• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 1994 Linus Torvalds
4  *
5  * Pentium III FXSR, SSE support
6  * General FPU state handling cleanups
7  *	Gareth Hughes <gareth@valinux.com>, May 2000
8  * x86-64 work by Andi Kleen 2002
9  */
10 
11 #ifndef _ASM_X86_FPU_INTERNAL_H
12 #define _ASM_X86_FPU_INTERNAL_H
13 
14 #include <linux/compat.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/mm.h>
18 
19 #include <asm/user.h>
20 #include <asm/fpu/api.h>
21 #include <asm/fpu/xstate.h>
22 #include <asm/fpu/xcr.h>
23 #include <asm/cpufeature.h>
24 #include <asm/trace/fpu.h>
25 
26 /*
27  * High level FPU state handling functions:
28  */
29 extern int  fpu__restore_sig(void __user *buf, int ia32_frame);
30 extern void fpu__drop(struct fpu *fpu);
31 extern void fpu__clear_user_states(struct fpu *fpu);
32 extern int  fpu__exception_code(struct fpu *fpu, int trap_nr);
33 
34 extern void fpu_sync_fpstate(struct fpu *fpu);
35 
36 /* Clone and exit operations */
37 extern int  fpu_clone(struct task_struct *dst);
38 extern void fpu_flush_thread(void);
39 
40 /*
41  * Boot time FPU initialization functions:
42  */
43 extern void fpu__init_cpu(void);
44 extern void fpu__init_system_xstate(void);
45 extern void fpu__init_cpu_xstate(void);
46 extern void fpu__init_system(void);
47 extern void fpu__init_check_bugs(void);
48 extern void fpu__resume_cpu(void);
49 
50 /*
51  * Debugging facility:
52  */
53 #ifdef CONFIG_X86_DEBUG_FPU
54 # define WARN_ON_FPU(x) WARN_ON_ONCE(x)
55 #else
56 # define WARN_ON_FPU(x) ({ (void)(x); 0; })
57 #endif
58 
59 /*
60  * FPU related CPU feature flag helper routines:
61  */
use_xsaveopt(void)62 static __always_inline __pure bool use_xsaveopt(void)
63 {
64 	return static_cpu_has(X86_FEATURE_XSAVEOPT);
65 }
66 
use_xsave(void)67 static __always_inline __pure bool use_xsave(void)
68 {
69 	return static_cpu_has(X86_FEATURE_XSAVE);
70 }
71 
use_fxsr(void)72 static __always_inline __pure bool use_fxsr(void)
73 {
74 	return static_cpu_has(X86_FEATURE_FXSR);
75 }
76 
77 /*
78  * fpstate handling functions:
79  */
80 
81 extern union fpregs_state init_fpstate;
82 
83 extern void fpstate_init(union fpregs_state *state);
84 #ifdef CONFIG_MATH_EMULATION
85 extern void fpstate_init_soft(struct swregs_state *soft);
86 #else
fpstate_init_soft(struct swregs_state * soft)87 static inline void fpstate_init_soft(struct swregs_state *soft) {}
88 #endif
89 extern void save_fpregs_to_fpstate(struct fpu *fpu);
90 
91 /* Returns 0 or the negated trap number, which results in -EFAULT for #PF */
92 #define user_insn(insn, output, input...)				\
93 ({									\
94 	int err;							\
95 									\
96 	might_fault();							\
97 									\
98 	asm volatile(ASM_STAC "\n"					\
99 		     "1: " #insn "\n"					\
100 		     "2: " ASM_CLAC "\n"				\
101 		     ".section .fixup,\"ax\"\n"				\
102 		     "3:  negl %%eax\n"					\
103 		     "    jmp  2b\n"					\
104 		     ".previous\n"					\
105 		     _ASM_EXTABLE_FAULT(1b, 3b)				\
106 		     : [err] "=a" (err), output				\
107 		     : "0"(0), input);					\
108 	err;								\
109 })
110 
111 #define kernel_insn_err(insn, output, input...)				\
112 ({									\
113 	int err;							\
114 	asm volatile("1:" #insn "\n\t"					\
115 		     "2:\n"						\
116 		     ".section .fixup,\"ax\"\n"				\
117 		     "3:  movl $-1,%[err]\n"				\
118 		     "    jmp  2b\n"					\
119 		     ".previous\n"					\
120 		     _ASM_EXTABLE(1b, 3b)				\
121 		     : [err] "=r" (err), output				\
122 		     : "0"(0), input);					\
123 	err;								\
124 })
125 
126 #define kernel_insn(insn, output, input...)				\
127 	asm volatile("1:" #insn "\n\t"					\
128 		     "2:\n"						\
129 		     _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_FPU_RESTORE)	\
130 		     : output : input)
131 
fnsave_to_user_sigframe(struct fregs_state __user * fx)132 static inline int fnsave_to_user_sigframe(struct fregs_state __user *fx)
133 {
134 	return user_insn(fnsave %[fx]; fwait,  [fx] "=m" (*fx), "m" (*fx));
135 }
136 
fxsave_to_user_sigframe(struct fxregs_state __user * fx)137 static inline int fxsave_to_user_sigframe(struct fxregs_state __user *fx)
138 {
139 	if (IS_ENABLED(CONFIG_X86_32))
140 		return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
141 	else
142 		return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
143 
144 }
145 
fxrstor(struct fxregs_state * fx)146 static inline void fxrstor(struct fxregs_state *fx)
147 {
148 	if (IS_ENABLED(CONFIG_X86_32))
149 		kernel_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
150 	else
151 		kernel_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
152 }
153 
fxrstor_safe(struct fxregs_state * fx)154 static inline int fxrstor_safe(struct fxregs_state *fx)
155 {
156 	if (IS_ENABLED(CONFIG_X86_32))
157 		return kernel_insn_err(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
158 	else
159 		return kernel_insn_err(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
160 }
161 
fxrstor_from_user_sigframe(struct fxregs_state __user * fx)162 static inline int fxrstor_from_user_sigframe(struct fxregs_state __user *fx)
163 {
164 	if (IS_ENABLED(CONFIG_X86_32))
165 		return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
166 	else
167 		return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
168 }
169 
frstor(struct fregs_state * fx)170 static inline void frstor(struct fregs_state *fx)
171 {
172 	kernel_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
173 }
174 
frstor_safe(struct fregs_state * fx)175 static inline int frstor_safe(struct fregs_state *fx)
176 {
177 	return kernel_insn_err(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
178 }
179 
frstor_from_user_sigframe(struct fregs_state __user * fx)180 static inline int frstor_from_user_sigframe(struct fregs_state __user *fx)
181 {
182 	return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
183 }
184 
fxsave(struct fxregs_state * fx)185 static inline void fxsave(struct fxregs_state *fx)
186 {
187 	if (IS_ENABLED(CONFIG_X86_32))
188 		asm volatile( "fxsave %[fx]" : [fx] "=m" (*fx));
189 	else
190 		asm volatile("fxsaveq %[fx]" : [fx] "=m" (*fx));
191 }
192 
193 /* These macros all use (%edi)/(%rdi) as the single memory argument. */
194 #define XSAVE		".byte " REX_PREFIX "0x0f,0xae,0x27"
195 #define XSAVEOPT	".byte " REX_PREFIX "0x0f,0xae,0x37"
196 #define XSAVES		".byte " REX_PREFIX "0x0f,0xc7,0x2f"
197 #define XRSTOR		".byte " REX_PREFIX "0x0f,0xae,0x2f"
198 #define XRSTORS		".byte " REX_PREFIX "0x0f,0xc7,0x1f"
199 
200 /*
201  * After this @err contains 0 on success or the negated trap number when
202  * the operation raises an exception. For faults this results in -EFAULT.
203  */
204 #define XSTATE_OP(op, st, lmask, hmask, err)				\
205 	asm volatile("1:" op "\n\t"					\
206 		     "xor %[err], %[err]\n"				\
207 		     "2:\n\t"						\
208 		     ".pushsection .fixup,\"ax\"\n\t"			\
209 		     "3: negl %%eax\n\t"				\
210 		     "jmp 2b\n\t"					\
211 		     ".popsection\n\t"					\
212 		     _ASM_EXTABLE_FAULT(1b, 3b)				\
213 		     : [err] "=a" (err)					\
214 		     : "D" (st), "m" (*st), "a" (lmask), "d" (hmask)	\
215 		     : "memory")
216 
217 /*
218  * If XSAVES is enabled, it replaces XSAVEOPT because it supports a compact
219  * format and supervisor states in addition to modified optimization in
220  * XSAVEOPT.
221  *
222  * Otherwise, if XSAVEOPT is enabled, XSAVEOPT replaces XSAVE because XSAVEOPT
223  * supports modified optimization which is not supported by XSAVE.
224  *
225  * We use XSAVE as a fallback.
226  *
227  * The 661 label is defined in the ALTERNATIVE* macros as the address of the
228  * original instruction which gets replaced. We need to use it here as the
229  * address of the instruction where we might get an exception at.
230  */
231 #define XSTATE_XSAVE(st, lmask, hmask, err)				\
232 	asm volatile(ALTERNATIVE_2(XSAVE,				\
233 				   XSAVEOPT, X86_FEATURE_XSAVEOPT,	\
234 				   XSAVES,   X86_FEATURE_XSAVES)	\
235 		     "\n"						\
236 		     "xor %[err], %[err]\n"				\
237 		     "3:\n"						\
238 		     ".pushsection .fixup,\"ax\"\n"			\
239 		     "4: movl $-2, %[err]\n"				\
240 		     "jmp 3b\n"						\
241 		     ".popsection\n"					\
242 		     _ASM_EXTABLE(661b, 4b)				\
243 		     : [err] "=r" (err)					\
244 		     : "D" (st), "m" (*st), "a" (lmask), "d" (hmask)	\
245 		     : "memory")
246 
247 /*
248  * Use XRSTORS to restore context if it is enabled. XRSTORS supports compact
249  * XSAVE area format.
250  */
251 #define XSTATE_XRESTORE(st, lmask, hmask)				\
252 	asm volatile(ALTERNATIVE(XRSTOR,				\
253 				 XRSTORS, X86_FEATURE_XSAVES)		\
254 		     "\n"						\
255 		     "3:\n"						\
256 		     _ASM_EXTABLE_TYPE(661b, 3b, EX_TYPE_FPU_RESTORE)	\
257 		     :							\
258 		     : "D" (st), "m" (*st), "a" (lmask), "d" (hmask)	\
259 		     : "memory")
260 
261 /*
262  * This function is called only during boot time when x86 caps are not set
263  * up and alternative can not be used yet.
264  */
os_xrstor_booting(struct xregs_state * xstate)265 static inline void os_xrstor_booting(struct xregs_state *xstate)
266 {
267 	u64 mask = xfeatures_mask_fpstate();
268 	u32 lmask = mask;
269 	u32 hmask = mask >> 32;
270 	int err;
271 
272 	WARN_ON(system_state != SYSTEM_BOOTING);
273 
274 	if (boot_cpu_has(X86_FEATURE_XSAVES))
275 		XSTATE_OP(XRSTORS, xstate, lmask, hmask, err);
276 	else
277 		XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
278 
279 	/*
280 	 * We should never fault when copying from a kernel buffer, and the FPU
281 	 * state we set at boot time should be valid.
282 	 */
283 	WARN_ON_FPU(err);
284 }
285 
286 /*
287  * Save processor xstate to xsave area.
288  *
289  * Uses either XSAVE or XSAVEOPT or XSAVES depending on the CPU features
290  * and command line options. The choice is permanent until the next reboot.
291  */
os_xsave(struct xregs_state * xstate)292 static inline void os_xsave(struct xregs_state *xstate)
293 {
294 	u64 mask = xfeatures_mask_all;
295 	u32 lmask = mask;
296 	u32 hmask = mask >> 32;
297 	int err;
298 
299 	WARN_ON_FPU(!alternatives_patched);
300 
301 	XSTATE_XSAVE(xstate, lmask, hmask, err);
302 
303 	/* We should never fault when copying to a kernel buffer: */
304 	WARN_ON_FPU(err);
305 }
306 
307 /*
308  * Restore processor xstate from xsave area.
309  *
310  * Uses XRSTORS when XSAVES is used, XRSTOR otherwise.
311  */
os_xrstor(struct xregs_state * xstate,u64 mask)312 static inline void os_xrstor(struct xregs_state *xstate, u64 mask)
313 {
314 	u32 lmask = mask;
315 	u32 hmask = mask >> 32;
316 
317 	XSTATE_XRESTORE(xstate, lmask, hmask);
318 }
319 
320 /*
321  * Save xstate to user space xsave area.
322  *
323  * We don't use modified optimization because xrstor/xrstors might track
324  * a different application.
325  *
326  * We don't use compacted format xsave area for
327  * backward compatibility for old applications which don't understand
328  * compacted format of xsave area.
329  */
xsave_to_user_sigframe(struct xregs_state __user * buf)330 static inline int xsave_to_user_sigframe(struct xregs_state __user *buf)
331 {
332 	/*
333 	 * Include the features which are not xsaved/rstored by the kernel
334 	 * internally, e.g. PKRU. That's user space ABI and also required
335 	 * to allow the signal handler to modify PKRU.
336 	 */
337 	u64 mask = xfeatures_mask_uabi();
338 	u32 lmask = mask;
339 	u32 hmask = mask >> 32;
340 	int err;
341 
342 	/*
343 	 * Clear the xsave header first, so that reserved fields are
344 	 * initialized to zero.
345 	 */
346 	err = __clear_user(&buf->header, sizeof(buf->header));
347 	if (unlikely(err))
348 		return -EFAULT;
349 
350 	stac();
351 	XSTATE_OP(XSAVE, buf, lmask, hmask, err);
352 	clac();
353 
354 	return err;
355 }
356 
357 /*
358  * Restore xstate from user space xsave area.
359  */
xrstor_from_user_sigframe(struct xregs_state __user * buf,u64 mask)360 static inline int xrstor_from_user_sigframe(struct xregs_state __user *buf, u64 mask)
361 {
362 	struct xregs_state *xstate = ((__force struct xregs_state *)buf);
363 	u32 lmask = mask;
364 	u32 hmask = mask >> 32;
365 	int err;
366 
367 	stac();
368 	XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
369 	clac();
370 
371 	return err;
372 }
373 
374 /*
375  * Restore xstate from kernel space xsave area, return an error code instead of
376  * an exception.
377  */
os_xrstor_safe(struct xregs_state * xstate,u64 mask)378 static inline int os_xrstor_safe(struct xregs_state *xstate, u64 mask)
379 {
380 	u32 lmask = mask;
381 	u32 hmask = mask >> 32;
382 	int err;
383 
384 	if (cpu_feature_enabled(X86_FEATURE_XSAVES))
385 		XSTATE_OP(XRSTORS, xstate, lmask, hmask, err);
386 	else
387 		XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
388 
389 	return err;
390 }
391 
392 extern void __restore_fpregs_from_fpstate(union fpregs_state *fpstate, u64 mask);
393 
restore_fpregs_from_fpstate(union fpregs_state * fpstate)394 static inline void restore_fpregs_from_fpstate(union fpregs_state *fpstate)
395 {
396 	__restore_fpregs_from_fpstate(fpstate, xfeatures_mask_fpstate());
397 }
398 
399 extern int copy_fpstate_to_sigframe(void __user *buf, void __user *fp, int size);
400 
401 /*
402  * FPU context switch related helper methods:
403  */
404 
405 DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
406 
407 /*
408  * The in-register FPU state for an FPU context on a CPU is assumed to be
409  * valid if the fpu->last_cpu matches the CPU, and the fpu_fpregs_owner_ctx
410  * matches the FPU.
411  *
412  * If the FPU register state is valid, the kernel can skip restoring the
413  * FPU state from memory.
414  *
415  * Any code that clobbers the FPU registers or updates the in-memory
416  * FPU state for a task MUST let the rest of the kernel know that the
417  * FPU registers are no longer valid for this task.
418  *
419  * Invalidate a resource you control: CPU if using the CPU for something else
420  * (with preemption disabled), FPU for the current task, or a task that
421  * is prevented from running by the current task.
422  */
__cpu_invalidate_fpregs_state(void)423 static inline void __cpu_invalidate_fpregs_state(void)
424 {
425 	__this_cpu_write(fpu_fpregs_owner_ctx, NULL);
426 }
427 
__fpu_invalidate_fpregs_state(struct fpu * fpu)428 static inline void __fpu_invalidate_fpregs_state(struct fpu *fpu)
429 {
430 	fpu->last_cpu = -1;
431 }
432 
fpregs_state_valid(struct fpu * fpu,unsigned int cpu)433 static inline int fpregs_state_valid(struct fpu *fpu, unsigned int cpu)
434 {
435 	return fpu == this_cpu_read(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu;
436 }
437 
438 /*
439  * These generally need preemption protection to work,
440  * do try to avoid using these on their own:
441  */
fpregs_deactivate(struct fpu * fpu)442 static inline void fpregs_deactivate(struct fpu *fpu)
443 {
444 	this_cpu_write(fpu_fpregs_owner_ctx, NULL);
445 	trace_x86_fpu_regs_deactivated(fpu);
446 }
447 
fpregs_activate(struct fpu * fpu)448 static inline void fpregs_activate(struct fpu *fpu)
449 {
450 	this_cpu_write(fpu_fpregs_owner_ctx, fpu);
451 	trace_x86_fpu_regs_activated(fpu);
452 }
453 
454 /* Internal helper for switch_fpu_return() and signal frame setup */
fpregs_restore_userregs(void)455 static inline void fpregs_restore_userregs(void)
456 {
457 	struct fpu *fpu = &current->thread.fpu;
458 	int cpu = smp_processor_id();
459 
460 	if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
461 		return;
462 
463 	if (!fpregs_state_valid(fpu, cpu)) {
464 		u64 mask;
465 
466 		/*
467 		 * This restores _all_ xstate which has not been
468 		 * established yet.
469 		 *
470 		 * If PKRU is enabled, then the PKRU value is already
471 		 * correct because it was either set in switch_to() or in
472 		 * flush_thread(). So it is excluded because it might be
473 		 * not up to date in current->thread.fpu.xsave state.
474 		 */
475 		mask = xfeatures_mask_restore_user() |
476 			xfeatures_mask_supervisor();
477 		__restore_fpregs_from_fpstate(&fpu->state, mask);
478 
479 		fpregs_activate(fpu);
480 		fpu->last_cpu = cpu;
481 	}
482 	clear_thread_flag(TIF_NEED_FPU_LOAD);
483 }
484 
485 /*
486  * FPU state switching for scheduling.
487  *
488  * This is a two-stage process:
489  *
490  *  - switch_fpu_prepare() saves the old state.
491  *    This is done within the context of the old process.
492  *
493  *  - switch_fpu_finish() sets TIF_NEED_FPU_LOAD; the floating point state
494  *    will get loaded on return to userspace, or when the kernel needs it.
495  *
496  * If TIF_NEED_FPU_LOAD is cleared then the CPU's FPU registers
497  * are saved in the current thread's FPU register state.
498  *
499  * If TIF_NEED_FPU_LOAD is set then CPU's FPU registers may not
500  * hold current()'s FPU registers. It is required to load the
501  * registers before returning to userland or using the content
502  * otherwise.
503  *
504  * The FPU context is only stored/restored for a user task and
505  * PF_KTHREAD is used to distinguish between kernel and user threads.
506  */
switch_fpu_prepare(struct fpu * old_fpu,int cpu)507 static inline void switch_fpu_prepare(struct fpu *old_fpu, int cpu)
508 {
509 	if (static_cpu_has(X86_FEATURE_FPU) && !(current->flags & PF_KTHREAD)) {
510 		save_fpregs_to_fpstate(old_fpu);
511 		/*
512 		 * The save operation preserved register state, so the
513 		 * fpu_fpregs_owner_ctx is still @old_fpu. Store the
514 		 * current CPU number in @old_fpu, so the next return
515 		 * to user space can avoid the FPU register restore
516 		 * when is returns on the same CPU and still owns the
517 		 * context.
518 		 */
519 		old_fpu->last_cpu = cpu;
520 
521 		trace_x86_fpu_regs_deactivated(old_fpu);
522 	}
523 }
524 
525 /*
526  * Misc helper functions:
527  */
528 
529 /*
530  * Delay loading of the complete FPU state until the return to userland.
531  * PKRU is handled separately.
532  */
switch_fpu_finish(struct fpu * new_fpu)533 static inline void switch_fpu_finish(struct fpu *new_fpu)
534 {
535 	if (cpu_feature_enabled(X86_FEATURE_FPU))
536 		set_thread_flag(TIF_NEED_FPU_LOAD);
537 }
538 
539 #endif /* _ASM_X86_FPU_INTERNAL_H */
540