1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/node.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "iostat.h"
21 #include <trace/events/f2fs.h>
22
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29
30 /*
31 * Check whether the given nid is within node id range.
32 */
f2fs_check_nid_range(struct f2fs_sb_info * sbi,nid_t nid)33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 set_sbi_flag(sbi, SBI_NEED_FSCK);
37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 __func__, nid);
39 return -EFSCORRUPTED;
40 }
41 return 0;
42 }
43
f2fs_available_free_memory(struct f2fs_sb_info * sbi,int type)44 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
45 {
46 struct f2fs_nm_info *nm_i = NM_I(sbi);
47 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
48 struct sysinfo val;
49 unsigned long avail_ram;
50 unsigned long mem_size = 0;
51 bool res = false;
52
53 if (!nm_i)
54 return true;
55
56 si_meminfo(&val);
57
58 /* only uses low memory */
59 avail_ram = val.totalram - val.totalhigh;
60
61 /*
62 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
63 */
64 if (type == FREE_NIDS) {
65 mem_size = (nm_i->nid_cnt[FREE_NID] *
66 sizeof(struct free_nid)) >> PAGE_SHIFT;
67 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68 } else if (type == NAT_ENTRIES) {
69 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
70 sizeof(struct nat_entry)) >> PAGE_SHIFT;
71 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
72 if (excess_cached_nats(sbi))
73 res = false;
74 } else if (type == DIRTY_DENTS) {
75 if (sbi->sb->s_bdi->wb.dirty_exceeded)
76 return false;
77 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
78 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
79 } else if (type == INO_ENTRIES) {
80 int i;
81
82 for (i = 0; i < MAX_INO_ENTRY; i++)
83 mem_size += sbi->im[i].ino_num *
84 sizeof(struct ino_entry);
85 mem_size >>= PAGE_SHIFT;
86 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
87 } else if (type == EXTENT_CACHE) {
88 mem_size = (atomic_read(&sbi->total_ext_tree) *
89 sizeof(struct extent_tree) +
90 atomic_read(&sbi->total_ext_node) *
91 sizeof(struct extent_node)) >> PAGE_SHIFT;
92 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
93 } else if (type == DISCARD_CACHE) {
94 mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
95 sizeof(struct discard_cmd)) >> PAGE_SHIFT;
96 res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
97 } else if (type == COMPRESS_PAGE) {
98 #ifdef CONFIG_F2FS_FS_COMPRESSION
99 unsigned long free_ram = val.freeram;
100
101 /*
102 * free memory is lower than watermark or cached page count
103 * exceed threshold, deny caching compress page.
104 */
105 res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
106 (COMPRESS_MAPPING(sbi)->nrpages <
107 free_ram * sbi->compress_percent / 100);
108 #else
109 res = false;
110 #endif
111 } else {
112 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
113 return true;
114 }
115 return res;
116 }
117
clear_node_page_dirty(struct page * page)118 static void clear_node_page_dirty(struct page *page)
119 {
120 if (PageDirty(page)) {
121 f2fs_clear_page_cache_dirty_tag(page);
122 clear_page_dirty_for_io(page);
123 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
124 }
125 ClearPageUptodate(page);
126 }
127
get_current_nat_page(struct f2fs_sb_info * sbi,nid_t nid)128 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
129 {
130 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
131 }
132
get_next_nat_page(struct f2fs_sb_info * sbi,nid_t nid)133 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
134 {
135 struct page *src_page;
136 struct page *dst_page;
137 pgoff_t dst_off;
138 void *src_addr;
139 void *dst_addr;
140 struct f2fs_nm_info *nm_i = NM_I(sbi);
141
142 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
143
144 /* get current nat block page with lock */
145 src_page = get_current_nat_page(sbi, nid);
146 if (IS_ERR(src_page))
147 return src_page;
148 dst_page = f2fs_grab_meta_page(sbi, dst_off);
149 f2fs_bug_on(sbi, PageDirty(src_page));
150
151 src_addr = page_address(src_page);
152 dst_addr = page_address(dst_page);
153 memcpy(dst_addr, src_addr, PAGE_SIZE);
154 set_page_dirty(dst_page);
155 f2fs_put_page(src_page, 1);
156
157 set_to_next_nat(nm_i, nid);
158
159 return dst_page;
160 }
161
__alloc_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,bool no_fail)162 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
163 nid_t nid, bool no_fail)
164 {
165 struct nat_entry *new;
166
167 new = f2fs_kmem_cache_alloc(nat_entry_slab,
168 GFP_F2FS_ZERO, no_fail, sbi);
169 if (new) {
170 nat_set_nid(new, nid);
171 nat_reset_flag(new);
172 }
173 return new;
174 }
175
__free_nat_entry(struct nat_entry * e)176 static void __free_nat_entry(struct nat_entry *e)
177 {
178 kmem_cache_free(nat_entry_slab, e);
179 }
180
181 /* must be locked by nat_tree_lock */
__init_nat_entry(struct f2fs_nm_info * nm_i,struct nat_entry * ne,struct f2fs_nat_entry * raw_ne,bool no_fail)182 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
183 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
184 {
185 if (no_fail)
186 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
187 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
188 return NULL;
189
190 if (raw_ne)
191 node_info_from_raw_nat(&ne->ni, raw_ne);
192
193 spin_lock(&nm_i->nat_list_lock);
194 list_add_tail(&ne->list, &nm_i->nat_entries);
195 spin_unlock(&nm_i->nat_list_lock);
196
197 nm_i->nat_cnt[TOTAL_NAT]++;
198 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
199 return ne;
200 }
201
__lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t n)202 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
203 {
204 struct nat_entry *ne;
205
206 ne = radix_tree_lookup(&nm_i->nat_root, n);
207
208 /* for recent accessed nat entry, move it to tail of lru list */
209 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
210 spin_lock(&nm_i->nat_list_lock);
211 if (!list_empty(&ne->list))
212 list_move_tail(&ne->list, &nm_i->nat_entries);
213 spin_unlock(&nm_i->nat_list_lock);
214 }
215
216 return ne;
217 }
218
__gang_lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry ** ep)219 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
220 nid_t start, unsigned int nr, struct nat_entry **ep)
221 {
222 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
223 }
224
__del_from_nat_cache(struct f2fs_nm_info * nm_i,struct nat_entry * e)225 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
226 {
227 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
228 nm_i->nat_cnt[TOTAL_NAT]--;
229 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
230 __free_nat_entry(e);
231 }
232
__grab_nat_entry_set(struct f2fs_nm_info * nm_i,struct nat_entry * ne)233 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
234 struct nat_entry *ne)
235 {
236 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
237 struct nat_entry_set *head;
238
239 head = radix_tree_lookup(&nm_i->nat_set_root, set);
240 if (!head) {
241 head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
242 GFP_NOFS, true, NULL);
243
244 INIT_LIST_HEAD(&head->entry_list);
245 INIT_LIST_HEAD(&head->set_list);
246 head->set = set;
247 head->entry_cnt = 0;
248 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
249 }
250 return head;
251 }
252
__set_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry * ne)253 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
254 struct nat_entry *ne)
255 {
256 struct nat_entry_set *head;
257 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
258
259 if (!new_ne)
260 head = __grab_nat_entry_set(nm_i, ne);
261
262 /*
263 * update entry_cnt in below condition:
264 * 1. update NEW_ADDR to valid block address;
265 * 2. update old block address to new one;
266 */
267 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
268 !get_nat_flag(ne, IS_DIRTY)))
269 head->entry_cnt++;
270
271 set_nat_flag(ne, IS_PREALLOC, new_ne);
272
273 if (get_nat_flag(ne, IS_DIRTY))
274 goto refresh_list;
275
276 nm_i->nat_cnt[DIRTY_NAT]++;
277 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
278 set_nat_flag(ne, IS_DIRTY, true);
279 refresh_list:
280 spin_lock(&nm_i->nat_list_lock);
281 if (new_ne)
282 list_del_init(&ne->list);
283 else
284 list_move_tail(&ne->list, &head->entry_list);
285 spin_unlock(&nm_i->nat_list_lock);
286 }
287
__clear_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry_set * set,struct nat_entry * ne)288 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
289 struct nat_entry_set *set, struct nat_entry *ne)
290 {
291 spin_lock(&nm_i->nat_list_lock);
292 list_move_tail(&ne->list, &nm_i->nat_entries);
293 spin_unlock(&nm_i->nat_list_lock);
294
295 set_nat_flag(ne, IS_DIRTY, false);
296 set->entry_cnt--;
297 nm_i->nat_cnt[DIRTY_NAT]--;
298 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
299 }
300
__gang_lookup_nat_set(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry_set ** ep)301 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
302 nid_t start, unsigned int nr, struct nat_entry_set **ep)
303 {
304 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
305 start, nr);
306 }
307
f2fs_in_warm_node_list(struct f2fs_sb_info * sbi,struct page * page)308 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
309 {
310 return NODE_MAPPING(sbi) == page->mapping &&
311 IS_DNODE(page) && is_cold_node(page);
312 }
313
f2fs_init_fsync_node_info(struct f2fs_sb_info * sbi)314 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
315 {
316 spin_lock_init(&sbi->fsync_node_lock);
317 INIT_LIST_HEAD(&sbi->fsync_node_list);
318 sbi->fsync_seg_id = 0;
319 sbi->fsync_node_num = 0;
320 }
321
f2fs_add_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)322 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
323 struct page *page)
324 {
325 struct fsync_node_entry *fn;
326 unsigned long flags;
327 unsigned int seq_id;
328
329 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
330 GFP_NOFS, true, NULL);
331
332 get_page(page);
333 fn->page = page;
334 INIT_LIST_HEAD(&fn->list);
335
336 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
337 list_add_tail(&fn->list, &sbi->fsync_node_list);
338 fn->seq_id = sbi->fsync_seg_id++;
339 seq_id = fn->seq_id;
340 sbi->fsync_node_num++;
341 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
342
343 return seq_id;
344 }
345
f2fs_del_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)346 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
347 {
348 struct fsync_node_entry *fn;
349 unsigned long flags;
350
351 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
352 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
353 if (fn->page == page) {
354 list_del(&fn->list);
355 sbi->fsync_node_num--;
356 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
357 kmem_cache_free(fsync_node_entry_slab, fn);
358 put_page(page);
359 return;
360 }
361 }
362 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
363 f2fs_bug_on(sbi, 1);
364 }
365
f2fs_reset_fsync_node_info(struct f2fs_sb_info * sbi)366 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
367 {
368 unsigned long flags;
369
370 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
371 sbi->fsync_seg_id = 0;
372 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
373 }
374
f2fs_need_dentry_mark(struct f2fs_sb_info * sbi,nid_t nid)375 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
376 {
377 struct f2fs_nm_info *nm_i = NM_I(sbi);
378 struct nat_entry *e;
379 bool need = false;
380
381 f2fs_down_read(&nm_i->nat_tree_lock);
382 e = __lookup_nat_cache(nm_i, nid);
383 if (e) {
384 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
385 !get_nat_flag(e, HAS_FSYNCED_INODE))
386 need = true;
387 }
388 f2fs_up_read(&nm_i->nat_tree_lock);
389 return need;
390 }
391
f2fs_is_checkpointed_node(struct f2fs_sb_info * sbi,nid_t nid)392 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
393 {
394 struct f2fs_nm_info *nm_i = NM_I(sbi);
395 struct nat_entry *e;
396 bool is_cp = true;
397
398 f2fs_down_read(&nm_i->nat_tree_lock);
399 e = __lookup_nat_cache(nm_i, nid);
400 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
401 is_cp = false;
402 f2fs_up_read(&nm_i->nat_tree_lock);
403 return is_cp;
404 }
405
f2fs_need_inode_block_update(struct f2fs_sb_info * sbi,nid_t ino)406 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
407 {
408 struct f2fs_nm_info *nm_i = NM_I(sbi);
409 struct nat_entry *e;
410 bool need_update = true;
411
412 f2fs_down_read(&nm_i->nat_tree_lock);
413 e = __lookup_nat_cache(nm_i, ino);
414 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
415 (get_nat_flag(e, IS_CHECKPOINTED) ||
416 get_nat_flag(e, HAS_FSYNCED_INODE)))
417 need_update = false;
418 f2fs_up_read(&nm_i->nat_tree_lock);
419 return need_update;
420 }
421
422 /* must be locked by nat_tree_lock */
cache_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,struct f2fs_nat_entry * ne)423 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
424 struct f2fs_nat_entry *ne)
425 {
426 struct f2fs_nm_info *nm_i = NM_I(sbi);
427 struct nat_entry *new, *e;
428
429 /* Let's mitigate lock contention of nat_tree_lock during checkpoint */
430 if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
431 return;
432
433 new = __alloc_nat_entry(sbi, nid, false);
434 if (!new)
435 return;
436
437 f2fs_down_write(&nm_i->nat_tree_lock);
438 e = __lookup_nat_cache(nm_i, nid);
439 if (!e)
440 e = __init_nat_entry(nm_i, new, ne, false);
441 else
442 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
443 nat_get_blkaddr(e) !=
444 le32_to_cpu(ne->block_addr) ||
445 nat_get_version(e) != ne->version);
446 f2fs_up_write(&nm_i->nat_tree_lock);
447 if (e != new)
448 __free_nat_entry(new);
449 }
450
set_node_addr(struct f2fs_sb_info * sbi,struct node_info * ni,block_t new_blkaddr,bool fsync_done)451 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
452 block_t new_blkaddr, bool fsync_done)
453 {
454 struct f2fs_nm_info *nm_i = NM_I(sbi);
455 struct nat_entry *e;
456 struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
457
458 f2fs_down_write(&nm_i->nat_tree_lock);
459 e = __lookup_nat_cache(nm_i, ni->nid);
460 if (!e) {
461 e = __init_nat_entry(nm_i, new, NULL, true);
462 copy_node_info(&e->ni, ni);
463 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
464 } else if (new_blkaddr == NEW_ADDR) {
465 /*
466 * when nid is reallocated,
467 * previous nat entry can be remained in nat cache.
468 * So, reinitialize it with new information.
469 */
470 copy_node_info(&e->ni, ni);
471 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
472 }
473 /* let's free early to reduce memory consumption */
474 if (e != new)
475 __free_nat_entry(new);
476
477 /* sanity check */
478 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
479 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
480 new_blkaddr == NULL_ADDR);
481 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
482 new_blkaddr == NEW_ADDR);
483 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
484 new_blkaddr == NEW_ADDR);
485
486 /* increment version no as node is removed */
487 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
488 unsigned char version = nat_get_version(e);
489
490 nat_set_version(e, inc_node_version(version));
491 }
492
493 /* change address */
494 nat_set_blkaddr(e, new_blkaddr);
495 if (!__is_valid_data_blkaddr(new_blkaddr))
496 set_nat_flag(e, IS_CHECKPOINTED, false);
497 __set_nat_cache_dirty(nm_i, e);
498
499 /* update fsync_mark if its inode nat entry is still alive */
500 if (ni->nid != ni->ino)
501 e = __lookup_nat_cache(nm_i, ni->ino);
502 if (e) {
503 if (fsync_done && ni->nid == ni->ino)
504 set_nat_flag(e, HAS_FSYNCED_INODE, true);
505 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
506 }
507 f2fs_up_write(&nm_i->nat_tree_lock);
508 }
509
f2fs_try_to_free_nats(struct f2fs_sb_info * sbi,int nr_shrink)510 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
511 {
512 struct f2fs_nm_info *nm_i = NM_I(sbi);
513 int nr = nr_shrink;
514
515 if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
516 return 0;
517
518 spin_lock(&nm_i->nat_list_lock);
519 while (nr_shrink) {
520 struct nat_entry *ne;
521
522 if (list_empty(&nm_i->nat_entries))
523 break;
524
525 ne = list_first_entry(&nm_i->nat_entries,
526 struct nat_entry, list);
527 list_del(&ne->list);
528 spin_unlock(&nm_i->nat_list_lock);
529
530 __del_from_nat_cache(nm_i, ne);
531 nr_shrink--;
532
533 spin_lock(&nm_i->nat_list_lock);
534 }
535 spin_unlock(&nm_i->nat_list_lock);
536
537 f2fs_up_write(&nm_i->nat_tree_lock);
538 return nr - nr_shrink;
539 }
540
f2fs_get_node_info(struct f2fs_sb_info * sbi,nid_t nid,struct node_info * ni,bool checkpoint_context)541 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
542 struct node_info *ni, bool checkpoint_context)
543 {
544 struct f2fs_nm_info *nm_i = NM_I(sbi);
545 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
546 struct f2fs_journal *journal = curseg->journal;
547 nid_t start_nid = START_NID(nid);
548 struct f2fs_nat_block *nat_blk;
549 struct page *page = NULL;
550 struct f2fs_nat_entry ne;
551 struct nat_entry *e;
552 pgoff_t index;
553 block_t blkaddr;
554 int i;
555
556 ni->nid = nid;
557 retry:
558 /* Check nat cache */
559 f2fs_down_read(&nm_i->nat_tree_lock);
560 e = __lookup_nat_cache(nm_i, nid);
561 if (e) {
562 ni->ino = nat_get_ino(e);
563 ni->blk_addr = nat_get_blkaddr(e);
564 ni->version = nat_get_version(e);
565 f2fs_up_read(&nm_i->nat_tree_lock);
566 return 0;
567 }
568
569 /*
570 * Check current segment summary by trying to grab journal_rwsem first.
571 * This sem is on the critical path on the checkpoint requiring the above
572 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
573 * while not bothering checkpoint.
574 */
575 if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
576 down_read(&curseg->journal_rwsem);
577 } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
578 !down_read_trylock(&curseg->journal_rwsem)) {
579 f2fs_up_read(&nm_i->nat_tree_lock);
580 goto retry;
581 }
582
583 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
584 if (i >= 0) {
585 ne = nat_in_journal(journal, i);
586 node_info_from_raw_nat(ni, &ne);
587 }
588 up_read(&curseg->journal_rwsem);
589 if (i >= 0) {
590 f2fs_up_read(&nm_i->nat_tree_lock);
591 goto cache;
592 }
593
594 /* Fill node_info from nat page */
595 index = current_nat_addr(sbi, nid);
596 f2fs_up_read(&nm_i->nat_tree_lock);
597
598 page = f2fs_get_meta_page(sbi, index);
599 if (IS_ERR(page))
600 return PTR_ERR(page);
601
602 nat_blk = (struct f2fs_nat_block *)page_address(page);
603 ne = nat_blk->entries[nid - start_nid];
604 node_info_from_raw_nat(ni, &ne);
605 f2fs_put_page(page, 1);
606 cache:
607 blkaddr = le32_to_cpu(ne.block_addr);
608 if (__is_valid_data_blkaddr(blkaddr) &&
609 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
610 return -EFAULT;
611
612 /* cache nat entry */
613 cache_nat_entry(sbi, nid, &ne);
614 return 0;
615 }
616
617 /*
618 * readahead MAX_RA_NODE number of node pages.
619 */
f2fs_ra_node_pages(struct page * parent,int start,int n)620 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
621 {
622 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
623 struct blk_plug plug;
624 int i, end;
625 nid_t nid;
626
627 blk_start_plug(&plug);
628
629 /* Then, try readahead for siblings of the desired node */
630 end = start + n;
631 end = min(end, NIDS_PER_BLOCK);
632 for (i = start; i < end; i++) {
633 nid = get_nid(parent, i, false);
634 f2fs_ra_node_page(sbi, nid);
635 }
636
637 blk_finish_plug(&plug);
638 }
639
f2fs_get_next_page_offset(struct dnode_of_data * dn,pgoff_t pgofs)640 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
641 {
642 const long direct_index = ADDRS_PER_INODE(dn->inode);
643 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
644 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
645 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
646 int cur_level = dn->cur_level;
647 int max_level = dn->max_level;
648 pgoff_t base = 0;
649
650 if (!dn->max_level)
651 return pgofs + 1;
652
653 while (max_level-- > cur_level)
654 skipped_unit *= NIDS_PER_BLOCK;
655
656 switch (dn->max_level) {
657 case 3:
658 base += 2 * indirect_blks;
659 fallthrough;
660 case 2:
661 base += 2 * direct_blks;
662 fallthrough;
663 case 1:
664 base += direct_index;
665 break;
666 default:
667 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
668 }
669
670 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
671 }
672
673 /*
674 * The maximum depth is four.
675 * Offset[0] will have raw inode offset.
676 */
get_node_path(struct inode * inode,long block,int offset[4],unsigned int noffset[4])677 static int get_node_path(struct inode *inode, long block,
678 int offset[4], unsigned int noffset[4])
679 {
680 const long direct_index = ADDRS_PER_INODE(inode);
681 const long direct_blks = ADDRS_PER_BLOCK(inode);
682 const long dptrs_per_blk = NIDS_PER_BLOCK;
683 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
684 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
685 int n = 0;
686 int level = 0;
687
688 noffset[0] = 0;
689
690 if (block < direct_index) {
691 offset[n] = block;
692 goto got;
693 }
694 block -= direct_index;
695 if (block < direct_blks) {
696 offset[n++] = NODE_DIR1_BLOCK;
697 noffset[n] = 1;
698 offset[n] = block;
699 level = 1;
700 goto got;
701 }
702 block -= direct_blks;
703 if (block < direct_blks) {
704 offset[n++] = NODE_DIR2_BLOCK;
705 noffset[n] = 2;
706 offset[n] = block;
707 level = 1;
708 goto got;
709 }
710 block -= direct_blks;
711 if (block < indirect_blks) {
712 offset[n++] = NODE_IND1_BLOCK;
713 noffset[n] = 3;
714 offset[n++] = block / direct_blks;
715 noffset[n] = 4 + offset[n - 1];
716 offset[n] = block % direct_blks;
717 level = 2;
718 goto got;
719 }
720 block -= indirect_blks;
721 if (block < indirect_blks) {
722 offset[n++] = NODE_IND2_BLOCK;
723 noffset[n] = 4 + dptrs_per_blk;
724 offset[n++] = block / direct_blks;
725 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
726 offset[n] = block % direct_blks;
727 level = 2;
728 goto got;
729 }
730 block -= indirect_blks;
731 if (block < dindirect_blks) {
732 offset[n++] = NODE_DIND_BLOCK;
733 noffset[n] = 5 + (dptrs_per_blk * 2);
734 offset[n++] = block / indirect_blks;
735 noffset[n] = 6 + (dptrs_per_blk * 2) +
736 offset[n - 1] * (dptrs_per_blk + 1);
737 offset[n++] = (block / direct_blks) % dptrs_per_blk;
738 noffset[n] = 7 + (dptrs_per_blk * 2) +
739 offset[n - 2] * (dptrs_per_blk + 1) +
740 offset[n - 1];
741 offset[n] = block % direct_blks;
742 level = 3;
743 goto got;
744 } else {
745 return -E2BIG;
746 }
747 got:
748 return level;
749 }
750
751 /*
752 * Caller should call f2fs_put_dnode(dn).
753 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
754 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
755 */
f2fs_get_dnode_of_data(struct dnode_of_data * dn,pgoff_t index,int mode)756 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
757 {
758 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
759 struct page *npage[4];
760 struct page *parent = NULL;
761 int offset[4];
762 unsigned int noffset[4];
763 nid_t nids[4];
764 int level, i = 0;
765 int err = 0;
766
767 level = get_node_path(dn->inode, index, offset, noffset);
768 if (level < 0)
769 return level;
770
771 nids[0] = dn->inode->i_ino;
772 npage[0] = dn->inode_page;
773
774 if (!npage[0]) {
775 npage[0] = f2fs_get_node_page(sbi, nids[0]);
776 if (IS_ERR(npage[0]))
777 return PTR_ERR(npage[0]);
778 }
779
780 /* if inline_data is set, should not report any block indices */
781 if (f2fs_has_inline_data(dn->inode) && index) {
782 err = -ENOENT;
783 f2fs_put_page(npage[0], 1);
784 goto release_out;
785 }
786
787 parent = npage[0];
788 if (level != 0)
789 nids[1] = get_nid(parent, offset[0], true);
790 dn->inode_page = npage[0];
791 dn->inode_page_locked = true;
792
793 /* get indirect or direct nodes */
794 for (i = 1; i <= level; i++) {
795 bool done = false;
796
797 if (!nids[i] && mode == ALLOC_NODE) {
798 /* alloc new node */
799 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
800 err = -ENOSPC;
801 goto release_pages;
802 }
803
804 dn->nid = nids[i];
805 npage[i] = f2fs_new_node_page(dn, noffset[i]);
806 if (IS_ERR(npage[i])) {
807 f2fs_alloc_nid_failed(sbi, nids[i]);
808 err = PTR_ERR(npage[i]);
809 goto release_pages;
810 }
811
812 set_nid(parent, offset[i - 1], nids[i], i == 1);
813 f2fs_alloc_nid_done(sbi, nids[i]);
814 done = true;
815 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
816 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
817 if (IS_ERR(npage[i])) {
818 err = PTR_ERR(npage[i]);
819 goto release_pages;
820 }
821 done = true;
822 }
823 if (i == 1) {
824 dn->inode_page_locked = false;
825 unlock_page(parent);
826 } else {
827 f2fs_put_page(parent, 1);
828 }
829
830 if (!done) {
831 npage[i] = f2fs_get_node_page(sbi, nids[i]);
832 if (IS_ERR(npage[i])) {
833 err = PTR_ERR(npage[i]);
834 f2fs_put_page(npage[0], 0);
835 goto release_out;
836 }
837 }
838 if (i < level) {
839 parent = npage[i];
840 nids[i + 1] = get_nid(parent, offset[i], false);
841 }
842 }
843 dn->nid = nids[level];
844 dn->ofs_in_node = offset[level];
845 dn->node_page = npage[level];
846 dn->data_blkaddr = f2fs_data_blkaddr(dn);
847
848 if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
849 f2fs_sb_has_readonly(sbi)) {
850 unsigned int c_len = f2fs_cluster_blocks_are_contiguous(dn);
851 block_t blkaddr;
852
853 if (!c_len)
854 goto out;
855
856 blkaddr = f2fs_data_blkaddr(dn);
857 if (blkaddr == COMPRESS_ADDR)
858 blkaddr = data_blkaddr(dn->inode, dn->node_page,
859 dn->ofs_in_node + 1);
860
861 f2fs_update_extent_tree_range_compressed(dn->inode,
862 index, blkaddr,
863 F2FS_I(dn->inode)->i_cluster_size,
864 c_len);
865 }
866 out:
867 return 0;
868
869 release_pages:
870 f2fs_put_page(parent, 1);
871 if (i > 1)
872 f2fs_put_page(npage[0], 0);
873 release_out:
874 dn->inode_page = NULL;
875 dn->node_page = NULL;
876 if (err == -ENOENT) {
877 dn->cur_level = i;
878 dn->max_level = level;
879 dn->ofs_in_node = offset[level];
880 }
881 return err;
882 }
883
truncate_node(struct dnode_of_data * dn)884 static int truncate_node(struct dnode_of_data *dn)
885 {
886 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
887 struct node_info ni;
888 int err;
889 pgoff_t index;
890
891 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
892 if (err)
893 return err;
894
895 /* Deallocate node address */
896 f2fs_invalidate_blocks(sbi, ni.blk_addr);
897 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
898 set_node_addr(sbi, &ni, NULL_ADDR, false);
899
900 if (dn->nid == dn->inode->i_ino) {
901 f2fs_remove_orphan_inode(sbi, dn->nid);
902 dec_valid_inode_count(sbi);
903 f2fs_inode_synced(dn->inode);
904 }
905
906 clear_node_page_dirty(dn->node_page);
907 set_sbi_flag(sbi, SBI_IS_DIRTY);
908
909 index = dn->node_page->index;
910 f2fs_put_page(dn->node_page, 1);
911
912 invalidate_mapping_pages(NODE_MAPPING(sbi),
913 index, index);
914
915 dn->node_page = NULL;
916 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
917
918 return 0;
919 }
920
truncate_dnode(struct dnode_of_data * dn)921 static int truncate_dnode(struct dnode_of_data *dn)
922 {
923 struct page *page;
924 int err;
925
926 if (dn->nid == 0)
927 return 1;
928
929 /* get direct node */
930 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
931 if (PTR_ERR(page) == -ENOENT)
932 return 1;
933 else if (IS_ERR(page))
934 return PTR_ERR(page);
935
936 /* Make dnode_of_data for parameter */
937 dn->node_page = page;
938 dn->ofs_in_node = 0;
939 f2fs_truncate_data_blocks(dn);
940 err = truncate_node(dn);
941 if (err) {
942 f2fs_put_page(page, 1);
943 return err;
944 }
945
946 return 1;
947 }
948
truncate_nodes(struct dnode_of_data * dn,unsigned int nofs,int ofs,int depth)949 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
950 int ofs, int depth)
951 {
952 struct dnode_of_data rdn = *dn;
953 struct page *page;
954 struct f2fs_node *rn;
955 nid_t child_nid;
956 unsigned int child_nofs;
957 int freed = 0;
958 int i, ret;
959
960 if (dn->nid == 0)
961 return NIDS_PER_BLOCK + 1;
962
963 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
964
965 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
966 if (IS_ERR(page)) {
967 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
968 return PTR_ERR(page);
969 }
970
971 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
972
973 rn = F2FS_NODE(page);
974 if (depth < 3) {
975 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
976 child_nid = le32_to_cpu(rn->in.nid[i]);
977 if (child_nid == 0)
978 continue;
979 rdn.nid = child_nid;
980 ret = truncate_dnode(&rdn);
981 if (ret < 0)
982 goto out_err;
983 if (set_nid(page, i, 0, false))
984 dn->node_changed = true;
985 }
986 } else {
987 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
988 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
989 child_nid = le32_to_cpu(rn->in.nid[i]);
990 if (child_nid == 0) {
991 child_nofs += NIDS_PER_BLOCK + 1;
992 continue;
993 }
994 rdn.nid = child_nid;
995 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
996 if (ret == (NIDS_PER_BLOCK + 1)) {
997 if (set_nid(page, i, 0, false))
998 dn->node_changed = true;
999 child_nofs += ret;
1000 } else if (ret < 0 && ret != -ENOENT) {
1001 goto out_err;
1002 }
1003 }
1004 freed = child_nofs;
1005 }
1006
1007 if (!ofs) {
1008 /* remove current indirect node */
1009 dn->node_page = page;
1010 ret = truncate_node(dn);
1011 if (ret)
1012 goto out_err;
1013 freed++;
1014 } else {
1015 f2fs_put_page(page, 1);
1016 }
1017 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1018 return freed;
1019
1020 out_err:
1021 f2fs_put_page(page, 1);
1022 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1023 return ret;
1024 }
1025
truncate_partial_nodes(struct dnode_of_data * dn,struct f2fs_inode * ri,int * offset,int depth)1026 static int truncate_partial_nodes(struct dnode_of_data *dn,
1027 struct f2fs_inode *ri, int *offset, int depth)
1028 {
1029 struct page *pages[2];
1030 nid_t nid[3];
1031 nid_t child_nid;
1032 int err = 0;
1033 int i;
1034 int idx = depth - 2;
1035
1036 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1037 if (!nid[0])
1038 return 0;
1039
1040 /* get indirect nodes in the path */
1041 for (i = 0; i < idx + 1; i++) {
1042 /* reference count'll be increased */
1043 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1044 if (IS_ERR(pages[i])) {
1045 err = PTR_ERR(pages[i]);
1046 idx = i - 1;
1047 goto fail;
1048 }
1049 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1050 }
1051
1052 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1053
1054 /* free direct nodes linked to a partial indirect node */
1055 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1056 child_nid = get_nid(pages[idx], i, false);
1057 if (!child_nid)
1058 continue;
1059 dn->nid = child_nid;
1060 err = truncate_dnode(dn);
1061 if (err < 0)
1062 goto fail;
1063 if (set_nid(pages[idx], i, 0, false))
1064 dn->node_changed = true;
1065 }
1066
1067 if (offset[idx + 1] == 0) {
1068 dn->node_page = pages[idx];
1069 dn->nid = nid[idx];
1070 err = truncate_node(dn);
1071 if (err)
1072 goto fail;
1073 } else {
1074 f2fs_put_page(pages[idx], 1);
1075 }
1076 offset[idx]++;
1077 offset[idx + 1] = 0;
1078 idx--;
1079 fail:
1080 for (i = idx; i >= 0; i--)
1081 f2fs_put_page(pages[i], 1);
1082
1083 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1084
1085 return err;
1086 }
1087
1088 /*
1089 * All the block addresses of data and nodes should be nullified.
1090 */
f2fs_truncate_inode_blocks(struct inode * inode,pgoff_t from)1091 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1092 {
1093 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1094 int err = 0, cont = 1;
1095 int level, offset[4], noffset[4];
1096 unsigned int nofs = 0;
1097 struct f2fs_inode *ri;
1098 struct dnode_of_data dn;
1099 struct page *page;
1100
1101 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1102
1103 level = get_node_path(inode, from, offset, noffset);
1104 if (level < 0) {
1105 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1106 return level;
1107 }
1108
1109 page = f2fs_get_node_page(sbi, inode->i_ino);
1110 if (IS_ERR(page)) {
1111 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1112 return PTR_ERR(page);
1113 }
1114
1115 set_new_dnode(&dn, inode, page, NULL, 0);
1116 unlock_page(page);
1117
1118 ri = F2FS_INODE(page);
1119 switch (level) {
1120 case 0:
1121 case 1:
1122 nofs = noffset[1];
1123 break;
1124 case 2:
1125 nofs = noffset[1];
1126 if (!offset[level - 1])
1127 goto skip_partial;
1128 err = truncate_partial_nodes(&dn, ri, offset, level);
1129 if (err < 0 && err != -ENOENT)
1130 goto fail;
1131 nofs += 1 + NIDS_PER_BLOCK;
1132 break;
1133 case 3:
1134 nofs = 5 + 2 * NIDS_PER_BLOCK;
1135 if (!offset[level - 1])
1136 goto skip_partial;
1137 err = truncate_partial_nodes(&dn, ri, offset, level);
1138 if (err < 0 && err != -ENOENT)
1139 goto fail;
1140 break;
1141 default:
1142 BUG();
1143 }
1144
1145 skip_partial:
1146 while (cont) {
1147 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1148 switch (offset[0]) {
1149 case NODE_DIR1_BLOCK:
1150 case NODE_DIR2_BLOCK:
1151 err = truncate_dnode(&dn);
1152 break;
1153
1154 case NODE_IND1_BLOCK:
1155 case NODE_IND2_BLOCK:
1156 err = truncate_nodes(&dn, nofs, offset[1], 2);
1157 break;
1158
1159 case NODE_DIND_BLOCK:
1160 err = truncate_nodes(&dn, nofs, offset[1], 3);
1161 cont = 0;
1162 break;
1163
1164 default:
1165 BUG();
1166 }
1167 if (err < 0 && err != -ENOENT)
1168 goto fail;
1169 if (offset[1] == 0 &&
1170 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1171 lock_page(page);
1172 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1173 f2fs_wait_on_page_writeback(page, NODE, true, true);
1174 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1175 set_page_dirty(page);
1176 unlock_page(page);
1177 }
1178 offset[1] = 0;
1179 offset[0]++;
1180 nofs += err;
1181 }
1182 fail:
1183 f2fs_put_page(page, 0);
1184 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1185 return err > 0 ? 0 : err;
1186 }
1187
1188 /* caller must lock inode page */
f2fs_truncate_xattr_node(struct inode * inode)1189 int f2fs_truncate_xattr_node(struct inode *inode)
1190 {
1191 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1192 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1193 struct dnode_of_data dn;
1194 struct page *npage;
1195 int err;
1196
1197 if (!nid)
1198 return 0;
1199
1200 npage = f2fs_get_node_page(sbi, nid);
1201 if (IS_ERR(npage))
1202 return PTR_ERR(npage);
1203
1204 set_new_dnode(&dn, inode, NULL, npage, nid);
1205 err = truncate_node(&dn);
1206 if (err) {
1207 f2fs_put_page(npage, 1);
1208 return err;
1209 }
1210
1211 f2fs_i_xnid_write(inode, 0);
1212
1213 return 0;
1214 }
1215
1216 /*
1217 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1218 * f2fs_unlock_op().
1219 */
f2fs_remove_inode_page(struct inode * inode)1220 int f2fs_remove_inode_page(struct inode *inode)
1221 {
1222 struct dnode_of_data dn;
1223 int err;
1224
1225 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1226 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1227 if (err)
1228 return err;
1229
1230 err = f2fs_truncate_xattr_node(inode);
1231 if (err) {
1232 f2fs_put_dnode(&dn);
1233 return err;
1234 }
1235
1236 /* remove potential inline_data blocks */
1237 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1238 S_ISLNK(inode->i_mode))
1239 f2fs_truncate_data_blocks_range(&dn, 1);
1240
1241 /* 0 is possible, after f2fs_new_inode() has failed */
1242 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1243 f2fs_put_dnode(&dn);
1244 return -EIO;
1245 }
1246
1247 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1248 f2fs_warn(F2FS_I_SB(inode),
1249 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1250 inode->i_ino, (unsigned long long)inode->i_blocks);
1251 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1252 }
1253
1254 /* will put inode & node pages */
1255 err = truncate_node(&dn);
1256 if (err) {
1257 f2fs_put_dnode(&dn);
1258 return err;
1259 }
1260 return 0;
1261 }
1262
f2fs_new_inode_page(struct inode * inode)1263 struct page *f2fs_new_inode_page(struct inode *inode)
1264 {
1265 struct dnode_of_data dn;
1266
1267 /* allocate inode page for new inode */
1268 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1269
1270 /* caller should f2fs_put_page(page, 1); */
1271 return f2fs_new_node_page(&dn, 0);
1272 }
1273
f2fs_new_node_page(struct dnode_of_data * dn,unsigned int ofs)1274 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1275 {
1276 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1277 struct node_info new_ni;
1278 struct page *page;
1279 int err;
1280
1281 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1282 return ERR_PTR(-EPERM);
1283
1284 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1285 if (!page)
1286 return ERR_PTR(-ENOMEM);
1287
1288 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1289 goto fail;
1290
1291 #ifdef CONFIG_F2FS_CHECK_FS
1292 err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1293 if (err) {
1294 dec_valid_node_count(sbi, dn->inode, !ofs);
1295 goto fail;
1296 }
1297 if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1298 err = -EFSCORRUPTED;
1299 set_sbi_flag(sbi, SBI_NEED_FSCK);
1300 goto fail;
1301 }
1302 #endif
1303 new_ni.nid = dn->nid;
1304 new_ni.ino = dn->inode->i_ino;
1305 new_ni.blk_addr = NULL_ADDR;
1306 new_ni.flag = 0;
1307 new_ni.version = 0;
1308 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1309
1310 f2fs_wait_on_page_writeback(page, NODE, true, true);
1311 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1312 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1313 if (!PageUptodate(page))
1314 SetPageUptodate(page);
1315 if (set_page_dirty(page))
1316 dn->node_changed = true;
1317
1318 if (f2fs_has_xattr_block(ofs))
1319 f2fs_i_xnid_write(dn->inode, dn->nid);
1320
1321 if (ofs == 0)
1322 inc_valid_inode_count(sbi);
1323 return page;
1324
1325 fail:
1326 clear_node_page_dirty(page);
1327 f2fs_put_page(page, 1);
1328 return ERR_PTR(err);
1329 }
1330
1331 /*
1332 * Caller should do after getting the following values.
1333 * 0: f2fs_put_page(page, 0)
1334 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1335 */
read_node_page(struct page * page,int op_flags)1336 static int read_node_page(struct page *page, int op_flags)
1337 {
1338 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1339 struct node_info ni;
1340 struct f2fs_io_info fio = {
1341 .sbi = sbi,
1342 .type = NODE,
1343 .op = REQ_OP_READ,
1344 .op_flags = op_flags,
1345 .page = page,
1346 .encrypted_page = NULL,
1347 };
1348 int err;
1349
1350 if (PageUptodate(page)) {
1351 if (!f2fs_inode_chksum_verify(sbi, page)) {
1352 ClearPageUptodate(page);
1353 return -EFSBADCRC;
1354 }
1355 return LOCKED_PAGE;
1356 }
1357
1358 err = f2fs_get_node_info(sbi, page->index, &ni, false);
1359 if (err)
1360 return err;
1361
1362 /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1363 if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1364 ClearPageUptodate(page);
1365 return -ENOENT;
1366 }
1367
1368 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1369
1370 err = f2fs_submit_page_bio(&fio);
1371
1372 if (!err)
1373 f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1374
1375 return err;
1376 }
1377
1378 /*
1379 * Readahead a node page
1380 */
f2fs_ra_node_page(struct f2fs_sb_info * sbi,nid_t nid)1381 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1382 {
1383 struct page *apage;
1384 int err;
1385
1386 if (!nid)
1387 return;
1388 if (f2fs_check_nid_range(sbi, nid))
1389 return;
1390
1391 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1392 if (apage)
1393 return;
1394
1395 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1396 if (!apage)
1397 return;
1398
1399 err = read_node_page(apage, REQ_RAHEAD);
1400 f2fs_put_page(apage, err ? 1 : 0);
1401 }
1402
__get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid,struct page * parent,int start)1403 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1404 struct page *parent, int start)
1405 {
1406 struct page *page;
1407 int err;
1408
1409 if (!nid)
1410 return ERR_PTR(-ENOENT);
1411 if (f2fs_check_nid_range(sbi, nid))
1412 return ERR_PTR(-EINVAL);
1413 repeat:
1414 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1415 if (!page)
1416 return ERR_PTR(-ENOMEM);
1417
1418 err = read_node_page(page, 0);
1419 if (err < 0) {
1420 goto out_put_err;
1421 } else if (err == LOCKED_PAGE) {
1422 err = 0;
1423 goto page_hit;
1424 }
1425
1426 if (parent)
1427 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1428
1429 lock_page(page);
1430
1431 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1432 f2fs_put_page(page, 1);
1433 goto repeat;
1434 }
1435
1436 if (unlikely(!PageUptodate(page))) {
1437 err = -EIO;
1438 goto out_err;
1439 }
1440
1441 if (!f2fs_inode_chksum_verify(sbi, page)) {
1442 err = -EFSBADCRC;
1443 goto out_err;
1444 }
1445 page_hit:
1446 if (likely(nid == nid_of_node(page)))
1447 return page;
1448
1449 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1450 nid, nid_of_node(page), ino_of_node(page),
1451 ofs_of_node(page), cpver_of_node(page),
1452 next_blkaddr_of_node(page));
1453 set_sbi_flag(sbi, SBI_NEED_FSCK);
1454 err = -EINVAL;
1455 out_err:
1456 ClearPageUptodate(page);
1457 out_put_err:
1458 /* ENOENT comes from read_node_page which is not an error. */
1459 if (err != -ENOENT)
1460 f2fs_handle_page_eio(sbi, page->index, NODE);
1461 f2fs_put_page(page, 1);
1462 return ERR_PTR(err);
1463 }
1464
f2fs_get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid)1465 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1466 {
1467 return __get_node_page(sbi, nid, NULL, 0);
1468 }
1469
f2fs_get_node_page_ra(struct page * parent,int start)1470 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1471 {
1472 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1473 nid_t nid = get_nid(parent, start, false);
1474
1475 return __get_node_page(sbi, nid, parent, start);
1476 }
1477
flush_inline_data(struct f2fs_sb_info * sbi,nid_t ino)1478 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1479 {
1480 struct inode *inode;
1481 struct page *page;
1482 int ret;
1483
1484 /* should flush inline_data before evict_inode */
1485 inode = ilookup(sbi->sb, ino);
1486 if (!inode)
1487 return;
1488
1489 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1490 FGP_LOCK|FGP_NOWAIT, 0);
1491 if (!page)
1492 goto iput_out;
1493
1494 if (!PageUptodate(page))
1495 goto page_out;
1496
1497 if (!PageDirty(page))
1498 goto page_out;
1499
1500 if (!clear_page_dirty_for_io(page))
1501 goto page_out;
1502
1503 ret = f2fs_write_inline_data(inode, page);
1504 inode_dec_dirty_pages(inode);
1505 f2fs_remove_dirty_inode(inode);
1506 if (ret)
1507 set_page_dirty(page);
1508 page_out:
1509 f2fs_put_page(page, 1);
1510 iput_out:
1511 iput(inode);
1512 }
1513
last_fsync_dnode(struct f2fs_sb_info * sbi,nid_t ino)1514 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1515 {
1516 pgoff_t index;
1517 struct pagevec pvec;
1518 struct page *last_page = NULL;
1519 int nr_pages;
1520
1521 pagevec_init(&pvec);
1522 index = 0;
1523
1524 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1525 PAGECACHE_TAG_DIRTY))) {
1526 int i;
1527
1528 for (i = 0; i < nr_pages; i++) {
1529 struct page *page = pvec.pages[i];
1530
1531 if (unlikely(f2fs_cp_error(sbi))) {
1532 f2fs_put_page(last_page, 0);
1533 pagevec_release(&pvec);
1534 return ERR_PTR(-EIO);
1535 }
1536
1537 if (!IS_DNODE(page) || !is_cold_node(page))
1538 continue;
1539 if (ino_of_node(page) != ino)
1540 continue;
1541
1542 lock_page(page);
1543
1544 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1545 continue_unlock:
1546 unlock_page(page);
1547 continue;
1548 }
1549 if (ino_of_node(page) != ino)
1550 goto continue_unlock;
1551
1552 if (!PageDirty(page)) {
1553 /* someone wrote it for us */
1554 goto continue_unlock;
1555 }
1556
1557 if (last_page)
1558 f2fs_put_page(last_page, 0);
1559
1560 get_page(page);
1561 last_page = page;
1562 unlock_page(page);
1563 }
1564 pagevec_release(&pvec);
1565 cond_resched();
1566 }
1567 return last_page;
1568 }
1569
__write_node_page(struct page * page,bool atomic,bool * submitted,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type,unsigned int * seq_id)1570 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1571 struct writeback_control *wbc, bool do_balance,
1572 enum iostat_type io_type, unsigned int *seq_id)
1573 {
1574 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1575 nid_t nid;
1576 struct node_info ni;
1577 struct f2fs_io_info fio = {
1578 .sbi = sbi,
1579 .ino = ino_of_node(page),
1580 .type = NODE,
1581 .op = REQ_OP_WRITE,
1582 .op_flags = wbc_to_write_flags(wbc),
1583 .page = page,
1584 .encrypted_page = NULL,
1585 .submitted = false,
1586 .io_type = io_type,
1587 .io_wbc = wbc,
1588 };
1589 unsigned int seq;
1590
1591 trace_f2fs_writepage(page, NODE);
1592
1593 if (unlikely(f2fs_cp_error(sbi))) {
1594 ClearPageUptodate(page);
1595 dec_page_count(sbi, F2FS_DIRTY_NODES);
1596 unlock_page(page);
1597 return 0;
1598 }
1599
1600 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1601 goto redirty_out;
1602
1603 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1604 wbc->sync_mode == WB_SYNC_NONE &&
1605 IS_DNODE(page) && is_cold_node(page))
1606 goto redirty_out;
1607
1608 /* get old block addr of this node page */
1609 nid = nid_of_node(page);
1610 f2fs_bug_on(sbi, page->index != nid);
1611
1612 if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1613 goto redirty_out;
1614
1615 if (wbc->for_reclaim) {
1616 if (!f2fs_down_read_trylock(&sbi->node_write))
1617 goto redirty_out;
1618 } else {
1619 f2fs_down_read(&sbi->node_write);
1620 }
1621
1622 /* This page is already truncated */
1623 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1624 ClearPageUptodate(page);
1625 dec_page_count(sbi, F2FS_DIRTY_NODES);
1626 f2fs_up_read(&sbi->node_write);
1627 unlock_page(page);
1628 return 0;
1629 }
1630
1631 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1632 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1633 DATA_GENERIC_ENHANCE)) {
1634 f2fs_up_read(&sbi->node_write);
1635 goto redirty_out;
1636 }
1637
1638 if (atomic && !test_opt(sbi, NOBARRIER))
1639 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1640
1641 /* should add to global list before clearing PAGECACHE status */
1642 if (f2fs_in_warm_node_list(sbi, page)) {
1643 seq = f2fs_add_fsync_node_entry(sbi, page);
1644 if (seq_id)
1645 *seq_id = seq;
1646 }
1647
1648 set_page_writeback(page);
1649 ClearPageError(page);
1650
1651 fio.old_blkaddr = ni.blk_addr;
1652 f2fs_do_write_node_page(nid, &fio);
1653 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1654 dec_page_count(sbi, F2FS_DIRTY_NODES);
1655 f2fs_up_read(&sbi->node_write);
1656
1657 if (wbc->for_reclaim) {
1658 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1659 submitted = NULL;
1660 }
1661
1662 unlock_page(page);
1663
1664 if (unlikely(f2fs_cp_error(sbi))) {
1665 f2fs_submit_merged_write(sbi, NODE);
1666 submitted = NULL;
1667 }
1668 if (submitted)
1669 *submitted = fio.submitted;
1670
1671 if (do_balance)
1672 f2fs_balance_fs(sbi, false);
1673 return 0;
1674
1675 redirty_out:
1676 redirty_page_for_writepage(wbc, page);
1677 return AOP_WRITEPAGE_ACTIVATE;
1678 }
1679
f2fs_move_node_page(struct page * node_page,int gc_type)1680 int f2fs_move_node_page(struct page *node_page, int gc_type)
1681 {
1682 int err = 0;
1683
1684 if (gc_type == FG_GC) {
1685 struct writeback_control wbc = {
1686 .sync_mode = WB_SYNC_ALL,
1687 .nr_to_write = 1,
1688 .for_reclaim = 0,
1689 };
1690
1691 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1692
1693 set_page_dirty(node_page);
1694
1695 if (!clear_page_dirty_for_io(node_page)) {
1696 err = -EAGAIN;
1697 goto out_page;
1698 }
1699
1700 if (__write_node_page(node_page, false, NULL,
1701 &wbc, false, FS_GC_NODE_IO, NULL)) {
1702 err = -EAGAIN;
1703 unlock_page(node_page);
1704 }
1705 goto release_page;
1706 } else {
1707 /* set page dirty and write it */
1708 if (!PageWriteback(node_page))
1709 set_page_dirty(node_page);
1710 }
1711 out_page:
1712 unlock_page(node_page);
1713 release_page:
1714 f2fs_put_page(node_page, 0);
1715 return err;
1716 }
1717
f2fs_write_node_page(struct page * page,struct writeback_control * wbc)1718 static int f2fs_write_node_page(struct page *page,
1719 struct writeback_control *wbc)
1720 {
1721 return __write_node_page(page, false, NULL, wbc, false,
1722 FS_NODE_IO, NULL);
1723 }
1724
f2fs_fsync_node_pages(struct f2fs_sb_info * sbi,struct inode * inode,struct writeback_control * wbc,bool atomic,unsigned int * seq_id)1725 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1726 struct writeback_control *wbc, bool atomic,
1727 unsigned int *seq_id)
1728 {
1729 pgoff_t index;
1730 struct pagevec pvec;
1731 int ret = 0;
1732 struct page *last_page = NULL;
1733 bool marked = false;
1734 nid_t ino = inode->i_ino;
1735 int nr_pages;
1736 int nwritten = 0;
1737
1738 if (atomic) {
1739 last_page = last_fsync_dnode(sbi, ino);
1740 if (IS_ERR_OR_NULL(last_page))
1741 return PTR_ERR_OR_ZERO(last_page);
1742 }
1743 retry:
1744 pagevec_init(&pvec);
1745 index = 0;
1746
1747 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1748 PAGECACHE_TAG_DIRTY))) {
1749 int i;
1750
1751 for (i = 0; i < nr_pages; i++) {
1752 struct page *page = pvec.pages[i];
1753 bool submitted = false;
1754
1755 if (unlikely(f2fs_cp_error(sbi))) {
1756 f2fs_put_page(last_page, 0);
1757 pagevec_release(&pvec);
1758 ret = -EIO;
1759 goto out;
1760 }
1761
1762 if (!IS_DNODE(page) || !is_cold_node(page))
1763 continue;
1764 if (ino_of_node(page) != ino)
1765 continue;
1766
1767 lock_page(page);
1768
1769 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1770 continue_unlock:
1771 unlock_page(page);
1772 continue;
1773 }
1774 if (ino_of_node(page) != ino)
1775 goto continue_unlock;
1776
1777 if (!PageDirty(page) && page != last_page) {
1778 /* someone wrote it for us */
1779 goto continue_unlock;
1780 }
1781
1782 f2fs_wait_on_page_writeback(page, NODE, true, true);
1783
1784 set_fsync_mark(page, 0);
1785 set_dentry_mark(page, 0);
1786
1787 if (!atomic || page == last_page) {
1788 set_fsync_mark(page, 1);
1789 percpu_counter_inc(&sbi->rf_node_block_count);
1790 if (IS_INODE(page)) {
1791 if (is_inode_flag_set(inode,
1792 FI_DIRTY_INODE))
1793 f2fs_update_inode(inode, page);
1794 set_dentry_mark(page,
1795 f2fs_need_dentry_mark(sbi, ino));
1796 }
1797 /* may be written by other thread */
1798 if (!PageDirty(page))
1799 set_page_dirty(page);
1800 }
1801
1802 if (!clear_page_dirty_for_io(page))
1803 goto continue_unlock;
1804
1805 ret = __write_node_page(page, atomic &&
1806 page == last_page,
1807 &submitted, wbc, true,
1808 FS_NODE_IO, seq_id);
1809 if (ret) {
1810 unlock_page(page);
1811 f2fs_put_page(last_page, 0);
1812 break;
1813 } else if (submitted) {
1814 nwritten++;
1815 }
1816
1817 if (page == last_page) {
1818 f2fs_put_page(page, 0);
1819 marked = true;
1820 break;
1821 }
1822 }
1823 pagevec_release(&pvec);
1824 cond_resched();
1825
1826 if (ret || marked)
1827 break;
1828 }
1829 if (!ret && atomic && !marked) {
1830 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1831 ino, last_page->index);
1832 lock_page(last_page);
1833 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1834 set_page_dirty(last_page);
1835 unlock_page(last_page);
1836 goto retry;
1837 }
1838 out:
1839 if (nwritten)
1840 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1841 return ret ? -EIO : 0;
1842 }
1843
f2fs_match_ino(struct inode * inode,unsigned long ino,void * data)1844 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1845 {
1846 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1847 bool clean;
1848
1849 if (inode->i_ino != ino)
1850 return 0;
1851
1852 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1853 return 0;
1854
1855 spin_lock(&sbi->inode_lock[DIRTY_META]);
1856 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1857 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1858
1859 if (clean)
1860 return 0;
1861
1862 inode = igrab(inode);
1863 if (!inode)
1864 return 0;
1865 return 1;
1866 }
1867
flush_dirty_inode(struct page * page)1868 static bool flush_dirty_inode(struct page *page)
1869 {
1870 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1871 struct inode *inode;
1872 nid_t ino = ino_of_node(page);
1873
1874 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1875 if (!inode)
1876 return false;
1877
1878 f2fs_update_inode(inode, page);
1879 unlock_page(page);
1880
1881 iput(inode);
1882 return true;
1883 }
1884
f2fs_flush_inline_data(struct f2fs_sb_info * sbi)1885 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1886 {
1887 pgoff_t index = 0;
1888 struct pagevec pvec;
1889 int nr_pages;
1890
1891 pagevec_init(&pvec);
1892
1893 while ((nr_pages = pagevec_lookup_tag(&pvec,
1894 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1895 int i;
1896
1897 for (i = 0; i < nr_pages; i++) {
1898 struct page *page = pvec.pages[i];
1899
1900 if (!IS_DNODE(page))
1901 continue;
1902
1903 lock_page(page);
1904
1905 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1906 continue_unlock:
1907 unlock_page(page);
1908 continue;
1909 }
1910
1911 if (!PageDirty(page)) {
1912 /* someone wrote it for us */
1913 goto continue_unlock;
1914 }
1915
1916 /* flush inline_data, if it's async context. */
1917 if (page_private_inline(page)) {
1918 clear_page_private_inline(page);
1919 unlock_page(page);
1920 flush_inline_data(sbi, ino_of_node(page));
1921 continue;
1922 }
1923 unlock_page(page);
1924 }
1925 pagevec_release(&pvec);
1926 cond_resched();
1927 }
1928 }
1929
f2fs_sync_node_pages(struct f2fs_sb_info * sbi,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type)1930 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1931 struct writeback_control *wbc,
1932 bool do_balance, enum iostat_type io_type)
1933 {
1934 pgoff_t index;
1935 struct pagevec pvec;
1936 int step = 0;
1937 int nwritten = 0;
1938 int ret = 0;
1939 int nr_pages, done = 0;
1940
1941 pagevec_init(&pvec);
1942
1943 next_step:
1944 index = 0;
1945
1946 while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1947 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1948 int i;
1949
1950 for (i = 0; i < nr_pages; i++) {
1951 struct page *page = pvec.pages[i];
1952 bool submitted = false;
1953
1954 /* give a priority to WB_SYNC threads */
1955 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1956 wbc->sync_mode == WB_SYNC_NONE) {
1957 done = 1;
1958 break;
1959 }
1960
1961 /*
1962 * flushing sequence with step:
1963 * 0. indirect nodes
1964 * 1. dentry dnodes
1965 * 2. file dnodes
1966 */
1967 if (step == 0 && IS_DNODE(page))
1968 continue;
1969 if (step == 1 && (!IS_DNODE(page) ||
1970 is_cold_node(page)))
1971 continue;
1972 if (step == 2 && (!IS_DNODE(page) ||
1973 !is_cold_node(page)))
1974 continue;
1975 lock_node:
1976 if (wbc->sync_mode == WB_SYNC_ALL)
1977 lock_page(page);
1978 else if (!trylock_page(page))
1979 continue;
1980
1981 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1982 continue_unlock:
1983 unlock_page(page);
1984 continue;
1985 }
1986
1987 if (!PageDirty(page)) {
1988 /* someone wrote it for us */
1989 goto continue_unlock;
1990 }
1991
1992 /* flush inline_data/inode, if it's async context. */
1993 if (!do_balance)
1994 goto write_node;
1995
1996 /* flush inline_data */
1997 if (page_private_inline(page)) {
1998 clear_page_private_inline(page);
1999 unlock_page(page);
2000 flush_inline_data(sbi, ino_of_node(page));
2001 goto lock_node;
2002 }
2003
2004 /* flush dirty inode */
2005 if (IS_INODE(page) && flush_dirty_inode(page))
2006 goto lock_node;
2007 write_node:
2008 f2fs_wait_on_page_writeback(page, NODE, true, true);
2009
2010 if (!clear_page_dirty_for_io(page))
2011 goto continue_unlock;
2012
2013 set_fsync_mark(page, 0);
2014 set_dentry_mark(page, 0);
2015
2016 ret = __write_node_page(page, false, &submitted,
2017 wbc, do_balance, io_type, NULL);
2018 if (ret)
2019 unlock_page(page);
2020 else if (submitted)
2021 nwritten++;
2022
2023 if (--wbc->nr_to_write == 0)
2024 break;
2025 }
2026 pagevec_release(&pvec);
2027 cond_resched();
2028
2029 if (wbc->nr_to_write == 0) {
2030 step = 2;
2031 break;
2032 }
2033 }
2034
2035 if (step < 2) {
2036 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2037 wbc->sync_mode == WB_SYNC_NONE && step == 1)
2038 goto out;
2039 step++;
2040 goto next_step;
2041 }
2042 out:
2043 if (nwritten)
2044 f2fs_submit_merged_write(sbi, NODE);
2045
2046 if (unlikely(f2fs_cp_error(sbi)))
2047 return -EIO;
2048 return ret;
2049 }
2050
f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info * sbi,unsigned int seq_id)2051 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2052 unsigned int seq_id)
2053 {
2054 struct fsync_node_entry *fn;
2055 struct page *page;
2056 struct list_head *head = &sbi->fsync_node_list;
2057 unsigned long flags;
2058 unsigned int cur_seq_id = 0;
2059 int ret2, ret = 0;
2060
2061 while (seq_id && cur_seq_id < seq_id) {
2062 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2063 if (list_empty(head)) {
2064 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2065 break;
2066 }
2067 fn = list_first_entry(head, struct fsync_node_entry, list);
2068 if (fn->seq_id > seq_id) {
2069 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2070 break;
2071 }
2072 cur_seq_id = fn->seq_id;
2073 page = fn->page;
2074 get_page(page);
2075 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2076
2077 f2fs_wait_on_page_writeback(page, NODE, true, false);
2078 if (TestClearPageError(page))
2079 ret = -EIO;
2080
2081 put_page(page);
2082
2083 if (ret)
2084 break;
2085 }
2086
2087 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2088 if (!ret)
2089 ret = ret2;
2090
2091 return ret;
2092 }
2093
f2fs_write_node_pages(struct address_space * mapping,struct writeback_control * wbc)2094 static int f2fs_write_node_pages(struct address_space *mapping,
2095 struct writeback_control *wbc)
2096 {
2097 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2098 struct blk_plug plug;
2099 long diff;
2100
2101 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2102 goto skip_write;
2103
2104 /* balancing f2fs's metadata in background */
2105 f2fs_balance_fs_bg(sbi, true);
2106
2107 /* collect a number of dirty node pages and write together */
2108 if (wbc->sync_mode != WB_SYNC_ALL &&
2109 get_pages(sbi, F2FS_DIRTY_NODES) <
2110 nr_pages_to_skip(sbi, NODE))
2111 goto skip_write;
2112
2113 if (wbc->sync_mode == WB_SYNC_ALL)
2114 atomic_inc(&sbi->wb_sync_req[NODE]);
2115 else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2116 /* to avoid potential deadlock */
2117 if (current->plug)
2118 blk_finish_plug(current->plug);
2119 goto skip_write;
2120 }
2121
2122 trace_f2fs_writepages(mapping->host, wbc, NODE);
2123
2124 diff = nr_pages_to_write(sbi, NODE, wbc);
2125 blk_start_plug(&plug);
2126 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2127 blk_finish_plug(&plug);
2128 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2129
2130 if (wbc->sync_mode == WB_SYNC_ALL)
2131 atomic_dec(&sbi->wb_sync_req[NODE]);
2132 return 0;
2133
2134 skip_write:
2135 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2136 trace_f2fs_writepages(mapping->host, wbc, NODE);
2137 return 0;
2138 }
2139
f2fs_set_node_page_dirty(struct page * page)2140 static int f2fs_set_node_page_dirty(struct page *page)
2141 {
2142 trace_f2fs_set_page_dirty(page, NODE);
2143
2144 if (!PageUptodate(page))
2145 SetPageUptodate(page);
2146 #ifdef CONFIG_F2FS_CHECK_FS
2147 if (IS_INODE(page))
2148 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2149 #endif
2150 if (!PageDirty(page)) {
2151 __set_page_dirty_nobuffers(page);
2152 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2153 set_page_private_reference(page);
2154 return 1;
2155 }
2156 return 0;
2157 }
2158
2159 /*
2160 * Structure of the f2fs node operations
2161 */
2162 const struct address_space_operations f2fs_node_aops = {
2163 .writepage = f2fs_write_node_page,
2164 .writepages = f2fs_write_node_pages,
2165 .set_page_dirty = f2fs_set_node_page_dirty,
2166 .invalidatepage = f2fs_invalidate_page,
2167 .releasepage = f2fs_release_page,
2168 #ifdef CONFIG_MIGRATION
2169 .migratepage = f2fs_migrate_page,
2170 #endif
2171 };
2172
__lookup_free_nid_list(struct f2fs_nm_info * nm_i,nid_t n)2173 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2174 nid_t n)
2175 {
2176 return radix_tree_lookup(&nm_i->free_nid_root, n);
2177 }
2178
__insert_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i)2179 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2180 struct free_nid *i)
2181 {
2182 struct f2fs_nm_info *nm_i = NM_I(sbi);
2183 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2184
2185 if (err)
2186 return err;
2187
2188 nm_i->nid_cnt[FREE_NID]++;
2189 list_add_tail(&i->list, &nm_i->free_nid_list);
2190 return 0;
2191 }
2192
__remove_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state state)2193 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2194 struct free_nid *i, enum nid_state state)
2195 {
2196 struct f2fs_nm_info *nm_i = NM_I(sbi);
2197
2198 f2fs_bug_on(sbi, state != i->state);
2199 nm_i->nid_cnt[state]--;
2200 if (state == FREE_NID)
2201 list_del(&i->list);
2202 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2203 }
2204
__move_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state org_state,enum nid_state dst_state)2205 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2206 enum nid_state org_state, enum nid_state dst_state)
2207 {
2208 struct f2fs_nm_info *nm_i = NM_I(sbi);
2209
2210 f2fs_bug_on(sbi, org_state != i->state);
2211 i->state = dst_state;
2212 nm_i->nid_cnt[org_state]--;
2213 nm_i->nid_cnt[dst_state]++;
2214
2215 switch (dst_state) {
2216 case PREALLOC_NID:
2217 list_del(&i->list);
2218 break;
2219 case FREE_NID:
2220 list_add_tail(&i->list, &nm_i->free_nid_list);
2221 break;
2222 default:
2223 BUG_ON(1);
2224 }
2225 }
2226
f2fs_nat_bitmap_enabled(struct f2fs_sb_info * sbi)2227 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2228 {
2229 struct f2fs_nm_info *nm_i = NM_I(sbi);
2230 unsigned int i;
2231 bool ret = true;
2232
2233 f2fs_down_read(&nm_i->nat_tree_lock);
2234 for (i = 0; i < nm_i->nat_blocks; i++) {
2235 if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2236 ret = false;
2237 break;
2238 }
2239 }
2240 f2fs_up_read(&nm_i->nat_tree_lock);
2241
2242 return ret;
2243 }
2244
update_free_nid_bitmap(struct f2fs_sb_info * sbi,nid_t nid,bool set,bool build)2245 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2246 bool set, bool build)
2247 {
2248 struct f2fs_nm_info *nm_i = NM_I(sbi);
2249 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2250 unsigned int nid_ofs = nid - START_NID(nid);
2251
2252 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2253 return;
2254
2255 if (set) {
2256 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2257 return;
2258 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2259 nm_i->free_nid_count[nat_ofs]++;
2260 } else {
2261 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2262 return;
2263 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2264 if (!build)
2265 nm_i->free_nid_count[nat_ofs]--;
2266 }
2267 }
2268
2269 /* return if the nid is recognized as free */
add_free_nid(struct f2fs_sb_info * sbi,nid_t nid,bool build,bool update)2270 static bool add_free_nid(struct f2fs_sb_info *sbi,
2271 nid_t nid, bool build, bool update)
2272 {
2273 struct f2fs_nm_info *nm_i = NM_I(sbi);
2274 struct free_nid *i, *e;
2275 struct nat_entry *ne;
2276 int err = -EINVAL;
2277 bool ret = false;
2278
2279 /* 0 nid should not be used */
2280 if (unlikely(nid == 0))
2281 return false;
2282
2283 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2284 return false;
2285
2286 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2287 i->nid = nid;
2288 i->state = FREE_NID;
2289
2290 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2291
2292 spin_lock(&nm_i->nid_list_lock);
2293
2294 if (build) {
2295 /*
2296 * Thread A Thread B
2297 * - f2fs_create
2298 * - f2fs_new_inode
2299 * - f2fs_alloc_nid
2300 * - __insert_nid_to_list(PREALLOC_NID)
2301 * - f2fs_balance_fs_bg
2302 * - f2fs_build_free_nids
2303 * - __f2fs_build_free_nids
2304 * - scan_nat_page
2305 * - add_free_nid
2306 * - __lookup_nat_cache
2307 * - f2fs_add_link
2308 * - f2fs_init_inode_metadata
2309 * - f2fs_new_inode_page
2310 * - f2fs_new_node_page
2311 * - set_node_addr
2312 * - f2fs_alloc_nid_done
2313 * - __remove_nid_from_list(PREALLOC_NID)
2314 * - __insert_nid_to_list(FREE_NID)
2315 */
2316 ne = __lookup_nat_cache(nm_i, nid);
2317 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2318 nat_get_blkaddr(ne) != NULL_ADDR))
2319 goto err_out;
2320
2321 e = __lookup_free_nid_list(nm_i, nid);
2322 if (e) {
2323 if (e->state == FREE_NID)
2324 ret = true;
2325 goto err_out;
2326 }
2327 }
2328 ret = true;
2329 err = __insert_free_nid(sbi, i);
2330 err_out:
2331 if (update) {
2332 update_free_nid_bitmap(sbi, nid, ret, build);
2333 if (!build)
2334 nm_i->available_nids++;
2335 }
2336 spin_unlock(&nm_i->nid_list_lock);
2337 radix_tree_preload_end();
2338
2339 if (err)
2340 kmem_cache_free(free_nid_slab, i);
2341 return ret;
2342 }
2343
remove_free_nid(struct f2fs_sb_info * sbi,nid_t nid)2344 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2345 {
2346 struct f2fs_nm_info *nm_i = NM_I(sbi);
2347 struct free_nid *i;
2348 bool need_free = false;
2349
2350 spin_lock(&nm_i->nid_list_lock);
2351 i = __lookup_free_nid_list(nm_i, nid);
2352 if (i && i->state == FREE_NID) {
2353 __remove_free_nid(sbi, i, FREE_NID);
2354 need_free = true;
2355 }
2356 spin_unlock(&nm_i->nid_list_lock);
2357
2358 if (need_free)
2359 kmem_cache_free(free_nid_slab, i);
2360 }
2361
scan_nat_page(struct f2fs_sb_info * sbi,struct page * nat_page,nid_t start_nid)2362 static int scan_nat_page(struct f2fs_sb_info *sbi,
2363 struct page *nat_page, nid_t start_nid)
2364 {
2365 struct f2fs_nm_info *nm_i = NM_I(sbi);
2366 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2367 block_t blk_addr;
2368 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2369 int i;
2370
2371 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2372
2373 i = start_nid % NAT_ENTRY_PER_BLOCK;
2374
2375 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2376 if (unlikely(start_nid >= nm_i->max_nid))
2377 break;
2378
2379 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2380
2381 if (blk_addr == NEW_ADDR)
2382 return -EINVAL;
2383
2384 if (blk_addr == NULL_ADDR) {
2385 add_free_nid(sbi, start_nid, true, true);
2386 } else {
2387 spin_lock(&NM_I(sbi)->nid_list_lock);
2388 update_free_nid_bitmap(sbi, start_nid, false, true);
2389 spin_unlock(&NM_I(sbi)->nid_list_lock);
2390 }
2391 }
2392
2393 return 0;
2394 }
2395
scan_curseg_cache(struct f2fs_sb_info * sbi)2396 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2397 {
2398 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2399 struct f2fs_journal *journal = curseg->journal;
2400 int i;
2401
2402 down_read(&curseg->journal_rwsem);
2403 for (i = 0; i < nats_in_cursum(journal); i++) {
2404 block_t addr;
2405 nid_t nid;
2406
2407 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2408 nid = le32_to_cpu(nid_in_journal(journal, i));
2409 if (addr == NULL_ADDR)
2410 add_free_nid(sbi, nid, true, false);
2411 else
2412 remove_free_nid(sbi, nid);
2413 }
2414 up_read(&curseg->journal_rwsem);
2415 }
2416
scan_free_nid_bits(struct f2fs_sb_info * sbi)2417 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2418 {
2419 struct f2fs_nm_info *nm_i = NM_I(sbi);
2420 unsigned int i, idx;
2421 nid_t nid;
2422
2423 f2fs_down_read(&nm_i->nat_tree_lock);
2424
2425 for (i = 0; i < nm_i->nat_blocks; i++) {
2426 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2427 continue;
2428 if (!nm_i->free_nid_count[i])
2429 continue;
2430 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2431 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2432 NAT_ENTRY_PER_BLOCK, idx);
2433 if (idx >= NAT_ENTRY_PER_BLOCK)
2434 break;
2435
2436 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2437 add_free_nid(sbi, nid, true, false);
2438
2439 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2440 goto out;
2441 }
2442 }
2443 out:
2444 scan_curseg_cache(sbi);
2445
2446 f2fs_up_read(&nm_i->nat_tree_lock);
2447 }
2448
__f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2449 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2450 bool sync, bool mount)
2451 {
2452 struct f2fs_nm_info *nm_i = NM_I(sbi);
2453 int i = 0, ret;
2454 nid_t nid = nm_i->next_scan_nid;
2455
2456 if (unlikely(nid >= nm_i->max_nid))
2457 nid = 0;
2458
2459 if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2460 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2461
2462 /* Enough entries */
2463 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2464 return 0;
2465
2466 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2467 return 0;
2468
2469 if (!mount) {
2470 /* try to find free nids in free_nid_bitmap */
2471 scan_free_nid_bits(sbi);
2472
2473 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2474 return 0;
2475 }
2476
2477 /* readahead nat pages to be scanned */
2478 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2479 META_NAT, true);
2480
2481 f2fs_down_read(&nm_i->nat_tree_lock);
2482
2483 while (1) {
2484 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2485 nm_i->nat_block_bitmap)) {
2486 struct page *page = get_current_nat_page(sbi, nid);
2487
2488 if (IS_ERR(page)) {
2489 ret = PTR_ERR(page);
2490 } else {
2491 ret = scan_nat_page(sbi, page, nid);
2492 f2fs_put_page(page, 1);
2493 }
2494
2495 if (ret) {
2496 f2fs_up_read(&nm_i->nat_tree_lock);
2497 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2498 return ret;
2499 }
2500 }
2501
2502 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2503 if (unlikely(nid >= nm_i->max_nid))
2504 nid = 0;
2505
2506 if (++i >= FREE_NID_PAGES)
2507 break;
2508 }
2509
2510 /* go to the next free nat pages to find free nids abundantly */
2511 nm_i->next_scan_nid = nid;
2512
2513 /* find free nids from current sum_pages */
2514 scan_curseg_cache(sbi);
2515
2516 f2fs_up_read(&nm_i->nat_tree_lock);
2517
2518 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2519 nm_i->ra_nid_pages, META_NAT, false);
2520
2521 return 0;
2522 }
2523
f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2524 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2525 {
2526 int ret;
2527
2528 mutex_lock(&NM_I(sbi)->build_lock);
2529 ret = __f2fs_build_free_nids(sbi, sync, mount);
2530 mutex_unlock(&NM_I(sbi)->build_lock);
2531
2532 return ret;
2533 }
2534
2535 /*
2536 * If this function returns success, caller can obtain a new nid
2537 * from second parameter of this function.
2538 * The returned nid could be used ino as well as nid when inode is created.
2539 */
f2fs_alloc_nid(struct f2fs_sb_info * sbi,nid_t * nid)2540 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2541 {
2542 struct f2fs_nm_info *nm_i = NM_I(sbi);
2543 struct free_nid *i = NULL;
2544 retry:
2545 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2546 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2547 return false;
2548 }
2549
2550 spin_lock(&nm_i->nid_list_lock);
2551
2552 if (unlikely(nm_i->available_nids == 0)) {
2553 spin_unlock(&nm_i->nid_list_lock);
2554 return false;
2555 }
2556
2557 /* We should not use stale free nids created by f2fs_build_free_nids */
2558 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2559 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2560 i = list_first_entry(&nm_i->free_nid_list,
2561 struct free_nid, list);
2562 *nid = i->nid;
2563
2564 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2565 nm_i->available_nids--;
2566
2567 update_free_nid_bitmap(sbi, *nid, false, false);
2568
2569 spin_unlock(&nm_i->nid_list_lock);
2570 return true;
2571 }
2572 spin_unlock(&nm_i->nid_list_lock);
2573
2574 /* Let's scan nat pages and its caches to get free nids */
2575 if (!f2fs_build_free_nids(sbi, true, false))
2576 goto retry;
2577 return false;
2578 }
2579
2580 /*
2581 * f2fs_alloc_nid() should be called prior to this function.
2582 */
f2fs_alloc_nid_done(struct f2fs_sb_info * sbi,nid_t nid)2583 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2584 {
2585 struct f2fs_nm_info *nm_i = NM_I(sbi);
2586 struct free_nid *i;
2587
2588 spin_lock(&nm_i->nid_list_lock);
2589 i = __lookup_free_nid_list(nm_i, nid);
2590 f2fs_bug_on(sbi, !i);
2591 __remove_free_nid(sbi, i, PREALLOC_NID);
2592 spin_unlock(&nm_i->nid_list_lock);
2593
2594 kmem_cache_free(free_nid_slab, i);
2595 }
2596
2597 /*
2598 * f2fs_alloc_nid() should be called prior to this function.
2599 */
f2fs_alloc_nid_failed(struct f2fs_sb_info * sbi,nid_t nid)2600 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2601 {
2602 struct f2fs_nm_info *nm_i = NM_I(sbi);
2603 struct free_nid *i;
2604 bool need_free = false;
2605
2606 if (!nid)
2607 return;
2608
2609 spin_lock(&nm_i->nid_list_lock);
2610 i = __lookup_free_nid_list(nm_i, nid);
2611 f2fs_bug_on(sbi, !i);
2612
2613 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2614 __remove_free_nid(sbi, i, PREALLOC_NID);
2615 need_free = true;
2616 } else {
2617 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2618 }
2619
2620 nm_i->available_nids++;
2621
2622 update_free_nid_bitmap(sbi, nid, true, false);
2623
2624 spin_unlock(&nm_i->nid_list_lock);
2625
2626 if (need_free)
2627 kmem_cache_free(free_nid_slab, i);
2628 }
2629
f2fs_try_to_free_nids(struct f2fs_sb_info * sbi,int nr_shrink)2630 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2631 {
2632 struct f2fs_nm_info *nm_i = NM_I(sbi);
2633 int nr = nr_shrink;
2634
2635 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2636 return 0;
2637
2638 if (!mutex_trylock(&nm_i->build_lock))
2639 return 0;
2640
2641 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2642 struct free_nid *i, *next;
2643 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2644
2645 spin_lock(&nm_i->nid_list_lock);
2646 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2647 if (!nr_shrink || !batch ||
2648 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2649 break;
2650 __remove_free_nid(sbi, i, FREE_NID);
2651 kmem_cache_free(free_nid_slab, i);
2652 nr_shrink--;
2653 batch--;
2654 }
2655 spin_unlock(&nm_i->nid_list_lock);
2656 }
2657
2658 mutex_unlock(&nm_i->build_lock);
2659
2660 return nr - nr_shrink;
2661 }
2662
f2fs_recover_inline_xattr(struct inode * inode,struct page * page)2663 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2664 {
2665 void *src_addr, *dst_addr;
2666 size_t inline_size;
2667 struct page *ipage;
2668 struct f2fs_inode *ri;
2669
2670 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2671 if (IS_ERR(ipage))
2672 return PTR_ERR(ipage);
2673
2674 ri = F2FS_INODE(page);
2675 if (ri->i_inline & F2FS_INLINE_XATTR) {
2676 if (!f2fs_has_inline_xattr(inode)) {
2677 set_inode_flag(inode, FI_INLINE_XATTR);
2678 stat_inc_inline_xattr(inode);
2679 }
2680 } else {
2681 if (f2fs_has_inline_xattr(inode)) {
2682 stat_dec_inline_xattr(inode);
2683 clear_inode_flag(inode, FI_INLINE_XATTR);
2684 }
2685 goto update_inode;
2686 }
2687
2688 dst_addr = inline_xattr_addr(inode, ipage);
2689 src_addr = inline_xattr_addr(inode, page);
2690 inline_size = inline_xattr_size(inode);
2691
2692 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2693 memcpy(dst_addr, src_addr, inline_size);
2694 update_inode:
2695 f2fs_update_inode(inode, ipage);
2696 f2fs_put_page(ipage, 1);
2697 return 0;
2698 }
2699
f2fs_recover_xattr_data(struct inode * inode,struct page * page)2700 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2701 {
2702 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2703 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2704 nid_t new_xnid;
2705 struct dnode_of_data dn;
2706 struct node_info ni;
2707 struct page *xpage;
2708 int err;
2709
2710 if (!prev_xnid)
2711 goto recover_xnid;
2712
2713 /* 1: invalidate the previous xattr nid */
2714 err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2715 if (err)
2716 return err;
2717
2718 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2719 dec_valid_node_count(sbi, inode, false);
2720 set_node_addr(sbi, &ni, NULL_ADDR, false);
2721
2722 recover_xnid:
2723 /* 2: update xattr nid in inode */
2724 if (!f2fs_alloc_nid(sbi, &new_xnid))
2725 return -ENOSPC;
2726
2727 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2728 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2729 if (IS_ERR(xpage)) {
2730 f2fs_alloc_nid_failed(sbi, new_xnid);
2731 return PTR_ERR(xpage);
2732 }
2733
2734 f2fs_alloc_nid_done(sbi, new_xnid);
2735 f2fs_update_inode_page(inode);
2736
2737 /* 3: update and set xattr node page dirty */
2738 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2739
2740 set_page_dirty(xpage);
2741 f2fs_put_page(xpage, 1);
2742
2743 return 0;
2744 }
2745
f2fs_recover_inode_page(struct f2fs_sb_info * sbi,struct page * page)2746 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2747 {
2748 struct f2fs_inode *src, *dst;
2749 nid_t ino = ino_of_node(page);
2750 struct node_info old_ni, new_ni;
2751 struct page *ipage;
2752 int err;
2753
2754 err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2755 if (err)
2756 return err;
2757
2758 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2759 return -EINVAL;
2760 retry:
2761 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2762 if (!ipage) {
2763 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2764 goto retry;
2765 }
2766
2767 /* Should not use this inode from free nid list */
2768 remove_free_nid(sbi, ino);
2769
2770 if (!PageUptodate(ipage))
2771 SetPageUptodate(ipage);
2772 fill_node_footer(ipage, ino, ino, 0, true);
2773 set_cold_node(ipage, false);
2774
2775 src = F2FS_INODE(page);
2776 dst = F2FS_INODE(ipage);
2777
2778 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2779 dst->i_size = 0;
2780 dst->i_blocks = cpu_to_le64(1);
2781 dst->i_links = cpu_to_le32(1);
2782 dst->i_xattr_nid = 0;
2783 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2784 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2785 dst->i_extra_isize = src->i_extra_isize;
2786
2787 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2788 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2789 i_inline_xattr_size))
2790 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2791
2792 if (f2fs_sb_has_project_quota(sbi) &&
2793 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2794 i_projid))
2795 dst->i_projid = src->i_projid;
2796
2797 if (f2fs_sb_has_inode_crtime(sbi) &&
2798 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2799 i_crtime_nsec)) {
2800 dst->i_crtime = src->i_crtime;
2801 dst->i_crtime_nsec = src->i_crtime_nsec;
2802 }
2803 }
2804
2805 new_ni = old_ni;
2806 new_ni.ino = ino;
2807
2808 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2809 WARN_ON(1);
2810 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2811 inc_valid_inode_count(sbi);
2812 set_page_dirty(ipage);
2813 f2fs_put_page(ipage, 1);
2814 return 0;
2815 }
2816
f2fs_restore_node_summary(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_summary_block * sum)2817 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2818 unsigned int segno, struct f2fs_summary_block *sum)
2819 {
2820 struct f2fs_node *rn;
2821 struct f2fs_summary *sum_entry;
2822 block_t addr;
2823 int i, idx, last_offset, nrpages;
2824
2825 /* scan the node segment */
2826 last_offset = sbi->blocks_per_seg;
2827 addr = START_BLOCK(sbi, segno);
2828 sum_entry = &sum->entries[0];
2829
2830 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2831 nrpages = bio_max_segs(last_offset - i);
2832
2833 /* readahead node pages */
2834 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2835
2836 for (idx = addr; idx < addr + nrpages; idx++) {
2837 struct page *page = f2fs_get_tmp_page(sbi, idx);
2838
2839 if (IS_ERR(page))
2840 return PTR_ERR(page);
2841
2842 rn = F2FS_NODE(page);
2843 sum_entry->nid = rn->footer.nid;
2844 sum_entry->version = 0;
2845 sum_entry->ofs_in_node = 0;
2846 sum_entry++;
2847 f2fs_put_page(page, 1);
2848 }
2849
2850 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2851 addr + nrpages);
2852 }
2853 return 0;
2854 }
2855
remove_nats_in_journal(struct f2fs_sb_info * sbi)2856 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2857 {
2858 struct f2fs_nm_info *nm_i = NM_I(sbi);
2859 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2860 struct f2fs_journal *journal = curseg->journal;
2861 int i;
2862
2863 down_write(&curseg->journal_rwsem);
2864 for (i = 0; i < nats_in_cursum(journal); i++) {
2865 struct nat_entry *ne;
2866 struct f2fs_nat_entry raw_ne;
2867 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2868
2869 if (f2fs_check_nid_range(sbi, nid))
2870 continue;
2871
2872 raw_ne = nat_in_journal(journal, i);
2873
2874 ne = __lookup_nat_cache(nm_i, nid);
2875 if (!ne) {
2876 ne = __alloc_nat_entry(sbi, nid, true);
2877 __init_nat_entry(nm_i, ne, &raw_ne, true);
2878 }
2879
2880 /*
2881 * if a free nat in journal has not been used after last
2882 * checkpoint, we should remove it from available nids,
2883 * since later we will add it again.
2884 */
2885 if (!get_nat_flag(ne, IS_DIRTY) &&
2886 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2887 spin_lock(&nm_i->nid_list_lock);
2888 nm_i->available_nids--;
2889 spin_unlock(&nm_i->nid_list_lock);
2890 }
2891
2892 __set_nat_cache_dirty(nm_i, ne);
2893 }
2894 update_nats_in_cursum(journal, -i);
2895 up_write(&curseg->journal_rwsem);
2896 }
2897
__adjust_nat_entry_set(struct nat_entry_set * nes,struct list_head * head,int max)2898 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2899 struct list_head *head, int max)
2900 {
2901 struct nat_entry_set *cur;
2902
2903 if (nes->entry_cnt >= max)
2904 goto add_out;
2905
2906 list_for_each_entry(cur, head, set_list) {
2907 if (cur->entry_cnt >= nes->entry_cnt) {
2908 list_add(&nes->set_list, cur->set_list.prev);
2909 return;
2910 }
2911 }
2912 add_out:
2913 list_add_tail(&nes->set_list, head);
2914 }
2915
__update_nat_bits(struct f2fs_nm_info * nm_i,unsigned int nat_ofs,unsigned int valid)2916 static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2917 unsigned int valid)
2918 {
2919 if (valid == 0) {
2920 __set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2921 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2922 return;
2923 }
2924
2925 __clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2926 if (valid == NAT_ENTRY_PER_BLOCK)
2927 __set_bit_le(nat_ofs, nm_i->full_nat_bits);
2928 else
2929 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2930 }
2931
update_nat_bits(struct f2fs_sb_info * sbi,nid_t start_nid,struct page * page)2932 static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2933 struct page *page)
2934 {
2935 struct f2fs_nm_info *nm_i = NM_I(sbi);
2936 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2937 struct f2fs_nat_block *nat_blk = page_address(page);
2938 int valid = 0;
2939 int i = 0;
2940
2941 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2942 return;
2943
2944 if (nat_index == 0) {
2945 valid = 1;
2946 i = 1;
2947 }
2948 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2949 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2950 valid++;
2951 }
2952
2953 __update_nat_bits(nm_i, nat_index, valid);
2954 }
2955
f2fs_enable_nat_bits(struct f2fs_sb_info * sbi)2956 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
2957 {
2958 struct f2fs_nm_info *nm_i = NM_I(sbi);
2959 unsigned int nat_ofs;
2960
2961 f2fs_down_read(&nm_i->nat_tree_lock);
2962
2963 for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
2964 unsigned int valid = 0, nid_ofs = 0;
2965
2966 /* handle nid zero due to it should never be used */
2967 if (unlikely(nat_ofs == 0)) {
2968 valid = 1;
2969 nid_ofs = 1;
2970 }
2971
2972 for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
2973 if (!test_bit_le(nid_ofs,
2974 nm_i->free_nid_bitmap[nat_ofs]))
2975 valid++;
2976 }
2977
2978 __update_nat_bits(nm_i, nat_ofs, valid);
2979 }
2980
2981 f2fs_up_read(&nm_i->nat_tree_lock);
2982 }
2983
__flush_nat_entry_set(struct f2fs_sb_info * sbi,struct nat_entry_set * set,struct cp_control * cpc)2984 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2985 struct nat_entry_set *set, struct cp_control *cpc)
2986 {
2987 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2988 struct f2fs_journal *journal = curseg->journal;
2989 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2990 bool to_journal = true;
2991 struct f2fs_nat_block *nat_blk;
2992 struct nat_entry *ne, *cur;
2993 struct page *page = NULL;
2994
2995 /*
2996 * there are two steps to flush nat entries:
2997 * #1, flush nat entries to journal in current hot data summary block.
2998 * #2, flush nat entries to nat page.
2999 */
3000 if ((cpc->reason & CP_UMOUNT) ||
3001 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3002 to_journal = false;
3003
3004 if (to_journal) {
3005 down_write(&curseg->journal_rwsem);
3006 } else {
3007 page = get_next_nat_page(sbi, start_nid);
3008 if (IS_ERR(page))
3009 return PTR_ERR(page);
3010
3011 nat_blk = page_address(page);
3012 f2fs_bug_on(sbi, !nat_blk);
3013 }
3014
3015 /* flush dirty nats in nat entry set */
3016 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3017 struct f2fs_nat_entry *raw_ne;
3018 nid_t nid = nat_get_nid(ne);
3019 int offset;
3020
3021 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3022
3023 if (to_journal) {
3024 offset = f2fs_lookup_journal_in_cursum(journal,
3025 NAT_JOURNAL, nid, 1);
3026 f2fs_bug_on(sbi, offset < 0);
3027 raw_ne = &nat_in_journal(journal, offset);
3028 nid_in_journal(journal, offset) = cpu_to_le32(nid);
3029 } else {
3030 raw_ne = &nat_blk->entries[nid - start_nid];
3031 }
3032 raw_nat_from_node_info(raw_ne, &ne->ni);
3033 nat_reset_flag(ne);
3034 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
3035 if (nat_get_blkaddr(ne) == NULL_ADDR) {
3036 add_free_nid(sbi, nid, false, true);
3037 } else {
3038 spin_lock(&NM_I(sbi)->nid_list_lock);
3039 update_free_nid_bitmap(sbi, nid, false, false);
3040 spin_unlock(&NM_I(sbi)->nid_list_lock);
3041 }
3042 }
3043
3044 if (to_journal) {
3045 up_write(&curseg->journal_rwsem);
3046 } else {
3047 update_nat_bits(sbi, start_nid, page);
3048 f2fs_put_page(page, 1);
3049 }
3050
3051 /* Allow dirty nats by node block allocation in write_begin */
3052 if (!set->entry_cnt) {
3053 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3054 kmem_cache_free(nat_entry_set_slab, set);
3055 }
3056 return 0;
3057 }
3058
3059 /*
3060 * This function is called during the checkpointing process.
3061 */
f2fs_flush_nat_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)3062 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3063 {
3064 struct f2fs_nm_info *nm_i = NM_I(sbi);
3065 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3066 struct f2fs_journal *journal = curseg->journal;
3067 struct nat_entry_set *setvec[SETVEC_SIZE];
3068 struct nat_entry_set *set, *tmp;
3069 unsigned int found;
3070 nid_t set_idx = 0;
3071 LIST_HEAD(sets);
3072 int err = 0;
3073
3074 /*
3075 * during unmount, let's flush nat_bits before checking
3076 * nat_cnt[DIRTY_NAT].
3077 */
3078 if (cpc->reason & CP_UMOUNT) {
3079 f2fs_down_write(&nm_i->nat_tree_lock);
3080 remove_nats_in_journal(sbi);
3081 f2fs_up_write(&nm_i->nat_tree_lock);
3082 }
3083
3084 if (!nm_i->nat_cnt[DIRTY_NAT])
3085 return 0;
3086
3087 f2fs_down_write(&nm_i->nat_tree_lock);
3088
3089 /*
3090 * if there are no enough space in journal to store dirty nat
3091 * entries, remove all entries from journal and merge them
3092 * into nat entry set.
3093 */
3094 if (cpc->reason & CP_UMOUNT ||
3095 !__has_cursum_space(journal,
3096 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3097 remove_nats_in_journal(sbi);
3098
3099 while ((found = __gang_lookup_nat_set(nm_i,
3100 set_idx, SETVEC_SIZE, setvec))) {
3101 unsigned idx;
3102
3103 set_idx = setvec[found - 1]->set + 1;
3104 for (idx = 0; idx < found; idx++)
3105 __adjust_nat_entry_set(setvec[idx], &sets,
3106 MAX_NAT_JENTRIES(journal));
3107 }
3108
3109 /* flush dirty nats in nat entry set */
3110 list_for_each_entry_safe(set, tmp, &sets, set_list) {
3111 err = __flush_nat_entry_set(sbi, set, cpc);
3112 if (err)
3113 break;
3114 }
3115
3116 f2fs_up_write(&nm_i->nat_tree_lock);
3117 /* Allow dirty nats by node block allocation in write_begin */
3118
3119 return err;
3120 }
3121
__get_nat_bitmaps(struct f2fs_sb_info * sbi)3122 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3123 {
3124 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3125 struct f2fs_nm_info *nm_i = NM_I(sbi);
3126 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3127 unsigned int i;
3128 __u64 cp_ver = cur_cp_version(ckpt);
3129 block_t nat_bits_addr;
3130
3131 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3132 nm_i->nat_bits = f2fs_kvzalloc(sbi,
3133 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3134 if (!nm_i->nat_bits)
3135 return -ENOMEM;
3136
3137 nm_i->full_nat_bits = nm_i->nat_bits + 8;
3138 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3139
3140 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3141 return 0;
3142
3143 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3144 nm_i->nat_bits_blocks;
3145 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3146 struct page *page;
3147
3148 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3149 if (IS_ERR(page))
3150 return PTR_ERR(page);
3151
3152 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3153 page_address(page), F2FS_BLKSIZE);
3154 f2fs_put_page(page, 1);
3155 }
3156
3157 cp_ver |= (cur_cp_crc(ckpt) << 32);
3158 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3159 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3160 f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3161 cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3162 return 0;
3163 }
3164
3165 f2fs_notice(sbi, "Found nat_bits in checkpoint");
3166 return 0;
3167 }
3168
load_free_nid_bitmap(struct f2fs_sb_info * sbi)3169 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3170 {
3171 struct f2fs_nm_info *nm_i = NM_I(sbi);
3172 unsigned int i = 0;
3173 nid_t nid, last_nid;
3174
3175 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3176 return;
3177
3178 for (i = 0; i < nm_i->nat_blocks; i++) {
3179 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3180 if (i >= nm_i->nat_blocks)
3181 break;
3182
3183 __set_bit_le(i, nm_i->nat_block_bitmap);
3184
3185 nid = i * NAT_ENTRY_PER_BLOCK;
3186 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3187
3188 spin_lock(&NM_I(sbi)->nid_list_lock);
3189 for (; nid < last_nid; nid++)
3190 update_free_nid_bitmap(sbi, nid, true, true);
3191 spin_unlock(&NM_I(sbi)->nid_list_lock);
3192 }
3193
3194 for (i = 0; i < nm_i->nat_blocks; i++) {
3195 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3196 if (i >= nm_i->nat_blocks)
3197 break;
3198
3199 __set_bit_le(i, nm_i->nat_block_bitmap);
3200 }
3201 }
3202
init_node_manager(struct f2fs_sb_info * sbi)3203 static int init_node_manager(struct f2fs_sb_info *sbi)
3204 {
3205 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3206 struct f2fs_nm_info *nm_i = NM_I(sbi);
3207 unsigned char *version_bitmap;
3208 unsigned int nat_segs;
3209 int err;
3210
3211 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3212
3213 /* segment_count_nat includes pair segment so divide to 2. */
3214 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3215 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3216 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3217
3218 /* not used nids: 0, node, meta, (and root counted as valid node) */
3219 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3220 F2FS_RESERVED_NODE_NUM;
3221 nm_i->nid_cnt[FREE_NID] = 0;
3222 nm_i->nid_cnt[PREALLOC_NID] = 0;
3223 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3224 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3225 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3226 nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3227
3228 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3229 INIT_LIST_HEAD(&nm_i->free_nid_list);
3230 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3231 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3232 INIT_LIST_HEAD(&nm_i->nat_entries);
3233 spin_lock_init(&nm_i->nat_list_lock);
3234
3235 mutex_init(&nm_i->build_lock);
3236 spin_lock_init(&nm_i->nid_list_lock);
3237 init_f2fs_rwsem(&nm_i->nat_tree_lock);
3238
3239 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3240 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3241 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3242 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3243 GFP_KERNEL);
3244 if (!nm_i->nat_bitmap)
3245 return -ENOMEM;
3246
3247 err = __get_nat_bitmaps(sbi);
3248 if (err)
3249 return err;
3250
3251 #ifdef CONFIG_F2FS_CHECK_FS
3252 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3253 GFP_KERNEL);
3254 if (!nm_i->nat_bitmap_mir)
3255 return -ENOMEM;
3256 #endif
3257
3258 return 0;
3259 }
3260
init_free_nid_cache(struct f2fs_sb_info * sbi)3261 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3262 {
3263 struct f2fs_nm_info *nm_i = NM_I(sbi);
3264 int i;
3265
3266 nm_i->free_nid_bitmap =
3267 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3268 nm_i->nat_blocks),
3269 GFP_KERNEL);
3270 if (!nm_i->free_nid_bitmap)
3271 return -ENOMEM;
3272
3273 for (i = 0; i < nm_i->nat_blocks; i++) {
3274 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3275 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3276 if (!nm_i->free_nid_bitmap[i])
3277 return -ENOMEM;
3278 }
3279
3280 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3281 GFP_KERNEL);
3282 if (!nm_i->nat_block_bitmap)
3283 return -ENOMEM;
3284
3285 nm_i->free_nid_count =
3286 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3287 nm_i->nat_blocks),
3288 GFP_KERNEL);
3289 if (!nm_i->free_nid_count)
3290 return -ENOMEM;
3291 return 0;
3292 }
3293
f2fs_build_node_manager(struct f2fs_sb_info * sbi)3294 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3295 {
3296 int err;
3297
3298 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3299 GFP_KERNEL);
3300 if (!sbi->nm_info)
3301 return -ENOMEM;
3302
3303 err = init_node_manager(sbi);
3304 if (err)
3305 return err;
3306
3307 err = init_free_nid_cache(sbi);
3308 if (err)
3309 return err;
3310
3311 /* load free nid status from nat_bits table */
3312 load_free_nid_bitmap(sbi);
3313
3314 return f2fs_build_free_nids(sbi, true, true);
3315 }
3316
f2fs_destroy_node_manager(struct f2fs_sb_info * sbi)3317 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3318 {
3319 struct f2fs_nm_info *nm_i = NM_I(sbi);
3320 struct free_nid *i, *next_i;
3321 struct nat_entry *natvec[NATVEC_SIZE];
3322 struct nat_entry_set *setvec[SETVEC_SIZE];
3323 nid_t nid = 0;
3324 unsigned int found;
3325
3326 if (!nm_i)
3327 return;
3328
3329 /* destroy free nid list */
3330 spin_lock(&nm_i->nid_list_lock);
3331 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3332 __remove_free_nid(sbi, i, FREE_NID);
3333 spin_unlock(&nm_i->nid_list_lock);
3334 kmem_cache_free(free_nid_slab, i);
3335 spin_lock(&nm_i->nid_list_lock);
3336 }
3337 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3338 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3339 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3340 spin_unlock(&nm_i->nid_list_lock);
3341
3342 /* destroy nat cache */
3343 f2fs_down_write(&nm_i->nat_tree_lock);
3344 while ((found = __gang_lookup_nat_cache(nm_i,
3345 nid, NATVEC_SIZE, natvec))) {
3346 unsigned idx;
3347
3348 nid = nat_get_nid(natvec[found - 1]) + 1;
3349 for (idx = 0; idx < found; idx++) {
3350 spin_lock(&nm_i->nat_list_lock);
3351 list_del(&natvec[idx]->list);
3352 spin_unlock(&nm_i->nat_list_lock);
3353
3354 __del_from_nat_cache(nm_i, natvec[idx]);
3355 }
3356 }
3357 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3358
3359 /* destroy nat set cache */
3360 nid = 0;
3361 while ((found = __gang_lookup_nat_set(nm_i,
3362 nid, SETVEC_SIZE, setvec))) {
3363 unsigned idx;
3364
3365 nid = setvec[found - 1]->set + 1;
3366 for (idx = 0; idx < found; idx++) {
3367 /* entry_cnt is not zero, when cp_error was occurred */
3368 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3369 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3370 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3371 }
3372 }
3373 f2fs_up_write(&nm_i->nat_tree_lock);
3374
3375 kvfree(nm_i->nat_block_bitmap);
3376 if (nm_i->free_nid_bitmap) {
3377 int i;
3378
3379 for (i = 0; i < nm_i->nat_blocks; i++)
3380 kvfree(nm_i->free_nid_bitmap[i]);
3381 kvfree(nm_i->free_nid_bitmap);
3382 }
3383 kvfree(nm_i->free_nid_count);
3384
3385 kvfree(nm_i->nat_bitmap);
3386 kvfree(nm_i->nat_bits);
3387 #ifdef CONFIG_F2FS_CHECK_FS
3388 kvfree(nm_i->nat_bitmap_mir);
3389 #endif
3390 sbi->nm_info = NULL;
3391 kfree(nm_i);
3392 }
3393
f2fs_create_node_manager_caches(void)3394 int __init f2fs_create_node_manager_caches(void)
3395 {
3396 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3397 sizeof(struct nat_entry));
3398 if (!nat_entry_slab)
3399 goto fail;
3400
3401 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3402 sizeof(struct free_nid));
3403 if (!free_nid_slab)
3404 goto destroy_nat_entry;
3405
3406 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3407 sizeof(struct nat_entry_set));
3408 if (!nat_entry_set_slab)
3409 goto destroy_free_nid;
3410
3411 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3412 sizeof(struct fsync_node_entry));
3413 if (!fsync_node_entry_slab)
3414 goto destroy_nat_entry_set;
3415 return 0;
3416
3417 destroy_nat_entry_set:
3418 kmem_cache_destroy(nat_entry_set_slab);
3419 destroy_free_nid:
3420 kmem_cache_destroy(free_nid_slab);
3421 destroy_nat_entry:
3422 kmem_cache_destroy(nat_entry_slab);
3423 fail:
3424 return -ENOMEM;
3425 }
3426
f2fs_destroy_node_manager_caches(void)3427 void f2fs_destroy_node_manager_caches(void)
3428 {
3429 kmem_cache_destroy(fsync_node_entry_slab);
3430 kmem_cache_destroy(nat_entry_set_slab);
3431 kmem_cache_destroy(free_nid_slab);
3432 kmem_cache_destroy(nat_entry_slab);
3433 }
3434