1 /*
2 * linux/drivers/block/loop.c
3 *
4 * Written by Theodore Ts'o, 3/29/93
5 *
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
8 *
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11 *
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14 *
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16 *
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18 *
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20 *
21 * Loadable modules and other fixes by AK, 1998
22 *
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
26 *
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
29 *
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33 *
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
38 *
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41 *
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
45 *
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49 *
50 */
51
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/pagemap.h>
57 #include <linux/file.h>
58 #include <linux/stat.h>
59 #include <linux/errno.h>
60 #include <linux/major.h>
61 #include <linux/wait.h>
62 #include <linux/blkdev.h>
63 #include <linux/blkpg.h>
64 #include <linux/init.h>
65 #include <linux/swap.h>
66 #include <linux/slab.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/mutex.h>
71 #include <linux/writeback.h>
72 #include <linux/completion.h>
73 #include <linux/highmem.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include <linux/ioprio.h>
80 #include <linux/blk-cgroup.h>
81 #include <linux/sched/mm.h>
82 #include <linux/statfs.h>
83
84 #include "loop.h"
85
86 #include <linux/uaccess.h>
87 #include <trace/hooks/loop.h>
88
89 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ)
90
91 static DEFINE_IDR(loop_index_idr);
92 static DEFINE_MUTEX(loop_ctl_mutex);
93 static DEFINE_MUTEX(loop_validate_mutex);
94
95 /**
96 * loop_global_lock_killable() - take locks for safe loop_validate_file() test
97 *
98 * @lo: struct loop_device
99 * @global: true if @lo is about to bind another "struct loop_device", false otherwise
100 *
101 * Returns 0 on success, -EINTR otherwise.
102 *
103 * Since loop_validate_file() traverses on other "struct loop_device" if
104 * is_loop_device() is true, we need a global lock for serializing concurrent
105 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls.
106 */
loop_global_lock_killable(struct loop_device * lo,bool global)107 static int loop_global_lock_killable(struct loop_device *lo, bool global)
108 {
109 int err;
110
111 if (global) {
112 err = mutex_lock_killable(&loop_validate_mutex);
113 if (err)
114 return err;
115 }
116 err = mutex_lock_killable(&lo->lo_mutex);
117 if (err && global)
118 mutex_unlock(&loop_validate_mutex);
119 return err;
120 }
121
122 /**
123 * loop_global_unlock() - release locks taken by loop_global_lock_killable()
124 *
125 * @lo: struct loop_device
126 * @global: true if @lo was about to bind another "struct loop_device", false otherwise
127 */
loop_global_unlock(struct loop_device * lo,bool global)128 static void loop_global_unlock(struct loop_device *lo, bool global)
129 {
130 mutex_unlock(&lo->lo_mutex);
131 if (global)
132 mutex_unlock(&loop_validate_mutex);
133 }
134
135 static int max_part;
136 static int part_shift;
137
transfer_xor(struct loop_device * lo,int cmd,struct page * raw_page,unsigned raw_off,struct page * loop_page,unsigned loop_off,int size,sector_t real_block)138 static int transfer_xor(struct loop_device *lo, int cmd,
139 struct page *raw_page, unsigned raw_off,
140 struct page *loop_page, unsigned loop_off,
141 int size, sector_t real_block)
142 {
143 char *raw_buf = kmap_atomic(raw_page) + raw_off;
144 char *loop_buf = kmap_atomic(loop_page) + loop_off;
145 char *in, *out, *key;
146 int i, keysize;
147
148 if (cmd == READ) {
149 in = raw_buf;
150 out = loop_buf;
151 } else {
152 in = loop_buf;
153 out = raw_buf;
154 }
155
156 key = lo->lo_encrypt_key;
157 keysize = lo->lo_encrypt_key_size;
158 for (i = 0; i < size; i++)
159 *out++ = *in++ ^ key[(i & 511) % keysize];
160
161 kunmap_atomic(loop_buf);
162 kunmap_atomic(raw_buf);
163 cond_resched();
164 return 0;
165 }
166
xor_init(struct loop_device * lo,const struct loop_info64 * info)167 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
168 {
169 if (unlikely(info->lo_encrypt_key_size <= 0))
170 return -EINVAL;
171 return 0;
172 }
173
174 static struct loop_func_table none_funcs = {
175 .number = LO_CRYPT_NONE,
176 };
177
178 static struct loop_func_table xor_funcs = {
179 .number = LO_CRYPT_XOR,
180 .transfer = transfer_xor,
181 .init = xor_init
182 };
183
184 /* xfer_funcs[0] is special - its release function is never called */
185 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
186 &none_funcs,
187 &xor_funcs
188 };
189
get_size(loff_t offset,loff_t sizelimit,struct file * file)190 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
191 {
192 loff_t loopsize;
193
194 /* Compute loopsize in bytes */
195 loopsize = i_size_read(file->f_mapping->host);
196 if (offset > 0)
197 loopsize -= offset;
198 /* offset is beyond i_size, weird but possible */
199 if (loopsize < 0)
200 return 0;
201
202 if (sizelimit > 0 && sizelimit < loopsize)
203 loopsize = sizelimit;
204 /*
205 * Unfortunately, if we want to do I/O on the device,
206 * the number of 512-byte sectors has to fit into a sector_t.
207 */
208 return loopsize >> 9;
209 }
210
get_loop_size(struct loop_device * lo,struct file * file)211 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
212 {
213 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
214 }
215
__loop_update_dio(struct loop_device * lo,bool dio)216 static void __loop_update_dio(struct loop_device *lo, bool dio)
217 {
218 struct file *file = lo->lo_backing_file;
219 struct address_space *mapping = file->f_mapping;
220 struct inode *inode = mapping->host;
221 unsigned short sb_bsize = 0;
222 unsigned dio_align = 0;
223 bool use_dio;
224
225 if (inode->i_sb->s_bdev) {
226 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
227 dio_align = sb_bsize - 1;
228 }
229
230 /*
231 * We support direct I/O only if lo_offset is aligned with the
232 * logical I/O size of backing device, and the logical block
233 * size of loop is bigger than the backing device's and the loop
234 * needn't transform transfer.
235 *
236 * TODO: the above condition may be loosed in the future, and
237 * direct I/O may be switched runtime at that time because most
238 * of requests in sane applications should be PAGE_SIZE aligned
239 */
240 if (dio) {
241 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
242 !(lo->lo_offset & dio_align) &&
243 mapping->a_ops->direct_IO &&
244 !lo->transfer)
245 use_dio = true;
246 else
247 use_dio = false;
248 } else {
249 use_dio = false;
250 }
251
252 if (lo->use_dio == use_dio)
253 return;
254
255 /* flush dirty pages before changing direct IO */
256 vfs_fsync(file, 0);
257
258 /*
259 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
260 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
261 * will get updated by ioctl(LOOP_GET_STATUS)
262 */
263 if (lo->lo_state == Lo_bound)
264 blk_mq_freeze_queue(lo->lo_queue);
265 lo->use_dio = use_dio;
266 if (use_dio) {
267 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
268 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
269 } else {
270 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
271 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
272 }
273 if (lo->lo_state == Lo_bound)
274 blk_mq_unfreeze_queue(lo->lo_queue);
275 }
276
277 /**
278 * loop_set_size() - sets device size and notifies userspace
279 * @lo: struct loop_device to set the size for
280 * @size: new size of the loop device
281 *
282 * Callers must validate that the size passed into this function fits into
283 * a sector_t, eg using loop_validate_size()
284 */
loop_set_size(struct loop_device * lo,loff_t size)285 static void loop_set_size(struct loop_device *lo, loff_t size)
286 {
287 if (!set_capacity_and_notify(lo->lo_disk, size))
288 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
289 }
290
291 static inline int
lo_do_transfer(struct loop_device * lo,int cmd,struct page * rpage,unsigned roffs,struct page * lpage,unsigned loffs,int size,sector_t rblock)292 lo_do_transfer(struct loop_device *lo, int cmd,
293 struct page *rpage, unsigned roffs,
294 struct page *lpage, unsigned loffs,
295 int size, sector_t rblock)
296 {
297 int ret;
298
299 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
300 if (likely(!ret))
301 return 0;
302
303 printk_ratelimited(KERN_ERR
304 "loop: Transfer error at byte offset %llu, length %i.\n",
305 (unsigned long long)rblock << 9, size);
306 return ret;
307 }
308
lo_write_bvec(struct file * file,struct bio_vec * bvec,loff_t * ppos)309 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
310 {
311 struct iov_iter i;
312 ssize_t bw;
313
314 iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len);
315
316 file_start_write(file);
317 bw = vfs_iter_write(file, &i, ppos, 0);
318 file_end_write(file);
319
320 if (likely(bw == bvec->bv_len))
321 return 0;
322
323 printk_ratelimited(KERN_ERR
324 "loop: Write error at byte offset %llu, length %i.\n",
325 (unsigned long long)*ppos, bvec->bv_len);
326 if (bw >= 0)
327 bw = -EIO;
328 return bw;
329 }
330
lo_write_simple(struct loop_device * lo,struct request * rq,loff_t pos)331 static int lo_write_simple(struct loop_device *lo, struct request *rq,
332 loff_t pos)
333 {
334 struct bio_vec bvec;
335 struct req_iterator iter;
336 int ret = 0;
337
338 rq_for_each_segment(bvec, rq, iter) {
339 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
340 if (ret < 0)
341 break;
342 cond_resched();
343 }
344
345 return ret;
346 }
347
348 /*
349 * This is the slow, transforming version that needs to double buffer the
350 * data as it cannot do the transformations in place without having direct
351 * access to the destination pages of the backing file.
352 */
lo_write_transfer(struct loop_device * lo,struct request * rq,loff_t pos)353 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
354 loff_t pos)
355 {
356 struct bio_vec bvec, b;
357 struct req_iterator iter;
358 struct page *page;
359 int ret = 0;
360
361 page = alloc_page(GFP_NOIO);
362 if (unlikely(!page))
363 return -ENOMEM;
364
365 rq_for_each_segment(bvec, rq, iter) {
366 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
367 bvec.bv_offset, bvec.bv_len, pos >> 9);
368 if (unlikely(ret))
369 break;
370
371 b.bv_page = page;
372 b.bv_offset = 0;
373 b.bv_len = bvec.bv_len;
374 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
375 if (ret < 0)
376 break;
377 }
378
379 __free_page(page);
380 return ret;
381 }
382
lo_read_simple(struct loop_device * lo,struct request * rq,loff_t pos)383 static int lo_read_simple(struct loop_device *lo, struct request *rq,
384 loff_t pos)
385 {
386 struct bio_vec bvec;
387 struct req_iterator iter;
388 struct iov_iter i;
389 ssize_t len;
390
391 rq_for_each_segment(bvec, rq, iter) {
392 iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len);
393 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
394 if (len < 0)
395 return len;
396
397 flush_dcache_page(bvec.bv_page);
398
399 if (len != bvec.bv_len) {
400 struct bio *bio;
401
402 __rq_for_each_bio(bio, rq)
403 zero_fill_bio(bio);
404 break;
405 }
406 cond_resched();
407 }
408
409 return 0;
410 }
411
lo_read_transfer(struct loop_device * lo,struct request * rq,loff_t pos)412 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
413 loff_t pos)
414 {
415 struct bio_vec bvec, b;
416 struct req_iterator iter;
417 struct iov_iter i;
418 struct page *page;
419 ssize_t len;
420 int ret = 0;
421
422 page = alloc_page(GFP_NOIO);
423 if (unlikely(!page))
424 return -ENOMEM;
425
426 rq_for_each_segment(bvec, rq, iter) {
427 loff_t offset = pos;
428
429 b.bv_page = page;
430 b.bv_offset = 0;
431 b.bv_len = bvec.bv_len;
432
433 iov_iter_bvec(&i, READ, &b, 1, b.bv_len);
434 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
435 if (len < 0) {
436 ret = len;
437 goto out_free_page;
438 }
439
440 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
441 bvec.bv_offset, len, offset >> 9);
442 if (ret)
443 goto out_free_page;
444
445 flush_dcache_page(bvec.bv_page);
446
447 if (len != bvec.bv_len) {
448 struct bio *bio;
449
450 __rq_for_each_bio(bio, rq)
451 zero_fill_bio(bio);
452 break;
453 }
454 }
455
456 ret = 0;
457 out_free_page:
458 __free_page(page);
459 return ret;
460 }
461
lo_fallocate(struct loop_device * lo,struct request * rq,loff_t pos,int mode)462 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
463 int mode)
464 {
465 /*
466 * We use fallocate to manipulate the space mappings used by the image
467 * a.k.a. discard/zerorange. However we do not support this if
468 * encryption is enabled, because it may give an attacker useful
469 * information.
470 */
471 struct file *file = lo->lo_backing_file;
472 struct request_queue *q = lo->lo_queue;
473 int ret;
474
475 mode |= FALLOC_FL_KEEP_SIZE;
476
477 if (!blk_queue_discard(q)) {
478 ret = -EOPNOTSUPP;
479 goto out;
480 }
481
482 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
483 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
484 ret = -EIO;
485 out:
486 return ret;
487 }
488
lo_req_flush(struct loop_device * lo,struct request * rq)489 static int lo_req_flush(struct loop_device *lo, struct request *rq)
490 {
491 struct file *file = lo->lo_backing_file;
492 int ret = vfs_fsync(file, 0);
493 if (unlikely(ret && ret != -EINVAL))
494 ret = -EIO;
495
496 return ret;
497 }
498
lo_complete_rq(struct request * rq)499 static void lo_complete_rq(struct request *rq)
500 {
501 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
502 blk_status_t ret = BLK_STS_OK;
503
504 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
505 req_op(rq) != REQ_OP_READ) {
506 if (cmd->ret < 0)
507 ret = errno_to_blk_status(cmd->ret);
508 goto end_io;
509 }
510
511 /*
512 * Short READ - if we got some data, advance our request and
513 * retry it. If we got no data, end the rest with EIO.
514 */
515 if (cmd->ret) {
516 blk_update_request(rq, BLK_STS_OK, cmd->ret);
517 cmd->ret = 0;
518 blk_mq_requeue_request(rq, true);
519 } else {
520 if (cmd->use_aio) {
521 struct bio *bio = rq->bio;
522
523 while (bio) {
524 zero_fill_bio(bio);
525 bio = bio->bi_next;
526 }
527 }
528 ret = BLK_STS_IOERR;
529 end_io:
530 blk_mq_end_request(rq, ret);
531 }
532 }
533
lo_rw_aio_do_completion(struct loop_cmd * cmd)534 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
535 {
536 struct request *rq = blk_mq_rq_from_pdu(cmd);
537
538 if (!atomic_dec_and_test(&cmd->ref))
539 return;
540 kfree(cmd->bvec);
541 cmd->bvec = NULL;
542 if (likely(!blk_should_fake_timeout(rq->q)))
543 blk_mq_complete_request(rq);
544 }
545
lo_rw_aio_complete(struct kiocb * iocb,long ret,long ret2)546 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
547 {
548 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
549
550 cmd->ret = ret;
551 lo_rw_aio_do_completion(cmd);
552 }
553
lo_rw_aio(struct loop_device * lo,struct loop_cmd * cmd,loff_t pos,bool rw)554 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
555 loff_t pos, bool rw)
556 {
557 struct iov_iter iter;
558 struct req_iterator rq_iter;
559 struct bio_vec *bvec;
560 struct request *rq = blk_mq_rq_from_pdu(cmd);
561 struct bio *bio = rq->bio;
562 struct file *file = lo->lo_backing_file;
563 struct bio_vec tmp;
564 unsigned int offset;
565 int nr_bvec = 0;
566 int ret;
567
568 rq_for_each_bvec(tmp, rq, rq_iter)
569 nr_bvec++;
570
571 if (rq->bio != rq->biotail) {
572
573 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
574 GFP_NOIO);
575 if (!bvec)
576 return -EIO;
577 cmd->bvec = bvec;
578
579 /*
580 * The bios of the request may be started from the middle of
581 * the 'bvec' because of bio splitting, so we can't directly
582 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
583 * API will take care of all details for us.
584 */
585 rq_for_each_bvec(tmp, rq, rq_iter) {
586 *bvec = tmp;
587 bvec++;
588 }
589 bvec = cmd->bvec;
590 offset = 0;
591 } else {
592 /*
593 * Same here, this bio may be started from the middle of the
594 * 'bvec' because of bio splitting, so offset from the bvec
595 * must be passed to iov iterator
596 */
597 offset = bio->bi_iter.bi_bvec_done;
598 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
599 }
600 atomic_set(&cmd->ref, 2);
601
602 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
603 iter.iov_offset = offset;
604
605 cmd->iocb.ki_pos = pos;
606 cmd->iocb.ki_filp = file;
607 cmd->iocb.ki_complete = lo_rw_aio_complete;
608 cmd->iocb.ki_flags = IOCB_DIRECT;
609 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
610
611 trace_android_vh_loop_prepare_cmd(bio, &cmd->iocb);
612
613 if (rw == WRITE)
614 ret = call_write_iter(file, &cmd->iocb, &iter);
615 else
616 ret = call_read_iter(file, &cmd->iocb, &iter);
617
618 lo_rw_aio_do_completion(cmd);
619
620 if (ret != -EIOCBQUEUED)
621 cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
622 return 0;
623 }
624
do_req_filebacked(struct loop_device * lo,struct request * rq)625 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
626 {
627 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
628 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
629
630 /*
631 * lo_write_simple and lo_read_simple should have been covered
632 * by io submit style function like lo_rw_aio(), one blocker
633 * is that lo_read_simple() need to call flush_dcache_page after
634 * the page is written from kernel, and it isn't easy to handle
635 * this in io submit style function which submits all segments
636 * of the req at one time. And direct read IO doesn't need to
637 * run flush_dcache_page().
638 */
639 switch (req_op(rq)) {
640 case REQ_OP_FLUSH:
641 return lo_req_flush(lo, rq);
642 case REQ_OP_WRITE_ZEROES:
643 /*
644 * If the caller doesn't want deallocation, call zeroout to
645 * write zeroes the range. Otherwise, punch them out.
646 */
647 return lo_fallocate(lo, rq, pos,
648 (rq->cmd_flags & REQ_NOUNMAP) ?
649 FALLOC_FL_ZERO_RANGE :
650 FALLOC_FL_PUNCH_HOLE);
651 case REQ_OP_DISCARD:
652 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
653 case REQ_OP_WRITE:
654 if (lo->transfer)
655 return lo_write_transfer(lo, rq, pos);
656 else if (cmd->use_aio)
657 return lo_rw_aio(lo, cmd, pos, WRITE);
658 else
659 return lo_write_simple(lo, rq, pos);
660 case REQ_OP_READ:
661 if (lo->transfer)
662 return lo_read_transfer(lo, rq, pos);
663 else if (cmd->use_aio)
664 return lo_rw_aio(lo, cmd, pos, READ);
665 else
666 return lo_read_simple(lo, rq, pos);
667 default:
668 WARN_ON_ONCE(1);
669 return -EIO;
670 }
671 }
672
loop_update_dio(struct loop_device * lo)673 static inline void loop_update_dio(struct loop_device *lo)
674 {
675 __loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) |
676 lo->use_dio);
677 }
678
loop_reread_partitions(struct loop_device * lo)679 static void loop_reread_partitions(struct loop_device *lo)
680 {
681 int rc;
682
683 mutex_lock(&lo->lo_disk->open_mutex);
684 rc = bdev_disk_changed(lo->lo_disk, false);
685 mutex_unlock(&lo->lo_disk->open_mutex);
686 if (rc)
687 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
688 __func__, lo->lo_number, lo->lo_file_name, rc);
689 }
690
is_loop_device(struct file * file)691 static inline int is_loop_device(struct file *file)
692 {
693 struct inode *i = file->f_mapping->host;
694
695 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR;
696 }
697
loop_validate_file(struct file * file,struct block_device * bdev)698 static int loop_validate_file(struct file *file, struct block_device *bdev)
699 {
700 struct inode *inode = file->f_mapping->host;
701 struct file *f = file;
702
703 /* Avoid recursion */
704 while (is_loop_device(f)) {
705 struct loop_device *l;
706
707 lockdep_assert_held(&loop_validate_mutex);
708 if (f->f_mapping->host->i_rdev == bdev->bd_dev)
709 return -EBADF;
710
711 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data;
712 if (l->lo_state != Lo_bound)
713 return -EINVAL;
714 /* Order wrt setting lo->lo_backing_file in loop_configure(). */
715 rmb();
716 f = l->lo_backing_file;
717 }
718 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
719 return -EINVAL;
720 return 0;
721 }
722
723 /*
724 * loop_change_fd switched the backing store of a loopback device to
725 * a new file. This is useful for operating system installers to free up
726 * the original file and in High Availability environments to switch to
727 * an alternative location for the content in case of server meltdown.
728 * This can only work if the loop device is used read-only, and if the
729 * new backing store is the same size and type as the old backing store.
730 */
loop_change_fd(struct loop_device * lo,struct block_device * bdev,unsigned int arg)731 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
732 unsigned int arg)
733 {
734 struct file *file = fget(arg);
735 struct file *old_file;
736 int error;
737 bool partscan;
738 bool is_loop;
739
740 if (!file)
741 return -EBADF;
742
743 /* suppress uevents while reconfiguring the device */
744 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
745
746 is_loop = is_loop_device(file);
747 error = loop_global_lock_killable(lo, is_loop);
748 if (error)
749 goto out_putf;
750 error = -ENXIO;
751 if (lo->lo_state != Lo_bound)
752 goto out_err;
753
754 /* the loop device has to be read-only */
755 error = -EINVAL;
756 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
757 goto out_err;
758
759 error = loop_validate_file(file, bdev);
760 if (error)
761 goto out_err;
762
763 old_file = lo->lo_backing_file;
764
765 error = -EINVAL;
766
767 /* size of the new backing store needs to be the same */
768 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
769 goto out_err;
770
771 /* and ... switch */
772 disk_force_media_change(lo->lo_disk, DISK_EVENT_MEDIA_CHANGE);
773 blk_mq_freeze_queue(lo->lo_queue);
774 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
775 lo->lo_backing_file = file;
776 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
777 mapping_set_gfp_mask(file->f_mapping,
778 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
779 loop_update_dio(lo);
780 blk_mq_unfreeze_queue(lo->lo_queue);
781 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
782 loop_global_unlock(lo, is_loop);
783
784 /*
785 * Flush loop_validate_file() before fput(), for l->lo_backing_file
786 * might be pointing at old_file which might be the last reference.
787 */
788 if (!is_loop) {
789 mutex_lock(&loop_validate_mutex);
790 mutex_unlock(&loop_validate_mutex);
791 }
792 /*
793 * We must drop file reference outside of lo_mutex as dropping
794 * the file ref can take open_mutex which creates circular locking
795 * dependency.
796 */
797 fput(old_file);
798 if (partscan)
799 loop_reread_partitions(lo);
800
801 error = 0;
802 done:
803 /* enable and uncork uevent now that we are done */
804 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
805 return error;
806
807 out_err:
808 loop_global_unlock(lo, is_loop);
809 out_putf:
810 fput(file);
811 goto done;
812 }
813
814 /* loop sysfs attributes */
815
loop_attr_show(struct device * dev,char * page,ssize_t (* callback)(struct loop_device *,char *))816 static ssize_t loop_attr_show(struct device *dev, char *page,
817 ssize_t (*callback)(struct loop_device *, char *))
818 {
819 struct gendisk *disk = dev_to_disk(dev);
820 struct loop_device *lo = disk->private_data;
821
822 return callback(lo, page);
823 }
824
825 #define LOOP_ATTR_RO(_name) \
826 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
827 static ssize_t loop_attr_do_show_##_name(struct device *d, \
828 struct device_attribute *attr, char *b) \
829 { \
830 return loop_attr_show(d, b, loop_attr_##_name##_show); \
831 } \
832 static struct device_attribute loop_attr_##_name = \
833 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
834
loop_attr_backing_file_show(struct loop_device * lo,char * buf)835 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
836 {
837 ssize_t ret;
838 char *p = NULL;
839
840 spin_lock_irq(&lo->lo_lock);
841 if (lo->lo_backing_file)
842 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
843 spin_unlock_irq(&lo->lo_lock);
844
845 if (IS_ERR_OR_NULL(p))
846 ret = PTR_ERR(p);
847 else {
848 ret = strlen(p);
849 memmove(buf, p, ret);
850 buf[ret++] = '\n';
851 buf[ret] = 0;
852 }
853
854 return ret;
855 }
856
loop_attr_offset_show(struct loop_device * lo,char * buf)857 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
858 {
859 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset);
860 }
861
loop_attr_sizelimit_show(struct loop_device * lo,char * buf)862 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
863 {
864 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
865 }
866
loop_attr_autoclear_show(struct loop_device * lo,char * buf)867 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
868 {
869 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
870
871 return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0");
872 }
873
loop_attr_partscan_show(struct loop_device * lo,char * buf)874 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
875 {
876 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
877
878 return sysfs_emit(buf, "%s\n", partscan ? "1" : "0");
879 }
880
loop_attr_dio_show(struct loop_device * lo,char * buf)881 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
882 {
883 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
884
885 return sysfs_emit(buf, "%s\n", dio ? "1" : "0");
886 }
887
888 LOOP_ATTR_RO(backing_file);
889 LOOP_ATTR_RO(offset);
890 LOOP_ATTR_RO(sizelimit);
891 LOOP_ATTR_RO(autoclear);
892 LOOP_ATTR_RO(partscan);
893 LOOP_ATTR_RO(dio);
894
895 static struct attribute *loop_attrs[] = {
896 &loop_attr_backing_file.attr,
897 &loop_attr_offset.attr,
898 &loop_attr_sizelimit.attr,
899 &loop_attr_autoclear.attr,
900 &loop_attr_partscan.attr,
901 &loop_attr_dio.attr,
902 NULL,
903 };
904
905 static struct attribute_group loop_attribute_group = {
906 .name = "loop",
907 .attrs= loop_attrs,
908 };
909
loop_sysfs_init(struct loop_device * lo)910 static void loop_sysfs_init(struct loop_device *lo)
911 {
912 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
913 &loop_attribute_group);
914 }
915
loop_sysfs_exit(struct loop_device * lo)916 static void loop_sysfs_exit(struct loop_device *lo)
917 {
918 if (lo->sysfs_inited)
919 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
920 &loop_attribute_group);
921 }
922
loop_config_discard(struct loop_device * lo)923 static void loop_config_discard(struct loop_device *lo)
924 {
925 struct file *file = lo->lo_backing_file;
926 struct inode *inode = file->f_mapping->host;
927 struct request_queue *q = lo->lo_queue;
928 u32 granularity, max_discard_sectors;
929
930 /*
931 * If the backing device is a block device, mirror its zeroing
932 * capability. Set the discard sectors to the block device's zeroing
933 * capabilities because loop discards result in blkdev_issue_zeroout(),
934 * not blkdev_issue_discard(). This maintains consistent behavior with
935 * file-backed loop devices: discarded regions read back as zero.
936 */
937 if (S_ISBLK(inode->i_mode) && !lo->lo_encrypt_key_size) {
938 struct request_queue *backingq = bdev_get_queue(I_BDEV(inode));
939
940 max_discard_sectors = backingq->limits.max_write_zeroes_sectors;
941 granularity = backingq->limits.discard_granularity ?:
942 queue_physical_block_size(backingq);
943
944 /*
945 * We use punch hole to reclaim the free space used by the
946 * image a.k.a. discard. However we do not support discard if
947 * encryption is enabled, because it may give an attacker
948 * useful information.
949 */
950 } else if (!file->f_op->fallocate || lo->lo_encrypt_key_size) {
951 max_discard_sectors = 0;
952 granularity = 0;
953
954 } else {
955 struct kstatfs sbuf;
956
957 max_discard_sectors = UINT_MAX >> 9;
958 if (!vfs_statfs(&file->f_path, &sbuf))
959 granularity = sbuf.f_bsize;
960 else
961 max_discard_sectors = 0;
962 }
963
964 if (max_discard_sectors) {
965 q->limits.discard_granularity = granularity;
966 blk_queue_max_discard_sectors(q, max_discard_sectors);
967 blk_queue_max_write_zeroes_sectors(q, max_discard_sectors);
968 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
969 } else {
970 q->limits.discard_granularity = 0;
971 blk_queue_max_discard_sectors(q, 0);
972 blk_queue_max_write_zeroes_sectors(q, 0);
973 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
974 }
975 q->limits.discard_alignment = 0;
976 }
977
978 struct loop_worker {
979 struct rb_node rb_node;
980 struct work_struct work;
981 struct list_head cmd_list;
982 struct list_head idle_list;
983 struct loop_device *lo;
984 struct cgroup_subsys_state *blkcg_css;
985 unsigned long last_ran_at;
986 };
987
988 static void loop_workfn(struct work_struct *work);
989 static void loop_rootcg_workfn(struct work_struct *work);
990 static void loop_free_idle_workers(struct timer_list *timer);
991
992 #ifdef CONFIG_BLK_CGROUP
queue_on_root_worker(struct cgroup_subsys_state * css)993 static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
994 {
995 return !css || css == blkcg_root_css;
996 }
997 #else
queue_on_root_worker(struct cgroup_subsys_state * css)998 static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
999 {
1000 return !css;
1001 }
1002 #endif
1003
loop_queue_work(struct loop_device * lo,struct loop_cmd * cmd)1004 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd)
1005 {
1006 struct rb_node **node = &(lo->worker_tree.rb_node), *parent = NULL;
1007 struct loop_worker *cur_worker, *worker = NULL;
1008 struct work_struct *work;
1009 struct list_head *cmd_list;
1010
1011 spin_lock_irq(&lo->lo_work_lock);
1012
1013 if (queue_on_root_worker(cmd->blkcg_css))
1014 goto queue_work;
1015
1016 node = &lo->worker_tree.rb_node;
1017
1018 while (*node) {
1019 parent = *node;
1020 cur_worker = container_of(*node, struct loop_worker, rb_node);
1021 if (cur_worker->blkcg_css == cmd->blkcg_css) {
1022 worker = cur_worker;
1023 break;
1024 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) {
1025 node = &(*node)->rb_left;
1026 } else {
1027 node = &(*node)->rb_right;
1028 }
1029 }
1030 if (worker)
1031 goto queue_work;
1032
1033 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN);
1034 /*
1035 * In the event we cannot allocate a worker, just queue on the
1036 * rootcg worker and issue the I/O as the rootcg
1037 */
1038 if (!worker) {
1039 cmd->blkcg_css = NULL;
1040 if (cmd->memcg_css)
1041 css_put(cmd->memcg_css);
1042 cmd->memcg_css = NULL;
1043 goto queue_work;
1044 }
1045
1046 worker->blkcg_css = cmd->blkcg_css;
1047 css_get(worker->blkcg_css);
1048 INIT_WORK(&worker->work, loop_workfn);
1049 INIT_LIST_HEAD(&worker->cmd_list);
1050 INIT_LIST_HEAD(&worker->idle_list);
1051 worker->lo = lo;
1052 rb_link_node(&worker->rb_node, parent, node);
1053 rb_insert_color(&worker->rb_node, &lo->worker_tree);
1054 queue_work:
1055 if (worker) {
1056 /*
1057 * We need to remove from the idle list here while
1058 * holding the lock so that the idle timer doesn't
1059 * free the worker
1060 */
1061 if (!list_empty(&worker->idle_list))
1062 list_del_init(&worker->idle_list);
1063 work = &worker->work;
1064 cmd_list = &worker->cmd_list;
1065 } else {
1066 work = &lo->rootcg_work;
1067 cmd_list = &lo->rootcg_cmd_list;
1068 }
1069 list_add_tail(&cmd->list_entry, cmd_list);
1070 queue_work(lo->workqueue, work);
1071 spin_unlock_irq(&lo->lo_work_lock);
1072 }
1073
loop_update_rotational(struct loop_device * lo)1074 static void loop_update_rotational(struct loop_device *lo)
1075 {
1076 struct file *file = lo->lo_backing_file;
1077 struct inode *file_inode = file->f_mapping->host;
1078 struct block_device *file_bdev = file_inode->i_sb->s_bdev;
1079 struct request_queue *q = lo->lo_queue;
1080 bool nonrot = true;
1081
1082 /* not all filesystems (e.g. tmpfs) have a sb->s_bdev */
1083 if (file_bdev)
1084 nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev));
1085
1086 if (nonrot)
1087 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1088 else
1089 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1090 }
1091
1092 static int
loop_release_xfer(struct loop_device * lo)1093 loop_release_xfer(struct loop_device *lo)
1094 {
1095 int err = 0;
1096 struct loop_func_table *xfer = lo->lo_encryption;
1097
1098 if (xfer) {
1099 if (xfer->release)
1100 err = xfer->release(lo);
1101 lo->transfer = NULL;
1102 lo->lo_encryption = NULL;
1103 module_put(xfer->owner);
1104 }
1105 return err;
1106 }
1107
1108 static int
loop_init_xfer(struct loop_device * lo,struct loop_func_table * xfer,const struct loop_info64 * i)1109 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
1110 const struct loop_info64 *i)
1111 {
1112 int err = 0;
1113
1114 if (xfer) {
1115 struct module *owner = xfer->owner;
1116
1117 if (!try_module_get(owner))
1118 return -EINVAL;
1119 if (xfer->init)
1120 err = xfer->init(lo, i);
1121 if (err)
1122 module_put(owner);
1123 else
1124 lo->lo_encryption = xfer;
1125 }
1126 return err;
1127 }
1128
1129 /**
1130 * loop_set_status_from_info - configure device from loop_info
1131 * @lo: struct loop_device to configure
1132 * @info: struct loop_info64 to configure the device with
1133 *
1134 * Configures the loop device parameters according to the passed
1135 * in loop_info64 configuration.
1136 */
1137 static int
loop_set_status_from_info(struct loop_device * lo,const struct loop_info64 * info)1138 loop_set_status_from_info(struct loop_device *lo,
1139 const struct loop_info64 *info)
1140 {
1141 int err;
1142 struct loop_func_table *xfer;
1143 kuid_t uid = current_uid();
1144
1145 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1146 return -EINVAL;
1147
1148 err = loop_release_xfer(lo);
1149 if (err)
1150 return err;
1151
1152 if (info->lo_encrypt_type) {
1153 unsigned int type = info->lo_encrypt_type;
1154
1155 if (type >= MAX_LO_CRYPT)
1156 return -EINVAL;
1157 xfer = xfer_funcs[type];
1158 if (xfer == NULL)
1159 return -EINVAL;
1160 } else
1161 xfer = NULL;
1162
1163 err = loop_init_xfer(lo, xfer, info);
1164 if (err)
1165 return err;
1166
1167 /* Avoid assigning overflow values */
1168 if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX)
1169 return -EOVERFLOW;
1170
1171 lo->lo_offset = info->lo_offset;
1172 lo->lo_sizelimit = info->lo_sizelimit;
1173
1174 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1175 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1176 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1177 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1178
1179 if (!xfer)
1180 xfer = &none_funcs;
1181 lo->transfer = xfer->transfer;
1182 lo->ioctl = xfer->ioctl;
1183
1184 lo->lo_flags = info->lo_flags;
1185
1186 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1187 lo->lo_init[0] = info->lo_init[0];
1188 lo->lo_init[1] = info->lo_init[1];
1189 if (info->lo_encrypt_key_size) {
1190 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1191 info->lo_encrypt_key_size);
1192 lo->lo_key_owner = uid;
1193 }
1194
1195 return 0;
1196 }
1197
loop_configure(struct loop_device * lo,fmode_t mode,struct block_device * bdev,const struct loop_config * config)1198 static int loop_configure(struct loop_device *lo, fmode_t mode,
1199 struct block_device *bdev,
1200 const struct loop_config *config)
1201 {
1202 struct file *file = fget(config->fd);
1203 struct inode *inode;
1204 struct address_space *mapping;
1205 int error;
1206 loff_t size;
1207 bool partscan;
1208 unsigned short bsize;
1209 bool is_loop;
1210
1211 if (!file)
1212 return -EBADF;
1213 is_loop = is_loop_device(file);
1214
1215 /* This is safe, since we have a reference from open(). */
1216 __module_get(THIS_MODULE);
1217
1218 /*
1219 * If we don't hold exclusive handle for the device, upgrade to it
1220 * here to avoid changing device under exclusive owner.
1221 */
1222 if (!(mode & FMODE_EXCL)) {
1223 error = bd_prepare_to_claim(bdev, loop_configure);
1224 if (error)
1225 goto out_putf;
1226 }
1227
1228 error = loop_global_lock_killable(lo, is_loop);
1229 if (error)
1230 goto out_bdev;
1231
1232 error = -EBUSY;
1233 if (lo->lo_state != Lo_unbound)
1234 goto out_unlock;
1235
1236 error = loop_validate_file(file, bdev);
1237 if (error)
1238 goto out_unlock;
1239
1240 mapping = file->f_mapping;
1241 inode = mapping->host;
1242
1243 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) {
1244 error = -EINVAL;
1245 goto out_unlock;
1246 }
1247
1248 if (config->block_size) {
1249 error = blk_validate_block_size(config->block_size);
1250 if (error)
1251 goto out_unlock;
1252 }
1253
1254 error = loop_set_status_from_info(lo, &config->info);
1255 if (error)
1256 goto out_unlock;
1257
1258 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
1259 !file->f_op->write_iter)
1260 lo->lo_flags |= LO_FLAGS_READ_ONLY;
1261
1262 lo->workqueue = alloc_workqueue("loop%d",
1263 WQ_UNBOUND | WQ_FREEZABLE,
1264 0,
1265 lo->lo_number);
1266 if (!lo->workqueue) {
1267 error = -ENOMEM;
1268 goto out_unlock;
1269 }
1270
1271 /* suppress uevents while reconfiguring the device */
1272 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
1273
1274 disk_force_media_change(lo->lo_disk, DISK_EVENT_MEDIA_CHANGE);
1275 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0);
1276
1277 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn);
1278 INIT_LIST_HEAD(&lo->rootcg_cmd_list);
1279 INIT_LIST_HEAD(&lo->idle_worker_list);
1280 lo->worker_tree = RB_ROOT;
1281 timer_setup(&lo->timer, loop_free_idle_workers,
1282 TIMER_DEFERRABLE);
1283 lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO;
1284 lo->lo_device = bdev;
1285 lo->lo_backing_file = file;
1286 lo->old_gfp_mask = mapping_gfp_mask(mapping);
1287 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
1288
1289 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
1290 blk_queue_write_cache(lo->lo_queue, true, false);
1291
1292 if (config->block_size)
1293 bsize = config->block_size;
1294 else if ((lo->lo_backing_file->f_flags & O_DIRECT) && inode->i_sb->s_bdev)
1295 /* In case of direct I/O, match underlying block size */
1296 bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
1297 else
1298 bsize = 512;
1299
1300 blk_queue_logical_block_size(lo->lo_queue, bsize);
1301 blk_queue_physical_block_size(lo->lo_queue, bsize);
1302 blk_queue_io_min(lo->lo_queue, bsize);
1303
1304 loop_config_discard(lo);
1305 loop_update_rotational(lo);
1306 loop_update_dio(lo);
1307 loop_sysfs_init(lo);
1308
1309 size = get_loop_size(lo, file);
1310 loop_set_size(lo, size);
1311
1312 /* Order wrt reading lo_state in loop_validate_file(). */
1313 wmb();
1314
1315 lo->lo_state = Lo_bound;
1316 if (part_shift)
1317 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1318 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1319 if (partscan)
1320 lo->lo_disk->flags &= ~GENHD_FL_NO_PART;
1321
1322 /* enable and uncork uevent now that we are done */
1323 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
1324
1325 loop_global_unlock(lo, is_loop);
1326 if (partscan)
1327 loop_reread_partitions(lo);
1328
1329 if (!(mode & FMODE_EXCL))
1330 bd_abort_claiming(bdev, loop_configure);
1331
1332 return 0;
1333
1334 out_unlock:
1335 loop_global_unlock(lo, is_loop);
1336 out_bdev:
1337 if (!(mode & FMODE_EXCL))
1338 bd_abort_claiming(bdev, loop_configure);
1339 out_putf:
1340 fput(file);
1341 /* This is safe: open() is still holding a reference. */
1342 module_put(THIS_MODULE);
1343 return error;
1344 }
1345
__loop_clr_fd(struct loop_device * lo,bool release)1346 static int __loop_clr_fd(struct loop_device *lo, bool release)
1347 {
1348 struct file *filp = NULL;
1349 gfp_t gfp = lo->old_gfp_mask;
1350 struct block_device *bdev = lo->lo_device;
1351 int err = 0;
1352 bool partscan = false;
1353 int lo_number;
1354 struct loop_worker *pos, *worker;
1355
1356 /*
1357 * Flush loop_configure() and loop_change_fd(). It is acceptable for
1358 * loop_validate_file() to succeed, for actual clear operation has not
1359 * started yet.
1360 */
1361 mutex_lock(&loop_validate_mutex);
1362 mutex_unlock(&loop_validate_mutex);
1363 /*
1364 * loop_validate_file() now fails because l->lo_state != Lo_bound
1365 * became visible.
1366 */
1367
1368 mutex_lock(&lo->lo_mutex);
1369 if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) {
1370 err = -ENXIO;
1371 goto out_unlock;
1372 }
1373
1374 filp = lo->lo_backing_file;
1375 if (filp == NULL) {
1376 err = -EINVAL;
1377 goto out_unlock;
1378 }
1379
1380 if (test_bit(QUEUE_FLAG_WC, &lo->lo_queue->queue_flags))
1381 blk_queue_write_cache(lo->lo_queue, false, false);
1382
1383 /* freeze request queue during the transition */
1384 blk_mq_freeze_queue(lo->lo_queue);
1385
1386 destroy_workqueue(lo->workqueue);
1387 spin_lock_irq(&lo->lo_work_lock);
1388 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list,
1389 idle_list) {
1390 list_del(&worker->idle_list);
1391 rb_erase(&worker->rb_node, &lo->worker_tree);
1392 css_put(worker->blkcg_css);
1393 kfree(worker);
1394 }
1395 spin_unlock_irq(&lo->lo_work_lock);
1396 del_timer_sync(&lo->timer);
1397
1398 spin_lock_irq(&lo->lo_lock);
1399 lo->lo_backing_file = NULL;
1400 spin_unlock_irq(&lo->lo_lock);
1401
1402 loop_release_xfer(lo);
1403 lo->transfer = NULL;
1404 lo->ioctl = NULL;
1405 lo->lo_device = NULL;
1406 lo->lo_encryption = NULL;
1407 lo->lo_offset = 0;
1408 lo->lo_sizelimit = 0;
1409 lo->lo_encrypt_key_size = 0;
1410 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1411 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1412 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1413 blk_queue_logical_block_size(lo->lo_queue, 512);
1414 blk_queue_physical_block_size(lo->lo_queue, 512);
1415 blk_queue_io_min(lo->lo_queue, 512);
1416 if (bdev) {
1417 invalidate_bdev(bdev);
1418 bdev->bd_inode->i_mapping->wb_err = 0;
1419 }
1420 set_capacity(lo->lo_disk, 0);
1421 loop_sysfs_exit(lo);
1422 if (bdev) {
1423 /* let user-space know about this change */
1424 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1425 }
1426 mapping_set_gfp_mask(filp->f_mapping, gfp);
1427 /* This is safe: open() is still holding a reference. */
1428 module_put(THIS_MODULE);
1429 blk_mq_unfreeze_queue(lo->lo_queue);
1430
1431 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev;
1432 lo_number = lo->lo_number;
1433 disk_force_media_change(lo->lo_disk, DISK_EVENT_MEDIA_CHANGE);
1434 out_unlock:
1435 mutex_unlock(&lo->lo_mutex);
1436 if (partscan) {
1437 /*
1438 * open_mutex has been held already in release path, so don't
1439 * acquire it if this function is called in such case.
1440 *
1441 * If the reread partition isn't from release path, lo_refcnt
1442 * must be at least one and it can only become zero when the
1443 * current holder is released.
1444 */
1445 if (!release)
1446 mutex_lock(&lo->lo_disk->open_mutex);
1447 err = bdev_disk_changed(lo->lo_disk, false);
1448 if (!release)
1449 mutex_unlock(&lo->lo_disk->open_mutex);
1450 if (err)
1451 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1452 __func__, lo_number, err);
1453 /* Device is gone, no point in returning error */
1454 err = 0;
1455 }
1456
1457 /*
1458 * lo->lo_state is set to Lo_unbound here after above partscan has
1459 * finished.
1460 *
1461 * There cannot be anybody else entering __loop_clr_fd() as
1462 * lo->lo_backing_file is already cleared and Lo_rundown state
1463 * protects us from all the other places trying to change the 'lo'
1464 * device.
1465 */
1466 mutex_lock(&lo->lo_mutex);
1467 lo->lo_flags = 0;
1468 if (!part_shift)
1469 lo->lo_disk->flags |= GENHD_FL_NO_PART;
1470 lo->lo_state = Lo_unbound;
1471 mutex_unlock(&lo->lo_mutex);
1472
1473 /*
1474 * Need not hold lo_mutex to fput backing file. Calling fput holding
1475 * lo_mutex triggers a circular lock dependency possibility warning as
1476 * fput can take open_mutex which is usually taken before lo_mutex.
1477 */
1478 if (filp)
1479 fput(filp);
1480 return err;
1481 }
1482
loop_clr_fd(struct loop_device * lo)1483 static int loop_clr_fd(struct loop_device *lo)
1484 {
1485 int err;
1486
1487 err = mutex_lock_killable(&lo->lo_mutex);
1488 if (err)
1489 return err;
1490 if (lo->lo_state != Lo_bound) {
1491 mutex_unlock(&lo->lo_mutex);
1492 return -ENXIO;
1493 }
1494 /*
1495 * If we've explicitly asked to tear down the loop device,
1496 * and it has an elevated reference count, set it for auto-teardown when
1497 * the last reference goes away. This stops $!~#$@ udev from
1498 * preventing teardown because it decided that it needs to run blkid on
1499 * the loopback device whenever they appear. xfstests is notorious for
1500 * failing tests because blkid via udev races with a losetup
1501 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1502 * command to fail with EBUSY.
1503 */
1504 if (atomic_read(&lo->lo_refcnt) > 1) {
1505 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1506 mutex_unlock(&lo->lo_mutex);
1507 return 0;
1508 }
1509 lo->lo_state = Lo_rundown;
1510 mutex_unlock(&lo->lo_mutex);
1511
1512 return __loop_clr_fd(lo, false);
1513 }
1514
1515 static int
loop_set_status(struct loop_device * lo,const struct loop_info64 * info)1516 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1517 {
1518 int err;
1519 kuid_t uid = current_uid();
1520 int prev_lo_flags;
1521 bool partscan = false;
1522 bool size_changed = false;
1523
1524 err = mutex_lock_killable(&lo->lo_mutex);
1525 if (err)
1526 return err;
1527 if (lo->lo_encrypt_key_size &&
1528 !uid_eq(lo->lo_key_owner, uid) &&
1529 !capable(CAP_SYS_ADMIN)) {
1530 err = -EPERM;
1531 goto out_unlock;
1532 }
1533 if (lo->lo_state != Lo_bound) {
1534 err = -ENXIO;
1535 goto out_unlock;
1536 }
1537
1538 if (lo->lo_offset != info->lo_offset ||
1539 lo->lo_sizelimit != info->lo_sizelimit) {
1540 size_changed = true;
1541 sync_blockdev(lo->lo_device);
1542 invalidate_bdev(lo->lo_device);
1543 }
1544
1545 /* I/O need to be drained during transfer transition */
1546 blk_mq_freeze_queue(lo->lo_queue);
1547
1548 if (size_changed && lo->lo_device->bd_inode->i_mapping->nrpages) {
1549 /* If any pages were dirtied after invalidate_bdev(), try again */
1550 err = -EAGAIN;
1551 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1552 __func__, lo->lo_number, lo->lo_file_name,
1553 lo->lo_device->bd_inode->i_mapping->nrpages);
1554 goto out_unfreeze;
1555 }
1556
1557 prev_lo_flags = lo->lo_flags;
1558
1559 err = loop_set_status_from_info(lo, info);
1560 if (err)
1561 goto out_unfreeze;
1562
1563 /* Mask out flags that can't be set using LOOP_SET_STATUS. */
1564 lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS;
1565 /* For those flags, use the previous values instead */
1566 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS;
1567 /* For flags that can't be cleared, use previous values too */
1568 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS;
1569
1570 if (size_changed) {
1571 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit,
1572 lo->lo_backing_file);
1573 loop_set_size(lo, new_size);
1574 }
1575
1576 loop_config_discard(lo);
1577
1578 /* update dio if lo_offset or transfer is changed */
1579 __loop_update_dio(lo, lo->use_dio);
1580
1581 out_unfreeze:
1582 blk_mq_unfreeze_queue(lo->lo_queue);
1583
1584 if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) &&
1585 !(prev_lo_flags & LO_FLAGS_PARTSCAN)) {
1586 lo->lo_disk->flags &= ~GENHD_FL_NO_PART;
1587 partscan = true;
1588 }
1589 out_unlock:
1590 mutex_unlock(&lo->lo_mutex);
1591 if (partscan)
1592 loop_reread_partitions(lo);
1593
1594 return err;
1595 }
1596
1597 static int
loop_get_status(struct loop_device * lo,struct loop_info64 * info)1598 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1599 {
1600 struct path path;
1601 struct kstat stat;
1602 int ret;
1603
1604 ret = mutex_lock_killable(&lo->lo_mutex);
1605 if (ret)
1606 return ret;
1607 if (lo->lo_state != Lo_bound) {
1608 mutex_unlock(&lo->lo_mutex);
1609 return -ENXIO;
1610 }
1611
1612 memset(info, 0, sizeof(*info));
1613 info->lo_number = lo->lo_number;
1614 info->lo_offset = lo->lo_offset;
1615 info->lo_sizelimit = lo->lo_sizelimit;
1616 info->lo_flags = lo->lo_flags;
1617 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1618 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1619 info->lo_encrypt_type =
1620 lo->lo_encryption ? lo->lo_encryption->number : 0;
1621 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1622 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1623 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1624 lo->lo_encrypt_key_size);
1625 }
1626
1627 /* Drop lo_mutex while we call into the filesystem. */
1628 path = lo->lo_backing_file->f_path;
1629 path_get(&path);
1630 mutex_unlock(&lo->lo_mutex);
1631 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1632 if (!ret) {
1633 info->lo_device = huge_encode_dev(stat.dev);
1634 info->lo_inode = stat.ino;
1635 info->lo_rdevice = huge_encode_dev(stat.rdev);
1636 }
1637 path_put(&path);
1638 return ret;
1639 }
1640
1641 static void
loop_info64_from_old(const struct loop_info * info,struct loop_info64 * info64)1642 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1643 {
1644 memset(info64, 0, sizeof(*info64));
1645 info64->lo_number = info->lo_number;
1646 info64->lo_device = info->lo_device;
1647 info64->lo_inode = info->lo_inode;
1648 info64->lo_rdevice = info->lo_rdevice;
1649 info64->lo_offset = info->lo_offset;
1650 info64->lo_sizelimit = 0;
1651 info64->lo_encrypt_type = info->lo_encrypt_type;
1652 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1653 info64->lo_flags = info->lo_flags;
1654 info64->lo_init[0] = info->lo_init[0];
1655 info64->lo_init[1] = info->lo_init[1];
1656 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1657 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1658 else
1659 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1660 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1661 }
1662
1663 static int
loop_info64_to_old(const struct loop_info64 * info64,struct loop_info * info)1664 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1665 {
1666 memset(info, 0, sizeof(*info));
1667 info->lo_number = info64->lo_number;
1668 info->lo_device = info64->lo_device;
1669 info->lo_inode = info64->lo_inode;
1670 info->lo_rdevice = info64->lo_rdevice;
1671 info->lo_offset = info64->lo_offset;
1672 info->lo_encrypt_type = info64->lo_encrypt_type;
1673 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1674 info->lo_flags = info64->lo_flags;
1675 info->lo_init[0] = info64->lo_init[0];
1676 info->lo_init[1] = info64->lo_init[1];
1677 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1678 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1679 else
1680 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1681 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1682
1683 /* error in case values were truncated */
1684 if (info->lo_device != info64->lo_device ||
1685 info->lo_rdevice != info64->lo_rdevice ||
1686 info->lo_inode != info64->lo_inode ||
1687 info->lo_offset != info64->lo_offset)
1688 return -EOVERFLOW;
1689
1690 return 0;
1691 }
1692
1693 static int
loop_set_status_old(struct loop_device * lo,const struct loop_info __user * arg)1694 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1695 {
1696 struct loop_info info;
1697 struct loop_info64 info64;
1698
1699 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1700 return -EFAULT;
1701 loop_info64_from_old(&info, &info64);
1702 return loop_set_status(lo, &info64);
1703 }
1704
1705 static int
loop_set_status64(struct loop_device * lo,const struct loop_info64 __user * arg)1706 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1707 {
1708 struct loop_info64 info64;
1709
1710 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1711 return -EFAULT;
1712 return loop_set_status(lo, &info64);
1713 }
1714
1715 static int
loop_get_status_old(struct loop_device * lo,struct loop_info __user * arg)1716 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1717 struct loop_info info;
1718 struct loop_info64 info64;
1719 int err;
1720
1721 if (!arg)
1722 return -EINVAL;
1723 err = loop_get_status(lo, &info64);
1724 if (!err)
1725 err = loop_info64_to_old(&info64, &info);
1726 if (!err && copy_to_user(arg, &info, sizeof(info)))
1727 err = -EFAULT;
1728
1729 return err;
1730 }
1731
1732 static int
loop_get_status64(struct loop_device * lo,struct loop_info64 __user * arg)1733 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1734 struct loop_info64 info64;
1735 int err;
1736
1737 if (!arg)
1738 return -EINVAL;
1739 err = loop_get_status(lo, &info64);
1740 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1741 err = -EFAULT;
1742
1743 return err;
1744 }
1745
loop_set_capacity(struct loop_device * lo)1746 static int loop_set_capacity(struct loop_device *lo)
1747 {
1748 loff_t size;
1749
1750 if (unlikely(lo->lo_state != Lo_bound))
1751 return -ENXIO;
1752
1753 size = get_loop_size(lo, lo->lo_backing_file);
1754 loop_set_size(lo, size);
1755
1756 return 0;
1757 }
1758
loop_set_dio(struct loop_device * lo,unsigned long arg)1759 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1760 {
1761 int error = -ENXIO;
1762 if (lo->lo_state != Lo_bound)
1763 goto out;
1764
1765 __loop_update_dio(lo, !!arg);
1766 if (lo->use_dio == !!arg)
1767 return 0;
1768 error = -EINVAL;
1769 out:
1770 return error;
1771 }
1772
loop_set_block_size(struct loop_device * lo,unsigned long arg)1773 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1774 {
1775 int err = 0;
1776
1777 if (lo->lo_state != Lo_bound)
1778 return -ENXIO;
1779
1780 err = blk_validate_block_size(arg);
1781 if (err)
1782 return err;
1783
1784 if (lo->lo_queue->limits.logical_block_size == arg)
1785 return 0;
1786
1787 sync_blockdev(lo->lo_device);
1788 invalidate_bdev(lo->lo_device);
1789
1790 blk_mq_freeze_queue(lo->lo_queue);
1791
1792 /* invalidate_bdev should have truncated all the pages */
1793 if (lo->lo_device->bd_inode->i_mapping->nrpages) {
1794 err = -EAGAIN;
1795 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1796 __func__, lo->lo_number, lo->lo_file_name,
1797 lo->lo_device->bd_inode->i_mapping->nrpages);
1798 goto out_unfreeze;
1799 }
1800
1801 blk_queue_logical_block_size(lo->lo_queue, arg);
1802 blk_queue_physical_block_size(lo->lo_queue, arg);
1803 blk_queue_io_min(lo->lo_queue, arg);
1804 loop_update_dio(lo);
1805 out_unfreeze:
1806 blk_mq_unfreeze_queue(lo->lo_queue);
1807
1808 return err;
1809 }
1810
lo_simple_ioctl(struct loop_device * lo,unsigned int cmd,unsigned long arg)1811 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1812 unsigned long arg)
1813 {
1814 int err;
1815
1816 err = mutex_lock_killable(&lo->lo_mutex);
1817 if (err)
1818 return err;
1819 switch (cmd) {
1820 case LOOP_SET_CAPACITY:
1821 err = loop_set_capacity(lo);
1822 break;
1823 case LOOP_SET_DIRECT_IO:
1824 err = loop_set_dio(lo, arg);
1825 break;
1826 case LOOP_SET_BLOCK_SIZE:
1827 err = loop_set_block_size(lo, arg);
1828 break;
1829 default:
1830 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1831 }
1832 mutex_unlock(&lo->lo_mutex);
1833 return err;
1834 }
1835
lo_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1836 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1837 unsigned int cmd, unsigned long arg)
1838 {
1839 struct loop_device *lo = bdev->bd_disk->private_data;
1840 void __user *argp = (void __user *) arg;
1841 int err;
1842
1843 switch (cmd) {
1844 case LOOP_SET_FD: {
1845 /*
1846 * Legacy case - pass in a zeroed out struct loop_config with
1847 * only the file descriptor set , which corresponds with the
1848 * default parameters we'd have used otherwise.
1849 */
1850 struct loop_config config;
1851
1852 memset(&config, 0, sizeof(config));
1853 config.fd = arg;
1854
1855 return loop_configure(lo, mode, bdev, &config);
1856 }
1857 case LOOP_CONFIGURE: {
1858 struct loop_config config;
1859
1860 if (copy_from_user(&config, argp, sizeof(config)))
1861 return -EFAULT;
1862
1863 return loop_configure(lo, mode, bdev, &config);
1864 }
1865 case LOOP_CHANGE_FD:
1866 return loop_change_fd(lo, bdev, arg);
1867 case LOOP_CLR_FD:
1868 return loop_clr_fd(lo);
1869 case LOOP_SET_STATUS:
1870 err = -EPERM;
1871 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1872 err = loop_set_status_old(lo, argp);
1873 }
1874 break;
1875 case LOOP_GET_STATUS:
1876 return loop_get_status_old(lo, argp);
1877 case LOOP_SET_STATUS64:
1878 err = -EPERM;
1879 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1880 err = loop_set_status64(lo, argp);
1881 }
1882 break;
1883 case LOOP_GET_STATUS64:
1884 return loop_get_status64(lo, argp);
1885 case LOOP_SET_CAPACITY:
1886 case LOOP_SET_DIRECT_IO:
1887 case LOOP_SET_BLOCK_SIZE:
1888 if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN))
1889 return -EPERM;
1890 fallthrough;
1891 default:
1892 err = lo_simple_ioctl(lo, cmd, arg);
1893 break;
1894 }
1895
1896 return err;
1897 }
1898
1899 #ifdef CONFIG_COMPAT
1900 struct compat_loop_info {
1901 compat_int_t lo_number; /* ioctl r/o */
1902 compat_dev_t lo_device; /* ioctl r/o */
1903 compat_ulong_t lo_inode; /* ioctl r/o */
1904 compat_dev_t lo_rdevice; /* ioctl r/o */
1905 compat_int_t lo_offset;
1906 compat_int_t lo_encrypt_type;
1907 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1908 compat_int_t lo_flags; /* ioctl r/o */
1909 char lo_name[LO_NAME_SIZE];
1910 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1911 compat_ulong_t lo_init[2];
1912 char reserved[4];
1913 };
1914
1915 /*
1916 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1917 * - noinlined to reduce stack space usage in main part of driver
1918 */
1919 static noinline int
loop_info64_from_compat(const struct compat_loop_info __user * arg,struct loop_info64 * info64)1920 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1921 struct loop_info64 *info64)
1922 {
1923 struct compat_loop_info info;
1924
1925 if (copy_from_user(&info, arg, sizeof(info)))
1926 return -EFAULT;
1927
1928 memset(info64, 0, sizeof(*info64));
1929 info64->lo_number = info.lo_number;
1930 info64->lo_device = info.lo_device;
1931 info64->lo_inode = info.lo_inode;
1932 info64->lo_rdevice = info.lo_rdevice;
1933 info64->lo_offset = info.lo_offset;
1934 info64->lo_sizelimit = 0;
1935 info64->lo_encrypt_type = info.lo_encrypt_type;
1936 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1937 info64->lo_flags = info.lo_flags;
1938 info64->lo_init[0] = info.lo_init[0];
1939 info64->lo_init[1] = info.lo_init[1];
1940 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1941 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1942 else
1943 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1944 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1945 return 0;
1946 }
1947
1948 /*
1949 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1950 * - noinlined to reduce stack space usage in main part of driver
1951 */
1952 static noinline int
loop_info64_to_compat(const struct loop_info64 * info64,struct compat_loop_info __user * arg)1953 loop_info64_to_compat(const struct loop_info64 *info64,
1954 struct compat_loop_info __user *arg)
1955 {
1956 struct compat_loop_info info;
1957
1958 memset(&info, 0, sizeof(info));
1959 info.lo_number = info64->lo_number;
1960 info.lo_device = info64->lo_device;
1961 info.lo_inode = info64->lo_inode;
1962 info.lo_rdevice = info64->lo_rdevice;
1963 info.lo_offset = info64->lo_offset;
1964 info.lo_encrypt_type = info64->lo_encrypt_type;
1965 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1966 info.lo_flags = info64->lo_flags;
1967 info.lo_init[0] = info64->lo_init[0];
1968 info.lo_init[1] = info64->lo_init[1];
1969 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1970 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1971 else
1972 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1973 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1974
1975 /* error in case values were truncated */
1976 if (info.lo_device != info64->lo_device ||
1977 info.lo_rdevice != info64->lo_rdevice ||
1978 info.lo_inode != info64->lo_inode ||
1979 info.lo_offset != info64->lo_offset ||
1980 info.lo_init[0] != info64->lo_init[0] ||
1981 info.lo_init[1] != info64->lo_init[1])
1982 return -EOVERFLOW;
1983
1984 if (copy_to_user(arg, &info, sizeof(info)))
1985 return -EFAULT;
1986 return 0;
1987 }
1988
1989 static int
loop_set_status_compat(struct loop_device * lo,const struct compat_loop_info __user * arg)1990 loop_set_status_compat(struct loop_device *lo,
1991 const struct compat_loop_info __user *arg)
1992 {
1993 struct loop_info64 info64;
1994 int ret;
1995
1996 ret = loop_info64_from_compat(arg, &info64);
1997 if (ret < 0)
1998 return ret;
1999 return loop_set_status(lo, &info64);
2000 }
2001
2002 static int
loop_get_status_compat(struct loop_device * lo,struct compat_loop_info __user * arg)2003 loop_get_status_compat(struct loop_device *lo,
2004 struct compat_loop_info __user *arg)
2005 {
2006 struct loop_info64 info64;
2007 int err;
2008
2009 if (!arg)
2010 return -EINVAL;
2011 err = loop_get_status(lo, &info64);
2012 if (!err)
2013 err = loop_info64_to_compat(&info64, arg);
2014 return err;
2015 }
2016
lo_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)2017 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
2018 unsigned int cmd, unsigned long arg)
2019 {
2020 struct loop_device *lo = bdev->bd_disk->private_data;
2021 int err;
2022
2023 switch(cmd) {
2024 case LOOP_SET_STATUS:
2025 err = loop_set_status_compat(lo,
2026 (const struct compat_loop_info __user *)arg);
2027 break;
2028 case LOOP_GET_STATUS:
2029 err = loop_get_status_compat(lo,
2030 (struct compat_loop_info __user *)arg);
2031 break;
2032 case LOOP_SET_CAPACITY:
2033 case LOOP_CLR_FD:
2034 case LOOP_GET_STATUS64:
2035 case LOOP_SET_STATUS64:
2036 case LOOP_CONFIGURE:
2037 arg = (unsigned long) compat_ptr(arg);
2038 fallthrough;
2039 case LOOP_SET_FD:
2040 case LOOP_CHANGE_FD:
2041 case LOOP_SET_BLOCK_SIZE:
2042 case LOOP_SET_DIRECT_IO:
2043 err = lo_ioctl(bdev, mode, cmd, arg);
2044 break;
2045 default:
2046 err = -ENOIOCTLCMD;
2047 break;
2048 }
2049 return err;
2050 }
2051 #endif
2052
lo_open(struct block_device * bdev,fmode_t mode)2053 static int lo_open(struct block_device *bdev, fmode_t mode)
2054 {
2055 struct loop_device *lo = bdev->bd_disk->private_data;
2056 int err;
2057
2058 err = mutex_lock_killable(&lo->lo_mutex);
2059 if (err)
2060 return err;
2061 if (lo->lo_state == Lo_deleting)
2062 err = -ENXIO;
2063 else
2064 atomic_inc(&lo->lo_refcnt);
2065 mutex_unlock(&lo->lo_mutex);
2066 return err;
2067 }
2068
lo_release(struct gendisk * disk,fmode_t mode)2069 static void lo_release(struct gendisk *disk, fmode_t mode)
2070 {
2071 struct loop_device *lo = disk->private_data;
2072
2073 mutex_lock(&lo->lo_mutex);
2074 if (atomic_dec_return(&lo->lo_refcnt))
2075 goto out_unlock;
2076
2077 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
2078 if (lo->lo_state != Lo_bound)
2079 goto out_unlock;
2080 lo->lo_state = Lo_rundown;
2081 mutex_unlock(&lo->lo_mutex);
2082 /*
2083 * In autoclear mode, stop the loop thread
2084 * and remove configuration after last close.
2085 */
2086 __loop_clr_fd(lo, true);
2087 return;
2088 } else if (lo->lo_state == Lo_bound) {
2089 /*
2090 * Otherwise keep thread (if running) and config,
2091 * but flush possible ongoing bios in thread.
2092 */
2093 blk_mq_freeze_queue(lo->lo_queue);
2094 blk_mq_unfreeze_queue(lo->lo_queue);
2095 }
2096
2097 out_unlock:
2098 mutex_unlock(&lo->lo_mutex);
2099 }
2100
2101 static const struct block_device_operations lo_fops = {
2102 .owner = THIS_MODULE,
2103 .open = lo_open,
2104 .release = lo_release,
2105 .ioctl = lo_ioctl,
2106 #ifdef CONFIG_COMPAT
2107 .compat_ioctl = lo_compat_ioctl,
2108 #endif
2109 };
2110
2111 /*
2112 * And now the modules code and kernel interface.
2113 */
2114
2115 /*
2116 * If max_loop is specified, create that many devices upfront.
2117 * This also becomes a hard limit. If max_loop is not specified,
2118 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2119 * init time. Loop devices can be requested on-demand with the
2120 * /dev/loop-control interface, or be instantiated by accessing
2121 * a 'dead' device node.
2122 */
2123 static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2124 module_param(max_loop, int, 0444);
2125 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
2126 module_param(max_part, int, 0444);
2127 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
2128 MODULE_LICENSE("GPL");
2129 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
2130 MODULE_IMPORT_NS(VFS_internal_I_am_really_a_filesystem_and_am_NOT_a_driver);
2131
loop_register_transfer(struct loop_func_table * funcs)2132 int loop_register_transfer(struct loop_func_table *funcs)
2133 {
2134 unsigned int n = funcs->number;
2135
2136 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
2137 return -EINVAL;
2138 xfer_funcs[n] = funcs;
2139 return 0;
2140 }
2141
loop_unregister_transfer(int number)2142 int loop_unregister_transfer(int number)
2143 {
2144 unsigned int n = number;
2145 struct loop_func_table *xfer;
2146
2147 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
2148 return -EINVAL;
2149 /*
2150 * This function is called from only cleanup_cryptoloop().
2151 * Given that each loop device that has a transfer enabled holds a
2152 * reference to the module implementing it we should never get here
2153 * with a transfer that is set (unless forced module unloading is
2154 * requested). Thus, check module's refcount and warn if this is
2155 * not a clean unloading.
2156 */
2157 #ifdef CONFIG_MODULE_UNLOAD
2158 if (xfer->owner && module_refcount(xfer->owner) != -1)
2159 pr_err("Danger! Unregistering an in use transfer function.\n");
2160 #endif
2161
2162 xfer_funcs[n] = NULL;
2163 return 0;
2164 }
2165
2166 EXPORT_SYMBOL(loop_register_transfer);
2167 EXPORT_SYMBOL(loop_unregister_transfer);
2168
loop_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2169 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
2170 const struct blk_mq_queue_data *bd)
2171 {
2172 struct request *rq = bd->rq;
2173 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
2174 struct loop_device *lo = rq->q->queuedata;
2175
2176 blk_mq_start_request(rq);
2177
2178 if (lo->lo_state != Lo_bound)
2179 return BLK_STS_IOERR;
2180
2181 switch (req_op(rq)) {
2182 case REQ_OP_FLUSH:
2183 case REQ_OP_DISCARD:
2184 case REQ_OP_WRITE_ZEROES:
2185 cmd->use_aio = false;
2186 break;
2187 default:
2188 cmd->use_aio = lo->use_dio;
2189 break;
2190 }
2191
2192 /* always use the first bio's css */
2193 cmd->blkcg_css = NULL;
2194 cmd->memcg_css = NULL;
2195 #ifdef CONFIG_BLK_CGROUP
2196 if (rq->bio && rq->bio->bi_blkg) {
2197 cmd->blkcg_css = &bio_blkcg(rq->bio)->css;
2198 #ifdef CONFIG_MEMCG
2199 cmd->memcg_css =
2200 cgroup_get_e_css(cmd->blkcg_css->cgroup,
2201 &memory_cgrp_subsys);
2202 #endif
2203 }
2204 #endif
2205 loop_queue_work(lo, cmd);
2206
2207 return BLK_STS_OK;
2208 }
2209
loop_handle_cmd(struct loop_cmd * cmd)2210 static void loop_handle_cmd(struct loop_cmd *cmd)
2211 {
2212 struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css;
2213 struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css;
2214 struct request *rq = blk_mq_rq_from_pdu(cmd);
2215 const bool write = op_is_write(req_op(rq));
2216 struct loop_device *lo = rq->q->queuedata;
2217 int ret = 0;
2218 struct mem_cgroup *old_memcg = NULL;
2219 const bool use_aio = cmd->use_aio;
2220
2221 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
2222 ret = -EIO;
2223 goto failed;
2224 }
2225
2226 if (cmd_blkcg_css)
2227 kthread_associate_blkcg(cmd_blkcg_css);
2228 if (cmd_memcg_css)
2229 old_memcg = set_active_memcg(
2230 mem_cgroup_from_css(cmd_memcg_css));
2231
2232 /*
2233 * do_req_filebacked() may call blk_mq_complete_request() synchronously
2234 * or asynchronously if using aio. Hence, do not touch 'cmd' after
2235 * do_req_filebacked() has returned unless we are sure that 'cmd' has
2236 * not yet been completed.
2237 */
2238 ret = do_req_filebacked(lo, rq);
2239
2240 if (cmd_blkcg_css)
2241 kthread_associate_blkcg(NULL);
2242
2243 if (cmd_memcg_css) {
2244 set_active_memcg(old_memcg);
2245 css_put(cmd_memcg_css);
2246 }
2247 failed:
2248 /* complete non-aio request */
2249 if (!use_aio || ret) {
2250 if (ret == -EOPNOTSUPP)
2251 cmd->ret = ret;
2252 else
2253 cmd->ret = ret ? -EIO : 0;
2254 if (likely(!blk_should_fake_timeout(rq->q)))
2255 blk_mq_complete_request(rq);
2256 }
2257 }
2258
loop_set_timer(struct loop_device * lo)2259 static void loop_set_timer(struct loop_device *lo)
2260 {
2261 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT);
2262 }
2263
loop_process_work(struct loop_worker * worker,struct list_head * cmd_list,struct loop_device * lo)2264 static void loop_process_work(struct loop_worker *worker,
2265 struct list_head *cmd_list, struct loop_device *lo)
2266 {
2267 int orig_flags = current->flags;
2268 struct loop_cmd *cmd;
2269
2270 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO;
2271 spin_lock_irq(&lo->lo_work_lock);
2272 while (!list_empty(cmd_list)) {
2273 cmd = container_of(
2274 cmd_list->next, struct loop_cmd, list_entry);
2275 list_del(cmd_list->next);
2276 spin_unlock_irq(&lo->lo_work_lock);
2277
2278 loop_handle_cmd(cmd);
2279 cond_resched();
2280
2281 spin_lock_irq(&lo->lo_work_lock);
2282 }
2283
2284 /*
2285 * We only add to the idle list if there are no pending cmds
2286 * *and* the worker will not run again which ensures that it
2287 * is safe to free any worker on the idle list
2288 */
2289 if (worker && !work_pending(&worker->work)) {
2290 worker->last_ran_at = jiffies;
2291 list_add_tail(&worker->idle_list, &lo->idle_worker_list);
2292 loop_set_timer(lo);
2293 }
2294 spin_unlock_irq(&lo->lo_work_lock);
2295 current->flags = orig_flags;
2296 }
2297
loop_workfn(struct work_struct * work)2298 static void loop_workfn(struct work_struct *work)
2299 {
2300 struct loop_worker *worker =
2301 container_of(work, struct loop_worker, work);
2302 loop_process_work(worker, &worker->cmd_list, worker->lo);
2303 }
2304
loop_rootcg_workfn(struct work_struct * work)2305 static void loop_rootcg_workfn(struct work_struct *work)
2306 {
2307 struct loop_device *lo =
2308 container_of(work, struct loop_device, rootcg_work);
2309 loop_process_work(NULL, &lo->rootcg_cmd_list, lo);
2310 }
2311
loop_free_idle_workers(struct timer_list * timer)2312 static void loop_free_idle_workers(struct timer_list *timer)
2313 {
2314 struct loop_device *lo = container_of(timer, struct loop_device, timer);
2315 struct loop_worker *pos, *worker;
2316
2317 spin_lock_irq(&lo->lo_work_lock);
2318 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list,
2319 idle_list) {
2320 if (time_is_after_jiffies(worker->last_ran_at +
2321 LOOP_IDLE_WORKER_TIMEOUT))
2322 break;
2323 list_del(&worker->idle_list);
2324 rb_erase(&worker->rb_node, &lo->worker_tree);
2325 css_put(worker->blkcg_css);
2326 kfree(worker);
2327 }
2328 if (!list_empty(&lo->idle_worker_list))
2329 loop_set_timer(lo);
2330 spin_unlock_irq(&lo->lo_work_lock);
2331 }
2332
2333 static const struct blk_mq_ops loop_mq_ops = {
2334 .queue_rq = loop_queue_rq,
2335 .complete = lo_complete_rq,
2336 };
2337
loop_add(int i)2338 static int loop_add(int i)
2339 {
2340 struct loop_device *lo;
2341 struct gendisk *disk;
2342 int err;
2343
2344 err = -ENOMEM;
2345 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
2346 if (!lo)
2347 goto out;
2348 lo->lo_state = Lo_unbound;
2349
2350 err = mutex_lock_killable(&loop_ctl_mutex);
2351 if (err)
2352 goto out_free_dev;
2353
2354 /* allocate id, if @id >= 0, we're requesting that specific id */
2355 if (i >= 0) {
2356 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
2357 if (err == -ENOSPC)
2358 err = -EEXIST;
2359 } else {
2360 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
2361 }
2362 mutex_unlock(&loop_ctl_mutex);
2363 if (err < 0)
2364 goto out_free_dev;
2365 i = err;
2366
2367 err = -ENOMEM;
2368 lo->tag_set.ops = &loop_mq_ops;
2369 lo->tag_set.nr_hw_queues = 1;
2370 lo->tag_set.queue_depth = 128;
2371 lo->tag_set.numa_node = NUMA_NO_NODE;
2372 lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2373 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING |
2374 BLK_MQ_F_NO_SCHED_BY_DEFAULT;
2375 lo->tag_set.driver_data = lo;
2376
2377 err = blk_mq_alloc_tag_set(&lo->tag_set);
2378 if (err)
2379 goto out_free_idr;
2380
2381 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, lo);
2382 if (IS_ERR(disk)) {
2383 err = PTR_ERR(disk);
2384 goto out_cleanup_tags;
2385 }
2386 lo->lo_queue = lo->lo_disk->queue;
2387
2388 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
2389
2390 /*
2391 * By default, we do buffer IO, so it doesn't make sense to enable
2392 * merge because the I/O submitted to backing file is handled page by
2393 * page. For directio mode, merge does help to dispatch bigger request
2394 * to underlayer disk. We will enable merge once directio is enabled.
2395 */
2396 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
2397
2398 /*
2399 * Disable partition scanning by default. The in-kernel partition
2400 * scanning can be requested individually per-device during its
2401 * setup. Userspace can always add and remove partitions from all
2402 * devices. The needed partition minors are allocated from the
2403 * extended minor space, the main loop device numbers will continue
2404 * to match the loop minors, regardless of the number of partitions
2405 * used.
2406 *
2407 * If max_part is given, partition scanning is globally enabled for
2408 * all loop devices. The minors for the main loop devices will be
2409 * multiples of max_part.
2410 *
2411 * Note: Global-for-all-devices, set-only-at-init, read-only module
2412 * parameteters like 'max_loop' and 'max_part' make things needlessly
2413 * complicated, are too static, inflexible and may surprise
2414 * userspace tools. Parameters like this in general should be avoided.
2415 */
2416 if (!part_shift)
2417 disk->flags |= GENHD_FL_NO_PART;
2418 disk->flags |= GENHD_FL_EXT_DEVT;
2419 atomic_set(&lo->lo_refcnt, 0);
2420 mutex_init(&lo->lo_mutex);
2421 lo->lo_number = i;
2422 spin_lock_init(&lo->lo_lock);
2423 spin_lock_init(&lo->lo_work_lock);
2424 disk->major = LOOP_MAJOR;
2425 disk->first_minor = i << part_shift;
2426 disk->minors = 1 << part_shift;
2427 disk->fops = &lo_fops;
2428 disk->private_data = lo;
2429 disk->queue = lo->lo_queue;
2430 disk->events = DISK_EVENT_MEDIA_CHANGE;
2431 disk->event_flags = DISK_EVENT_FLAG_UEVENT;
2432 sprintf(disk->disk_name, "loop%d", i);
2433 /* Make this loop device reachable from pathname. */
2434 add_disk(disk);
2435 /* Show this loop device. */
2436 mutex_lock(&loop_ctl_mutex);
2437 lo->idr_visible = true;
2438 mutex_unlock(&loop_ctl_mutex);
2439 return i;
2440
2441 out_cleanup_tags:
2442 blk_mq_free_tag_set(&lo->tag_set);
2443 out_free_idr:
2444 mutex_lock(&loop_ctl_mutex);
2445 idr_remove(&loop_index_idr, i);
2446 mutex_unlock(&loop_ctl_mutex);
2447 out_free_dev:
2448 kfree(lo);
2449 out:
2450 return err;
2451 }
2452
loop_remove(struct loop_device * lo)2453 static void loop_remove(struct loop_device *lo)
2454 {
2455 /* Make this loop device unreachable from pathname. */
2456 del_gendisk(lo->lo_disk);
2457 blk_cleanup_disk(lo->lo_disk);
2458 blk_mq_free_tag_set(&lo->tag_set);
2459 mutex_lock(&loop_ctl_mutex);
2460 idr_remove(&loop_index_idr, lo->lo_number);
2461 mutex_unlock(&loop_ctl_mutex);
2462 /* There is no route which can find this loop device. */
2463 mutex_destroy(&lo->lo_mutex);
2464 kfree(lo);
2465 }
2466
loop_probe(dev_t dev)2467 static void loop_probe(dev_t dev)
2468 {
2469 int idx = MINOR(dev) >> part_shift;
2470
2471 if (max_loop && idx >= max_loop)
2472 return;
2473 loop_add(idx);
2474 }
2475
loop_control_remove(int idx)2476 static int loop_control_remove(int idx)
2477 {
2478 struct loop_device *lo;
2479 int ret;
2480
2481 if (idx < 0) {
2482 pr_warn_once("deleting an unspecified loop device is not supported.\n");
2483 return -EINVAL;
2484 }
2485
2486 /* Hide this loop device for serialization. */
2487 ret = mutex_lock_killable(&loop_ctl_mutex);
2488 if (ret)
2489 return ret;
2490 lo = idr_find(&loop_index_idr, idx);
2491 if (!lo || !lo->idr_visible)
2492 ret = -ENODEV;
2493 else
2494 lo->idr_visible = false;
2495 mutex_unlock(&loop_ctl_mutex);
2496 if (ret)
2497 return ret;
2498
2499 /* Check whether this loop device can be removed. */
2500 ret = mutex_lock_killable(&lo->lo_mutex);
2501 if (ret)
2502 goto mark_visible;
2503 if (lo->lo_state != Lo_unbound ||
2504 atomic_read(&lo->lo_refcnt) > 0) {
2505 mutex_unlock(&lo->lo_mutex);
2506 ret = -EBUSY;
2507 goto mark_visible;
2508 }
2509 /* Mark this loop device no longer open()-able. */
2510 lo->lo_state = Lo_deleting;
2511 mutex_unlock(&lo->lo_mutex);
2512
2513 loop_remove(lo);
2514 return 0;
2515
2516 mark_visible:
2517 /* Show this loop device again. */
2518 mutex_lock(&loop_ctl_mutex);
2519 lo->idr_visible = true;
2520 mutex_unlock(&loop_ctl_mutex);
2521 return ret;
2522 }
2523
loop_control_get_free(int idx)2524 static int loop_control_get_free(int idx)
2525 {
2526 struct loop_device *lo;
2527 int id, ret;
2528
2529 ret = mutex_lock_killable(&loop_ctl_mutex);
2530 if (ret)
2531 return ret;
2532 idr_for_each_entry(&loop_index_idr, lo, id) {
2533 /* Hitting a race results in creating a new loop device which is harmless. */
2534 if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound)
2535 goto found;
2536 }
2537 mutex_unlock(&loop_ctl_mutex);
2538 return loop_add(-1);
2539 found:
2540 mutex_unlock(&loop_ctl_mutex);
2541 return id;
2542 }
2543
loop_control_ioctl(struct file * file,unsigned int cmd,unsigned long parm)2544 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2545 unsigned long parm)
2546 {
2547 switch (cmd) {
2548 case LOOP_CTL_ADD:
2549 return loop_add(parm);
2550 case LOOP_CTL_REMOVE:
2551 return loop_control_remove(parm);
2552 case LOOP_CTL_GET_FREE:
2553 return loop_control_get_free(parm);
2554 default:
2555 return -ENOSYS;
2556 }
2557 }
2558
2559 static const struct file_operations loop_ctl_fops = {
2560 .open = nonseekable_open,
2561 .unlocked_ioctl = loop_control_ioctl,
2562 .compat_ioctl = loop_control_ioctl,
2563 .owner = THIS_MODULE,
2564 .llseek = noop_llseek,
2565 };
2566
2567 static struct miscdevice loop_misc = {
2568 .minor = LOOP_CTRL_MINOR,
2569 .name = "loop-control",
2570 .fops = &loop_ctl_fops,
2571 };
2572
2573 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2574 MODULE_ALIAS("devname:loop-control");
2575
loop_init(void)2576 static int __init loop_init(void)
2577 {
2578 int i;
2579 int err;
2580
2581 part_shift = 0;
2582 if (max_part > 0) {
2583 part_shift = fls(max_part);
2584
2585 /*
2586 * Adjust max_part according to part_shift as it is exported
2587 * to user space so that user can decide correct minor number
2588 * if [s]he want to create more devices.
2589 *
2590 * Note that -1 is required because partition 0 is reserved
2591 * for the whole disk.
2592 */
2593 max_part = (1UL << part_shift) - 1;
2594 }
2595
2596 if ((1UL << part_shift) > DISK_MAX_PARTS) {
2597 err = -EINVAL;
2598 goto err_out;
2599 }
2600
2601 if (max_loop > 1UL << (MINORBITS - part_shift)) {
2602 err = -EINVAL;
2603 goto err_out;
2604 }
2605
2606 err = misc_register(&loop_misc);
2607 if (err < 0)
2608 goto err_out;
2609
2610
2611 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) {
2612 err = -EIO;
2613 goto misc_out;
2614 }
2615
2616 /* pre-create number of devices given by config or max_loop */
2617 for (i = 0; i < max_loop; i++)
2618 loop_add(i);
2619
2620 printk(KERN_INFO "loop: module loaded\n");
2621 return 0;
2622
2623 misc_out:
2624 misc_deregister(&loop_misc);
2625 err_out:
2626 return err;
2627 }
2628
loop_exit(void)2629 static void __exit loop_exit(void)
2630 {
2631 struct loop_device *lo;
2632 int id;
2633
2634 unregister_blkdev(LOOP_MAJOR, "loop");
2635 misc_deregister(&loop_misc);
2636
2637 /*
2638 * There is no need to use loop_ctl_mutex here, for nobody else can
2639 * access loop_index_idr when this module is unloading (unless forced
2640 * module unloading is requested). If this is not a clean unloading,
2641 * we have no means to avoid kernel crash.
2642 */
2643 idr_for_each_entry(&loop_index_idr, lo, id)
2644 loop_remove(lo);
2645
2646 idr_destroy(&loop_index_idr);
2647 }
2648
2649 module_init(loop_init);
2650 module_exit(loop_exit);
2651
2652 #ifndef MODULE
max_loop_setup(char * str)2653 static int __init max_loop_setup(char *str)
2654 {
2655 max_loop = simple_strtol(str, NULL, 0);
2656 return 1;
2657 }
2658
2659 __setup("max_loop=", max_loop_setup);
2660 #endif
2661