1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/data.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/cleancache.h>
22 #include <linux/sched/signal.h>
23 #include <linux/fiemap.h>
24 #include <linux/iomap.h>
25
26 #include "f2fs.h"
27 #include "node.h"
28 #include "segment.h"
29 #include "iostat.h"
30 #include <trace/events/f2fs.h>
31 #include <trace/events/android_fs.h>
32
33 #define NUM_PREALLOC_POST_READ_CTXS 128
34
35 static struct kmem_cache *bio_post_read_ctx_cache;
36 static struct kmem_cache *bio_entry_slab;
37 static mempool_t *bio_post_read_ctx_pool;
38 static struct bio_set f2fs_bioset;
39
40 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE
41
f2fs_init_bioset(void)42 int __init f2fs_init_bioset(void)
43 {
44 if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
45 0, BIOSET_NEED_BVECS))
46 return -ENOMEM;
47 return 0;
48 }
49
f2fs_destroy_bioset(void)50 void f2fs_destroy_bioset(void)
51 {
52 bioset_exit(&f2fs_bioset);
53 }
54
__is_cp_guaranteed(struct page * page)55 static bool __is_cp_guaranteed(struct page *page)
56 {
57 struct address_space *mapping = page->mapping;
58 struct inode *inode;
59 struct f2fs_sb_info *sbi;
60
61 if (!mapping)
62 return false;
63
64 inode = mapping->host;
65 sbi = F2FS_I_SB(inode);
66
67 if (inode->i_ino == F2FS_META_INO(sbi) ||
68 inode->i_ino == F2FS_NODE_INO(sbi) ||
69 S_ISDIR(inode->i_mode))
70 return true;
71
72 if (f2fs_is_compressed_page(page))
73 return false;
74 if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
75 page_private_gcing(page))
76 return true;
77 return false;
78 }
79
__read_io_type(struct page * page)80 static enum count_type __read_io_type(struct page *page)
81 {
82 struct address_space *mapping = page_file_mapping(page);
83
84 if (mapping) {
85 struct inode *inode = mapping->host;
86 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
87
88 if (inode->i_ino == F2FS_META_INO(sbi))
89 return F2FS_RD_META;
90
91 if (inode->i_ino == F2FS_NODE_INO(sbi))
92 return F2FS_RD_NODE;
93 }
94 return F2FS_RD_DATA;
95 }
96
97 /* postprocessing steps for read bios */
98 enum bio_post_read_step {
99 #ifdef CONFIG_FS_ENCRYPTION
100 STEP_DECRYPT = 1 << 0,
101 #else
102 STEP_DECRYPT = 0, /* compile out the decryption-related code */
103 #endif
104 #ifdef CONFIG_F2FS_FS_COMPRESSION
105 STEP_DECOMPRESS = 1 << 1,
106 #else
107 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */
108 #endif
109 #ifdef CONFIG_FS_VERITY
110 STEP_VERITY = 1 << 2,
111 #else
112 STEP_VERITY = 0, /* compile out the verity-related code */
113 #endif
114 };
115
116 struct bio_post_read_ctx {
117 struct bio *bio;
118 struct f2fs_sb_info *sbi;
119 struct work_struct work;
120 unsigned int enabled_steps;
121 block_t fs_blkaddr;
122 };
123
f2fs_finish_read_bio(struct bio * bio,bool in_task)124 static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
125 {
126 struct bio_vec *bv;
127 struct bvec_iter_all iter_all;
128
129 /*
130 * Update and unlock the bio's pagecache pages, and put the
131 * decompression context for any compressed pages.
132 */
133 bio_for_each_segment_all(bv, bio, iter_all) {
134 struct page *page = bv->bv_page;
135
136 if (f2fs_is_compressed_page(page)) {
137 if (bio->bi_status)
138 f2fs_end_read_compressed_page(page, true, 0,
139 in_task);
140 f2fs_put_page_dic(page, in_task);
141 continue;
142 }
143
144 /* PG_error was set if decryption or verity failed. */
145 if (bio->bi_status || PageError(page)) {
146 ClearPageUptodate(page);
147 /* will re-read again later */
148 ClearPageError(page);
149 } else {
150 SetPageUptodate(page);
151 }
152 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
153 unlock_page(page);
154 }
155
156 if (bio->bi_private)
157 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
158 bio_put(bio);
159 }
160
f2fs_verify_bio(struct work_struct * work)161 static void f2fs_verify_bio(struct work_struct *work)
162 {
163 struct bio_post_read_ctx *ctx =
164 container_of(work, struct bio_post_read_ctx, work);
165 struct bio *bio = ctx->bio;
166 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
167
168 /*
169 * fsverity_verify_bio() may call readpages() again, and while verity
170 * will be disabled for this, decryption and/or decompression may still
171 * be needed, resulting in another bio_post_read_ctx being allocated.
172 * So to prevent deadlocks we need to release the current ctx to the
173 * mempool first. This assumes that verity is the last post-read step.
174 */
175 mempool_free(ctx, bio_post_read_ctx_pool);
176 bio->bi_private = NULL;
177
178 /*
179 * Verify the bio's pages with fs-verity. Exclude compressed pages,
180 * as those were handled separately by f2fs_end_read_compressed_page().
181 */
182 if (may_have_compressed_pages) {
183 struct bio_vec *bv;
184 struct bvec_iter_all iter_all;
185
186 bio_for_each_segment_all(bv, bio, iter_all) {
187 struct page *page = bv->bv_page;
188
189 if (!f2fs_is_compressed_page(page) &&
190 !PageError(page) && !fsverity_verify_page(page))
191 SetPageError(page);
192 }
193 } else {
194 fsverity_verify_bio(bio);
195 }
196
197 f2fs_finish_read_bio(bio, true);
198 }
199
200 /*
201 * If the bio's data needs to be verified with fs-verity, then enqueue the
202 * verity work for the bio. Otherwise finish the bio now.
203 *
204 * Note that to avoid deadlocks, the verity work can't be done on the
205 * decryption/decompression workqueue. This is because verifying the data pages
206 * can involve reading verity metadata pages from the file, and these verity
207 * metadata pages may be encrypted and/or compressed.
208 */
f2fs_verify_and_finish_bio(struct bio * bio,bool in_task)209 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
210 {
211 struct bio_post_read_ctx *ctx = bio->bi_private;
212
213 if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
214 INIT_WORK(&ctx->work, f2fs_verify_bio);
215 fsverity_enqueue_verify_work(&ctx->work);
216 } else {
217 f2fs_finish_read_bio(bio, in_task);
218 }
219 }
220
221 /*
222 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
223 * remaining page was read by @ctx->bio.
224 *
225 * Note that a bio may span clusters (even a mix of compressed and uncompressed
226 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates
227 * that the bio includes at least one compressed page. The actual decompression
228 * is done on a per-cluster basis, not a per-bio basis.
229 */
f2fs_handle_step_decompress(struct bio_post_read_ctx * ctx,bool in_task)230 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
231 bool in_task)
232 {
233 struct bio_vec *bv;
234 struct bvec_iter_all iter_all;
235 bool all_compressed = true;
236 block_t blkaddr = ctx->fs_blkaddr;
237
238 bio_for_each_segment_all(bv, ctx->bio, iter_all) {
239 struct page *page = bv->bv_page;
240
241 /* PG_error was set if decryption failed. */
242 if (f2fs_is_compressed_page(page))
243 f2fs_end_read_compressed_page(page, PageError(page),
244 blkaddr, in_task);
245 else
246 all_compressed = false;
247
248 blkaddr++;
249 }
250
251 /*
252 * Optimization: if all the bio's pages are compressed, then scheduling
253 * the per-bio verity work is unnecessary, as verity will be fully
254 * handled at the compression cluster level.
255 */
256 if (all_compressed)
257 ctx->enabled_steps &= ~STEP_VERITY;
258 }
259
f2fs_post_read_work(struct work_struct * work)260 static void f2fs_post_read_work(struct work_struct *work)
261 {
262 struct bio_post_read_ctx *ctx =
263 container_of(work, struct bio_post_read_ctx, work);
264
265 if (ctx->enabled_steps & STEP_DECRYPT)
266 fscrypt_decrypt_bio(ctx->bio);
267
268 if (ctx->enabled_steps & STEP_DECOMPRESS)
269 f2fs_handle_step_decompress(ctx, true);
270
271 f2fs_verify_and_finish_bio(ctx->bio, true);
272 }
273
f2fs_read_end_io(struct bio * bio)274 static void f2fs_read_end_io(struct bio *bio)
275 {
276 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
277 struct bio_post_read_ctx *ctx;
278 bool intask = in_task();
279
280 iostat_update_and_unbind_ctx(bio, 0);
281 ctx = bio->bi_private;
282
283 if (time_to_inject(sbi, FAULT_READ_IO)) {
284 f2fs_show_injection_info(sbi, FAULT_READ_IO);
285 bio->bi_status = BLK_STS_IOERR;
286 }
287
288 if (bio->bi_status) {
289 f2fs_finish_read_bio(bio, intask);
290 return;
291 }
292
293 if (ctx) {
294 unsigned int enabled_steps = ctx->enabled_steps &
295 (STEP_DECRYPT | STEP_DECOMPRESS);
296
297 /*
298 * If we have only decompression step between decompression and
299 * decrypt, we don't need post processing for this.
300 */
301 if (enabled_steps == STEP_DECOMPRESS &&
302 !f2fs_low_mem_mode(sbi)) {
303 f2fs_handle_step_decompress(ctx, intask);
304 } else if (enabled_steps) {
305 INIT_WORK(&ctx->work, f2fs_post_read_work);
306 queue_work(ctx->sbi->post_read_wq, &ctx->work);
307 return;
308 }
309 }
310
311 f2fs_verify_and_finish_bio(bio, intask);
312 }
313
f2fs_write_end_io(struct bio * bio)314 static void f2fs_write_end_io(struct bio *bio)
315 {
316 struct f2fs_sb_info *sbi;
317 struct bio_vec *bvec;
318 struct bvec_iter_all iter_all;
319
320 iostat_update_and_unbind_ctx(bio, 1);
321 sbi = bio->bi_private;
322
323 if (time_to_inject(sbi, FAULT_WRITE_IO)) {
324 f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
325 bio->bi_status = BLK_STS_IOERR;
326 }
327
328 bio_for_each_segment_all(bvec, bio, iter_all) {
329 struct page *page = bvec->bv_page;
330 enum count_type type = WB_DATA_TYPE(page);
331
332 if (page_private_dummy(page)) {
333 clear_page_private_dummy(page);
334 unlock_page(page);
335 mempool_free(page, sbi->write_io_dummy);
336
337 if (unlikely(bio->bi_status))
338 f2fs_stop_checkpoint(sbi, true,
339 STOP_CP_REASON_WRITE_FAIL);
340 continue;
341 }
342
343 fscrypt_finalize_bounce_page(&page);
344
345 #ifdef CONFIG_F2FS_FS_COMPRESSION
346 if (f2fs_is_compressed_page(page)) {
347 f2fs_compress_write_end_io(bio, page);
348 continue;
349 }
350 #endif
351
352 if (unlikely(bio->bi_status)) {
353 mapping_set_error(page->mapping, -EIO);
354 if (type == F2FS_WB_CP_DATA)
355 f2fs_stop_checkpoint(sbi, true,
356 STOP_CP_REASON_WRITE_FAIL);
357 }
358
359 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
360 page->index != nid_of_node(page));
361
362 dec_page_count(sbi, type);
363 if (f2fs_in_warm_node_list(sbi, page))
364 f2fs_del_fsync_node_entry(sbi, page);
365 clear_page_private_gcing(page);
366 end_page_writeback(page);
367 }
368 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
369 wq_has_sleeper(&sbi->cp_wait))
370 wake_up(&sbi->cp_wait);
371
372 bio_put(bio);
373 }
374
f2fs_target_device(struct f2fs_sb_info * sbi,block_t blk_addr,struct bio * bio)375 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
376 block_t blk_addr, struct bio *bio)
377 {
378 struct block_device *bdev = sbi->sb->s_bdev;
379 int i;
380
381 if (f2fs_is_multi_device(sbi)) {
382 for (i = 0; i < sbi->s_ndevs; i++) {
383 if (FDEV(i).start_blk <= blk_addr &&
384 FDEV(i).end_blk >= blk_addr) {
385 blk_addr -= FDEV(i).start_blk;
386 bdev = FDEV(i).bdev;
387 break;
388 }
389 }
390 }
391 if (bio) {
392 bio_set_dev(bio, bdev);
393 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
394 }
395 return bdev;
396 }
397
f2fs_target_device_index(struct f2fs_sb_info * sbi,block_t blkaddr)398 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
399 {
400 int i;
401
402 if (!f2fs_is_multi_device(sbi))
403 return 0;
404
405 for (i = 0; i < sbi->s_ndevs; i++)
406 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
407 return i;
408 return 0;
409 }
410
__bio_alloc(struct f2fs_io_info * fio,int npages)411 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
412 {
413 struct f2fs_sb_info *sbi = fio->sbi;
414 struct bio *bio;
415
416 bio = bio_alloc_bioset(GFP_NOIO, npages, &f2fs_bioset);
417
418 f2fs_target_device(sbi, fio->new_blkaddr, bio);
419 if (is_read_io(fio->op)) {
420 bio->bi_end_io = f2fs_read_end_io;
421 bio->bi_private = NULL;
422 } else {
423 bio->bi_end_io = f2fs_write_end_io;
424 bio->bi_private = sbi;
425 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
426 fio->type, fio->temp);
427 }
428 iostat_alloc_and_bind_ctx(sbi, bio, NULL);
429
430 if (fio->io_wbc)
431 wbc_init_bio(fio->io_wbc, bio);
432
433 return bio;
434 }
435
f2fs_set_bio_crypt_ctx(struct bio * bio,const struct inode * inode,pgoff_t first_idx,const struct f2fs_io_info * fio,gfp_t gfp_mask)436 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
437 pgoff_t first_idx,
438 const struct f2fs_io_info *fio,
439 gfp_t gfp_mask)
440 {
441 /*
442 * The f2fs garbage collector sets ->encrypted_page when it wants to
443 * read/write raw data without encryption.
444 */
445 if (!fio || !fio->encrypted_page)
446 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
447 else if (fscrypt_inode_should_skip_dm_default_key(inode))
448 bio_set_skip_dm_default_key(bio);
449 }
450
f2fs_crypt_mergeable_bio(struct bio * bio,const struct inode * inode,pgoff_t next_idx,const struct f2fs_io_info * fio)451 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
452 pgoff_t next_idx,
453 const struct f2fs_io_info *fio)
454 {
455 /*
456 * The f2fs garbage collector sets ->encrypted_page when it wants to
457 * read/write raw data without encryption.
458 */
459 if (fio && fio->encrypted_page)
460 return !bio_has_crypt_ctx(bio) &&
461 (bio_should_skip_dm_default_key(bio) ==
462 fscrypt_inode_should_skip_dm_default_key(inode));
463
464 return fscrypt_mergeable_bio(bio, inode, next_idx);
465 }
466
__submit_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)467 static inline void __submit_bio(struct f2fs_sb_info *sbi,
468 struct bio *bio, enum page_type type)
469 {
470 if (!is_read_io(bio_op(bio))) {
471 unsigned int start;
472
473 if (type != DATA && type != NODE)
474 goto submit_io;
475
476 if (f2fs_lfs_mode(sbi) && current->plug)
477 blk_finish_plug(current->plug);
478
479 if (!F2FS_IO_ALIGNED(sbi))
480 goto submit_io;
481
482 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
483 start %= F2FS_IO_SIZE(sbi);
484
485 if (start == 0)
486 goto submit_io;
487
488 /* fill dummy pages */
489 for (; start < F2FS_IO_SIZE(sbi); start++) {
490 struct page *page =
491 mempool_alloc(sbi->write_io_dummy,
492 GFP_NOIO | __GFP_NOFAIL);
493 f2fs_bug_on(sbi, !page);
494
495 lock_page(page);
496
497 zero_user_segment(page, 0, PAGE_SIZE);
498 set_page_private_dummy(page);
499
500 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
501 f2fs_bug_on(sbi, 1);
502 }
503 /*
504 * In the NODE case, we lose next block address chain. So, we
505 * need to do checkpoint in f2fs_sync_file.
506 */
507 if (type == NODE)
508 set_sbi_flag(sbi, SBI_NEED_CP);
509 }
510 submit_io:
511 if (is_read_io(bio_op(bio)))
512 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
513 else
514 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
515
516 iostat_update_submit_ctx(bio, type);
517 submit_bio(bio);
518 }
519
f2fs_submit_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)520 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
521 struct bio *bio, enum page_type type)
522 {
523 __submit_bio(sbi, bio, type);
524 }
525
__attach_io_flag(struct f2fs_io_info * fio)526 static void __attach_io_flag(struct f2fs_io_info *fio)
527 {
528 struct f2fs_sb_info *sbi = fio->sbi;
529 unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
530 unsigned int io_flag, fua_flag, meta_flag;
531
532 if (fio->type == DATA)
533 io_flag = sbi->data_io_flag;
534 else if (fio->type == NODE)
535 io_flag = sbi->node_io_flag;
536 else
537 return;
538
539 fua_flag = io_flag & temp_mask;
540 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
541
542 /*
543 * data/node io flag bits per temp:
544 * REQ_META | REQ_FUA |
545 * 5 | 4 | 3 | 2 | 1 | 0 |
546 * Cold | Warm | Hot | Cold | Warm | Hot |
547 */
548 if ((1 << fio->temp) & meta_flag)
549 fio->op_flags |= REQ_META;
550 if ((1 << fio->temp) & fua_flag)
551 fio->op_flags |= REQ_FUA;
552 }
553
__submit_merged_bio(struct f2fs_bio_info * io)554 static void __submit_merged_bio(struct f2fs_bio_info *io)
555 {
556 struct f2fs_io_info *fio = &io->fio;
557
558 if (!io->bio)
559 return;
560
561 __attach_io_flag(fio);
562 bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
563
564 if (is_read_io(fio->op))
565 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
566 else
567 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
568
569 __submit_bio(io->sbi, io->bio, fio->type);
570 io->bio = NULL;
571 }
572
__has_merged_page(struct bio * bio,struct inode * inode,struct page * page,nid_t ino)573 static bool __has_merged_page(struct bio *bio, struct inode *inode,
574 struct page *page, nid_t ino)
575 {
576 struct bio_vec *bvec;
577 struct bvec_iter_all iter_all;
578
579 if (!bio)
580 return false;
581
582 if (!inode && !page && !ino)
583 return true;
584
585 bio_for_each_segment_all(bvec, bio, iter_all) {
586 struct page *target = bvec->bv_page;
587
588 if (fscrypt_is_bounce_page(target)) {
589 target = fscrypt_pagecache_page(target);
590 if (IS_ERR(target))
591 continue;
592 }
593 if (f2fs_is_compressed_page(target)) {
594 target = f2fs_compress_control_page(target);
595 if (IS_ERR(target))
596 continue;
597 }
598
599 if (inode && inode == target->mapping->host)
600 return true;
601 if (page && page == target)
602 return true;
603 if (ino && ino == ino_of_node(target))
604 return true;
605 }
606
607 return false;
608 }
609
__f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)610 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
611 enum page_type type, enum temp_type temp)
612 {
613 enum page_type btype = PAGE_TYPE_OF_BIO(type);
614 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
615
616 f2fs_down_write(&io->io_rwsem);
617
618 /* change META to META_FLUSH in the checkpoint procedure */
619 if (type >= META_FLUSH) {
620 io->fio.type = META_FLUSH;
621 io->fio.op = REQ_OP_WRITE;
622 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
623 if (!test_opt(sbi, NOBARRIER))
624 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
625 }
626 __submit_merged_bio(io);
627 f2fs_up_write(&io->io_rwsem);
628 }
629
__submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type,bool force)630 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
631 struct inode *inode, struct page *page,
632 nid_t ino, enum page_type type, bool force)
633 {
634 enum temp_type temp;
635 bool ret = true;
636
637 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
638 if (!force) {
639 enum page_type btype = PAGE_TYPE_OF_BIO(type);
640 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
641
642 f2fs_down_read(&io->io_rwsem);
643 ret = __has_merged_page(io->bio, inode, page, ino);
644 f2fs_up_read(&io->io_rwsem);
645 }
646 if (ret)
647 __f2fs_submit_merged_write(sbi, type, temp);
648
649 /* TODO: use HOT temp only for meta pages now. */
650 if (type >= META)
651 break;
652 }
653 }
654
f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type)655 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
656 {
657 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
658 }
659
f2fs_submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type)660 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
661 struct inode *inode, struct page *page,
662 nid_t ino, enum page_type type)
663 {
664 __submit_merged_write_cond(sbi, inode, page, ino, type, false);
665 }
666
f2fs_flush_merged_writes(struct f2fs_sb_info * sbi)667 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
668 {
669 f2fs_submit_merged_write(sbi, DATA);
670 f2fs_submit_merged_write(sbi, NODE);
671 f2fs_submit_merged_write(sbi, META);
672 }
673
674 /*
675 * Fill the locked page with data located in the block address.
676 * A caller needs to unlock the page on failure.
677 */
f2fs_submit_page_bio(struct f2fs_io_info * fio)678 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
679 {
680 struct bio *bio;
681 struct page *page = fio->encrypted_page ?
682 fio->encrypted_page : fio->page;
683
684 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
685 fio->is_por ? META_POR : (__is_meta_io(fio) ?
686 META_GENERIC : DATA_GENERIC_ENHANCE)))
687 return -EFSCORRUPTED;
688
689 trace_f2fs_submit_page_bio(page, fio);
690
691 /* Allocate a new bio */
692 bio = __bio_alloc(fio, 1);
693
694 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
695 fio->page->index, fio, GFP_NOIO);
696
697 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
698 bio_put(bio);
699 return -EFAULT;
700 }
701
702 if (fio->io_wbc && !is_read_io(fio->op))
703 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
704
705 __attach_io_flag(fio);
706 bio_set_op_attrs(bio, fio->op, fio->op_flags);
707
708 inc_page_count(fio->sbi, is_read_io(fio->op) ?
709 __read_io_type(page): WB_DATA_TYPE(fio->page));
710
711 __submit_bio(fio->sbi, bio, fio->type);
712 return 0;
713 }
714
page_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,block_t last_blkaddr,block_t cur_blkaddr)715 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
716 block_t last_blkaddr, block_t cur_blkaddr)
717 {
718 if (unlikely(sbi->max_io_bytes &&
719 bio->bi_iter.bi_size >= sbi->max_io_bytes))
720 return false;
721 if (last_blkaddr + 1 != cur_blkaddr)
722 return false;
723 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
724 }
725
io_type_is_mergeable(struct f2fs_bio_info * io,struct f2fs_io_info * fio)726 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
727 struct f2fs_io_info *fio)
728 {
729 if (io->fio.op != fio->op)
730 return false;
731 return io->fio.op_flags == fio->op_flags;
732 }
733
io_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,struct f2fs_bio_info * io,struct f2fs_io_info * fio,block_t last_blkaddr,block_t cur_blkaddr)734 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
735 struct f2fs_bio_info *io,
736 struct f2fs_io_info *fio,
737 block_t last_blkaddr,
738 block_t cur_blkaddr)
739 {
740 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
741 unsigned int filled_blocks =
742 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
743 unsigned int io_size = F2FS_IO_SIZE(sbi);
744 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
745
746 /* IOs in bio is aligned and left space of vectors is not enough */
747 if (!(filled_blocks % io_size) && left_vecs < io_size)
748 return false;
749 }
750 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
751 return false;
752 return io_type_is_mergeable(io, fio);
753 }
754
add_bio_entry(struct f2fs_sb_info * sbi,struct bio * bio,struct page * page,enum temp_type temp)755 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
756 struct page *page, enum temp_type temp)
757 {
758 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
759 struct bio_entry *be;
760
761 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
762 be->bio = bio;
763 bio_get(bio);
764
765 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
766 f2fs_bug_on(sbi, 1);
767
768 f2fs_down_write(&io->bio_list_lock);
769 list_add_tail(&be->list, &io->bio_list);
770 f2fs_up_write(&io->bio_list_lock);
771 }
772
del_bio_entry(struct bio_entry * be)773 static void del_bio_entry(struct bio_entry *be)
774 {
775 list_del(&be->list);
776 kmem_cache_free(bio_entry_slab, be);
777 }
778
add_ipu_page(struct f2fs_io_info * fio,struct bio ** bio,struct page * page)779 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
780 struct page *page)
781 {
782 struct f2fs_sb_info *sbi = fio->sbi;
783 enum temp_type temp;
784 bool found = false;
785 int ret = -EAGAIN;
786
787 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
788 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
789 struct list_head *head = &io->bio_list;
790 struct bio_entry *be;
791
792 f2fs_down_write(&io->bio_list_lock);
793 list_for_each_entry(be, head, list) {
794 if (be->bio != *bio)
795 continue;
796
797 found = true;
798
799 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
800 *fio->last_block,
801 fio->new_blkaddr));
802 if (f2fs_crypt_mergeable_bio(*bio,
803 fio->page->mapping->host,
804 fio->page->index, fio) &&
805 bio_add_page(*bio, page, PAGE_SIZE, 0) ==
806 PAGE_SIZE) {
807 ret = 0;
808 break;
809 }
810
811 /* page can't be merged into bio; submit the bio */
812 del_bio_entry(be);
813 __submit_bio(sbi, *bio, DATA);
814 break;
815 }
816 f2fs_up_write(&io->bio_list_lock);
817 }
818
819 if (ret) {
820 bio_put(*bio);
821 *bio = NULL;
822 }
823
824 return ret;
825 }
826
f2fs_submit_merged_ipu_write(struct f2fs_sb_info * sbi,struct bio ** bio,struct page * page)827 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
828 struct bio **bio, struct page *page)
829 {
830 enum temp_type temp;
831 bool found = false;
832 struct bio *target = bio ? *bio : NULL;
833
834 f2fs_bug_on(sbi, !target && !page);
835
836 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
837 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
838 struct list_head *head = &io->bio_list;
839 struct bio_entry *be;
840
841 if (list_empty(head))
842 continue;
843
844 f2fs_down_read(&io->bio_list_lock);
845 list_for_each_entry(be, head, list) {
846 if (target)
847 found = (target == be->bio);
848 else
849 found = __has_merged_page(be->bio, NULL,
850 page, 0);
851 if (found)
852 break;
853 }
854 f2fs_up_read(&io->bio_list_lock);
855
856 if (!found)
857 continue;
858
859 found = false;
860
861 f2fs_down_write(&io->bio_list_lock);
862 list_for_each_entry(be, head, list) {
863 if (target)
864 found = (target == be->bio);
865 else
866 found = __has_merged_page(be->bio, NULL,
867 page, 0);
868 if (found) {
869 target = be->bio;
870 del_bio_entry(be);
871 break;
872 }
873 }
874 f2fs_up_write(&io->bio_list_lock);
875 }
876
877 if (found)
878 __submit_bio(sbi, target, DATA);
879 if (bio && *bio) {
880 bio_put(*bio);
881 *bio = NULL;
882 }
883 }
884
f2fs_merge_page_bio(struct f2fs_io_info * fio)885 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
886 {
887 struct bio *bio = *fio->bio;
888 struct page *page = fio->encrypted_page ?
889 fio->encrypted_page : fio->page;
890
891 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
892 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
893 return -EFSCORRUPTED;
894
895 trace_f2fs_submit_page_bio(page, fio);
896
897 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
898 fio->new_blkaddr))
899 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
900 alloc_new:
901 if (!bio) {
902 bio = __bio_alloc(fio, BIO_MAX_VECS);
903 __attach_io_flag(fio);
904 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
905 fio->page->index, fio, GFP_NOIO);
906 bio_set_op_attrs(bio, fio->op, fio->op_flags);
907
908 add_bio_entry(fio->sbi, bio, page, fio->temp);
909 } else {
910 if (add_ipu_page(fio, &bio, page))
911 goto alloc_new;
912 }
913
914 if (fio->io_wbc)
915 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
916
917 inc_page_count(fio->sbi, WB_DATA_TYPE(page));
918
919 *fio->last_block = fio->new_blkaddr;
920 *fio->bio = bio;
921
922 return 0;
923 }
924
f2fs_submit_page_write(struct f2fs_io_info * fio)925 void f2fs_submit_page_write(struct f2fs_io_info *fio)
926 {
927 struct f2fs_sb_info *sbi = fio->sbi;
928 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
929 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
930 struct page *bio_page;
931
932 f2fs_bug_on(sbi, is_read_io(fio->op));
933
934 f2fs_down_write(&io->io_rwsem);
935 next:
936 if (fio->in_list) {
937 spin_lock(&io->io_lock);
938 if (list_empty(&io->io_list)) {
939 spin_unlock(&io->io_lock);
940 goto out;
941 }
942 fio = list_first_entry(&io->io_list,
943 struct f2fs_io_info, list);
944 list_del(&fio->list);
945 spin_unlock(&io->io_lock);
946 }
947
948 verify_fio_blkaddr(fio);
949
950 if (fio->encrypted_page)
951 bio_page = fio->encrypted_page;
952 else if (fio->compressed_page)
953 bio_page = fio->compressed_page;
954 else
955 bio_page = fio->page;
956
957 /* set submitted = true as a return value */
958 fio->submitted = true;
959
960 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
961
962 if (io->bio &&
963 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
964 fio->new_blkaddr) ||
965 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
966 bio_page->index, fio)))
967 __submit_merged_bio(io);
968 alloc_new:
969 if (io->bio == NULL) {
970 if (F2FS_IO_ALIGNED(sbi) &&
971 (fio->type == DATA || fio->type == NODE) &&
972 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
973 dec_page_count(sbi, WB_DATA_TYPE(bio_page));
974 fio->retry = true;
975 goto skip;
976 }
977 io->bio = __bio_alloc(fio, BIO_MAX_VECS);
978 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
979 bio_page->index, fio, GFP_NOIO);
980 io->fio = *fio;
981 }
982
983 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
984 __submit_merged_bio(io);
985 goto alloc_new;
986 }
987
988 if (fio->io_wbc)
989 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
990
991 io->last_block_in_bio = fio->new_blkaddr;
992
993 trace_f2fs_submit_page_write(fio->page, fio);
994 skip:
995 if (fio->in_list)
996 goto next;
997 out:
998 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
999 !f2fs_is_checkpoint_ready(sbi))
1000 __submit_merged_bio(io);
1001 f2fs_up_write(&io->io_rwsem);
1002 }
1003
f2fs_grab_read_bio(struct inode * inode,block_t blkaddr,unsigned nr_pages,unsigned op_flag,pgoff_t first_idx,bool for_write)1004 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1005 unsigned nr_pages, unsigned op_flag,
1006 pgoff_t first_idx, bool for_write)
1007 {
1008 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1009 struct bio *bio;
1010 struct bio_post_read_ctx *ctx = NULL;
1011 unsigned int post_read_steps = 0;
1012
1013 bio = bio_alloc_bioset(for_write ? GFP_NOIO : GFP_KERNEL,
1014 bio_max_segs(nr_pages), &f2fs_bioset);
1015 if (!bio)
1016 return ERR_PTR(-ENOMEM);
1017
1018 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1019
1020 f2fs_target_device(sbi, blkaddr, bio);
1021 bio->bi_end_io = f2fs_read_end_io;
1022 bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
1023
1024 if (fscrypt_inode_uses_fs_layer_crypto(inode))
1025 post_read_steps |= STEP_DECRYPT;
1026
1027 if (f2fs_need_verity(inode, first_idx))
1028 post_read_steps |= STEP_VERITY;
1029
1030 /*
1031 * STEP_DECOMPRESS is handled specially, since a compressed file might
1032 * contain both compressed and uncompressed clusters. We'll allocate a
1033 * bio_post_read_ctx if the file is compressed, but the caller is
1034 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1035 */
1036
1037 if (post_read_steps || f2fs_compressed_file(inode)) {
1038 /* Due to the mempool, this never fails. */
1039 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1040 ctx->bio = bio;
1041 ctx->sbi = sbi;
1042 ctx->enabled_steps = post_read_steps;
1043 ctx->fs_blkaddr = blkaddr;
1044 bio->bi_private = ctx;
1045 }
1046 iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1047
1048 return bio;
1049 }
1050
1051 /* This can handle encryption stuffs */
f2fs_submit_page_read(struct inode * inode,struct page * page,block_t blkaddr,int op_flags,bool for_write)1052 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1053 block_t blkaddr, int op_flags, bool for_write)
1054 {
1055 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1056 struct bio *bio;
1057
1058 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1059 page->index, for_write);
1060 if (IS_ERR(bio))
1061 return PTR_ERR(bio);
1062
1063 /* wait for GCed page writeback via META_MAPPING */
1064 f2fs_wait_on_block_writeback(inode, blkaddr);
1065
1066 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1067 bio_put(bio);
1068 return -EFAULT;
1069 }
1070 ClearPageError(page);
1071 inc_page_count(sbi, F2FS_RD_DATA);
1072 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1073 __submit_bio(sbi, bio, DATA);
1074 return 0;
1075 }
1076
__set_data_blkaddr(struct dnode_of_data * dn)1077 static void __set_data_blkaddr(struct dnode_of_data *dn)
1078 {
1079 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1080 __le32 *addr_array;
1081 int base = 0;
1082
1083 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1084 base = get_extra_isize(dn->inode);
1085
1086 /* Get physical address of data block */
1087 addr_array = blkaddr_in_node(rn);
1088 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1089 }
1090
1091 /*
1092 * Lock ordering for the change of data block address:
1093 * ->data_page
1094 * ->node_page
1095 * update block addresses in the node page
1096 */
f2fs_set_data_blkaddr(struct dnode_of_data * dn)1097 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1098 {
1099 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1100 __set_data_blkaddr(dn);
1101 if (set_page_dirty(dn->node_page))
1102 dn->node_changed = true;
1103 }
1104
f2fs_update_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1105 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1106 {
1107 dn->data_blkaddr = blkaddr;
1108 f2fs_set_data_blkaddr(dn);
1109 f2fs_update_extent_cache(dn);
1110 }
1111
1112 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
f2fs_reserve_new_blocks(struct dnode_of_data * dn,blkcnt_t count)1113 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1114 {
1115 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1116 int err;
1117
1118 if (!count)
1119 return 0;
1120
1121 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1122 return -EPERM;
1123 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1124 return err;
1125
1126 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1127 dn->ofs_in_node, count);
1128
1129 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1130
1131 for (; count > 0; dn->ofs_in_node++) {
1132 block_t blkaddr = f2fs_data_blkaddr(dn);
1133
1134 if (blkaddr == NULL_ADDR) {
1135 dn->data_blkaddr = NEW_ADDR;
1136 __set_data_blkaddr(dn);
1137 count--;
1138 }
1139 }
1140
1141 if (set_page_dirty(dn->node_page))
1142 dn->node_changed = true;
1143 return 0;
1144 }
1145
1146 /* Should keep dn->ofs_in_node unchanged */
f2fs_reserve_new_block(struct dnode_of_data * dn)1147 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1148 {
1149 unsigned int ofs_in_node = dn->ofs_in_node;
1150 int ret;
1151
1152 ret = f2fs_reserve_new_blocks(dn, 1);
1153 dn->ofs_in_node = ofs_in_node;
1154 return ret;
1155 }
1156
f2fs_reserve_block(struct dnode_of_data * dn,pgoff_t index)1157 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1158 {
1159 bool need_put = dn->inode_page ? false : true;
1160 int err;
1161
1162 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1163 if (err)
1164 return err;
1165
1166 if (dn->data_blkaddr == NULL_ADDR)
1167 err = f2fs_reserve_new_block(dn);
1168 if (err || need_put)
1169 f2fs_put_dnode(dn);
1170 return err;
1171 }
1172
f2fs_get_block(struct dnode_of_data * dn,pgoff_t index)1173 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1174 {
1175 struct extent_info ei = {0, };
1176 struct inode *inode = dn->inode;
1177
1178 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1179 dn->data_blkaddr = ei.blk + index - ei.fofs;
1180 return 0;
1181 }
1182
1183 return f2fs_reserve_block(dn, index);
1184 }
1185
f2fs_get_read_data_page(struct inode * inode,pgoff_t index,int op_flags,bool for_write)1186 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1187 int op_flags, bool for_write)
1188 {
1189 struct address_space *mapping = inode->i_mapping;
1190 struct dnode_of_data dn;
1191 struct page *page;
1192 struct extent_info ei = {0, };
1193 int err;
1194
1195 page = f2fs_grab_cache_page(mapping, index, for_write);
1196 if (!page)
1197 return ERR_PTR(-ENOMEM);
1198
1199 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1200 dn.data_blkaddr = ei.blk + index - ei.fofs;
1201 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1202 DATA_GENERIC_ENHANCE_READ)) {
1203 err = -EFSCORRUPTED;
1204 goto put_err;
1205 }
1206 goto got_it;
1207 }
1208
1209 set_new_dnode(&dn, inode, NULL, NULL, 0);
1210 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1211 if (err)
1212 goto put_err;
1213 f2fs_put_dnode(&dn);
1214
1215 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1216 err = -ENOENT;
1217 goto put_err;
1218 }
1219 if (dn.data_blkaddr != NEW_ADDR &&
1220 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1221 dn.data_blkaddr,
1222 DATA_GENERIC_ENHANCE)) {
1223 err = -EFSCORRUPTED;
1224 goto put_err;
1225 }
1226 got_it:
1227 if (PageUptodate(page)) {
1228 unlock_page(page);
1229 return page;
1230 }
1231
1232 /*
1233 * A new dentry page is allocated but not able to be written, since its
1234 * new inode page couldn't be allocated due to -ENOSPC.
1235 * In such the case, its blkaddr can be remained as NEW_ADDR.
1236 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1237 * f2fs_init_inode_metadata.
1238 */
1239 if (dn.data_blkaddr == NEW_ADDR) {
1240 zero_user_segment(page, 0, PAGE_SIZE);
1241 if (!PageUptodate(page))
1242 SetPageUptodate(page);
1243 unlock_page(page);
1244 return page;
1245 }
1246
1247 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1248 op_flags, for_write);
1249 if (err)
1250 goto put_err;
1251 return page;
1252
1253 put_err:
1254 f2fs_put_page(page, 1);
1255 return ERR_PTR(err);
1256 }
1257
f2fs_find_data_page(struct inode * inode,pgoff_t index)1258 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1259 {
1260 struct address_space *mapping = inode->i_mapping;
1261 struct page *page;
1262
1263 page = find_get_page(mapping, index);
1264 if (page && PageUptodate(page))
1265 return page;
1266 f2fs_put_page(page, 0);
1267
1268 page = f2fs_get_read_data_page(inode, index, 0, false);
1269 if (IS_ERR(page))
1270 return page;
1271
1272 if (PageUptodate(page))
1273 return page;
1274
1275 wait_on_page_locked(page);
1276 if (unlikely(!PageUptodate(page))) {
1277 f2fs_put_page(page, 0);
1278 return ERR_PTR(-EIO);
1279 }
1280 return page;
1281 }
1282
1283 /*
1284 * If it tries to access a hole, return an error.
1285 * Because, the callers, functions in dir.c and GC, should be able to know
1286 * whether this page exists or not.
1287 */
f2fs_get_lock_data_page(struct inode * inode,pgoff_t index,bool for_write)1288 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1289 bool for_write)
1290 {
1291 struct address_space *mapping = inode->i_mapping;
1292 struct page *page;
1293 repeat:
1294 page = f2fs_get_read_data_page(inode, index, 0, for_write);
1295 if (IS_ERR(page))
1296 return page;
1297
1298 /* wait for read completion */
1299 lock_page(page);
1300 if (unlikely(page->mapping != mapping)) {
1301 f2fs_put_page(page, 1);
1302 goto repeat;
1303 }
1304 if (unlikely(!PageUptodate(page))) {
1305 f2fs_put_page(page, 1);
1306 return ERR_PTR(-EIO);
1307 }
1308 return page;
1309 }
1310
1311 /*
1312 * Caller ensures that this data page is never allocated.
1313 * A new zero-filled data page is allocated in the page cache.
1314 *
1315 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1316 * f2fs_unlock_op().
1317 * Note that, ipage is set only by make_empty_dir, and if any error occur,
1318 * ipage should be released by this function.
1319 */
f2fs_get_new_data_page(struct inode * inode,struct page * ipage,pgoff_t index,bool new_i_size)1320 struct page *f2fs_get_new_data_page(struct inode *inode,
1321 struct page *ipage, pgoff_t index, bool new_i_size)
1322 {
1323 struct address_space *mapping = inode->i_mapping;
1324 struct page *page;
1325 struct dnode_of_data dn;
1326 int err;
1327
1328 page = f2fs_grab_cache_page(mapping, index, true);
1329 if (!page) {
1330 /*
1331 * before exiting, we should make sure ipage will be released
1332 * if any error occur.
1333 */
1334 f2fs_put_page(ipage, 1);
1335 return ERR_PTR(-ENOMEM);
1336 }
1337
1338 set_new_dnode(&dn, inode, ipage, NULL, 0);
1339 err = f2fs_reserve_block(&dn, index);
1340 if (err) {
1341 f2fs_put_page(page, 1);
1342 return ERR_PTR(err);
1343 }
1344 if (!ipage)
1345 f2fs_put_dnode(&dn);
1346
1347 if (PageUptodate(page))
1348 goto got_it;
1349
1350 if (dn.data_blkaddr == NEW_ADDR) {
1351 zero_user_segment(page, 0, PAGE_SIZE);
1352 if (!PageUptodate(page))
1353 SetPageUptodate(page);
1354 } else {
1355 f2fs_put_page(page, 1);
1356
1357 /* if ipage exists, blkaddr should be NEW_ADDR */
1358 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1359 page = f2fs_get_lock_data_page(inode, index, true);
1360 if (IS_ERR(page))
1361 return page;
1362 }
1363 got_it:
1364 if (new_i_size && i_size_read(inode) <
1365 ((loff_t)(index + 1) << PAGE_SHIFT))
1366 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1367 return page;
1368 }
1369
__allocate_data_block(struct dnode_of_data * dn,int seg_type)1370 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1371 {
1372 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1373 struct f2fs_summary sum;
1374 struct node_info ni;
1375 block_t old_blkaddr;
1376 blkcnt_t count = 1;
1377 int err;
1378
1379 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1380 return -EPERM;
1381
1382 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1383 if (err)
1384 return err;
1385
1386 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1387 if (dn->data_blkaddr != NULL_ADDR)
1388 goto alloc;
1389
1390 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1391 return err;
1392
1393 alloc:
1394 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1395 old_blkaddr = dn->data_blkaddr;
1396 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1397 &sum, seg_type, NULL);
1398 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
1399 invalidate_mapping_pages(META_MAPPING(sbi),
1400 old_blkaddr, old_blkaddr);
1401 f2fs_invalidate_compress_page(sbi, old_blkaddr);
1402 }
1403 f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1404 return 0;
1405 }
1406
f2fs_do_map_lock(struct f2fs_sb_info * sbi,int flag,bool lock)1407 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1408 {
1409 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1410 if (lock)
1411 f2fs_down_read(&sbi->node_change);
1412 else
1413 f2fs_up_read(&sbi->node_change);
1414 } else {
1415 if (lock)
1416 f2fs_lock_op(sbi);
1417 else
1418 f2fs_unlock_op(sbi);
1419 }
1420 }
1421
1422 /*
1423 * f2fs_map_blocks() tries to find or build mapping relationship which
1424 * maps continuous logical blocks to physical blocks, and return such
1425 * info via f2fs_map_blocks structure.
1426 */
f2fs_map_blocks(struct inode * inode,struct f2fs_map_blocks * map,int create,int flag)1427 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1428 int create, int flag)
1429 {
1430 unsigned int maxblocks = map->m_len;
1431 struct dnode_of_data dn;
1432 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1433 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1434 pgoff_t pgofs, end_offset, end;
1435 int err = 0, ofs = 1;
1436 unsigned int ofs_in_node, last_ofs_in_node;
1437 blkcnt_t prealloc;
1438 struct extent_info ei = {0, };
1439 block_t blkaddr;
1440 unsigned int start_pgofs;
1441 int bidx = 0;
1442
1443 if (!maxblocks)
1444 return 0;
1445
1446 map->m_bdev = inode->i_sb->s_bdev;
1447 map->m_multidev_dio =
1448 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1449
1450 map->m_len = 0;
1451 map->m_flags = 0;
1452
1453 /* it only supports block size == page size */
1454 pgofs = (pgoff_t)map->m_lblk;
1455 end = pgofs + maxblocks;
1456
1457 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1458 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1459 map->m_may_create)
1460 goto next_dnode;
1461
1462 map->m_pblk = ei.blk + pgofs - ei.fofs;
1463 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1464 map->m_flags = F2FS_MAP_MAPPED;
1465 if (map->m_next_extent)
1466 *map->m_next_extent = pgofs + map->m_len;
1467
1468 /* for hardware encryption, but to avoid potential issue in future */
1469 if (flag == F2FS_GET_BLOCK_DIO)
1470 f2fs_wait_on_block_writeback_range(inode,
1471 map->m_pblk, map->m_len);
1472
1473 if (map->m_multidev_dio) {
1474 block_t blk_addr = map->m_pblk;
1475
1476 bidx = f2fs_target_device_index(sbi, map->m_pblk);
1477
1478 map->m_bdev = FDEV(bidx).bdev;
1479 map->m_pblk -= FDEV(bidx).start_blk;
1480 map->m_len = min(map->m_len,
1481 FDEV(bidx).end_blk + 1 - map->m_pblk);
1482
1483 if (map->m_may_create)
1484 f2fs_update_device_state(sbi, inode->i_ino,
1485 blk_addr, map->m_len);
1486 }
1487 goto out;
1488 }
1489
1490 next_dnode:
1491 if (map->m_may_create)
1492 f2fs_do_map_lock(sbi, flag, true);
1493
1494 /* When reading holes, we need its node page */
1495 set_new_dnode(&dn, inode, NULL, NULL, 0);
1496 err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1497 if (err) {
1498 if (flag == F2FS_GET_BLOCK_BMAP)
1499 map->m_pblk = 0;
1500
1501 if (err == -ENOENT) {
1502 /*
1503 * There is one exceptional case that read_node_page()
1504 * may return -ENOENT due to filesystem has been
1505 * shutdown or cp_error, so force to convert error
1506 * number to EIO for such case.
1507 */
1508 if (map->m_may_create &&
1509 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1510 f2fs_cp_error(sbi))) {
1511 err = -EIO;
1512 goto unlock_out;
1513 }
1514
1515 err = 0;
1516 if (map->m_next_pgofs)
1517 *map->m_next_pgofs =
1518 f2fs_get_next_page_offset(&dn, pgofs);
1519 if (map->m_next_extent)
1520 *map->m_next_extent =
1521 f2fs_get_next_page_offset(&dn, pgofs);
1522 }
1523 goto unlock_out;
1524 }
1525
1526 start_pgofs = pgofs;
1527 prealloc = 0;
1528 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1529 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1530
1531 next_block:
1532 blkaddr = f2fs_data_blkaddr(&dn);
1533
1534 if (__is_valid_data_blkaddr(blkaddr) &&
1535 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1536 err = -EFSCORRUPTED;
1537 goto sync_out;
1538 }
1539
1540 if (__is_valid_data_blkaddr(blkaddr)) {
1541 /* use out-place-update for driect IO under LFS mode */
1542 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1543 map->m_may_create) {
1544 err = __allocate_data_block(&dn, map->m_seg_type);
1545 if (err)
1546 goto sync_out;
1547 blkaddr = dn.data_blkaddr;
1548 set_inode_flag(inode, FI_APPEND_WRITE);
1549 }
1550 } else {
1551 if (create) {
1552 if (unlikely(f2fs_cp_error(sbi))) {
1553 err = -EIO;
1554 goto sync_out;
1555 }
1556 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1557 if (blkaddr == NULL_ADDR) {
1558 prealloc++;
1559 last_ofs_in_node = dn.ofs_in_node;
1560 }
1561 } else {
1562 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1563 flag != F2FS_GET_BLOCK_DIO);
1564 err = __allocate_data_block(&dn,
1565 map->m_seg_type);
1566 if (!err) {
1567 if (flag == F2FS_GET_BLOCK_PRE_DIO)
1568 file_need_truncate(inode);
1569 set_inode_flag(inode, FI_APPEND_WRITE);
1570 }
1571 }
1572 if (err)
1573 goto sync_out;
1574 map->m_flags |= F2FS_MAP_NEW;
1575 blkaddr = dn.data_blkaddr;
1576 } else {
1577 if (f2fs_compressed_file(inode) &&
1578 f2fs_sanity_check_cluster(&dn) &&
1579 (flag != F2FS_GET_BLOCK_FIEMAP ||
1580 IS_ENABLED(CONFIG_F2FS_CHECK_FS))) {
1581 err = -EFSCORRUPTED;
1582 goto sync_out;
1583 }
1584 if (flag == F2FS_GET_BLOCK_BMAP) {
1585 map->m_pblk = 0;
1586 goto sync_out;
1587 }
1588 if (flag == F2FS_GET_BLOCK_PRECACHE)
1589 goto sync_out;
1590 if (flag == F2FS_GET_BLOCK_FIEMAP &&
1591 blkaddr == NULL_ADDR) {
1592 if (map->m_next_pgofs)
1593 *map->m_next_pgofs = pgofs + 1;
1594 goto sync_out;
1595 }
1596 if (flag != F2FS_GET_BLOCK_FIEMAP) {
1597 /* for defragment case */
1598 if (map->m_next_pgofs)
1599 *map->m_next_pgofs = pgofs + 1;
1600 goto sync_out;
1601 }
1602 }
1603 }
1604
1605 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1606 goto skip;
1607
1608 if (map->m_multidev_dio)
1609 bidx = f2fs_target_device_index(sbi, blkaddr);
1610
1611 if (map->m_len == 0) {
1612 /* preallocated unwritten block should be mapped for fiemap. */
1613 if (blkaddr == NEW_ADDR)
1614 map->m_flags |= F2FS_MAP_UNWRITTEN;
1615 map->m_flags |= F2FS_MAP_MAPPED;
1616
1617 map->m_pblk = blkaddr;
1618 map->m_len = 1;
1619
1620 if (map->m_multidev_dio)
1621 map->m_bdev = FDEV(bidx).bdev;
1622 } else if ((map->m_pblk != NEW_ADDR &&
1623 blkaddr == (map->m_pblk + ofs)) ||
1624 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1625 flag == F2FS_GET_BLOCK_PRE_DIO) {
1626 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1627 goto sync_out;
1628 ofs++;
1629 map->m_len++;
1630 } else {
1631 goto sync_out;
1632 }
1633
1634 skip:
1635 dn.ofs_in_node++;
1636 pgofs++;
1637
1638 /* preallocate blocks in batch for one dnode page */
1639 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1640 (pgofs == end || dn.ofs_in_node == end_offset)) {
1641
1642 dn.ofs_in_node = ofs_in_node;
1643 err = f2fs_reserve_new_blocks(&dn, prealloc);
1644 if (err)
1645 goto sync_out;
1646
1647 map->m_len += dn.ofs_in_node - ofs_in_node;
1648 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1649 err = -ENOSPC;
1650 goto sync_out;
1651 }
1652 dn.ofs_in_node = end_offset;
1653 }
1654
1655 if (pgofs >= end)
1656 goto sync_out;
1657 else if (dn.ofs_in_node < end_offset)
1658 goto next_block;
1659
1660 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1661 if (map->m_flags & F2FS_MAP_MAPPED) {
1662 unsigned int ofs = start_pgofs - map->m_lblk;
1663
1664 f2fs_update_extent_cache_range(&dn,
1665 start_pgofs, map->m_pblk + ofs,
1666 map->m_len - ofs);
1667 }
1668 }
1669
1670 f2fs_put_dnode(&dn);
1671
1672 if (map->m_may_create) {
1673 f2fs_do_map_lock(sbi, flag, false);
1674 f2fs_balance_fs(sbi, dn.node_changed);
1675 }
1676 goto next_dnode;
1677
1678 sync_out:
1679
1680 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1681 /*
1682 * for hardware encryption, but to avoid potential issue
1683 * in future
1684 */
1685 f2fs_wait_on_block_writeback_range(inode,
1686 map->m_pblk, map->m_len);
1687
1688 if (map->m_multidev_dio) {
1689 block_t blk_addr = map->m_pblk;
1690
1691 bidx = f2fs_target_device_index(sbi, map->m_pblk);
1692
1693 map->m_bdev = FDEV(bidx).bdev;
1694 map->m_pblk -= FDEV(bidx).start_blk;
1695
1696 if (map->m_may_create)
1697 f2fs_update_device_state(sbi, inode->i_ino,
1698 blk_addr, map->m_len);
1699
1700 f2fs_bug_on(sbi, blk_addr + map->m_len >
1701 FDEV(bidx).end_blk + 1);
1702 }
1703 }
1704
1705 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1706 if (map->m_flags & F2FS_MAP_MAPPED) {
1707 unsigned int ofs = start_pgofs - map->m_lblk;
1708
1709 f2fs_update_extent_cache_range(&dn,
1710 start_pgofs, map->m_pblk + ofs,
1711 map->m_len - ofs);
1712 }
1713 if (map->m_next_extent)
1714 *map->m_next_extent = pgofs + 1;
1715 }
1716 f2fs_put_dnode(&dn);
1717 unlock_out:
1718 if (map->m_may_create) {
1719 f2fs_do_map_lock(sbi, flag, false);
1720 f2fs_balance_fs(sbi, dn.node_changed);
1721 }
1722 out:
1723 trace_f2fs_map_blocks(inode, map, create, flag, err);
1724 return err;
1725 }
1726
f2fs_overwrite_io(struct inode * inode,loff_t pos,size_t len)1727 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1728 {
1729 struct f2fs_map_blocks map;
1730 block_t last_lblk;
1731 int err;
1732
1733 if (pos + len > i_size_read(inode))
1734 return false;
1735
1736 map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1737 map.m_next_pgofs = NULL;
1738 map.m_next_extent = NULL;
1739 map.m_seg_type = NO_CHECK_TYPE;
1740 map.m_may_create = false;
1741 last_lblk = F2FS_BLK_ALIGN(pos + len);
1742
1743 while (map.m_lblk < last_lblk) {
1744 map.m_len = last_lblk - map.m_lblk;
1745 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1746 if (err || map.m_len == 0)
1747 return false;
1748 map.m_lblk += map.m_len;
1749 }
1750 return true;
1751 }
1752
bytes_to_blks(struct inode * inode,u64 bytes)1753 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1754 {
1755 return (bytes >> inode->i_blkbits);
1756 }
1757
blks_to_bytes(struct inode * inode,u64 blks)1758 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1759 {
1760 return (blks << inode->i_blkbits);
1761 }
1762
f2fs_xattr_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo)1763 static int f2fs_xattr_fiemap(struct inode *inode,
1764 struct fiemap_extent_info *fieinfo)
1765 {
1766 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1767 struct page *page;
1768 struct node_info ni;
1769 __u64 phys = 0, len;
1770 __u32 flags;
1771 nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1772 int err = 0;
1773
1774 if (f2fs_has_inline_xattr(inode)) {
1775 int offset;
1776
1777 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1778 inode->i_ino, false);
1779 if (!page)
1780 return -ENOMEM;
1781
1782 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1783 if (err) {
1784 f2fs_put_page(page, 1);
1785 return err;
1786 }
1787
1788 phys = blks_to_bytes(inode, ni.blk_addr);
1789 offset = offsetof(struct f2fs_inode, i_addr) +
1790 sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1791 get_inline_xattr_addrs(inode));
1792
1793 phys += offset;
1794 len = inline_xattr_size(inode);
1795
1796 f2fs_put_page(page, 1);
1797
1798 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1799
1800 if (!xnid)
1801 flags |= FIEMAP_EXTENT_LAST;
1802
1803 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1804 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1805 if (err || err == 1)
1806 return err;
1807 }
1808
1809 if (xnid) {
1810 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1811 if (!page)
1812 return -ENOMEM;
1813
1814 err = f2fs_get_node_info(sbi, xnid, &ni, false);
1815 if (err) {
1816 f2fs_put_page(page, 1);
1817 return err;
1818 }
1819
1820 phys = blks_to_bytes(inode, ni.blk_addr);
1821 len = inode->i_sb->s_blocksize;
1822
1823 f2fs_put_page(page, 1);
1824
1825 flags = FIEMAP_EXTENT_LAST;
1826 }
1827
1828 if (phys) {
1829 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1830 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1831 }
1832
1833 return (err < 0 ? err : 0);
1834 }
1835
max_inode_blocks(struct inode * inode)1836 static loff_t max_inode_blocks(struct inode *inode)
1837 {
1838 loff_t result = ADDRS_PER_INODE(inode);
1839 loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1840
1841 /* two direct node blocks */
1842 result += (leaf_count * 2);
1843
1844 /* two indirect node blocks */
1845 leaf_count *= NIDS_PER_BLOCK;
1846 result += (leaf_count * 2);
1847
1848 /* one double indirect node block */
1849 leaf_count *= NIDS_PER_BLOCK;
1850 result += leaf_count;
1851
1852 return result;
1853 }
1854
f2fs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)1855 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1856 u64 start, u64 len)
1857 {
1858 struct f2fs_map_blocks map;
1859 sector_t start_blk, last_blk;
1860 pgoff_t next_pgofs;
1861 u64 logical = 0, phys = 0, size = 0;
1862 u32 flags = 0;
1863 int ret = 0;
1864 bool compr_cluster = false, compr_appended;
1865 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1866 unsigned int count_in_cluster = 0;
1867 loff_t maxbytes;
1868
1869 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1870 ret = f2fs_precache_extents(inode);
1871 if (ret)
1872 return ret;
1873 }
1874
1875 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1876 if (ret)
1877 return ret;
1878
1879 inode_lock(inode);
1880
1881 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1882 if (start > maxbytes) {
1883 ret = -EFBIG;
1884 goto out;
1885 }
1886
1887 if (len > maxbytes || (maxbytes - len) < start)
1888 len = maxbytes - start;
1889
1890 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1891 ret = f2fs_xattr_fiemap(inode, fieinfo);
1892 goto out;
1893 }
1894
1895 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1896 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1897 if (ret != -EAGAIN)
1898 goto out;
1899 }
1900
1901 if (bytes_to_blks(inode, len) == 0)
1902 len = blks_to_bytes(inode, 1);
1903
1904 start_blk = bytes_to_blks(inode, start);
1905 last_blk = bytes_to_blks(inode, start + len - 1);
1906
1907 next:
1908 memset(&map, 0, sizeof(map));
1909 map.m_lblk = start_blk;
1910 map.m_len = bytes_to_blks(inode, len);
1911 map.m_next_pgofs = &next_pgofs;
1912 map.m_seg_type = NO_CHECK_TYPE;
1913
1914 if (compr_cluster) {
1915 map.m_lblk += 1;
1916 map.m_len = cluster_size - count_in_cluster;
1917 }
1918
1919 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
1920 if (ret)
1921 goto out;
1922
1923 /* HOLE */
1924 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1925 start_blk = next_pgofs;
1926
1927 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1928 max_inode_blocks(inode)))
1929 goto prep_next;
1930
1931 flags |= FIEMAP_EXTENT_LAST;
1932 }
1933
1934 compr_appended = false;
1935 /* In a case of compressed cluster, append this to the last extent */
1936 if (compr_cluster && ((map.m_flags & F2FS_MAP_UNWRITTEN) ||
1937 !(map.m_flags & F2FS_MAP_FLAGS))) {
1938 compr_appended = true;
1939 goto skip_fill;
1940 }
1941
1942 if (size) {
1943 flags |= FIEMAP_EXTENT_MERGED;
1944 if (IS_ENCRYPTED(inode))
1945 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1946
1947 ret = fiemap_fill_next_extent(fieinfo, logical,
1948 phys, size, flags);
1949 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
1950 if (ret)
1951 goto out;
1952 size = 0;
1953 }
1954
1955 if (start_blk > last_blk)
1956 goto out;
1957
1958 skip_fill:
1959 if (map.m_pblk == COMPRESS_ADDR) {
1960 compr_cluster = true;
1961 count_in_cluster = 1;
1962 } else if (compr_appended) {
1963 unsigned int appended_blks = cluster_size -
1964 count_in_cluster + 1;
1965 size += blks_to_bytes(inode, appended_blks);
1966 start_blk += appended_blks;
1967 compr_cluster = false;
1968 } else {
1969 logical = blks_to_bytes(inode, start_blk);
1970 phys = __is_valid_data_blkaddr(map.m_pblk) ?
1971 blks_to_bytes(inode, map.m_pblk) : 0;
1972 size = blks_to_bytes(inode, map.m_len);
1973 flags = 0;
1974
1975 if (compr_cluster) {
1976 flags = FIEMAP_EXTENT_ENCODED;
1977 count_in_cluster += map.m_len;
1978 if (count_in_cluster == cluster_size) {
1979 compr_cluster = false;
1980 size += blks_to_bytes(inode, 1);
1981 }
1982 } else if (map.m_flags & F2FS_MAP_UNWRITTEN) {
1983 flags = FIEMAP_EXTENT_UNWRITTEN;
1984 }
1985
1986 start_blk += bytes_to_blks(inode, size);
1987 }
1988
1989 prep_next:
1990 cond_resched();
1991 if (fatal_signal_pending(current))
1992 ret = -EINTR;
1993 else
1994 goto next;
1995 out:
1996 if (ret == 1)
1997 ret = 0;
1998
1999 inode_unlock(inode);
2000 return ret;
2001 }
2002
f2fs_readpage_limit(struct inode * inode)2003 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2004 {
2005 if (IS_ENABLED(CONFIG_FS_VERITY) &&
2006 (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
2007 return inode->i_sb->s_maxbytes;
2008
2009 return i_size_read(inode);
2010 }
2011
f2fs_read_single_page(struct inode * inode,struct page * page,unsigned nr_pages,struct f2fs_map_blocks * map,struct bio ** bio_ret,sector_t * last_block_in_bio,bool is_readahead)2012 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2013 unsigned nr_pages,
2014 struct f2fs_map_blocks *map,
2015 struct bio **bio_ret,
2016 sector_t *last_block_in_bio,
2017 bool is_readahead)
2018 {
2019 struct bio *bio = *bio_ret;
2020 const unsigned blocksize = blks_to_bytes(inode, 1);
2021 sector_t block_in_file;
2022 sector_t last_block;
2023 sector_t last_block_in_file;
2024 sector_t block_nr;
2025 int ret = 0;
2026
2027 block_in_file = (sector_t)page_index(page);
2028 last_block = block_in_file + nr_pages;
2029 last_block_in_file = bytes_to_blks(inode,
2030 f2fs_readpage_limit(inode) + blocksize - 1);
2031 if (last_block > last_block_in_file)
2032 last_block = last_block_in_file;
2033
2034 /* just zeroing out page which is beyond EOF */
2035 if (block_in_file >= last_block)
2036 goto zero_out;
2037 /*
2038 * Map blocks using the previous result first.
2039 */
2040 if ((map->m_flags & F2FS_MAP_MAPPED) &&
2041 block_in_file > map->m_lblk &&
2042 block_in_file < (map->m_lblk + map->m_len))
2043 goto got_it;
2044
2045 /*
2046 * Then do more f2fs_map_blocks() calls until we are
2047 * done with this page.
2048 */
2049 map->m_lblk = block_in_file;
2050 map->m_len = last_block - block_in_file;
2051
2052 ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2053 if (ret)
2054 goto out;
2055 got_it:
2056 if ((map->m_flags & F2FS_MAP_MAPPED)) {
2057 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2058 SetPageMappedToDisk(page);
2059
2060 if (!PageUptodate(page) && (!PageSwapCache(page) &&
2061 !cleancache_get_page(page))) {
2062 SetPageUptodate(page);
2063 goto confused;
2064 }
2065
2066 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2067 DATA_GENERIC_ENHANCE_READ)) {
2068 ret = -EFSCORRUPTED;
2069 goto out;
2070 }
2071 } else {
2072 zero_out:
2073 zero_user_segment(page, 0, PAGE_SIZE);
2074 if (f2fs_need_verity(inode, page->index) &&
2075 !fsverity_verify_page(page)) {
2076 ret = -EIO;
2077 goto out;
2078 }
2079 if (!PageUptodate(page))
2080 SetPageUptodate(page);
2081 unlock_page(page);
2082 goto out;
2083 }
2084
2085 /*
2086 * This page will go to BIO. Do we need to send this
2087 * BIO off first?
2088 */
2089 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2090 *last_block_in_bio, block_nr) ||
2091 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2092 submit_and_realloc:
2093 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2094 bio = NULL;
2095 }
2096 if (bio == NULL) {
2097 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2098 is_readahead ? REQ_RAHEAD : 0, page->index,
2099 false);
2100 if (IS_ERR(bio)) {
2101 ret = PTR_ERR(bio);
2102 bio = NULL;
2103 goto out;
2104 }
2105 }
2106
2107 /*
2108 * If the page is under writeback, we need to wait for
2109 * its completion to see the correct decrypted data.
2110 */
2111 f2fs_wait_on_block_writeback(inode, block_nr);
2112
2113 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2114 goto submit_and_realloc;
2115
2116 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2117 f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
2118 ClearPageError(page);
2119 *last_block_in_bio = block_nr;
2120 goto out;
2121 confused:
2122 if (bio) {
2123 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2124 bio = NULL;
2125 }
2126 unlock_page(page);
2127 out:
2128 *bio_ret = bio;
2129 return ret;
2130 }
2131
2132 #ifdef CONFIG_F2FS_FS_COMPRESSION
f2fs_read_multi_pages(struct compress_ctx * cc,struct bio ** bio_ret,unsigned nr_pages,sector_t * last_block_in_bio,bool is_readahead,bool for_write)2133 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2134 unsigned nr_pages, sector_t *last_block_in_bio,
2135 bool is_readahead, bool for_write)
2136 {
2137 struct dnode_of_data dn;
2138 struct inode *inode = cc->inode;
2139 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2140 struct bio *bio = *bio_ret;
2141 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2142 sector_t last_block_in_file;
2143 const unsigned blocksize = blks_to_bytes(inode, 1);
2144 struct decompress_io_ctx *dic = NULL;
2145 struct extent_info ei = {0, };
2146 bool from_dnode = true;
2147 int i;
2148 int ret = 0;
2149
2150 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2151
2152 last_block_in_file = bytes_to_blks(inode,
2153 f2fs_readpage_limit(inode) + blocksize - 1);
2154
2155 /* get rid of pages beyond EOF */
2156 for (i = 0; i < cc->cluster_size; i++) {
2157 struct page *page = cc->rpages[i];
2158
2159 if (!page)
2160 continue;
2161 if ((sector_t)page->index >= last_block_in_file) {
2162 zero_user_segment(page, 0, PAGE_SIZE);
2163 if (!PageUptodate(page))
2164 SetPageUptodate(page);
2165 } else if (!PageUptodate(page)) {
2166 continue;
2167 }
2168 unlock_page(page);
2169 if (for_write)
2170 put_page(page);
2171 cc->rpages[i] = NULL;
2172 cc->nr_rpages--;
2173 }
2174
2175 /* we are done since all pages are beyond EOF */
2176 if (f2fs_cluster_is_empty(cc))
2177 goto out;
2178
2179 if (f2fs_lookup_extent_cache(inode, start_idx, &ei))
2180 from_dnode = false;
2181
2182 if (!from_dnode)
2183 goto skip_reading_dnode;
2184
2185 set_new_dnode(&dn, inode, NULL, NULL, 0);
2186 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2187 if (ret)
2188 goto out;
2189
2190 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2191
2192 skip_reading_dnode:
2193 for (i = 1; i < cc->cluster_size; i++) {
2194 block_t blkaddr;
2195
2196 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2197 dn.ofs_in_node + i) :
2198 ei.blk + i - 1;
2199
2200 if (!__is_valid_data_blkaddr(blkaddr))
2201 break;
2202
2203 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2204 ret = -EFAULT;
2205 goto out_put_dnode;
2206 }
2207 cc->nr_cpages++;
2208
2209 if (!from_dnode && i >= ei.c_len)
2210 break;
2211 }
2212
2213 /* nothing to decompress */
2214 if (cc->nr_cpages == 0) {
2215 ret = 0;
2216 goto out_put_dnode;
2217 }
2218
2219 dic = f2fs_alloc_dic(cc);
2220 if (IS_ERR(dic)) {
2221 ret = PTR_ERR(dic);
2222 goto out_put_dnode;
2223 }
2224
2225 for (i = 0; i < cc->nr_cpages; i++) {
2226 struct page *page = dic->cpages[i];
2227 block_t blkaddr;
2228 struct bio_post_read_ctx *ctx;
2229
2230 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2231 dn.ofs_in_node + i + 1) :
2232 ei.blk + i;
2233
2234 f2fs_wait_on_block_writeback(inode, blkaddr);
2235
2236 if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2237 if (atomic_dec_and_test(&dic->remaining_pages))
2238 f2fs_decompress_cluster(dic, true);
2239 continue;
2240 }
2241
2242 if (bio && (!page_is_mergeable(sbi, bio,
2243 *last_block_in_bio, blkaddr) ||
2244 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2245 submit_and_realloc:
2246 __submit_bio(sbi, bio, DATA);
2247 bio = NULL;
2248 }
2249
2250 if (!bio) {
2251 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2252 is_readahead ? REQ_RAHEAD : 0,
2253 page->index, for_write);
2254 if (IS_ERR(bio)) {
2255 ret = PTR_ERR(bio);
2256 f2fs_decompress_end_io(dic, ret, true);
2257 f2fs_put_dnode(&dn);
2258 *bio_ret = NULL;
2259 return ret;
2260 }
2261 }
2262
2263 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2264 goto submit_and_realloc;
2265
2266 ctx = get_post_read_ctx(bio);
2267 ctx->enabled_steps |= STEP_DECOMPRESS;
2268 refcount_inc(&dic->refcnt);
2269
2270 inc_page_count(sbi, F2FS_RD_DATA);
2271 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
2272 f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
2273 ClearPageError(page);
2274 *last_block_in_bio = blkaddr;
2275 }
2276
2277 if (from_dnode)
2278 f2fs_put_dnode(&dn);
2279
2280 *bio_ret = bio;
2281 return 0;
2282
2283 out_put_dnode:
2284 if (from_dnode)
2285 f2fs_put_dnode(&dn);
2286 out:
2287 for (i = 0; i < cc->cluster_size; i++) {
2288 if (cc->rpages[i]) {
2289 ClearPageUptodate(cc->rpages[i]);
2290 ClearPageError(cc->rpages[i]);
2291 unlock_page(cc->rpages[i]);
2292 }
2293 }
2294 *bio_ret = bio;
2295 return ret;
2296 }
2297 #endif
2298
2299 /*
2300 * This function was originally taken from fs/mpage.c, and customized for f2fs.
2301 * Major change was from block_size == page_size in f2fs by default.
2302 */
f2fs_mpage_readpages(struct inode * inode,struct readahead_control * rac,struct page * page)2303 static int f2fs_mpage_readpages(struct inode *inode,
2304 struct readahead_control *rac, struct page *page)
2305 {
2306 struct bio *bio = NULL;
2307 sector_t last_block_in_bio = 0;
2308 struct f2fs_map_blocks map;
2309 #ifdef CONFIG_F2FS_FS_COMPRESSION
2310 struct compress_ctx cc = {
2311 .inode = inode,
2312 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2313 .cluster_size = F2FS_I(inode)->i_cluster_size,
2314 .cluster_idx = NULL_CLUSTER,
2315 .rpages = NULL,
2316 .cpages = NULL,
2317 .nr_rpages = 0,
2318 .nr_cpages = 0,
2319 };
2320 pgoff_t nc_cluster_idx = NULL_CLUSTER;
2321 #endif
2322 unsigned nr_pages = rac ? readahead_count(rac) : 1;
2323 unsigned max_nr_pages = nr_pages;
2324 int ret = 0;
2325
2326 map.m_pblk = 0;
2327 map.m_lblk = 0;
2328 map.m_len = 0;
2329 map.m_flags = 0;
2330 map.m_next_pgofs = NULL;
2331 map.m_next_extent = NULL;
2332 map.m_seg_type = NO_CHECK_TYPE;
2333 map.m_may_create = false;
2334
2335 for (; nr_pages; nr_pages--) {
2336 if (rac) {
2337 page = readahead_page(rac);
2338 prefetchw(&page->flags);
2339 }
2340
2341 #ifdef CONFIG_F2FS_FS_COMPRESSION
2342 if (f2fs_compressed_file(inode)) {
2343 /* there are remained comressed pages, submit them */
2344 if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2345 ret = f2fs_read_multi_pages(&cc, &bio,
2346 max_nr_pages,
2347 &last_block_in_bio,
2348 rac != NULL, false);
2349 f2fs_destroy_compress_ctx(&cc, false);
2350 if (ret)
2351 goto set_error_page;
2352 }
2353 if (cc.cluster_idx == NULL_CLUSTER) {
2354 if (nc_cluster_idx ==
2355 page->index >> cc.log_cluster_size) {
2356 goto read_single_page;
2357 }
2358
2359 ret = f2fs_is_compressed_cluster(inode, page->index);
2360 if (ret < 0)
2361 goto set_error_page;
2362 else if (!ret) {
2363 nc_cluster_idx =
2364 page->index >> cc.log_cluster_size;
2365 goto read_single_page;
2366 }
2367
2368 nc_cluster_idx = NULL_CLUSTER;
2369 }
2370 ret = f2fs_init_compress_ctx(&cc);
2371 if (ret)
2372 goto set_error_page;
2373
2374 f2fs_compress_ctx_add_page(&cc, page);
2375
2376 goto next_page;
2377 }
2378 read_single_page:
2379 #endif
2380
2381 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2382 &bio, &last_block_in_bio, rac);
2383 if (ret) {
2384 #ifdef CONFIG_F2FS_FS_COMPRESSION
2385 set_error_page:
2386 #endif
2387 SetPageError(page);
2388 zero_user_segment(page, 0, PAGE_SIZE);
2389 unlock_page(page);
2390 }
2391 #ifdef CONFIG_F2FS_FS_COMPRESSION
2392 next_page:
2393 #endif
2394 if (rac)
2395 put_page(page);
2396
2397 #ifdef CONFIG_F2FS_FS_COMPRESSION
2398 if (f2fs_compressed_file(inode)) {
2399 /* last page */
2400 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2401 ret = f2fs_read_multi_pages(&cc, &bio,
2402 max_nr_pages,
2403 &last_block_in_bio,
2404 rac != NULL, false);
2405 f2fs_destroy_compress_ctx(&cc, false);
2406 }
2407 }
2408 #endif
2409 }
2410 if (bio)
2411 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2412 return ret;
2413 }
2414
f2fs_read_data_page(struct file * file,struct page * page)2415 static int f2fs_read_data_page(struct file *file, struct page *page)
2416 {
2417 struct inode *inode = page_file_mapping(page)->host;
2418 int ret = -EAGAIN;
2419
2420 trace_f2fs_readpage(page, DATA);
2421
2422 if (!f2fs_is_compress_backend_ready(inode)) {
2423 unlock_page(page);
2424 return -EOPNOTSUPP;
2425 }
2426
2427 /* If the file has inline data, try to read it directly */
2428 if (f2fs_has_inline_data(inode))
2429 ret = f2fs_read_inline_data(inode, page);
2430 if (ret == -EAGAIN)
2431 ret = f2fs_mpage_readpages(inode, NULL, page);
2432 return ret;
2433 }
2434
f2fs_readahead(struct readahead_control * rac)2435 static void f2fs_readahead(struct readahead_control *rac)
2436 {
2437 struct inode *inode = rac->mapping->host;
2438
2439 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2440
2441 if (!f2fs_is_compress_backend_ready(inode))
2442 return;
2443
2444 /* If the file has inline data, skip readpages */
2445 if (f2fs_has_inline_data(inode))
2446 return;
2447
2448 f2fs_mpage_readpages(inode, rac, NULL);
2449 }
2450
f2fs_encrypt_one_page(struct f2fs_io_info * fio)2451 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2452 {
2453 struct inode *inode = fio->page->mapping->host;
2454 struct page *mpage, *page;
2455 gfp_t gfp_flags = GFP_NOFS;
2456
2457 if (!f2fs_encrypted_file(inode))
2458 return 0;
2459
2460 page = fio->compressed_page ? fio->compressed_page : fio->page;
2461
2462 /* wait for GCed page writeback via META_MAPPING */
2463 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2464
2465 if (fscrypt_inode_uses_inline_crypto(inode))
2466 return 0;
2467
2468 retry_encrypt:
2469 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2470 PAGE_SIZE, 0, gfp_flags);
2471 if (IS_ERR(fio->encrypted_page)) {
2472 /* flush pending IOs and wait for a while in the ENOMEM case */
2473 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2474 f2fs_flush_merged_writes(fio->sbi);
2475 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2476 gfp_flags |= __GFP_NOFAIL;
2477 goto retry_encrypt;
2478 }
2479 return PTR_ERR(fio->encrypted_page);
2480 }
2481
2482 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2483 if (mpage) {
2484 if (PageUptodate(mpage))
2485 memcpy(page_address(mpage),
2486 page_address(fio->encrypted_page), PAGE_SIZE);
2487 f2fs_put_page(mpage, 1);
2488 }
2489 return 0;
2490 }
2491
check_inplace_update_policy(struct inode * inode,struct f2fs_io_info * fio)2492 static inline bool check_inplace_update_policy(struct inode *inode,
2493 struct f2fs_io_info *fio)
2494 {
2495 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2496 unsigned int policy = SM_I(sbi)->ipu_policy;
2497
2498 if (policy & (0x1 << F2FS_IPU_HONOR_OPU_WRITE) &&
2499 is_inode_flag_set(inode, FI_OPU_WRITE))
2500 return false;
2501 if (policy & (0x1 << F2FS_IPU_FORCE))
2502 return true;
2503 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2504 return true;
2505 if (policy & (0x1 << F2FS_IPU_UTIL) &&
2506 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2507 return true;
2508 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2509 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2510 return true;
2511
2512 /*
2513 * IPU for rewrite async pages
2514 */
2515 if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2516 fio && fio->op == REQ_OP_WRITE &&
2517 !(fio->op_flags & REQ_SYNC) &&
2518 !IS_ENCRYPTED(inode))
2519 return true;
2520
2521 /* this is only set during fdatasync */
2522 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2523 is_inode_flag_set(inode, FI_NEED_IPU))
2524 return true;
2525
2526 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2527 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2528 return true;
2529
2530 return false;
2531 }
2532
f2fs_should_update_inplace(struct inode * inode,struct f2fs_io_info * fio)2533 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2534 {
2535 /* swap file is migrating in aligned write mode */
2536 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2537 return false;
2538
2539 if (f2fs_is_pinned_file(inode))
2540 return true;
2541
2542 /* if this is cold file, we should overwrite to avoid fragmentation */
2543 if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2544 return true;
2545
2546 return check_inplace_update_policy(inode, fio);
2547 }
2548
f2fs_should_update_outplace(struct inode * inode,struct f2fs_io_info * fio)2549 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2550 {
2551 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2552
2553 /* The below cases were checked when setting it. */
2554 if (f2fs_is_pinned_file(inode))
2555 return false;
2556 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2557 return true;
2558 if (f2fs_lfs_mode(sbi))
2559 return true;
2560 if (S_ISDIR(inode->i_mode))
2561 return true;
2562 if (IS_NOQUOTA(inode))
2563 return true;
2564 if (f2fs_is_atomic_file(inode))
2565 return true;
2566
2567 /* swap file is migrating in aligned write mode */
2568 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2569 return true;
2570
2571 if (is_inode_flag_set(inode, FI_OPU_WRITE))
2572 return true;
2573
2574 if (fio) {
2575 if (page_private_gcing(fio->page))
2576 return true;
2577 if (page_private_dummy(fio->page))
2578 return true;
2579 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2580 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2581 return true;
2582 }
2583 return false;
2584 }
2585
need_inplace_update(struct f2fs_io_info * fio)2586 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2587 {
2588 struct inode *inode = fio->page->mapping->host;
2589
2590 if (f2fs_should_update_outplace(inode, fio))
2591 return false;
2592
2593 return f2fs_should_update_inplace(inode, fio);
2594 }
2595
f2fs_do_write_data_page(struct f2fs_io_info * fio)2596 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2597 {
2598 struct page *page = fio->page;
2599 struct inode *inode = page->mapping->host;
2600 struct dnode_of_data dn;
2601 struct extent_info ei = {0, };
2602 struct node_info ni;
2603 bool ipu_force = false;
2604 int err = 0;
2605
2606 /* Use COW inode to make dnode_of_data for atomic write */
2607 if (f2fs_is_atomic_file(inode))
2608 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2609 else
2610 set_new_dnode(&dn, inode, NULL, NULL, 0);
2611
2612 if (need_inplace_update(fio) &&
2613 f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2614 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2615
2616 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2617 DATA_GENERIC_ENHANCE))
2618 return -EFSCORRUPTED;
2619
2620 ipu_force = true;
2621 fio->need_lock = LOCK_DONE;
2622 goto got_it;
2623 }
2624
2625 /* Deadlock due to between page->lock and f2fs_lock_op */
2626 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2627 return -EAGAIN;
2628
2629 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2630 if (err)
2631 goto out;
2632
2633 fio->old_blkaddr = dn.data_blkaddr;
2634
2635 /* This page is already truncated */
2636 if (fio->old_blkaddr == NULL_ADDR) {
2637 ClearPageUptodate(page);
2638 clear_page_private_gcing(page);
2639 goto out_writepage;
2640 }
2641 got_it:
2642 if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2643 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2644 DATA_GENERIC_ENHANCE)) {
2645 err = -EFSCORRUPTED;
2646 goto out_writepage;
2647 }
2648
2649 /*
2650 * If current allocation needs SSR,
2651 * it had better in-place writes for updated data.
2652 */
2653 if (ipu_force ||
2654 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2655 need_inplace_update(fio))) {
2656 err = f2fs_encrypt_one_page(fio);
2657 if (err)
2658 goto out_writepage;
2659
2660 set_page_writeback(page);
2661 ClearPageError(page);
2662 f2fs_put_dnode(&dn);
2663 if (fio->need_lock == LOCK_REQ)
2664 f2fs_unlock_op(fio->sbi);
2665 err = f2fs_inplace_write_data(fio);
2666 if (err) {
2667 if (fscrypt_inode_uses_fs_layer_crypto(inode))
2668 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2669 if (PageWriteback(page))
2670 end_page_writeback(page);
2671 } else {
2672 set_inode_flag(inode, FI_UPDATE_WRITE);
2673 }
2674 trace_f2fs_do_write_data_page(fio->page, IPU);
2675 return err;
2676 }
2677
2678 if (fio->need_lock == LOCK_RETRY) {
2679 if (!f2fs_trylock_op(fio->sbi)) {
2680 err = -EAGAIN;
2681 goto out_writepage;
2682 }
2683 fio->need_lock = LOCK_REQ;
2684 }
2685
2686 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2687 if (err)
2688 goto out_writepage;
2689
2690 fio->version = ni.version;
2691
2692 err = f2fs_encrypt_one_page(fio);
2693 if (err)
2694 goto out_writepage;
2695
2696 set_page_writeback(page);
2697 ClearPageError(page);
2698
2699 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2700 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2701
2702 /* LFS mode write path */
2703 f2fs_outplace_write_data(&dn, fio);
2704 trace_f2fs_do_write_data_page(page, OPU);
2705 set_inode_flag(inode, FI_APPEND_WRITE);
2706 if (page->index == 0)
2707 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2708 out_writepage:
2709 f2fs_put_dnode(&dn);
2710 out:
2711 if (fio->need_lock == LOCK_REQ)
2712 f2fs_unlock_op(fio->sbi);
2713 return err;
2714 }
2715
f2fs_write_single_data_page(struct page * page,int * submitted,struct bio ** bio,sector_t * last_block,struct writeback_control * wbc,enum iostat_type io_type,int compr_blocks,bool allow_balance)2716 int f2fs_write_single_data_page(struct page *page, int *submitted,
2717 struct bio **bio,
2718 sector_t *last_block,
2719 struct writeback_control *wbc,
2720 enum iostat_type io_type,
2721 int compr_blocks,
2722 bool allow_balance)
2723 {
2724 struct inode *inode = page->mapping->host;
2725 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2726 loff_t i_size = i_size_read(inode);
2727 const pgoff_t end_index = ((unsigned long long)i_size)
2728 >> PAGE_SHIFT;
2729 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2730 unsigned offset = 0;
2731 bool need_balance_fs = false;
2732 int err = 0;
2733 struct f2fs_io_info fio = {
2734 .sbi = sbi,
2735 .ino = inode->i_ino,
2736 .type = DATA,
2737 .op = REQ_OP_WRITE,
2738 .op_flags = wbc_to_write_flags(wbc),
2739 .old_blkaddr = NULL_ADDR,
2740 .page = page,
2741 .encrypted_page = NULL,
2742 .submitted = false,
2743 .compr_blocks = compr_blocks,
2744 .need_lock = LOCK_RETRY,
2745 .post_read = f2fs_post_read_required(inode),
2746 .io_type = io_type,
2747 .io_wbc = wbc,
2748 .bio = bio,
2749 .last_block = last_block,
2750 };
2751
2752 trace_f2fs_writepage(page, DATA);
2753
2754 /* we should bypass data pages to proceed the kworkder jobs */
2755 if (unlikely(f2fs_cp_error(sbi))) {
2756 mapping_set_error(page->mapping, -EIO);
2757 /*
2758 * don't drop any dirty dentry pages for keeping lastest
2759 * directory structure.
2760 */
2761 if (S_ISDIR(inode->i_mode) &&
2762 !is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2763 goto redirty_out;
2764 goto out;
2765 }
2766
2767 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2768 goto redirty_out;
2769
2770 if (page->index < end_index ||
2771 f2fs_verity_in_progress(inode) ||
2772 compr_blocks)
2773 goto write;
2774
2775 /*
2776 * If the offset is out-of-range of file size,
2777 * this page does not have to be written to disk.
2778 */
2779 offset = i_size & (PAGE_SIZE - 1);
2780 if ((page->index >= end_index + 1) || !offset)
2781 goto out;
2782
2783 zero_user_segment(page, offset, PAGE_SIZE);
2784 write:
2785 if (f2fs_is_drop_cache(inode))
2786 goto out;
2787
2788 /* Dentry/quota blocks are controlled by checkpoint */
2789 if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2790 /*
2791 * We need to wait for node_write to avoid block allocation during
2792 * checkpoint. This can only happen to quota writes which can cause
2793 * the below discard race condition.
2794 */
2795 if (IS_NOQUOTA(inode))
2796 f2fs_down_read(&sbi->node_write);
2797
2798 fio.need_lock = LOCK_DONE;
2799 err = f2fs_do_write_data_page(&fio);
2800
2801 if (IS_NOQUOTA(inode))
2802 f2fs_up_read(&sbi->node_write);
2803
2804 goto done;
2805 }
2806
2807 if (!wbc->for_reclaim)
2808 need_balance_fs = true;
2809 else if (has_not_enough_free_secs(sbi, 0, 0))
2810 goto redirty_out;
2811 else
2812 set_inode_flag(inode, FI_HOT_DATA);
2813
2814 err = -EAGAIN;
2815 if (f2fs_has_inline_data(inode)) {
2816 err = f2fs_write_inline_data(inode, page);
2817 if (!err)
2818 goto out;
2819 }
2820
2821 if (err == -EAGAIN) {
2822 err = f2fs_do_write_data_page(&fio);
2823 if (err == -EAGAIN) {
2824 fio.need_lock = LOCK_REQ;
2825 err = f2fs_do_write_data_page(&fio);
2826 }
2827 }
2828
2829 if (err) {
2830 file_set_keep_isize(inode);
2831 } else {
2832 spin_lock(&F2FS_I(inode)->i_size_lock);
2833 if (F2FS_I(inode)->last_disk_size < psize)
2834 F2FS_I(inode)->last_disk_size = psize;
2835 spin_unlock(&F2FS_I(inode)->i_size_lock);
2836 }
2837
2838 done:
2839 if (err && err != -ENOENT)
2840 goto redirty_out;
2841
2842 out:
2843 inode_dec_dirty_pages(inode);
2844 if (err) {
2845 ClearPageUptodate(page);
2846 clear_page_private_gcing(page);
2847 }
2848
2849 if (wbc->for_reclaim) {
2850 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2851 clear_inode_flag(inode, FI_HOT_DATA);
2852 f2fs_remove_dirty_inode(inode);
2853 submitted = NULL;
2854 }
2855 unlock_page(page);
2856 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2857 !F2FS_I(inode)->wb_task && allow_balance)
2858 f2fs_balance_fs(sbi, need_balance_fs);
2859
2860 if (unlikely(f2fs_cp_error(sbi))) {
2861 f2fs_submit_merged_write(sbi, DATA);
2862 if (bio && *bio)
2863 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2864 submitted = NULL;
2865 }
2866
2867 if (submitted)
2868 *submitted = fio.submitted ? 1 : 0;
2869
2870 return 0;
2871
2872 redirty_out:
2873 redirty_page_for_writepage(wbc, page);
2874 /*
2875 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2876 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2877 * file_write_and_wait_range() will see EIO error, which is critical
2878 * to return value of fsync() followed by atomic_write failure to user.
2879 */
2880 if (!err || wbc->for_reclaim)
2881 return AOP_WRITEPAGE_ACTIVATE;
2882 unlock_page(page);
2883 return err;
2884 }
2885
f2fs_write_data_page(struct page * page,struct writeback_control * wbc)2886 static int f2fs_write_data_page(struct page *page,
2887 struct writeback_control *wbc)
2888 {
2889 #ifdef CONFIG_F2FS_FS_COMPRESSION
2890 struct inode *inode = page->mapping->host;
2891
2892 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2893 goto out;
2894
2895 if (f2fs_compressed_file(inode)) {
2896 if (f2fs_is_compressed_cluster(inode, page->index)) {
2897 redirty_page_for_writepage(wbc, page);
2898 return AOP_WRITEPAGE_ACTIVATE;
2899 }
2900 }
2901 out:
2902 #endif
2903
2904 return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2905 wbc, FS_DATA_IO, 0, true);
2906 }
2907
2908 /*
2909 * This function was copied from write_cche_pages from mm/page-writeback.c.
2910 * The major change is making write step of cold data page separately from
2911 * warm/hot data page.
2912 */
f2fs_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)2913 static int f2fs_write_cache_pages(struct address_space *mapping,
2914 struct writeback_control *wbc,
2915 enum iostat_type io_type)
2916 {
2917 int ret = 0;
2918 int done = 0, retry = 0;
2919 struct pagevec pvec;
2920 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2921 struct bio *bio = NULL;
2922 sector_t last_block;
2923 #ifdef CONFIG_F2FS_FS_COMPRESSION
2924 struct inode *inode = mapping->host;
2925 struct compress_ctx cc = {
2926 .inode = inode,
2927 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2928 .cluster_size = F2FS_I(inode)->i_cluster_size,
2929 .cluster_idx = NULL_CLUSTER,
2930 .rpages = NULL,
2931 .nr_rpages = 0,
2932 .cpages = NULL,
2933 .valid_nr_cpages = 0,
2934 .rbuf = NULL,
2935 .cbuf = NULL,
2936 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2937 .private = NULL,
2938 };
2939 #endif
2940 int nr_pages;
2941 pgoff_t index;
2942 pgoff_t end; /* Inclusive */
2943 pgoff_t done_index;
2944 int range_whole = 0;
2945 xa_mark_t tag;
2946 int nwritten = 0;
2947 int submitted = 0;
2948 int i;
2949
2950 pagevec_init(&pvec);
2951
2952 if (get_dirty_pages(mapping->host) <=
2953 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2954 set_inode_flag(mapping->host, FI_HOT_DATA);
2955 else
2956 clear_inode_flag(mapping->host, FI_HOT_DATA);
2957
2958 if (wbc->range_cyclic) {
2959 index = mapping->writeback_index; /* prev offset */
2960 end = -1;
2961 } else {
2962 index = wbc->range_start >> PAGE_SHIFT;
2963 end = wbc->range_end >> PAGE_SHIFT;
2964 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2965 range_whole = 1;
2966 }
2967 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2968 tag = PAGECACHE_TAG_TOWRITE;
2969 else
2970 tag = PAGECACHE_TAG_DIRTY;
2971 retry:
2972 retry = 0;
2973 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2974 tag_pages_for_writeback(mapping, index, end);
2975 done_index = index;
2976 while (!done && !retry && (index <= end)) {
2977 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2978 tag);
2979 if (nr_pages == 0)
2980 break;
2981
2982 for (i = 0; i < nr_pages; i++) {
2983 struct page *page = pvec.pages[i];
2984 bool need_readd;
2985 readd:
2986 need_readd = false;
2987 #ifdef CONFIG_F2FS_FS_COMPRESSION
2988 if (f2fs_compressed_file(inode)) {
2989 void *fsdata = NULL;
2990 struct page *pagep;
2991 int ret2;
2992
2993 ret = f2fs_init_compress_ctx(&cc);
2994 if (ret) {
2995 done = 1;
2996 break;
2997 }
2998
2999 if (!f2fs_cluster_can_merge_page(&cc,
3000 page->index)) {
3001 ret = f2fs_write_multi_pages(&cc,
3002 &submitted, wbc, io_type);
3003 if (!ret)
3004 need_readd = true;
3005 goto result;
3006 }
3007
3008 if (unlikely(f2fs_cp_error(sbi)))
3009 goto lock_page;
3010
3011 if (!f2fs_cluster_is_empty(&cc))
3012 goto lock_page;
3013
3014 ret2 = f2fs_prepare_compress_overwrite(
3015 inode, &pagep,
3016 page->index, &fsdata);
3017 if (ret2 < 0) {
3018 ret = ret2;
3019 done = 1;
3020 break;
3021 } else if (ret2 &&
3022 (!f2fs_compress_write_end(inode,
3023 fsdata, page->index, 1) ||
3024 !f2fs_all_cluster_page_loaded(&cc,
3025 &pvec, i, nr_pages))) {
3026 retry = 1;
3027 break;
3028 }
3029 }
3030 #endif
3031 /* give a priority to WB_SYNC threads */
3032 if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3033 wbc->sync_mode == WB_SYNC_NONE) {
3034 done = 1;
3035 break;
3036 }
3037 #ifdef CONFIG_F2FS_FS_COMPRESSION
3038 lock_page:
3039 #endif
3040 done_index = page->index;
3041 retry_write:
3042 lock_page(page);
3043
3044 if (unlikely(page->mapping != mapping)) {
3045 continue_unlock:
3046 unlock_page(page);
3047 continue;
3048 }
3049
3050 if (!PageDirty(page)) {
3051 /* someone wrote it for us */
3052 goto continue_unlock;
3053 }
3054
3055 if (PageWriteback(page)) {
3056 if (wbc->sync_mode != WB_SYNC_NONE)
3057 f2fs_wait_on_page_writeback(page,
3058 DATA, true, true);
3059 else
3060 goto continue_unlock;
3061 }
3062
3063 if (!clear_page_dirty_for_io(page))
3064 goto continue_unlock;
3065
3066 #ifdef CONFIG_F2FS_FS_COMPRESSION
3067 if (f2fs_compressed_file(inode)) {
3068 get_page(page);
3069 f2fs_compress_ctx_add_page(&cc, page);
3070 continue;
3071 }
3072 #endif
3073 ret = f2fs_write_single_data_page(page, &submitted,
3074 &bio, &last_block, wbc, io_type,
3075 0, true);
3076 if (ret == AOP_WRITEPAGE_ACTIVATE)
3077 unlock_page(page);
3078 #ifdef CONFIG_F2FS_FS_COMPRESSION
3079 result:
3080 #endif
3081 nwritten += submitted;
3082 wbc->nr_to_write -= submitted;
3083
3084 if (unlikely(ret)) {
3085 /*
3086 * keep nr_to_write, since vfs uses this to
3087 * get # of written pages.
3088 */
3089 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3090 ret = 0;
3091 goto next;
3092 } else if (ret == -EAGAIN) {
3093 ret = 0;
3094 if (wbc->sync_mode == WB_SYNC_ALL) {
3095 f2fs_io_schedule_timeout(
3096 DEFAULT_IO_TIMEOUT);
3097 goto retry_write;
3098 }
3099 goto next;
3100 }
3101 done_index = page->index + 1;
3102 done = 1;
3103 break;
3104 }
3105
3106 if (wbc->nr_to_write <= 0 &&
3107 wbc->sync_mode == WB_SYNC_NONE) {
3108 done = 1;
3109 break;
3110 }
3111 next:
3112 if (need_readd)
3113 goto readd;
3114 }
3115 pagevec_release(&pvec);
3116 cond_resched();
3117 }
3118 #ifdef CONFIG_F2FS_FS_COMPRESSION
3119 /* flush remained pages in compress cluster */
3120 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3121 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3122 nwritten += submitted;
3123 wbc->nr_to_write -= submitted;
3124 if (ret) {
3125 done = 1;
3126 retry = 0;
3127 }
3128 }
3129 if (f2fs_compressed_file(inode))
3130 f2fs_destroy_compress_ctx(&cc, false);
3131 #endif
3132 if (retry) {
3133 index = 0;
3134 end = -1;
3135 goto retry;
3136 }
3137 if (wbc->range_cyclic && !done)
3138 done_index = 0;
3139 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3140 mapping->writeback_index = done_index;
3141
3142 if (nwritten)
3143 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3144 NULL, 0, DATA);
3145 /* submit cached bio of IPU write */
3146 if (bio)
3147 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3148
3149 return ret;
3150 }
3151
__should_serialize_io(struct inode * inode,struct writeback_control * wbc)3152 static inline bool __should_serialize_io(struct inode *inode,
3153 struct writeback_control *wbc)
3154 {
3155 /* to avoid deadlock in path of data flush */
3156 if (F2FS_I(inode)->wb_task)
3157 return false;
3158
3159 if (!S_ISREG(inode->i_mode))
3160 return false;
3161 if (IS_NOQUOTA(inode))
3162 return false;
3163
3164 if (f2fs_need_compress_data(inode))
3165 return true;
3166 if (wbc->sync_mode != WB_SYNC_ALL)
3167 return true;
3168 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3169 return true;
3170 return false;
3171 }
3172
__f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)3173 static int __f2fs_write_data_pages(struct address_space *mapping,
3174 struct writeback_control *wbc,
3175 enum iostat_type io_type)
3176 {
3177 struct inode *inode = mapping->host;
3178 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3179 struct blk_plug plug;
3180 int ret;
3181 bool locked = false;
3182
3183 /* deal with chardevs and other special file */
3184 if (!mapping->a_ops->writepage)
3185 return 0;
3186
3187 /* skip writing if there is no dirty page in this inode */
3188 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3189 return 0;
3190
3191 /* during POR, we don't need to trigger writepage at all. */
3192 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3193 goto skip_write;
3194
3195 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3196 wbc->sync_mode == WB_SYNC_NONE &&
3197 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3198 f2fs_available_free_memory(sbi, DIRTY_DENTS))
3199 goto skip_write;
3200
3201 /* skip writing in file defragment preparing stage */
3202 if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3203 goto skip_write;
3204
3205 trace_f2fs_writepages(mapping->host, wbc, DATA);
3206
3207 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3208 if (wbc->sync_mode == WB_SYNC_ALL)
3209 atomic_inc(&sbi->wb_sync_req[DATA]);
3210 else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3211 /* to avoid potential deadlock */
3212 if (current->plug)
3213 blk_finish_plug(current->plug);
3214 goto skip_write;
3215 }
3216
3217 if (__should_serialize_io(inode, wbc)) {
3218 mutex_lock(&sbi->writepages);
3219 locked = true;
3220 }
3221
3222 blk_start_plug(&plug);
3223 ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3224 blk_finish_plug(&plug);
3225
3226 if (locked)
3227 mutex_unlock(&sbi->writepages);
3228
3229 if (wbc->sync_mode == WB_SYNC_ALL)
3230 atomic_dec(&sbi->wb_sync_req[DATA]);
3231 /*
3232 * if some pages were truncated, we cannot guarantee its mapping->host
3233 * to detect pending bios.
3234 */
3235
3236 f2fs_remove_dirty_inode(inode);
3237 return ret;
3238
3239 skip_write:
3240 wbc->pages_skipped += get_dirty_pages(inode);
3241 trace_f2fs_writepages(mapping->host, wbc, DATA);
3242 return 0;
3243 }
3244
f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc)3245 static int f2fs_write_data_pages(struct address_space *mapping,
3246 struct writeback_control *wbc)
3247 {
3248 struct inode *inode = mapping->host;
3249
3250 return __f2fs_write_data_pages(mapping, wbc,
3251 F2FS_I(inode)->cp_task == current ?
3252 FS_CP_DATA_IO : FS_DATA_IO);
3253 }
3254
f2fs_write_failed(struct inode * inode,loff_t to)3255 void f2fs_write_failed(struct inode *inode, loff_t to)
3256 {
3257 loff_t i_size = i_size_read(inode);
3258
3259 if (IS_NOQUOTA(inode))
3260 return;
3261
3262 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3263 if (to > i_size && !f2fs_verity_in_progress(inode)) {
3264 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3265 filemap_invalidate_lock(inode->i_mapping);
3266
3267 truncate_pagecache(inode, i_size);
3268 f2fs_truncate_blocks(inode, i_size, true);
3269
3270 filemap_invalidate_unlock(inode->i_mapping);
3271 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3272 }
3273 }
3274
prepare_write_begin(struct f2fs_sb_info * sbi,struct page * page,loff_t pos,unsigned len,block_t * blk_addr,bool * node_changed)3275 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3276 struct page *page, loff_t pos, unsigned len,
3277 block_t *blk_addr, bool *node_changed)
3278 {
3279 struct inode *inode = page->mapping->host;
3280 pgoff_t index = page->index;
3281 struct dnode_of_data dn;
3282 struct page *ipage;
3283 bool locked = false;
3284 struct extent_info ei = {0, };
3285 int err = 0;
3286 int flag;
3287
3288 /*
3289 * If a whole page is being written and we already preallocated all the
3290 * blocks, then there is no need to get a block address now.
3291 */
3292 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3293 return 0;
3294
3295 /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3296 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3297 flag = F2FS_GET_BLOCK_DEFAULT;
3298 else
3299 flag = F2FS_GET_BLOCK_PRE_AIO;
3300
3301 if (f2fs_has_inline_data(inode) ||
3302 (pos & PAGE_MASK) >= i_size_read(inode)) {
3303 f2fs_do_map_lock(sbi, flag, true);
3304 locked = true;
3305 }
3306
3307 restart:
3308 /* check inline_data */
3309 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3310 if (IS_ERR(ipage)) {
3311 err = PTR_ERR(ipage);
3312 goto unlock_out;
3313 }
3314
3315 set_new_dnode(&dn, inode, ipage, ipage, 0);
3316
3317 if (f2fs_has_inline_data(inode)) {
3318 if (pos + len <= MAX_INLINE_DATA(inode)) {
3319 f2fs_do_read_inline_data(page, ipage);
3320 set_inode_flag(inode, FI_DATA_EXIST);
3321 if (inode->i_nlink)
3322 set_page_private_inline(ipage);
3323 } else {
3324 err = f2fs_convert_inline_page(&dn, page);
3325 if (err)
3326 goto out;
3327 if (dn.data_blkaddr == NULL_ADDR)
3328 err = f2fs_get_block(&dn, index);
3329 }
3330 } else if (locked) {
3331 err = f2fs_get_block(&dn, index);
3332 } else {
3333 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3334 dn.data_blkaddr = ei.blk + index - ei.fofs;
3335 } else {
3336 /* hole case */
3337 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3338 if (err || dn.data_blkaddr == NULL_ADDR) {
3339 f2fs_put_dnode(&dn);
3340 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3341 true);
3342 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3343 locked = true;
3344 goto restart;
3345 }
3346 }
3347 }
3348
3349 /* convert_inline_page can make node_changed */
3350 *blk_addr = dn.data_blkaddr;
3351 *node_changed = dn.node_changed;
3352 out:
3353 f2fs_put_dnode(&dn);
3354 unlock_out:
3355 if (locked)
3356 f2fs_do_map_lock(sbi, flag, false);
3357 return err;
3358 }
3359
__find_data_block(struct inode * inode,pgoff_t index,block_t * blk_addr)3360 static int __find_data_block(struct inode *inode, pgoff_t index,
3361 block_t *blk_addr)
3362 {
3363 struct dnode_of_data dn;
3364 struct page *ipage;
3365 struct extent_info ei = {0, };
3366 int err = 0;
3367
3368 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3369 if (IS_ERR(ipage))
3370 return PTR_ERR(ipage);
3371
3372 set_new_dnode(&dn, inode, ipage, ipage, 0);
3373
3374 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3375 dn.data_blkaddr = ei.blk + index - ei.fofs;
3376 } else {
3377 /* hole case */
3378 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3379 if (err) {
3380 dn.data_blkaddr = NULL_ADDR;
3381 err = 0;
3382 }
3383 }
3384 *blk_addr = dn.data_blkaddr;
3385 f2fs_put_dnode(&dn);
3386 return err;
3387 }
3388
__reserve_data_block(struct inode * inode,pgoff_t index,block_t * blk_addr,bool * node_changed)3389 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3390 block_t *blk_addr, bool *node_changed)
3391 {
3392 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3393 struct dnode_of_data dn;
3394 struct page *ipage;
3395 int err = 0;
3396
3397 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
3398
3399 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3400 if (IS_ERR(ipage)) {
3401 err = PTR_ERR(ipage);
3402 goto unlock_out;
3403 }
3404 set_new_dnode(&dn, inode, ipage, ipage, 0);
3405
3406 err = f2fs_get_block(&dn, index);
3407
3408 *blk_addr = dn.data_blkaddr;
3409 *node_changed = dn.node_changed;
3410 f2fs_put_dnode(&dn);
3411
3412 unlock_out:
3413 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
3414 return err;
3415 }
3416
prepare_atomic_write_begin(struct f2fs_sb_info * sbi,struct page * page,loff_t pos,unsigned int len,block_t * blk_addr,bool * node_changed,bool * use_cow)3417 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3418 struct page *page, loff_t pos, unsigned int len,
3419 block_t *blk_addr, bool *node_changed, bool *use_cow)
3420 {
3421 struct inode *inode = page->mapping->host;
3422 struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3423 pgoff_t index = page->index;
3424 int err = 0;
3425 block_t ori_blk_addr = NULL_ADDR;
3426
3427 /* If pos is beyond the end of file, reserve a new block in COW inode */
3428 if ((pos & PAGE_MASK) >= i_size_read(inode))
3429 goto reserve_block;
3430
3431 /* Look for the block in COW inode first */
3432 err = __find_data_block(cow_inode, index, blk_addr);
3433 if (err) {
3434 return err;
3435 } else if (*blk_addr != NULL_ADDR) {
3436 *use_cow = true;
3437 return 0;
3438 }
3439
3440 if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3441 goto reserve_block;
3442
3443 /* Look for the block in the original inode */
3444 err = __find_data_block(inode, index, &ori_blk_addr);
3445 if (err)
3446 return err;
3447
3448 reserve_block:
3449 /* Finally, we should reserve a new block in COW inode for the update */
3450 err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3451 if (err)
3452 return err;
3453 inc_atomic_write_cnt(inode);
3454
3455 if (ori_blk_addr != NULL_ADDR)
3456 *blk_addr = ori_blk_addr;
3457 return 0;
3458 }
3459
f2fs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)3460 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3461 loff_t pos, unsigned len, unsigned flags,
3462 struct page **pagep, void **fsdata)
3463 {
3464 struct inode *inode = mapping->host;
3465 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3466 struct page *page = NULL;
3467 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3468 bool need_balance = false;
3469 bool use_cow = false;
3470 block_t blkaddr = NULL_ADDR;
3471 int err = 0;
3472
3473 /*
3474 * Should avoid quota operations which can make deadlock:
3475 * kswapd -> f2fs_evict_inode -> dquot_drop ->
3476 * f2fs_dquot_commit -> f2fs_write_begin ->
3477 * d_obtain_alias -> __d_alloc -> kmem_cache_alloc(GFP_KERNEL)
3478 */
3479 if (trace_android_fs_datawrite_start_enabled() && !IS_NOQUOTA(inode)) {
3480 char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
3481
3482 path = android_fstrace_get_pathname(pathbuf,
3483 MAX_TRACE_PATHBUF_LEN,
3484 inode);
3485 trace_android_fs_datawrite_start(inode, pos, len,
3486 current->pid, path,
3487 current->comm);
3488 }
3489 trace_f2fs_write_begin(inode, pos, len, flags);
3490
3491 if (!f2fs_is_checkpoint_ready(sbi)) {
3492 err = -ENOSPC;
3493 goto fail;
3494 }
3495
3496 /*
3497 * We should check this at this moment to avoid deadlock on inode page
3498 * and #0 page. The locking rule for inline_data conversion should be:
3499 * lock_page(page #0) -> lock_page(inode_page)
3500 */
3501 if (index != 0) {
3502 err = f2fs_convert_inline_inode(inode);
3503 if (err)
3504 goto fail;
3505 }
3506
3507 #ifdef CONFIG_F2FS_FS_COMPRESSION
3508 if (f2fs_compressed_file(inode)) {
3509 int ret;
3510
3511 *fsdata = NULL;
3512
3513 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3514 goto repeat;
3515
3516 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3517 index, fsdata);
3518 if (ret < 0) {
3519 err = ret;
3520 goto fail;
3521 } else if (ret) {
3522 return 0;
3523 }
3524 }
3525 #endif
3526
3527 repeat:
3528 /*
3529 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3530 * wait_for_stable_page. Will wait that below with our IO control.
3531 */
3532 page = f2fs_pagecache_get_page(mapping, index,
3533 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3534 if (!page) {
3535 err = -ENOMEM;
3536 goto fail;
3537 }
3538
3539 /* TODO: cluster can be compressed due to race with .writepage */
3540
3541 *pagep = page;
3542
3543 if (f2fs_is_atomic_file(inode))
3544 err = prepare_atomic_write_begin(sbi, page, pos, len,
3545 &blkaddr, &need_balance, &use_cow);
3546 else
3547 err = prepare_write_begin(sbi, page, pos, len,
3548 &blkaddr, &need_balance);
3549 if (err)
3550 goto fail;
3551
3552 if (need_balance && !IS_NOQUOTA(inode) &&
3553 has_not_enough_free_secs(sbi, 0, 0)) {
3554 unlock_page(page);
3555 f2fs_balance_fs(sbi, true);
3556 lock_page(page);
3557 if (page->mapping != mapping) {
3558 /* The page got truncated from under us */
3559 f2fs_put_page(page, 1);
3560 goto repeat;
3561 }
3562 }
3563
3564 f2fs_wait_on_page_writeback(page, DATA, false, true);
3565
3566 if (len == PAGE_SIZE || PageUptodate(page))
3567 return 0;
3568
3569 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3570 !f2fs_verity_in_progress(inode)) {
3571 zero_user_segment(page, len, PAGE_SIZE);
3572 return 0;
3573 }
3574
3575 if (blkaddr == NEW_ADDR) {
3576 zero_user_segment(page, 0, PAGE_SIZE);
3577 SetPageUptodate(page);
3578 } else {
3579 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3580 DATA_GENERIC_ENHANCE_READ)) {
3581 err = -EFSCORRUPTED;
3582 goto fail;
3583 }
3584 err = f2fs_submit_page_read(use_cow ?
3585 F2FS_I(inode)->cow_inode : inode, page,
3586 blkaddr, 0, true);
3587 if (err)
3588 goto fail;
3589
3590 lock_page(page);
3591 if (unlikely(page->mapping != mapping)) {
3592 f2fs_put_page(page, 1);
3593 goto repeat;
3594 }
3595 if (unlikely(!PageUptodate(page))) {
3596 err = -EIO;
3597 goto fail;
3598 }
3599 }
3600 return 0;
3601
3602 fail:
3603 f2fs_put_page(page, 1);
3604 f2fs_write_failed(inode, pos + len);
3605 return err;
3606 }
3607
f2fs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3608 static int f2fs_write_end(struct file *file,
3609 struct address_space *mapping,
3610 loff_t pos, unsigned len, unsigned copied,
3611 struct page *page, void *fsdata)
3612 {
3613 struct inode *inode = page->mapping->host;
3614
3615 trace_android_fs_datawrite_end(inode, pos, len);
3616 trace_f2fs_write_end(inode, pos, len, copied);
3617
3618 /*
3619 * This should be come from len == PAGE_SIZE, and we expect copied
3620 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3621 * let generic_perform_write() try to copy data again through copied=0.
3622 */
3623 if (!PageUptodate(page)) {
3624 if (unlikely(copied != len))
3625 copied = 0;
3626 else
3627 SetPageUptodate(page);
3628 }
3629
3630 #ifdef CONFIG_F2FS_FS_COMPRESSION
3631 /* overwrite compressed file */
3632 if (f2fs_compressed_file(inode) && fsdata) {
3633 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3634 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3635
3636 if (pos + copied > i_size_read(inode) &&
3637 !f2fs_verity_in_progress(inode))
3638 f2fs_i_size_write(inode, pos + copied);
3639 return copied;
3640 }
3641 #endif
3642
3643 if (!copied)
3644 goto unlock_out;
3645
3646 set_page_dirty(page);
3647
3648 if (pos + copied > i_size_read(inode) &&
3649 !f2fs_verity_in_progress(inode)) {
3650 f2fs_i_size_write(inode, pos + copied);
3651 if (f2fs_is_atomic_file(inode))
3652 f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3653 pos + copied);
3654 }
3655 unlock_out:
3656 f2fs_put_page(page, 1);
3657 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3658 return copied;
3659 }
3660
f2fs_invalidate_page(struct page * page,unsigned int offset,unsigned int length)3661 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3662 unsigned int length)
3663 {
3664 struct inode *inode = page->mapping->host;
3665 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3666
3667 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3668 (offset % PAGE_SIZE || length != PAGE_SIZE))
3669 return;
3670
3671 if (PageDirty(page)) {
3672 if (inode->i_ino == F2FS_META_INO(sbi)) {
3673 dec_page_count(sbi, F2FS_DIRTY_META);
3674 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3675 dec_page_count(sbi, F2FS_DIRTY_NODES);
3676 } else {
3677 inode_dec_dirty_pages(inode);
3678 f2fs_remove_dirty_inode(inode);
3679 }
3680 }
3681
3682 clear_page_private_gcing(page);
3683
3684 if (test_opt(sbi, COMPRESS_CACHE) &&
3685 inode->i_ino == F2FS_COMPRESS_INO(sbi))
3686 clear_page_private_data(page);
3687
3688 detach_page_private(page);
3689 set_page_private(page, 0);
3690 }
3691
f2fs_release_page(struct page * page,gfp_t wait)3692 int f2fs_release_page(struct page *page, gfp_t wait)
3693 {
3694 /* If this is dirty page, keep PagePrivate */
3695 if (PageDirty(page))
3696 return 0;
3697
3698 if (test_opt(F2FS_P_SB(page), COMPRESS_CACHE)) {
3699 struct inode *inode = page->mapping->host;
3700
3701 if (inode->i_ino == F2FS_COMPRESS_INO(F2FS_I_SB(inode)))
3702 clear_page_private_data(page);
3703 }
3704
3705 clear_page_private_gcing(page);
3706
3707 detach_page_private(page);
3708 set_page_private(page, 0);
3709 return 1;
3710 }
3711
f2fs_set_data_page_dirty(struct page * page)3712 static int f2fs_set_data_page_dirty(struct page *page)
3713 {
3714 struct inode *inode = page_file_mapping(page)->host;
3715
3716 trace_f2fs_set_page_dirty(page, DATA);
3717
3718 if (!PageUptodate(page))
3719 SetPageUptodate(page);
3720 if (PageSwapCache(page))
3721 return __set_page_dirty_nobuffers(page);
3722
3723 if (!PageDirty(page)) {
3724 __set_page_dirty_nobuffers(page);
3725 f2fs_update_dirty_page(inode, page);
3726 return 1;
3727 }
3728 return 0;
3729 }
3730
3731
f2fs_bmap_compress(struct inode * inode,sector_t block)3732 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3733 {
3734 #ifdef CONFIG_F2FS_FS_COMPRESSION
3735 struct dnode_of_data dn;
3736 sector_t start_idx, blknr = 0;
3737 int ret;
3738
3739 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3740
3741 set_new_dnode(&dn, inode, NULL, NULL, 0);
3742 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3743 if (ret)
3744 return 0;
3745
3746 if (dn.data_blkaddr != COMPRESS_ADDR) {
3747 dn.ofs_in_node += block - start_idx;
3748 blknr = f2fs_data_blkaddr(&dn);
3749 if (!__is_valid_data_blkaddr(blknr))
3750 blknr = 0;
3751 }
3752
3753 f2fs_put_dnode(&dn);
3754 return blknr;
3755 #else
3756 return 0;
3757 #endif
3758 }
3759
3760
f2fs_bmap(struct address_space * mapping,sector_t block)3761 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3762 {
3763 struct inode *inode = mapping->host;
3764 sector_t blknr = 0;
3765
3766 if (f2fs_has_inline_data(inode))
3767 goto out;
3768
3769 /* make sure allocating whole blocks */
3770 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3771 filemap_write_and_wait(mapping);
3772
3773 /* Block number less than F2FS MAX BLOCKS */
3774 if (unlikely(block >= max_file_blocks(inode)))
3775 goto out;
3776
3777 if (f2fs_compressed_file(inode)) {
3778 blknr = f2fs_bmap_compress(inode, block);
3779 } else {
3780 struct f2fs_map_blocks map;
3781
3782 memset(&map, 0, sizeof(map));
3783 map.m_lblk = block;
3784 map.m_len = 1;
3785 map.m_next_pgofs = NULL;
3786 map.m_seg_type = NO_CHECK_TYPE;
3787
3788 if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP))
3789 blknr = map.m_pblk;
3790 }
3791 out:
3792 trace_f2fs_bmap(inode, block, blknr);
3793 return blknr;
3794 }
3795
3796 #ifdef CONFIG_MIGRATION
3797 #include <linux/migrate.h>
3798
f2fs_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)3799 int f2fs_migrate_page(struct address_space *mapping,
3800 struct page *newpage, struct page *page, enum migrate_mode mode)
3801 {
3802 int rc, extra_count = 0;
3803
3804 BUG_ON(PageWriteback(page));
3805
3806 rc = migrate_page_move_mapping(mapping, newpage,
3807 page, extra_count);
3808 if (rc != MIGRATEPAGE_SUCCESS)
3809 return rc;
3810
3811 /* guarantee to start from no stale private field */
3812 set_page_private(newpage, 0);
3813 if (PagePrivate(page)) {
3814 set_page_private(newpage, page_private(page));
3815 SetPagePrivate(newpage);
3816 get_page(newpage);
3817
3818 set_page_private(page, 0);
3819 ClearPagePrivate(page);
3820 put_page(page);
3821 }
3822
3823 if (mode != MIGRATE_SYNC_NO_COPY)
3824 migrate_page_copy(newpage, page);
3825 else
3826 migrate_page_states(newpage, page);
3827
3828 return MIGRATEPAGE_SUCCESS;
3829 }
3830 #endif
3831
3832 #ifdef CONFIG_SWAP
f2fs_migrate_blocks(struct inode * inode,block_t start_blk,unsigned int blkcnt)3833 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3834 unsigned int blkcnt)
3835 {
3836 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3837 unsigned int blkofs;
3838 unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3839 unsigned int secidx = start_blk / blk_per_sec;
3840 unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3841 int ret = 0;
3842
3843 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3844 filemap_invalidate_lock(inode->i_mapping);
3845
3846 set_inode_flag(inode, FI_ALIGNED_WRITE);
3847 set_inode_flag(inode, FI_OPU_WRITE);
3848
3849 for (; secidx < end_sec; secidx++) {
3850 f2fs_down_write(&sbi->pin_sem);
3851
3852 f2fs_lock_op(sbi);
3853 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3854 f2fs_unlock_op(sbi);
3855
3856 set_inode_flag(inode, FI_SKIP_WRITES);
3857
3858 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
3859 struct page *page;
3860 unsigned int blkidx = secidx * blk_per_sec + blkofs;
3861
3862 page = f2fs_get_lock_data_page(inode, blkidx, true);
3863 if (IS_ERR(page)) {
3864 f2fs_up_write(&sbi->pin_sem);
3865 ret = PTR_ERR(page);
3866 goto done;
3867 }
3868
3869 set_page_dirty(page);
3870 f2fs_put_page(page, 1);
3871 }
3872
3873 clear_inode_flag(inode, FI_SKIP_WRITES);
3874
3875 ret = filemap_fdatawrite(inode->i_mapping);
3876
3877 f2fs_up_write(&sbi->pin_sem);
3878
3879 if (ret)
3880 break;
3881 }
3882
3883 done:
3884 clear_inode_flag(inode, FI_SKIP_WRITES);
3885 clear_inode_flag(inode, FI_OPU_WRITE);
3886 clear_inode_flag(inode, FI_ALIGNED_WRITE);
3887
3888 filemap_invalidate_unlock(inode->i_mapping);
3889 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3890
3891 return ret;
3892 }
3893
check_swap_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)3894 static int check_swap_activate(struct swap_info_struct *sis,
3895 struct file *swap_file, sector_t *span)
3896 {
3897 struct address_space *mapping = swap_file->f_mapping;
3898 struct inode *inode = mapping->host;
3899 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3900 sector_t cur_lblock;
3901 sector_t last_lblock;
3902 sector_t pblock;
3903 sector_t lowest_pblock = -1;
3904 sector_t highest_pblock = 0;
3905 int nr_extents = 0;
3906 unsigned long nr_pblocks;
3907 unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3908 unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
3909 unsigned int not_aligned = 0;
3910 int ret = 0;
3911
3912 /*
3913 * Map all the blocks into the extent list. This code doesn't try
3914 * to be very smart.
3915 */
3916 cur_lblock = 0;
3917 last_lblock = bytes_to_blks(inode, i_size_read(inode));
3918
3919 while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3920 struct f2fs_map_blocks map;
3921 retry:
3922 cond_resched();
3923
3924 memset(&map, 0, sizeof(map));
3925 map.m_lblk = cur_lblock;
3926 map.m_len = last_lblock - cur_lblock;
3927 map.m_next_pgofs = NULL;
3928 map.m_next_extent = NULL;
3929 map.m_seg_type = NO_CHECK_TYPE;
3930 map.m_may_create = false;
3931
3932 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
3933 if (ret)
3934 goto out;
3935
3936 /* hole */
3937 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3938 f2fs_err(sbi, "Swapfile has holes");
3939 ret = -EINVAL;
3940 goto out;
3941 }
3942
3943 pblock = map.m_pblk;
3944 nr_pblocks = map.m_len;
3945
3946 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
3947 nr_pblocks & sec_blks_mask) {
3948 not_aligned++;
3949
3950 nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3951 if (cur_lblock + nr_pblocks > sis->max)
3952 nr_pblocks -= blks_per_sec;
3953
3954 if (!nr_pblocks) {
3955 /* this extent is last one */
3956 nr_pblocks = map.m_len;
3957 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
3958 goto next;
3959 }
3960
3961 ret = f2fs_migrate_blocks(inode, cur_lblock,
3962 nr_pblocks);
3963 if (ret)
3964 goto out;
3965 goto retry;
3966 }
3967 next:
3968 if (cur_lblock + nr_pblocks >= sis->max)
3969 nr_pblocks = sis->max - cur_lblock;
3970
3971 if (cur_lblock) { /* exclude the header page */
3972 if (pblock < lowest_pblock)
3973 lowest_pblock = pblock;
3974 if (pblock + nr_pblocks - 1 > highest_pblock)
3975 highest_pblock = pblock + nr_pblocks - 1;
3976 }
3977
3978 /*
3979 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3980 */
3981 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
3982 if (ret < 0)
3983 goto out;
3984 nr_extents += ret;
3985 cur_lblock += nr_pblocks;
3986 }
3987 ret = nr_extents;
3988 *span = 1 + highest_pblock - lowest_pblock;
3989 if (cur_lblock == 0)
3990 cur_lblock = 1; /* force Empty message */
3991 sis->max = cur_lblock;
3992 sis->pages = cur_lblock - 1;
3993 sis->highest_bit = cur_lblock - 1;
3994 out:
3995 if (not_aligned)
3996 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
3997 not_aligned, blks_per_sec * F2FS_BLKSIZE);
3998 return ret;
3999 }
4000
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4001 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4002 sector_t *span)
4003 {
4004 struct inode *inode = file_inode(file);
4005 int ret;
4006
4007 if (!S_ISREG(inode->i_mode))
4008 return -EINVAL;
4009
4010 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
4011 return -EROFS;
4012
4013 if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
4014 f2fs_err(F2FS_I_SB(inode),
4015 "Swapfile not supported in LFS mode");
4016 return -EINVAL;
4017 }
4018
4019 ret = f2fs_convert_inline_inode(inode);
4020 if (ret)
4021 return ret;
4022
4023 if (!f2fs_disable_compressed_file(inode))
4024 return -EINVAL;
4025
4026 f2fs_precache_extents(inode);
4027
4028 ret = check_swap_activate(sis, file, span);
4029 if (ret < 0)
4030 return ret;
4031
4032 set_inode_flag(inode, FI_PIN_FILE);
4033 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
4034 return ret;
4035 }
4036
f2fs_swap_deactivate(struct file * file)4037 static void f2fs_swap_deactivate(struct file *file)
4038 {
4039 struct inode *inode = file_inode(file);
4040
4041 clear_inode_flag(inode, FI_PIN_FILE);
4042 }
4043 #else
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4044 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4045 sector_t *span)
4046 {
4047 return -EOPNOTSUPP;
4048 }
4049
f2fs_swap_deactivate(struct file * file)4050 static void f2fs_swap_deactivate(struct file *file)
4051 {
4052 }
4053 #endif
4054
4055 const struct address_space_operations f2fs_dblock_aops = {
4056 .readpage = f2fs_read_data_page,
4057 .readahead = f2fs_readahead,
4058 .writepage = f2fs_write_data_page,
4059 .writepages = f2fs_write_data_pages,
4060 .write_begin = f2fs_write_begin,
4061 .write_end = f2fs_write_end,
4062 .set_page_dirty = f2fs_set_data_page_dirty,
4063 .invalidatepage = f2fs_invalidate_page,
4064 .releasepage = f2fs_release_page,
4065 .direct_IO = noop_direct_IO,
4066 .bmap = f2fs_bmap,
4067 .swap_activate = f2fs_swap_activate,
4068 .swap_deactivate = f2fs_swap_deactivate,
4069 #ifdef CONFIG_MIGRATION
4070 .migratepage = f2fs_migrate_page,
4071 #endif
4072 };
4073
f2fs_clear_page_cache_dirty_tag(struct page * page)4074 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4075 {
4076 struct address_space *mapping = page_mapping(page);
4077 unsigned long flags;
4078
4079 xa_lock_irqsave(&mapping->i_pages, flags);
4080 __xa_clear_mark(&mapping->i_pages, page_index(page),
4081 PAGECACHE_TAG_DIRTY);
4082 xa_unlock_irqrestore(&mapping->i_pages, flags);
4083 }
4084
f2fs_init_post_read_processing(void)4085 int __init f2fs_init_post_read_processing(void)
4086 {
4087 bio_post_read_ctx_cache =
4088 kmem_cache_create("f2fs_bio_post_read_ctx",
4089 sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4090 if (!bio_post_read_ctx_cache)
4091 goto fail;
4092 bio_post_read_ctx_pool =
4093 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4094 bio_post_read_ctx_cache);
4095 if (!bio_post_read_ctx_pool)
4096 goto fail_free_cache;
4097 return 0;
4098
4099 fail_free_cache:
4100 kmem_cache_destroy(bio_post_read_ctx_cache);
4101 fail:
4102 return -ENOMEM;
4103 }
4104
f2fs_destroy_post_read_processing(void)4105 void f2fs_destroy_post_read_processing(void)
4106 {
4107 mempool_destroy(bio_post_read_ctx_pool);
4108 kmem_cache_destroy(bio_post_read_ctx_cache);
4109 }
4110
f2fs_init_post_read_wq(struct f2fs_sb_info * sbi)4111 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4112 {
4113 if (!f2fs_sb_has_encrypt(sbi) &&
4114 !f2fs_sb_has_verity(sbi) &&
4115 !f2fs_sb_has_compression(sbi))
4116 return 0;
4117
4118 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4119 WQ_UNBOUND | WQ_HIGHPRI,
4120 num_online_cpus());
4121 if (!sbi->post_read_wq)
4122 return -ENOMEM;
4123 return 0;
4124 }
4125
f2fs_destroy_post_read_wq(struct f2fs_sb_info * sbi)4126 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4127 {
4128 if (sbi->post_read_wq)
4129 destroy_workqueue(sbi->post_read_wq);
4130 }
4131
f2fs_init_bio_entry_cache(void)4132 int __init f2fs_init_bio_entry_cache(void)
4133 {
4134 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4135 sizeof(struct bio_entry));
4136 if (!bio_entry_slab)
4137 return -ENOMEM;
4138 return 0;
4139 }
4140
f2fs_destroy_bio_entry_cache(void)4141 void f2fs_destroy_bio_entry_cache(void)
4142 {
4143 kmem_cache_destroy(bio_entry_slab);
4144 }
4145
f2fs_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)4146 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4147 unsigned int flags, struct iomap *iomap,
4148 struct iomap *srcmap)
4149 {
4150 struct f2fs_map_blocks map = {};
4151 pgoff_t next_pgofs = 0;
4152 int err;
4153
4154 map.m_lblk = bytes_to_blks(inode, offset);
4155 map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4156 map.m_next_pgofs = &next_pgofs;
4157 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4158 if (flags & IOMAP_WRITE)
4159 map.m_may_create = true;
4160
4161 err = f2fs_map_blocks(inode, &map, flags & IOMAP_WRITE,
4162 F2FS_GET_BLOCK_DIO);
4163 if (err)
4164 return err;
4165
4166 iomap->offset = blks_to_bytes(inode, map.m_lblk);
4167
4168 /*
4169 * When inline encryption is enabled, sometimes I/O to an encrypted file
4170 * has to be broken up to guarantee DUN contiguity. Handle this by
4171 * limiting the length of the mapping returned.
4172 */
4173 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4174
4175 if (map.m_flags & (F2FS_MAP_MAPPED | F2FS_MAP_UNWRITTEN)) {
4176 iomap->length = blks_to_bytes(inode, map.m_len);
4177 if (map.m_flags & F2FS_MAP_MAPPED) {
4178 iomap->type = IOMAP_MAPPED;
4179 iomap->flags |= IOMAP_F_MERGED;
4180 } else {
4181 iomap->type = IOMAP_UNWRITTEN;
4182 }
4183 if (WARN_ON_ONCE(!__is_valid_data_blkaddr(map.m_pblk)))
4184 return -EINVAL;
4185
4186 iomap->bdev = map.m_bdev;
4187 iomap->addr = blks_to_bytes(inode, map.m_pblk);
4188 } else {
4189 iomap->length = blks_to_bytes(inode, next_pgofs) -
4190 iomap->offset;
4191 iomap->type = IOMAP_HOLE;
4192 iomap->addr = IOMAP_NULL_ADDR;
4193 }
4194
4195 if (map.m_flags & F2FS_MAP_NEW)
4196 iomap->flags |= IOMAP_F_NEW;
4197 if ((inode->i_state & I_DIRTY_DATASYNC) ||
4198 offset + length > i_size_read(inode))
4199 iomap->flags |= IOMAP_F_DIRTY;
4200
4201 return 0;
4202 }
4203
4204 const struct iomap_ops f2fs_iomap_ops = {
4205 .iomap_begin = f2fs_iomap_begin,
4206 };
4207