1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/segment.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
18 #include <linux/random.h>
19
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include "gc.h"
24 #include "iostat.h"
25 #include <trace/events/f2fs.h>
26
27 #define __reverse_ffz(x) __reverse_ffs(~(x))
28
29 static struct kmem_cache *discard_entry_slab;
30 static struct kmem_cache *discard_cmd_slab;
31 static struct kmem_cache *sit_entry_set_slab;
32 static struct kmem_cache *revoke_entry_slab;
33
__reverse_ulong(unsigned char * str)34 static unsigned long __reverse_ulong(unsigned char *str)
35 {
36 unsigned long tmp = 0;
37 int shift = 24, idx = 0;
38
39 #if BITS_PER_LONG == 64
40 shift = 56;
41 #endif
42 while (shift >= 0) {
43 tmp |= (unsigned long)str[idx++] << shift;
44 shift -= BITS_PER_BYTE;
45 }
46 return tmp;
47 }
48
49 /*
50 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
51 * MSB and LSB are reversed in a byte by f2fs_set_bit.
52 */
__reverse_ffs(unsigned long word)53 static inline unsigned long __reverse_ffs(unsigned long word)
54 {
55 int num = 0;
56
57 #if BITS_PER_LONG == 64
58 if ((word & 0xffffffff00000000UL) == 0)
59 num += 32;
60 else
61 word >>= 32;
62 #endif
63 if ((word & 0xffff0000) == 0)
64 num += 16;
65 else
66 word >>= 16;
67
68 if ((word & 0xff00) == 0)
69 num += 8;
70 else
71 word >>= 8;
72
73 if ((word & 0xf0) == 0)
74 num += 4;
75 else
76 word >>= 4;
77
78 if ((word & 0xc) == 0)
79 num += 2;
80 else
81 word >>= 2;
82
83 if ((word & 0x2) == 0)
84 num += 1;
85 return num;
86 }
87
88 /*
89 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
90 * f2fs_set_bit makes MSB and LSB reversed in a byte.
91 * @size must be integral times of unsigned long.
92 * Example:
93 * MSB <--> LSB
94 * f2fs_set_bit(0, bitmap) => 1000 0000
95 * f2fs_set_bit(7, bitmap) => 0000 0001
96 */
__find_rev_next_bit(const unsigned long * addr,unsigned long size,unsigned long offset)97 static unsigned long __find_rev_next_bit(const unsigned long *addr,
98 unsigned long size, unsigned long offset)
99 {
100 const unsigned long *p = addr + BIT_WORD(offset);
101 unsigned long result = size;
102 unsigned long tmp;
103
104 if (offset >= size)
105 return size;
106
107 size -= (offset & ~(BITS_PER_LONG - 1));
108 offset %= BITS_PER_LONG;
109
110 while (1) {
111 if (*p == 0)
112 goto pass;
113
114 tmp = __reverse_ulong((unsigned char *)p);
115
116 tmp &= ~0UL >> offset;
117 if (size < BITS_PER_LONG)
118 tmp &= (~0UL << (BITS_PER_LONG - size));
119 if (tmp)
120 goto found;
121 pass:
122 if (size <= BITS_PER_LONG)
123 break;
124 size -= BITS_PER_LONG;
125 offset = 0;
126 p++;
127 }
128 return result;
129 found:
130 return result - size + __reverse_ffs(tmp);
131 }
132
__find_rev_next_zero_bit(const unsigned long * addr,unsigned long size,unsigned long offset)133 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
134 unsigned long size, unsigned long offset)
135 {
136 const unsigned long *p = addr + BIT_WORD(offset);
137 unsigned long result = size;
138 unsigned long tmp;
139
140 if (offset >= size)
141 return size;
142
143 size -= (offset & ~(BITS_PER_LONG - 1));
144 offset %= BITS_PER_LONG;
145
146 while (1) {
147 if (*p == ~0UL)
148 goto pass;
149
150 tmp = __reverse_ulong((unsigned char *)p);
151
152 if (offset)
153 tmp |= ~0UL << (BITS_PER_LONG - offset);
154 if (size < BITS_PER_LONG)
155 tmp |= ~0UL >> size;
156 if (tmp != ~0UL)
157 goto found;
158 pass:
159 if (size <= BITS_PER_LONG)
160 break;
161 size -= BITS_PER_LONG;
162 offset = 0;
163 p++;
164 }
165 return result;
166 found:
167 return result - size + __reverse_ffz(tmp);
168 }
169
f2fs_need_SSR(struct f2fs_sb_info * sbi)170 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
171 {
172 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
173 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
174 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
175
176 if (f2fs_lfs_mode(sbi))
177 return false;
178 if (sbi->gc_mode == GC_URGENT_HIGH)
179 return true;
180 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
181 return true;
182
183 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
184 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
185 }
186
f2fs_abort_atomic_write(struct inode * inode,bool clean)187 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
188 {
189 struct f2fs_inode_info *fi = F2FS_I(inode);
190
191 if (!f2fs_is_atomic_file(inode))
192 return;
193
194 release_atomic_write_cnt(inode);
195 clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
196 clear_inode_flag(inode, FI_ATOMIC_REPLACE);
197 clear_inode_flag(inode, FI_ATOMIC_FILE);
198 stat_dec_atomic_inode(inode);
199
200 F2FS_I(inode)->atomic_write_task = NULL;
201
202 if (clean) {
203 truncate_inode_pages_final(inode->i_mapping);
204 f2fs_i_size_write(inode, fi->original_i_size);
205 fi->original_i_size = 0;
206 }
207 }
208
__replace_atomic_write_block(struct inode * inode,pgoff_t index,block_t new_addr,block_t * old_addr,bool recover)209 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
210 block_t new_addr, block_t *old_addr, bool recover)
211 {
212 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
213 struct dnode_of_data dn;
214 struct node_info ni;
215 int err;
216
217 retry:
218 set_new_dnode(&dn, inode, NULL, NULL, 0);
219 err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
220 if (err) {
221 if (err == -ENOMEM) {
222 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
223 goto retry;
224 }
225 return err;
226 }
227
228 err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
229 if (err) {
230 f2fs_put_dnode(&dn);
231 return err;
232 }
233
234 if (recover) {
235 /* dn.data_blkaddr is always valid */
236 if (!__is_valid_data_blkaddr(new_addr)) {
237 if (new_addr == NULL_ADDR)
238 dec_valid_block_count(sbi, inode, 1);
239 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
240 f2fs_update_data_blkaddr(&dn, new_addr);
241 } else {
242 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
243 new_addr, ni.version, true, true);
244 }
245 } else {
246 blkcnt_t count = 1;
247
248 err = inc_valid_block_count(sbi, inode, &count);
249 if (err) {
250 f2fs_put_dnode(&dn);
251 return err;
252 }
253
254 *old_addr = dn.data_blkaddr;
255 f2fs_truncate_data_blocks_range(&dn, 1);
256 dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
257
258 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
259 ni.version, true, false);
260 }
261
262 f2fs_put_dnode(&dn);
263
264 trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode,
265 index, old_addr ? *old_addr : 0, new_addr, recover);
266 return 0;
267 }
268
__complete_revoke_list(struct inode * inode,struct list_head * head,bool revoke)269 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
270 bool revoke)
271 {
272 struct revoke_entry *cur, *tmp;
273 pgoff_t start_index = 0;
274 bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
275
276 list_for_each_entry_safe(cur, tmp, head, list) {
277 if (revoke) {
278 __replace_atomic_write_block(inode, cur->index,
279 cur->old_addr, NULL, true);
280 } else if (truncate) {
281 f2fs_truncate_hole(inode, start_index, cur->index);
282 start_index = cur->index + 1;
283 }
284
285 list_del(&cur->list);
286 kmem_cache_free(revoke_entry_slab, cur);
287 }
288
289 if (!revoke && truncate)
290 f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false);
291 }
292
__f2fs_commit_atomic_write(struct inode * inode)293 static int __f2fs_commit_atomic_write(struct inode *inode)
294 {
295 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
296 struct f2fs_inode_info *fi = F2FS_I(inode);
297 struct inode *cow_inode = fi->cow_inode;
298 struct revoke_entry *new;
299 struct list_head revoke_list;
300 block_t blkaddr;
301 struct dnode_of_data dn;
302 pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
303 pgoff_t off = 0, blen, index;
304 int ret = 0, i;
305
306 INIT_LIST_HEAD(&revoke_list);
307
308 while (len) {
309 blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
310
311 set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
312 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
313 if (ret && ret != -ENOENT) {
314 goto out;
315 } else if (ret == -ENOENT) {
316 ret = 0;
317 if (dn.max_level == 0)
318 goto out;
319 goto next;
320 }
321
322 blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
323 len);
324 index = off;
325 for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
326 blkaddr = f2fs_data_blkaddr(&dn);
327
328 if (!__is_valid_data_blkaddr(blkaddr)) {
329 continue;
330 } else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
331 DATA_GENERIC_ENHANCE)) {
332 f2fs_put_dnode(&dn);
333 ret = -EFSCORRUPTED;
334 goto out;
335 }
336
337 new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
338 true, NULL);
339
340 ret = __replace_atomic_write_block(inode, index, blkaddr,
341 &new->old_addr, false);
342 if (ret) {
343 f2fs_put_dnode(&dn);
344 kmem_cache_free(revoke_entry_slab, new);
345 goto out;
346 }
347
348 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
349 new->index = index;
350 list_add_tail(&new->list, &revoke_list);
351 }
352 f2fs_put_dnode(&dn);
353 next:
354 off += blen;
355 len -= blen;
356 }
357
358 out:
359 if (ret) {
360 sbi->revoked_atomic_block += fi->atomic_write_cnt;
361 } else {
362 sbi->committed_atomic_block += fi->atomic_write_cnt;
363 set_inode_flag(inode, FI_ATOMIC_COMMITTED);
364 }
365
366 __complete_revoke_list(inode, &revoke_list, ret ? true : false);
367
368 return ret;
369 }
370
f2fs_commit_atomic_write(struct inode * inode)371 int f2fs_commit_atomic_write(struct inode *inode)
372 {
373 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
374 struct f2fs_inode_info *fi = F2FS_I(inode);
375 int err;
376
377 err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
378 if (err)
379 return err;
380
381 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
382 f2fs_lock_op(sbi);
383
384 err = __f2fs_commit_atomic_write(inode);
385
386 f2fs_unlock_op(sbi);
387 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
388
389 return err;
390 }
391
392 /*
393 * This function balances dirty node and dentry pages.
394 * In addition, it controls garbage collection.
395 */
f2fs_balance_fs(struct f2fs_sb_info * sbi,bool need)396 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
397 {
398 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
399 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
400 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
401 }
402
403 /* balance_fs_bg is able to be pending */
404 if (need && excess_cached_nats(sbi))
405 f2fs_balance_fs_bg(sbi, false);
406
407 if (!f2fs_is_checkpoint_ready(sbi))
408 return;
409
410 /*
411 * We should do GC or end up with checkpoint, if there are so many dirty
412 * dir/node pages without enough free segments.
413 */
414 if (has_not_enough_free_secs(sbi, 0, 0)) {
415 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
416 sbi->gc_thread->f2fs_gc_task) {
417 DEFINE_WAIT(wait);
418
419 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
420 TASK_UNINTERRUPTIBLE);
421 wake_up(&sbi->gc_thread->gc_wait_queue_head);
422 io_schedule();
423 finish_wait(&sbi->gc_thread->fggc_wq, &wait);
424 } else {
425 f2fs_down_write(&sbi->gc_lock);
426 f2fs_gc(sbi, false, false, false, NULL_SEGNO);
427 }
428 }
429 }
430
excess_dirty_threshold(struct f2fs_sb_info * sbi)431 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
432 {
433 int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
434 unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
435 unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
436 unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
437 unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
438 unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
439 unsigned int threshold = sbi->blocks_per_seg * factor *
440 DEFAULT_DIRTY_THRESHOLD;
441 unsigned int global_threshold = threshold * 3 / 2;
442
443 if (dents >= threshold || qdata >= threshold ||
444 nodes >= threshold || meta >= threshold ||
445 imeta >= threshold)
446 return true;
447 return dents + qdata + nodes + meta + imeta > global_threshold;
448 }
449
f2fs_balance_fs_bg(struct f2fs_sb_info * sbi,bool from_bg)450 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
451 {
452 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
453 return;
454
455 /* try to shrink extent cache when there is no enough memory */
456 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
457 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
458
459 /* check the # of cached NAT entries */
460 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
461 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
462
463 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
464 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
465 else
466 f2fs_build_free_nids(sbi, false, false);
467
468 if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
469 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
470 goto do_sync;
471
472 /* there is background inflight IO or foreground operation recently */
473 if (is_inflight_io(sbi, REQ_TIME) ||
474 (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
475 return;
476
477 /* exceed periodical checkpoint timeout threshold */
478 if (f2fs_time_over(sbi, CP_TIME))
479 goto do_sync;
480
481 /* checkpoint is the only way to shrink partial cached entries */
482 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
483 f2fs_available_free_memory(sbi, INO_ENTRIES))
484 return;
485
486 do_sync:
487 if (test_opt(sbi, DATA_FLUSH) && from_bg) {
488 struct blk_plug plug;
489
490 mutex_lock(&sbi->flush_lock);
491
492 blk_start_plug(&plug);
493 f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
494 blk_finish_plug(&plug);
495
496 mutex_unlock(&sbi->flush_lock);
497 }
498 f2fs_sync_fs(sbi->sb, true);
499 stat_inc_bg_cp_count(sbi->stat_info);
500 }
501
__submit_flush_wait(struct f2fs_sb_info * sbi,struct block_device * bdev)502 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
503 struct block_device *bdev)
504 {
505 int ret = blkdev_issue_flush(bdev);
506
507 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
508 test_opt(sbi, FLUSH_MERGE), ret);
509 return ret;
510 }
511
submit_flush_wait(struct f2fs_sb_info * sbi,nid_t ino)512 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
513 {
514 int ret = 0;
515 int i;
516
517 if (!f2fs_is_multi_device(sbi))
518 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
519
520 for (i = 0; i < sbi->s_ndevs; i++) {
521 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
522 continue;
523 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
524 if (ret)
525 break;
526 }
527 return ret;
528 }
529
issue_flush_thread(void * data)530 static int issue_flush_thread(void *data)
531 {
532 struct f2fs_sb_info *sbi = data;
533 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
534 wait_queue_head_t *q = &fcc->flush_wait_queue;
535 repeat:
536 if (kthread_should_stop())
537 return 0;
538
539 if (!llist_empty(&fcc->issue_list)) {
540 struct flush_cmd *cmd, *next;
541 int ret;
542
543 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
544 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
545
546 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
547
548 ret = submit_flush_wait(sbi, cmd->ino);
549 atomic_inc(&fcc->issued_flush);
550
551 llist_for_each_entry_safe(cmd, next,
552 fcc->dispatch_list, llnode) {
553 cmd->ret = ret;
554 complete(&cmd->wait);
555 }
556 fcc->dispatch_list = NULL;
557 }
558
559 wait_event_interruptible(*q,
560 kthread_should_stop() || !llist_empty(&fcc->issue_list));
561 goto repeat;
562 }
563
f2fs_issue_flush(struct f2fs_sb_info * sbi,nid_t ino)564 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
565 {
566 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
567 struct flush_cmd cmd;
568 int ret;
569
570 if (test_opt(sbi, NOBARRIER))
571 return 0;
572
573 if (!test_opt(sbi, FLUSH_MERGE)) {
574 atomic_inc(&fcc->queued_flush);
575 ret = submit_flush_wait(sbi, ino);
576 atomic_dec(&fcc->queued_flush);
577 atomic_inc(&fcc->issued_flush);
578 return ret;
579 }
580
581 if (atomic_inc_return(&fcc->queued_flush) == 1 ||
582 f2fs_is_multi_device(sbi)) {
583 ret = submit_flush_wait(sbi, ino);
584 atomic_dec(&fcc->queued_flush);
585
586 atomic_inc(&fcc->issued_flush);
587 return ret;
588 }
589
590 cmd.ino = ino;
591 init_completion(&cmd.wait);
592
593 llist_add(&cmd.llnode, &fcc->issue_list);
594
595 /*
596 * update issue_list before we wake up issue_flush thread, this
597 * smp_mb() pairs with another barrier in ___wait_event(), see
598 * more details in comments of waitqueue_active().
599 */
600 smp_mb();
601
602 if (waitqueue_active(&fcc->flush_wait_queue))
603 wake_up(&fcc->flush_wait_queue);
604
605 if (fcc->f2fs_issue_flush) {
606 wait_for_completion(&cmd.wait);
607 atomic_dec(&fcc->queued_flush);
608 } else {
609 struct llist_node *list;
610
611 list = llist_del_all(&fcc->issue_list);
612 if (!list) {
613 wait_for_completion(&cmd.wait);
614 atomic_dec(&fcc->queued_flush);
615 } else {
616 struct flush_cmd *tmp, *next;
617
618 ret = submit_flush_wait(sbi, ino);
619
620 llist_for_each_entry_safe(tmp, next, list, llnode) {
621 if (tmp == &cmd) {
622 cmd.ret = ret;
623 atomic_dec(&fcc->queued_flush);
624 continue;
625 }
626 tmp->ret = ret;
627 complete(&tmp->wait);
628 }
629 }
630 }
631
632 return cmd.ret;
633 }
634
f2fs_create_flush_cmd_control(struct f2fs_sb_info * sbi)635 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
636 {
637 dev_t dev = sbi->sb->s_bdev->bd_dev;
638 struct flush_cmd_control *fcc;
639 int err = 0;
640
641 if (SM_I(sbi)->fcc_info) {
642 fcc = SM_I(sbi)->fcc_info;
643 if (fcc->f2fs_issue_flush)
644 return err;
645 goto init_thread;
646 }
647
648 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
649 if (!fcc)
650 return -ENOMEM;
651 atomic_set(&fcc->issued_flush, 0);
652 atomic_set(&fcc->queued_flush, 0);
653 init_waitqueue_head(&fcc->flush_wait_queue);
654 init_llist_head(&fcc->issue_list);
655 SM_I(sbi)->fcc_info = fcc;
656 if (!test_opt(sbi, FLUSH_MERGE))
657 return err;
658
659 init_thread:
660 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
661 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
662 if (IS_ERR(fcc->f2fs_issue_flush)) {
663 err = PTR_ERR(fcc->f2fs_issue_flush);
664 kfree(fcc);
665 SM_I(sbi)->fcc_info = NULL;
666 return err;
667 }
668
669 return err;
670 }
671
f2fs_destroy_flush_cmd_control(struct f2fs_sb_info * sbi,bool free)672 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
673 {
674 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
675
676 if (fcc && fcc->f2fs_issue_flush) {
677 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
678
679 fcc->f2fs_issue_flush = NULL;
680 kthread_stop(flush_thread);
681 }
682 if (free) {
683 kfree(fcc);
684 SM_I(sbi)->fcc_info = NULL;
685 }
686 }
687
f2fs_flush_device_cache(struct f2fs_sb_info * sbi)688 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
689 {
690 int ret = 0, i;
691
692 if (!f2fs_is_multi_device(sbi))
693 return 0;
694
695 if (test_opt(sbi, NOBARRIER))
696 return 0;
697
698 for (i = 1; i < sbi->s_ndevs; i++) {
699 int count = DEFAULT_RETRY_IO_COUNT;
700
701 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
702 continue;
703
704 do {
705 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
706 if (ret)
707 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
708 } while (ret && --count);
709
710 if (ret) {
711 f2fs_stop_checkpoint(sbi, false,
712 STOP_CP_REASON_FLUSH_FAIL);
713 break;
714 }
715
716 spin_lock(&sbi->dev_lock);
717 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
718 spin_unlock(&sbi->dev_lock);
719 }
720
721 return ret;
722 }
723
__locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)724 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
725 enum dirty_type dirty_type)
726 {
727 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
728
729 /* need not be added */
730 if (IS_CURSEG(sbi, segno))
731 return;
732
733 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
734 dirty_i->nr_dirty[dirty_type]++;
735
736 if (dirty_type == DIRTY) {
737 struct seg_entry *sentry = get_seg_entry(sbi, segno);
738 enum dirty_type t = sentry->type;
739
740 if (unlikely(t >= DIRTY)) {
741 f2fs_bug_on(sbi, 1);
742 return;
743 }
744 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
745 dirty_i->nr_dirty[t]++;
746
747 if (__is_large_section(sbi)) {
748 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
749 block_t valid_blocks =
750 get_valid_blocks(sbi, segno, true);
751
752 f2fs_bug_on(sbi, unlikely(!valid_blocks ||
753 valid_blocks == BLKS_PER_SEC(sbi)));
754
755 if (!IS_CURSEC(sbi, secno))
756 set_bit(secno, dirty_i->dirty_secmap);
757 }
758 }
759 }
760
__remove_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)761 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
762 enum dirty_type dirty_type)
763 {
764 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
765 block_t valid_blocks;
766
767 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
768 dirty_i->nr_dirty[dirty_type]--;
769
770 if (dirty_type == DIRTY) {
771 struct seg_entry *sentry = get_seg_entry(sbi, segno);
772 enum dirty_type t = sentry->type;
773
774 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
775 dirty_i->nr_dirty[t]--;
776
777 valid_blocks = get_valid_blocks(sbi, segno, true);
778 if (valid_blocks == 0) {
779 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
780 dirty_i->victim_secmap);
781 #ifdef CONFIG_F2FS_CHECK_FS
782 clear_bit(segno, SIT_I(sbi)->invalid_segmap);
783 #endif
784 }
785 if (__is_large_section(sbi)) {
786 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
787
788 if (!valid_blocks ||
789 valid_blocks == BLKS_PER_SEC(sbi)) {
790 clear_bit(secno, dirty_i->dirty_secmap);
791 return;
792 }
793
794 if (!IS_CURSEC(sbi, secno))
795 set_bit(secno, dirty_i->dirty_secmap);
796 }
797 }
798 }
799
800 /*
801 * Should not occur error such as -ENOMEM.
802 * Adding dirty entry into seglist is not critical operation.
803 * If a given segment is one of current working segments, it won't be added.
804 */
locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno)805 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
806 {
807 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
808 unsigned short valid_blocks, ckpt_valid_blocks;
809 unsigned int usable_blocks;
810
811 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
812 return;
813
814 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
815 mutex_lock(&dirty_i->seglist_lock);
816
817 valid_blocks = get_valid_blocks(sbi, segno, false);
818 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
819
820 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
821 ckpt_valid_blocks == usable_blocks)) {
822 __locate_dirty_segment(sbi, segno, PRE);
823 __remove_dirty_segment(sbi, segno, DIRTY);
824 } else if (valid_blocks < usable_blocks) {
825 __locate_dirty_segment(sbi, segno, DIRTY);
826 } else {
827 /* Recovery routine with SSR needs this */
828 __remove_dirty_segment(sbi, segno, DIRTY);
829 }
830
831 mutex_unlock(&dirty_i->seglist_lock);
832 }
833
834 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
f2fs_dirty_to_prefree(struct f2fs_sb_info * sbi)835 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
836 {
837 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
838 unsigned int segno;
839
840 mutex_lock(&dirty_i->seglist_lock);
841 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
842 if (get_valid_blocks(sbi, segno, false))
843 continue;
844 if (IS_CURSEG(sbi, segno))
845 continue;
846 __locate_dirty_segment(sbi, segno, PRE);
847 __remove_dirty_segment(sbi, segno, DIRTY);
848 }
849 mutex_unlock(&dirty_i->seglist_lock);
850 }
851
f2fs_get_unusable_blocks(struct f2fs_sb_info * sbi)852 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
853 {
854 int ovp_hole_segs =
855 (overprovision_segments(sbi) - reserved_segments(sbi));
856 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
857 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
858 block_t holes[2] = {0, 0}; /* DATA and NODE */
859 block_t unusable;
860 struct seg_entry *se;
861 unsigned int segno;
862
863 mutex_lock(&dirty_i->seglist_lock);
864 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
865 se = get_seg_entry(sbi, segno);
866 if (IS_NODESEG(se->type))
867 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
868 se->valid_blocks;
869 else
870 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
871 se->valid_blocks;
872 }
873 mutex_unlock(&dirty_i->seglist_lock);
874
875 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
876 if (unusable > ovp_holes)
877 return unusable - ovp_holes;
878 return 0;
879 }
880
f2fs_disable_cp_again(struct f2fs_sb_info * sbi,block_t unusable)881 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
882 {
883 int ovp_hole_segs =
884 (overprovision_segments(sbi) - reserved_segments(sbi));
885 if (unusable > F2FS_OPTION(sbi).unusable_cap)
886 return -EAGAIN;
887 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
888 dirty_segments(sbi) > ovp_hole_segs)
889 return -EAGAIN;
890 return 0;
891 }
892
893 /* This is only used by SBI_CP_DISABLED */
get_free_segment(struct f2fs_sb_info * sbi)894 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
895 {
896 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
897 unsigned int segno = 0;
898
899 mutex_lock(&dirty_i->seglist_lock);
900 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
901 if (get_valid_blocks(sbi, segno, false))
902 continue;
903 if (get_ckpt_valid_blocks(sbi, segno, false))
904 continue;
905 mutex_unlock(&dirty_i->seglist_lock);
906 return segno;
907 }
908 mutex_unlock(&dirty_i->seglist_lock);
909 return NULL_SEGNO;
910 }
911
__create_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)912 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
913 struct block_device *bdev, block_t lstart,
914 block_t start, block_t len)
915 {
916 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
917 struct list_head *pend_list;
918 struct discard_cmd *dc;
919
920 f2fs_bug_on(sbi, !len);
921
922 pend_list = &dcc->pend_list[plist_idx(len)];
923
924 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
925 INIT_LIST_HEAD(&dc->list);
926 dc->bdev = bdev;
927 dc->lstart = lstart;
928 dc->start = start;
929 dc->len = len;
930 dc->ref = 0;
931 dc->state = D_PREP;
932 dc->queued = 0;
933 dc->error = 0;
934 init_completion(&dc->wait);
935 list_add_tail(&dc->list, pend_list);
936 spin_lock_init(&dc->lock);
937 dc->bio_ref = 0;
938 atomic_inc(&dcc->discard_cmd_cnt);
939 dcc->undiscard_blks += len;
940
941 return dc;
942 }
943
__attach_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len,struct rb_node * parent,struct rb_node ** p,bool leftmost)944 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
945 struct block_device *bdev, block_t lstart,
946 block_t start, block_t len,
947 struct rb_node *parent, struct rb_node **p,
948 bool leftmost)
949 {
950 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
951 struct discard_cmd *dc;
952
953 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
954
955 rb_link_node(&dc->rb_node, parent, p);
956 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
957
958 return dc;
959 }
960
__detach_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)961 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
962 struct discard_cmd *dc)
963 {
964 if (dc->state == D_DONE)
965 atomic_sub(dc->queued, &dcc->queued_discard);
966
967 list_del(&dc->list);
968 rb_erase_cached(&dc->rb_node, &dcc->root);
969 dcc->undiscard_blks -= dc->len;
970
971 kmem_cache_free(discard_cmd_slab, dc);
972
973 atomic_dec(&dcc->discard_cmd_cnt);
974 }
975
__remove_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc)976 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
977 struct discard_cmd *dc)
978 {
979 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
980 unsigned long flags;
981
982 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
983
984 spin_lock_irqsave(&dc->lock, flags);
985 if (dc->bio_ref) {
986 spin_unlock_irqrestore(&dc->lock, flags);
987 return;
988 }
989 spin_unlock_irqrestore(&dc->lock, flags);
990
991 f2fs_bug_on(sbi, dc->ref);
992
993 if (dc->error == -EOPNOTSUPP)
994 dc->error = 0;
995
996 if (dc->error)
997 printk_ratelimited(
998 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
999 KERN_INFO, sbi->sb->s_id,
1000 dc->lstart, dc->start, dc->len, dc->error);
1001 __detach_discard_cmd(dcc, dc);
1002 }
1003
f2fs_submit_discard_endio(struct bio * bio)1004 static void f2fs_submit_discard_endio(struct bio *bio)
1005 {
1006 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1007 unsigned long flags;
1008
1009 spin_lock_irqsave(&dc->lock, flags);
1010 if (!dc->error)
1011 dc->error = blk_status_to_errno(bio->bi_status);
1012 dc->bio_ref--;
1013 if (!dc->bio_ref && dc->state == D_SUBMIT) {
1014 dc->state = D_DONE;
1015 complete_all(&dc->wait);
1016 }
1017 spin_unlock_irqrestore(&dc->lock, flags);
1018 bio_put(bio);
1019 }
1020
__check_sit_bitmap(struct f2fs_sb_info * sbi,block_t start,block_t end)1021 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1022 block_t start, block_t end)
1023 {
1024 #ifdef CONFIG_F2FS_CHECK_FS
1025 struct seg_entry *sentry;
1026 unsigned int segno;
1027 block_t blk = start;
1028 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1029 unsigned long *map;
1030
1031 while (blk < end) {
1032 segno = GET_SEGNO(sbi, blk);
1033 sentry = get_seg_entry(sbi, segno);
1034 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1035
1036 if (end < START_BLOCK(sbi, segno + 1))
1037 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1038 else
1039 size = max_blocks;
1040 map = (unsigned long *)(sentry->cur_valid_map);
1041 offset = __find_rev_next_bit(map, size, offset);
1042 f2fs_bug_on(sbi, offset != size);
1043 blk = START_BLOCK(sbi, segno + 1);
1044 }
1045 #endif
1046 }
1047
__init_discard_policy(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int discard_type,unsigned int granularity)1048 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1049 struct discard_policy *dpolicy,
1050 int discard_type, unsigned int granularity)
1051 {
1052 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1053
1054 /* common policy */
1055 dpolicy->type = discard_type;
1056 dpolicy->sync = true;
1057 dpolicy->ordered = false;
1058 dpolicy->granularity = granularity;
1059
1060 dpolicy->max_requests = dcc->max_discard_request;
1061 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1062 dpolicy->timeout = false;
1063
1064 if (discard_type == DPOLICY_BG) {
1065 dpolicy->min_interval = dcc->min_discard_issue_time;
1066 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1067 dpolicy->max_interval = dcc->max_discard_issue_time;
1068 dpolicy->io_aware = true;
1069 dpolicy->sync = false;
1070 dpolicy->ordered = true;
1071 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1072 dpolicy->granularity = 1;
1073 if (atomic_read(&dcc->discard_cmd_cnt))
1074 dpolicy->max_interval =
1075 dcc->min_discard_issue_time;
1076 }
1077 } else if (discard_type == DPOLICY_FORCE) {
1078 dpolicy->min_interval = dcc->min_discard_issue_time;
1079 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1080 dpolicy->max_interval = dcc->max_discard_issue_time;
1081 dpolicy->io_aware = false;
1082 } else if (discard_type == DPOLICY_FSTRIM) {
1083 dpolicy->io_aware = false;
1084 } else if (discard_type == DPOLICY_UMOUNT) {
1085 dpolicy->io_aware = false;
1086 /* we need to issue all to keep CP_TRIMMED_FLAG */
1087 dpolicy->granularity = 1;
1088 dpolicy->timeout = true;
1089 }
1090 }
1091
1092 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1093 struct block_device *bdev, block_t lstart,
1094 block_t start, block_t len);
1095 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
__submit_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,struct discard_cmd * dc,unsigned int * issued)1096 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1097 struct discard_policy *dpolicy,
1098 struct discard_cmd *dc,
1099 unsigned int *issued)
1100 {
1101 struct block_device *bdev = dc->bdev;
1102 struct request_queue *q = bdev_get_queue(bdev);
1103 unsigned int max_discard_blocks =
1104 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1105 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1106 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1107 &(dcc->fstrim_list) : &(dcc->wait_list);
1108 int flag = dpolicy->sync ? REQ_SYNC : 0;
1109 block_t lstart, start, len, total_len;
1110 int err = 0;
1111
1112 if (dc->state != D_PREP)
1113 return 0;
1114
1115 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1116 return 0;
1117
1118 trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1119
1120 lstart = dc->lstart;
1121 start = dc->start;
1122 len = dc->len;
1123 total_len = len;
1124
1125 dc->len = 0;
1126
1127 while (total_len && *issued < dpolicy->max_requests && !err) {
1128 struct bio *bio = NULL;
1129 unsigned long flags;
1130 bool last = true;
1131
1132 if (len > max_discard_blocks) {
1133 len = max_discard_blocks;
1134 last = false;
1135 }
1136
1137 (*issued)++;
1138 if (*issued == dpolicy->max_requests)
1139 last = true;
1140
1141 dc->len += len;
1142
1143 if (time_to_inject(sbi, FAULT_DISCARD)) {
1144 f2fs_show_injection_info(sbi, FAULT_DISCARD);
1145 err = -EIO;
1146 goto submit;
1147 }
1148 err = __blkdev_issue_discard(bdev,
1149 SECTOR_FROM_BLOCK(start),
1150 SECTOR_FROM_BLOCK(len),
1151 GFP_NOFS, 0, &bio);
1152 submit:
1153 if (err) {
1154 spin_lock_irqsave(&dc->lock, flags);
1155 if (dc->state == D_PARTIAL)
1156 dc->state = D_SUBMIT;
1157 spin_unlock_irqrestore(&dc->lock, flags);
1158
1159 break;
1160 }
1161
1162 f2fs_bug_on(sbi, !bio);
1163
1164 /*
1165 * should keep before submission to avoid D_DONE
1166 * right away
1167 */
1168 spin_lock_irqsave(&dc->lock, flags);
1169 if (last)
1170 dc->state = D_SUBMIT;
1171 else
1172 dc->state = D_PARTIAL;
1173 dc->bio_ref++;
1174 spin_unlock_irqrestore(&dc->lock, flags);
1175
1176 atomic_inc(&dcc->queued_discard);
1177 dc->queued++;
1178 list_move_tail(&dc->list, wait_list);
1179
1180 /* sanity check on discard range */
1181 __check_sit_bitmap(sbi, lstart, lstart + len);
1182
1183 bio->bi_private = dc;
1184 bio->bi_end_io = f2fs_submit_discard_endio;
1185 bio->bi_opf |= flag;
1186 submit_bio(bio);
1187
1188 atomic_inc(&dcc->issued_discard);
1189
1190 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1191
1192 lstart += len;
1193 start += len;
1194 total_len -= len;
1195 len = total_len;
1196 }
1197
1198 if (!err && len) {
1199 dcc->undiscard_blks -= len;
1200 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1201 }
1202 return err;
1203 }
1204
__insert_discard_tree(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len,struct rb_node ** insert_p,struct rb_node * insert_parent)1205 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1206 struct block_device *bdev, block_t lstart,
1207 block_t start, block_t len,
1208 struct rb_node **insert_p,
1209 struct rb_node *insert_parent)
1210 {
1211 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1212 struct rb_node **p;
1213 struct rb_node *parent = NULL;
1214 bool leftmost = true;
1215
1216 if (insert_p && insert_parent) {
1217 parent = insert_parent;
1218 p = insert_p;
1219 goto do_insert;
1220 }
1221
1222 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1223 lstart, &leftmost);
1224 do_insert:
1225 __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1226 p, leftmost);
1227 }
1228
__relocate_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1229 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1230 struct discard_cmd *dc)
1231 {
1232 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1233 }
1234
__punch_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,block_t blkaddr)1235 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1236 struct discard_cmd *dc, block_t blkaddr)
1237 {
1238 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1239 struct discard_info di = dc->di;
1240 bool modified = false;
1241
1242 if (dc->state == D_DONE || dc->len == 1) {
1243 __remove_discard_cmd(sbi, dc);
1244 return;
1245 }
1246
1247 dcc->undiscard_blks -= di.len;
1248
1249 if (blkaddr > di.lstart) {
1250 dc->len = blkaddr - dc->lstart;
1251 dcc->undiscard_blks += dc->len;
1252 __relocate_discard_cmd(dcc, dc);
1253 modified = true;
1254 }
1255
1256 if (blkaddr < di.lstart + di.len - 1) {
1257 if (modified) {
1258 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1259 di.start + blkaddr + 1 - di.lstart,
1260 di.lstart + di.len - 1 - blkaddr,
1261 NULL, NULL);
1262 } else {
1263 dc->lstart++;
1264 dc->len--;
1265 dc->start++;
1266 dcc->undiscard_blks += dc->len;
1267 __relocate_discard_cmd(dcc, dc);
1268 }
1269 }
1270 }
1271
__update_discard_tree_range(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1272 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1273 struct block_device *bdev, block_t lstart,
1274 block_t start, block_t len)
1275 {
1276 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1277 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1278 struct discard_cmd *dc;
1279 struct discard_info di = {0};
1280 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1281 struct request_queue *q = bdev_get_queue(bdev);
1282 unsigned int max_discard_blocks =
1283 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1284 block_t end = lstart + len;
1285
1286 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1287 NULL, lstart,
1288 (struct rb_entry **)&prev_dc,
1289 (struct rb_entry **)&next_dc,
1290 &insert_p, &insert_parent, true, NULL);
1291 if (dc)
1292 prev_dc = dc;
1293
1294 if (!prev_dc) {
1295 di.lstart = lstart;
1296 di.len = next_dc ? next_dc->lstart - lstart : len;
1297 di.len = min(di.len, len);
1298 di.start = start;
1299 }
1300
1301 while (1) {
1302 struct rb_node *node;
1303 bool merged = false;
1304 struct discard_cmd *tdc = NULL;
1305
1306 if (prev_dc) {
1307 di.lstart = prev_dc->lstart + prev_dc->len;
1308 if (di.lstart < lstart)
1309 di.lstart = lstart;
1310 if (di.lstart >= end)
1311 break;
1312
1313 if (!next_dc || next_dc->lstart > end)
1314 di.len = end - di.lstart;
1315 else
1316 di.len = next_dc->lstart - di.lstart;
1317 di.start = start + di.lstart - lstart;
1318 }
1319
1320 if (!di.len)
1321 goto next;
1322
1323 if (prev_dc && prev_dc->state == D_PREP &&
1324 prev_dc->bdev == bdev &&
1325 __is_discard_back_mergeable(&di, &prev_dc->di,
1326 max_discard_blocks)) {
1327 prev_dc->di.len += di.len;
1328 dcc->undiscard_blks += di.len;
1329 __relocate_discard_cmd(dcc, prev_dc);
1330 di = prev_dc->di;
1331 tdc = prev_dc;
1332 merged = true;
1333 }
1334
1335 if (next_dc && next_dc->state == D_PREP &&
1336 next_dc->bdev == bdev &&
1337 __is_discard_front_mergeable(&di, &next_dc->di,
1338 max_discard_blocks)) {
1339 next_dc->di.lstart = di.lstart;
1340 next_dc->di.len += di.len;
1341 next_dc->di.start = di.start;
1342 dcc->undiscard_blks += di.len;
1343 __relocate_discard_cmd(dcc, next_dc);
1344 if (tdc)
1345 __remove_discard_cmd(sbi, tdc);
1346 merged = true;
1347 }
1348
1349 if (!merged) {
1350 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1351 di.len, NULL, NULL);
1352 }
1353 next:
1354 prev_dc = next_dc;
1355 if (!prev_dc)
1356 break;
1357
1358 node = rb_next(&prev_dc->rb_node);
1359 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1360 }
1361 }
1362
__queue_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1363 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1364 struct block_device *bdev, block_t blkstart, block_t blklen)
1365 {
1366 block_t lblkstart = blkstart;
1367
1368 if (!f2fs_bdev_support_discard(bdev))
1369 return 0;
1370
1371 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1372
1373 if (f2fs_is_multi_device(sbi)) {
1374 int devi = f2fs_target_device_index(sbi, blkstart);
1375
1376 blkstart -= FDEV(devi).start_blk;
1377 }
1378 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1379 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1380 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1381 return 0;
1382 }
1383
__issue_discard_cmd_orderly(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1384 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1385 struct discard_policy *dpolicy)
1386 {
1387 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1388 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1389 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1390 struct discard_cmd *dc;
1391 struct blk_plug plug;
1392 unsigned int pos = dcc->next_pos;
1393 unsigned int issued = 0;
1394 bool io_interrupted = false;
1395
1396 mutex_lock(&dcc->cmd_lock);
1397 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1398 NULL, pos,
1399 (struct rb_entry **)&prev_dc,
1400 (struct rb_entry **)&next_dc,
1401 &insert_p, &insert_parent, true, NULL);
1402 if (!dc)
1403 dc = next_dc;
1404
1405 blk_start_plug(&plug);
1406
1407 while (dc) {
1408 struct rb_node *node;
1409 int err = 0;
1410
1411 if (dc->state != D_PREP)
1412 goto next;
1413
1414 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1415 io_interrupted = true;
1416 break;
1417 }
1418
1419 dcc->next_pos = dc->lstart + dc->len;
1420 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1421
1422 if (issued >= dpolicy->max_requests)
1423 break;
1424 next:
1425 node = rb_next(&dc->rb_node);
1426 if (err)
1427 __remove_discard_cmd(sbi, dc);
1428 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1429 }
1430
1431 blk_finish_plug(&plug);
1432
1433 if (!dc)
1434 dcc->next_pos = 0;
1435
1436 mutex_unlock(&dcc->cmd_lock);
1437
1438 if (!issued && io_interrupted)
1439 issued = -1;
1440
1441 return issued;
1442 }
1443 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1444 struct discard_policy *dpolicy);
1445
__issue_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1446 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1447 struct discard_policy *dpolicy)
1448 {
1449 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1450 struct list_head *pend_list;
1451 struct discard_cmd *dc, *tmp;
1452 struct blk_plug plug;
1453 int i, issued;
1454 bool io_interrupted = false;
1455
1456 if (dpolicy->timeout)
1457 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1458
1459 retry:
1460 issued = 0;
1461 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1462 if (dpolicy->timeout &&
1463 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1464 break;
1465
1466 if (i + 1 < dpolicy->granularity)
1467 break;
1468
1469 if (i + 1 < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1470 return __issue_discard_cmd_orderly(sbi, dpolicy);
1471
1472 pend_list = &dcc->pend_list[i];
1473
1474 mutex_lock(&dcc->cmd_lock);
1475 if (list_empty(pend_list))
1476 goto next;
1477 if (unlikely(dcc->rbtree_check))
1478 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1479 &dcc->root, false));
1480 blk_start_plug(&plug);
1481 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1482 f2fs_bug_on(sbi, dc->state != D_PREP);
1483
1484 if (dpolicy->timeout &&
1485 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1486 break;
1487
1488 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1489 !is_idle(sbi, DISCARD_TIME)) {
1490 io_interrupted = true;
1491 break;
1492 }
1493
1494 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1495
1496 if (issued >= dpolicy->max_requests)
1497 break;
1498 }
1499 blk_finish_plug(&plug);
1500 next:
1501 mutex_unlock(&dcc->cmd_lock);
1502
1503 if (issued >= dpolicy->max_requests || io_interrupted)
1504 break;
1505 }
1506
1507 if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1508 __wait_all_discard_cmd(sbi, dpolicy);
1509 goto retry;
1510 }
1511
1512 if (!issued && io_interrupted)
1513 issued = -1;
1514
1515 return issued;
1516 }
1517
__drop_discard_cmd(struct f2fs_sb_info * sbi)1518 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1519 {
1520 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1521 struct list_head *pend_list;
1522 struct discard_cmd *dc, *tmp;
1523 int i;
1524 bool dropped = false;
1525
1526 mutex_lock(&dcc->cmd_lock);
1527 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1528 pend_list = &dcc->pend_list[i];
1529 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1530 f2fs_bug_on(sbi, dc->state != D_PREP);
1531 __remove_discard_cmd(sbi, dc);
1532 dropped = true;
1533 }
1534 }
1535 mutex_unlock(&dcc->cmd_lock);
1536
1537 return dropped;
1538 }
1539
f2fs_drop_discard_cmd(struct f2fs_sb_info * sbi)1540 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1541 {
1542 __drop_discard_cmd(sbi);
1543 }
1544
__wait_one_discard_bio(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1545 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1546 struct discard_cmd *dc)
1547 {
1548 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1549 unsigned int len = 0;
1550
1551 wait_for_completion_io(&dc->wait);
1552 mutex_lock(&dcc->cmd_lock);
1553 f2fs_bug_on(sbi, dc->state != D_DONE);
1554 dc->ref--;
1555 if (!dc->ref) {
1556 if (!dc->error)
1557 len = dc->len;
1558 __remove_discard_cmd(sbi, dc);
1559 }
1560 mutex_unlock(&dcc->cmd_lock);
1561
1562 return len;
1563 }
1564
__wait_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,block_t start,block_t end)1565 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1566 struct discard_policy *dpolicy,
1567 block_t start, block_t end)
1568 {
1569 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1570 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1571 &(dcc->fstrim_list) : &(dcc->wait_list);
1572 struct discard_cmd *dc, *tmp;
1573 bool need_wait;
1574 unsigned int trimmed = 0;
1575
1576 next:
1577 need_wait = false;
1578
1579 mutex_lock(&dcc->cmd_lock);
1580 list_for_each_entry_safe(dc, tmp, wait_list, list) {
1581 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1582 continue;
1583 if (dc->len < dpolicy->granularity)
1584 continue;
1585 if (dc->state == D_DONE && !dc->ref) {
1586 wait_for_completion_io(&dc->wait);
1587 if (!dc->error)
1588 trimmed += dc->len;
1589 __remove_discard_cmd(sbi, dc);
1590 } else {
1591 dc->ref++;
1592 need_wait = true;
1593 break;
1594 }
1595 }
1596 mutex_unlock(&dcc->cmd_lock);
1597
1598 if (need_wait) {
1599 trimmed += __wait_one_discard_bio(sbi, dc);
1600 goto next;
1601 }
1602
1603 return trimmed;
1604 }
1605
__wait_all_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1606 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1607 struct discard_policy *dpolicy)
1608 {
1609 struct discard_policy dp;
1610 unsigned int discard_blks;
1611
1612 if (dpolicy)
1613 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1614
1615 /* wait all */
1616 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1617 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1618 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1619 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1620
1621 return discard_blks;
1622 }
1623
1624 /* This should be covered by global mutex, &sit_i->sentry_lock */
f2fs_wait_discard_bio(struct f2fs_sb_info * sbi,block_t blkaddr)1625 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1626 {
1627 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1628 struct discard_cmd *dc;
1629 bool need_wait = false;
1630
1631 mutex_lock(&dcc->cmd_lock);
1632 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1633 NULL, blkaddr);
1634 if (dc) {
1635 if (dc->state == D_PREP) {
1636 __punch_discard_cmd(sbi, dc, blkaddr);
1637 } else {
1638 dc->ref++;
1639 need_wait = true;
1640 }
1641 }
1642 mutex_unlock(&dcc->cmd_lock);
1643
1644 if (need_wait)
1645 __wait_one_discard_bio(sbi, dc);
1646 }
1647
f2fs_stop_discard_thread(struct f2fs_sb_info * sbi)1648 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1649 {
1650 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1651
1652 if (dcc && dcc->f2fs_issue_discard) {
1653 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1654
1655 dcc->f2fs_issue_discard = NULL;
1656 kthread_stop(discard_thread);
1657 }
1658 }
1659
1660 /* This comes from f2fs_put_super */
f2fs_issue_discard_timeout(struct f2fs_sb_info * sbi)1661 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1662 {
1663 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1664 struct discard_policy dpolicy;
1665 bool dropped;
1666
1667 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1668 dcc->discard_granularity);
1669 __issue_discard_cmd(sbi, &dpolicy);
1670 dropped = __drop_discard_cmd(sbi);
1671
1672 /* just to make sure there is no pending discard commands */
1673 __wait_all_discard_cmd(sbi, NULL);
1674
1675 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1676 return dropped;
1677 }
1678
issue_discard_thread(void * data)1679 static int issue_discard_thread(void *data)
1680 {
1681 struct f2fs_sb_info *sbi = data;
1682 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1683 wait_queue_head_t *q = &dcc->discard_wait_queue;
1684 struct discard_policy dpolicy;
1685 unsigned int wait_ms = dcc->min_discard_issue_time;
1686 int issued;
1687
1688 set_freezable();
1689
1690 do {
1691 if (sbi->gc_mode == GC_URGENT_HIGH ||
1692 !f2fs_available_free_memory(sbi, DISCARD_CACHE))
1693 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1694 else
1695 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1696 dcc->discard_granularity);
1697
1698 if (!atomic_read(&dcc->discard_cmd_cnt))
1699 wait_ms = dpolicy.max_interval;
1700
1701 wait_event_interruptible_timeout(*q,
1702 kthread_should_stop() || freezing(current) ||
1703 dcc->discard_wake,
1704 msecs_to_jiffies(wait_ms));
1705
1706 if (dcc->discard_wake)
1707 dcc->discard_wake = 0;
1708
1709 /* clean up pending candidates before going to sleep */
1710 if (atomic_read(&dcc->queued_discard))
1711 __wait_all_discard_cmd(sbi, NULL);
1712
1713 if (try_to_freeze())
1714 continue;
1715 if (f2fs_readonly(sbi->sb))
1716 continue;
1717 if (kthread_should_stop())
1718 return 0;
1719 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1720 wait_ms = dpolicy.max_interval;
1721 continue;
1722 }
1723 if (!atomic_read(&dcc->discard_cmd_cnt))
1724 continue;
1725
1726 sb_start_intwrite(sbi->sb);
1727
1728 issued = __issue_discard_cmd(sbi, &dpolicy);
1729 if (issued > 0) {
1730 __wait_all_discard_cmd(sbi, &dpolicy);
1731 wait_ms = dpolicy.min_interval;
1732 } else if (issued == -1) {
1733 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1734 if (!wait_ms)
1735 wait_ms = dpolicy.mid_interval;
1736 } else {
1737 wait_ms = dpolicy.max_interval;
1738 }
1739
1740 sb_end_intwrite(sbi->sb);
1741
1742 } while (!kthread_should_stop());
1743 return 0;
1744 }
1745
1746 #ifdef CONFIG_BLK_DEV_ZONED
__f2fs_issue_discard_zone(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1747 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1748 struct block_device *bdev, block_t blkstart, block_t blklen)
1749 {
1750 sector_t sector, nr_sects;
1751 block_t lblkstart = blkstart;
1752 int devi = 0;
1753
1754 if (f2fs_is_multi_device(sbi)) {
1755 devi = f2fs_target_device_index(sbi, blkstart);
1756 if (blkstart < FDEV(devi).start_blk ||
1757 blkstart > FDEV(devi).end_blk) {
1758 f2fs_err(sbi, "Invalid block %x", blkstart);
1759 return -EIO;
1760 }
1761 blkstart -= FDEV(devi).start_blk;
1762 }
1763
1764 /* For sequential zones, reset the zone write pointer */
1765 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1766 sector = SECTOR_FROM_BLOCK(blkstart);
1767 nr_sects = SECTOR_FROM_BLOCK(blklen);
1768
1769 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1770 nr_sects != bdev_zone_sectors(bdev)) {
1771 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1772 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1773 blkstart, blklen);
1774 return -EIO;
1775 }
1776 trace_f2fs_issue_reset_zone(bdev, blkstart);
1777 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1778 sector, nr_sects, GFP_NOFS);
1779 }
1780
1781 /* For conventional zones, use regular discard if supported */
1782 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1783 }
1784 #endif
1785
__issue_discard_async(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1786 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1787 struct block_device *bdev, block_t blkstart, block_t blklen)
1788 {
1789 #ifdef CONFIG_BLK_DEV_ZONED
1790 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1791 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1792 #endif
1793 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1794 }
1795
f2fs_issue_discard(struct f2fs_sb_info * sbi,block_t blkstart,block_t blklen)1796 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1797 block_t blkstart, block_t blklen)
1798 {
1799 sector_t start = blkstart, len = 0;
1800 struct block_device *bdev;
1801 struct seg_entry *se;
1802 unsigned int offset;
1803 block_t i;
1804 int err = 0;
1805
1806 bdev = f2fs_target_device(sbi, blkstart, NULL);
1807
1808 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1809 if (i != start) {
1810 struct block_device *bdev2 =
1811 f2fs_target_device(sbi, i, NULL);
1812
1813 if (bdev2 != bdev) {
1814 err = __issue_discard_async(sbi, bdev,
1815 start, len);
1816 if (err)
1817 return err;
1818 bdev = bdev2;
1819 start = i;
1820 len = 0;
1821 }
1822 }
1823
1824 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1825 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1826
1827 if (f2fs_block_unit_discard(sbi) &&
1828 !f2fs_test_and_set_bit(offset, se->discard_map))
1829 sbi->discard_blks--;
1830 }
1831
1832 if (len)
1833 err = __issue_discard_async(sbi, bdev, start, len);
1834 return err;
1835 }
1836
add_discard_addrs(struct f2fs_sb_info * sbi,struct cp_control * cpc,bool check_only)1837 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1838 bool check_only)
1839 {
1840 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1841 int max_blocks = sbi->blocks_per_seg;
1842 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1843 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1844 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1845 unsigned long *discard_map = (unsigned long *)se->discard_map;
1846 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1847 unsigned int start = 0, end = -1;
1848 bool force = (cpc->reason & CP_DISCARD);
1849 struct discard_entry *de = NULL;
1850 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1851 int i;
1852
1853 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) ||
1854 !f2fs_block_unit_discard(sbi))
1855 return false;
1856
1857 if (!force) {
1858 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1859 SM_I(sbi)->dcc_info->nr_discards >=
1860 SM_I(sbi)->dcc_info->max_discards)
1861 return false;
1862 }
1863
1864 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1865 for (i = 0; i < entries; i++)
1866 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1867 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1868
1869 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1870 SM_I(sbi)->dcc_info->max_discards) {
1871 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1872 if (start >= max_blocks)
1873 break;
1874
1875 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1876 if (force && start && end != max_blocks
1877 && (end - start) < cpc->trim_minlen)
1878 continue;
1879
1880 if (check_only)
1881 return true;
1882
1883 if (!de) {
1884 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1885 GFP_F2FS_ZERO, true, NULL);
1886 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1887 list_add_tail(&de->list, head);
1888 }
1889
1890 for (i = start; i < end; i++)
1891 __set_bit_le(i, (void *)de->discard_map);
1892
1893 SM_I(sbi)->dcc_info->nr_discards += end - start;
1894 }
1895 return false;
1896 }
1897
release_discard_addr(struct discard_entry * entry)1898 static void release_discard_addr(struct discard_entry *entry)
1899 {
1900 list_del(&entry->list);
1901 kmem_cache_free(discard_entry_slab, entry);
1902 }
1903
f2fs_release_discard_addrs(struct f2fs_sb_info * sbi)1904 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1905 {
1906 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1907 struct discard_entry *entry, *this;
1908
1909 /* drop caches */
1910 list_for_each_entry_safe(entry, this, head, list)
1911 release_discard_addr(entry);
1912 }
1913
1914 /*
1915 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1916 */
set_prefree_as_free_segments(struct f2fs_sb_info * sbi)1917 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1918 {
1919 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1920 unsigned int segno;
1921
1922 mutex_lock(&dirty_i->seglist_lock);
1923 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1924 __set_test_and_free(sbi, segno, false);
1925 mutex_unlock(&dirty_i->seglist_lock);
1926 }
1927
f2fs_clear_prefree_segments(struct f2fs_sb_info * sbi,struct cp_control * cpc)1928 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1929 struct cp_control *cpc)
1930 {
1931 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1932 struct list_head *head = &dcc->entry_list;
1933 struct discard_entry *entry, *this;
1934 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1935 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1936 unsigned int start = 0, end = -1;
1937 unsigned int secno, start_segno;
1938 bool force = (cpc->reason & CP_DISCARD);
1939 bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
1940 DISCARD_UNIT_SECTION;
1941
1942 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
1943 section_alignment = true;
1944
1945 mutex_lock(&dirty_i->seglist_lock);
1946
1947 while (1) {
1948 int i;
1949
1950 if (section_alignment && end != -1)
1951 end--;
1952 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1953 if (start >= MAIN_SEGS(sbi))
1954 break;
1955 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1956 start + 1);
1957
1958 if (section_alignment) {
1959 start = rounddown(start, sbi->segs_per_sec);
1960 end = roundup(end, sbi->segs_per_sec);
1961 }
1962
1963 for (i = start; i < end; i++) {
1964 if (test_and_clear_bit(i, prefree_map))
1965 dirty_i->nr_dirty[PRE]--;
1966 }
1967
1968 if (!f2fs_realtime_discard_enable(sbi))
1969 continue;
1970
1971 if (force && start >= cpc->trim_start &&
1972 (end - 1) <= cpc->trim_end)
1973 continue;
1974
1975 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
1976 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1977 (end - start) << sbi->log_blocks_per_seg);
1978 continue;
1979 }
1980 next:
1981 secno = GET_SEC_FROM_SEG(sbi, start);
1982 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1983 if (!IS_CURSEC(sbi, secno) &&
1984 !get_valid_blocks(sbi, start, true))
1985 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1986 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1987
1988 start = start_segno + sbi->segs_per_sec;
1989 if (start < end)
1990 goto next;
1991 else
1992 end = start - 1;
1993 }
1994 mutex_unlock(&dirty_i->seglist_lock);
1995
1996 if (!f2fs_block_unit_discard(sbi))
1997 goto wakeup;
1998
1999 /* send small discards */
2000 list_for_each_entry_safe(entry, this, head, list) {
2001 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2002 bool is_valid = test_bit_le(0, entry->discard_map);
2003
2004 find_next:
2005 if (is_valid) {
2006 next_pos = find_next_zero_bit_le(entry->discard_map,
2007 sbi->blocks_per_seg, cur_pos);
2008 len = next_pos - cur_pos;
2009
2010 if (f2fs_sb_has_blkzoned(sbi) ||
2011 (force && len < cpc->trim_minlen))
2012 goto skip;
2013
2014 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2015 len);
2016 total_len += len;
2017 } else {
2018 next_pos = find_next_bit_le(entry->discard_map,
2019 sbi->blocks_per_seg, cur_pos);
2020 }
2021 skip:
2022 cur_pos = next_pos;
2023 is_valid = !is_valid;
2024
2025 if (cur_pos < sbi->blocks_per_seg)
2026 goto find_next;
2027
2028 release_discard_addr(entry);
2029 dcc->nr_discards -= total_len;
2030 }
2031
2032 wakeup:
2033 wake_up_discard_thread(sbi, false);
2034 }
2035
f2fs_start_discard_thread(struct f2fs_sb_info * sbi)2036 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2037 {
2038 dev_t dev = sbi->sb->s_bdev->bd_dev;
2039 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2040 int err = 0;
2041
2042 if (!f2fs_realtime_discard_enable(sbi))
2043 return 0;
2044
2045 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2046 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2047 if (IS_ERR(dcc->f2fs_issue_discard)) {
2048 err = PTR_ERR(dcc->f2fs_issue_discard);
2049 dcc->f2fs_issue_discard = NULL;
2050 }
2051
2052 return err;
2053 }
2054
create_discard_cmd_control(struct f2fs_sb_info * sbi)2055 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2056 {
2057 struct discard_cmd_control *dcc;
2058 int err = 0, i;
2059
2060 if (SM_I(sbi)->dcc_info) {
2061 dcc = SM_I(sbi)->dcc_info;
2062 goto init_thread;
2063 }
2064
2065 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2066 if (!dcc)
2067 return -ENOMEM;
2068
2069 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2070 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2071 dcc->discard_granularity = sbi->blocks_per_seg;
2072 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2073 dcc->discard_granularity = BLKS_PER_SEC(sbi);
2074
2075 INIT_LIST_HEAD(&dcc->entry_list);
2076 for (i = 0; i < MAX_PLIST_NUM; i++)
2077 INIT_LIST_HEAD(&dcc->pend_list[i]);
2078 INIT_LIST_HEAD(&dcc->wait_list);
2079 INIT_LIST_HEAD(&dcc->fstrim_list);
2080 mutex_init(&dcc->cmd_lock);
2081 atomic_set(&dcc->issued_discard, 0);
2082 atomic_set(&dcc->queued_discard, 0);
2083 atomic_set(&dcc->discard_cmd_cnt, 0);
2084 dcc->nr_discards = 0;
2085 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2086 dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2087 dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2088 dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2089 dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2090 dcc->undiscard_blks = 0;
2091 dcc->next_pos = 0;
2092 dcc->root = RB_ROOT_CACHED;
2093 dcc->rbtree_check = false;
2094
2095 init_waitqueue_head(&dcc->discard_wait_queue);
2096 SM_I(sbi)->dcc_info = dcc;
2097 init_thread:
2098 err = f2fs_start_discard_thread(sbi);
2099 if (err) {
2100 kfree(dcc);
2101 SM_I(sbi)->dcc_info = NULL;
2102 }
2103
2104 return err;
2105 }
2106
destroy_discard_cmd_control(struct f2fs_sb_info * sbi)2107 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2108 {
2109 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2110
2111 if (!dcc)
2112 return;
2113
2114 f2fs_stop_discard_thread(sbi);
2115
2116 /*
2117 * Recovery can cache discard commands, so in error path of
2118 * fill_super(), it needs to give a chance to handle them.
2119 */
2120 if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2121 f2fs_issue_discard_timeout(sbi);
2122
2123 kfree(dcc);
2124 SM_I(sbi)->dcc_info = NULL;
2125 }
2126
__mark_sit_entry_dirty(struct f2fs_sb_info * sbi,unsigned int segno)2127 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2128 {
2129 struct sit_info *sit_i = SIT_I(sbi);
2130
2131 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2132 sit_i->dirty_sentries++;
2133 return false;
2134 }
2135
2136 return true;
2137 }
2138
__set_sit_entry_type(struct f2fs_sb_info * sbi,int type,unsigned int segno,int modified)2139 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2140 unsigned int segno, int modified)
2141 {
2142 struct seg_entry *se = get_seg_entry(sbi, segno);
2143
2144 se->type = type;
2145 if (modified)
2146 __mark_sit_entry_dirty(sbi, segno);
2147 }
2148
get_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr)2149 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2150 block_t blkaddr)
2151 {
2152 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2153
2154 if (segno == NULL_SEGNO)
2155 return 0;
2156 return get_seg_entry(sbi, segno)->mtime;
2157 }
2158
update_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned long long old_mtime)2159 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2160 unsigned long long old_mtime)
2161 {
2162 struct seg_entry *se;
2163 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2164 unsigned long long ctime = get_mtime(sbi, false);
2165 unsigned long long mtime = old_mtime ? old_mtime : ctime;
2166
2167 if (segno == NULL_SEGNO)
2168 return;
2169
2170 se = get_seg_entry(sbi, segno);
2171
2172 if (!se->mtime)
2173 se->mtime = mtime;
2174 else
2175 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2176 se->valid_blocks + 1);
2177
2178 if (ctime > SIT_I(sbi)->max_mtime)
2179 SIT_I(sbi)->max_mtime = ctime;
2180 }
2181
update_sit_entry(struct f2fs_sb_info * sbi,block_t blkaddr,int del)2182 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2183 {
2184 struct seg_entry *se;
2185 unsigned int segno, offset;
2186 long int new_vblocks;
2187 bool exist;
2188 #ifdef CONFIG_F2FS_CHECK_FS
2189 bool mir_exist;
2190 #endif
2191
2192 segno = GET_SEGNO(sbi, blkaddr);
2193
2194 se = get_seg_entry(sbi, segno);
2195 new_vblocks = se->valid_blocks + del;
2196 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2197
2198 f2fs_bug_on(sbi, (new_vblocks < 0 ||
2199 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2200
2201 se->valid_blocks = new_vblocks;
2202
2203 /* Update valid block bitmap */
2204 if (del > 0) {
2205 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2206 #ifdef CONFIG_F2FS_CHECK_FS
2207 mir_exist = f2fs_test_and_set_bit(offset,
2208 se->cur_valid_map_mir);
2209 if (unlikely(exist != mir_exist)) {
2210 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2211 blkaddr, exist);
2212 f2fs_bug_on(sbi, 1);
2213 }
2214 #endif
2215 if (unlikely(exist)) {
2216 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2217 blkaddr);
2218 f2fs_bug_on(sbi, 1);
2219 se->valid_blocks--;
2220 del = 0;
2221 }
2222
2223 if (f2fs_block_unit_discard(sbi) &&
2224 !f2fs_test_and_set_bit(offset, se->discard_map))
2225 sbi->discard_blks--;
2226
2227 /*
2228 * SSR should never reuse block which is checkpointed
2229 * or newly invalidated.
2230 */
2231 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2232 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2233 se->ckpt_valid_blocks++;
2234 }
2235 } else {
2236 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2237 #ifdef CONFIG_F2FS_CHECK_FS
2238 mir_exist = f2fs_test_and_clear_bit(offset,
2239 se->cur_valid_map_mir);
2240 if (unlikely(exist != mir_exist)) {
2241 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2242 blkaddr, exist);
2243 f2fs_bug_on(sbi, 1);
2244 }
2245 #endif
2246 if (unlikely(!exist)) {
2247 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2248 blkaddr);
2249 f2fs_bug_on(sbi, 1);
2250 se->valid_blocks++;
2251 del = 0;
2252 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2253 /*
2254 * If checkpoints are off, we must not reuse data that
2255 * was used in the previous checkpoint. If it was used
2256 * before, we must track that to know how much space we
2257 * really have.
2258 */
2259 if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2260 spin_lock(&sbi->stat_lock);
2261 sbi->unusable_block_count++;
2262 spin_unlock(&sbi->stat_lock);
2263 }
2264 }
2265
2266 if (f2fs_block_unit_discard(sbi) &&
2267 f2fs_test_and_clear_bit(offset, se->discard_map))
2268 sbi->discard_blks++;
2269 }
2270 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2271 se->ckpt_valid_blocks += del;
2272
2273 __mark_sit_entry_dirty(sbi, segno);
2274
2275 /* update total number of valid blocks to be written in ckpt area */
2276 SIT_I(sbi)->written_valid_blocks += del;
2277
2278 if (__is_large_section(sbi))
2279 get_sec_entry(sbi, segno)->valid_blocks += del;
2280 }
2281
f2fs_invalidate_blocks(struct f2fs_sb_info * sbi,block_t addr)2282 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2283 {
2284 unsigned int segno = GET_SEGNO(sbi, addr);
2285 struct sit_info *sit_i = SIT_I(sbi);
2286
2287 f2fs_bug_on(sbi, addr == NULL_ADDR);
2288 if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2289 return;
2290
2291 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2292 f2fs_invalidate_compress_page(sbi, addr);
2293
2294 /* add it into sit main buffer */
2295 down_write(&sit_i->sentry_lock);
2296
2297 update_segment_mtime(sbi, addr, 0);
2298 update_sit_entry(sbi, addr, -1);
2299
2300 /* add it into dirty seglist */
2301 locate_dirty_segment(sbi, segno);
2302
2303 up_write(&sit_i->sentry_lock);
2304 }
2305
f2fs_is_checkpointed_data(struct f2fs_sb_info * sbi,block_t blkaddr)2306 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2307 {
2308 struct sit_info *sit_i = SIT_I(sbi);
2309 unsigned int segno, offset;
2310 struct seg_entry *se;
2311 bool is_cp = false;
2312
2313 if (!__is_valid_data_blkaddr(blkaddr))
2314 return true;
2315
2316 down_read(&sit_i->sentry_lock);
2317
2318 segno = GET_SEGNO(sbi, blkaddr);
2319 se = get_seg_entry(sbi, segno);
2320 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2321
2322 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2323 is_cp = true;
2324
2325 up_read(&sit_i->sentry_lock);
2326
2327 return is_cp;
2328 }
2329
2330 /*
2331 * This function should be resided under the curseg_mutex lock
2332 */
__add_sum_entry(struct f2fs_sb_info * sbi,int type,struct f2fs_summary * sum)2333 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2334 struct f2fs_summary *sum)
2335 {
2336 struct curseg_info *curseg = CURSEG_I(sbi, type);
2337 void *addr = curseg->sum_blk;
2338
2339 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2340 memcpy(addr, sum, sizeof(struct f2fs_summary));
2341 }
2342
2343 /*
2344 * Calculate the number of current summary pages for writing
2345 */
f2fs_npages_for_summary_flush(struct f2fs_sb_info * sbi,bool for_ra)2346 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2347 {
2348 int valid_sum_count = 0;
2349 int i, sum_in_page;
2350
2351 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2352 if (sbi->ckpt->alloc_type[i] == SSR)
2353 valid_sum_count += sbi->blocks_per_seg;
2354 else {
2355 if (for_ra)
2356 valid_sum_count += le16_to_cpu(
2357 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2358 else
2359 valid_sum_count += curseg_blkoff(sbi, i);
2360 }
2361 }
2362
2363 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2364 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2365 if (valid_sum_count <= sum_in_page)
2366 return 1;
2367 else if ((valid_sum_count - sum_in_page) <=
2368 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2369 return 2;
2370 return 3;
2371 }
2372
2373 /*
2374 * Caller should put this summary page
2375 */
f2fs_get_sum_page(struct f2fs_sb_info * sbi,unsigned int segno)2376 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2377 {
2378 if (unlikely(f2fs_cp_error(sbi)))
2379 return ERR_PTR(-EIO);
2380 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2381 }
2382
f2fs_update_meta_page(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)2383 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2384 void *src, block_t blk_addr)
2385 {
2386 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2387
2388 memcpy(page_address(page), src, PAGE_SIZE);
2389 set_page_dirty(page);
2390 f2fs_put_page(page, 1);
2391 }
2392
write_sum_page(struct f2fs_sb_info * sbi,struct f2fs_summary_block * sum_blk,block_t blk_addr)2393 static void write_sum_page(struct f2fs_sb_info *sbi,
2394 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2395 {
2396 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2397 }
2398
write_current_sum_page(struct f2fs_sb_info * sbi,int type,block_t blk_addr)2399 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2400 int type, block_t blk_addr)
2401 {
2402 struct curseg_info *curseg = CURSEG_I(sbi, type);
2403 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2404 struct f2fs_summary_block *src = curseg->sum_blk;
2405 struct f2fs_summary_block *dst;
2406
2407 dst = (struct f2fs_summary_block *)page_address(page);
2408 memset(dst, 0, PAGE_SIZE);
2409
2410 mutex_lock(&curseg->curseg_mutex);
2411
2412 down_read(&curseg->journal_rwsem);
2413 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2414 up_read(&curseg->journal_rwsem);
2415
2416 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2417 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2418
2419 mutex_unlock(&curseg->curseg_mutex);
2420
2421 set_page_dirty(page);
2422 f2fs_put_page(page, 1);
2423 }
2424
is_next_segment_free(struct f2fs_sb_info * sbi,struct curseg_info * curseg,int type)2425 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2426 struct curseg_info *curseg, int type)
2427 {
2428 unsigned int segno = curseg->segno + 1;
2429 struct free_segmap_info *free_i = FREE_I(sbi);
2430
2431 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2432 return !test_bit(segno, free_i->free_segmap);
2433 return 0;
2434 }
2435
2436 /*
2437 * Find a new segment from the free segments bitmap to right order
2438 * This function should be returned with success, otherwise BUG
2439 */
get_new_segment(struct f2fs_sb_info * sbi,unsigned int * newseg,bool new_sec,int dir)2440 static void get_new_segment(struct f2fs_sb_info *sbi,
2441 unsigned int *newseg, bool new_sec, int dir)
2442 {
2443 struct free_segmap_info *free_i = FREE_I(sbi);
2444 unsigned int segno, secno, zoneno;
2445 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2446 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2447 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2448 unsigned int left_start = hint;
2449 bool init = true;
2450 int go_left = 0;
2451 int i;
2452
2453 spin_lock(&free_i->segmap_lock);
2454
2455 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2456 segno = find_next_zero_bit(free_i->free_segmap,
2457 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2458 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2459 goto got_it;
2460 }
2461 find_other_zone:
2462 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2463 if (secno >= MAIN_SECS(sbi)) {
2464 if (dir == ALLOC_RIGHT) {
2465 secno = find_next_zero_bit(free_i->free_secmap,
2466 MAIN_SECS(sbi), 0);
2467 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2468 } else {
2469 go_left = 1;
2470 left_start = hint - 1;
2471 }
2472 }
2473 if (go_left == 0)
2474 goto skip_left;
2475
2476 while (test_bit(left_start, free_i->free_secmap)) {
2477 if (left_start > 0) {
2478 left_start--;
2479 continue;
2480 }
2481 left_start = find_next_zero_bit(free_i->free_secmap,
2482 MAIN_SECS(sbi), 0);
2483 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2484 break;
2485 }
2486 secno = left_start;
2487 skip_left:
2488 segno = GET_SEG_FROM_SEC(sbi, secno);
2489 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2490
2491 /* give up on finding another zone */
2492 if (!init)
2493 goto got_it;
2494 if (sbi->secs_per_zone == 1)
2495 goto got_it;
2496 if (zoneno == old_zoneno)
2497 goto got_it;
2498 if (dir == ALLOC_LEFT) {
2499 if (!go_left && zoneno + 1 >= total_zones)
2500 goto got_it;
2501 if (go_left && zoneno == 0)
2502 goto got_it;
2503 }
2504 for (i = 0; i < NR_CURSEG_TYPE; i++)
2505 if (CURSEG_I(sbi, i)->zone == zoneno)
2506 break;
2507
2508 if (i < NR_CURSEG_TYPE) {
2509 /* zone is in user, try another */
2510 if (go_left)
2511 hint = zoneno * sbi->secs_per_zone - 1;
2512 else if (zoneno + 1 >= total_zones)
2513 hint = 0;
2514 else
2515 hint = (zoneno + 1) * sbi->secs_per_zone;
2516 init = false;
2517 goto find_other_zone;
2518 }
2519 got_it:
2520 /* set it as dirty segment in free segmap */
2521 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2522 __set_inuse(sbi, segno);
2523 *newseg = segno;
2524 spin_unlock(&free_i->segmap_lock);
2525 }
2526
reset_curseg(struct f2fs_sb_info * sbi,int type,int modified)2527 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2528 {
2529 struct curseg_info *curseg = CURSEG_I(sbi, type);
2530 struct summary_footer *sum_footer;
2531 unsigned short seg_type = curseg->seg_type;
2532
2533 curseg->inited = true;
2534 curseg->segno = curseg->next_segno;
2535 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2536 curseg->next_blkoff = 0;
2537 curseg->next_segno = NULL_SEGNO;
2538
2539 sum_footer = &(curseg->sum_blk->footer);
2540 memset(sum_footer, 0, sizeof(struct summary_footer));
2541
2542 sanity_check_seg_type(sbi, seg_type);
2543
2544 if (IS_DATASEG(seg_type))
2545 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2546 if (IS_NODESEG(seg_type))
2547 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2548 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2549 }
2550
__get_next_segno(struct f2fs_sb_info * sbi,int type)2551 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2552 {
2553 struct curseg_info *curseg = CURSEG_I(sbi, type);
2554 unsigned short seg_type = curseg->seg_type;
2555
2556 sanity_check_seg_type(sbi, seg_type);
2557 if (f2fs_need_rand_seg(sbi))
2558 return prandom_u32() % (MAIN_SECS(sbi) * sbi->segs_per_sec);
2559
2560 /* if segs_per_sec is large than 1, we need to keep original policy. */
2561 if (__is_large_section(sbi))
2562 return curseg->segno;
2563
2564 /* inmem log may not locate on any segment after mount */
2565 if (!curseg->inited)
2566 return 0;
2567
2568 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2569 return 0;
2570
2571 if (test_opt(sbi, NOHEAP) &&
2572 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2573 return 0;
2574
2575 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2576 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2577
2578 /* find segments from 0 to reuse freed segments */
2579 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2580 return 0;
2581
2582 return curseg->segno;
2583 }
2584
2585 /*
2586 * Allocate a current working segment.
2587 * This function always allocates a free segment in LFS manner.
2588 */
new_curseg(struct f2fs_sb_info * sbi,int type,bool new_sec)2589 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2590 {
2591 struct curseg_info *curseg = CURSEG_I(sbi, type);
2592 unsigned short seg_type = curseg->seg_type;
2593 unsigned int segno = curseg->segno;
2594 int dir = ALLOC_LEFT;
2595
2596 if (curseg->inited)
2597 write_sum_page(sbi, curseg->sum_blk,
2598 GET_SUM_BLOCK(sbi, segno));
2599 if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2600 dir = ALLOC_RIGHT;
2601
2602 if (test_opt(sbi, NOHEAP))
2603 dir = ALLOC_RIGHT;
2604
2605 segno = __get_next_segno(sbi, type);
2606 get_new_segment(sbi, &segno, new_sec, dir);
2607 curseg->next_segno = segno;
2608 reset_curseg(sbi, type, 1);
2609 curseg->alloc_type = LFS;
2610 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2611 curseg->fragment_remained_chunk =
2612 prandom_u32() % sbi->max_fragment_chunk + 1;
2613 }
2614
__next_free_blkoff(struct f2fs_sb_info * sbi,int segno,block_t start)2615 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2616 int segno, block_t start)
2617 {
2618 struct seg_entry *se = get_seg_entry(sbi, segno);
2619 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2620 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2621 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2622 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2623 int i;
2624
2625 for (i = 0; i < entries; i++)
2626 target_map[i] = ckpt_map[i] | cur_map[i];
2627
2628 return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2629 }
2630
2631 /*
2632 * If a segment is written by LFS manner, next block offset is just obtained
2633 * by increasing the current block offset. However, if a segment is written by
2634 * SSR manner, next block offset obtained by calling __next_free_blkoff
2635 */
__refresh_next_blkoff(struct f2fs_sb_info * sbi,struct curseg_info * seg)2636 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2637 struct curseg_info *seg)
2638 {
2639 if (seg->alloc_type == SSR) {
2640 seg->next_blkoff =
2641 __next_free_blkoff(sbi, seg->segno,
2642 seg->next_blkoff + 1);
2643 } else {
2644 seg->next_blkoff++;
2645 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) {
2646 /* To allocate block chunks in different sizes, use random number */
2647 if (--seg->fragment_remained_chunk <= 0) {
2648 seg->fragment_remained_chunk =
2649 prandom_u32() % sbi->max_fragment_chunk + 1;
2650 seg->next_blkoff +=
2651 prandom_u32() % sbi->max_fragment_hole + 1;
2652 }
2653 }
2654 }
2655 }
2656
f2fs_segment_has_free_slot(struct f2fs_sb_info * sbi,int segno)2657 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2658 {
2659 return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2660 }
2661
2662 /*
2663 * This function always allocates a used segment(from dirty seglist) by SSR
2664 * manner, so it should recover the existing segment information of valid blocks
2665 */
change_curseg(struct f2fs_sb_info * sbi,int type,bool flush)2666 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2667 {
2668 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2669 struct curseg_info *curseg = CURSEG_I(sbi, type);
2670 unsigned int new_segno = curseg->next_segno;
2671 struct f2fs_summary_block *sum_node;
2672 struct page *sum_page;
2673
2674 if (flush)
2675 write_sum_page(sbi, curseg->sum_blk,
2676 GET_SUM_BLOCK(sbi, curseg->segno));
2677
2678 __set_test_and_inuse(sbi, new_segno);
2679
2680 mutex_lock(&dirty_i->seglist_lock);
2681 __remove_dirty_segment(sbi, new_segno, PRE);
2682 __remove_dirty_segment(sbi, new_segno, DIRTY);
2683 mutex_unlock(&dirty_i->seglist_lock);
2684
2685 reset_curseg(sbi, type, 1);
2686 curseg->alloc_type = SSR;
2687 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2688
2689 sum_page = f2fs_get_sum_page(sbi, new_segno);
2690 if (IS_ERR(sum_page)) {
2691 /* GC won't be able to use stale summary pages by cp_error */
2692 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2693 return;
2694 }
2695 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2696 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2697 f2fs_put_page(sum_page, 1);
2698 }
2699
2700 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2701 int alloc_mode, unsigned long long age);
2702
get_atssr_segment(struct f2fs_sb_info * sbi,int type,int target_type,int alloc_mode,unsigned long long age)2703 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2704 int target_type, int alloc_mode,
2705 unsigned long long age)
2706 {
2707 struct curseg_info *curseg = CURSEG_I(sbi, type);
2708
2709 curseg->seg_type = target_type;
2710
2711 if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2712 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2713
2714 curseg->seg_type = se->type;
2715 change_curseg(sbi, type, true);
2716 } else {
2717 /* allocate cold segment by default */
2718 curseg->seg_type = CURSEG_COLD_DATA;
2719 new_curseg(sbi, type, true);
2720 }
2721 stat_inc_seg_type(sbi, curseg);
2722 }
2723
__f2fs_init_atgc_curseg(struct f2fs_sb_info * sbi)2724 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2725 {
2726 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2727
2728 if (!sbi->am.atgc_enabled)
2729 return;
2730
2731 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2732
2733 mutex_lock(&curseg->curseg_mutex);
2734 down_write(&SIT_I(sbi)->sentry_lock);
2735
2736 get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2737
2738 up_write(&SIT_I(sbi)->sentry_lock);
2739 mutex_unlock(&curseg->curseg_mutex);
2740
2741 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2742
2743 }
f2fs_init_inmem_curseg(struct f2fs_sb_info * sbi)2744 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2745 {
2746 __f2fs_init_atgc_curseg(sbi);
2747 }
2748
__f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi,int type)2749 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2750 {
2751 struct curseg_info *curseg = CURSEG_I(sbi, type);
2752
2753 mutex_lock(&curseg->curseg_mutex);
2754 if (!curseg->inited)
2755 goto out;
2756
2757 if (get_valid_blocks(sbi, curseg->segno, false)) {
2758 write_sum_page(sbi, curseg->sum_blk,
2759 GET_SUM_BLOCK(sbi, curseg->segno));
2760 } else {
2761 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2762 __set_test_and_free(sbi, curseg->segno, true);
2763 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2764 }
2765 out:
2766 mutex_unlock(&curseg->curseg_mutex);
2767 }
2768
f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi)2769 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2770 {
2771 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2772
2773 if (sbi->am.atgc_enabled)
2774 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2775 }
2776
__f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi,int type)2777 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2778 {
2779 struct curseg_info *curseg = CURSEG_I(sbi, type);
2780
2781 mutex_lock(&curseg->curseg_mutex);
2782 if (!curseg->inited)
2783 goto out;
2784 if (get_valid_blocks(sbi, curseg->segno, false))
2785 goto out;
2786
2787 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2788 __set_test_and_inuse(sbi, curseg->segno);
2789 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2790 out:
2791 mutex_unlock(&curseg->curseg_mutex);
2792 }
2793
f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi)2794 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2795 {
2796 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2797
2798 if (sbi->am.atgc_enabled)
2799 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2800 }
2801
get_ssr_segment(struct f2fs_sb_info * sbi,int type,int alloc_mode,unsigned long long age)2802 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2803 int alloc_mode, unsigned long long age)
2804 {
2805 struct curseg_info *curseg = CURSEG_I(sbi, type);
2806 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2807 unsigned segno = NULL_SEGNO;
2808 unsigned short seg_type = curseg->seg_type;
2809 int i, cnt;
2810 bool reversed = false;
2811
2812 sanity_check_seg_type(sbi, seg_type);
2813
2814 /* f2fs_need_SSR() already forces to do this */
2815 if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2816 curseg->next_segno = segno;
2817 return 1;
2818 }
2819
2820 /* For node segments, let's do SSR more intensively */
2821 if (IS_NODESEG(seg_type)) {
2822 if (seg_type >= CURSEG_WARM_NODE) {
2823 reversed = true;
2824 i = CURSEG_COLD_NODE;
2825 } else {
2826 i = CURSEG_HOT_NODE;
2827 }
2828 cnt = NR_CURSEG_NODE_TYPE;
2829 } else {
2830 if (seg_type >= CURSEG_WARM_DATA) {
2831 reversed = true;
2832 i = CURSEG_COLD_DATA;
2833 } else {
2834 i = CURSEG_HOT_DATA;
2835 }
2836 cnt = NR_CURSEG_DATA_TYPE;
2837 }
2838
2839 for (; cnt-- > 0; reversed ? i-- : i++) {
2840 if (i == seg_type)
2841 continue;
2842 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2843 curseg->next_segno = segno;
2844 return 1;
2845 }
2846 }
2847
2848 /* find valid_blocks=0 in dirty list */
2849 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2850 segno = get_free_segment(sbi);
2851 if (segno != NULL_SEGNO) {
2852 curseg->next_segno = segno;
2853 return 1;
2854 }
2855 }
2856 return 0;
2857 }
2858
2859 /*
2860 * flush out current segment and replace it with new segment
2861 * This function should be returned with success, otherwise BUG
2862 */
allocate_segment_by_default(struct f2fs_sb_info * sbi,int type,bool force)2863 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2864 int type, bool force)
2865 {
2866 struct curseg_info *curseg = CURSEG_I(sbi, type);
2867
2868 if (force)
2869 new_curseg(sbi, type, true);
2870 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2871 curseg->seg_type == CURSEG_WARM_NODE)
2872 new_curseg(sbi, type, false);
2873 else if (curseg->alloc_type == LFS &&
2874 is_next_segment_free(sbi, curseg, type) &&
2875 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2876 new_curseg(sbi, type, false);
2877 else if (f2fs_need_SSR(sbi) &&
2878 get_ssr_segment(sbi, type, SSR, 0))
2879 change_curseg(sbi, type, true);
2880 else
2881 new_curseg(sbi, type, false);
2882
2883 stat_inc_seg_type(sbi, curseg);
2884 }
2885
f2fs_allocate_segment_for_resize(struct f2fs_sb_info * sbi,int type,unsigned int start,unsigned int end)2886 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2887 unsigned int start, unsigned int end)
2888 {
2889 struct curseg_info *curseg = CURSEG_I(sbi, type);
2890 unsigned int segno;
2891
2892 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2893 mutex_lock(&curseg->curseg_mutex);
2894 down_write(&SIT_I(sbi)->sentry_lock);
2895
2896 segno = CURSEG_I(sbi, type)->segno;
2897 if (segno < start || segno > end)
2898 goto unlock;
2899
2900 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2901 change_curseg(sbi, type, true);
2902 else
2903 new_curseg(sbi, type, true);
2904
2905 stat_inc_seg_type(sbi, curseg);
2906
2907 locate_dirty_segment(sbi, segno);
2908 unlock:
2909 up_write(&SIT_I(sbi)->sentry_lock);
2910
2911 if (segno != curseg->segno)
2912 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2913 type, segno, curseg->segno);
2914
2915 mutex_unlock(&curseg->curseg_mutex);
2916 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2917 }
2918
__allocate_new_segment(struct f2fs_sb_info * sbi,int type,bool new_sec,bool force)2919 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
2920 bool new_sec, bool force)
2921 {
2922 struct curseg_info *curseg = CURSEG_I(sbi, type);
2923 unsigned int old_segno;
2924
2925 if (!curseg->inited)
2926 goto alloc;
2927
2928 if (force || curseg->next_blkoff ||
2929 get_valid_blocks(sbi, curseg->segno, new_sec))
2930 goto alloc;
2931
2932 if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
2933 return;
2934 alloc:
2935 old_segno = curseg->segno;
2936 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
2937 locate_dirty_segment(sbi, old_segno);
2938 }
2939
__allocate_new_section(struct f2fs_sb_info * sbi,int type,bool force)2940 static void __allocate_new_section(struct f2fs_sb_info *sbi,
2941 int type, bool force)
2942 {
2943 __allocate_new_segment(sbi, type, true, force);
2944 }
2945
f2fs_allocate_new_section(struct f2fs_sb_info * sbi,int type,bool force)2946 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
2947 {
2948 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2949 down_write(&SIT_I(sbi)->sentry_lock);
2950 __allocate_new_section(sbi, type, force);
2951 up_write(&SIT_I(sbi)->sentry_lock);
2952 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2953 }
2954
f2fs_allocate_new_segments(struct f2fs_sb_info * sbi)2955 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2956 {
2957 int i;
2958
2959 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2960 down_write(&SIT_I(sbi)->sentry_lock);
2961 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
2962 __allocate_new_segment(sbi, i, false, false);
2963 up_write(&SIT_I(sbi)->sentry_lock);
2964 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2965 }
2966
2967 static const struct segment_allocation default_salloc_ops = {
2968 .allocate_segment = allocate_segment_by_default,
2969 };
2970
f2fs_exist_trim_candidates(struct f2fs_sb_info * sbi,struct cp_control * cpc)2971 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2972 struct cp_control *cpc)
2973 {
2974 __u64 trim_start = cpc->trim_start;
2975 bool has_candidate = false;
2976
2977 down_write(&SIT_I(sbi)->sentry_lock);
2978 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2979 if (add_discard_addrs(sbi, cpc, true)) {
2980 has_candidate = true;
2981 break;
2982 }
2983 }
2984 up_write(&SIT_I(sbi)->sentry_lock);
2985
2986 cpc->trim_start = trim_start;
2987 return has_candidate;
2988 }
2989
__issue_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,unsigned int start,unsigned int end)2990 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2991 struct discard_policy *dpolicy,
2992 unsigned int start, unsigned int end)
2993 {
2994 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2995 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2996 struct rb_node **insert_p = NULL, *insert_parent = NULL;
2997 struct discard_cmd *dc;
2998 struct blk_plug plug;
2999 int issued;
3000 unsigned int trimmed = 0;
3001
3002 next:
3003 issued = 0;
3004
3005 mutex_lock(&dcc->cmd_lock);
3006 if (unlikely(dcc->rbtree_check))
3007 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
3008 &dcc->root, false));
3009
3010 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
3011 NULL, start,
3012 (struct rb_entry **)&prev_dc,
3013 (struct rb_entry **)&next_dc,
3014 &insert_p, &insert_parent, true, NULL);
3015 if (!dc)
3016 dc = next_dc;
3017
3018 blk_start_plug(&plug);
3019
3020 while (dc && dc->lstart <= end) {
3021 struct rb_node *node;
3022 int err = 0;
3023
3024 if (dc->len < dpolicy->granularity)
3025 goto skip;
3026
3027 if (dc->state != D_PREP) {
3028 list_move_tail(&dc->list, &dcc->fstrim_list);
3029 goto skip;
3030 }
3031
3032 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3033
3034 if (issued >= dpolicy->max_requests) {
3035 start = dc->lstart + dc->len;
3036
3037 if (err)
3038 __remove_discard_cmd(sbi, dc);
3039
3040 blk_finish_plug(&plug);
3041 mutex_unlock(&dcc->cmd_lock);
3042 trimmed += __wait_all_discard_cmd(sbi, NULL);
3043 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3044 goto next;
3045 }
3046 skip:
3047 node = rb_next(&dc->rb_node);
3048 if (err)
3049 __remove_discard_cmd(sbi, dc);
3050 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3051
3052 if (fatal_signal_pending(current))
3053 break;
3054 }
3055
3056 blk_finish_plug(&plug);
3057 mutex_unlock(&dcc->cmd_lock);
3058
3059 return trimmed;
3060 }
3061
f2fs_trim_fs(struct f2fs_sb_info * sbi,struct fstrim_range * range)3062 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3063 {
3064 __u64 start = F2FS_BYTES_TO_BLK(range->start);
3065 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3066 unsigned int start_segno, end_segno;
3067 block_t start_block, end_block;
3068 struct cp_control cpc;
3069 struct discard_policy dpolicy;
3070 unsigned long long trimmed = 0;
3071 int err = 0;
3072 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3073
3074 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3075 return -EINVAL;
3076
3077 if (end < MAIN_BLKADDR(sbi))
3078 goto out;
3079
3080 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3081 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3082 return -EFSCORRUPTED;
3083 }
3084
3085 /* start/end segment number in main_area */
3086 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3087 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3088 GET_SEGNO(sbi, end);
3089 if (need_align) {
3090 start_segno = rounddown(start_segno, sbi->segs_per_sec);
3091 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3092 }
3093
3094 cpc.reason = CP_DISCARD;
3095 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3096 cpc.trim_start = start_segno;
3097 cpc.trim_end = end_segno;
3098
3099 if (sbi->discard_blks == 0)
3100 goto out;
3101
3102 f2fs_down_write(&sbi->gc_lock);
3103 err = f2fs_write_checkpoint(sbi, &cpc);
3104 f2fs_up_write(&sbi->gc_lock);
3105 if (err)
3106 goto out;
3107
3108 /*
3109 * We filed discard candidates, but actually we don't need to wait for
3110 * all of them, since they'll be issued in idle time along with runtime
3111 * discard option. User configuration looks like using runtime discard
3112 * or periodic fstrim instead of it.
3113 */
3114 if (f2fs_realtime_discard_enable(sbi))
3115 goto out;
3116
3117 start_block = START_BLOCK(sbi, start_segno);
3118 end_block = START_BLOCK(sbi, end_segno + 1);
3119
3120 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3121 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3122 start_block, end_block);
3123
3124 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3125 start_block, end_block);
3126 out:
3127 if (!err)
3128 range->len = F2FS_BLK_TO_BYTES(trimmed);
3129 return err;
3130 }
3131
__has_curseg_space(struct f2fs_sb_info * sbi,struct curseg_info * curseg)3132 static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3133 struct curseg_info *curseg)
3134 {
3135 return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3136 curseg->segno);
3137 }
3138
f2fs_rw_hint_to_seg_type(enum rw_hint hint)3139 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3140 {
3141 switch (hint) {
3142 case WRITE_LIFE_SHORT:
3143 return CURSEG_HOT_DATA;
3144 case WRITE_LIFE_EXTREME:
3145 return CURSEG_COLD_DATA;
3146 default:
3147 return CURSEG_WARM_DATA;
3148 }
3149 }
3150
3151 /* This returns write hints for each segment type. This hints will be
3152 * passed down to block layer. There are mapping tables which depend on
3153 * the mount option 'whint_mode'.
3154 *
3155 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
3156 *
3157 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
3158 *
3159 * User F2FS Block
3160 * ---- ---- -----
3161 * META WRITE_LIFE_NOT_SET
3162 * HOT_NODE "
3163 * WARM_NODE "
3164 * COLD_NODE "
3165 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
3166 * extension list " "
3167 *
3168 * -- buffered io
3169 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3170 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3171 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3172 * WRITE_LIFE_NONE " "
3173 * WRITE_LIFE_MEDIUM " "
3174 * WRITE_LIFE_LONG " "
3175 *
3176 * -- direct io
3177 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3178 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3179 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3180 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
3181 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
3182 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
3183 *
3184 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
3185 *
3186 * User F2FS Block
3187 * ---- ---- -----
3188 * META WRITE_LIFE_MEDIUM;
3189 * HOT_NODE WRITE_LIFE_NOT_SET
3190 * WARM_NODE "
3191 * COLD_NODE WRITE_LIFE_NONE
3192 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
3193 * extension list " "
3194 *
3195 * -- buffered io
3196 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3197 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3198 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG
3199 * WRITE_LIFE_NONE " "
3200 * WRITE_LIFE_MEDIUM " "
3201 * WRITE_LIFE_LONG " "
3202 *
3203 * -- direct io
3204 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3205 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3206 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3207 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
3208 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
3209 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
3210 */
3211
f2fs_io_type_to_rw_hint(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)3212 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3213 enum page_type type, enum temp_type temp)
3214 {
3215 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
3216 if (type == DATA) {
3217 if (temp == WARM)
3218 return WRITE_LIFE_NOT_SET;
3219 else if (temp == HOT)
3220 return WRITE_LIFE_SHORT;
3221 else if (temp == COLD)
3222 return WRITE_LIFE_EXTREME;
3223 } else {
3224 return WRITE_LIFE_NOT_SET;
3225 }
3226 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
3227 if (type == DATA) {
3228 if (temp == WARM)
3229 return WRITE_LIFE_LONG;
3230 else if (temp == HOT)
3231 return WRITE_LIFE_SHORT;
3232 else if (temp == COLD)
3233 return WRITE_LIFE_EXTREME;
3234 } else if (type == NODE) {
3235 if (temp == WARM || temp == HOT)
3236 return WRITE_LIFE_NOT_SET;
3237 else if (temp == COLD)
3238 return WRITE_LIFE_NONE;
3239 } else if (type == META) {
3240 return WRITE_LIFE_MEDIUM;
3241 }
3242 }
3243 return WRITE_LIFE_NOT_SET;
3244 }
3245
__get_segment_type_2(struct f2fs_io_info * fio)3246 static int __get_segment_type_2(struct f2fs_io_info *fio)
3247 {
3248 if (fio->type == DATA)
3249 return CURSEG_HOT_DATA;
3250 else
3251 return CURSEG_HOT_NODE;
3252 }
3253
__get_segment_type_4(struct f2fs_io_info * fio)3254 static int __get_segment_type_4(struct f2fs_io_info *fio)
3255 {
3256 if (fio->type == DATA) {
3257 struct inode *inode = fio->page->mapping->host;
3258
3259 if (S_ISDIR(inode->i_mode))
3260 return CURSEG_HOT_DATA;
3261 else
3262 return CURSEG_COLD_DATA;
3263 } else {
3264 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3265 return CURSEG_WARM_NODE;
3266 else
3267 return CURSEG_COLD_NODE;
3268 }
3269 }
3270
__get_segment_type_6(struct f2fs_io_info * fio)3271 static int __get_segment_type_6(struct f2fs_io_info *fio)
3272 {
3273 if (fio->type == DATA) {
3274 struct inode *inode = fio->page->mapping->host;
3275
3276 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3277 return CURSEG_COLD_DATA_PINNED;
3278
3279 if (page_private_gcing(fio->page)) {
3280 if (fio->sbi->am.atgc_enabled &&
3281 (fio->io_type == FS_DATA_IO) &&
3282 (fio->sbi->gc_mode != GC_URGENT_HIGH))
3283 return CURSEG_ALL_DATA_ATGC;
3284 else
3285 return CURSEG_COLD_DATA;
3286 }
3287 if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3288 return CURSEG_COLD_DATA;
3289 if (file_is_hot(inode) ||
3290 is_inode_flag_set(inode, FI_HOT_DATA) ||
3291 f2fs_is_cow_file(inode))
3292 return CURSEG_HOT_DATA;
3293 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3294 } else {
3295 if (IS_DNODE(fio->page))
3296 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3297 CURSEG_HOT_NODE;
3298 return CURSEG_COLD_NODE;
3299 }
3300 }
3301
__get_segment_type(struct f2fs_io_info * fio)3302 static int __get_segment_type(struct f2fs_io_info *fio)
3303 {
3304 int type = 0;
3305
3306 switch (F2FS_OPTION(fio->sbi).active_logs) {
3307 case 2:
3308 type = __get_segment_type_2(fio);
3309 break;
3310 case 4:
3311 type = __get_segment_type_4(fio);
3312 break;
3313 case 6:
3314 type = __get_segment_type_6(fio);
3315 break;
3316 default:
3317 f2fs_bug_on(fio->sbi, true);
3318 }
3319
3320 if (IS_HOT(type))
3321 fio->temp = HOT;
3322 else if (IS_WARM(type))
3323 fio->temp = WARM;
3324 else
3325 fio->temp = COLD;
3326 return type;
3327 }
3328
f2fs_allocate_data_block(struct f2fs_sb_info * sbi,struct page * page,block_t old_blkaddr,block_t * new_blkaddr,struct f2fs_summary * sum,int type,struct f2fs_io_info * fio)3329 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3330 block_t old_blkaddr, block_t *new_blkaddr,
3331 struct f2fs_summary *sum, int type,
3332 struct f2fs_io_info *fio)
3333 {
3334 struct sit_info *sit_i = SIT_I(sbi);
3335 struct curseg_info *curseg = CURSEG_I(sbi, type);
3336 unsigned long long old_mtime;
3337 bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3338 struct seg_entry *se = NULL;
3339
3340 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3341
3342 mutex_lock(&curseg->curseg_mutex);
3343 down_write(&sit_i->sentry_lock);
3344
3345 if (from_gc) {
3346 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3347 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3348 sanity_check_seg_type(sbi, se->type);
3349 f2fs_bug_on(sbi, IS_NODESEG(se->type));
3350 }
3351 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3352
3353 f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3354
3355 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3356
3357 /*
3358 * __add_sum_entry should be resided under the curseg_mutex
3359 * because, this function updates a summary entry in the
3360 * current summary block.
3361 */
3362 __add_sum_entry(sbi, type, sum);
3363
3364 __refresh_next_blkoff(sbi, curseg);
3365
3366 stat_inc_block_count(sbi, curseg);
3367
3368 if (from_gc) {
3369 old_mtime = get_segment_mtime(sbi, old_blkaddr);
3370 } else {
3371 update_segment_mtime(sbi, old_blkaddr, 0);
3372 old_mtime = 0;
3373 }
3374 update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3375
3376 /*
3377 * SIT information should be updated before segment allocation,
3378 * since SSR needs latest valid block information.
3379 */
3380 update_sit_entry(sbi, *new_blkaddr, 1);
3381 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3382 update_sit_entry(sbi, old_blkaddr, -1);
3383
3384 if (!__has_curseg_space(sbi, curseg)) {
3385 if (from_gc)
3386 get_atssr_segment(sbi, type, se->type,
3387 AT_SSR, se->mtime);
3388 else
3389 sit_i->s_ops->allocate_segment(sbi, type, false);
3390 }
3391 /*
3392 * segment dirty status should be updated after segment allocation,
3393 * so we just need to update status only one time after previous
3394 * segment being closed.
3395 */
3396 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3397 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3398
3399 up_write(&sit_i->sentry_lock);
3400
3401 if (page && IS_NODESEG(type)) {
3402 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3403
3404 f2fs_inode_chksum_set(sbi, page);
3405 }
3406
3407 if (fio) {
3408 struct f2fs_bio_info *io;
3409
3410 if (F2FS_IO_ALIGNED(sbi))
3411 fio->retry = false;
3412
3413 INIT_LIST_HEAD(&fio->list);
3414 fio->in_list = true;
3415 io = sbi->write_io[fio->type] + fio->temp;
3416 spin_lock(&io->io_lock);
3417 list_add_tail(&fio->list, &io->io_list);
3418 spin_unlock(&io->io_lock);
3419 }
3420
3421 mutex_unlock(&curseg->curseg_mutex);
3422
3423 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3424 }
3425
f2fs_update_device_state(struct f2fs_sb_info * sbi,nid_t ino,block_t blkaddr,unsigned int blkcnt)3426 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3427 block_t blkaddr, unsigned int blkcnt)
3428 {
3429 if (!f2fs_is_multi_device(sbi))
3430 return;
3431
3432 while (1) {
3433 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3434 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3435
3436 /* update device state for fsync */
3437 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3438
3439 /* update device state for checkpoint */
3440 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3441 spin_lock(&sbi->dev_lock);
3442 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3443 spin_unlock(&sbi->dev_lock);
3444 }
3445
3446 if (blkcnt <= blks)
3447 break;
3448 blkcnt -= blks;
3449 blkaddr += blks;
3450 }
3451 }
3452
do_write_page(struct f2fs_summary * sum,struct f2fs_io_info * fio)3453 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3454 {
3455 int type = __get_segment_type(fio);
3456 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3457
3458 if (keep_order)
3459 f2fs_down_read(&fio->sbi->io_order_lock);
3460 reallocate:
3461 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3462 &fio->new_blkaddr, sum, type, fio);
3463 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3464 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3465 fio->old_blkaddr, fio->old_blkaddr);
3466 f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
3467 }
3468
3469 /* writeout dirty page into bdev */
3470 f2fs_submit_page_write(fio);
3471 if (fio->retry) {
3472 fio->old_blkaddr = fio->new_blkaddr;
3473 goto reallocate;
3474 }
3475
3476 f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3477
3478 if (keep_order)
3479 f2fs_up_read(&fio->sbi->io_order_lock);
3480 }
3481
f2fs_do_write_meta_page(struct f2fs_sb_info * sbi,struct page * page,enum iostat_type io_type)3482 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3483 enum iostat_type io_type)
3484 {
3485 struct f2fs_io_info fio = {
3486 .sbi = sbi,
3487 .type = META,
3488 .temp = HOT,
3489 .op = REQ_OP_WRITE,
3490 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3491 .old_blkaddr = page->index,
3492 .new_blkaddr = page->index,
3493 .page = page,
3494 .encrypted_page = NULL,
3495 .in_list = false,
3496 };
3497
3498 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3499 fio.op_flags &= ~REQ_META;
3500
3501 set_page_writeback(page);
3502 ClearPageError(page);
3503 f2fs_submit_page_write(&fio);
3504
3505 stat_inc_meta_count(sbi, page->index);
3506 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3507 }
3508
f2fs_do_write_node_page(unsigned int nid,struct f2fs_io_info * fio)3509 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3510 {
3511 struct f2fs_summary sum;
3512
3513 set_summary(&sum, nid, 0, 0);
3514 do_write_page(&sum, fio);
3515
3516 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3517 }
3518
f2fs_outplace_write_data(struct dnode_of_data * dn,struct f2fs_io_info * fio)3519 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3520 struct f2fs_io_info *fio)
3521 {
3522 struct f2fs_sb_info *sbi = fio->sbi;
3523 struct f2fs_summary sum;
3524
3525 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3526 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3527 do_write_page(&sum, fio);
3528 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3529
3530 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3531 }
3532
f2fs_inplace_write_data(struct f2fs_io_info * fio)3533 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3534 {
3535 int err;
3536 struct f2fs_sb_info *sbi = fio->sbi;
3537 unsigned int segno;
3538
3539 fio->new_blkaddr = fio->old_blkaddr;
3540 /* i/o temperature is needed for passing down write hints */
3541 __get_segment_type(fio);
3542
3543 segno = GET_SEGNO(sbi, fio->new_blkaddr);
3544
3545 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3546 set_sbi_flag(sbi, SBI_NEED_FSCK);
3547 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3548 __func__, segno);
3549 err = -EFSCORRUPTED;
3550 goto drop_bio;
3551 }
3552
3553 if (f2fs_cp_error(sbi)) {
3554 err = -EIO;
3555 goto drop_bio;
3556 }
3557
3558 if (fio->post_read)
3559 invalidate_mapping_pages(META_MAPPING(sbi),
3560 fio->new_blkaddr, fio->new_blkaddr);
3561
3562 stat_inc_inplace_blocks(fio->sbi);
3563
3564 if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3565 err = f2fs_merge_page_bio(fio);
3566 else
3567 err = f2fs_submit_page_bio(fio);
3568 if (!err) {
3569 f2fs_update_device_state(fio->sbi, fio->ino,
3570 fio->new_blkaddr, 1);
3571 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3572 }
3573
3574 return err;
3575 drop_bio:
3576 if (fio->bio && *(fio->bio)) {
3577 struct bio *bio = *(fio->bio);
3578
3579 bio->bi_status = BLK_STS_IOERR;
3580 bio_endio(bio);
3581 *(fio->bio) = NULL;
3582 }
3583 return err;
3584 }
3585
__f2fs_get_curseg(struct f2fs_sb_info * sbi,unsigned int segno)3586 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3587 unsigned int segno)
3588 {
3589 int i;
3590
3591 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3592 if (CURSEG_I(sbi, i)->segno == segno)
3593 break;
3594 }
3595 return i;
3596 }
3597
f2fs_do_replace_block(struct f2fs_sb_info * sbi,struct f2fs_summary * sum,block_t old_blkaddr,block_t new_blkaddr,bool recover_curseg,bool recover_newaddr,bool from_gc)3598 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3599 block_t old_blkaddr, block_t new_blkaddr,
3600 bool recover_curseg, bool recover_newaddr,
3601 bool from_gc)
3602 {
3603 struct sit_info *sit_i = SIT_I(sbi);
3604 struct curseg_info *curseg;
3605 unsigned int segno, old_cursegno;
3606 struct seg_entry *se;
3607 int type;
3608 unsigned short old_blkoff;
3609 unsigned char old_alloc_type;
3610
3611 segno = GET_SEGNO(sbi, new_blkaddr);
3612 se = get_seg_entry(sbi, segno);
3613 type = se->type;
3614
3615 f2fs_down_write(&SM_I(sbi)->curseg_lock);
3616
3617 if (!recover_curseg) {
3618 /* for recovery flow */
3619 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3620 if (old_blkaddr == NULL_ADDR)
3621 type = CURSEG_COLD_DATA;
3622 else
3623 type = CURSEG_WARM_DATA;
3624 }
3625 } else {
3626 if (IS_CURSEG(sbi, segno)) {
3627 /* se->type is volatile as SSR allocation */
3628 type = __f2fs_get_curseg(sbi, segno);
3629 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3630 } else {
3631 type = CURSEG_WARM_DATA;
3632 }
3633 }
3634
3635 f2fs_bug_on(sbi, !IS_DATASEG(type));
3636 curseg = CURSEG_I(sbi, type);
3637
3638 mutex_lock(&curseg->curseg_mutex);
3639 down_write(&sit_i->sentry_lock);
3640
3641 old_cursegno = curseg->segno;
3642 old_blkoff = curseg->next_blkoff;
3643 old_alloc_type = curseg->alloc_type;
3644
3645 /* change the current segment */
3646 if (segno != curseg->segno) {
3647 curseg->next_segno = segno;
3648 change_curseg(sbi, type, true);
3649 }
3650
3651 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3652 __add_sum_entry(sbi, type, sum);
3653
3654 if (!recover_curseg || recover_newaddr) {
3655 if (!from_gc)
3656 update_segment_mtime(sbi, new_blkaddr, 0);
3657 update_sit_entry(sbi, new_blkaddr, 1);
3658 }
3659 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3660 invalidate_mapping_pages(META_MAPPING(sbi),
3661 old_blkaddr, old_blkaddr);
3662 f2fs_invalidate_compress_page(sbi, old_blkaddr);
3663 if (!from_gc)
3664 update_segment_mtime(sbi, old_blkaddr, 0);
3665 update_sit_entry(sbi, old_blkaddr, -1);
3666 }
3667
3668 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3669 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3670
3671 locate_dirty_segment(sbi, old_cursegno);
3672
3673 if (recover_curseg) {
3674 if (old_cursegno != curseg->segno) {
3675 curseg->next_segno = old_cursegno;
3676 change_curseg(sbi, type, true);
3677 }
3678 curseg->next_blkoff = old_blkoff;
3679 curseg->alloc_type = old_alloc_type;
3680 }
3681
3682 up_write(&sit_i->sentry_lock);
3683 mutex_unlock(&curseg->curseg_mutex);
3684 f2fs_up_write(&SM_I(sbi)->curseg_lock);
3685 }
3686
f2fs_replace_block(struct f2fs_sb_info * sbi,struct dnode_of_data * dn,block_t old_addr,block_t new_addr,unsigned char version,bool recover_curseg,bool recover_newaddr)3687 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3688 block_t old_addr, block_t new_addr,
3689 unsigned char version, bool recover_curseg,
3690 bool recover_newaddr)
3691 {
3692 struct f2fs_summary sum;
3693
3694 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3695
3696 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3697 recover_curseg, recover_newaddr, false);
3698
3699 f2fs_update_data_blkaddr(dn, new_addr);
3700 }
3701
f2fs_wait_on_page_writeback(struct page * page,enum page_type type,bool ordered,bool locked)3702 void f2fs_wait_on_page_writeback(struct page *page,
3703 enum page_type type, bool ordered, bool locked)
3704 {
3705 if (PageWriteback(page)) {
3706 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3707
3708 /* submit cached LFS IO */
3709 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3710 /* sbumit cached IPU IO */
3711 f2fs_submit_merged_ipu_write(sbi, NULL, page);
3712 if (ordered) {
3713 wait_on_page_writeback(page);
3714 f2fs_bug_on(sbi, locked && PageWriteback(page));
3715 } else {
3716 wait_for_stable_page(page);
3717 }
3718 }
3719 }
3720
f2fs_wait_on_block_writeback(struct inode * inode,block_t blkaddr)3721 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3722 {
3723 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3724 struct page *cpage;
3725
3726 if (!f2fs_post_read_required(inode))
3727 return;
3728
3729 if (!__is_valid_data_blkaddr(blkaddr))
3730 return;
3731
3732 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3733 if (cpage) {
3734 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3735 f2fs_put_page(cpage, 1);
3736 }
3737 }
3738
f2fs_wait_on_block_writeback_range(struct inode * inode,block_t blkaddr,block_t len)3739 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3740 block_t len)
3741 {
3742 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3743 block_t i;
3744
3745 if (!f2fs_post_read_required(inode))
3746 return;
3747
3748 for (i = 0; i < len; i++)
3749 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3750
3751 invalidate_mapping_pages(META_MAPPING(sbi), blkaddr, blkaddr + len - 1);
3752 }
3753
read_compacted_summaries(struct f2fs_sb_info * sbi)3754 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3755 {
3756 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3757 struct curseg_info *seg_i;
3758 unsigned char *kaddr;
3759 struct page *page;
3760 block_t start;
3761 int i, j, offset;
3762
3763 start = start_sum_block(sbi);
3764
3765 page = f2fs_get_meta_page(sbi, start++);
3766 if (IS_ERR(page))
3767 return PTR_ERR(page);
3768 kaddr = (unsigned char *)page_address(page);
3769
3770 /* Step 1: restore nat cache */
3771 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3772 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3773
3774 /* Step 2: restore sit cache */
3775 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3776 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3777 offset = 2 * SUM_JOURNAL_SIZE;
3778
3779 /* Step 3: restore summary entries */
3780 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3781 unsigned short blk_off;
3782 unsigned int segno;
3783
3784 seg_i = CURSEG_I(sbi, i);
3785 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3786 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3787 seg_i->next_segno = segno;
3788 reset_curseg(sbi, i, 0);
3789 seg_i->alloc_type = ckpt->alloc_type[i];
3790 seg_i->next_blkoff = blk_off;
3791
3792 if (seg_i->alloc_type == SSR)
3793 blk_off = sbi->blocks_per_seg;
3794
3795 for (j = 0; j < blk_off; j++) {
3796 struct f2fs_summary *s;
3797
3798 s = (struct f2fs_summary *)(kaddr + offset);
3799 seg_i->sum_blk->entries[j] = *s;
3800 offset += SUMMARY_SIZE;
3801 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3802 SUM_FOOTER_SIZE)
3803 continue;
3804
3805 f2fs_put_page(page, 1);
3806 page = NULL;
3807
3808 page = f2fs_get_meta_page(sbi, start++);
3809 if (IS_ERR(page))
3810 return PTR_ERR(page);
3811 kaddr = (unsigned char *)page_address(page);
3812 offset = 0;
3813 }
3814 }
3815 f2fs_put_page(page, 1);
3816 return 0;
3817 }
3818
read_normal_summaries(struct f2fs_sb_info * sbi,int type)3819 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3820 {
3821 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3822 struct f2fs_summary_block *sum;
3823 struct curseg_info *curseg;
3824 struct page *new;
3825 unsigned short blk_off;
3826 unsigned int segno = 0;
3827 block_t blk_addr = 0;
3828 int err = 0;
3829
3830 /* get segment number and block addr */
3831 if (IS_DATASEG(type)) {
3832 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3833 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3834 CURSEG_HOT_DATA]);
3835 if (__exist_node_summaries(sbi))
3836 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3837 else
3838 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3839 } else {
3840 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3841 CURSEG_HOT_NODE]);
3842 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3843 CURSEG_HOT_NODE]);
3844 if (__exist_node_summaries(sbi))
3845 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3846 type - CURSEG_HOT_NODE);
3847 else
3848 blk_addr = GET_SUM_BLOCK(sbi, segno);
3849 }
3850
3851 new = f2fs_get_meta_page(sbi, blk_addr);
3852 if (IS_ERR(new))
3853 return PTR_ERR(new);
3854 sum = (struct f2fs_summary_block *)page_address(new);
3855
3856 if (IS_NODESEG(type)) {
3857 if (__exist_node_summaries(sbi)) {
3858 struct f2fs_summary *ns = &sum->entries[0];
3859 int i;
3860
3861 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3862 ns->version = 0;
3863 ns->ofs_in_node = 0;
3864 }
3865 } else {
3866 err = f2fs_restore_node_summary(sbi, segno, sum);
3867 if (err)
3868 goto out;
3869 }
3870 }
3871
3872 /* set uncompleted segment to curseg */
3873 curseg = CURSEG_I(sbi, type);
3874 mutex_lock(&curseg->curseg_mutex);
3875
3876 /* update journal info */
3877 down_write(&curseg->journal_rwsem);
3878 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3879 up_write(&curseg->journal_rwsem);
3880
3881 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3882 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3883 curseg->next_segno = segno;
3884 reset_curseg(sbi, type, 0);
3885 curseg->alloc_type = ckpt->alloc_type[type];
3886 curseg->next_blkoff = blk_off;
3887 mutex_unlock(&curseg->curseg_mutex);
3888 out:
3889 f2fs_put_page(new, 1);
3890 return err;
3891 }
3892
restore_curseg_summaries(struct f2fs_sb_info * sbi)3893 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3894 {
3895 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3896 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3897 int type = CURSEG_HOT_DATA;
3898 int err;
3899
3900 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3901 int npages = f2fs_npages_for_summary_flush(sbi, true);
3902
3903 if (npages >= 2)
3904 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3905 META_CP, true);
3906
3907 /* restore for compacted data summary */
3908 err = read_compacted_summaries(sbi);
3909 if (err)
3910 return err;
3911 type = CURSEG_HOT_NODE;
3912 }
3913
3914 if (__exist_node_summaries(sbi))
3915 f2fs_ra_meta_pages(sbi,
3916 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3917 NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3918
3919 for (; type <= CURSEG_COLD_NODE; type++) {
3920 err = read_normal_summaries(sbi, type);
3921 if (err)
3922 return err;
3923 }
3924
3925 /* sanity check for summary blocks */
3926 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3927 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3928 f2fs_err(sbi, "invalid journal entries nats %u sits %u",
3929 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3930 return -EINVAL;
3931 }
3932
3933 return 0;
3934 }
3935
write_compacted_summaries(struct f2fs_sb_info * sbi,block_t blkaddr)3936 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3937 {
3938 struct page *page;
3939 unsigned char *kaddr;
3940 struct f2fs_summary *summary;
3941 struct curseg_info *seg_i;
3942 int written_size = 0;
3943 int i, j;
3944
3945 page = f2fs_grab_meta_page(sbi, blkaddr++);
3946 kaddr = (unsigned char *)page_address(page);
3947 memset(kaddr, 0, PAGE_SIZE);
3948
3949 /* Step 1: write nat cache */
3950 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3951 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3952 written_size += SUM_JOURNAL_SIZE;
3953
3954 /* Step 2: write sit cache */
3955 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3956 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3957 written_size += SUM_JOURNAL_SIZE;
3958
3959 /* Step 3: write summary entries */
3960 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3961 unsigned short blkoff;
3962
3963 seg_i = CURSEG_I(sbi, i);
3964 if (sbi->ckpt->alloc_type[i] == SSR)
3965 blkoff = sbi->blocks_per_seg;
3966 else
3967 blkoff = curseg_blkoff(sbi, i);
3968
3969 for (j = 0; j < blkoff; j++) {
3970 if (!page) {
3971 page = f2fs_grab_meta_page(sbi, blkaddr++);
3972 kaddr = (unsigned char *)page_address(page);
3973 memset(kaddr, 0, PAGE_SIZE);
3974 written_size = 0;
3975 }
3976 summary = (struct f2fs_summary *)(kaddr + written_size);
3977 *summary = seg_i->sum_blk->entries[j];
3978 written_size += SUMMARY_SIZE;
3979
3980 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3981 SUM_FOOTER_SIZE)
3982 continue;
3983
3984 set_page_dirty(page);
3985 f2fs_put_page(page, 1);
3986 page = NULL;
3987 }
3988 }
3989 if (page) {
3990 set_page_dirty(page);
3991 f2fs_put_page(page, 1);
3992 }
3993 }
3994
write_normal_summaries(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3995 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3996 block_t blkaddr, int type)
3997 {
3998 int i, end;
3999
4000 if (IS_DATASEG(type))
4001 end = type + NR_CURSEG_DATA_TYPE;
4002 else
4003 end = type + NR_CURSEG_NODE_TYPE;
4004
4005 for (i = type; i < end; i++)
4006 write_current_sum_page(sbi, i, blkaddr + (i - type));
4007 }
4008
f2fs_write_data_summaries(struct f2fs_sb_info * sbi,block_t start_blk)4009 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4010 {
4011 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4012 write_compacted_summaries(sbi, start_blk);
4013 else
4014 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4015 }
4016
f2fs_write_node_summaries(struct f2fs_sb_info * sbi,block_t start_blk)4017 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4018 {
4019 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4020 }
4021
f2fs_lookup_journal_in_cursum(struct f2fs_journal * journal,int type,unsigned int val,int alloc)4022 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4023 unsigned int val, int alloc)
4024 {
4025 int i;
4026
4027 if (type == NAT_JOURNAL) {
4028 for (i = 0; i < nats_in_cursum(journal); i++) {
4029 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4030 return i;
4031 }
4032 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4033 return update_nats_in_cursum(journal, 1);
4034 } else if (type == SIT_JOURNAL) {
4035 for (i = 0; i < sits_in_cursum(journal); i++)
4036 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4037 return i;
4038 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4039 return update_sits_in_cursum(journal, 1);
4040 }
4041 return -1;
4042 }
4043
get_current_sit_page(struct f2fs_sb_info * sbi,unsigned int segno)4044 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4045 unsigned int segno)
4046 {
4047 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4048 }
4049
get_next_sit_page(struct f2fs_sb_info * sbi,unsigned int start)4050 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4051 unsigned int start)
4052 {
4053 struct sit_info *sit_i = SIT_I(sbi);
4054 struct page *page;
4055 pgoff_t src_off, dst_off;
4056
4057 src_off = current_sit_addr(sbi, start);
4058 dst_off = next_sit_addr(sbi, src_off);
4059
4060 page = f2fs_grab_meta_page(sbi, dst_off);
4061 seg_info_to_sit_page(sbi, page, start);
4062
4063 set_page_dirty(page);
4064 set_to_next_sit(sit_i, start);
4065
4066 return page;
4067 }
4068
grab_sit_entry_set(void)4069 static struct sit_entry_set *grab_sit_entry_set(void)
4070 {
4071 struct sit_entry_set *ses =
4072 f2fs_kmem_cache_alloc(sit_entry_set_slab,
4073 GFP_NOFS, true, NULL);
4074
4075 ses->entry_cnt = 0;
4076 INIT_LIST_HEAD(&ses->set_list);
4077 return ses;
4078 }
4079
release_sit_entry_set(struct sit_entry_set * ses)4080 static void release_sit_entry_set(struct sit_entry_set *ses)
4081 {
4082 list_del(&ses->set_list);
4083 kmem_cache_free(sit_entry_set_slab, ses);
4084 }
4085
adjust_sit_entry_set(struct sit_entry_set * ses,struct list_head * head)4086 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4087 struct list_head *head)
4088 {
4089 struct sit_entry_set *next = ses;
4090
4091 if (list_is_last(&ses->set_list, head))
4092 return;
4093
4094 list_for_each_entry_continue(next, head, set_list)
4095 if (ses->entry_cnt <= next->entry_cnt)
4096 break;
4097
4098 list_move_tail(&ses->set_list, &next->set_list);
4099 }
4100
add_sit_entry(unsigned int segno,struct list_head * head)4101 static void add_sit_entry(unsigned int segno, struct list_head *head)
4102 {
4103 struct sit_entry_set *ses;
4104 unsigned int start_segno = START_SEGNO(segno);
4105
4106 list_for_each_entry(ses, head, set_list) {
4107 if (ses->start_segno == start_segno) {
4108 ses->entry_cnt++;
4109 adjust_sit_entry_set(ses, head);
4110 return;
4111 }
4112 }
4113
4114 ses = grab_sit_entry_set();
4115
4116 ses->start_segno = start_segno;
4117 ses->entry_cnt++;
4118 list_add(&ses->set_list, head);
4119 }
4120
add_sits_in_set(struct f2fs_sb_info * sbi)4121 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4122 {
4123 struct f2fs_sm_info *sm_info = SM_I(sbi);
4124 struct list_head *set_list = &sm_info->sit_entry_set;
4125 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4126 unsigned int segno;
4127
4128 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4129 add_sit_entry(segno, set_list);
4130 }
4131
remove_sits_in_journal(struct f2fs_sb_info * sbi)4132 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4133 {
4134 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4135 struct f2fs_journal *journal = curseg->journal;
4136 int i;
4137
4138 down_write(&curseg->journal_rwsem);
4139 for (i = 0; i < sits_in_cursum(journal); i++) {
4140 unsigned int segno;
4141 bool dirtied;
4142
4143 segno = le32_to_cpu(segno_in_journal(journal, i));
4144 dirtied = __mark_sit_entry_dirty(sbi, segno);
4145
4146 if (!dirtied)
4147 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4148 }
4149 update_sits_in_cursum(journal, -i);
4150 up_write(&curseg->journal_rwsem);
4151 }
4152
4153 /*
4154 * CP calls this function, which flushes SIT entries including sit_journal,
4155 * and moves prefree segs to free segs.
4156 */
f2fs_flush_sit_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)4157 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4158 {
4159 struct sit_info *sit_i = SIT_I(sbi);
4160 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4161 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4162 struct f2fs_journal *journal = curseg->journal;
4163 struct sit_entry_set *ses, *tmp;
4164 struct list_head *head = &SM_I(sbi)->sit_entry_set;
4165 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4166 struct seg_entry *se;
4167
4168 down_write(&sit_i->sentry_lock);
4169
4170 if (!sit_i->dirty_sentries)
4171 goto out;
4172
4173 /*
4174 * add and account sit entries of dirty bitmap in sit entry
4175 * set temporarily
4176 */
4177 add_sits_in_set(sbi);
4178
4179 /*
4180 * if there are no enough space in journal to store dirty sit
4181 * entries, remove all entries from journal and add and account
4182 * them in sit entry set.
4183 */
4184 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4185 !to_journal)
4186 remove_sits_in_journal(sbi);
4187
4188 /*
4189 * there are two steps to flush sit entries:
4190 * #1, flush sit entries to journal in current cold data summary block.
4191 * #2, flush sit entries to sit page.
4192 */
4193 list_for_each_entry_safe(ses, tmp, head, set_list) {
4194 struct page *page = NULL;
4195 struct f2fs_sit_block *raw_sit = NULL;
4196 unsigned int start_segno = ses->start_segno;
4197 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4198 (unsigned long)MAIN_SEGS(sbi));
4199 unsigned int segno = start_segno;
4200
4201 if (to_journal &&
4202 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4203 to_journal = false;
4204
4205 if (to_journal) {
4206 down_write(&curseg->journal_rwsem);
4207 } else {
4208 page = get_next_sit_page(sbi, start_segno);
4209 raw_sit = page_address(page);
4210 }
4211
4212 /* flush dirty sit entries in region of current sit set */
4213 for_each_set_bit_from(segno, bitmap, end) {
4214 int offset, sit_offset;
4215
4216 se = get_seg_entry(sbi, segno);
4217 #ifdef CONFIG_F2FS_CHECK_FS
4218 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4219 SIT_VBLOCK_MAP_SIZE))
4220 f2fs_bug_on(sbi, 1);
4221 #endif
4222
4223 /* add discard candidates */
4224 if (!(cpc->reason & CP_DISCARD)) {
4225 cpc->trim_start = segno;
4226 add_discard_addrs(sbi, cpc, false);
4227 }
4228
4229 if (to_journal) {
4230 offset = f2fs_lookup_journal_in_cursum(journal,
4231 SIT_JOURNAL, segno, 1);
4232 f2fs_bug_on(sbi, offset < 0);
4233 segno_in_journal(journal, offset) =
4234 cpu_to_le32(segno);
4235 seg_info_to_raw_sit(se,
4236 &sit_in_journal(journal, offset));
4237 check_block_count(sbi, segno,
4238 &sit_in_journal(journal, offset));
4239 } else {
4240 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4241 seg_info_to_raw_sit(se,
4242 &raw_sit->entries[sit_offset]);
4243 check_block_count(sbi, segno,
4244 &raw_sit->entries[sit_offset]);
4245 }
4246
4247 __clear_bit(segno, bitmap);
4248 sit_i->dirty_sentries--;
4249 ses->entry_cnt--;
4250 }
4251
4252 if (to_journal)
4253 up_write(&curseg->journal_rwsem);
4254 else
4255 f2fs_put_page(page, 1);
4256
4257 f2fs_bug_on(sbi, ses->entry_cnt);
4258 release_sit_entry_set(ses);
4259 }
4260
4261 f2fs_bug_on(sbi, !list_empty(head));
4262 f2fs_bug_on(sbi, sit_i->dirty_sentries);
4263 out:
4264 if (cpc->reason & CP_DISCARD) {
4265 __u64 trim_start = cpc->trim_start;
4266
4267 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4268 add_discard_addrs(sbi, cpc, false);
4269
4270 cpc->trim_start = trim_start;
4271 }
4272 up_write(&sit_i->sentry_lock);
4273
4274 set_prefree_as_free_segments(sbi);
4275 }
4276
build_sit_info(struct f2fs_sb_info * sbi)4277 static int build_sit_info(struct f2fs_sb_info *sbi)
4278 {
4279 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4280 struct sit_info *sit_i;
4281 unsigned int sit_segs, start;
4282 char *src_bitmap, *bitmap;
4283 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4284 unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4285
4286 /* allocate memory for SIT information */
4287 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4288 if (!sit_i)
4289 return -ENOMEM;
4290
4291 SM_I(sbi)->sit_info = sit_i;
4292
4293 sit_i->sentries =
4294 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4295 MAIN_SEGS(sbi)),
4296 GFP_KERNEL);
4297 if (!sit_i->sentries)
4298 return -ENOMEM;
4299
4300 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4301 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4302 GFP_KERNEL);
4303 if (!sit_i->dirty_sentries_bitmap)
4304 return -ENOMEM;
4305
4306 #ifdef CONFIG_F2FS_CHECK_FS
4307 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4308 #else
4309 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4310 #endif
4311 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4312 if (!sit_i->bitmap)
4313 return -ENOMEM;
4314
4315 bitmap = sit_i->bitmap;
4316
4317 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4318 sit_i->sentries[start].cur_valid_map = bitmap;
4319 bitmap += SIT_VBLOCK_MAP_SIZE;
4320
4321 sit_i->sentries[start].ckpt_valid_map = bitmap;
4322 bitmap += SIT_VBLOCK_MAP_SIZE;
4323
4324 #ifdef CONFIG_F2FS_CHECK_FS
4325 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4326 bitmap += SIT_VBLOCK_MAP_SIZE;
4327 #endif
4328
4329 if (discard_map) {
4330 sit_i->sentries[start].discard_map = bitmap;
4331 bitmap += SIT_VBLOCK_MAP_SIZE;
4332 }
4333 }
4334
4335 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4336 if (!sit_i->tmp_map)
4337 return -ENOMEM;
4338
4339 if (__is_large_section(sbi)) {
4340 sit_i->sec_entries =
4341 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4342 MAIN_SECS(sbi)),
4343 GFP_KERNEL);
4344 if (!sit_i->sec_entries)
4345 return -ENOMEM;
4346 }
4347
4348 /* get information related with SIT */
4349 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4350
4351 /* setup SIT bitmap from ckeckpoint pack */
4352 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4353 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4354
4355 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4356 if (!sit_i->sit_bitmap)
4357 return -ENOMEM;
4358
4359 #ifdef CONFIG_F2FS_CHECK_FS
4360 sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4361 sit_bitmap_size, GFP_KERNEL);
4362 if (!sit_i->sit_bitmap_mir)
4363 return -ENOMEM;
4364
4365 sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4366 main_bitmap_size, GFP_KERNEL);
4367 if (!sit_i->invalid_segmap)
4368 return -ENOMEM;
4369 #endif
4370
4371 /* init SIT information */
4372 sit_i->s_ops = &default_salloc_ops;
4373
4374 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4375 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4376 sit_i->written_valid_blocks = 0;
4377 sit_i->bitmap_size = sit_bitmap_size;
4378 sit_i->dirty_sentries = 0;
4379 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4380 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4381 sit_i->mounted_time = ktime_get_boottime_seconds();
4382 init_rwsem(&sit_i->sentry_lock);
4383 return 0;
4384 }
4385
build_free_segmap(struct f2fs_sb_info * sbi)4386 static int build_free_segmap(struct f2fs_sb_info *sbi)
4387 {
4388 struct free_segmap_info *free_i;
4389 unsigned int bitmap_size, sec_bitmap_size;
4390
4391 /* allocate memory for free segmap information */
4392 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4393 if (!free_i)
4394 return -ENOMEM;
4395
4396 SM_I(sbi)->free_info = free_i;
4397
4398 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4399 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4400 if (!free_i->free_segmap)
4401 return -ENOMEM;
4402
4403 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4404 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4405 if (!free_i->free_secmap)
4406 return -ENOMEM;
4407
4408 /* set all segments as dirty temporarily */
4409 memset(free_i->free_segmap, 0xff, bitmap_size);
4410 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4411
4412 /* init free segmap information */
4413 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4414 free_i->free_segments = 0;
4415 free_i->free_sections = 0;
4416 spin_lock_init(&free_i->segmap_lock);
4417 return 0;
4418 }
4419
build_curseg(struct f2fs_sb_info * sbi)4420 static int build_curseg(struct f2fs_sb_info *sbi)
4421 {
4422 struct curseg_info *array;
4423 int i;
4424
4425 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4426 sizeof(*array)), GFP_KERNEL);
4427 if (!array)
4428 return -ENOMEM;
4429
4430 SM_I(sbi)->curseg_array = array;
4431
4432 for (i = 0; i < NO_CHECK_TYPE; i++) {
4433 mutex_init(&array[i].curseg_mutex);
4434 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4435 if (!array[i].sum_blk)
4436 return -ENOMEM;
4437 init_rwsem(&array[i].journal_rwsem);
4438 array[i].journal = f2fs_kzalloc(sbi,
4439 sizeof(struct f2fs_journal), GFP_KERNEL);
4440 if (!array[i].journal)
4441 return -ENOMEM;
4442 if (i < NR_PERSISTENT_LOG)
4443 array[i].seg_type = CURSEG_HOT_DATA + i;
4444 else if (i == CURSEG_COLD_DATA_PINNED)
4445 array[i].seg_type = CURSEG_COLD_DATA;
4446 else if (i == CURSEG_ALL_DATA_ATGC)
4447 array[i].seg_type = CURSEG_COLD_DATA;
4448 array[i].segno = NULL_SEGNO;
4449 array[i].next_blkoff = 0;
4450 array[i].inited = false;
4451 }
4452 return restore_curseg_summaries(sbi);
4453 }
4454
build_sit_entries(struct f2fs_sb_info * sbi)4455 static int build_sit_entries(struct f2fs_sb_info *sbi)
4456 {
4457 struct sit_info *sit_i = SIT_I(sbi);
4458 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4459 struct f2fs_journal *journal = curseg->journal;
4460 struct seg_entry *se;
4461 struct f2fs_sit_entry sit;
4462 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4463 unsigned int i, start, end;
4464 unsigned int readed, start_blk = 0;
4465 int err = 0;
4466 block_t sit_valid_blocks[2] = {0, 0};
4467
4468 do {
4469 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4470 META_SIT, true);
4471
4472 start = start_blk * sit_i->sents_per_block;
4473 end = (start_blk + readed) * sit_i->sents_per_block;
4474
4475 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4476 struct f2fs_sit_block *sit_blk;
4477 struct page *page;
4478
4479 se = &sit_i->sentries[start];
4480 page = get_current_sit_page(sbi, start);
4481 if (IS_ERR(page))
4482 return PTR_ERR(page);
4483 sit_blk = (struct f2fs_sit_block *)page_address(page);
4484 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4485 f2fs_put_page(page, 1);
4486
4487 err = check_block_count(sbi, start, &sit);
4488 if (err)
4489 return err;
4490 seg_info_from_raw_sit(se, &sit);
4491
4492 if (se->type >= NR_PERSISTENT_LOG) {
4493 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4494 se->type, start);
4495 return -EFSCORRUPTED;
4496 }
4497
4498 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4499
4500 if (f2fs_block_unit_discard(sbi)) {
4501 /* build discard map only one time */
4502 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4503 memset(se->discard_map, 0xff,
4504 SIT_VBLOCK_MAP_SIZE);
4505 } else {
4506 memcpy(se->discard_map,
4507 se->cur_valid_map,
4508 SIT_VBLOCK_MAP_SIZE);
4509 sbi->discard_blks +=
4510 sbi->blocks_per_seg -
4511 se->valid_blocks;
4512 }
4513 }
4514
4515 if (__is_large_section(sbi))
4516 get_sec_entry(sbi, start)->valid_blocks +=
4517 se->valid_blocks;
4518 }
4519 start_blk += readed;
4520 } while (start_blk < sit_blk_cnt);
4521
4522 down_read(&curseg->journal_rwsem);
4523 for (i = 0; i < sits_in_cursum(journal); i++) {
4524 unsigned int old_valid_blocks;
4525
4526 start = le32_to_cpu(segno_in_journal(journal, i));
4527 if (start >= MAIN_SEGS(sbi)) {
4528 f2fs_err(sbi, "Wrong journal entry on segno %u",
4529 start);
4530 err = -EFSCORRUPTED;
4531 break;
4532 }
4533
4534 se = &sit_i->sentries[start];
4535 sit = sit_in_journal(journal, i);
4536
4537 old_valid_blocks = se->valid_blocks;
4538
4539 sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4540
4541 err = check_block_count(sbi, start, &sit);
4542 if (err)
4543 break;
4544 seg_info_from_raw_sit(se, &sit);
4545
4546 if (se->type >= NR_PERSISTENT_LOG) {
4547 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4548 se->type, start);
4549 err = -EFSCORRUPTED;
4550 break;
4551 }
4552
4553 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4554
4555 if (f2fs_block_unit_discard(sbi)) {
4556 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4557 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4558 } else {
4559 memcpy(se->discard_map, se->cur_valid_map,
4560 SIT_VBLOCK_MAP_SIZE);
4561 sbi->discard_blks += old_valid_blocks;
4562 sbi->discard_blks -= se->valid_blocks;
4563 }
4564 }
4565
4566 if (__is_large_section(sbi)) {
4567 get_sec_entry(sbi, start)->valid_blocks +=
4568 se->valid_blocks;
4569 get_sec_entry(sbi, start)->valid_blocks -=
4570 old_valid_blocks;
4571 }
4572 }
4573 up_read(&curseg->journal_rwsem);
4574
4575 if (err)
4576 return err;
4577
4578 if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4579 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4580 sit_valid_blocks[NODE], valid_node_count(sbi));
4581 return -EFSCORRUPTED;
4582 }
4583
4584 if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4585 valid_user_blocks(sbi)) {
4586 f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4587 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4588 valid_user_blocks(sbi));
4589 return -EFSCORRUPTED;
4590 }
4591
4592 return 0;
4593 }
4594
init_free_segmap(struct f2fs_sb_info * sbi)4595 static void init_free_segmap(struct f2fs_sb_info *sbi)
4596 {
4597 unsigned int start;
4598 int type;
4599 struct seg_entry *sentry;
4600
4601 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4602 if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4603 continue;
4604 sentry = get_seg_entry(sbi, start);
4605 if (!sentry->valid_blocks)
4606 __set_free(sbi, start);
4607 else
4608 SIT_I(sbi)->written_valid_blocks +=
4609 sentry->valid_blocks;
4610 }
4611
4612 /* set use the current segments */
4613 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4614 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4615
4616 __set_test_and_inuse(sbi, curseg_t->segno);
4617 }
4618 }
4619
init_dirty_segmap(struct f2fs_sb_info * sbi)4620 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4621 {
4622 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4623 struct free_segmap_info *free_i = FREE_I(sbi);
4624 unsigned int segno = 0, offset = 0, secno;
4625 block_t valid_blocks, usable_blks_in_seg;
4626 block_t blks_per_sec = BLKS_PER_SEC(sbi);
4627
4628 while (1) {
4629 /* find dirty segment based on free segmap */
4630 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4631 if (segno >= MAIN_SEGS(sbi))
4632 break;
4633 offset = segno + 1;
4634 valid_blocks = get_valid_blocks(sbi, segno, false);
4635 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4636 if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4637 continue;
4638 if (valid_blocks > usable_blks_in_seg) {
4639 f2fs_bug_on(sbi, 1);
4640 continue;
4641 }
4642 mutex_lock(&dirty_i->seglist_lock);
4643 __locate_dirty_segment(sbi, segno, DIRTY);
4644 mutex_unlock(&dirty_i->seglist_lock);
4645 }
4646
4647 if (!__is_large_section(sbi))
4648 return;
4649
4650 mutex_lock(&dirty_i->seglist_lock);
4651 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4652 valid_blocks = get_valid_blocks(sbi, segno, true);
4653 secno = GET_SEC_FROM_SEG(sbi, segno);
4654
4655 if (!valid_blocks || valid_blocks == blks_per_sec)
4656 continue;
4657 if (IS_CURSEC(sbi, secno))
4658 continue;
4659 set_bit(secno, dirty_i->dirty_secmap);
4660 }
4661 mutex_unlock(&dirty_i->seglist_lock);
4662 }
4663
init_victim_secmap(struct f2fs_sb_info * sbi)4664 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4665 {
4666 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4667 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4668
4669 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4670 if (!dirty_i->victim_secmap)
4671 return -ENOMEM;
4672
4673 dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4674 if (!dirty_i->pinned_secmap)
4675 return -ENOMEM;
4676
4677 dirty_i->pinned_secmap_cnt = 0;
4678 dirty_i->enable_pin_section = true;
4679 return 0;
4680 }
4681
build_dirty_segmap(struct f2fs_sb_info * sbi)4682 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4683 {
4684 struct dirty_seglist_info *dirty_i;
4685 unsigned int bitmap_size, i;
4686
4687 /* allocate memory for dirty segments list information */
4688 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4689 GFP_KERNEL);
4690 if (!dirty_i)
4691 return -ENOMEM;
4692
4693 SM_I(sbi)->dirty_info = dirty_i;
4694 mutex_init(&dirty_i->seglist_lock);
4695
4696 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4697
4698 for (i = 0; i < NR_DIRTY_TYPE; i++) {
4699 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4700 GFP_KERNEL);
4701 if (!dirty_i->dirty_segmap[i])
4702 return -ENOMEM;
4703 }
4704
4705 if (__is_large_section(sbi)) {
4706 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4707 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4708 bitmap_size, GFP_KERNEL);
4709 if (!dirty_i->dirty_secmap)
4710 return -ENOMEM;
4711 }
4712
4713 init_dirty_segmap(sbi);
4714 return init_victim_secmap(sbi);
4715 }
4716
sanity_check_curseg(struct f2fs_sb_info * sbi)4717 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4718 {
4719 int i;
4720
4721 /*
4722 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4723 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4724 */
4725 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4726 struct curseg_info *curseg = CURSEG_I(sbi, i);
4727 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4728 unsigned int blkofs = curseg->next_blkoff;
4729
4730 if (f2fs_sb_has_readonly(sbi) &&
4731 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4732 continue;
4733
4734 sanity_check_seg_type(sbi, curseg->seg_type);
4735
4736 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
4737 f2fs_err(sbi,
4738 "Current segment has invalid alloc_type:%d",
4739 curseg->alloc_type);
4740 return -EFSCORRUPTED;
4741 }
4742
4743 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4744 goto out;
4745
4746 if (curseg->alloc_type == SSR)
4747 continue;
4748
4749 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4750 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4751 continue;
4752 out:
4753 f2fs_err(sbi,
4754 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4755 i, curseg->segno, curseg->alloc_type,
4756 curseg->next_blkoff, blkofs);
4757 return -EFSCORRUPTED;
4758 }
4759 }
4760 return 0;
4761 }
4762
4763 #ifdef CONFIG_BLK_DEV_ZONED
4764
check_zone_write_pointer(struct f2fs_sb_info * sbi,struct f2fs_dev_info * fdev,struct blk_zone * zone)4765 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4766 struct f2fs_dev_info *fdev,
4767 struct blk_zone *zone)
4768 {
4769 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4770 block_t zone_block, wp_block, last_valid_block;
4771 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4772 int i, s, b, ret;
4773 struct seg_entry *se;
4774
4775 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4776 return 0;
4777
4778 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4779 wp_segno = GET_SEGNO(sbi, wp_block);
4780 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4781 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4782 zone_segno = GET_SEGNO(sbi, zone_block);
4783 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4784
4785 if (zone_segno >= MAIN_SEGS(sbi))
4786 return 0;
4787
4788 /*
4789 * Skip check of zones cursegs point to, since
4790 * fix_curseg_write_pointer() checks them.
4791 */
4792 for (i = 0; i < NO_CHECK_TYPE; i++)
4793 if (zone_secno == GET_SEC_FROM_SEG(sbi,
4794 CURSEG_I(sbi, i)->segno))
4795 return 0;
4796
4797 /*
4798 * Get last valid block of the zone.
4799 */
4800 last_valid_block = zone_block - 1;
4801 for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4802 segno = zone_segno + s;
4803 se = get_seg_entry(sbi, segno);
4804 for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4805 if (f2fs_test_bit(b, se->cur_valid_map)) {
4806 last_valid_block = START_BLOCK(sbi, segno) + b;
4807 break;
4808 }
4809 if (last_valid_block >= zone_block)
4810 break;
4811 }
4812
4813 /*
4814 * If last valid block is beyond the write pointer, report the
4815 * inconsistency. This inconsistency does not cause write error
4816 * because the zone will not be selected for write operation until
4817 * it get discarded. Just report it.
4818 */
4819 if (last_valid_block >= wp_block) {
4820 f2fs_notice(sbi, "Valid block beyond write pointer: "
4821 "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4822 GET_SEGNO(sbi, last_valid_block),
4823 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4824 wp_segno, wp_blkoff);
4825 return 0;
4826 }
4827
4828 /*
4829 * If there is no valid block in the zone and if write pointer is
4830 * not at zone start, reset the write pointer.
4831 */
4832 if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4833 f2fs_notice(sbi,
4834 "Zone without valid block has non-zero write "
4835 "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4836 wp_segno, wp_blkoff);
4837 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4838 zone->len >> log_sectors_per_block);
4839 if (ret) {
4840 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4841 fdev->path, ret);
4842 return ret;
4843 }
4844 }
4845
4846 return 0;
4847 }
4848
get_target_zoned_dev(struct f2fs_sb_info * sbi,block_t zone_blkaddr)4849 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4850 block_t zone_blkaddr)
4851 {
4852 int i;
4853
4854 for (i = 0; i < sbi->s_ndevs; i++) {
4855 if (!bdev_is_zoned(FDEV(i).bdev))
4856 continue;
4857 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4858 zone_blkaddr <= FDEV(i).end_blk))
4859 return &FDEV(i);
4860 }
4861
4862 return NULL;
4863 }
4864
report_one_zone_cb(struct blk_zone * zone,unsigned int idx,void * data)4865 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4866 void *data)
4867 {
4868 memcpy(data, zone, sizeof(struct blk_zone));
4869 return 0;
4870 }
4871
fix_curseg_write_pointer(struct f2fs_sb_info * sbi,int type)4872 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4873 {
4874 struct curseg_info *cs = CURSEG_I(sbi, type);
4875 struct f2fs_dev_info *zbd;
4876 struct blk_zone zone;
4877 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4878 block_t cs_zone_block, wp_block;
4879 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4880 sector_t zone_sector;
4881 int err;
4882
4883 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4884 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4885
4886 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4887 if (!zbd)
4888 return 0;
4889
4890 /* report zone for the sector the curseg points to */
4891 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4892 << log_sectors_per_block;
4893 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4894 report_one_zone_cb, &zone);
4895 if (err != 1) {
4896 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4897 zbd->path, err);
4898 return err;
4899 }
4900
4901 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4902 return 0;
4903
4904 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4905 wp_segno = GET_SEGNO(sbi, wp_block);
4906 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4907 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4908
4909 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4910 wp_sector_off == 0)
4911 return 0;
4912
4913 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4914 "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4915 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4916
4917 f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4918 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4919
4920 f2fs_allocate_new_section(sbi, type, true);
4921
4922 /* check consistency of the zone curseg pointed to */
4923 if (check_zone_write_pointer(sbi, zbd, &zone))
4924 return -EIO;
4925
4926 /* check newly assigned zone */
4927 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4928 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4929
4930 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4931 if (!zbd)
4932 return 0;
4933
4934 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4935 << log_sectors_per_block;
4936 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4937 report_one_zone_cb, &zone);
4938 if (err != 1) {
4939 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4940 zbd->path, err);
4941 return err;
4942 }
4943
4944 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4945 return 0;
4946
4947 if (zone.wp != zone.start) {
4948 f2fs_notice(sbi,
4949 "New zone for curseg[%d] is not yet discarded. "
4950 "Reset the zone: curseg[0x%x,0x%x]",
4951 type, cs->segno, cs->next_blkoff);
4952 err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4953 zone_sector >> log_sectors_per_block,
4954 zone.len >> log_sectors_per_block);
4955 if (err) {
4956 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4957 zbd->path, err);
4958 return err;
4959 }
4960 }
4961
4962 return 0;
4963 }
4964
f2fs_fix_curseg_write_pointer(struct f2fs_sb_info * sbi)4965 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4966 {
4967 int i, ret;
4968
4969 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4970 ret = fix_curseg_write_pointer(sbi, i);
4971 if (ret)
4972 return ret;
4973 }
4974
4975 return 0;
4976 }
4977
4978 struct check_zone_write_pointer_args {
4979 struct f2fs_sb_info *sbi;
4980 struct f2fs_dev_info *fdev;
4981 };
4982
check_zone_write_pointer_cb(struct blk_zone * zone,unsigned int idx,void * data)4983 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4984 void *data)
4985 {
4986 struct check_zone_write_pointer_args *args;
4987
4988 args = (struct check_zone_write_pointer_args *)data;
4989
4990 return check_zone_write_pointer(args->sbi, args->fdev, zone);
4991 }
4992
f2fs_check_write_pointer(struct f2fs_sb_info * sbi)4993 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4994 {
4995 int i, ret;
4996 struct check_zone_write_pointer_args args;
4997
4998 for (i = 0; i < sbi->s_ndevs; i++) {
4999 if (!bdev_is_zoned(FDEV(i).bdev))
5000 continue;
5001
5002 args.sbi = sbi;
5003 args.fdev = &FDEV(i);
5004 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5005 check_zone_write_pointer_cb, &args);
5006 if (ret < 0)
5007 return ret;
5008 }
5009
5010 return 0;
5011 }
5012
5013 /*
5014 * Return the number of usable blocks in a segment. The number of blocks
5015 * returned is always equal to the number of blocks in a segment for
5016 * segments fully contained within a sequential zone capacity or a
5017 * conventional zone. For segments partially contained in a sequential
5018 * zone capacity, the number of usable blocks up to the zone capacity
5019 * is returned. 0 is returned in all other cases.
5020 */
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5021 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5022 struct f2fs_sb_info *sbi, unsigned int segno)
5023 {
5024 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5025 unsigned int secno;
5026
5027 if (!sbi->unusable_blocks_per_sec)
5028 return sbi->blocks_per_seg;
5029
5030 secno = GET_SEC_FROM_SEG(sbi, segno);
5031 seg_start = START_BLOCK(sbi, segno);
5032 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5033 sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5034
5035 /*
5036 * If segment starts before zone capacity and spans beyond
5037 * zone capacity, then usable blocks are from seg start to
5038 * zone capacity. If the segment starts after the zone capacity,
5039 * then there are no usable blocks.
5040 */
5041 if (seg_start >= sec_cap_blkaddr)
5042 return 0;
5043 if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5044 return sec_cap_blkaddr - seg_start;
5045
5046 return sbi->blocks_per_seg;
5047 }
5048 #else
f2fs_fix_curseg_write_pointer(struct f2fs_sb_info * sbi)5049 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5050 {
5051 return 0;
5052 }
5053
f2fs_check_write_pointer(struct f2fs_sb_info * sbi)5054 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5055 {
5056 return 0;
5057 }
5058
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5059 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5060 unsigned int segno)
5061 {
5062 return 0;
5063 }
5064
5065 #endif
f2fs_usable_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5066 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5067 unsigned int segno)
5068 {
5069 if (f2fs_sb_has_blkzoned(sbi))
5070 return f2fs_usable_zone_blks_in_seg(sbi, segno);
5071
5072 return sbi->blocks_per_seg;
5073 }
5074
f2fs_usable_segs_in_sec(struct f2fs_sb_info * sbi,unsigned int segno)5075 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5076 unsigned int segno)
5077 {
5078 if (f2fs_sb_has_blkzoned(sbi))
5079 return CAP_SEGS_PER_SEC(sbi);
5080
5081 return sbi->segs_per_sec;
5082 }
5083
5084 /*
5085 * Update min, max modified time for cost-benefit GC algorithm
5086 */
init_min_max_mtime(struct f2fs_sb_info * sbi)5087 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5088 {
5089 struct sit_info *sit_i = SIT_I(sbi);
5090 unsigned int segno;
5091
5092 down_write(&sit_i->sentry_lock);
5093
5094 sit_i->min_mtime = ULLONG_MAX;
5095
5096 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5097 unsigned int i;
5098 unsigned long long mtime = 0;
5099
5100 for (i = 0; i < sbi->segs_per_sec; i++)
5101 mtime += get_seg_entry(sbi, segno + i)->mtime;
5102
5103 mtime = div_u64(mtime, sbi->segs_per_sec);
5104
5105 if (sit_i->min_mtime > mtime)
5106 sit_i->min_mtime = mtime;
5107 }
5108 sit_i->max_mtime = get_mtime(sbi, false);
5109 sit_i->dirty_max_mtime = 0;
5110 up_write(&sit_i->sentry_lock);
5111 }
5112
f2fs_build_segment_manager(struct f2fs_sb_info * sbi)5113 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5114 {
5115 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5116 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5117 struct f2fs_sm_info *sm_info;
5118 int err;
5119
5120 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5121 if (!sm_info)
5122 return -ENOMEM;
5123
5124 /* init sm info */
5125 sbi->sm_info = sm_info;
5126 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5127 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5128 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5129 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5130 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5131 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5132 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5133 sm_info->rec_prefree_segments = sm_info->main_segments *
5134 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5135 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5136 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5137
5138 if (!f2fs_lfs_mode(sbi))
5139 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5140 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5141 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5142 sm_info->min_seq_blocks = sbi->blocks_per_seg;
5143 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5144 sm_info->min_ssr_sections = reserved_sections(sbi);
5145
5146 INIT_LIST_HEAD(&sm_info->sit_entry_set);
5147
5148 init_f2fs_rwsem(&sm_info->curseg_lock);
5149
5150 if (!f2fs_readonly(sbi->sb)) {
5151 err = f2fs_create_flush_cmd_control(sbi);
5152 if (err)
5153 return err;
5154 }
5155
5156 err = create_discard_cmd_control(sbi);
5157 if (err)
5158 return err;
5159
5160 err = build_sit_info(sbi);
5161 if (err)
5162 return err;
5163 err = build_free_segmap(sbi);
5164 if (err)
5165 return err;
5166 err = build_curseg(sbi);
5167 if (err)
5168 return err;
5169
5170 /* reinit free segmap based on SIT */
5171 err = build_sit_entries(sbi);
5172 if (err)
5173 return err;
5174
5175 init_free_segmap(sbi);
5176 err = build_dirty_segmap(sbi);
5177 if (err)
5178 return err;
5179
5180 err = sanity_check_curseg(sbi);
5181 if (err)
5182 return err;
5183
5184 init_min_max_mtime(sbi);
5185 return 0;
5186 }
5187
discard_dirty_segmap(struct f2fs_sb_info * sbi,enum dirty_type dirty_type)5188 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5189 enum dirty_type dirty_type)
5190 {
5191 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5192
5193 mutex_lock(&dirty_i->seglist_lock);
5194 kvfree(dirty_i->dirty_segmap[dirty_type]);
5195 dirty_i->nr_dirty[dirty_type] = 0;
5196 mutex_unlock(&dirty_i->seglist_lock);
5197 }
5198
destroy_victim_secmap(struct f2fs_sb_info * sbi)5199 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5200 {
5201 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5202
5203 kvfree(dirty_i->pinned_secmap);
5204 kvfree(dirty_i->victim_secmap);
5205 }
5206
destroy_dirty_segmap(struct f2fs_sb_info * sbi)5207 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5208 {
5209 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5210 int i;
5211
5212 if (!dirty_i)
5213 return;
5214
5215 /* discard pre-free/dirty segments list */
5216 for (i = 0; i < NR_DIRTY_TYPE; i++)
5217 discard_dirty_segmap(sbi, i);
5218
5219 if (__is_large_section(sbi)) {
5220 mutex_lock(&dirty_i->seglist_lock);
5221 kvfree(dirty_i->dirty_secmap);
5222 mutex_unlock(&dirty_i->seglist_lock);
5223 }
5224
5225 destroy_victim_secmap(sbi);
5226 SM_I(sbi)->dirty_info = NULL;
5227 kfree(dirty_i);
5228 }
5229
destroy_curseg(struct f2fs_sb_info * sbi)5230 static void destroy_curseg(struct f2fs_sb_info *sbi)
5231 {
5232 struct curseg_info *array = SM_I(sbi)->curseg_array;
5233 int i;
5234
5235 if (!array)
5236 return;
5237 SM_I(sbi)->curseg_array = NULL;
5238 for (i = 0; i < NR_CURSEG_TYPE; i++) {
5239 kfree(array[i].sum_blk);
5240 kfree(array[i].journal);
5241 }
5242 kfree(array);
5243 }
5244
destroy_free_segmap(struct f2fs_sb_info * sbi)5245 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5246 {
5247 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5248
5249 if (!free_i)
5250 return;
5251 SM_I(sbi)->free_info = NULL;
5252 kvfree(free_i->free_segmap);
5253 kvfree(free_i->free_secmap);
5254 kfree(free_i);
5255 }
5256
destroy_sit_info(struct f2fs_sb_info * sbi)5257 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5258 {
5259 struct sit_info *sit_i = SIT_I(sbi);
5260
5261 if (!sit_i)
5262 return;
5263
5264 if (sit_i->sentries)
5265 kvfree(sit_i->bitmap);
5266 kfree(sit_i->tmp_map);
5267
5268 kvfree(sit_i->sentries);
5269 kvfree(sit_i->sec_entries);
5270 kvfree(sit_i->dirty_sentries_bitmap);
5271
5272 SM_I(sbi)->sit_info = NULL;
5273 kvfree(sit_i->sit_bitmap);
5274 #ifdef CONFIG_F2FS_CHECK_FS
5275 kvfree(sit_i->sit_bitmap_mir);
5276 kvfree(sit_i->invalid_segmap);
5277 #endif
5278 kfree(sit_i);
5279 }
5280
f2fs_destroy_segment_manager(struct f2fs_sb_info * sbi)5281 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5282 {
5283 struct f2fs_sm_info *sm_info = SM_I(sbi);
5284
5285 if (!sm_info)
5286 return;
5287 f2fs_destroy_flush_cmd_control(sbi, true);
5288 destroy_discard_cmd_control(sbi);
5289 destroy_dirty_segmap(sbi);
5290 destroy_curseg(sbi);
5291 destroy_free_segmap(sbi);
5292 destroy_sit_info(sbi);
5293 sbi->sm_info = NULL;
5294 kfree(sm_info);
5295 }
5296
f2fs_create_segment_manager_caches(void)5297 int __init f2fs_create_segment_manager_caches(void)
5298 {
5299 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5300 sizeof(struct discard_entry));
5301 if (!discard_entry_slab)
5302 goto fail;
5303
5304 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5305 sizeof(struct discard_cmd));
5306 if (!discard_cmd_slab)
5307 goto destroy_discard_entry;
5308
5309 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5310 sizeof(struct sit_entry_set));
5311 if (!sit_entry_set_slab)
5312 goto destroy_discard_cmd;
5313
5314 revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5315 sizeof(struct revoke_entry));
5316 if (!revoke_entry_slab)
5317 goto destroy_sit_entry_set;
5318 return 0;
5319
5320 destroy_sit_entry_set:
5321 kmem_cache_destroy(sit_entry_set_slab);
5322 destroy_discard_cmd:
5323 kmem_cache_destroy(discard_cmd_slab);
5324 destroy_discard_entry:
5325 kmem_cache_destroy(discard_entry_slab);
5326 fail:
5327 return -ENOMEM;
5328 }
5329
f2fs_destroy_segment_manager_caches(void)5330 void f2fs_destroy_segment_manager_caches(void)
5331 {
5332 kmem_cache_destroy(sit_entry_set_slab);
5333 kmem_cache_destroy(discard_cmd_slab);
5334 kmem_cache_destroy(discard_entry_slab);
5335 kmem_cache_destroy(revoke_entry_slab);
5336 }
5337