1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/fat/misc.c
4 *
5 * Written 1992,1993 by Werner Almesberger
6 * 22/11/2000 - Fixed fat_date_unix2dos for dates earlier than 01/01/1980
7 * and date_dos2unix for date==0 by Igor Zhbanov(bsg@uniyar.ac.ru)
8 */
9
10 #include "fat.h"
11 #include <linux/iversion.h>
12
13 /*
14 * fat_fs_error reports a file system problem that might indicate fa data
15 * corruption/inconsistency. Depending on 'errors' mount option the
16 * panic() is called, or error message is printed FAT and nothing is done,
17 * or filesystem is remounted read-only (default behavior).
18 * In case the file system is remounted read-only, it can be made writable
19 * again by remounting it.
20 */
__fat_fs_error(struct super_block * sb,int report,const char * fmt,...)21 void __fat_fs_error(struct super_block *sb, int report, const char *fmt, ...)
22 {
23 struct fat_mount_options *opts = &MSDOS_SB(sb)->options;
24 va_list args;
25 struct va_format vaf;
26
27 if (report) {
28 va_start(args, fmt);
29 vaf.fmt = fmt;
30 vaf.va = &args;
31 fat_msg(sb, KERN_ERR, "error, %pV", &vaf);
32 va_end(args);
33 }
34
35 if (opts->errors == FAT_ERRORS_PANIC)
36 panic("FAT-fs (%s): fs panic from previous error\n", sb->s_id);
37 else if (opts->errors == FAT_ERRORS_RO && !sb_rdonly(sb)) {
38 sb->s_flags |= SB_RDONLY;
39 fat_msg(sb, KERN_ERR, "Filesystem has been set read-only");
40 }
41 }
42 EXPORT_SYMBOL_GPL(__fat_fs_error);
43
44 /**
45 * fat_msg() - print preformated FAT specific messages. Every thing what is
46 * not fat_fs_error() should be fat_msg().
47 */
fat_msg(struct super_block * sb,const char * level,const char * fmt,...)48 void fat_msg(struct super_block *sb, const char *level, const char *fmt, ...)
49 {
50 struct va_format vaf;
51 va_list args;
52
53 va_start(args, fmt);
54 vaf.fmt = fmt;
55 vaf.va = &args;
56 printk("%sFAT-fs (%s): %pV\n", level, sb->s_id, &vaf);
57 va_end(args);
58 }
59
60 /* Flushes the number of free clusters on FAT32 */
61 /* XXX: Need to write one per FSINFO block. Currently only writes 1 */
fat_clusters_flush(struct super_block * sb)62 int fat_clusters_flush(struct super_block *sb)
63 {
64 struct msdos_sb_info *sbi = MSDOS_SB(sb);
65 struct buffer_head *bh;
66 struct fat_boot_fsinfo *fsinfo;
67
68 if (!is_fat32(sbi))
69 return 0;
70
71 bh = sb_bread(sb, sbi->fsinfo_sector);
72 if (bh == NULL) {
73 fat_msg(sb, KERN_ERR, "bread failed in fat_clusters_flush");
74 return -EIO;
75 }
76
77 fsinfo = (struct fat_boot_fsinfo *)bh->b_data;
78 /* Sanity check */
79 if (!IS_FSINFO(fsinfo)) {
80 fat_msg(sb, KERN_ERR, "Invalid FSINFO signature: "
81 "0x%08x, 0x%08x (sector = %lu)",
82 le32_to_cpu(fsinfo->signature1),
83 le32_to_cpu(fsinfo->signature2),
84 sbi->fsinfo_sector);
85 } else {
86 if (sbi->free_clusters != -1)
87 fsinfo->free_clusters = cpu_to_le32(sbi->free_clusters);
88 if (sbi->prev_free != -1)
89 fsinfo->next_cluster = cpu_to_le32(sbi->prev_free);
90 mark_buffer_dirty(bh);
91 }
92 brelse(bh);
93
94 return 0;
95 }
96
97 /*
98 * fat_chain_add() adds a new cluster to the chain of clusters represented
99 * by inode.
100 */
fat_chain_add(struct inode * inode,int new_dclus,int nr_cluster)101 int fat_chain_add(struct inode *inode, int new_dclus, int nr_cluster)
102 {
103 struct super_block *sb = inode->i_sb;
104 struct msdos_sb_info *sbi = MSDOS_SB(sb);
105 int ret, new_fclus, last;
106
107 /*
108 * We must locate the last cluster of the file to add this new
109 * one (new_dclus) to the end of the link list (the FAT).
110 */
111 last = new_fclus = 0;
112 if (MSDOS_I(inode)->i_start) {
113 int fclus, dclus;
114
115 ret = fat_get_cluster(inode, FAT_ENT_EOF, &fclus, &dclus);
116 if (ret < 0)
117 return ret;
118 new_fclus = fclus + 1;
119 last = dclus;
120 }
121
122 /* add new one to the last of the cluster chain */
123 if (last) {
124 struct fat_entry fatent;
125
126 fatent_init(&fatent);
127 ret = fat_ent_read(inode, &fatent, last);
128 if (ret >= 0) {
129 int wait = inode_needs_sync(inode);
130 ret = fat_ent_write(inode, &fatent, new_dclus, wait);
131 fatent_brelse(&fatent);
132 }
133 if (ret < 0)
134 return ret;
135 /*
136 * FIXME:Although we can add this cache, fat_cache_add() is
137 * assuming to be called after linear search with fat_cache_id.
138 */
139 // fat_cache_add(inode, new_fclus, new_dclus);
140 } else {
141 MSDOS_I(inode)->i_start = new_dclus;
142 MSDOS_I(inode)->i_logstart = new_dclus;
143 /*
144 * Since generic_write_sync() synchronizes regular files later,
145 * we sync here only directories.
146 */
147 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) {
148 ret = fat_sync_inode(inode);
149 if (ret)
150 return ret;
151 } else
152 mark_inode_dirty(inode);
153 }
154 if (new_fclus != (inode->i_blocks >> (sbi->cluster_bits - 9))) {
155 fat_fs_error(sb, "clusters badly computed (%d != %llu)",
156 new_fclus,
157 (llu)(inode->i_blocks >> (sbi->cluster_bits - 9)));
158 fat_cache_inval_inode(inode);
159 }
160 inode->i_blocks += nr_cluster << (sbi->cluster_bits - 9);
161
162 return 0;
163 }
164
165 /*
166 * The epoch of FAT timestamp is 1980.
167 * : bits : value
168 * date: 0 - 4: day (1 - 31)
169 * date: 5 - 8: month (1 - 12)
170 * date: 9 - 15: year (0 - 127) from 1980
171 * time: 0 - 4: sec (0 - 29) 2sec counts
172 * time: 5 - 10: min (0 - 59)
173 * time: 11 - 15: hour (0 - 23)
174 */
175 #define SECS_PER_MIN 60
176 #define SECS_PER_HOUR (60 * 60)
177 #define SECS_PER_DAY (SECS_PER_HOUR * 24)
178 /* days between 1.1.70 and 1.1.80 (2 leap days) */
179 #define DAYS_DELTA (365 * 10 + 2)
180 /* 120 (2100 - 1980) isn't leap year */
181 #define YEAR_2100 120
182 #define IS_LEAP_YEAR(y) (!((y) & 3) && (y) != YEAR_2100)
183
184 /* Linear day numbers of the respective 1sts in non-leap years. */
185 static long days_in_year[] = {
186 /* Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec */
187 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 0, 0, 0,
188 };
189
fat_tz_offset(struct msdos_sb_info * sbi)190 static inline int fat_tz_offset(struct msdos_sb_info *sbi)
191 {
192 return (sbi->options.tz_set ?
193 -sbi->options.time_offset :
194 sys_tz.tz_minuteswest) * SECS_PER_MIN;
195 }
196
197 /* Convert a FAT time/date pair to a UNIX date (seconds since 1 1 70). */
fat_time_fat2unix(struct msdos_sb_info * sbi,struct timespec64 * ts,__le16 __time,__le16 __date,u8 time_cs)198 void fat_time_fat2unix(struct msdos_sb_info *sbi, struct timespec64 *ts,
199 __le16 __time, __le16 __date, u8 time_cs)
200 {
201 u16 time = le16_to_cpu(__time), date = le16_to_cpu(__date);
202 time64_t second;
203 long day, leap_day, month, year;
204
205 year = date >> 9;
206 month = max(1, (date >> 5) & 0xf);
207 day = max(1, date & 0x1f) - 1;
208
209 leap_day = (year + 3) / 4;
210 if (year > YEAR_2100) /* 2100 isn't leap year */
211 leap_day--;
212 if (IS_LEAP_YEAR(year) && month > 2)
213 leap_day++;
214
215 second = (time & 0x1f) << 1;
216 second += ((time >> 5) & 0x3f) * SECS_PER_MIN;
217 second += (time >> 11) * SECS_PER_HOUR;
218 second += (time64_t)(year * 365 + leap_day
219 + days_in_year[month] + day
220 + DAYS_DELTA) * SECS_PER_DAY;
221
222 second += fat_tz_offset(sbi);
223
224 if (time_cs) {
225 ts->tv_sec = second + (time_cs / 100);
226 ts->tv_nsec = (time_cs % 100) * 10000000;
227 } else {
228 ts->tv_sec = second;
229 ts->tv_nsec = 0;
230 }
231 }
232
233 /* Export fat_time_fat2unix() for the fat_test KUnit tests. */
234 EXPORT_SYMBOL_GPL(fat_time_fat2unix);
235
236 /* Convert linear UNIX date to a FAT time/date pair. */
fat_time_unix2fat(struct msdos_sb_info * sbi,struct timespec64 * ts,__le16 * time,__le16 * date,u8 * time_cs)237 void fat_time_unix2fat(struct msdos_sb_info *sbi, struct timespec64 *ts,
238 __le16 *time, __le16 *date, u8 *time_cs)
239 {
240 struct tm tm;
241 time64_to_tm(ts->tv_sec, -fat_tz_offset(sbi), &tm);
242
243 /* FAT can only support year between 1980 to 2107 */
244 if (tm.tm_year < 1980 - 1900) {
245 *time = 0;
246 *date = cpu_to_le16((0 << 9) | (1 << 5) | 1);
247 if (time_cs)
248 *time_cs = 0;
249 return;
250 }
251 if (tm.tm_year > 2107 - 1900) {
252 *time = cpu_to_le16((23 << 11) | (59 << 5) | 29);
253 *date = cpu_to_le16((127 << 9) | (12 << 5) | 31);
254 if (time_cs)
255 *time_cs = 199;
256 return;
257 }
258
259 /* from 1900 -> from 1980 */
260 tm.tm_year -= 80;
261 /* 0~11 -> 1~12 */
262 tm.tm_mon++;
263 /* 0~59 -> 0~29(2sec counts) */
264 tm.tm_sec >>= 1;
265
266 *time = cpu_to_le16(tm.tm_hour << 11 | tm.tm_min << 5 | tm.tm_sec);
267 *date = cpu_to_le16(tm.tm_year << 9 | tm.tm_mon << 5 | tm.tm_mday);
268 if (time_cs)
269 *time_cs = (ts->tv_sec & 1) * 100 + ts->tv_nsec / 10000000;
270 }
271 EXPORT_SYMBOL_GPL(fat_time_unix2fat);
272
fat_timespec64_trunc_2secs(struct timespec64 ts)273 static inline struct timespec64 fat_timespec64_trunc_2secs(struct timespec64 ts)
274 {
275 return (struct timespec64){ ts.tv_sec & ~1ULL, 0 };
276 }
277
fat_timespec64_trunc_10ms(struct timespec64 ts)278 static inline struct timespec64 fat_timespec64_trunc_10ms(struct timespec64 ts)
279 {
280 if (ts.tv_nsec)
281 ts.tv_nsec -= ts.tv_nsec % 10000000UL;
282 return ts;
283 }
284
285 /*
286 * truncate the various times with appropriate granularity:
287 * root inode:
288 * all times always 0
289 * all other inodes:
290 * mtime - 2 seconds
291 * ctime
292 * msdos - 2 seconds
293 * vfat - 10 milliseconds
294 * atime - 24 hours (00:00:00 in local timezone)
295 */
fat_truncate_time(struct inode * inode,struct timespec64 * now,int flags)296 int fat_truncate_time(struct inode *inode, struct timespec64 *now, int flags)
297 {
298 struct msdos_sb_info *sbi = MSDOS_SB(inode->i_sb);
299 struct timespec64 ts;
300
301 if (inode->i_ino == MSDOS_ROOT_INO)
302 return 0;
303
304 if (now == NULL) {
305 now = &ts;
306 ts = current_time(inode);
307 }
308
309 if (flags & S_ATIME) {
310 /* to localtime */
311 time64_t seconds = now->tv_sec - fat_tz_offset(sbi);
312 s32 remainder;
313
314 div_s64_rem(seconds, SECS_PER_DAY, &remainder);
315 /* to day boundary, and back to unix time */
316 seconds = seconds + fat_tz_offset(sbi) - remainder;
317
318 inode->i_atime = (struct timespec64){ seconds, 0 };
319 }
320 if (flags & S_CTIME) {
321 if (sbi->options.isvfat)
322 inode->i_ctime = fat_timespec64_trunc_10ms(*now);
323 else
324 inode->i_ctime = fat_timespec64_trunc_2secs(*now);
325 }
326 if (flags & S_MTIME)
327 inode->i_mtime = fat_timespec64_trunc_2secs(*now);
328
329 return 0;
330 }
331 EXPORT_SYMBOL_GPL(fat_truncate_time);
332
fat_update_time(struct inode * inode,struct timespec64 * now,int flags)333 int fat_update_time(struct inode *inode, struct timespec64 *now, int flags)
334 {
335 int dirty_flags = 0;
336
337 if (inode->i_ino == MSDOS_ROOT_INO)
338 return 0;
339
340 if (flags & (S_ATIME | S_CTIME | S_MTIME)) {
341 fat_truncate_time(inode, now, flags);
342 if (inode->i_sb->s_flags & SB_LAZYTIME)
343 dirty_flags |= I_DIRTY_TIME;
344 else
345 dirty_flags |= I_DIRTY_SYNC;
346 }
347
348 if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false))
349 dirty_flags |= I_DIRTY_SYNC;
350
351 __mark_inode_dirty(inode, dirty_flags);
352 return 0;
353 }
354 EXPORT_SYMBOL_GPL(fat_update_time);
355
fat_sync_bhs(struct buffer_head ** bhs,int nr_bhs)356 int fat_sync_bhs(struct buffer_head **bhs, int nr_bhs)
357 {
358 int i, err = 0;
359
360 for (i = 0; i < nr_bhs; i++)
361 write_dirty_buffer(bhs[i], 0);
362
363 for (i = 0; i < nr_bhs; i++) {
364 wait_on_buffer(bhs[i]);
365 if (!err && !buffer_uptodate(bhs[i]))
366 err = -EIO;
367 }
368 return err;
369 }
370