• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27 
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30 
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition)					\
35 	do {								\
36 		if (WARN_ON(condition))					\
37 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
38 	} while (0)
39 #endif
40 
41 enum {
42 	FAULT_KMALLOC,
43 	FAULT_KVMALLOC,
44 	FAULT_PAGE_ALLOC,
45 	FAULT_PAGE_GET,
46 	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
47 	FAULT_ALLOC_NID,
48 	FAULT_ORPHAN,
49 	FAULT_BLOCK,
50 	FAULT_DIR_DEPTH,
51 	FAULT_EVICT_INODE,
52 	FAULT_TRUNCATE,
53 	FAULT_READ_IO,
54 	FAULT_CHECKPOINT,
55 	FAULT_DISCARD,
56 	FAULT_WRITE_IO,
57 	FAULT_SLAB_ALLOC,
58 	FAULT_DQUOT_INIT,
59 	FAULT_LOCK_OP,
60 	FAULT_MAX,
61 };
62 
63 #ifdef CONFIG_F2FS_FAULT_INJECTION
64 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
65 
66 struct f2fs_fault_info {
67 	atomic_t inject_ops;
68 	unsigned int inject_rate;
69 	unsigned int inject_type;
70 };
71 
72 extern const char *f2fs_fault_name[FAULT_MAX];
73 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
74 #endif
75 
76 /*
77  * For mount options
78  */
79 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
80 #define F2FS_MOUNT_DISCARD		0x00000004
81 #define F2FS_MOUNT_NOHEAP		0x00000008
82 #define F2FS_MOUNT_XATTR_USER		0x00000010
83 #define F2FS_MOUNT_POSIX_ACL		0x00000020
84 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
85 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
86 #define F2FS_MOUNT_INLINE_DATA		0x00000100
87 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
88 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
89 #define F2FS_MOUNT_NOBARRIER		0x00000800
90 #define F2FS_MOUNT_FASTBOOT		0x00001000
91 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
92 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
93 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
94 #define F2FS_MOUNT_USRQUOTA		0x00080000
95 #define F2FS_MOUNT_GRPQUOTA		0x00100000
96 #define F2FS_MOUNT_PRJQUOTA		0x00200000
97 #define F2FS_MOUNT_QUOTA		0x00400000
98 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
99 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
100 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
101 #define F2FS_MOUNT_NORECOVERY		0x04000000
102 #define F2FS_MOUNT_ATGC			0x08000000
103 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x10000000
104 #define	F2FS_MOUNT_GC_MERGE		0x20000000
105 #define F2FS_MOUNT_COMPRESS_CACHE	0x40000000
106 
107 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
108 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
109 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
110 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
111 
112 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
113 		typecheck(unsigned long long, b) &&			\
114 		((long long)((a) - (b)) > 0))
115 
116 typedef u32 block_t;	/*
117 			 * should not change u32, since it is the on-disk block
118 			 * address format, __le32.
119 			 */
120 typedef u32 nid_t;
121 
122 #define COMPRESS_EXT_NUM		16
123 
124 /*
125  * An implementation of an rwsem that is explicitly unfair to readers. This
126  * prevents priority inversion when a low-priority reader acquires the read lock
127  * while sleeping on the write lock but the write lock is needed by
128  * higher-priority clients.
129  */
130 
131 struct f2fs_rwsem {
132         struct rw_semaphore internal_rwsem;
133 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
134         wait_queue_head_t read_waiters;
135 #endif
136 };
137 
138 struct f2fs_mount_info {
139 	unsigned int opt;
140 	int write_io_size_bits;		/* Write IO size bits */
141 	block_t root_reserved_blocks;	/* root reserved blocks */
142 	kuid_t s_resuid;		/* reserved blocks for uid */
143 	kgid_t s_resgid;		/* reserved blocks for gid */
144 	int active_logs;		/* # of active logs */
145 	int inline_xattr_size;		/* inline xattr size */
146 #ifdef CONFIG_F2FS_FAULT_INJECTION
147 	struct f2fs_fault_info fault_info;	/* For fault injection */
148 #endif
149 #ifdef CONFIG_QUOTA
150 	/* Names of quota files with journalled quota */
151 	char *s_qf_names[MAXQUOTAS];
152 	int s_jquota_fmt;			/* Format of quota to use */
153 #endif
154 	/* For which write hints are passed down to block layer */
155 	int whint_mode;
156 	int alloc_mode;			/* segment allocation policy */
157 	int fsync_mode;			/* fsync policy */
158 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
159 	int bggc_mode;			/* bggc mode: off, on or sync */
160 	int memory_mode;		/* memory mode */
161 	int discard_unit;		/*
162 					 * discard command's offset/size should
163 					 * be aligned to this unit: block,
164 					 * segment or section
165 					 */
166 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
167 	block_t unusable_cap_perc;	/* percentage for cap */
168 	block_t unusable_cap;		/* Amount of space allowed to be
169 					 * unusable when disabling checkpoint
170 					 */
171 
172 	/* For compression */
173 	unsigned char compress_algorithm;	/* algorithm type */
174 	unsigned char compress_log_size;	/* cluster log size */
175 	unsigned char compress_level;		/* compress level */
176 	bool compress_chksum;			/* compressed data chksum */
177 	unsigned char compress_ext_cnt;		/* extension count */
178 	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
179 	int compress_mode;			/* compression mode */
180 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
181 	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
182 };
183 
184 #define F2FS_FEATURE_ENCRYPT		0x0001
185 #define F2FS_FEATURE_BLKZONED		0x0002
186 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
187 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
188 #define F2FS_FEATURE_PRJQUOTA		0x0010
189 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
190 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
191 #define F2FS_FEATURE_QUOTA_INO		0x0080
192 #define F2FS_FEATURE_INODE_CRTIME	0x0100
193 #define F2FS_FEATURE_LOST_FOUND		0x0200
194 #define F2FS_FEATURE_VERITY		0x0400
195 #define F2FS_FEATURE_SB_CHKSUM		0x0800
196 #define F2FS_FEATURE_CASEFOLD		0x1000
197 #define F2FS_FEATURE_COMPRESSION	0x2000
198 #define F2FS_FEATURE_RO			0x4000
199 
200 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
201 	((raw_super->feature & cpu_to_le32(mask)) != 0)
202 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
203 #define F2FS_SET_FEATURE(sbi, mask)					\
204 	(sbi->raw_super->feature |= cpu_to_le32(mask))
205 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
206 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
207 
208 /*
209  * Default values for user and/or group using reserved blocks
210  */
211 #define	F2FS_DEF_RESUID		0
212 #define	F2FS_DEF_RESGID		0
213 
214 /*
215  * For checkpoint manager
216  */
217 enum {
218 	NAT_BITMAP,
219 	SIT_BITMAP
220 };
221 
222 #define	CP_UMOUNT	0x00000001
223 #define	CP_FASTBOOT	0x00000002
224 #define	CP_SYNC		0x00000004
225 #define	CP_RECOVERY	0x00000008
226 #define	CP_DISCARD	0x00000010
227 #define CP_TRIMMED	0x00000020
228 #define CP_PAUSE	0x00000040
229 #define CP_RESIZE 	0x00000080
230 
231 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
232 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
233 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
234 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
235 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
236 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
237 #define DEF_CP_INTERVAL			60	/* 60 secs */
238 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
239 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
240 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
241 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
242 
243 struct cp_control {
244 	int reason;
245 	__u64 trim_start;
246 	__u64 trim_end;
247 	__u64 trim_minlen;
248 };
249 
250 /*
251  * indicate meta/data type
252  */
253 enum {
254 	META_CP,
255 	META_NAT,
256 	META_SIT,
257 	META_SSA,
258 	META_MAX,
259 	META_POR,
260 	DATA_GENERIC,		/* check range only */
261 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
262 	DATA_GENERIC_ENHANCE_READ,	/*
263 					 * strong check on range and segment
264 					 * bitmap but no warning due to race
265 					 * condition of read on truncated area
266 					 * by extent_cache
267 					 */
268 	DATA_GENERIC_ENHANCE_UPDATE,	/*
269 					 * strong check on range and segment
270 					 * bitmap for update case
271 					 */
272 	META_GENERIC,
273 };
274 
275 /* for the list of ino */
276 enum {
277 	ORPHAN_INO,		/* for orphan ino list */
278 	APPEND_INO,		/* for append ino list */
279 	UPDATE_INO,		/* for update ino list */
280 	TRANS_DIR_INO,		/* for trasactions dir ino list */
281 	FLUSH_INO,		/* for multiple device flushing */
282 	MAX_INO_ENTRY,		/* max. list */
283 };
284 
285 struct ino_entry {
286 	struct list_head list;		/* list head */
287 	nid_t ino;			/* inode number */
288 	unsigned int dirty_device;	/* dirty device bitmap */
289 };
290 
291 /* for the list of inodes to be GCed */
292 struct inode_entry {
293 	struct list_head list;	/* list head */
294 	struct inode *inode;	/* vfs inode pointer */
295 };
296 
297 struct fsync_node_entry {
298 	struct list_head list;	/* list head */
299 	struct page *page;	/* warm node page pointer */
300 	unsigned int seq_id;	/* sequence id */
301 };
302 
303 struct ckpt_req {
304 	struct completion wait;		/* completion for checkpoint done */
305 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
306 	int ret;			/* return code of checkpoint */
307 	ktime_t queue_time;		/* request queued time */
308 };
309 
310 struct ckpt_req_control {
311 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
312 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
313 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
314 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
315 	atomic_t total_ckpt;		/* # of total ckpts */
316 	atomic_t queued_ckpt;		/* # of queued ckpts */
317 	struct llist_head issue_list;	/* list for command issue */
318 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
319 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
320 	unsigned int peak_time;		/* peak wait time in msec until now */
321 };
322 
323 /* for the bitmap indicate blocks to be discarded */
324 struct discard_entry {
325 	struct list_head list;	/* list head */
326 	block_t start_blkaddr;	/* start blockaddr of current segment */
327 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
328 };
329 
330 /* default discard granularity of inner discard thread, unit: block count */
331 #define DEFAULT_DISCARD_GRANULARITY		16
332 
333 /* max discard pend list number */
334 #define MAX_PLIST_NUM		512
335 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
336 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
337 
338 enum {
339 	D_PREP,			/* initial */
340 	D_PARTIAL,		/* partially submitted */
341 	D_SUBMIT,		/* all submitted */
342 	D_DONE,			/* finished */
343 };
344 
345 struct discard_info {
346 	block_t lstart;			/* logical start address */
347 	block_t len;			/* length */
348 	block_t start;			/* actual start address in dev */
349 };
350 
351 struct discard_cmd {
352 	struct rb_node rb_node;		/* rb node located in rb-tree */
353 	union {
354 		struct {
355 			block_t lstart;	/* logical start address */
356 			block_t len;	/* length */
357 			block_t start;	/* actual start address in dev */
358 		};
359 		struct discard_info di;	/* discard info */
360 
361 	};
362 	struct list_head list;		/* command list */
363 	struct completion wait;		/* compleation */
364 	struct block_device *bdev;	/* bdev */
365 	unsigned short ref;		/* reference count */
366 	unsigned char state;		/* state */
367 	unsigned char queued;		/* queued discard */
368 	int error;			/* bio error */
369 	spinlock_t lock;		/* for state/bio_ref updating */
370 	unsigned short bio_ref;		/* bio reference count */
371 };
372 
373 enum {
374 	DPOLICY_BG,
375 	DPOLICY_FORCE,
376 	DPOLICY_FSTRIM,
377 	DPOLICY_UMOUNT,
378 	MAX_DPOLICY,
379 };
380 
381 struct discard_policy {
382 	int type;			/* type of discard */
383 	unsigned int min_interval;	/* used for candidates exist */
384 	unsigned int mid_interval;	/* used for device busy */
385 	unsigned int max_interval;	/* used for candidates not exist */
386 	unsigned int max_requests;	/* # of discards issued per round */
387 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
388 	bool io_aware;			/* issue discard in idle time */
389 	bool sync;			/* submit discard with REQ_SYNC flag */
390 	bool ordered;			/* issue discard by lba order */
391 	bool timeout;			/* discard timeout for put_super */
392 	unsigned int granularity;	/* discard granularity */
393 };
394 
395 struct discard_cmd_control {
396 	struct task_struct *f2fs_issue_discard;	/* discard thread */
397 	struct list_head entry_list;		/* 4KB discard entry list */
398 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
399 	struct list_head wait_list;		/* store on-flushing entries */
400 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
401 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
402 	unsigned int discard_wake;		/* to wake up discard thread */
403 	struct mutex cmd_lock;
404 	unsigned int nr_discards;		/* # of discards in the list */
405 	unsigned int max_discards;		/* max. discards to be issued */
406 	unsigned int max_discard_request;	/* max. discard request per round */
407 	unsigned int min_discard_issue_time;	/* min. interval between discard issue */
408 	unsigned int mid_discard_issue_time;	/* mid. interval between discard issue */
409 	unsigned int max_discard_issue_time;	/* max. interval between discard issue */
410 	unsigned int discard_granularity;	/* discard granularity */
411 	unsigned int undiscard_blks;		/* # of undiscard blocks */
412 	unsigned int next_pos;			/* next discard position */
413 	atomic_t issued_discard;		/* # of issued discard */
414 	atomic_t queued_discard;		/* # of queued discard */
415 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
416 	struct rb_root_cached root;		/* root of discard rb-tree */
417 	bool rbtree_check;			/* config for consistence check */
418 };
419 
420 /* for the list of fsync inodes, used only during recovery */
421 struct fsync_inode_entry {
422 	struct list_head list;	/* list head */
423 	struct inode *inode;	/* vfs inode pointer */
424 	block_t blkaddr;	/* block address locating the last fsync */
425 	block_t last_dentry;	/* block address locating the last dentry */
426 };
427 
428 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
429 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
430 
431 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
432 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
433 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
434 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
435 
436 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
437 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
438 
update_nats_in_cursum(struct f2fs_journal * journal,int i)439 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
440 {
441 	int before = nats_in_cursum(journal);
442 
443 	journal->n_nats = cpu_to_le16(before + i);
444 	return before;
445 }
446 
update_sits_in_cursum(struct f2fs_journal * journal,int i)447 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
448 {
449 	int before = sits_in_cursum(journal);
450 
451 	journal->n_sits = cpu_to_le16(before + i);
452 	return before;
453 }
454 
__has_cursum_space(struct f2fs_journal * journal,int size,int type)455 static inline bool __has_cursum_space(struct f2fs_journal *journal,
456 							int size, int type)
457 {
458 	if (type == NAT_JOURNAL)
459 		return size <= MAX_NAT_JENTRIES(journal);
460 	return size <= MAX_SIT_JENTRIES(journal);
461 }
462 
463 /* for inline stuff */
464 #define DEF_INLINE_RESERVED_SIZE	1
465 static inline int get_extra_isize(struct inode *inode);
466 static inline int get_inline_xattr_addrs(struct inode *inode);
467 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
468 				(CUR_ADDRS_PER_INODE(inode) -		\
469 				get_inline_xattr_addrs(inode) -	\
470 				DEF_INLINE_RESERVED_SIZE))
471 
472 /* for inline dir */
473 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
474 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
475 				BITS_PER_BYTE + 1))
476 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
477 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
478 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
479 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
480 				NR_INLINE_DENTRY(inode) + \
481 				INLINE_DENTRY_BITMAP_SIZE(inode)))
482 
483 /*
484  * For INODE and NODE manager
485  */
486 /* for directory operations */
487 
488 struct f2fs_filename {
489 	/*
490 	 * The filename the user specified.  This is NULL for some
491 	 * filesystem-internal operations, e.g. converting an inline directory
492 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
493 	 */
494 	const struct qstr *usr_fname;
495 
496 	/*
497 	 * The on-disk filename.  For encrypted directories, this is encrypted.
498 	 * This may be NULL for lookups in an encrypted dir without the key.
499 	 */
500 	struct fscrypt_str disk_name;
501 
502 	/* The dirhash of this filename */
503 	f2fs_hash_t hash;
504 
505 #ifdef CONFIG_FS_ENCRYPTION
506 	/*
507 	 * For lookups in encrypted directories: either the buffer backing
508 	 * disk_name, or a buffer that holds the decoded no-key name.
509 	 */
510 	struct fscrypt_str crypto_buf;
511 #endif
512 #ifdef CONFIG_UNICODE
513 	/*
514 	 * For casefolded directories: the casefolded name, but it's left NULL
515 	 * if the original name is not valid Unicode, if the original name is
516 	 * "." or "..", if the directory is both casefolded and encrypted and
517 	 * its encryption key is unavailable, or if the filesystem is doing an
518 	 * internal operation where usr_fname is also NULL.  In all these cases
519 	 * we fall back to treating the name as an opaque byte sequence.
520 	 */
521 	struct fscrypt_str cf_name;
522 #endif
523 };
524 
525 struct f2fs_dentry_ptr {
526 	struct inode *inode;
527 	void *bitmap;
528 	struct f2fs_dir_entry *dentry;
529 	__u8 (*filename)[F2FS_SLOT_LEN];
530 	int max;
531 	int nr_bitmap;
532 };
533 
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)534 static inline void make_dentry_ptr_block(struct inode *inode,
535 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
536 {
537 	d->inode = inode;
538 	d->max = NR_DENTRY_IN_BLOCK;
539 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
540 	d->bitmap = t->dentry_bitmap;
541 	d->dentry = t->dentry;
542 	d->filename = t->filename;
543 }
544 
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)545 static inline void make_dentry_ptr_inline(struct inode *inode,
546 					struct f2fs_dentry_ptr *d, void *t)
547 {
548 	int entry_cnt = NR_INLINE_DENTRY(inode);
549 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
550 	int reserved_size = INLINE_RESERVED_SIZE(inode);
551 
552 	d->inode = inode;
553 	d->max = entry_cnt;
554 	d->nr_bitmap = bitmap_size;
555 	d->bitmap = t;
556 	d->dentry = t + bitmap_size + reserved_size;
557 	d->filename = t + bitmap_size + reserved_size +
558 					SIZE_OF_DIR_ENTRY * entry_cnt;
559 }
560 
561 /*
562  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
563  * as its node offset to distinguish from index node blocks.
564  * But some bits are used to mark the node block.
565  */
566 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
567 				>> OFFSET_BIT_SHIFT)
568 enum {
569 	ALLOC_NODE,			/* allocate a new node page if needed */
570 	LOOKUP_NODE,			/* look up a node without readahead */
571 	LOOKUP_NODE_RA,			/*
572 					 * look up a node with readahead called
573 					 * by get_data_block.
574 					 */
575 };
576 
577 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */
578 
579 /* congestion wait timeout value, default: 20ms */
580 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
581 
582 /* maximum retry quota flush count */
583 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
584 
585 /* maximum retry of EIO'ed page */
586 #define MAX_RETRY_PAGE_EIO			100
587 
588 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
589 
590 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
591 
592 /* dirty segments threshold for triggering CP */
593 #define DEFAULT_DIRTY_THRESHOLD		4
594 
595 /* for in-memory extent cache entry */
596 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
597 
598 /* number of extent info in extent cache we try to shrink */
599 #define EXTENT_CACHE_SHRINK_NUMBER	128
600 
601 #define RECOVERY_MAX_RA_BLOCKS		BIO_MAX_VECS
602 #define RECOVERY_MIN_RA_BLOCKS		1
603 
604 struct rb_entry {
605 	struct rb_node rb_node;		/* rb node located in rb-tree */
606 	union {
607 		struct {
608 			unsigned int ofs;	/* start offset of the entry */
609 			unsigned int len;	/* length of the entry */
610 		};
611 		unsigned long long key;		/* 64-bits key */
612 	} __packed;
613 };
614 
615 struct extent_info {
616 	unsigned int fofs;		/* start offset in a file */
617 	unsigned int len;		/* length of the extent */
618 	u32 blk;			/* start block address of the extent */
619 #ifdef CONFIG_F2FS_FS_COMPRESSION
620 	unsigned int c_len;		/* physical extent length of compressed blocks */
621 #endif
622 };
623 
624 struct extent_node {
625 	struct rb_node rb_node;		/* rb node located in rb-tree */
626 	struct extent_info ei;		/* extent info */
627 	struct list_head list;		/* node in global extent list of sbi */
628 	struct extent_tree *et;		/* extent tree pointer */
629 };
630 
631 struct extent_tree {
632 	nid_t ino;			/* inode number */
633 	struct rb_root_cached root;	/* root of extent info rb-tree */
634 	struct extent_node *cached_en;	/* recently accessed extent node */
635 	struct extent_info largest;	/* largested extent info */
636 	struct list_head list;		/* to be used by sbi->zombie_list */
637 	rwlock_t lock;			/* protect extent info rb-tree */
638 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
639 	bool largest_updated;		/* largest extent updated */
640 };
641 
642 /*
643  * This structure is taken from ext4_map_blocks.
644  *
645  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
646  */
647 #define F2FS_MAP_NEW		(1 << BH_New)
648 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
649 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
650 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
651 				F2FS_MAP_UNWRITTEN)
652 
653 struct f2fs_map_blocks {
654 	struct block_device *m_bdev;	/* for multi-device dio */
655 	block_t m_pblk;
656 	block_t m_lblk;
657 	unsigned int m_len;
658 	unsigned int m_flags;
659 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
660 	pgoff_t *m_next_extent;		/* point to next possible extent */
661 	int m_seg_type;
662 	bool m_may_create;		/* indicate it is from write path */
663 	bool m_multidev_dio;		/* indicate it allows multi-device dio */
664 };
665 
666 /* for flag in get_data_block */
667 enum {
668 	F2FS_GET_BLOCK_DEFAULT,
669 	F2FS_GET_BLOCK_FIEMAP,
670 	F2FS_GET_BLOCK_BMAP,
671 	F2FS_GET_BLOCK_DIO,
672 	F2FS_GET_BLOCK_PRE_DIO,
673 	F2FS_GET_BLOCK_PRE_AIO,
674 	F2FS_GET_BLOCK_PRECACHE,
675 };
676 
677 /*
678  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
679  */
680 #define FADVISE_COLD_BIT	0x01
681 #define FADVISE_LOST_PINO_BIT	0x02
682 #define FADVISE_ENCRYPT_BIT	0x04
683 #define FADVISE_ENC_NAME_BIT	0x08
684 #define FADVISE_KEEP_SIZE_BIT	0x10
685 #define FADVISE_HOT_BIT		0x20
686 #define FADVISE_VERITY_BIT	0x40
687 #define FADVISE_TRUNC_BIT	0x80
688 
689 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
690 
691 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
692 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
693 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
694 
695 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
696 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
697 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
698 
699 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
700 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
701 
702 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
703 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
704 
705 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
706 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
707 
708 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
709 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
710 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
711 
712 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
713 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
714 
715 #define file_should_truncate(inode)	is_file(inode, FADVISE_TRUNC_BIT)
716 #define file_need_truncate(inode)	set_file(inode, FADVISE_TRUNC_BIT)
717 #define file_dont_truncate(inode)	clear_file(inode, FADVISE_TRUNC_BIT)
718 
719 #define DEF_DIR_LEVEL		0
720 
721 enum {
722 	GC_FAILURE_PIN,
723 	MAX_GC_FAILURE
724 };
725 
726 /* used for f2fs_inode_info->flags */
727 enum {
728 	FI_NEW_INODE,		/* indicate newly allocated inode */
729 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
730 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
731 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
732 	FI_INC_LINK,		/* need to increment i_nlink */
733 	FI_ACL_MODE,		/* indicate acl mode */
734 	FI_NO_ALLOC,		/* should not allocate any blocks */
735 	FI_FREE_NID,		/* free allocated nide */
736 	FI_NO_EXTENT,		/* not to use the extent cache */
737 	FI_INLINE_XATTR,	/* used for inline xattr */
738 	FI_INLINE_DATA,		/* used for inline data*/
739 	FI_INLINE_DENTRY,	/* used for inline dentry */
740 	FI_APPEND_WRITE,	/* inode has appended data */
741 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
742 	FI_NEED_IPU,		/* used for ipu per file */
743 	FI_ATOMIC_FILE,		/* indicate atomic file */
744 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
745 	FI_DROP_CACHE,		/* drop dirty page cache */
746 	FI_DATA_EXIST,		/* indicate data exists */
747 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
748 	FI_SKIP_WRITES,		/* should skip data page writeback */
749 	FI_OPU_WRITE,		/* used for opu per file */
750 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
751 	FI_PREALLOCATED_ALL,	/* all blocks for write were preallocated */
752 	FI_HOT_DATA,		/* indicate file is hot */
753 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
754 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
755 	FI_PIN_FILE,		/* indicate file should not be gced */
756 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
757 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
758 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
759 	FI_MMAP_FILE,		/* indicate file was mmapped */
760 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
761 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
762 	FI_ALIGNED_WRITE,	/* enable aligned write */
763 	FI_COW_FILE,		/* indicate COW file */
764 	FI_ATOMIC_COMMITTED,	/* indicate atomic commit completed except disk sync */
765 	FI_ATOMIC_REPLACE,	/* indicate atomic replace */
766 	FI_MAX,			/* max flag, never be used */
767 };
768 
769 struct f2fs_inode_info {
770 	struct inode vfs_inode;		/* serve a vfs inode */
771 	unsigned long i_flags;		/* keep an inode flags for ioctl */
772 	unsigned char i_advise;		/* use to give file attribute hints */
773 	unsigned char i_dir_level;	/* use for dentry level for large dir */
774 	unsigned int i_current_depth;	/* only for directory depth */
775 	/* for gc failure statistic */
776 	unsigned int i_gc_failures[MAX_GC_FAILURE];
777 	unsigned int i_pino;		/* parent inode number */
778 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
779 
780 	/* Use below internally in f2fs*/
781 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
782 	struct f2fs_rwsem i_sem;	/* protect fi info */
783 	atomic_t dirty_pages;		/* # of dirty pages */
784 	f2fs_hash_t chash;		/* hash value of given file name */
785 	unsigned int clevel;		/* maximum level of given file name */
786 	struct task_struct *task;	/* lookup and create consistency */
787 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
788 	struct task_struct *wb_task;	/* indicate inode is in context of writeback */
789 	nid_t i_xattr_nid;		/* node id that contains xattrs */
790 	loff_t	last_disk_size;		/* lastly written file size */
791 	spinlock_t i_size_lock;		/* protect last_disk_size */
792 
793 #ifdef CONFIG_QUOTA
794 	struct dquot *i_dquot[MAXQUOTAS];
795 
796 	/* quota space reservation, managed internally by quota code */
797 	qsize_t i_reserved_quota;
798 #endif
799 	struct list_head dirty_list;	/* dirty list for dirs and files */
800 	struct list_head gdirty_list;	/* linked in global dirty list */
801 	struct task_struct *atomic_write_task;	/* store atomic write task */
802 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
803 	struct inode *cow_inode;	/* copy-on-write inode for atomic write */
804 
805 	/* avoid racing between foreground op and gc */
806 	struct f2fs_rwsem i_gc_rwsem[2];
807 	struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
808 
809 	int i_extra_isize;		/* size of extra space located in i_addr */
810 	kprojid_t i_projid;		/* id for project quota */
811 	int i_inline_xattr_size;	/* inline xattr size */
812 	struct timespec64 i_crtime;	/* inode creation time */
813 	struct timespec64 i_disk_time[4];/* inode disk times */
814 
815 	/* for file compress */
816 	atomic_t i_compr_blocks;		/* # of compressed blocks */
817 	unsigned char i_compress_algorithm;	/* algorithm type */
818 	unsigned char i_log_cluster_size;	/* log of cluster size */
819 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
820 	unsigned short i_compress_flag;		/* compress flag */
821 	unsigned int i_cluster_size;		/* cluster size */
822 
823 	unsigned int atomic_write_cnt;
824 	loff_t original_i_size;		/* original i_size before atomic write */
825 };
826 
get_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)827 static inline void get_extent_info(struct extent_info *ext,
828 					struct f2fs_extent *i_ext)
829 {
830 	ext->fofs = le32_to_cpu(i_ext->fofs);
831 	ext->blk = le32_to_cpu(i_ext->blk);
832 	ext->len = le32_to_cpu(i_ext->len);
833 }
834 
set_raw_extent(struct extent_info * ext,struct f2fs_extent * i_ext)835 static inline void set_raw_extent(struct extent_info *ext,
836 					struct f2fs_extent *i_ext)
837 {
838 	i_ext->fofs = cpu_to_le32(ext->fofs);
839 	i_ext->blk = cpu_to_le32(ext->blk);
840 	i_ext->len = cpu_to_le32(ext->len);
841 }
842 
set_extent_info(struct extent_info * ei,unsigned int fofs,u32 blk,unsigned int len)843 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
844 						u32 blk, unsigned int len)
845 {
846 	ei->fofs = fofs;
847 	ei->blk = blk;
848 	ei->len = len;
849 #ifdef CONFIG_F2FS_FS_COMPRESSION
850 	ei->c_len = 0;
851 #endif
852 }
853 
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)854 static inline bool __is_discard_mergeable(struct discard_info *back,
855 			struct discard_info *front, unsigned int max_len)
856 {
857 	return (back->lstart + back->len == front->lstart) &&
858 		(back->len + front->len <= max_len);
859 }
860 
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)861 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
862 			struct discard_info *back, unsigned int max_len)
863 {
864 	return __is_discard_mergeable(back, cur, max_len);
865 }
866 
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)867 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
868 			struct discard_info *front, unsigned int max_len)
869 {
870 	return __is_discard_mergeable(cur, front, max_len);
871 }
872 
__is_extent_mergeable(struct extent_info * back,struct extent_info * front)873 static inline bool __is_extent_mergeable(struct extent_info *back,
874 						struct extent_info *front)
875 {
876 #ifdef CONFIG_F2FS_FS_COMPRESSION
877 	if (back->c_len && back->len != back->c_len)
878 		return false;
879 	if (front->c_len && front->len != front->c_len)
880 		return false;
881 #endif
882 	return (back->fofs + back->len == front->fofs &&
883 			back->blk + back->len == front->blk);
884 }
885 
__is_back_mergeable(struct extent_info * cur,struct extent_info * back)886 static inline bool __is_back_mergeable(struct extent_info *cur,
887 						struct extent_info *back)
888 {
889 	return __is_extent_mergeable(back, cur);
890 }
891 
__is_front_mergeable(struct extent_info * cur,struct extent_info * front)892 static inline bool __is_front_mergeable(struct extent_info *cur,
893 						struct extent_info *front)
894 {
895 	return __is_extent_mergeable(cur, front);
896 }
897 
898 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
__try_update_largest_extent(struct extent_tree * et,struct extent_node * en)899 static inline void __try_update_largest_extent(struct extent_tree *et,
900 						struct extent_node *en)
901 {
902 	if (en->ei.len > et->largest.len) {
903 		et->largest = en->ei;
904 		et->largest_updated = true;
905 	}
906 }
907 
908 /*
909  * For free nid management
910  */
911 enum nid_state {
912 	FREE_NID,		/* newly added to free nid list */
913 	PREALLOC_NID,		/* it is preallocated */
914 	MAX_NID_STATE,
915 };
916 
917 enum nat_state {
918 	TOTAL_NAT,
919 	DIRTY_NAT,
920 	RECLAIMABLE_NAT,
921 	MAX_NAT_STATE,
922 };
923 
924 struct f2fs_nm_info {
925 	block_t nat_blkaddr;		/* base disk address of NAT */
926 	nid_t max_nid;			/* maximum possible node ids */
927 	nid_t available_nids;		/* # of available node ids */
928 	nid_t next_scan_nid;		/* the next nid to be scanned */
929 	nid_t max_rf_node_blocks;	/* max # of nodes for recovery */
930 	unsigned int ram_thresh;	/* control the memory footprint */
931 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
932 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
933 
934 	/* NAT cache management */
935 	struct radix_tree_root nat_root;/* root of the nat entry cache */
936 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
937 	struct f2fs_rwsem nat_tree_lock;	/* protect nat entry tree */
938 	struct list_head nat_entries;	/* cached nat entry list (clean) */
939 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
940 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
941 	unsigned int nat_blocks;	/* # of nat blocks */
942 
943 	/* free node ids management */
944 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
945 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
946 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
947 	spinlock_t nid_list_lock;	/* protect nid lists ops */
948 	struct mutex build_lock;	/* lock for build free nids */
949 	unsigned char **free_nid_bitmap;
950 	unsigned char *nat_block_bitmap;
951 	unsigned short *free_nid_count;	/* free nid count of NAT block */
952 
953 	/* for checkpoint */
954 	char *nat_bitmap;		/* NAT bitmap pointer */
955 
956 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
957 	unsigned char *nat_bits;	/* NAT bits blocks */
958 	unsigned char *full_nat_bits;	/* full NAT pages */
959 	unsigned char *empty_nat_bits;	/* empty NAT pages */
960 #ifdef CONFIG_F2FS_CHECK_FS
961 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
962 #endif
963 	int bitmap_size;		/* bitmap size */
964 };
965 
966 /*
967  * this structure is used as one of function parameters.
968  * all the information are dedicated to a given direct node block determined
969  * by the data offset in a file.
970  */
971 struct dnode_of_data {
972 	struct inode *inode;		/* vfs inode pointer */
973 	struct page *inode_page;	/* its inode page, NULL is possible */
974 	struct page *node_page;		/* cached direct node page */
975 	nid_t nid;			/* node id of the direct node block */
976 	unsigned int ofs_in_node;	/* data offset in the node page */
977 	bool inode_page_locked;		/* inode page is locked or not */
978 	bool node_changed;		/* is node block changed */
979 	char cur_level;			/* level of hole node page */
980 	char max_level;			/* level of current page located */
981 	block_t	data_blkaddr;		/* block address of the node block */
982 };
983 
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)984 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
985 		struct page *ipage, struct page *npage, nid_t nid)
986 {
987 	memset(dn, 0, sizeof(*dn));
988 	dn->inode = inode;
989 	dn->inode_page = ipage;
990 	dn->node_page = npage;
991 	dn->nid = nid;
992 }
993 
994 /*
995  * For SIT manager
996  *
997  * By default, there are 6 active log areas across the whole main area.
998  * When considering hot and cold data separation to reduce cleaning overhead,
999  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
1000  * respectively.
1001  * In the current design, you should not change the numbers intentionally.
1002  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
1003  * logs individually according to the underlying devices. (default: 6)
1004  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
1005  * data and 8 for node logs.
1006  */
1007 #define	NR_CURSEG_DATA_TYPE	(3)
1008 #define NR_CURSEG_NODE_TYPE	(3)
1009 #define NR_CURSEG_INMEM_TYPE	(2)
1010 #define NR_CURSEG_RO_TYPE	(2)
1011 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1012 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1013 
1014 enum {
1015 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
1016 	CURSEG_WARM_DATA,	/* data blocks */
1017 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
1018 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
1019 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
1020 	CURSEG_COLD_NODE,	/* indirect node blocks */
1021 	NR_PERSISTENT_LOG,	/* number of persistent log */
1022 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1023 				/* pinned file that needs consecutive block address */
1024 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
1025 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
1026 };
1027 
1028 struct flush_cmd {
1029 	struct completion wait;
1030 	struct llist_node llnode;
1031 	nid_t ino;
1032 	int ret;
1033 };
1034 
1035 struct flush_cmd_control {
1036 	struct task_struct *f2fs_issue_flush;	/* flush thread */
1037 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1038 	atomic_t issued_flush;			/* # of issued flushes */
1039 	atomic_t queued_flush;			/* # of queued flushes */
1040 	struct llist_head issue_list;		/* list for command issue */
1041 	struct llist_node *dispatch_list;	/* list for command dispatch */
1042 };
1043 
1044 struct f2fs_sm_info {
1045 	struct sit_info *sit_info;		/* whole segment information */
1046 	struct free_segmap_info *free_info;	/* free segment information */
1047 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1048 	struct curseg_info *curseg_array;	/* active segment information */
1049 
1050 	struct f2fs_rwsem curseg_lock;	/* for preventing curseg change */
1051 
1052 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1053 	block_t main_blkaddr;		/* start block address of main area */
1054 	block_t ssa_blkaddr;		/* start block address of SSA area */
1055 
1056 	unsigned int segment_count;	/* total # of segments */
1057 	unsigned int main_segments;	/* # of segments in main area */
1058 	unsigned int reserved_segments;	/* # of reserved segments */
1059 	unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1060 	unsigned int ovp_segments;	/* # of overprovision segments */
1061 
1062 	/* a threshold to reclaim prefree segments */
1063 	unsigned int rec_prefree_segments;
1064 
1065 	/* for batched trimming */
1066 	unsigned int trim_sections;		/* # of sections to trim */
1067 
1068 	struct list_head sit_entry_set;	/* sit entry set list */
1069 
1070 	unsigned int ipu_policy;	/* in-place-update policy */
1071 	unsigned int min_ipu_util;	/* in-place-update threshold */
1072 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1073 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1074 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1075 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1076 
1077 	/* for flush command control */
1078 	struct flush_cmd_control *fcc_info;
1079 
1080 	/* for discard command control */
1081 	struct discard_cmd_control *dcc_info;
1082 };
1083 
1084 /*
1085  * For superblock
1086  */
1087 /*
1088  * COUNT_TYPE for monitoring
1089  *
1090  * f2fs monitors the number of several block types such as on-writeback,
1091  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1092  */
1093 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1094 enum count_type {
1095 	F2FS_DIRTY_DENTS,
1096 	F2FS_DIRTY_DATA,
1097 	F2FS_DIRTY_QDATA,
1098 	F2FS_DIRTY_NODES,
1099 	F2FS_DIRTY_META,
1100 	F2FS_DIRTY_IMETA,
1101 	F2FS_WB_CP_DATA,
1102 	F2FS_WB_DATA,
1103 	F2FS_RD_DATA,
1104 	F2FS_RD_NODE,
1105 	F2FS_RD_META,
1106 	F2FS_DIO_WRITE,
1107 	F2FS_DIO_READ,
1108 	NR_COUNT_TYPE,
1109 };
1110 
1111 /*
1112  * The below are the page types of bios used in submit_bio().
1113  * The available types are:
1114  * DATA			User data pages. It operates as async mode.
1115  * NODE			Node pages. It operates as async mode.
1116  * META			FS metadata pages such as SIT, NAT, CP.
1117  * NR_PAGE_TYPE		The number of page types.
1118  * META_FLUSH		Make sure the previous pages are written
1119  *			with waiting the bio's completion
1120  * ...			Only can be used with META.
1121  */
1122 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1123 enum page_type {
1124 	DATA = 0,
1125 	NODE = 1,	/* should not change this */
1126 	META,
1127 	NR_PAGE_TYPE,
1128 	META_FLUSH,
1129 	IPU,		/* the below types are used by tracepoints only. */
1130 	OPU,
1131 };
1132 
1133 enum temp_type {
1134 	HOT = 0,	/* must be zero for meta bio */
1135 	WARM,
1136 	COLD,
1137 	NR_TEMP_TYPE,
1138 };
1139 
1140 enum need_lock_type {
1141 	LOCK_REQ = 0,
1142 	LOCK_DONE,
1143 	LOCK_RETRY,
1144 };
1145 
1146 enum cp_reason_type {
1147 	CP_NO_NEEDED,
1148 	CP_NON_REGULAR,
1149 	CP_COMPRESSED,
1150 	CP_HARDLINK,
1151 	CP_SB_NEED_CP,
1152 	CP_WRONG_PINO,
1153 	CP_NO_SPC_ROLL,
1154 	CP_NODE_NEED_CP,
1155 	CP_FASTBOOT_MODE,
1156 	CP_SPEC_LOG_NUM,
1157 	CP_RECOVER_DIR,
1158 };
1159 
1160 enum iostat_type {
1161 	/* WRITE IO */
1162 	APP_DIRECT_IO,			/* app direct write IOs */
1163 	APP_BUFFERED_IO,		/* app buffered write IOs */
1164 	APP_WRITE_IO,			/* app write IOs */
1165 	APP_MAPPED_IO,			/* app mapped IOs */
1166 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1167 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1168 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1169 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1170 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1171 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1172 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1173 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1174 
1175 	/* READ IO */
1176 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1177 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1178 	APP_READ_IO,			/* app read IOs */
1179 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1180 	FS_DATA_READ_IO,		/* data read IOs */
1181 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1182 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1183 	FS_NODE_READ_IO,		/* node read IOs */
1184 	FS_META_READ_IO,		/* meta read IOs */
1185 
1186 	/* other */
1187 	FS_DISCARD,			/* discard */
1188 	NR_IO_TYPE,
1189 };
1190 
1191 struct f2fs_io_info {
1192 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1193 	nid_t ino;		/* inode number */
1194 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1195 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1196 	int op;			/* contains REQ_OP_ */
1197 	int op_flags;		/* req_flag_bits */
1198 	block_t new_blkaddr;	/* new block address to be written */
1199 	block_t old_blkaddr;	/* old block address before Cow */
1200 	struct page *page;	/* page to be written */
1201 	struct page *encrypted_page;	/* encrypted page */
1202 	struct page *compressed_page;	/* compressed page */
1203 	struct list_head list;		/* serialize IOs */
1204 	bool submitted;		/* indicate IO submission */
1205 	int need_lock;		/* indicate we need to lock cp_rwsem */
1206 	bool in_list;		/* indicate fio is in io_list */
1207 	bool is_por;		/* indicate IO is from recovery or not */
1208 	bool retry;		/* need to reallocate block address */
1209 	int compr_blocks;	/* # of compressed block addresses */
1210 	bool encrypted;		/* indicate file is encrypted */
1211 	bool post_read;		/* require post read */
1212 	enum iostat_type io_type;	/* io type */
1213 	struct writeback_control *io_wbc; /* writeback control */
1214 	struct bio **bio;		/* bio for ipu */
1215 	sector_t *last_block;		/* last block number in bio */
1216 	unsigned char version;		/* version of the node */
1217 };
1218 
1219 struct bio_entry {
1220 	struct bio *bio;
1221 	struct list_head list;
1222 };
1223 
1224 #define is_read_io(rw) ((rw) == READ)
1225 struct f2fs_bio_info {
1226 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1227 	struct bio *bio;		/* bios to merge */
1228 	sector_t last_block_in_bio;	/* last block number */
1229 	struct f2fs_io_info fio;	/* store buffered io info. */
1230 	struct f2fs_rwsem io_rwsem;	/* blocking op for bio */
1231 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1232 	struct list_head io_list;	/* track fios */
1233 	struct list_head bio_list;	/* bio entry list head */
1234 	struct f2fs_rwsem bio_list_lock;	/* lock to protect bio entry list */
1235 };
1236 
1237 #define FDEV(i)				(sbi->devs[i])
1238 #define RDEV(i)				(raw_super->devs[i])
1239 struct f2fs_dev_info {
1240 	struct block_device *bdev;
1241 	char path[MAX_PATH_LEN];
1242 	unsigned int total_segments;
1243 	block_t start_blk;
1244 	block_t end_blk;
1245 #ifdef CONFIG_BLK_DEV_ZONED
1246 	unsigned int nr_blkz;		/* Total number of zones */
1247 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1248 #endif
1249 };
1250 
1251 enum inode_type {
1252 	DIR_INODE,			/* for dirty dir inode */
1253 	FILE_INODE,			/* for dirty regular/symlink inode */
1254 	DIRTY_META,			/* for all dirtied inode metadata */
1255 	NR_INODE_TYPE,
1256 };
1257 
1258 /* for inner inode cache management */
1259 struct inode_management {
1260 	struct radix_tree_root ino_root;	/* ino entry array */
1261 	spinlock_t ino_lock;			/* for ino entry lock */
1262 	struct list_head ino_list;		/* inode list head */
1263 	unsigned long ino_num;			/* number of entries */
1264 };
1265 
1266 /* for GC_AT */
1267 struct atgc_management {
1268 	bool atgc_enabled;			/* ATGC is enabled or not */
1269 	struct rb_root_cached root;		/* root of victim rb-tree */
1270 	struct list_head victim_list;		/* linked with all victim entries */
1271 	unsigned int victim_count;		/* victim count in rb-tree */
1272 	unsigned int candidate_ratio;		/* candidate ratio */
1273 	unsigned int max_candidate_count;	/* max candidate count */
1274 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1275 	unsigned long long age_threshold;	/* age threshold */
1276 };
1277 
1278 /* For s_flag in struct f2fs_sb_info */
1279 enum {
1280 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1281 	SBI_IS_CLOSE,				/* specify unmounting */
1282 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1283 	SBI_POR_DOING,				/* recovery is doing or not */
1284 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1285 	SBI_NEED_CP,				/* need to checkpoint */
1286 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1287 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1288 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1289 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1290 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1291 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1292 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1293 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1294 	SBI_IS_FREEZING,			/* freezefs is in process */
1295 };
1296 
1297 enum {
1298 	CP_TIME,
1299 	REQ_TIME,
1300 	DISCARD_TIME,
1301 	GC_TIME,
1302 	DISABLE_TIME,
1303 	UMOUNT_DISCARD_TIMEOUT,
1304 	MAX_TIME,
1305 };
1306 
1307 enum {
1308 	GC_NORMAL,
1309 	GC_IDLE_CB,
1310 	GC_IDLE_GREEDY,
1311 	GC_IDLE_AT,
1312 	GC_URGENT_HIGH,
1313 	GC_URGENT_LOW,
1314 	GC_URGENT_MID,
1315 	MAX_GC_MODE,
1316 };
1317 
1318 enum {
1319 	BGGC_MODE_ON,		/* background gc is on */
1320 	BGGC_MODE_OFF,		/* background gc is off */
1321 	BGGC_MODE_SYNC,		/*
1322 				 * background gc is on, migrating blocks
1323 				 * like foreground gc
1324 				 */
1325 };
1326 
1327 enum {
1328 	FS_MODE_ADAPTIVE,		/* use both lfs/ssr allocation */
1329 	FS_MODE_LFS,			/* use lfs allocation only */
1330 	FS_MODE_FRAGMENT_SEG,		/* segment fragmentation mode */
1331 	FS_MODE_FRAGMENT_BLK,		/* block fragmentation mode */
1332 };
1333 
1334 enum {
1335 	WHINT_MODE_OFF,		/* not pass down write hints */
1336 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1337 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1338 };
1339 
1340 enum {
1341 	ALLOC_MODE_DEFAULT,	/* stay default */
1342 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1343 };
1344 
1345 enum fsync_mode {
1346 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1347 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1348 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1349 };
1350 
1351 enum {
1352 	COMPR_MODE_FS,		/*
1353 				 * automatically compress compression
1354 				 * enabled files
1355 				 */
1356 	COMPR_MODE_USER,	/*
1357 				 * automatical compression is disabled.
1358 				 * user can control the file compression
1359 				 * using ioctls
1360 				 */
1361 };
1362 
1363 enum {
1364 	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
1365 	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
1366 	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
1367 };
1368 
1369 enum {
1370 	MEMORY_MODE_NORMAL,	/* memory mode for normal devices */
1371 	MEMORY_MODE_LOW,	/* memory mode for low memry devices */
1372 };
1373 
1374 
1375 
1376 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1377 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1378 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1379 
1380 /*
1381  * Layout of f2fs page.private:
1382  *
1383  * Layout A: lowest bit should be 1
1384  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1385  * bit 0	PAGE_PRIVATE_NOT_POINTER
1386  * bit 1	PAGE_PRIVATE_ATOMIC_WRITE
1387  * bit 2	PAGE_PRIVATE_DUMMY_WRITE
1388  * bit 3	PAGE_PRIVATE_ONGOING_MIGRATION
1389  * bit 4	PAGE_PRIVATE_INLINE_INODE
1390  * bit 5	PAGE_PRIVATE_REF_RESOURCE
1391  * bit 6-	f2fs private data
1392  *
1393  * Layout B: lowest bit should be 0
1394  * page.private is a wrapped pointer.
1395  */
1396 enum {
1397 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1398 	PAGE_PRIVATE_ATOMIC_WRITE,		/* data page from atomic write path */
1399 	PAGE_PRIVATE_DUMMY_WRITE,		/* data page for padding aligned IO */
1400 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1401 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1402 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1403 	PAGE_PRIVATE_MAX
1404 };
1405 
1406 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
1407 static inline bool page_private_##name(struct page *page) \
1408 { \
1409 	return PagePrivate(page) && \
1410 		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
1411 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1412 }
1413 
1414 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
1415 static inline void set_page_private_##name(struct page *page) \
1416 { \
1417 	if (!PagePrivate(page)) { \
1418 		get_page(page); \
1419 		SetPagePrivate(page); \
1420 		set_page_private(page, 0); \
1421 	} \
1422 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
1423 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1424 }
1425 
1426 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
1427 static inline void clear_page_private_##name(struct page *page) \
1428 { \
1429 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1430 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { \
1431 		set_page_private(page, 0); \
1432 		if (PagePrivate(page)) { \
1433 			ClearPagePrivate(page); \
1434 			put_page(page); \
1435 		}\
1436 	} \
1437 }
1438 
1439 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
1440 PAGE_PRIVATE_GET_FUNC(reference, REF_RESOURCE);
1441 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
1442 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
1443 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
1444 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
1445 
1446 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
1447 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
1448 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
1449 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
1450 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
1451 
1452 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
1453 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
1454 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
1455 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
1456 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
1457 
get_page_private_data(struct page * page)1458 static inline unsigned long get_page_private_data(struct page *page)
1459 {
1460 	unsigned long data = page_private(page);
1461 
1462 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
1463 		return 0;
1464 	return data >> PAGE_PRIVATE_MAX;
1465 }
1466 
set_page_private_data(struct page * page,unsigned long data)1467 static inline void set_page_private_data(struct page *page, unsigned long data)
1468 {
1469 	if (!PagePrivate(page)) {
1470 		get_page(page);
1471 		SetPagePrivate(page);
1472 		set_page_private(page, 0);
1473 	}
1474 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
1475 	page_private(page) |= data << PAGE_PRIVATE_MAX;
1476 }
1477 
clear_page_private_data(struct page * page)1478 static inline void clear_page_private_data(struct page *page)
1479 {
1480 	page_private(page) &= (1 << PAGE_PRIVATE_MAX) - 1;
1481 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) {
1482 		set_page_private(page, 0);
1483 		if (PagePrivate(page)) {
1484 			ClearPagePrivate(page);
1485 			put_page(page);
1486 		}
1487 	}
1488 }
1489 
1490 /* For compression */
1491 enum compress_algorithm_type {
1492 	COMPRESS_LZO,
1493 	COMPRESS_LZ4,
1494 	COMPRESS_ZSTD,
1495 	COMPRESS_LZORLE,
1496 	COMPRESS_MAX,
1497 };
1498 
1499 enum compress_flag {
1500 	COMPRESS_CHKSUM,
1501 	COMPRESS_MAX_FLAG,
1502 };
1503 
1504 #define	COMPRESS_WATERMARK			20
1505 #define	COMPRESS_PERCENT			20
1506 
1507 #define COMPRESS_DATA_RESERVED_SIZE		4
1508 struct compress_data {
1509 	__le32 clen;			/* compressed data size */
1510 	__le32 chksum;			/* compressed data chksum */
1511 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1512 	u8 cdata[];			/* compressed data */
1513 };
1514 
1515 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1516 
1517 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1518 
1519 #define	COMPRESS_LEVEL_OFFSET	8
1520 
1521 /* compress context */
1522 struct compress_ctx {
1523 	struct inode *inode;		/* inode the context belong to */
1524 	pgoff_t cluster_idx;		/* cluster index number */
1525 	unsigned int cluster_size;	/* page count in cluster */
1526 	unsigned int log_cluster_size;	/* log of cluster size */
1527 	struct page **rpages;		/* pages store raw data in cluster */
1528 	unsigned int nr_rpages;		/* total page number in rpages */
1529 	struct page **cpages;		/* pages store compressed data in cluster */
1530 	unsigned int nr_cpages;		/* total page number in cpages */
1531 	unsigned int valid_nr_cpages;	/* valid page number in cpages */
1532 	void *rbuf;			/* virtual mapped address on rpages */
1533 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1534 	size_t rlen;			/* valid data length in rbuf */
1535 	size_t clen;			/* valid data length in cbuf */
1536 	void *private;			/* payload buffer for specified compression algorithm */
1537 	void *private2;			/* extra payload buffer */
1538 };
1539 
1540 /* compress context for write IO path */
1541 struct compress_io_ctx {
1542 	u32 magic;			/* magic number to indicate page is compressed */
1543 	struct inode *inode;		/* inode the context belong to */
1544 	struct page **rpages;		/* pages store raw data in cluster */
1545 	unsigned int nr_rpages;		/* total page number in rpages */
1546 	atomic_t pending_pages;		/* in-flight compressed page count */
1547 };
1548 
1549 /* Context for decompressing one cluster on the read IO path */
1550 struct decompress_io_ctx {
1551 	u32 magic;			/* magic number to indicate page is compressed */
1552 	struct inode *inode;		/* inode the context belong to */
1553 	pgoff_t cluster_idx;		/* cluster index number */
1554 	unsigned int cluster_size;	/* page count in cluster */
1555 	unsigned int log_cluster_size;	/* log of cluster size */
1556 	struct page **rpages;		/* pages store raw data in cluster */
1557 	unsigned int nr_rpages;		/* total page number in rpages */
1558 	struct page **cpages;		/* pages store compressed data in cluster */
1559 	unsigned int nr_cpages;		/* total page number in cpages */
1560 	struct page **tpages;		/* temp pages to pad holes in cluster */
1561 	void *rbuf;			/* virtual mapped address on rpages */
1562 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1563 	size_t rlen;			/* valid data length in rbuf */
1564 	size_t clen;			/* valid data length in cbuf */
1565 
1566 	/*
1567 	 * The number of compressed pages remaining to be read in this cluster.
1568 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1569 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1570 	 * is decompressed (or an error is reported).
1571 	 *
1572 	 * If an error occurs before all the pages have been submitted for I/O,
1573 	 * then this will never reach 0.  In this case the I/O submitter is
1574 	 * responsible for calling f2fs_decompress_end_io() instead.
1575 	 */
1576 	atomic_t remaining_pages;
1577 
1578 	/*
1579 	 * Number of references to this decompress_io_ctx.
1580 	 *
1581 	 * One reference is held for I/O completion.  This reference is dropped
1582 	 * after the pagecache pages are updated and unlocked -- either after
1583 	 * decompression (and verity if enabled), or after an error.
1584 	 *
1585 	 * In addition, each compressed page holds a reference while it is in a
1586 	 * bio.  These references are necessary prevent compressed pages from
1587 	 * being freed while they are still in a bio.
1588 	 */
1589 	refcount_t refcnt;
1590 
1591 	bool failed;			/* IO error occurred before decompression? */
1592 	bool need_verity;		/* need fs-verity verification after decompression? */
1593 	void *private;			/* payload buffer for specified decompression algorithm */
1594 	void *private2;			/* extra payload buffer */
1595 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1596 	struct work_struct free_work;	/* work for late free this structure itself */
1597 };
1598 
1599 #define NULL_CLUSTER			((unsigned int)(~0))
1600 #define MIN_COMPRESS_LOG_SIZE		2
1601 #define MAX_COMPRESS_LOG_SIZE		8
1602 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1603 
1604 struct f2fs_sb_info {
1605 	struct super_block *sb;			/* pointer to VFS super block */
1606 	struct proc_dir_entry *s_proc;		/* proc entry */
1607 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1608 	struct f2fs_rwsem sb_lock;		/* lock for raw super block */
1609 	int valid_super_block;			/* valid super block no */
1610 	unsigned long s_flag;				/* flags for sbi */
1611 	struct mutex writepages;		/* mutex for writepages() */
1612 
1613 #ifdef CONFIG_BLK_DEV_ZONED
1614 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1615 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1616 #endif
1617 
1618 	/* for node-related operations */
1619 	struct f2fs_nm_info *nm_info;		/* node manager */
1620 	struct inode *node_inode;		/* cache node blocks */
1621 
1622 	/* for segment-related operations */
1623 	struct f2fs_sm_info *sm_info;		/* segment manager */
1624 
1625 	/* for bio operations */
1626 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1627 	/* keep migration IO order for LFS mode */
1628 	struct f2fs_rwsem io_order_lock;
1629 	mempool_t *write_io_dummy;		/* Dummy pages */
1630 	pgoff_t page_eio_ofs[NR_PAGE_TYPE];	/* EIO page offset */
1631 	int page_eio_cnt[NR_PAGE_TYPE];		/* EIO count */
1632 
1633 	/* for checkpoint */
1634 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1635 	int cur_cp_pack;			/* remain current cp pack */
1636 	spinlock_t cp_lock;			/* for flag in ckpt */
1637 	struct inode *meta_inode;		/* cache meta blocks */
1638 	struct f2fs_rwsem cp_global_sem;	/* checkpoint procedure lock */
1639 	struct f2fs_rwsem cp_rwsem;		/* blocking FS operations */
1640 	struct f2fs_rwsem node_write;		/* locking node writes */
1641 	struct f2fs_rwsem node_change;	/* locking node change */
1642 	wait_queue_head_t cp_wait;
1643 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1644 	long interval_time[MAX_TIME];		/* to store thresholds */
1645 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1646 
1647 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1648 
1649 	spinlock_t fsync_node_lock;		/* for node entry lock */
1650 	struct list_head fsync_node_list;	/* node list head */
1651 	unsigned int fsync_seg_id;		/* sequence id */
1652 	unsigned int fsync_node_num;		/* number of node entries */
1653 
1654 	/* for orphan inode, use 0'th array */
1655 	unsigned int max_orphans;		/* max orphan inodes */
1656 
1657 	/* for inode management */
1658 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1659 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1660 	struct mutex flush_lock;		/* for flush exclusion */
1661 
1662 	/* for extent tree cache */
1663 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1664 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1665 	struct list_head extent_list;		/* lru list for shrinker */
1666 	spinlock_t extent_lock;			/* locking extent lru list */
1667 	atomic_t total_ext_tree;		/* extent tree count */
1668 	struct list_head zombie_list;		/* extent zombie tree list */
1669 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1670 	atomic_t total_ext_node;		/* extent info count */
1671 
1672 	/* basic filesystem units */
1673 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1674 	unsigned int log_blocksize;		/* log2 block size */
1675 	unsigned int blocksize;			/* block size */
1676 	unsigned int root_ino_num;		/* root inode number*/
1677 	unsigned int node_ino_num;		/* node inode number*/
1678 	unsigned int meta_ino_num;		/* meta inode number*/
1679 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1680 	unsigned int blocks_per_seg;		/* blocks per segment */
1681 	unsigned int unusable_blocks_per_sec;	/* unusable blocks per section */
1682 	unsigned int segs_per_sec;		/* segments per section */
1683 	unsigned int secs_per_zone;		/* sections per zone */
1684 	unsigned int total_sections;		/* total section count */
1685 	unsigned int total_node_count;		/* total node block count */
1686 	unsigned int total_valid_node_count;	/* valid node block count */
1687 	int dir_level;				/* directory level */
1688 	int readdir_ra;				/* readahead inode in readdir */
1689 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1690 
1691 	block_t user_block_count;		/* # of user blocks */
1692 	block_t total_valid_block_count;	/* # of valid blocks */
1693 	block_t discard_blks;			/* discard command candidats */
1694 	block_t last_valid_block_count;		/* for recovery */
1695 	block_t reserved_blocks;		/* configurable reserved blocks */
1696 	block_t current_reserved_blocks;	/* current reserved blocks */
1697 
1698 	/* Additional tracking for no checkpoint mode */
1699 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1700 
1701 	unsigned int nquota_files;		/* # of quota sysfile */
1702 	struct f2fs_rwsem quota_sem;		/* blocking cp for flags */
1703 
1704 	/* # of pages, see count_type */
1705 	atomic_t nr_pages[NR_COUNT_TYPE];
1706 	/* # of allocated blocks */
1707 	struct percpu_counter alloc_valid_block_count;
1708 	/* # of node block writes as roll forward recovery */
1709 	struct percpu_counter rf_node_block_count;
1710 
1711 	/* writeback control */
1712 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1713 
1714 	/* valid inode count */
1715 	struct percpu_counter total_valid_inode_count;
1716 
1717 	struct f2fs_mount_info mount_opt;	/* mount options */
1718 
1719 	/* for cleaning operations */
1720 	struct f2fs_rwsem gc_lock;		/*
1721 						 * semaphore for GC, avoid
1722 						 * race between GC and GC or CP
1723 						 */
1724 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1725 	struct atgc_management am;		/* atgc management */
1726 	unsigned int cur_victim_sec;		/* current victim section num */
1727 	unsigned int gc_mode;			/* current GC state */
1728 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1729 	spinlock_t gc_urgent_high_lock;
1730 	unsigned int gc_urgent_high_remaining;	/* remaining trial count for GC_URGENT_HIGH */
1731 
1732 	/* for skip statistic */
1733 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1734 
1735 	/* threshold for gc trials on pinned files */
1736 	u64 gc_pin_file_threshold;
1737 	struct f2fs_rwsem pin_sem;
1738 
1739 	/* maximum # of trials to find a victim segment for SSR and GC */
1740 	unsigned int max_victim_search;
1741 	/* migration granularity of garbage collection, unit: segment */
1742 	unsigned int migration_granularity;
1743 
1744 	/*
1745 	 * for stat information.
1746 	 * one is for the LFS mode, and the other is for the SSR mode.
1747 	 */
1748 #ifdef CONFIG_F2FS_STAT_FS
1749 	struct f2fs_stat_info *stat_info;	/* FS status information */
1750 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1751 	unsigned int segment_count[2];		/* # of allocated segments */
1752 	unsigned int block_count[2];		/* # of allocated blocks */
1753 	atomic_t inplace_count;		/* # of inplace update */
1754 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1755 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1756 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1757 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1758 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1759 	atomic_t inline_inode;			/* # of inline_data inodes */
1760 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1761 	atomic_t compr_inode;			/* # of compressed inodes */
1762 	atomic64_t compr_blocks;		/* # of compressed blocks */
1763 	atomic_t atomic_files;			/* # of opened atomic file */
1764 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1765 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1766 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1767 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1768 #endif
1769 	spinlock_t stat_lock;			/* lock for stat operations */
1770 
1771 	/* to attach REQ_META|REQ_FUA flags */
1772 	unsigned int data_io_flag;
1773 	unsigned int node_io_flag;
1774 
1775 	/* For sysfs suppport */
1776 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1777 	struct completion s_kobj_unregister;
1778 
1779 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1780 	struct completion s_stat_kobj_unregister;
1781 
1782 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1783 	struct completion s_feature_list_kobj_unregister;
1784 
1785 	/* For shrinker support */
1786 	struct list_head s_list;
1787 	struct mutex umount_mutex;
1788 	unsigned int shrinker_run_no;
1789 
1790 	/* For multi devices */
1791 	int s_ndevs;				/* number of devices */
1792 	struct f2fs_dev_info *devs;		/* for device list */
1793 	unsigned int dirty_device;		/* for checkpoint data flush */
1794 	spinlock_t dev_lock;			/* protect dirty_device */
1795 	bool aligned_blksize;			/* all devices has the same logical blksize */
1796 
1797 	/* For write statistics */
1798 	u64 sectors_written_start;
1799 	u64 kbytes_written;
1800 
1801 	/* Reference to checksum algorithm driver via cryptoapi */
1802 	struct crypto_shash *s_chksum_driver;
1803 
1804 	/* Precomputed FS UUID checksum for seeding other checksums */
1805 	__u32 s_chksum_seed;
1806 
1807 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1808 
1809 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1810 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1811 
1812 	/* For reclaimed segs statistics per each GC mode */
1813 	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1814 	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1815 
1816 	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */
1817 
1818 	int max_fragment_chunk;			/* max chunk size for block fragmentation mode */
1819 	int max_fragment_hole;			/* max hole size for block fragmentation mode */
1820 
1821 	/* For atomic write statistics */
1822 	atomic64_t current_atomic_write;
1823 	s64 peak_atomic_write;
1824 	u64 committed_atomic_block;
1825 	u64 revoked_atomic_block;
1826 
1827 #ifdef CONFIG_F2FS_FS_COMPRESSION
1828 	struct kmem_cache *page_array_slab;	/* page array entry */
1829 	unsigned int page_array_slab_size;	/* default page array slab size */
1830 
1831 	/* For runtime compression statistics */
1832 	u64 compr_written_block;
1833 	u64 compr_saved_block;
1834 	u32 compr_new_inode;
1835 
1836 	/* For compressed block cache */
1837 	struct inode *compress_inode;		/* cache compressed blocks */
1838 	unsigned int compress_percent;		/* cache page percentage */
1839 	unsigned int compress_watermark;	/* cache page watermark */
1840 	atomic_t compress_page_hit;		/* cache hit count */
1841 #endif
1842 
1843 #ifdef CONFIG_F2FS_IOSTAT
1844 	/* For app/fs IO statistics */
1845 	spinlock_t iostat_lock;
1846 	unsigned long long rw_iostat[NR_IO_TYPE];
1847 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1848 	bool iostat_enable;
1849 	unsigned long iostat_next_period;
1850 	unsigned int iostat_period_ms;
1851 
1852 	/* For io latency related statistics info in one iostat period */
1853 	spinlock_t iostat_lat_lock;
1854 	struct iostat_lat_info *iostat_io_lat;
1855 #endif
1856 };
1857 
1858 #ifdef CONFIG_F2FS_FAULT_INJECTION
1859 #define f2fs_show_injection_info(sbi, type)					\
1860 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1861 		KERN_INFO, sbi->sb->s_id,				\
1862 		f2fs_fault_name[type],					\
1863 		__func__, __builtin_return_address(0))
time_to_inject(struct f2fs_sb_info * sbi,int type)1864 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1865 {
1866 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1867 
1868 	if (!ffi->inject_rate)
1869 		return false;
1870 
1871 	if (!IS_FAULT_SET(ffi, type))
1872 		return false;
1873 
1874 	atomic_inc(&ffi->inject_ops);
1875 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1876 		atomic_set(&ffi->inject_ops, 0);
1877 		return true;
1878 	}
1879 	return false;
1880 }
1881 #else
1882 #define f2fs_show_injection_info(sbi, type) do { } while (0)
time_to_inject(struct f2fs_sb_info * sbi,int type)1883 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1884 {
1885 	return false;
1886 }
1887 #endif
1888 
1889 /*
1890  * Test if the mounted volume is a multi-device volume.
1891  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1892  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1893  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1894  */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1895 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1896 {
1897 	return sbi->s_ndevs > 1;
1898 }
1899 
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1900 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1901 {
1902 	unsigned long now = jiffies;
1903 
1904 	sbi->last_time[type] = now;
1905 
1906 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1907 	if (type == REQ_TIME) {
1908 		sbi->last_time[DISCARD_TIME] = now;
1909 		sbi->last_time[GC_TIME] = now;
1910 	}
1911 }
1912 
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1913 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1914 {
1915 	unsigned long interval = sbi->interval_time[type] * HZ;
1916 
1917 	return time_after(jiffies, sbi->last_time[type] + interval);
1918 }
1919 
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1920 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1921 						int type)
1922 {
1923 	unsigned long interval = sbi->interval_time[type] * HZ;
1924 	unsigned int wait_ms = 0;
1925 	long delta;
1926 
1927 	delta = (sbi->last_time[type] + interval) - jiffies;
1928 	if (delta > 0)
1929 		wait_ms = jiffies_to_msecs(delta);
1930 
1931 	return wait_ms;
1932 }
1933 
1934 /*
1935  * Inline functions
1936  */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1937 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1938 			      const void *address, unsigned int length)
1939 {
1940 	struct {
1941 		struct shash_desc shash;
1942 		char ctx[4];
1943 	} desc;
1944 	int err;
1945 
1946 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1947 
1948 	desc.shash.tfm = sbi->s_chksum_driver;
1949 	*(u32 *)desc.ctx = crc;
1950 
1951 	err = crypto_shash_update(&desc.shash, address, length);
1952 	BUG_ON(err);
1953 
1954 	return *(u32 *)desc.ctx;
1955 }
1956 
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1957 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1958 			   unsigned int length)
1959 {
1960 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1961 }
1962 
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1963 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1964 				  void *buf, size_t buf_size)
1965 {
1966 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1967 }
1968 
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1969 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1970 			      const void *address, unsigned int length)
1971 {
1972 	return __f2fs_crc32(sbi, crc, address, length);
1973 }
1974 
F2FS_I(struct inode * inode)1975 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1976 {
1977 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1978 }
1979 
F2FS_SB(struct super_block * sb)1980 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1981 {
1982 	return sb->s_fs_info;
1983 }
1984 
F2FS_I_SB(struct inode * inode)1985 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1986 {
1987 	return F2FS_SB(inode->i_sb);
1988 }
1989 
F2FS_M_SB(struct address_space * mapping)1990 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1991 {
1992 	return F2FS_I_SB(mapping->host);
1993 }
1994 
F2FS_P_SB(struct page * page)1995 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1996 {
1997 	return F2FS_M_SB(page_file_mapping(page));
1998 }
1999 
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)2000 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
2001 {
2002 	return (struct f2fs_super_block *)(sbi->raw_super);
2003 }
2004 
F2FS_CKPT(struct f2fs_sb_info * sbi)2005 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
2006 {
2007 	return (struct f2fs_checkpoint *)(sbi->ckpt);
2008 }
2009 
F2FS_NODE(struct page * page)2010 static inline struct f2fs_node *F2FS_NODE(struct page *page)
2011 {
2012 	return (struct f2fs_node *)page_address(page);
2013 }
2014 
F2FS_INODE(struct page * page)2015 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
2016 {
2017 	return &((struct f2fs_node *)page_address(page))->i;
2018 }
2019 
NM_I(struct f2fs_sb_info * sbi)2020 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2021 {
2022 	return (struct f2fs_nm_info *)(sbi->nm_info);
2023 }
2024 
SM_I(struct f2fs_sb_info * sbi)2025 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2026 {
2027 	return (struct f2fs_sm_info *)(sbi->sm_info);
2028 }
2029 
SIT_I(struct f2fs_sb_info * sbi)2030 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2031 {
2032 	return (struct sit_info *)(SM_I(sbi)->sit_info);
2033 }
2034 
FREE_I(struct f2fs_sb_info * sbi)2035 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2036 {
2037 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2038 }
2039 
DIRTY_I(struct f2fs_sb_info * sbi)2040 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2041 {
2042 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2043 }
2044 
META_MAPPING(struct f2fs_sb_info * sbi)2045 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2046 {
2047 	return sbi->meta_inode->i_mapping;
2048 }
2049 
NODE_MAPPING(struct f2fs_sb_info * sbi)2050 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2051 {
2052 	return sbi->node_inode->i_mapping;
2053 }
2054 
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)2055 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2056 {
2057 	return test_bit(type, &sbi->s_flag);
2058 }
2059 
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2060 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2061 {
2062 	set_bit(type, &sbi->s_flag);
2063 }
2064 
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2065 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2066 {
2067 	clear_bit(type, &sbi->s_flag);
2068 }
2069 
cur_cp_version(struct f2fs_checkpoint * cp)2070 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2071 {
2072 	return le64_to_cpu(cp->checkpoint_ver);
2073 }
2074 
f2fs_qf_ino(struct super_block * sb,int type)2075 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2076 {
2077 	if (type < F2FS_MAX_QUOTAS)
2078 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2079 	return 0;
2080 }
2081 
cur_cp_crc(struct f2fs_checkpoint * cp)2082 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2083 {
2084 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2085 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2086 }
2087 
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2088 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2089 {
2090 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2091 
2092 	return ckpt_flags & f;
2093 }
2094 
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2095 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2096 {
2097 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2098 }
2099 
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2100 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2101 {
2102 	unsigned int ckpt_flags;
2103 
2104 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2105 	ckpt_flags |= f;
2106 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2107 }
2108 
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2109 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2110 {
2111 	unsigned long flags;
2112 
2113 	spin_lock_irqsave(&sbi->cp_lock, flags);
2114 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2115 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2116 }
2117 
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2118 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2119 {
2120 	unsigned int ckpt_flags;
2121 
2122 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2123 	ckpt_flags &= (~f);
2124 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2125 }
2126 
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2127 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2128 {
2129 	unsigned long flags;
2130 
2131 	spin_lock_irqsave(&sbi->cp_lock, flags);
2132 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2133 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2134 }
2135 
2136 #define init_f2fs_rwsem(sem)					\
2137 do {								\
2138 	static struct lock_class_key __key;			\
2139 								\
2140 	__init_f2fs_rwsem((sem), #sem, &__key);			\
2141 } while (0)
2142 
__init_f2fs_rwsem(struct f2fs_rwsem * sem,const char * sem_name,struct lock_class_key * key)2143 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2144 		const char *sem_name, struct lock_class_key *key)
2145 {
2146 	__init_rwsem(&sem->internal_rwsem, sem_name, key);
2147 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2148 	init_waitqueue_head(&sem->read_waiters);
2149 #endif
2150 }
2151 
f2fs_rwsem_is_locked(struct f2fs_rwsem * sem)2152 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2153 {
2154 	return rwsem_is_locked(&sem->internal_rwsem);
2155 }
2156 
f2fs_rwsem_is_contended(struct f2fs_rwsem * sem)2157 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2158 {
2159 	return rwsem_is_contended(&sem->internal_rwsem);
2160 }
2161 
f2fs_down_read(struct f2fs_rwsem * sem)2162 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2163 {
2164 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2165 	wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2166 #else
2167 	down_read(&sem->internal_rwsem);
2168 #endif
2169 }
2170 
f2fs_down_read_trylock(struct f2fs_rwsem * sem)2171 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2172 {
2173 	return down_read_trylock(&sem->internal_rwsem);
2174 }
2175 
2176 #ifdef CONFIG_DEBUG_LOCK_ALLOC
f2fs_down_read_nested(struct f2fs_rwsem * sem,int subclass)2177 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2178 {
2179 	down_read_nested(&sem->internal_rwsem, subclass);
2180 }
2181 #else
2182 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2183 #endif
2184 
f2fs_up_read(struct f2fs_rwsem * sem)2185 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2186 {
2187 	up_read(&sem->internal_rwsem);
2188 }
2189 
f2fs_down_write(struct f2fs_rwsem * sem)2190 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2191 {
2192 	down_write(&sem->internal_rwsem);
2193 }
2194 
f2fs_down_write_trylock(struct f2fs_rwsem * sem)2195 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2196 {
2197 	return down_write_trylock(&sem->internal_rwsem);
2198 }
2199 
f2fs_up_write(struct f2fs_rwsem * sem)2200 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2201 {
2202 	up_write(&sem->internal_rwsem);
2203 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2204 	wake_up_all(&sem->read_waiters);
2205 #endif
2206 }
2207 
f2fs_lock_op(struct f2fs_sb_info * sbi)2208 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2209 {
2210 	f2fs_down_read(&sbi->cp_rwsem);
2211 }
2212 
f2fs_trylock_op(struct f2fs_sb_info * sbi)2213 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2214 {
2215 	if (time_to_inject(sbi, FAULT_LOCK_OP)) {
2216 		f2fs_show_injection_info(sbi, FAULT_LOCK_OP);
2217 		return 0;
2218 	}
2219 	return f2fs_down_read_trylock(&sbi->cp_rwsem);
2220 }
2221 
f2fs_unlock_op(struct f2fs_sb_info * sbi)2222 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2223 {
2224 	f2fs_up_read(&sbi->cp_rwsem);
2225 }
2226 
f2fs_lock_all(struct f2fs_sb_info * sbi)2227 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2228 {
2229 	f2fs_down_write(&sbi->cp_rwsem);
2230 }
2231 
f2fs_unlock_all(struct f2fs_sb_info * sbi)2232 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2233 {
2234 	f2fs_up_write(&sbi->cp_rwsem);
2235 }
2236 
__get_cp_reason(struct f2fs_sb_info * sbi)2237 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2238 {
2239 	int reason = CP_SYNC;
2240 
2241 	if (test_opt(sbi, FASTBOOT))
2242 		reason = CP_FASTBOOT;
2243 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2244 		reason = CP_UMOUNT;
2245 	return reason;
2246 }
2247 
__remain_node_summaries(int reason)2248 static inline bool __remain_node_summaries(int reason)
2249 {
2250 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2251 }
2252 
__exist_node_summaries(struct f2fs_sb_info * sbi)2253 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2254 {
2255 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2256 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2257 }
2258 
2259 /*
2260  * Check whether the inode has blocks or not
2261  */
F2FS_HAS_BLOCKS(struct inode * inode)2262 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2263 {
2264 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2265 
2266 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2267 }
2268 
f2fs_has_xattr_block(unsigned int ofs)2269 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2270 {
2271 	return ofs == XATTR_NODE_OFFSET;
2272 }
2273 
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2274 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2275 					struct inode *inode, bool cap)
2276 {
2277 	if (!inode)
2278 		return true;
2279 	if (!test_opt(sbi, RESERVE_ROOT))
2280 		return false;
2281 	if (IS_NOQUOTA(inode))
2282 		return true;
2283 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2284 		return true;
2285 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2286 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2287 		return true;
2288 	if (cap && capable(CAP_SYS_RESOURCE))
2289 		return true;
2290 	return false;
2291 }
2292 
2293 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count)2294 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2295 				 struct inode *inode, blkcnt_t *count)
2296 {
2297 	blkcnt_t diff = 0, release = 0;
2298 	block_t avail_user_block_count;
2299 	int ret;
2300 
2301 	ret = dquot_reserve_block(inode, *count);
2302 	if (ret)
2303 		return ret;
2304 
2305 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2306 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2307 		release = *count;
2308 		goto release_quota;
2309 	}
2310 
2311 	/*
2312 	 * let's increase this in prior to actual block count change in order
2313 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2314 	 */
2315 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2316 
2317 	spin_lock(&sbi->stat_lock);
2318 	sbi->total_valid_block_count += (block_t)(*count);
2319 	avail_user_block_count = sbi->user_block_count -
2320 					sbi->current_reserved_blocks;
2321 
2322 	if (!__allow_reserved_blocks(sbi, inode, true))
2323 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2324 
2325 	if (F2FS_IO_ALIGNED(sbi))
2326 		avail_user_block_count -= sbi->blocks_per_seg *
2327 				SM_I(sbi)->additional_reserved_segments;
2328 
2329 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2330 		if (avail_user_block_count > sbi->unusable_block_count)
2331 			avail_user_block_count -= sbi->unusable_block_count;
2332 		else
2333 			avail_user_block_count = 0;
2334 	}
2335 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2336 		diff = sbi->total_valid_block_count - avail_user_block_count;
2337 		if (diff > *count)
2338 			diff = *count;
2339 		*count -= diff;
2340 		release = diff;
2341 		sbi->total_valid_block_count -= diff;
2342 		if (!*count) {
2343 			spin_unlock(&sbi->stat_lock);
2344 			goto enospc;
2345 		}
2346 	}
2347 	spin_unlock(&sbi->stat_lock);
2348 
2349 	if (unlikely(release)) {
2350 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2351 		dquot_release_reservation_block(inode, release);
2352 	}
2353 	f2fs_i_blocks_write(inode, *count, true, true);
2354 	return 0;
2355 
2356 enospc:
2357 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2358 release_quota:
2359 	dquot_release_reservation_block(inode, release);
2360 	return -ENOSPC;
2361 }
2362 
2363 __printf(2, 3)
2364 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2365 
2366 #define f2fs_err(sbi, fmt, ...)						\
2367 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2368 #define f2fs_warn(sbi, fmt, ...)					\
2369 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2370 #define f2fs_notice(sbi, fmt, ...)					\
2371 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2372 #define f2fs_info(sbi, fmt, ...)					\
2373 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2374 #define f2fs_debug(sbi, fmt, ...)					\
2375 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2376 
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2377 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2378 						struct inode *inode,
2379 						block_t count)
2380 {
2381 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2382 
2383 	spin_lock(&sbi->stat_lock);
2384 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2385 	sbi->total_valid_block_count -= (block_t)count;
2386 	if (sbi->reserved_blocks &&
2387 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2388 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2389 					sbi->current_reserved_blocks + count);
2390 	spin_unlock(&sbi->stat_lock);
2391 	if (unlikely(inode->i_blocks < sectors)) {
2392 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2393 			  inode->i_ino,
2394 			  (unsigned long long)inode->i_blocks,
2395 			  (unsigned long long)sectors);
2396 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2397 		return;
2398 	}
2399 	f2fs_i_blocks_write(inode, count, false, true);
2400 }
2401 
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2402 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2403 {
2404 	atomic_inc(&sbi->nr_pages[count_type]);
2405 
2406 	if (count_type == F2FS_DIRTY_DENTS ||
2407 			count_type == F2FS_DIRTY_NODES ||
2408 			count_type == F2FS_DIRTY_META ||
2409 			count_type == F2FS_DIRTY_QDATA ||
2410 			count_type == F2FS_DIRTY_IMETA)
2411 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2412 }
2413 
inode_inc_dirty_pages(struct inode * inode)2414 static inline void inode_inc_dirty_pages(struct inode *inode)
2415 {
2416 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2417 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2418 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2419 	if (IS_NOQUOTA(inode))
2420 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2421 }
2422 
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2423 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2424 {
2425 	atomic_dec(&sbi->nr_pages[count_type]);
2426 }
2427 
inode_dec_dirty_pages(struct inode * inode)2428 static inline void inode_dec_dirty_pages(struct inode *inode)
2429 {
2430 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2431 			!S_ISLNK(inode->i_mode))
2432 		return;
2433 
2434 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2435 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2436 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2437 	if (IS_NOQUOTA(inode))
2438 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2439 }
2440 
inc_atomic_write_cnt(struct inode * inode)2441 static inline void inc_atomic_write_cnt(struct inode *inode)
2442 {
2443 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2444 	struct f2fs_inode_info *fi = F2FS_I(inode);
2445 	u64 current_write;
2446 
2447 	fi->atomic_write_cnt++;
2448 	atomic64_inc(&sbi->current_atomic_write);
2449 	current_write = atomic64_read(&sbi->current_atomic_write);
2450 	if (current_write > sbi->peak_atomic_write)
2451 		sbi->peak_atomic_write = current_write;
2452 }
2453 
release_atomic_write_cnt(struct inode * inode)2454 static inline void release_atomic_write_cnt(struct inode *inode)
2455 {
2456 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2457 	struct f2fs_inode_info *fi = F2FS_I(inode);
2458 
2459 	atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2460 	fi->atomic_write_cnt = 0;
2461 }
2462 
get_pages(struct f2fs_sb_info * sbi,int count_type)2463 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2464 {
2465 	return atomic_read(&sbi->nr_pages[count_type]);
2466 }
2467 
get_dirty_pages(struct inode * inode)2468 static inline int get_dirty_pages(struct inode *inode)
2469 {
2470 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2471 }
2472 
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2473 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2474 {
2475 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2476 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2477 						sbi->log_blocks_per_seg;
2478 
2479 	return segs / sbi->segs_per_sec;
2480 }
2481 
valid_user_blocks(struct f2fs_sb_info * sbi)2482 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2483 {
2484 	return sbi->total_valid_block_count;
2485 }
2486 
discard_blocks(struct f2fs_sb_info * sbi)2487 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2488 {
2489 	return sbi->discard_blks;
2490 }
2491 
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2492 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2493 {
2494 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2495 
2496 	/* return NAT or SIT bitmap */
2497 	if (flag == NAT_BITMAP)
2498 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2499 	else if (flag == SIT_BITMAP)
2500 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2501 
2502 	return 0;
2503 }
2504 
__cp_payload(struct f2fs_sb_info * sbi)2505 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2506 {
2507 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2508 }
2509 
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2510 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2511 {
2512 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2513 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2514 	int offset;
2515 
2516 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2517 		offset = (flag == SIT_BITMAP) ?
2518 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2519 		/*
2520 		 * if large_nat_bitmap feature is enabled, leave checksum
2521 		 * protection for all nat/sit bitmaps.
2522 		 */
2523 		return tmp_ptr + offset + sizeof(__le32);
2524 	}
2525 
2526 	if (__cp_payload(sbi) > 0) {
2527 		if (flag == NAT_BITMAP)
2528 			return &ckpt->sit_nat_version_bitmap;
2529 		else
2530 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2531 	} else {
2532 		offset = (flag == NAT_BITMAP) ?
2533 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2534 		return tmp_ptr + offset;
2535 	}
2536 }
2537 
__start_cp_addr(struct f2fs_sb_info * sbi)2538 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2539 {
2540 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2541 
2542 	if (sbi->cur_cp_pack == 2)
2543 		start_addr += sbi->blocks_per_seg;
2544 	return start_addr;
2545 }
2546 
__start_cp_next_addr(struct f2fs_sb_info * sbi)2547 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2548 {
2549 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2550 
2551 	if (sbi->cur_cp_pack == 1)
2552 		start_addr += sbi->blocks_per_seg;
2553 	return start_addr;
2554 }
2555 
__set_cp_next_pack(struct f2fs_sb_info * sbi)2556 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2557 {
2558 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2559 }
2560 
__start_sum_addr(struct f2fs_sb_info * sbi)2561 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2562 {
2563 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2564 }
2565 
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2566 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2567 					struct inode *inode, bool is_inode)
2568 {
2569 	block_t	valid_block_count;
2570 	unsigned int valid_node_count, user_block_count;
2571 	int err;
2572 
2573 	if (is_inode) {
2574 		if (inode) {
2575 			err = dquot_alloc_inode(inode);
2576 			if (err)
2577 				return err;
2578 		}
2579 	} else {
2580 		err = dquot_reserve_block(inode, 1);
2581 		if (err)
2582 			return err;
2583 	}
2584 
2585 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2586 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2587 		goto enospc;
2588 	}
2589 
2590 	spin_lock(&sbi->stat_lock);
2591 
2592 	valid_block_count = sbi->total_valid_block_count +
2593 					sbi->current_reserved_blocks + 1;
2594 
2595 	if (!__allow_reserved_blocks(sbi, inode, false))
2596 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2597 
2598 	if (F2FS_IO_ALIGNED(sbi))
2599 		valid_block_count += sbi->blocks_per_seg *
2600 				SM_I(sbi)->additional_reserved_segments;
2601 
2602 	user_block_count = sbi->user_block_count;
2603 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2604 		user_block_count -= sbi->unusable_block_count;
2605 
2606 	if (unlikely(valid_block_count > user_block_count)) {
2607 		spin_unlock(&sbi->stat_lock);
2608 		goto enospc;
2609 	}
2610 
2611 	valid_node_count = sbi->total_valid_node_count + 1;
2612 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2613 		spin_unlock(&sbi->stat_lock);
2614 		goto enospc;
2615 	}
2616 
2617 	sbi->total_valid_node_count++;
2618 	sbi->total_valid_block_count++;
2619 	spin_unlock(&sbi->stat_lock);
2620 
2621 	if (inode) {
2622 		if (is_inode)
2623 			f2fs_mark_inode_dirty_sync(inode, true);
2624 		else
2625 			f2fs_i_blocks_write(inode, 1, true, true);
2626 	}
2627 
2628 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2629 	return 0;
2630 
2631 enospc:
2632 	if (is_inode) {
2633 		if (inode)
2634 			dquot_free_inode(inode);
2635 	} else {
2636 		dquot_release_reservation_block(inode, 1);
2637 	}
2638 	return -ENOSPC;
2639 }
2640 
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2641 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2642 					struct inode *inode, bool is_inode)
2643 {
2644 	spin_lock(&sbi->stat_lock);
2645 
2646 	if (unlikely(!sbi->total_valid_block_count ||
2647 			!sbi->total_valid_node_count)) {
2648 		f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2649 			  sbi->total_valid_block_count,
2650 			  sbi->total_valid_node_count);
2651 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2652 	} else {
2653 		sbi->total_valid_block_count--;
2654 		sbi->total_valid_node_count--;
2655 	}
2656 
2657 	if (sbi->reserved_blocks &&
2658 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2659 		sbi->current_reserved_blocks++;
2660 
2661 	spin_unlock(&sbi->stat_lock);
2662 
2663 	if (is_inode) {
2664 		dquot_free_inode(inode);
2665 	} else {
2666 		if (unlikely(inode->i_blocks == 0)) {
2667 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2668 				  inode->i_ino,
2669 				  (unsigned long long)inode->i_blocks);
2670 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2671 			return;
2672 		}
2673 		f2fs_i_blocks_write(inode, 1, false, true);
2674 	}
2675 }
2676 
valid_node_count(struct f2fs_sb_info * sbi)2677 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2678 {
2679 	return sbi->total_valid_node_count;
2680 }
2681 
inc_valid_inode_count(struct f2fs_sb_info * sbi)2682 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2683 {
2684 	percpu_counter_inc(&sbi->total_valid_inode_count);
2685 }
2686 
dec_valid_inode_count(struct f2fs_sb_info * sbi)2687 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2688 {
2689 	percpu_counter_dec(&sbi->total_valid_inode_count);
2690 }
2691 
valid_inode_count(struct f2fs_sb_info * sbi)2692 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2693 {
2694 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2695 }
2696 
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2697 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2698 						pgoff_t index, bool for_write)
2699 {
2700 	struct page *page;
2701 
2702 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2703 		if (!for_write)
2704 			page = find_get_page_flags(mapping, index,
2705 							FGP_LOCK | FGP_ACCESSED);
2706 		else
2707 			page = find_lock_page(mapping, index);
2708 		if (page)
2709 			return page;
2710 
2711 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2712 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2713 							FAULT_PAGE_ALLOC);
2714 			return NULL;
2715 		}
2716 	}
2717 
2718 	if (!for_write)
2719 		return grab_cache_page(mapping, index);
2720 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2721 }
2722 
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)2723 static inline struct page *f2fs_pagecache_get_page(
2724 				struct address_space *mapping, pgoff_t index,
2725 				int fgp_flags, gfp_t gfp_mask)
2726 {
2727 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2728 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2729 		return NULL;
2730 	}
2731 
2732 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2733 }
2734 
f2fs_copy_page(struct page * src,struct page * dst)2735 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2736 {
2737 	char *src_kaddr = kmap(src);
2738 	char *dst_kaddr = kmap(dst);
2739 
2740 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2741 	kunmap(dst);
2742 	kunmap(src);
2743 }
2744 
f2fs_put_page(struct page * page,int unlock)2745 static inline void f2fs_put_page(struct page *page, int unlock)
2746 {
2747 	if (!page)
2748 		return;
2749 
2750 	if (unlock) {
2751 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2752 		unlock_page(page);
2753 	}
2754 	put_page(page);
2755 }
2756 
f2fs_put_dnode(struct dnode_of_data * dn)2757 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2758 {
2759 	if (dn->node_page)
2760 		f2fs_put_page(dn->node_page, 1);
2761 	if (dn->inode_page && dn->node_page != dn->inode_page)
2762 		f2fs_put_page(dn->inode_page, 0);
2763 	dn->node_page = NULL;
2764 	dn->inode_page = NULL;
2765 }
2766 
f2fs_kmem_cache_create(const char * name,size_t size)2767 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2768 					size_t size)
2769 {
2770 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2771 }
2772 
f2fs_kmem_cache_alloc_nofail(struct kmem_cache * cachep,gfp_t flags)2773 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2774 						gfp_t flags)
2775 {
2776 	void *entry;
2777 
2778 	entry = kmem_cache_alloc(cachep, flags);
2779 	if (!entry)
2780 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2781 	return entry;
2782 }
2783 
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags,bool nofail,struct f2fs_sb_info * sbi)2784 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2785 			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2786 {
2787 	if (nofail)
2788 		return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2789 
2790 	if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) {
2791 		f2fs_show_injection_info(sbi, FAULT_SLAB_ALLOC);
2792 		return NULL;
2793 	}
2794 
2795 	return kmem_cache_alloc(cachep, flags);
2796 }
2797 
is_inflight_io(struct f2fs_sb_info * sbi,int type)2798 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2799 {
2800 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2801 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2802 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2803 		get_pages(sbi, F2FS_DIO_READ) ||
2804 		get_pages(sbi, F2FS_DIO_WRITE))
2805 		return true;
2806 
2807 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2808 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2809 		return true;
2810 
2811 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2812 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2813 		return true;
2814 	return false;
2815 }
2816 
is_idle(struct f2fs_sb_info * sbi,int type)2817 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2818 {
2819 	if (sbi->gc_mode == GC_URGENT_HIGH)
2820 		return true;
2821 
2822 	if (is_inflight_io(sbi, type))
2823 		return false;
2824 
2825 	if (sbi->gc_mode == GC_URGENT_MID)
2826 		return true;
2827 
2828 	if (sbi->gc_mode == GC_URGENT_LOW &&
2829 			(type == DISCARD_TIME || type == GC_TIME))
2830 		return true;
2831 
2832 	return f2fs_time_over(sbi, type);
2833 }
2834 
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2835 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2836 				unsigned long index, void *item)
2837 {
2838 	while (radix_tree_insert(root, index, item))
2839 		cond_resched();
2840 }
2841 
2842 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2843 
IS_INODE(struct page * page)2844 static inline bool IS_INODE(struct page *page)
2845 {
2846 	struct f2fs_node *p = F2FS_NODE(page);
2847 
2848 	return RAW_IS_INODE(p);
2849 }
2850 
offset_in_addr(struct f2fs_inode * i)2851 static inline int offset_in_addr(struct f2fs_inode *i)
2852 {
2853 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2854 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2855 }
2856 
blkaddr_in_node(struct f2fs_node * node)2857 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2858 {
2859 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2860 }
2861 
2862 static inline int f2fs_has_extra_attr(struct inode *inode);
data_blkaddr(struct inode * inode,struct page * node_page,unsigned int offset)2863 static inline block_t data_blkaddr(struct inode *inode,
2864 			struct page *node_page, unsigned int offset)
2865 {
2866 	struct f2fs_node *raw_node;
2867 	__le32 *addr_array;
2868 	int base = 0;
2869 	bool is_inode = IS_INODE(node_page);
2870 
2871 	raw_node = F2FS_NODE(node_page);
2872 
2873 	if (is_inode) {
2874 		if (!inode)
2875 			/* from GC path only */
2876 			base = offset_in_addr(&raw_node->i);
2877 		else if (f2fs_has_extra_attr(inode))
2878 			base = get_extra_isize(inode);
2879 	}
2880 
2881 	addr_array = blkaddr_in_node(raw_node);
2882 	return le32_to_cpu(addr_array[base + offset]);
2883 }
2884 
f2fs_data_blkaddr(struct dnode_of_data * dn)2885 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2886 {
2887 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2888 }
2889 
f2fs_test_bit(unsigned int nr,char * addr)2890 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2891 {
2892 	int mask;
2893 
2894 	addr += (nr >> 3);
2895 	mask = 1 << (7 - (nr & 0x07));
2896 	return mask & *addr;
2897 }
2898 
f2fs_set_bit(unsigned int nr,char * addr)2899 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2900 {
2901 	int mask;
2902 
2903 	addr += (nr >> 3);
2904 	mask = 1 << (7 - (nr & 0x07));
2905 	*addr |= mask;
2906 }
2907 
f2fs_clear_bit(unsigned int nr,char * addr)2908 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2909 {
2910 	int mask;
2911 
2912 	addr += (nr >> 3);
2913 	mask = 1 << (7 - (nr & 0x07));
2914 	*addr &= ~mask;
2915 }
2916 
f2fs_test_and_set_bit(unsigned int nr,char * addr)2917 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2918 {
2919 	int mask;
2920 	int ret;
2921 
2922 	addr += (nr >> 3);
2923 	mask = 1 << (7 - (nr & 0x07));
2924 	ret = mask & *addr;
2925 	*addr |= mask;
2926 	return ret;
2927 }
2928 
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2929 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2930 {
2931 	int mask;
2932 	int ret;
2933 
2934 	addr += (nr >> 3);
2935 	mask = 1 << (7 - (nr & 0x07));
2936 	ret = mask & *addr;
2937 	*addr &= ~mask;
2938 	return ret;
2939 }
2940 
f2fs_change_bit(unsigned int nr,char * addr)2941 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2942 {
2943 	int mask;
2944 
2945 	addr += (nr >> 3);
2946 	mask = 1 << (7 - (nr & 0x07));
2947 	*addr ^= mask;
2948 }
2949 
2950 /*
2951  * On-disk inode flags (f2fs_inode::i_flags)
2952  */
2953 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2954 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2955 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2956 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2957 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2958 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2959 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2960 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2961 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2962 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2963 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2964 
2965 /* Flags that should be inherited by new inodes from their parent. */
2966 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2967 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2968 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2969 
2970 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2971 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2972 				F2FS_CASEFOLD_FL))
2973 
2974 /* Flags that are appropriate for non-directories/regular files. */
2975 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2976 
f2fs_mask_flags(umode_t mode,__u32 flags)2977 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2978 {
2979 	if (S_ISDIR(mode))
2980 		return flags;
2981 	else if (S_ISREG(mode))
2982 		return flags & F2FS_REG_FLMASK;
2983 	else
2984 		return flags & F2FS_OTHER_FLMASK;
2985 }
2986 
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)2987 static inline void __mark_inode_dirty_flag(struct inode *inode,
2988 						int flag, bool set)
2989 {
2990 	switch (flag) {
2991 	case FI_INLINE_XATTR:
2992 	case FI_INLINE_DATA:
2993 	case FI_INLINE_DENTRY:
2994 	case FI_NEW_INODE:
2995 		if (set)
2996 			return;
2997 		fallthrough;
2998 	case FI_DATA_EXIST:
2999 	case FI_INLINE_DOTS:
3000 	case FI_PIN_FILE:
3001 	case FI_COMPRESS_RELEASED:
3002 		f2fs_mark_inode_dirty_sync(inode, true);
3003 	}
3004 }
3005 
set_inode_flag(struct inode * inode,int flag)3006 static inline void set_inode_flag(struct inode *inode, int flag)
3007 {
3008 	set_bit(flag, F2FS_I(inode)->flags);
3009 	__mark_inode_dirty_flag(inode, flag, true);
3010 }
3011 
is_inode_flag_set(struct inode * inode,int flag)3012 static inline int is_inode_flag_set(struct inode *inode, int flag)
3013 {
3014 	return test_bit(flag, F2FS_I(inode)->flags);
3015 }
3016 
clear_inode_flag(struct inode * inode,int flag)3017 static inline void clear_inode_flag(struct inode *inode, int flag)
3018 {
3019 	clear_bit(flag, F2FS_I(inode)->flags);
3020 	__mark_inode_dirty_flag(inode, flag, false);
3021 }
3022 
f2fs_verity_in_progress(struct inode * inode)3023 static inline bool f2fs_verity_in_progress(struct inode *inode)
3024 {
3025 	return IS_ENABLED(CONFIG_FS_VERITY) &&
3026 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3027 }
3028 
set_acl_inode(struct inode * inode,umode_t mode)3029 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3030 {
3031 	F2FS_I(inode)->i_acl_mode = mode;
3032 	set_inode_flag(inode, FI_ACL_MODE);
3033 	f2fs_mark_inode_dirty_sync(inode, false);
3034 }
3035 
f2fs_i_links_write(struct inode * inode,bool inc)3036 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3037 {
3038 	if (inc)
3039 		inc_nlink(inode);
3040 	else
3041 		drop_nlink(inode);
3042 	f2fs_mark_inode_dirty_sync(inode, true);
3043 }
3044 
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)3045 static inline void f2fs_i_blocks_write(struct inode *inode,
3046 					block_t diff, bool add, bool claim)
3047 {
3048 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3049 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3050 
3051 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
3052 	if (add) {
3053 		if (claim)
3054 			dquot_claim_block(inode, diff);
3055 		else
3056 			dquot_alloc_block_nofail(inode, diff);
3057 	} else {
3058 		dquot_free_block(inode, diff);
3059 	}
3060 
3061 	f2fs_mark_inode_dirty_sync(inode, true);
3062 	if (clean || recover)
3063 		set_inode_flag(inode, FI_AUTO_RECOVER);
3064 }
3065 
3066 static inline bool f2fs_is_atomic_file(struct inode *inode);
3067 
f2fs_i_size_write(struct inode * inode,loff_t i_size)3068 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3069 {
3070 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3071 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3072 
3073 	if (i_size_read(inode) == i_size)
3074 		return;
3075 
3076 	i_size_write(inode, i_size);
3077 
3078 	if (f2fs_is_atomic_file(inode))
3079 		return;
3080 
3081 	f2fs_mark_inode_dirty_sync(inode, true);
3082 	if (clean || recover)
3083 		set_inode_flag(inode, FI_AUTO_RECOVER);
3084 }
3085 
f2fs_i_depth_write(struct inode * inode,unsigned int depth)3086 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3087 {
3088 	F2FS_I(inode)->i_current_depth = depth;
3089 	f2fs_mark_inode_dirty_sync(inode, true);
3090 }
3091 
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)3092 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3093 					unsigned int count)
3094 {
3095 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
3096 	f2fs_mark_inode_dirty_sync(inode, true);
3097 }
3098 
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)3099 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3100 {
3101 	F2FS_I(inode)->i_xattr_nid = xnid;
3102 	f2fs_mark_inode_dirty_sync(inode, true);
3103 }
3104 
f2fs_i_pino_write(struct inode * inode,nid_t pino)3105 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3106 {
3107 	F2FS_I(inode)->i_pino = pino;
3108 	f2fs_mark_inode_dirty_sync(inode, true);
3109 }
3110 
get_inline_info(struct inode * inode,struct f2fs_inode * ri)3111 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3112 {
3113 	struct f2fs_inode_info *fi = F2FS_I(inode);
3114 
3115 	if (ri->i_inline & F2FS_INLINE_XATTR)
3116 		set_bit(FI_INLINE_XATTR, fi->flags);
3117 	if (ri->i_inline & F2FS_INLINE_DATA)
3118 		set_bit(FI_INLINE_DATA, fi->flags);
3119 	if (ri->i_inline & F2FS_INLINE_DENTRY)
3120 		set_bit(FI_INLINE_DENTRY, fi->flags);
3121 	if (ri->i_inline & F2FS_DATA_EXIST)
3122 		set_bit(FI_DATA_EXIST, fi->flags);
3123 	if (ri->i_inline & F2FS_INLINE_DOTS)
3124 		set_bit(FI_INLINE_DOTS, fi->flags);
3125 	if (ri->i_inline & F2FS_EXTRA_ATTR)
3126 		set_bit(FI_EXTRA_ATTR, fi->flags);
3127 	if (ri->i_inline & F2FS_PIN_FILE)
3128 		set_bit(FI_PIN_FILE, fi->flags);
3129 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3130 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
3131 }
3132 
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)3133 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3134 {
3135 	ri->i_inline = 0;
3136 
3137 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3138 		ri->i_inline |= F2FS_INLINE_XATTR;
3139 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
3140 		ri->i_inline |= F2FS_INLINE_DATA;
3141 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3142 		ri->i_inline |= F2FS_INLINE_DENTRY;
3143 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
3144 		ri->i_inline |= F2FS_DATA_EXIST;
3145 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
3146 		ri->i_inline |= F2FS_INLINE_DOTS;
3147 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3148 		ri->i_inline |= F2FS_EXTRA_ATTR;
3149 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3150 		ri->i_inline |= F2FS_PIN_FILE;
3151 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3152 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
3153 }
3154 
f2fs_has_extra_attr(struct inode * inode)3155 static inline int f2fs_has_extra_attr(struct inode *inode)
3156 {
3157 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3158 }
3159 
f2fs_has_inline_xattr(struct inode * inode)3160 static inline int f2fs_has_inline_xattr(struct inode *inode)
3161 {
3162 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
3163 }
3164 
f2fs_compressed_file(struct inode * inode)3165 static inline int f2fs_compressed_file(struct inode *inode)
3166 {
3167 	return S_ISREG(inode->i_mode) &&
3168 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3169 }
3170 
f2fs_need_compress_data(struct inode * inode)3171 static inline bool f2fs_need_compress_data(struct inode *inode)
3172 {
3173 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3174 
3175 	if (!f2fs_compressed_file(inode))
3176 		return false;
3177 
3178 	if (compress_mode == COMPR_MODE_FS)
3179 		return true;
3180 	else if (compress_mode == COMPR_MODE_USER &&
3181 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3182 		return true;
3183 
3184 	return false;
3185 }
3186 
addrs_per_inode(struct inode * inode)3187 static inline unsigned int addrs_per_inode(struct inode *inode)
3188 {
3189 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3190 				get_inline_xattr_addrs(inode);
3191 
3192 	if (!f2fs_compressed_file(inode))
3193 		return addrs;
3194 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3195 }
3196 
addrs_per_block(struct inode * inode)3197 static inline unsigned int addrs_per_block(struct inode *inode)
3198 {
3199 	if (!f2fs_compressed_file(inode))
3200 		return DEF_ADDRS_PER_BLOCK;
3201 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3202 }
3203 
inline_xattr_addr(struct inode * inode,struct page * page)3204 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3205 {
3206 	struct f2fs_inode *ri = F2FS_INODE(page);
3207 
3208 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3209 					get_inline_xattr_addrs(inode)]);
3210 }
3211 
inline_xattr_size(struct inode * inode)3212 static inline int inline_xattr_size(struct inode *inode)
3213 {
3214 	if (f2fs_has_inline_xattr(inode))
3215 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3216 	return 0;
3217 }
3218 
f2fs_has_inline_data(struct inode * inode)3219 static inline int f2fs_has_inline_data(struct inode *inode)
3220 {
3221 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3222 }
3223 
f2fs_exist_data(struct inode * inode)3224 static inline int f2fs_exist_data(struct inode *inode)
3225 {
3226 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3227 }
3228 
f2fs_has_inline_dots(struct inode * inode)3229 static inline int f2fs_has_inline_dots(struct inode *inode)
3230 {
3231 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
3232 }
3233 
f2fs_is_mmap_file(struct inode * inode)3234 static inline int f2fs_is_mmap_file(struct inode *inode)
3235 {
3236 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3237 }
3238 
f2fs_is_pinned_file(struct inode * inode)3239 static inline bool f2fs_is_pinned_file(struct inode *inode)
3240 {
3241 	return is_inode_flag_set(inode, FI_PIN_FILE);
3242 }
3243 
f2fs_is_atomic_file(struct inode * inode)3244 static inline bool f2fs_is_atomic_file(struct inode *inode)
3245 {
3246 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3247 }
3248 
f2fs_is_cow_file(struct inode * inode)3249 static inline bool f2fs_is_cow_file(struct inode *inode)
3250 {
3251 	return is_inode_flag_set(inode, FI_COW_FILE);
3252 }
3253 
f2fs_is_first_block_written(struct inode * inode)3254 static inline bool f2fs_is_first_block_written(struct inode *inode)
3255 {
3256 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3257 }
3258 
f2fs_is_drop_cache(struct inode * inode)3259 static inline bool f2fs_is_drop_cache(struct inode *inode)
3260 {
3261 	return is_inode_flag_set(inode, FI_DROP_CACHE);
3262 }
3263 
inline_data_addr(struct inode * inode,struct page * page)3264 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3265 {
3266 	struct f2fs_inode *ri = F2FS_INODE(page);
3267 	int extra_size = get_extra_isize(inode);
3268 
3269 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3270 }
3271 
f2fs_has_inline_dentry(struct inode * inode)3272 static inline int f2fs_has_inline_dentry(struct inode *inode)
3273 {
3274 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3275 }
3276 
is_file(struct inode * inode,int type)3277 static inline int is_file(struct inode *inode, int type)
3278 {
3279 	return F2FS_I(inode)->i_advise & type;
3280 }
3281 
set_file(struct inode * inode,int type)3282 static inline void set_file(struct inode *inode, int type)
3283 {
3284 	if (is_file(inode, type))
3285 		return;
3286 	F2FS_I(inode)->i_advise |= type;
3287 	f2fs_mark_inode_dirty_sync(inode, true);
3288 }
3289 
clear_file(struct inode * inode,int type)3290 static inline void clear_file(struct inode *inode, int type)
3291 {
3292 	if (!is_file(inode, type))
3293 		return;
3294 	F2FS_I(inode)->i_advise &= ~type;
3295 	f2fs_mark_inode_dirty_sync(inode, true);
3296 }
3297 
f2fs_is_time_consistent(struct inode * inode)3298 static inline bool f2fs_is_time_consistent(struct inode *inode)
3299 {
3300 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3301 		return false;
3302 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
3303 		return false;
3304 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3305 		return false;
3306 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
3307 						&F2FS_I(inode)->i_crtime))
3308 		return false;
3309 	return true;
3310 }
3311 
f2fs_skip_inode_update(struct inode * inode,int dsync)3312 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3313 {
3314 	bool ret;
3315 
3316 	if (dsync) {
3317 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3318 
3319 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3320 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3321 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3322 		return ret;
3323 	}
3324 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3325 			file_keep_isize(inode) ||
3326 			i_size_read(inode) & ~PAGE_MASK)
3327 		return false;
3328 
3329 	if (!f2fs_is_time_consistent(inode))
3330 		return false;
3331 
3332 	spin_lock(&F2FS_I(inode)->i_size_lock);
3333 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3334 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3335 
3336 	return ret;
3337 }
3338 
f2fs_readonly(struct super_block * sb)3339 static inline bool f2fs_readonly(struct super_block *sb)
3340 {
3341 	return sb_rdonly(sb);
3342 }
3343 
f2fs_cp_error(struct f2fs_sb_info * sbi)3344 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3345 {
3346 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3347 }
3348 
is_dot_dotdot(const u8 * name,size_t len)3349 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3350 {
3351 	if (len == 1 && name[0] == '.')
3352 		return true;
3353 
3354 	if (len == 2 && name[0] == '.' && name[1] == '.')
3355 		return true;
3356 
3357 	return false;
3358 }
3359 
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3360 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3361 					size_t size, gfp_t flags)
3362 {
3363 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
3364 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3365 		return NULL;
3366 	}
3367 
3368 	return kmalloc(size, flags);
3369 }
3370 
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3371 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3372 					size_t size, gfp_t flags)
3373 {
3374 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3375 }
3376 
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3377 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3378 					size_t size, gfp_t flags)
3379 {
3380 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3381 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3382 		return NULL;
3383 	}
3384 
3385 	return kvmalloc(size, flags);
3386 }
3387 
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3388 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3389 					size_t size, gfp_t flags)
3390 {
3391 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3392 }
3393 
get_extra_isize(struct inode * inode)3394 static inline int get_extra_isize(struct inode *inode)
3395 {
3396 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3397 }
3398 
get_inline_xattr_addrs(struct inode * inode)3399 static inline int get_inline_xattr_addrs(struct inode *inode)
3400 {
3401 	return F2FS_I(inode)->i_inline_xattr_size;
3402 }
3403 
3404 #define f2fs_get_inode_mode(i) \
3405 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3406 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3407 
3408 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3409 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3410 	offsetof(struct f2fs_inode, i_extra_isize))	\
3411 
3412 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3413 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3414 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3415 		sizeof((f2fs_inode)->field))			\
3416 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3417 
3418 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3419 
3420 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3421 
3422 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3423 					block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3424 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3425 					block_t blkaddr, int type)
3426 {
3427 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3428 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3429 			 blkaddr, type);
3430 		f2fs_bug_on(sbi, 1);
3431 	}
3432 }
3433 
__is_valid_data_blkaddr(block_t blkaddr)3434 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3435 {
3436 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3437 			blkaddr == COMPRESS_ADDR)
3438 		return false;
3439 	return true;
3440 }
3441 
3442 /*
3443  * file.c
3444  */
3445 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3446 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3447 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3448 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3449 int f2fs_truncate(struct inode *inode);
3450 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
3451 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3452 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3453 		 struct iattr *attr);
3454 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3455 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3456 int f2fs_precache_extents(struct inode *inode);
3457 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3458 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3459 		      struct dentry *dentry, struct fileattr *fa);
3460 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3461 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3462 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3463 int f2fs_pin_file_control(struct inode *inode, bool inc);
3464 
3465 /*
3466  * inode.c
3467  */
3468 void f2fs_set_inode_flags(struct inode *inode);
3469 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3470 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3471 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3472 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3473 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3474 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3475 void f2fs_update_inode_page(struct inode *inode);
3476 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3477 void f2fs_evict_inode(struct inode *inode);
3478 void f2fs_handle_failed_inode(struct inode *inode);
3479 
3480 /*
3481  * namei.c
3482  */
3483 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3484 							bool hot, bool set);
3485 struct dentry *f2fs_get_parent(struct dentry *child);
3486 int f2fs_get_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
3487 		     struct inode **new_inode);
3488 
3489 /*
3490  * dir.c
3491  */
3492 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3493 int f2fs_init_casefolded_name(const struct inode *dir,
3494 			      struct f2fs_filename *fname);
3495 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3496 			int lookup, struct f2fs_filename *fname);
3497 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3498 			struct f2fs_filename *fname);
3499 void f2fs_free_filename(struct f2fs_filename *fname);
3500 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3501 			const struct f2fs_filename *fname, int *max_slots);
3502 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3503 			unsigned int start_pos, struct fscrypt_str *fstr);
3504 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3505 			struct f2fs_dentry_ptr *d);
3506 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3507 			const struct f2fs_filename *fname, struct page *dpage);
3508 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3509 			unsigned int current_depth);
3510 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3511 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3512 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3513 					 const struct f2fs_filename *fname,
3514 					 struct page **res_page);
3515 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3516 			const struct qstr *child, struct page **res_page);
3517 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3518 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3519 			struct page **page);
3520 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3521 			struct page *page, struct inode *inode);
3522 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3523 			  const struct f2fs_filename *fname);
3524 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3525 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3526 			unsigned int bit_pos);
3527 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3528 			struct inode *inode, nid_t ino, umode_t mode);
3529 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3530 			struct inode *inode, nid_t ino, umode_t mode);
3531 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3532 			struct inode *inode, nid_t ino, umode_t mode);
3533 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3534 			struct inode *dir, struct inode *inode);
3535 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3536 bool f2fs_empty_dir(struct inode *dir);
3537 
f2fs_add_link(struct dentry * dentry,struct inode * inode)3538 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3539 {
3540 	if (fscrypt_is_nokey_name(dentry))
3541 		return -ENOKEY;
3542 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3543 				inode, inode->i_ino, inode->i_mode);
3544 }
3545 
3546 /*
3547  * super.c
3548  */
3549 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3550 void f2fs_inode_synced(struct inode *inode);
3551 int f2fs_dquot_initialize(struct inode *inode);
3552 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3553 int f2fs_quota_sync(struct super_block *sb, int type);
3554 loff_t max_file_blocks(struct inode *inode);
3555 void f2fs_quota_off_umount(struct super_block *sb);
3556 void f2fs_handle_stop(struct f2fs_sb_info *sbi, unsigned char reason);
3557 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3558 int f2fs_sync_fs(struct super_block *sb, int sync);
3559 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3560 
3561 /*
3562  * hash.c
3563  */
3564 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3565 
3566 /*
3567  * node.c
3568  */
3569 struct node_info;
3570 
3571 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3572 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3573 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3574 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3575 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3576 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3577 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3578 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3579 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3580 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3581 				struct node_info *ni, bool checkpoint_context);
3582 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3583 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3584 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3585 int f2fs_truncate_xattr_node(struct inode *inode);
3586 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3587 					unsigned int seq_id);
3588 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3589 int f2fs_remove_inode_page(struct inode *inode);
3590 struct page *f2fs_new_inode_page(struct inode *inode);
3591 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3592 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3593 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3594 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3595 int f2fs_move_node_page(struct page *node_page, int gc_type);
3596 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3597 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3598 			struct writeback_control *wbc, bool atomic,
3599 			unsigned int *seq_id);
3600 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3601 			struct writeback_control *wbc,
3602 			bool do_balance, enum iostat_type io_type);
3603 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3604 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3605 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3606 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3607 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3608 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3609 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3610 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3611 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3612 			unsigned int segno, struct f2fs_summary_block *sum);
3613 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3614 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3615 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3616 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3617 int __init f2fs_create_node_manager_caches(void);
3618 void f2fs_destroy_node_manager_caches(void);
3619 
3620 /*
3621  * segment.c
3622  */
3623 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3624 int f2fs_commit_atomic_write(struct inode *inode);
3625 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3626 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3627 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3628 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3629 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3630 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3631 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3632 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3633 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3634 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3635 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3636 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3637 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3638 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3639 					struct cp_control *cpc);
3640 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3641 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3642 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3643 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3644 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3645 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3646 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3647 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3648 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3649 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3650 			unsigned int *newseg, bool new_sec, int dir);
3651 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3652 					unsigned int start, unsigned int end);
3653 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3654 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3655 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3656 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3657 					struct cp_control *cpc);
3658 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3659 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3660 					block_t blk_addr);
3661 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3662 						enum iostat_type io_type);
3663 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3664 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3665 			struct f2fs_io_info *fio);
3666 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3667 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3668 			block_t old_blkaddr, block_t new_blkaddr,
3669 			bool recover_curseg, bool recover_newaddr,
3670 			bool from_gc);
3671 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3672 			block_t old_addr, block_t new_addr,
3673 			unsigned char version, bool recover_curseg,
3674 			bool recover_newaddr);
3675 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3676 			block_t old_blkaddr, block_t *new_blkaddr,
3677 			struct f2fs_summary *sum, int type,
3678 			struct f2fs_io_info *fio);
3679 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3680 					block_t blkaddr, unsigned int blkcnt);
3681 void f2fs_wait_on_page_writeback(struct page *page,
3682 			enum page_type type, bool ordered, bool locked);
3683 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3684 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3685 								block_t len);
3686 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3687 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3688 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3689 			unsigned int val, int alloc);
3690 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3691 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3692 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3693 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3694 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3695 int __init f2fs_create_segment_manager_caches(void);
3696 void f2fs_destroy_segment_manager_caches(void);
3697 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3698 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3699 			enum page_type type, enum temp_type temp);
3700 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3701 			unsigned int segno);
3702 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3703 			unsigned int segno);
3704 
3705 #define DEF_FRAGMENT_SIZE	4
3706 #define MIN_FRAGMENT_SIZE	1
3707 #define MAX_FRAGMENT_SIZE	512
3708 
f2fs_need_rand_seg(struct f2fs_sb_info * sbi)3709 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3710 {
3711 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3712 		F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3713 }
3714 
3715 /*
3716  * checkpoint.c
3717  */
3718 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3719 							unsigned char reason);
3720 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3721 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3722 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3723 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3724 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3725 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3726 					block_t blkaddr, int type);
3727 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3728 			int type, bool sync);
3729 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3730 							unsigned int ra_blocks);
3731 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3732 			long nr_to_write, enum iostat_type io_type);
3733 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3734 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3735 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3736 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3737 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3738 					unsigned int devidx, int type);
3739 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3740 					unsigned int devidx, int type);
3741 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3742 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3743 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3744 void f2fs_add_orphan_inode(struct inode *inode);
3745 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3746 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3747 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3748 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3749 void f2fs_remove_dirty_inode(struct inode *inode);
3750 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3751 								bool from_cp);
3752 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3753 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3754 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3755 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3756 int __init f2fs_create_checkpoint_caches(void);
3757 void f2fs_destroy_checkpoint_caches(void);
3758 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3759 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3760 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3761 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3762 
3763 /*
3764  * data.c
3765  */
3766 int __init f2fs_init_bioset(void);
3767 void f2fs_destroy_bioset(void);
3768 int f2fs_init_bio_entry_cache(void);
3769 void f2fs_destroy_bio_entry_cache(void);
3770 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3771 				struct bio *bio, enum page_type type);
3772 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3773 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3774 				struct inode *inode, struct page *page,
3775 				nid_t ino, enum page_type type);
3776 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3777 					struct bio **bio, struct page *page);
3778 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3779 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3780 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3781 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3782 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3783 			block_t blk_addr, struct bio *bio);
3784 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3785 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3786 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3787 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3788 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3789 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3790 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3791 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3792 			int op_flags, bool for_write);
3793 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3794 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3795 			bool for_write);
3796 struct page *f2fs_get_new_data_page(struct inode *inode,
3797 			struct page *ipage, pgoff_t index, bool new_i_size);
3798 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3799 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3800 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3801 			int create, int flag);
3802 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3803 			u64 start, u64 len);
3804 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3805 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3806 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3807 int f2fs_write_single_data_page(struct page *page, int *submitted,
3808 				struct bio **bio, sector_t *last_block,
3809 				struct writeback_control *wbc,
3810 				enum iostat_type io_type,
3811 				int compr_blocks, bool allow_balance);
3812 void f2fs_write_failed(struct inode *inode, loff_t to);
3813 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3814 			unsigned int length);
3815 int f2fs_release_page(struct page *page, gfp_t wait);
3816 #ifdef CONFIG_MIGRATION
3817 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3818 			struct page *page, enum migrate_mode mode);
3819 #endif
3820 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3821 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3822 int f2fs_init_post_read_processing(void);
3823 void f2fs_destroy_post_read_processing(void);
3824 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3825 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3826 extern const struct iomap_ops f2fs_iomap_ops;
3827 
3828 /*
3829  * gc.c
3830  */
3831 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3832 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3833 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3834 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, bool force,
3835 			unsigned int segno);
3836 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3837 int f2fs_resize_fs(struct file *filp, __u64 block_count);
3838 int __init f2fs_create_garbage_collection_cache(void);
3839 void f2fs_destroy_garbage_collection_cache(void);
3840 
3841 /*
3842  * recovery.c
3843  */
3844 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3845 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3846 int __init f2fs_create_recovery_cache(void);
3847 void f2fs_destroy_recovery_cache(void);
3848 
3849 /*
3850  * debug.c
3851  */
3852 #ifdef CONFIG_F2FS_STAT_FS
3853 struct f2fs_stat_info {
3854 	struct list_head stat_list;
3855 	struct f2fs_sb_info *sbi;
3856 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3857 	int main_area_segs, main_area_sections, main_area_zones;
3858 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3859 	unsigned long long hit_total, total_ext;
3860 	int ext_tree, zombie_tree, ext_node;
3861 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3862 	int ndirty_data, ndirty_qdata;
3863 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3864 	int nats, dirty_nats, sits, dirty_sits;
3865 	int free_nids, avail_nids, alloc_nids;
3866 	int total_count, utilization;
3867 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3868 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3869 	int nr_dio_read, nr_dio_write;
3870 	unsigned int io_skip_bggc, other_skip_bggc;
3871 	int nr_flushing, nr_flushed, flush_list_empty;
3872 	int nr_discarding, nr_discarded;
3873 	int nr_discard_cmd;
3874 	unsigned int undiscard_blks;
3875 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3876 	unsigned int cur_ckpt_time, peak_ckpt_time;
3877 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3878 	int compr_inode;
3879 	unsigned long long compr_blocks;
3880 	int aw_cnt, max_aw_cnt;
3881 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3882 	unsigned int bimodal, avg_vblocks;
3883 	int util_free, util_valid, util_invalid;
3884 	int rsvd_segs, overp_segs;
3885 	int dirty_count, node_pages, meta_pages, compress_pages;
3886 	int compress_page_hit;
3887 	int prefree_count, call_count, cp_count, bg_cp_count;
3888 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3889 	int bg_node_segs, bg_data_segs;
3890 	int tot_blks, data_blks, node_blks;
3891 	int bg_data_blks, bg_node_blks;
3892 	int curseg[NR_CURSEG_TYPE];
3893 	int cursec[NR_CURSEG_TYPE];
3894 	int curzone[NR_CURSEG_TYPE];
3895 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3896 	unsigned int full_seg[NR_CURSEG_TYPE];
3897 	unsigned int valid_blks[NR_CURSEG_TYPE];
3898 
3899 	unsigned int meta_count[META_MAX];
3900 	unsigned int segment_count[2];
3901 	unsigned int block_count[2];
3902 	unsigned int inplace_count;
3903 	unsigned long long base_mem, cache_mem, page_mem;
3904 };
3905 
F2FS_STAT(struct f2fs_sb_info * sbi)3906 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3907 {
3908 	return (struct f2fs_stat_info *)sbi->stat_info;
3909 }
3910 
3911 #define stat_inc_cp_count(si)		((si)->cp_count++)
3912 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3913 #define stat_inc_call_count(si)		((si)->call_count++)
3914 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3915 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3916 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3917 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3918 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3919 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3920 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3921 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3922 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3923 #define stat_inc_inline_xattr(inode)					\
3924 	do {								\
3925 		if (f2fs_has_inline_xattr(inode))			\
3926 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3927 	} while (0)
3928 #define stat_dec_inline_xattr(inode)					\
3929 	do {								\
3930 		if (f2fs_has_inline_xattr(inode))			\
3931 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3932 	} while (0)
3933 #define stat_inc_inline_inode(inode)					\
3934 	do {								\
3935 		if (f2fs_has_inline_data(inode))			\
3936 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3937 	} while (0)
3938 #define stat_dec_inline_inode(inode)					\
3939 	do {								\
3940 		if (f2fs_has_inline_data(inode))			\
3941 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3942 	} while (0)
3943 #define stat_inc_inline_dir(inode)					\
3944 	do {								\
3945 		if (f2fs_has_inline_dentry(inode))			\
3946 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3947 	} while (0)
3948 #define stat_dec_inline_dir(inode)					\
3949 	do {								\
3950 		if (f2fs_has_inline_dentry(inode))			\
3951 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3952 	} while (0)
3953 #define stat_inc_compr_inode(inode)					\
3954 	do {								\
3955 		if (f2fs_compressed_file(inode))			\
3956 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3957 	} while (0)
3958 #define stat_dec_compr_inode(inode)					\
3959 	do {								\
3960 		if (f2fs_compressed_file(inode))			\
3961 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3962 	} while (0)
3963 #define stat_add_compr_blocks(inode, blocks)				\
3964 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3965 #define stat_sub_compr_blocks(inode, blocks)				\
3966 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3967 #define stat_inc_atomic_inode(inode)					\
3968 			(atomic_inc(&F2FS_I_SB(inode)->atomic_files))
3969 #define stat_dec_atomic_inode(inode)					\
3970 			(atomic_dec(&F2FS_I_SB(inode)->atomic_files))
3971 #define stat_inc_meta_count(sbi, blkaddr)				\
3972 	do {								\
3973 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3974 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3975 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3976 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3977 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3978 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3979 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3980 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3981 	} while (0)
3982 #define stat_inc_seg_type(sbi, curseg)					\
3983 		((sbi)->segment_count[(curseg)->alloc_type]++)
3984 #define stat_inc_block_count(sbi, curseg)				\
3985 		((sbi)->block_count[(curseg)->alloc_type]++)
3986 #define stat_inc_inplace_blocks(sbi)					\
3987 		(atomic_inc(&(sbi)->inplace_count))
3988 #define stat_update_max_atomic_write(inode)				\
3989 	do {								\
3990 		int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files);	\
3991 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3992 		if (cur > max)						\
3993 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3994 	} while (0)
3995 #define stat_inc_seg_count(sbi, type, gc_type)				\
3996 	do {								\
3997 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3998 		si->tot_segs++;						\
3999 		if ((type) == SUM_TYPE_DATA) {				\
4000 			si->data_segs++;				\
4001 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
4002 		} else {						\
4003 			si->node_segs++;				\
4004 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
4005 		}							\
4006 	} while (0)
4007 
4008 #define stat_inc_tot_blk_count(si, blks)				\
4009 	((si)->tot_blks += (blks))
4010 
4011 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
4012 	do {								\
4013 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4014 		stat_inc_tot_blk_count(si, blks);			\
4015 		si->data_blks += (blks);				\
4016 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4017 	} while (0)
4018 
4019 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
4020 	do {								\
4021 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4022 		stat_inc_tot_blk_count(si, blks);			\
4023 		si->node_blks += (blks);				\
4024 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4025 	} while (0)
4026 
4027 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4028 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4029 void __init f2fs_create_root_stats(void);
4030 void f2fs_destroy_root_stats(void);
4031 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4032 #else
4033 #define stat_inc_cp_count(si)				do { } while (0)
4034 #define stat_inc_bg_cp_count(si)			do { } while (0)
4035 #define stat_inc_call_count(si)				do { } while (0)
4036 #define stat_inc_bggc_count(si)				do { } while (0)
4037 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
4038 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
4039 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
4040 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
4041 #define stat_inc_total_hit(sbi)				do { } while (0)
4042 #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
4043 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
4044 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
4045 #define stat_inc_inline_xattr(inode)			do { } while (0)
4046 #define stat_dec_inline_xattr(inode)			do { } while (0)
4047 #define stat_inc_inline_inode(inode)			do { } while (0)
4048 #define stat_dec_inline_inode(inode)			do { } while (0)
4049 #define stat_inc_inline_dir(inode)			do { } while (0)
4050 #define stat_dec_inline_dir(inode)			do { } while (0)
4051 #define stat_inc_compr_inode(inode)			do { } while (0)
4052 #define stat_dec_compr_inode(inode)			do { } while (0)
4053 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
4054 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
4055 #define stat_inc_atomic_inode(inode)			do { } while (0)
4056 #define stat_dec_atomic_inode(inode)			do { } while (0)
4057 #define stat_update_max_atomic_write(inode)		do { } while (0)
4058 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
4059 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
4060 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
4061 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
4062 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
4063 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
4064 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
4065 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
4066 
f2fs_build_stats(struct f2fs_sb_info * sbi)4067 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)4068 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)4069 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)4070 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)4071 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4072 #endif
4073 
4074 extern const struct file_operations f2fs_dir_operations;
4075 extern const struct file_operations f2fs_file_operations;
4076 extern const struct inode_operations f2fs_file_inode_operations;
4077 extern const struct address_space_operations f2fs_dblock_aops;
4078 extern const struct address_space_operations f2fs_node_aops;
4079 extern const struct address_space_operations f2fs_meta_aops;
4080 extern const struct inode_operations f2fs_dir_inode_operations;
4081 extern const struct inode_operations f2fs_symlink_inode_operations;
4082 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4083 extern const struct inode_operations f2fs_special_inode_operations;
4084 extern struct kmem_cache *f2fs_inode_entry_slab;
4085 
4086 /*
4087  * inline.c
4088  */
4089 bool f2fs_may_inline_data(struct inode *inode);
4090 bool f2fs_sanity_check_inline_data(struct inode *inode);
4091 bool f2fs_may_inline_dentry(struct inode *inode);
4092 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
4093 void f2fs_truncate_inline_inode(struct inode *inode,
4094 						struct page *ipage, u64 from);
4095 int f2fs_read_inline_data(struct inode *inode, struct page *page);
4096 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4097 int f2fs_convert_inline_inode(struct inode *inode);
4098 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4099 int f2fs_write_inline_data(struct inode *inode, struct page *page);
4100 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4101 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4102 					const struct f2fs_filename *fname,
4103 					struct page **res_page);
4104 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4105 			struct page *ipage);
4106 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4107 			struct inode *inode, nid_t ino, umode_t mode);
4108 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4109 				struct page *page, struct inode *dir,
4110 				struct inode *inode);
4111 bool f2fs_empty_inline_dir(struct inode *dir);
4112 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4113 			struct fscrypt_str *fstr);
4114 int f2fs_inline_data_fiemap(struct inode *inode,
4115 			struct fiemap_extent_info *fieinfo,
4116 			__u64 start, __u64 len);
4117 
4118 /*
4119  * shrinker.c
4120  */
4121 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4122 			struct shrink_control *sc);
4123 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4124 			struct shrink_control *sc);
4125 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4126 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4127 
4128 /*
4129  * extent_cache.c
4130  */
4131 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
4132 				struct rb_entry *cached_re, unsigned int ofs);
4133 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
4134 				struct rb_root_cached *root,
4135 				struct rb_node **parent,
4136 				unsigned long long key, bool *left_most);
4137 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
4138 				struct rb_root_cached *root,
4139 				struct rb_node **parent,
4140 				unsigned int ofs, bool *leftmost);
4141 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
4142 		struct rb_entry *cached_re, unsigned int ofs,
4143 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
4144 		struct rb_node ***insert_p, struct rb_node **insert_parent,
4145 		bool force, bool *leftmost);
4146 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
4147 				struct rb_root_cached *root, bool check_key);
4148 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
4149 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
4150 void f2fs_drop_extent_tree(struct inode *inode);
4151 unsigned int f2fs_destroy_extent_node(struct inode *inode);
4152 void f2fs_destroy_extent_tree(struct inode *inode);
4153 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
4154 			struct extent_info *ei);
4155 void f2fs_update_extent_cache(struct dnode_of_data *dn);
4156 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
4157 			pgoff_t fofs, block_t blkaddr, unsigned int len);
4158 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4159 int __init f2fs_create_extent_cache(void);
4160 void f2fs_destroy_extent_cache(void);
4161 
4162 /*
4163  * sysfs.c
4164  */
4165 #define MIN_RA_MUL	2
4166 #define MAX_RA_MUL	256
4167 
4168 int __init f2fs_init_sysfs(void);
4169 void f2fs_exit_sysfs(void);
4170 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4171 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4172 
4173 /* verity.c */
4174 extern const struct fsverity_operations f2fs_verityops;
4175 
4176 /*
4177  * crypto support
4178  */
f2fs_encrypted_file(struct inode * inode)4179 static inline bool f2fs_encrypted_file(struct inode *inode)
4180 {
4181 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4182 }
4183 
f2fs_set_encrypted_inode(struct inode * inode)4184 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4185 {
4186 #ifdef CONFIG_FS_ENCRYPTION
4187 	file_set_encrypt(inode);
4188 	f2fs_set_inode_flags(inode);
4189 #endif
4190 }
4191 
4192 /*
4193  * Returns true if the reads of the inode's data need to undergo some
4194  * postprocessing step, like decryption or authenticity verification.
4195  */
f2fs_post_read_required(struct inode * inode)4196 static inline bool f2fs_post_read_required(struct inode *inode)
4197 {
4198 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4199 		f2fs_compressed_file(inode);
4200 }
4201 
4202 /*
4203  * compress.c
4204  */
4205 #ifdef CONFIG_F2FS_FS_COMPRESSION
4206 bool f2fs_is_compressed_page(struct page *page);
4207 struct page *f2fs_compress_control_page(struct page *page);
4208 int f2fs_prepare_compress_overwrite(struct inode *inode,
4209 			struct page **pagep, pgoff_t index, void **fsdata);
4210 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4211 					pgoff_t index, unsigned copied);
4212 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4213 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4214 bool f2fs_is_compress_backend_ready(struct inode *inode);
4215 int f2fs_init_compress_mempool(void);
4216 void f2fs_destroy_compress_mempool(void);
4217 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4218 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4219 				block_t blkaddr, bool in_task);
4220 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4221 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4222 bool f2fs_all_cluster_page_loaded(struct compress_ctx *cc, struct pagevec *pvec,
4223 				int index, int nr_pages);
4224 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4225 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4226 int f2fs_write_multi_pages(struct compress_ctx *cc,
4227 						int *submitted,
4228 						struct writeback_control *wbc,
4229 						enum iostat_type io_type);
4230 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4231 void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4232 				pgoff_t fofs, block_t blkaddr, unsigned int llen,
4233 				unsigned int c_len);
4234 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4235 				unsigned nr_pages, sector_t *last_block_in_bio,
4236 				bool is_readahead, bool for_write);
4237 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4238 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4239 				bool in_task);
4240 void f2fs_put_page_dic(struct page *page, bool in_task);
4241 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn);
4242 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4243 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4244 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4245 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4246 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4247 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4248 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4249 int __init f2fs_init_compress_cache(void);
4250 void f2fs_destroy_compress_cache(void);
4251 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4252 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4253 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4254 						nid_t ino, block_t blkaddr);
4255 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4256 								block_t blkaddr);
4257 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4258 #define inc_compr_inode_stat(inode)					\
4259 	do {								\
4260 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4261 		sbi->compr_new_inode++;					\
4262 	} while (0)
4263 #define add_compr_block_stat(inode, blocks)				\
4264 	do {								\
4265 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4266 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4267 		sbi->compr_written_block += blocks;			\
4268 		sbi->compr_saved_block += diff;				\
4269 	} while (0)
4270 #else
f2fs_is_compressed_page(struct page * page)4271 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)4272 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4273 {
4274 	if (!f2fs_compressed_file(inode))
4275 		return true;
4276 	/* not support compression */
4277 	return false;
4278 }
f2fs_compress_control_page(struct page * page)4279 static inline struct page *f2fs_compress_control_page(struct page *page)
4280 {
4281 	WARN_ON_ONCE(1);
4282 	return ERR_PTR(-EINVAL);
4283 }
f2fs_init_compress_mempool(void)4284 static inline int f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)4285 static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_decompress_cluster(struct decompress_io_ctx * dic,bool in_task)4286 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4287 				bool in_task) { }
f2fs_end_read_compressed_page(struct page * page,bool failed,block_t blkaddr,bool in_task)4288 static inline void f2fs_end_read_compressed_page(struct page *page,
4289 				bool failed, block_t blkaddr, bool in_task)
4290 {
4291 	WARN_ON_ONCE(1);
4292 }
f2fs_put_page_dic(struct page * page,bool in_task)4293 static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4294 {
4295 	WARN_ON_ONCE(1);
4296 }
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn)4297 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; }
f2fs_sanity_check_cluster(struct dnode_of_data * dn)4298 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)4299 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)4300 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)4301 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)4302 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)4303 static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)4304 static inline void f2fs_destroy_compress_cache(void) { }
f2fs_invalidate_compress_page(struct f2fs_sb_info * sbi,block_t blkaddr)4305 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4306 				block_t blkaddr) { }
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct page * page,nid_t ino,block_t blkaddr)4307 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4308 				struct page *page, nid_t ino, block_t blkaddr) { }
f2fs_load_compressed_page(struct f2fs_sb_info * sbi,struct page * page,block_t blkaddr)4309 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4310 				struct page *page, block_t blkaddr) { return false; }
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)4311 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4312 							nid_t ino) { }
4313 #define inc_compr_inode_stat(inode)		do { } while (0)
f2fs_update_extent_tree_range_compressed(struct inode * inode,pgoff_t fofs,block_t blkaddr,unsigned int llen,unsigned int c_len)4314 static inline void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4315 				pgoff_t fofs, block_t blkaddr, unsigned int llen,
4316 				unsigned int c_len) { }
4317 #endif
4318 
set_compress_context(struct inode * inode)4319 static inline int set_compress_context(struct inode *inode)
4320 {
4321 #ifdef CONFIG_F2FS_FS_COMPRESSION
4322 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4323 
4324 	F2FS_I(inode)->i_compress_algorithm =
4325 			F2FS_OPTION(sbi).compress_algorithm;
4326 	F2FS_I(inode)->i_log_cluster_size =
4327 			F2FS_OPTION(sbi).compress_log_size;
4328 	F2FS_I(inode)->i_compress_flag =
4329 			F2FS_OPTION(sbi).compress_chksum ?
4330 				1 << COMPRESS_CHKSUM : 0;
4331 	F2FS_I(inode)->i_cluster_size =
4332 			1 << F2FS_I(inode)->i_log_cluster_size;
4333 	if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4334 		F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4335 			F2FS_OPTION(sbi).compress_level)
4336 		F2FS_I(inode)->i_compress_flag |=
4337 				F2FS_OPTION(sbi).compress_level <<
4338 				COMPRESS_LEVEL_OFFSET;
4339 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4340 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4341 	stat_inc_compr_inode(inode);
4342 	inc_compr_inode_stat(inode);
4343 	f2fs_mark_inode_dirty_sync(inode, true);
4344 	return 0;
4345 #else
4346 	return -EOPNOTSUPP;
4347 #endif
4348 }
4349 
f2fs_disable_compressed_file(struct inode * inode)4350 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4351 {
4352 	struct f2fs_inode_info *fi = F2FS_I(inode);
4353 
4354 	if (!f2fs_compressed_file(inode))
4355 		return true;
4356 	if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
4357 		return false;
4358 
4359 	fi->i_flags &= ~F2FS_COMPR_FL;
4360 	stat_dec_compr_inode(inode);
4361 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4362 	f2fs_mark_inode_dirty_sync(inode, true);
4363 	return true;
4364 }
4365 
4366 #define F2FS_FEATURE_FUNCS(name, flagname) \
4367 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4368 { \
4369 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4370 }
4371 
4372 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4373 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4374 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4375 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4376 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4377 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4378 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4379 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4380 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4381 F2FS_FEATURE_FUNCS(verity, VERITY);
4382 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4383 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4384 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4385 F2FS_FEATURE_FUNCS(readonly, RO);
4386 
f2fs_may_extent_tree(struct inode * inode)4387 static inline bool f2fs_may_extent_tree(struct inode *inode)
4388 {
4389 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4390 
4391 	if (!test_opt(sbi, EXTENT_CACHE) ||
4392 			is_inode_flag_set(inode, FI_NO_EXTENT) ||
4393 			(is_inode_flag_set(inode, FI_COMPRESSED_FILE) &&
4394 			 !f2fs_sb_has_readonly(sbi)))
4395 		return false;
4396 
4397 	/*
4398 	 * for recovered files during mount do not create extents
4399 	 * if shrinker is not registered.
4400 	 */
4401 	if (list_empty(&sbi->s_list))
4402 		return false;
4403 
4404 	return S_ISREG(inode->i_mode);
4405 }
4406 
4407 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4408 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4409 				    block_t blkaddr)
4410 {
4411 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4412 
4413 	return test_bit(zno, FDEV(devi).blkz_seq);
4414 }
4415 #endif
4416 
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4417 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4418 {
4419 	return f2fs_sb_has_blkzoned(sbi);
4420 }
4421 
f2fs_bdev_support_discard(struct block_device * bdev)4422 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4423 {
4424 	return blk_queue_discard(bdev_get_queue(bdev)) ||
4425 	       bdev_is_zoned(bdev);
4426 }
4427 
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4428 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4429 {
4430 	int i;
4431 
4432 	if (!f2fs_is_multi_device(sbi))
4433 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4434 
4435 	for (i = 0; i < sbi->s_ndevs; i++)
4436 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4437 			return true;
4438 	return false;
4439 }
4440 
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4441 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4442 {
4443 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4444 					f2fs_hw_should_discard(sbi);
4445 }
4446 
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4447 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4448 {
4449 	int i;
4450 
4451 	if (!f2fs_is_multi_device(sbi))
4452 		return bdev_read_only(sbi->sb->s_bdev);
4453 
4454 	for (i = 0; i < sbi->s_ndevs; i++)
4455 		if (bdev_read_only(FDEV(i).bdev))
4456 			return true;
4457 	return false;
4458 }
4459 
f2fs_dev_is_readonly(struct f2fs_sb_info * sbi)4460 static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi)
4461 {
4462 	return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi);
4463 }
4464 
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4465 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4466 {
4467 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4468 }
4469 
f2fs_low_mem_mode(struct f2fs_sb_info * sbi)4470 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4471 {
4472 	return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4473 }
4474 
f2fs_may_compress(struct inode * inode)4475 static inline bool f2fs_may_compress(struct inode *inode)
4476 {
4477 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4478 				f2fs_is_atomic_file(inode))
4479 		return false;
4480 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4481 }
4482 
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4483 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4484 						u64 blocks, bool add)
4485 {
4486 	struct f2fs_inode_info *fi = F2FS_I(inode);
4487 	int diff = fi->i_cluster_size - blocks;
4488 
4489 	/* don't update i_compr_blocks if saved blocks were released */
4490 	if (!add && !atomic_read(&fi->i_compr_blocks))
4491 		return;
4492 
4493 	if (add) {
4494 		atomic_add(diff, &fi->i_compr_blocks);
4495 		stat_add_compr_blocks(inode, diff);
4496 	} else {
4497 		atomic_sub(diff, &fi->i_compr_blocks);
4498 		stat_sub_compr_blocks(inode, diff);
4499 	}
4500 	f2fs_mark_inode_dirty_sync(inode, true);
4501 }
4502 
block_unaligned_IO(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4503 static inline int block_unaligned_IO(struct inode *inode,
4504 				struct kiocb *iocb, struct iov_iter *iter)
4505 {
4506 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4507 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4508 	loff_t offset = iocb->ki_pos;
4509 	unsigned long align = offset | iov_iter_alignment(iter);
4510 
4511 	return align & blocksize_mask;
4512 }
4513 
f2fs_allow_multi_device_dio(struct f2fs_sb_info * sbi,int flag)4514 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4515 								int flag)
4516 {
4517 	if (!f2fs_is_multi_device(sbi))
4518 		return false;
4519 	if (flag != F2FS_GET_BLOCK_DIO)
4520 		return false;
4521 	return sbi->aligned_blksize;
4522 }
4523 
f2fs_force_buffered_io(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4524 static inline bool f2fs_force_buffered_io(struct inode *inode,
4525 				struct kiocb *iocb, struct iov_iter *iter)
4526 {
4527 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4528 	int rw = iov_iter_rw(iter);
4529 
4530 	if (!fscrypt_dio_supported(iocb, iter))
4531 		return true;
4532 	if (fsverity_active(inode))
4533 		return true;
4534 	if (f2fs_compressed_file(inode))
4535 		return true;
4536 
4537 	/* disallow direct IO if any of devices has unaligned blksize */
4538 	if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
4539 		return true;
4540 	/*
4541 	 * for blkzoned device, fallback direct IO to buffered IO, so
4542 	 * all IOs can be serialized by log-structured write.
4543 	 */
4544 	if (f2fs_sb_has_blkzoned(sbi))
4545 		return true;
4546 	if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4547 		if (block_unaligned_IO(inode, iocb, iter))
4548 			return true;
4549 		if (F2FS_IO_ALIGNED(sbi))
4550 			return true;
4551 	}
4552 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
4553 		return true;
4554 
4555 	return false;
4556 }
4557 
f2fs_need_verity(const struct inode * inode,pgoff_t idx)4558 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4559 {
4560 	return fsverity_active(inode) &&
4561 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4562 }
4563 
4564 #ifdef CONFIG_F2FS_FAULT_INJECTION
4565 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4566 							unsigned int type);
4567 #else
4568 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4569 #endif
4570 
is_journalled_quota(struct f2fs_sb_info * sbi)4571 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4572 {
4573 #ifdef CONFIG_QUOTA
4574 	if (f2fs_sb_has_quota_ino(sbi))
4575 		return true;
4576 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4577 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4578 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4579 		return true;
4580 #endif
4581 	return false;
4582 }
4583 
f2fs_block_unit_discard(struct f2fs_sb_info * sbi)4584 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4585 {
4586 	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4587 }
4588 
f2fs_io_schedule_timeout(long timeout)4589 static inline void f2fs_io_schedule_timeout(long timeout)
4590 {
4591 	set_current_state(TASK_UNINTERRUPTIBLE);
4592 	io_schedule_timeout(timeout);
4593 }
4594 
f2fs_handle_page_eio(struct f2fs_sb_info * sbi,pgoff_t ofs,enum page_type type)4595 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs,
4596 					enum page_type type)
4597 {
4598 	if (unlikely(f2fs_cp_error(sbi)))
4599 		return;
4600 
4601 	if (ofs == sbi->page_eio_ofs[type]) {
4602 		if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4603 			set_ckpt_flags(sbi, CP_ERROR_FLAG);
4604 	} else {
4605 		sbi->page_eio_ofs[type] = ofs;
4606 		sbi->page_eio_cnt[type] = 0;
4607 	}
4608 }
4609 
4610 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4611 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4612 
4613 #endif /* _LINUX_F2FS_H */
4614