFO, "recovery complete");
4977 err = ext4_mark_recovery_complete(sb, es);
4978 if (err)
4979 goto failed_mount10;
4980 }
4981 if (EXT4_SB(sb)->s_journal) {
4982 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4983 descr = " journalled data mode";
4984 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4985 descr = " ordered data mode";
4986 else
4987 descr = " writeback data mode";
4988 } else
4989 descr = "out journal";
4990
4991 if (test_opt(sb, DISCARD)) {
4992 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4993 if (!blk_queue_discard(q))
4994 ext4_msg(sb, KERN_WARNING,
4995 "mounting with \"discard\" option, but "
4996 "the device does not support discard");
4997 }
4998
4999 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5000 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
5001 "Opts: %.*s%s%s. Quota mode: %s.", descr,
5002 (int) sizeof(sbi->s_es->s_mount_opts),
5003 sbi->s_es->s_mount_opts,
5004 *sbi->s_es->s_mount_opts ? "; " : "", orig_data,
5005 ext4_quota_mode(sb));
5006
5007 if (es->s_error_count)
5008 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5009
5010 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5011 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5012 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5013 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5014 atomic_set(&sbi->s_warning_count, 0);
5015 atomic_set(&sbi->s_msg_count, 0);
5016
5017 kfree(orig_data);
5018 return 0;
5019
5020 cantfind_ext4:
5021 if (!silent)
5022 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5023 goto failed_mount;
5024
5025 failed_mount10:
5026 ext4_quota_off_umount(sb);
5027 failed_mount9: __maybe_unused
5028 ext4_release_orphan_info(sb);
5029 failed_mount8:
5030 ext4_unregister_sysfs(sb);
5031 kobject_put(&sbi->s_kobj);
5032 failed_mount7:
5033 ext4_unregister_li_request(sb);
5034 failed_mount6:
5035 ext4_mb_release(sb);
5036 rcu_read_lock();
5037 flex_groups = rcu_dereference(sbi->s_flex_groups);
5038 if (flex_groups) {
5039 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
5040 kvfree(flex_groups[i]);
5041 kvfree(flex_groups);
5042 }
5043 rcu_read_unlock();
5044 percpu_counter_destroy(&sbi->s_freeclusters_counter);
5045 percpu_counter_destroy(&sbi->s_freeinodes_counter);
5046 percpu_counter_destroy(&sbi->s_dirs_counter);
5047 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
5048 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
5049 percpu_free_rwsem(&sbi->s_writepages_rwsem);
5050 failed_mount5:
5051 ext4_ext_release(sb);
5052 ext4_release_system_zone(sb);
5053 failed_mount4a:
5054 dput(sb->s_root);
5055 sb->s_root = NULL;
5056 failed_mount4:
5057 ext4_msg(sb, KERN_ERR, "mount failed");
5058 if (EXT4_SB(sb)->rsv_conversion_wq)
5059 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5060 failed_mount_wq:
5061 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5062 sbi->s_ea_inode_cache = NULL;
5063
5064 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5065 sbi->s_ea_block_cache = NULL;
5066
5067 if (sbi->s_journal) {
5068 /* flush s_error_work before journal destroy. */
5069 flush_work(&sbi->s_error_work);
5070 jbd2_journal_destroy(sbi->s_journal);
5071 sbi->s_journal = NULL;
5072 }
5073 failed_mount3a:
5074 ext4_es_unregister_shrinker(sbi);
5075 failed_mount3:
5076 /* flush s_error_work before sbi destroy */
5077 flush_work(&sbi->s_error_work);
5078 del_timer_sync(&sbi->s_err_report);
5079 ext4_stop_mmpd(sbi);
5080 failed_mount2:
5081 rcu_read_lock();
5082 group_desc = rcu_dereference(sbi->s_group_desc);
5083 for (i = 0; i < db_count; i++)
5084 brelse(group_desc[i]);
5085 kvfree(group_desc);
5086 rcu_read_unlock();
5087 failed_mount:
5088 if (sbi->s_chksum_driver)
5089 crypto_free_shash(sbi->s_chksum_driver);
5090
5091 #ifdef CONFIG_UNICODE
5092 utf8_unload(sb->s_encoding);
5093 #endif
5094
5095 #ifdef CONFIG_QUOTA
5096 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5097 kfree(get_qf_name(sb, sbi, i));
5098 #endif
5099 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5100 /* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */
5101 brelse(bh);
5102 ext4_blkdev_remove(sbi);
5103 out_fail:
5104 invalidate_bdev(sb->s_bdev);
5105 sb->s_fs_info = NULL;
5106 kfree(sbi->s_blockgroup_lock);
5107 out_free_base:
5108 kfree(sbi);
5109 kfree(orig_data);
5110 fs_put_dax(dax_dev);
5111 return err ? err : ret;
5112 }
5113
5114 /*
5115 * Setup any per-fs journal parameters now. We'll do this both on
5116 * initial mount, once the journal has been initialised but before we've
5117 * done any recovery; and again on any subsequent remount.
5118 */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)5119 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5120 {
5121 struct ext4_sb_info *sbi = EXT4_SB(sb);
5122
5123 journal->j_commit_interval = sbi->s_commit_interval;
5124 journal->j_min_batch_time = sbi->s_min_batch_time;
5125 journal->j_max_batch_time = sbi->s_max_batch_time;
5126 ext4_fc_init(sb, journal);
5127
5128 write_lock(&journal->j_state_lock);
5129 if (test_opt(sb, BARRIER))
5130 journal->j_flags |= JBD2_BARRIER;
5131 else
5132 journal->j_flags &= ~JBD2_BARRIER;
5133 if (test_opt(sb, DATA_ERR_ABORT))
5134 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5135 else
5136 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5137 write_unlock(&journal->j_state_lock);
5138 }
5139
ext4_get_journal_inode(struct super_block * sb,unsigned int journal_inum)5140 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5141 unsigned int journal_inum)
5142 {
5143 struct inode *journal_inode;
5144
5145 /*
5146 * Test for the existence of a valid inode on disk. Bad things
5147 * happen if we iget() an unused inode, as the subsequent iput()
5148 * will try to delete it.
5149 */
5150 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5151 if (IS_ERR(journal_inode)) {
5152 ext4_msg(sb, KERN_ERR, "no journal found");
5153 return NULL;
5154 }
5155 if (!journal_inode->i_nlink) {
5156 make_bad_inode(journal_inode);
5157 iput(journal_inode);
5158 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5159 return NULL;
5160 }
5161
5162 ext4_debug("Journal inode found at %p: %lld bytes\n",
5163 journal_inode, journal_inode->i_size);
5164 if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5165 ext4_msg(sb, KERN_ERR, "invalid journal inode");
5166 iput(journal_inode);
5167 return NULL;
5168 }
5169 return journal_inode;
5170 }
5171
ext4_get_journal(struct super_block * sb,unsigned int journal_inum)5172 static journal_t *ext4_get_journal(struct super_block *sb,
5173 unsigned int journal_inum)
5174 {
5175 struct inode *journal_inode;
5176 journal_t *journal;
5177
5178 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5179 return NULL;
5180
5181 journal_inode = ext4_get_journal_inode(sb, journal_inum);
5182 if (!journal_inode)
5183 return NULL;
5184
5185 journal = jbd2_journal_init_inode(journal_inode);
5186 if (!journal) {
5187 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5188 iput(journal_inode);
5189 return NULL;
5190 }
5191 journal->j_private = sb;
5192 ext4_init_journal_params(sb, journal);
5193 return journal;
5194 }
5195
ext4_get_dev_journal(struct super_block * sb,dev_t j_dev)5196 static journal_t *ext4_get_dev_journal(struct super_block *sb,
5197 dev_t j_dev)
5198 {
5199 struct buffer_head *bh;
5200 journal_t *journal;
5201 ext4_fsblk_t start;
5202 ext4_fsblk_t len;
5203 int hblock, blocksize;
5204 ext4_fsblk_t sb_block;
5205 unsigned long offset;
5206 struct ext4_super_block *es;
5207 struct block_device *bdev;
5208
5209 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5210 return NULL;
5211
5212 bdev = ext4_blkdev_get(j_dev, sb);
5213 if (bdev == NULL)
5214 return NULL;
5215
5216 blocksize = sb->s_blocksize;
5217 hblock = bdev_logical_block_size(bdev);
5218 if (blocksize < hblock) {
5219 ext4_msg(sb, KERN_ERR,
5220 "blocksize too small for journal device");
5221 goto out_bdev;
5222 }
5223
5224 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5225 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5226 set_blocksize(bdev, blocksize);
5227 if (!(bh = __bread(bdev, sb_block, blocksize))) {
5228 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5229 "external journal");
5230 goto out_bdev;
5231 }
5232
5233 es = (struct ext4_super_block *) (bh->b_data + offset);
5234 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5235 !(le32_to_cpu(es->s_feature_incompat) &
5236 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5237 ext4_msg(sb, KERN_ERR, "external journal has "
5238 "bad superblock");
5239 brelse(bh);
5240 goto out_bdev;
5241 }
5242
5243 if ((le32_to_cpu(es->s_feature_ro_compat) &
5244 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5245 es->s_checksum != ext4_superblock_csum(sb, es)) {
5246 ext4_msg(sb, KERN_ERR, "external journal has "
5247 "corrupt superblock");
5248 brelse(bh);
5249 goto out_bdev;
5250 }
5251
5252 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5253 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5254 brelse(bh);
5255 goto out_bdev;
5256 }
5257
5258 len = ext4_blocks_count(es);
5259 start = sb_block + 1;
5260 brelse(bh); /* we're done with the superblock */
5261
5262 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5263 start, len, blocksize);
5264 if (!journal) {
5265 ext4_msg(sb, KERN_ERR, "failed to create device journal");
5266 goto out_bdev;
5267 }
5268 journal->j_private = sb;
5269 if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
5270 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5271 goto out_journal;
5272 }
5273 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5274 ext4_msg(sb, KERN_ERR, "External journal has more than one "
5275 "user (unsupported) - %d",
5276 be32_to_cpu(journal->j_superblock->s_nr_users));
5277 goto out_journal;
5278 }
5279 EXT4_SB(sb)->s_journal_bdev = bdev;
5280 ext4_init_journal_params(sb, journal);
5281 return journal;
5282
5283 out_journal:
5284 jbd2_journal_destroy(journal);
5285 out_bdev:
5286 ext4_blkdev_put(bdev);
5287 return NULL;
5288 }
5289
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)5290 static int ext4_load_journal(struct super_block *sb,
5291 struct ext4_super_block *es,
5292 unsigned long journal_devnum)
5293 {
5294 journal_t *journal;
5295 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5296 dev_t journal_dev;
5297 int err = 0;
5298 int really_read_only;
5299 int journal_dev_ro;
5300
5301 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5302 return -EFSCORRUPTED;
5303
5304 if (journal_devnum &&
5305 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5306 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5307 "numbers have changed");
5308 journal_dev = new_decode_dev(journal_devnum);
5309 } else
5310 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5311
5312 if (journal_inum && journal_dev) {
5313 ext4_msg(sb, KERN_ERR,
5314 "filesystem has both journal inode and journal device!");
5315 return -EINVAL;
5316 }
5317
5318 if (journal_inum) {
5319 journal = ext4_get_journal(sb, journal_inum);
5320 if (!journal)
5321 return -EINVAL;
5322 } else {
5323 journal = ext4_get_dev_journal(sb, journal_dev);
5324 if (!journal)
5325 return -EINVAL;
5326 }
5327
5328 journal_dev_ro = bdev_read_only(journal->j_dev);
5329 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5330
5331 if (journal_dev_ro && !sb_rdonly(sb)) {
5332 ext4_msg(sb, KERN_ERR,
5333 "journal device read-only, try mounting with '-o ro'");
5334 err = -EROFS;
5335 goto err_out;
5336 }
5337
5338 /*
5339 * Are we loading a blank journal or performing recovery after a
5340 * crash? For recovery, we need to check in advance whether we
5341 * can get read-write access to the device.
5342 */
5343 if (ext4_has_feature_journal_needs_recovery(sb)) {
5344 if (sb_rdonly(sb)) {
5345 ext4_msg(sb, KERN_INFO, "INFO: recovery "
5346 "required on readonly filesystem");
5347 if (really_read_only) {
5348 ext4_msg(sb, KERN_ERR, "write access "
5349 "unavailable, cannot proceed "
5350 "(try mounting with noload)");
5351 err = -EROFS;
5352 goto err_out;
5353 }
5354 ext4_msg(sb, KERN_INFO, "write access will "
5355 "be enabled during recovery");
5356 }
5357 }
5358
5359 if (!(journal->j_flags & JBD2_BARRIER))
5360 ext4_msg(sb, KERN_INFO, "barriers disabled");
5361
5362 if (!ext4_has_feature_journal_needs_recovery(sb))
5363 err = jbd2_journal_wipe(journal, !really_read_only);
5364 if (!err) {
5365 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5366 if (save)
5367 memcpy(save, ((char *) es) +
5368 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5369 err = jbd2_journal_load(journal);
5370 if (save)
5371 memcpy(((char *) es) + EXT4_S_ERR_START,
5372 save, EXT4_S_ERR_LEN);
5373 kfree(save);
5374 }
5375
5376 if (err) {
5377 ext4_msg(sb, KERN_ERR, "error loading journal");
5378 goto err_out;
5379 }
5380
5381 EXT4_SB(sb)->s_journal = journal;
5382 err = ext4_clear_journal_err(sb, es);
5383 if (err) {
5384 EXT4_SB(sb)->s_journal = NULL;
5385 jbd2_journal_destroy(journal);
5386 return err;
5387 }
5388
5389 if (!really_read_only && journal_devnum &&
5390 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5391 es->s_journal_dev = cpu_to_le32(journal_devnum);
5392 ext4_commit_super(sb);
5393 }
5394 if (!really_read_only && journal_inum &&
5395 journal_inum != le32_to_cpu(es->s_journal_inum)) {
5396 es->s_journal_inum = cpu_to_le32(journal_inum);
5397 ext4_commit_super(sb);
5398 }
5399
5400 return 0;
5401
5402 err_out:
5403 jbd2_journal_destroy(journal);
5404 return err;
5405 }
5406
5407 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
ext4_update_super(struct super_block * sb)5408 static void ext4_update_super(struct super_block *sb)
5409 {
5410 struct ext4_sb_info *sbi = EXT4_SB(sb);
5411 struct ext4_super_block *es = sbi->s_es;
5412 struct buffer_head *sbh = sbi->s_sbh;
5413
5414 lock_buffer(sbh);
5415 /*
5416 * If the file system is mounted read-only, don't update the
5417 * superblock write time. This avoids updating the superblock
5418 * write time when we are mounting the root file system
5419 * read/only but we need to replay the journal; at that point,
5420 * for people who are east of GMT and who make their clock
5421 * tick in localtime for Windows bug-for-bug compatibility,
5422 * the clock is set in the future, and this will cause e2fsck
5423 * to complain and force a full file system check.
5424 */
5425 if (!(sb->s_flags & SB_RDONLY))
5426 ext4_update_tstamp(es, s_wtime);
5427 es->s_kbytes_written =
5428 cpu_to_le64(sbi->s_kbytes_written +
5429 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
5430 sbi->s_sectors_written_start) >> 1));
5431 if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
5432 ext4_free_blocks_count_set(es,
5433 EXT4_C2B(sbi, percpu_counter_sum_positive(
5434 &sbi->s_freeclusters_counter)));
5435 if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
5436 es->s_free_inodes_count =
5437 cpu_to_le32(percpu_counter_sum_positive(
5438 &sbi->s_freeinodes_counter));
5439 /* Copy error information to the on-disk superblock */
5440 spin_lock(&sbi->s_error_lock);
5441 if (sbi->s_add_error_count > 0) {
5442 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5443 if (!es->s_first_error_time && !es->s_first_error_time_hi) {
5444 __ext4_update_tstamp(&es->s_first_error_time,
5445 &es->s_first_error_time_hi,
5446 sbi->s_first_error_time);
5447 strncpy(es->s_first_error_func, sbi->s_first_error_func,
5448 sizeof(es->s_first_error_func));
5449 es->s_first_error_line =
5450 cpu_to_le32(sbi->s_first_error_line);
5451 es->s_first_error_ino =
5452 cpu_to_le32(sbi->s_first_error_ino);
5453 es->s_first_error_block =
5454 cpu_to_le64(sbi->s_first_error_block);
5455 es->s_first_error_errcode =
5456 ext4_errno_to_code(sbi->s_first_error_code);
5457 }
5458 __ext4_update_tstamp(&es->s_last_error_time,
5459 &es->s_last_error_time_hi,
5460 sbi->s_last_error_time);
5461 strncpy(es->s_last_error_func, sbi->s_last_error_func,
5462 sizeof(es->s_last_error_func));
5463 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
5464 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
5465 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
5466 es->s_last_error_errcode =
5467 ext4_errno_to_code(sbi->s_last_error_code);
5468 /*
5469 * Start the daily error reporting function if it hasn't been
5470 * started already
5471 */
5472 if (!es->s_error_count)
5473 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
5474 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
5475 sbi->s_add_error_count = 0;
5476 }
5477 spin_unlock(&sbi->s_error_lock);
5478
5479 ext4_superblock_csum_set(sb);
5480 unlock_buffer(sbh);
5481 }
5482
ext4_commit_super(struct super_block * sb)5483 static int ext4_commit_super(struct super_block *sb)
5484 {
5485 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5486 int error = 0;
5487
5488 if (!sbh)
5489 return -EINVAL;
5490 if (block_device_ejected(sb))
5491 return -ENODEV;
5492
5493 ext4_update_super(sb);
5494
5495 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5496 /*
5497 * Oh, dear. A previous attempt to write the
5498 * superblock failed. This could happen because the
5499 * USB device was yanked out. Or it could happen to
5500 * be a transient write error and maybe the block will
5501 * be remapped. Nothing we can do but to retry the
5502 * write and hope for the best.
5503 */
5504 ext4_msg(sb, KERN_ERR, "previous I/O error to "
5505 "superblock detected");
5506 clear_buffer_write_io_error(sbh);
5507 set_buffer_uptodate(sbh);
5508 }
5509 BUFFER_TRACE(sbh, "marking dirty");
5510 mark_buffer_dirty(sbh);
5511 error = __sync_dirty_buffer(sbh,
5512 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5513 if (buffer_write_io_error(sbh)) {
5514 ext4_msg(sb, KERN_ERR, "I/O error while writing "
5515 "superblock");
5516 clear_buffer_write_io_error(sbh);
5517 set_buffer_uptodate(sbh);
5518 }
5519 return error;
5520 }
5521
5522 /*
5523 * Have we just finished recovery? If so, and if we are mounting (or
5524 * remounting) the filesystem readonly, then we will end up with a
5525 * consistent fs on disk. Record that fact.
5526 */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)5527 static int ext4_mark_recovery_complete(struct super_block *sb,
5528 struct ext4_super_block *es)
5529 {
5530 int err;
5531 journal_t *journal = EXT4_SB(sb)->s_journal;
5532
5533 if (!ext4_has_feature_journal(sb)) {
5534 if (journal != NULL) {
5535 ext4_error(sb, "Journal got removed while the fs was "
5536 "mounted!");
5537 return -EFSCORRUPTED;
5538 }
5539 return 0;
5540 }
5541 jbd2_journal_lock_updates(journal);
5542 err = jbd2_journal_flush(journal, 0);
5543 if (err < 0)
5544 goto out;
5545
5546 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
5547 ext4_has_feature_orphan_present(sb))) {
5548 if (!ext4_orphan_file_empty(sb)) {
5549 ext4_error(sb, "Orphan file not empty on read-only fs.");
5550 err = -EFSCORRUPTED;
5551 goto out;
5552 }
5553 ext4_clear_feature_journal_needs_recovery(sb);
5554 ext4_clear_feature_orphan_present(sb);
5555 ext4_commit_super(sb);
5556 }
5557 out:
5558 jbd2_journal_unlock_updates(journal);
5559 return err;
5560 }
5561
5562 /*
5563 * If we are mounting (or read-write remounting) a filesystem whose journal
5564 * has recorded an error from a previous lifetime, move that error to the
5565 * main filesystem now.
5566 */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)5567 static int ext4_clear_journal_err(struct super_block *sb,
5568 struct ext4_super_block *es)
5569 {
5570 journal_t *journal;
5571 int j_errno;
5572 const char *errstr;
5573
5574 if (!ext4_has_feature_journal(sb)) {
5575 ext4_error(sb, "Journal got removed while the fs was mounted!");
5576 return -EFSCORRUPTED;
5577 }
5578
5579 journal = EXT4_SB(sb)->s_journal;
5580
5581 /*
5582 * Now check for any error status which may have been recorded in the
5583 * journal by a prior ext4_error() or ext4_abort()
5584 */
5585
5586 j_errno = jbd2_journal_errno(journal);
5587 if (j_errno) {
5588 char nbuf[16];
5589
5590 errstr = ext4_decode_error(sb, j_errno, nbuf);
5591 ext4_warning(sb, "Filesystem error recorded "
5592 "from previous mount: %s", errstr);
5593 ext4_warning(sb, "Marking fs in need of filesystem check.");
5594
5595 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5596 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5597 ext4_commit_super(sb);
5598
5599 jbd2_journal_clear_err(journal);
5600 jbd2_journal_update_sb_errno(journal);
5601 }
5602 return 0;
5603 }
5604
5605 /*
5606 * Force the running and committing transactions to commit,
5607 * and wait on the commit.
5608 */
ext4_force_commit(struct super_block * sb)5609 int ext4_force_commit(struct super_block *sb)
5610 {
5611 journal_t *journal;
5612
5613 if (sb_rdonly(sb))
5614 return 0;
5615
5616 journal = EXT4_SB(sb)->s_journal;
5617 return ext4_journal_force_commit(journal);
5618 }
5619
ext4_sync_fs(struct super_block * sb,int wait)5620 static int ext4_sync_fs(struct super_block *sb, int wait)
5621 {
5622 int ret = 0;
5623 tid_t target;
5624 bool needs_barrier = false;
5625 struct ext4_sb_info *sbi = EXT4_SB(sb);
5626
5627 if (unlikely(ext4_forced_shutdown(sbi)))
5628 return 0;
5629
5630 trace_ext4_sync_fs(sb, wait);
5631 flush_workqueue(sbi->rsv_conversion_wq);
5632 /*
5633 * Writeback quota in non-journalled quota case - journalled quota has
5634 * no dirty dquots
5635 */
5636 dquot_writeback_dquots(sb, -1);
5637 /*
5638 * Data writeback is possible w/o journal transaction, so barrier must
5639 * being sent at the end of the function. But we can skip it if
5640 * transaction_commit will do it for us.
5641 */
5642 if (sbi->s_journal) {
5643 target = jbd2_get_latest_transaction(sbi->s_journal);
5644 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5645 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5646 needs_barrier = true;
5647
5648 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5649 if (wait)
5650 ret = jbd2_log_wait_commit(sbi->s_journal,
5651 target);
5652 }
5653 } else if (wait && test_opt(sb, BARRIER))
5654 needs_barrier = true;
5655 if (needs_barrier) {
5656 int err;
5657 err = blkdev_issue_flush(sb->s_bdev);
5658 if (!ret)
5659 ret = err;
5660 }
5661
5662 return ret;
5663 }
5664
5665 /*
5666 * LVM calls this function before a (read-only) snapshot is created. This
5667 * gives us a chance to flush the journal completely and mark the fs clean.
5668 *
5669 * Note that only this function cannot bring a filesystem to be in a clean
5670 * state independently. It relies on upper layer to stop all data & metadata
5671 * modifications.
5672 */
ext4_freeze(struct super_block * sb)5673 static int ext4_freeze(struct super_block *sb)
5674 {
5675 int error = 0;
5676 journal_t *journal;
5677
5678 if (sb_rdonly(sb))
5679 return 0;
5680
5681 journal = EXT4_SB(sb)->s_journal;
5682
5683 if (journal) {
5684 /* Now we set up the journal barrier. */
5685 jbd2_journal_lock_updates(journal);
5686
5687 /*
5688 * Don't clear the needs_recovery flag if we failed to
5689 * flush the journal.
5690 */
5691 error = jbd2_journal_flush(journal, 0);
5692 if (error < 0)
5693 goto out;
5694
5695 /* Journal blocked and flushed, clear needs_recovery flag. */
5696 ext4_clear_feature_journal_needs_recovery(sb);
5697 if (ext4_orphan_file_empty(sb))
5698 ext4_clear_feature_orphan_present(sb);
5699 }
5700
5701 error = ext4_commit_super(sb);
5702 out:
5703 if (journal)
5704 /* we rely on upper layer to stop further updates */
5705 jbd2_journal_unlock_updates(journal);
5706 return error;
5707 }
5708
5709 /*
5710 * Called by LVM after the snapshot is done. We need to reset the RECOVER
5711 * flag here, even though the filesystem is not technically dirty yet.
5712 */
ext4_unfreeze(struct super_block * sb)5713 static int ext4_unfreeze(struct super_block *sb)
5714 {
5715 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5716 return 0;
5717
5718 if (EXT4_SB(sb)->s_journal) {
5719 /* Reset the needs_recovery flag before the fs is unlocked. */
5720 ext4_set_feature_journal_needs_recovery(sb);
5721 if (ext4_has_feature_orphan_file(sb))
5722 ext4_set_feature_orphan_present(sb);
5723 }
5724
5725 ext4_commit_super(sb);
5726 return 0;
5727 }
5728
5729 /*
5730 * Structure to save mount options for ext4_remount's benefit
5731 */
5732 struct ext4_mount_options {
5733 unsigned long s_mount_opt;
5734 unsigned long s_mount_opt2;
5735 kuid_t s_resuid;
5736 kgid_t s_resgid;
5737 unsigned long s_commit_interval;
5738 u32 s_min_batch_time, s_max_batch_time;
5739 #ifdef CONFIG_QUOTA
5740 int s_jquota_fmt;
5741 char *s_qf_names[EXT4_MAXQUOTAS];
5742 #endif
5743 };
5744
ext4_remount(struct super_block * sb,int * flags,char * data)5745 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5746 {
5747 struct ext4_super_block *es;
5748 struct ext4_sb_info *sbi = EXT4_SB(sb);
5749 unsigned long old_sb_flags, vfs_flags;
5750 struct ext4_mount_options old_opts;
5751 ext4_group_t g;
5752 int err = 0;
5753 #ifdef CONFIG_QUOTA
5754 int enable_quota = 0;
5755 int i, j;
5756 char *to_free[EXT4_MAXQUOTAS];
5757 #endif
5758 char *orig_data = kstrdup(data, GFP_KERNEL);
5759 struct ext4_parsed_options parsed_opts;
5760
5761 parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5762 parsed_opts.journal_devnum = 0;
5763
5764 if (data && !orig_data)
5765 return -ENOMEM;
5766
5767 /* Store the original options */
5768 old_sb_flags = sb->s_flags;
5769 old_opts.s_mount_opt = sbi->s_mount_opt;
5770 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5771 old_opts.s_resuid = sbi->s_resuid;
5772 old_opts.s_resgid = sbi->s_resgid;
5773 old_opts.s_commit_interval = sbi->s_commit_interval;
5774 old_opts.s_min_batch_time = sbi->s_min_batch_time;
5775 old_opts.s_max_batch_time = sbi->s_max_batch_time;
5776 #ifdef CONFIG_QUOTA
5777 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5778 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5779 if (sbi->s_qf_names[i]) {
5780 char *qf_name = get_qf_name(sb, sbi, i);
5781
5782 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5783 if (!old_opts.s_qf_names[i]) {
5784 for (j = 0; j < i; j++)
5785 kfree(old_opts.s_qf_names[j]);
5786 kfree(orig_data);
5787 return -ENOMEM;
5788 }
5789 } else
5790 old_opts.s_qf_names[i] = NULL;
5791 #endif
5792 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5793 parsed_opts.journal_ioprio =
5794 sbi->s_journal->j_task->io_context->ioprio;
5795
5796 /*
5797 * Some options can be enabled by ext4 and/or by VFS mount flag
5798 * either way we need to make sure it matches in both *flags and
5799 * s_flags. Copy those selected flags from *flags to s_flags
5800 */
5801 vfs_flags = SB_LAZYTIME | SB_I_VERSION;
5802 sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags);
5803
5804 if (!parse_options(data, sb, &parsed_opts, 1)) {
5805 err = -EINVAL;
5806 goto restore_opts;
5807 }
5808
5809 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5810 test_opt(sb, JOURNAL_CHECKSUM)) {
5811 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5812 "during remount not supported; ignoring");
5813 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5814 }
5815
5816 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5817 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5818 ext4_msg(sb, KERN_ERR, "can't mount with "
5819 "both data=journal and delalloc");
5820 err = -EINVAL;
5821 goto restore_opts;
5822 }
5823 if (test_opt(sb, DIOREAD_NOLOCK)) {
5824 ext4_msg(sb, KERN_ERR, "can't mount with "
5825 "both data=journal and dioread_nolock");
5826 err = -EINVAL;
5827 goto restore_opts;
5828 }
5829 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5830 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5831 ext4_msg(sb, KERN_ERR, "can't mount with "
5832 "journal_async_commit in data=ordered mode");
5833 err = -EINVAL;
5834 goto restore_opts;
5835 }
5836 }
5837
5838 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5839 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5840 err = -EINVAL;
5841 goto restore_opts;
5842 }
5843
5844 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5845 ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user");
5846
5847 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5848 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5849
5850 es = sbi->s_es;
5851
5852 if (sbi->s_journal) {
5853 ext4_init_journal_params(sb, sbi->s_journal);
5854 set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio);
5855 }
5856
5857 /* Flush outstanding errors before changing fs state */
5858 flush_work(&sbi->s_error_work);
5859
5860 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5861 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) {
5862 err = -EROFS;
5863 goto restore_opts;
5864 }
5865
5866 if (*flags & SB_RDONLY) {
5867 err = sync_filesystem(sb);
5868 if (err < 0)
5869 goto restore_opts;
5870 err = dquot_suspend(sb, -1);
5871 if (err < 0)
5872 goto restore_opts;
5873
5874 /*
5875 * First of all, the unconditional stuff we have to do
5876 * to disable replay of the journal when we next remount
5877 */
5878 sb->s_flags |= SB_RDONLY;
5879
5880 /*
5881 * OK, test if we are remounting a valid rw partition
5882 * readonly, and if so set the rdonly flag and then
5883 * mark the partition as valid again.
5884 */
5885 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5886 (sbi->s_mount_state & EXT4_VALID_FS))
5887 es->s_state = cpu_to_le16(sbi->s_mount_state);
5888
5889 if (sbi->s_journal) {
5890 /*
5891 * We let remount-ro finish even if marking fs
5892 * as clean failed...
5893 */
5894 ext4_mark_recovery_complete(sb, es);
5895 }
5896 } else {
5897 /* Make sure we can mount this feature set readwrite */
5898 if (ext4_has_feature_readonly(sb) ||
5899 !ext4_feature_set_ok(sb, 0)) {
5900 err = -EROFS;
5901 goto restore_opts;
5902 }
5903 /*
5904 * Make sure the group descriptor checksums
5905 * are sane. If they aren't, refuse to remount r/w.
5906 */
5907 for (g = 0; g < sbi->s_groups_count; g++) {
5908 struct ext4_group_desc *gdp =
5909 ext4_get_group_desc(sb, g, NULL);
5910
5911 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5912 ext4_msg(sb, KERN_ERR,
5913 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5914 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5915 le16_to_cpu(gdp->bg_checksum));
5916 err = -EFSBADCRC;
5917 goto restore_opts;
5918 }
5919 }
5920
5921 /*
5922 * If we have an unprocessed orphan list hanging
5923 * around from a previously readonly bdev mount,
5924 * require a full umount/remount for now.
5925 */
5926 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
5927 ext4_msg(sb, KERN_WARNING, "Couldn't "
5928 "remount RDWR because of unprocessed "
5929 "orphan inode list. Please "
5930 "umount/remount instead");
5931 err = -EINVAL;
5932 goto restore_opts;
5933 }
5934
5935 /*
5936 * Mounting a RDONLY partition read-write, so reread
5937 * and store the current valid flag. (It may have
5938 * been changed by e2fsck since we originally mounted
5939 * the partition.)
5940 */
5941 if (sbi->s_journal) {
5942 err = ext4_clear_journal_err(sb, es);
5943 if (err)
5944 goto restore_opts;
5945 }
5946 sbi->s_mount_state = (le16_to_cpu(es->s_state) &
5947 ~EXT4_FC_REPLAY);
5948
5949 err = ext4_setup_super(sb, es, 0);
5950 if (err)
5951 goto restore_opts;
5952
5953 sb->s_flags &= ~SB_RDONLY;
5954 if (ext4_has_feature_mmp(sb)) {
5955 err = ext4_multi_mount_protect(sb,
5956 le64_to_cpu(es->s_mmp_block));
5957 if (err)
5958 goto restore_opts;
5959 }
5960 #ifdef CONFIG_QUOTA
5961 enable_quota = 1;
5962 #endif
5963 }
5964 }
5965
5966 /*
5967 * Handle creation of system zone data early because it can fail.
5968 * Releasing of existing data is done when we are sure remount will
5969 * succeed.
5970 */
5971 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
5972 err = ext4_setup_system_zone(sb);
5973 if (err)
5974 goto restore_opts;
5975 }
5976
5977 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
5978 err = ext4_commit_super(sb);
5979 if (err)
5980 goto restore_opts;
5981 }
5982
5983 #ifdef CONFIG_QUOTA
5984 if (enable_quota) {
5985 if (sb_any_quota_suspended(sb))
5986 dquot_resume(sb, -1);
5987 else if (ext4_has_feature_quota(sb)) {
5988 err = ext4_enable_quotas(sb);
5989 if (err)
5990 goto restore_opts;
5991 }
5992 }
5993 /* Release old quota file names */
5994 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5995 kfree(old_opts.s_qf_names[i]);
5996 #endif
5997 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
5998 ext4_release_system_zone(sb);
5999
6000 /*
6001 * Reinitialize lazy itable initialization thread based on
6002 * current settings
6003 */
6004 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6005 ext4_unregister_li_request(sb);
6006 else {
6007 ext4_group_t first_not_zeroed;
6008 first_not_zeroed = ext4_has_uninit_itable(sb);
6009 ext4_register_li_request(sb, first_not_zeroed);
6010 }
6011
6012 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6013 ext4_stop_mmpd(sbi);
6014
6015 /*
6016 * Some options can be enabled by ext4 and/or by VFS mount flag
6017 * either way we need to make sure it matches in both *flags and
6018 * s_flags. Copy those selected flags from s_flags to *flags
6019 */
6020 *flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags);
6021
6022 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s. Quota mode: %s.",
6023 orig_data, ext4_quota_mode(sb));
6024 kfree(orig_data);
6025 return 0;
6026
6027 restore_opts:
6028 /*
6029 * If there was a failing r/w to ro transition, we may need to
6030 * re-enable quota
6031 */
6032 if ((sb->s_flags & SB_RDONLY) && !(old_sb_flags & SB_RDONLY) &&
6033 sb_any_quota_suspended(sb))
6034 dquot_resume(sb, -1);
6035 sb->s_flags = old_sb_flags;
6036 sbi->s_mount_opt = old_opts.s_mount_opt;
6037 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6038 sbi->s_resuid = old_opts.s_resuid;
6039 sbi->s_resgid = old_opts.s_resgid;
6040 sbi->s_commit_interval = old_opts.s_commit_interval;
6041 sbi->s_min_batch_time = old_opts.s_min_batch_time;
6042 sbi->s_max_batch_time = old_opts.s_max_batch_time;
6043 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6044 ext4_release_system_zone(sb);
6045 #ifdef CONFIG_QUOTA
6046 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6047 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6048 to_free[i] = get_qf_name(sb, sbi, i);
6049 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6050 }
6051 synchronize_rcu();
6052 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6053 kfree(to_free[i]);
6054 #endif
6055 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6056 ext4_stop_mmpd(sbi);
6057 kfree(orig_data);
6058 return err;
6059 }
6060
6061 #ifdef CONFIG_QUOTA
ext4_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)6062 static int ext4_statfs_project(struct super_block *sb,
6063 kprojid_t projid, struct kstatfs *buf)
6064 {
6065 struct kqid qid;
6066 struct dquot *dquot;
6067 u64 limit;
6068 u64 curblock;
6069
6070 qid = make_kqid_projid(projid);
6071 dquot = dqget(sb, qid);
6072 if (IS_ERR(dquot))
6073 return PTR_ERR(dquot);
6074 spin_lock(&dquot->dq_dqb_lock);
6075
6076 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6077 dquot->dq_dqb.dqb_bhardlimit);
6078 limit >>= sb->s_blocksize_bits;
6079
6080 if (limit && buf->f_blocks > limit) {
6081 curblock = (dquot->dq_dqb.dqb_curspace +
6082 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6083 buf->f_blocks = limit;
6084 buf->f_bfree = buf->f_bavail =
6085 (buf->f_blocks > curblock) ?
6086 (buf->f_blocks - curblock) : 0;
6087 }
6088
6089 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6090 dquot->dq_dqb.dqb_ihardlimit);
6091 if (limit && buf->f_files > limit) {
6092 buf->f_files = limit;
6093 buf->f_ffree =
6094 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6095 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6096 }
6097
6098 spin_unlock(&dquot->dq_dqb_lock);
6099 dqput(dquot);
6100 return 0;
6101 }
6102 #endif
6103
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)6104 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6105 {
6106 struct super_block *sb = dentry->d_sb;
6107 struct ext4_sb_info *sbi = EXT4_SB(sb);
6108 struct ext4_super_block *es = sbi->s_es;
6109 ext4_fsblk_t overhead = 0, resv_blocks;
6110 s64 bfree;
6111 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6112
6113 if (!test_opt(sb, MINIX_DF))
6114 overhead = sbi->s_overhead;
6115
6116 buf->f_type = EXT4_SUPER_MAGIC;
6117 buf->f_bsize = sb->s_blocksize;
6118 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6119 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6120 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6121 /* prevent underflow in case that few free space is available */
6122 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6123 buf->f_bavail = buf->f_bfree -
6124 (ext4_r_blocks_count(es) + resv_blocks);
6125 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6126 buf->f_bavail = 0;
6127 buf->f_files = le32_to_cpu(es->s_inodes_count);
6128 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6129 buf->f_namelen = EXT4_NAME_LEN;
6130 buf->f_fsid = uuid_to_fsid(es->s_uuid);
6131
6132 #ifdef CONFIG_QUOTA
6133 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6134 sb_has_quota_limits_enabled(sb, PRJQUOTA))
6135 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6136 #endif
6137 return 0;
6138 }
6139
6140
6141 #ifdef CONFIG_QUOTA
6142
6143 /*
6144 * Helper functions so that transaction is started before we acquire dqio_sem
6145 * to keep correct lock ordering of transaction > dqio_sem
6146 */
dquot_to_inode(struct dquot * dquot)6147 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6148 {
6149 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6150 }
6151
ext4_write_dquot(struct dquot * dquot)6152 static int ext4_write_dquot(struct dquot *dquot)
6153 {
6154 int ret, err;
6155 handle_t *handle;
6156 struct inode *inode;
6157
6158 inode = dquot_to_inode(dquot);
6159 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6160 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6161 if (IS_ERR(handle))
6162 return PTR_ERR(handle);
6163 ret = dquot_commit(dquot);
6164 err = ext4_journal_stop(handle);
6165 if (!ret)
6166 ret = err;
6167 return ret;
6168 }
6169
ext4_acquire_dquot(struct dquot * dquot)6170 static int ext4_acquire_dquot(struct dquot *dquot)
6171 {
6172 int ret, err;
6173 handle_t *handle;
6174
6175 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6176 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6177 if (IS_ERR(handle))
6178 return PTR_ERR(handle);
6179 ret = dquot_acquire(dquot);
6180 err = ext4_journal_stop(handle);
6181 if (!ret)
6182 ret = err;
6183 return ret;
6184 }
6185
ext4_release_dquot(struct dquot * dquot)6186 static int ext4_release_dquot(struct dquot *dquot)
6187 {
6188 int ret, err;
6189 handle_t *handle;
6190
6191 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6192 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6193 if (IS_ERR(handle)) {
6194 /* Release dquot anyway to avoid endless cycle in dqput() */
6195 dquot_release(dquot);
6196 return PTR_ERR(handle);
6197 }
6198 ret = dquot_release(dquot);
6199 err = ext4_journal_stop(handle);
6200 if (!ret)
6201 ret = err;
6202 return ret;
6203 }
6204
ext4_mark_dquot_dirty(struct dquot * dquot)6205 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6206 {
6207 struct super_block *sb = dquot->dq_sb;
6208
6209 if (ext4_is_quota_journalled(sb)) {
6210 dquot_mark_dquot_dirty(dquot);
6211 return ext4_write_dquot(dquot);
6212 } else {
6213 return dquot_mark_dquot_dirty(dquot);
6214 }
6215 }
6216
ext4_write_info(struct super_block * sb,int type)6217 static int ext4_write_info(struct super_block *sb, int type)
6218 {
6219 int ret, err;
6220 handle_t *handle;
6221
6222 /* Data block + inode block */
6223 handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6224 if (IS_ERR(handle))
6225 return PTR_ERR(handle);
6226 ret = dquot_commit_info(sb, type);
6227 err = ext4_journal_stop(handle);
6228 if (!ret)
6229 ret = err;
6230 return ret;
6231 }
6232
lockdep_set_quota_inode(struct inode * inode,int subclass)6233 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6234 {
6235 struct ext4_inode_info *ei = EXT4_I(inode);
6236
6237 /* The first argument of lockdep_set_subclass has to be
6238 * *exactly* the same as the argument to init_rwsem() --- in
6239 * this case, in init_once() --- or lockdep gets unhappy
6240 * because the name of the lock is set using the
6241 * stringification of the argument to init_rwsem().
6242 */
6243 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
6244 lockdep_set_subclass(&ei->i_data_sem, subclass);
6245 }
6246
6247 /*
6248 * Standard function to be called on quota_on
6249 */
ext4_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)6250 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6251 const struct path *path)
6252 {
6253 int err;
6254
6255 if (!test_opt(sb, QUOTA))
6256 return -EINVAL;
6257
6258 /* Quotafile not on the same filesystem? */
6259 if (path->dentry->d_sb != sb)
6260 return -EXDEV;
6261
6262 /* Quota already enabled for this file? */
6263 if (IS_NOQUOTA(d_inode(path->dentry)))
6264 return -EBUSY;
6265
6266 /* Journaling quota? */
6267 if (EXT4_SB(sb)->s_qf_names[type]) {
6268 /* Quotafile not in fs root? */
6269 if (path->dentry->d_parent != sb->s_root)
6270 ext4_msg(sb, KERN_WARNING,
6271 "Quota file not on filesystem root. "
6272 "Journaled quota will not work");
6273 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6274 } else {
6275 /*
6276 * Clear the flag just in case mount options changed since
6277 * last time.
6278 */
6279 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6280 }
6281
6282 /*
6283 * When we journal data on quota file, we have to flush journal to see
6284 * all updates to the file when we bypass pagecache...
6285 */
6286 if (EXT4_SB(sb)->s_journal &&
6287 ext4_should_journal_data(d_inode(path->dentry))) {
6288 /*
6289 * We don't need to lock updates but journal_flush() could
6290 * otherwise be livelocked...
6291 */
6292 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6293 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal, 0);
6294 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6295 if (err)
6296 return err;
6297 }
6298
6299 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6300 err = dquot_quota_on(sb, type, format_id, path);
6301 if (!err) {
6302 struct inode *inode = d_inode(path->dentry);
6303 handle_t *handle;
6304
6305 /*
6306 * Set inode flags to prevent userspace from messing with quota
6307 * files. If this fails, we return success anyway since quotas
6308 * are already enabled and this is not a hard failure.
6309 */
6310 inode_lock(inode);
6311 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6312 if (IS_ERR(handle))
6313 goto unlock_inode;
6314 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6315 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6316 S_NOATIME | S_IMMUTABLE);
6317 err = ext4_mark_inode_dirty(handle, inode);
6318 ext4_journal_stop(handle);
6319 unlock_inode:
6320 inode_unlock(inode);
6321 if (err)
6322 dquot_quota_off(sb, type);
6323 }
6324 if (err)
6325 lockdep_set_quota_inode(path->dentry->d_inode,
6326 I_DATA_SEM_NORMAL);
6327 return err;
6328 }
6329
ext4_check_quota_inum(int type,unsigned long qf_inum)6330 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
6331 {
6332 switch (type) {
6333 case USRQUOTA:
6334 return qf_inum == EXT4_USR_QUOTA_INO;
6335 case GRPQUOTA:
6336 return qf_inum == EXT4_GRP_QUOTA_INO;
6337 case PRJQUOTA:
6338 return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
6339 default:
6340 BUG();
6341 }
6342 }
6343
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)6344 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6345 unsigned int flags)
6346 {
6347 int err;
6348 struct inode *qf_inode;
6349 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6350 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6351 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6352 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6353 };
6354
6355 BUG_ON(!ext4_has_feature_quota(sb));
6356
6357 if (!qf_inums[type])
6358 return -EPERM;
6359
6360 if (!ext4_check_quota_inum(type, qf_inums[type])) {
6361 ext4_error(sb, "Bad quota inum: %lu, type: %d",
6362 qf_inums[type], type);
6363 return -EUCLEAN;
6364 }
6365
6366 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6367 if (IS_ERR(qf_inode)) {
6368 ext4_error(sb, "Bad quota inode: %lu, type: %d",
6369 qf_inums[type], type);
6370 return PTR_ERR(qf_inode);
6371 }
6372
6373 /* Don't account quota for quota files to avoid recursion */
6374 qf_inode->i_flags |= S_NOQUOTA;
6375 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6376 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6377 if (err)
6378 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6379 iput(qf_inode);
6380
6381 return err;
6382 }
6383
6384 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)6385 int ext4_enable_quotas(struct super_block *sb)
6386 {
6387 int type, err = 0;
6388 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6389 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6390 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6391 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6392 };
6393 bool quota_mopt[EXT4_MAXQUOTAS] = {
6394 test_opt(sb, USRQUOTA),
6395 test_opt(sb, GRPQUOTA),
6396 test_opt(sb, PRJQUOTA),
6397 };
6398
6399 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6400 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6401 if (qf_inums[type]) {
6402 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6403 DQUOT_USAGE_ENABLED |
6404 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6405 if (err) {
6406 ext4_warning(sb,
6407 "Failed to enable quota tracking "
6408 "(type=%d, err=%d, ino=%lu). "
6409 "Please run e2fsck to fix.", type,
6410 err, qf_inums[type]);
6411 for (type--; type >= 0; type--) {
6412 struct inode *inode;
6413
6414 inode = sb_dqopt(sb)->files[type];
6415 if (inode)
6416 inode = igrab(inode);
6417 dquot_quota_off(sb, type);
6418 if (inode) {
6419 lockdep_set_quota_inode(inode,
6420 I_DATA_SEM_NORMAL);
6421 iput(inode);
6422 }
6423 }
6424
6425 return err;
6426 }
6427 }
6428 }
6429 return 0;
6430 }
6431
ext4_quota_off(struct super_block * sb,int type)6432 static int ext4_quota_off(struct super_block *sb, int type)
6433 {
6434 struct inode *inode = sb_dqopt(sb)->files[type];
6435 handle_t *handle;
6436 int err;
6437
6438 /* Force all delayed allocation blocks to be allocated.
6439 * Caller already holds s_umount sem */
6440 if (test_opt(sb, DELALLOC))
6441 sync_filesystem(sb);
6442
6443 if (!inode || !igrab(inode))
6444 goto out;
6445
6446 err = dquot_quota_off(sb, type);
6447 if (err || ext4_has_feature_quota(sb))
6448 goto out_put;
6449
6450 inode_lock(inode);
6451 /*
6452 * Update modification times of quota files when userspace can
6453 * start looking at them. If we fail, we return success anyway since
6454 * this is not a hard failure and quotas are already disabled.
6455 */
6456 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6457 if (IS_ERR(handle)) {
6458 err = PTR_ERR(handle);
6459 goto out_unlock;
6460 }
6461 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
6462 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
6463 inode->i_mtime = inode->i_ctime = current_time(inode);
6464 err = ext4_mark_inode_dirty(handle, inode);
6465 ext4_journal_stop(handle);
6466 out_unlock:
6467 inode_unlock(inode);
6468 out_put:
6469 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
6470 iput(inode);
6471 return err;
6472 out:
6473 return dquot_quota_off(sb, type);
6474 }
6475
6476 /* Read data from quotafile - avoid pagecache and such because we cannot afford
6477 * acquiring the locks... As quota files are never truncated and quota code
6478 * itself serializes the operations (and no one else should touch the files)
6479 * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)6480 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
6481 size_t len, loff_t off)
6482 {
6483 struct inode *inode = sb_dqopt(sb)->files[type];
6484 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6485 int offset = off & (sb->s_blocksize - 1);
6486 int tocopy;
6487 size_t toread;
6488 struct buffer_head *bh;
6489 loff_t i_size = i_size_read(inode);
6490
6491 if (off > i_size)
6492 return 0;
6493 if (off+len > i_size)
6494 len = i_size-off;
6495 toread = len;
6496 while (toread > 0) {
6497 tocopy = sb->s_blocksize - offset < toread ?
6498 sb->s_blocksize - offset : toread;
6499 bh = ext4_bread(NULL, inode, blk, 0);
6500 if (IS_ERR(bh))
6501 return PTR_ERR(bh);
6502 if (!bh) /* A hole? */
6503 memset(data, 0, tocopy);
6504 else
6505 memcpy(data, bh->b_data+offset, tocopy);
6506 brelse(bh);
6507 offset = 0;
6508 toread -= tocopy;
6509 data += tocopy;
6510 blk++;
6511 }
6512 return len;
6513 }
6514
6515 /* Write to quotafile (we know the transaction is already started and has
6516 * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)6517 static ssize_t ext4_quota_write(struct super_block *sb, int type,
6518 const char *data, size_t len, loff_t off)
6519 {
6520 struct inode *inode = sb_dqopt(sb)->files[type];
6521 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6522 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
6523 int retries = 0;
6524 struct buffer_head *bh;
6525 handle_t *handle = journal_current_handle();
6526
6527 if (!handle) {
6528 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6529 " cancelled because transaction is not started",
6530 (unsigned long long)off, (unsigned long long)len);
6531 return -EIO;
6532 }
6533 /*
6534 * Since we account only one data block in transaction credits,
6535 * then it is impossible to cross a block boundary.
6536 */
6537 if (sb->s_blocksize - offset < len) {
6538 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6539 " cancelled because not block aligned",
6540 (unsigned long long)off, (unsigned long long)len);
6541 return -EIO;
6542 }
6543
6544 do {
6545 bh = ext4_bread(handle, inode, blk,
6546 EXT4_GET_BLOCKS_CREATE |
6547 EXT4_GET_BLOCKS_METADATA_NOFAIL);
6548 } while (PTR_ERR(bh) == -ENOSPC &&
6549 ext4_should_retry_alloc(inode->i_sb, &retries));
6550 if (IS_ERR(bh))
6551 return PTR_ERR(bh);
6552 if (!bh)
6553 goto out;
6554 BUFFER_TRACE(bh, "get write access");
6555 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
6556 if (err) {
6557 brelse(bh);
6558 return err;
6559 }
6560 lock_buffer(bh);
6561 memcpy(bh->b_data+offset, data, len);
6562 flush_dcache_page(bh->b_page);
6563 unlock_buffer(bh);
6564 err = ext4_handle_dirty_metadata(handle, NULL, bh);
6565 brelse(bh);
6566 out:
6567 if (inode->i_size < off + len) {
6568 i_size_write(inode, off + len);
6569 EXT4_I(inode)->i_disksize = inode->i_size;
6570 err2 = ext4_mark_inode_dirty(handle, inode);
6571 if (unlikely(err2 && !err))
6572 err = err2;
6573 }
6574 return err ? err : len;
6575 }
6576 #endif
6577
ext4_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)6578 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6579 const char *dev_name, void *data)
6580 {
6581 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6582 }
6583
6584 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)6585 static inline void register_as_ext2(void)
6586 {
6587 int err = register_filesystem(&ext2_fs_type);
6588 if (err)
6589 printk(KERN_WARNING
6590 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6591 }
6592
unregister_as_ext2(void)6593 static inline void unregister_as_ext2(void)
6594 {
6595 unregister_filesystem(&ext2_fs_type);
6596 }
6597
ext2_feature_set_ok(struct super_block * sb)6598 static inline int ext2_feature_set_ok(struct super_block *sb)
6599 {
6600 if (ext4_has_unknown_ext2_incompat_features(sb))
6601 return 0;
6602 if (sb_rdonly(sb))
6603 return 1;
6604 if (ext4_has_unknown_ext2_ro_compat_features(sb))
6605 return 0;
6606 return 1;
6607 }
6608 #else
register_as_ext2(void)6609 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)6610 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)6611 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6612 #endif
6613
register_as_ext3(void)6614 static inline void register_as_ext3(void)
6615 {
6616 int err = register_filesystem(&ext3_fs_type);
6617 if (err)
6618 printk(KERN_WARNING
6619 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6620 }
6621
unregister_as_ext3(void)6622 static inline void unregister_as_ext3(void)
6623 {
6624 unregister_filesystem(&ext3_fs_type);
6625 }
6626
ext3_feature_set_ok(struct super_block * sb)6627 static inline int ext3_feature_set_ok(struct super_block *sb)
6628 {
6629 if (ext4_has_unknown_ext3_incompat_features(sb))
6630 return 0;
6631 if (!ext4_has_feature_journal(sb))
6632 return 0;
6633 if (sb_rdonly(sb))
6634 return 1;
6635 if (ext4_has_unknown_ext3_ro_compat_features(sb))
6636 return 0;
6637 return 1;
6638 }
6639
6640 static struct file_system_type ext4_fs_type = {
6641 .owner = THIS_MODULE,
6642 .name = "ext4",
6643 .mount = ext4_mount,
6644 .kill_sb = kill_block_super,
6645 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
6646 };
6647 MODULE_ALIAS_FS("ext4");
6648
6649 /* Shared across all ext4 file systems */
6650 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6651
ext4_init_fs(void)6652 static int __init ext4_init_fs(void)
6653 {
6654 int i, err;
6655
6656 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6657 ext4_li_info = NULL;
6658
6659 /* Build-time check for flags consistency */
6660 ext4_check_flag_values();
6661
6662 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6663 init_waitqueue_head(&ext4__ioend_wq[i]);
6664
6665 err = ext4_init_es();
6666 if (err)
6667 return err;
6668
6669 err = ext4_init_pending();
6670 if (err)
6671 goto out7;
6672
6673 err = ext4_init_post_read_processing();
6674 if (err)
6675 goto out6;
6676
6677 err = ext4_init_pageio();
6678 if (err)
6679 goto out5;
6680
6681 err = ext4_init_system_zone();
6682 if (err)
6683 goto out4;
6684
6685 err = ext4_init_sysfs();
6686 if (err)
6687 goto out3;
6688
6689 err = ext4_init_mballoc();
6690 if (err)
6691 goto out2;
6692 err = init_inodecache();
6693 if (err)
6694 goto out1;
6695
6696 err = ext4_fc_init_dentry_cache();
6697 if (err)
6698 goto out05;
6699
6700 register_as_ext3();
6701 register_as_ext2();
6702 err = register_filesystem(&ext4_fs_type);
6703 if (err)
6704 goto out;
6705
6706 return 0;
6707 out:
6708 unregister_as_ext2();
6709 unregister_as_ext3();
6710 ext4_fc_destroy_dentry_cache();
6711 out05:
6712 destroy_inodecache();
6713 out1:
6714 ext4_exit_mballoc();
6715 out2:
6716 ext4_exit_sysfs();
6717 out3:
6718 ext4_exit_system_zone();
6719 out4:
6720 ext4_exit_pageio();
6721 out5:
6722 ext4_exit_post_read_processing();
6723 out6:
6724 ext4_exit_pending();
6725 out7:
6726 ext4_exit_es();
6727
6728 return err;
6729 }
6730
ext4_exit_fs(void)6731 static void __exit ext4_exit_fs(void)
6732 {
6733 ext4_destroy_lazyinit_thread();
6734 unregister_as_ext2();
6735 unregister_as_ext3();
6736 unregister_filesystem(&ext4_fs_type);
6737 ext4_fc_destroy_dentry_cache();
6738 destroy_inodecache();
6739 ext4_exit_mballoc();
6740 ext4_exit_sysfs();
6741 ext4_exit_system_zone();
6742 ext4_exit_pageio();
6743 ext4_exit_post_read_processing();
6744 ext4_exit_es();
6745 ext4_exit_pending();
6746 }
6747
6748 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6749 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6750 MODULE_LICENSE("GPL");
6751 MODULE_IMPORT_NS(ANDROID_GKI_VFS_EXPORT_ONLY);
6752 MODULE_SOFTDEP("pre: crc32c");
6753 module_init(ext4_init_fs)
6754 module_exit(ext4_exit_fs)
6755