• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * FP/SIMD context switching and fault handling
4  *
5  * Copyright (C) 2012 ARM Ltd.
6  * Author: Catalin Marinas <catalin.marinas@arm.com>
7  */
8 
9 #include <linux/bitmap.h>
10 #include <linux/bitops.h>
11 #include <linux/bottom_half.h>
12 #include <linux/bug.h>
13 #include <linux/cache.h>
14 #include <linux/compat.h>
15 #include <linux/compiler.h>
16 #include <linux/cpu.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/kernel.h>
19 #include <linux/linkage.h>
20 #include <linux/irqflags.h>
21 #include <linux/init.h>
22 #include <linux/percpu.h>
23 #include <linux/prctl.h>
24 #include <linux/preempt.h>
25 #include <linux/ptrace.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sched/task_stack.h>
28 #include <linux/signal.h>
29 #include <linux/slab.h>
30 #include <linux/stddef.h>
31 #include <linux/sysctl.h>
32 #include <linux/swab.h>
33 
34 #include <asm/esr.h>
35 #include <asm/exception.h>
36 #include <asm/fpsimd.h>
37 #include <asm/cpufeature.h>
38 #include <asm/cputype.h>
39 #include <asm/neon.h>
40 #include <asm/processor.h>
41 #include <asm/simd.h>
42 #include <asm/sigcontext.h>
43 #include <asm/sysreg.h>
44 #include <asm/traps.h>
45 #include <asm/virt.h>
46 
47 #define FPEXC_IOF	(1 << 0)
48 #define FPEXC_DZF	(1 << 1)
49 #define FPEXC_OFF	(1 << 2)
50 #define FPEXC_UFF	(1 << 3)
51 #define FPEXC_IXF	(1 << 4)
52 #define FPEXC_IDF	(1 << 7)
53 
54 /*
55  * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
56  *
57  * In order to reduce the number of times the FPSIMD state is needlessly saved
58  * and restored, we need to keep track of two things:
59  * (a) for each task, we need to remember which CPU was the last one to have
60  *     the task's FPSIMD state loaded into its FPSIMD registers;
61  * (b) for each CPU, we need to remember which task's userland FPSIMD state has
62  *     been loaded into its FPSIMD registers most recently, or whether it has
63  *     been used to perform kernel mode NEON in the meantime.
64  *
65  * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
66  * the id of the current CPU every time the state is loaded onto a CPU. For (b),
67  * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
68  * address of the userland FPSIMD state of the task that was loaded onto the CPU
69  * the most recently, or NULL if kernel mode NEON has been performed after that.
70  *
71  * With this in place, we no longer have to restore the next FPSIMD state right
72  * when switching between tasks. Instead, we can defer this check to userland
73  * resume, at which time we verify whether the CPU's fpsimd_last_state and the
74  * task's fpsimd_cpu are still mutually in sync. If this is the case, we
75  * can omit the FPSIMD restore.
76  *
77  * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
78  * indicate whether or not the userland FPSIMD state of the current task is
79  * present in the registers. The flag is set unless the FPSIMD registers of this
80  * CPU currently contain the most recent userland FPSIMD state of the current
81  * task. If the task is behaving as a VMM, then this is will be managed by
82  * KVM which will clear it to indicate that the vcpu FPSIMD state is currently
83  * loaded on the CPU, allowing the state to be saved if a FPSIMD-aware
84  * softirq kicks in. Upon vcpu_put(), KVM will save the vcpu FP state and
85  * flag the register state as invalid.
86  *
87  * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
88  * save the task's FPSIMD context back to task_struct from softirq context.
89  * To prevent this from racing with the manipulation of the task's FPSIMD state
90  * from task context and thereby corrupting the state, it is necessary to
91  * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
92  * flag with {, __}get_cpu_fpsimd_context(). This will still allow softirqs to
93  * run but prevent them to use FPSIMD.
94  *
95  * For a certain task, the sequence may look something like this:
96  * - the task gets scheduled in; if both the task's fpsimd_cpu field
97  *   contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
98  *   variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
99  *   cleared, otherwise it is set;
100  *
101  * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
102  *   userland FPSIMD state is copied from memory to the registers, the task's
103  *   fpsimd_cpu field is set to the id of the current CPU, the current
104  *   CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
105  *   TIF_FOREIGN_FPSTATE flag is cleared;
106  *
107  * - the task executes an ordinary syscall; upon return to userland, the
108  *   TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
109  *   restored;
110  *
111  * - the task executes a syscall which executes some NEON instructions; this is
112  *   preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
113  *   register contents to memory, clears the fpsimd_last_state per-cpu variable
114  *   and sets the TIF_FOREIGN_FPSTATE flag;
115  *
116  * - the task gets preempted after kernel_neon_end() is called; as we have not
117  *   returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
118  *   whatever is in the FPSIMD registers is not saved to memory, but discarded.
119  */
120 struct fpsimd_last_state_struct {
121 	struct user_fpsimd_state *st;
122 	void *sve_state;
123 	unsigned int sve_vl;
124 };
125 
126 static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state);
127 
128 /* Default VL for tasks that don't set it explicitly: */
129 static int __sve_default_vl = -1;
130 
get_sve_default_vl(void)131 static int get_sve_default_vl(void)
132 {
133 	return READ_ONCE(__sve_default_vl);
134 }
135 
136 #ifdef CONFIG_ARM64_SVE
137 
set_sve_default_vl(int val)138 static void set_sve_default_vl(int val)
139 {
140 	WRITE_ONCE(__sve_default_vl, val);
141 }
142 
143 /* Maximum supported vector length across all CPUs (initially poisoned) */
144 int __ro_after_init sve_max_vl = SVE_VL_MIN;
145 int __ro_after_init sve_max_virtualisable_vl = SVE_VL_MIN;
146 
147 /*
148  * Set of available vector lengths,
149  * where length vq encoded as bit __vq_to_bit(vq):
150  */
151 __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
152 /* Set of vector lengths present on at least one cpu: */
153 static __ro_after_init DECLARE_BITMAP(sve_vq_partial_map, SVE_VQ_MAX);
154 
155 static void __percpu *efi_sve_state;
156 
157 #else /* ! CONFIG_ARM64_SVE */
158 
159 /* Dummy declaration for code that will be optimised out: */
160 extern __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
161 extern __ro_after_init DECLARE_BITMAP(sve_vq_partial_map, SVE_VQ_MAX);
162 extern void __percpu *efi_sve_state;
163 
164 #endif /* ! CONFIG_ARM64_SVE */
165 
166 DEFINE_PER_CPU(bool, fpsimd_context_busy);
167 EXPORT_PER_CPU_SYMBOL(fpsimd_context_busy);
168 
169 static void fpsimd_bind_task_to_cpu(void);
170 
__get_cpu_fpsimd_context(void)171 static void __get_cpu_fpsimd_context(void)
172 {
173 	bool busy = __this_cpu_xchg(fpsimd_context_busy, true);
174 
175 	WARN_ON(busy);
176 }
177 
178 /*
179  * Claim ownership of the CPU FPSIMD context for use by the calling context.
180  *
181  * The caller may freely manipulate the FPSIMD context metadata until
182  * put_cpu_fpsimd_context() is called.
183  *
184  * The double-underscore version must only be called if you know the task
185  * can't be preempted.
186  */
get_cpu_fpsimd_context(void)187 static void get_cpu_fpsimd_context(void)
188 {
189 	local_bh_disable();
190 	__get_cpu_fpsimd_context();
191 }
192 
__put_cpu_fpsimd_context(void)193 static void __put_cpu_fpsimd_context(void)
194 {
195 	bool busy = __this_cpu_xchg(fpsimd_context_busy, false);
196 
197 	WARN_ON(!busy); /* No matching get_cpu_fpsimd_context()? */
198 }
199 
200 /*
201  * Release the CPU FPSIMD context.
202  *
203  * Must be called from a context in which get_cpu_fpsimd_context() was
204  * previously called, with no call to put_cpu_fpsimd_context() in the
205  * meantime.
206  */
put_cpu_fpsimd_context(void)207 static void put_cpu_fpsimd_context(void)
208 {
209 	__put_cpu_fpsimd_context();
210 	local_bh_enable();
211 }
212 
have_cpu_fpsimd_context(void)213 static bool have_cpu_fpsimd_context(void)
214 {
215 	return !preemptible() && __this_cpu_read(fpsimd_context_busy);
216 }
217 
218 /*
219  * Call __sve_free() directly only if you know task can't be scheduled
220  * or preempted.
221  */
__sve_free(struct task_struct * task)222 static void __sve_free(struct task_struct *task)
223 {
224 	kfree(task->thread.sve_state);
225 	task->thread.sve_state = NULL;
226 }
227 
sve_free(struct task_struct * task)228 static void sve_free(struct task_struct *task)
229 {
230 	WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
231 
232 	__sve_free(task);
233 }
234 
235 /*
236  * TIF_SVE controls whether a task can use SVE without trapping while
237  * in userspace, and also the way a task's FPSIMD/SVE state is stored
238  * in thread_struct.
239  *
240  * The kernel uses this flag to track whether a user task is actively
241  * using SVE, and therefore whether full SVE register state needs to
242  * be tracked.  If not, the cheaper FPSIMD context handling code can
243  * be used instead of the more costly SVE equivalents.
244  *
245  *  * TIF_SVE set:
246  *
247  *    The task can execute SVE instructions while in userspace without
248  *    trapping to the kernel.
249  *
250  *    When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the
251  *    corresponding Zn), P0-P15 and FFR are encoded in in
252  *    task->thread.sve_state, formatted appropriately for vector
253  *    length task->thread.sve_vl.
254  *
255  *    task->thread.sve_state must point to a valid buffer at least
256  *    sve_state_size(task) bytes in size.
257  *
258  *    During any syscall, the kernel may optionally clear TIF_SVE and
259  *    discard the vector state except for the FPSIMD subset.
260  *
261  *  * TIF_SVE clear:
262  *
263  *    An attempt by the user task to execute an SVE instruction causes
264  *    do_sve_acc() to be called, which does some preparation and then
265  *    sets TIF_SVE.
266  *
267  *    When stored, FPSIMD registers V0-V31 are encoded in
268  *    task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
269  *    logically zero but not stored anywhere; P0-P15 and FFR are not
270  *    stored and have unspecified values from userspace's point of
271  *    view.  For hygiene purposes, the kernel zeroes them on next use,
272  *    but userspace is discouraged from relying on this.
273  *
274  *    task->thread.sve_state does not need to be non-NULL, valid or any
275  *    particular size: it must not be dereferenced.
276  *
277  *  * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
278  *    irrespective of whether TIF_SVE is clear or set, since these are
279  *    not vector length dependent.
280  */
281 
282 /*
283  * Update current's FPSIMD/SVE registers from thread_struct.
284  *
285  * This function should be called only when the FPSIMD/SVE state in
286  * thread_struct is known to be up to date, when preparing to enter
287  * userspace.
288  */
task_fpsimd_load(void)289 static void task_fpsimd_load(void)
290 {
291 	WARN_ON(!system_supports_fpsimd());
292 	WARN_ON(!have_cpu_fpsimd_context());
293 
294 	if (IS_ENABLED(CONFIG_ARM64_SVE) && test_thread_flag(TIF_SVE))
295 		sve_load_state(sve_pffr(&current->thread),
296 			       &current->thread.uw.fpsimd_state.fpsr,
297 			       sve_vq_from_vl(current->thread.sve_vl) - 1);
298 	else
299 		fpsimd_load_state(&current->thread.uw.fpsimd_state);
300 }
301 
302 /*
303  * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
304  * date with respect to the CPU registers.
305  */
fpsimd_save(void)306 static void fpsimd_save(void)
307 {
308 	struct fpsimd_last_state_struct const *last =
309 		this_cpu_ptr(&fpsimd_last_state);
310 	/* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
311 
312 	WARN_ON(!system_supports_fpsimd());
313 	WARN_ON(!have_cpu_fpsimd_context());
314 
315 	if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
316 		if (IS_ENABLED(CONFIG_ARM64_SVE) &&
317 		    test_thread_flag(TIF_SVE)) {
318 			if (WARN_ON(sve_get_vl() != last->sve_vl)) {
319 				/*
320 				 * Can't save the user regs, so current would
321 				 * re-enter user with corrupt state.
322 				 * There's no way to recover, so kill it:
323 				 */
324 				force_signal_inject(SIGKILL, SI_KERNEL, 0, 0);
325 				return;
326 			}
327 
328 			sve_save_state((char *)last->sve_state +
329 						sve_ffr_offset(last->sve_vl),
330 				       &last->st->fpsr);
331 		} else
332 			fpsimd_save_state(last->st);
333 	}
334 }
335 
336 /*
337  * All vector length selection from userspace comes through here.
338  * We're on a slow path, so some sanity-checks are included.
339  * If things go wrong there's a bug somewhere, but try to fall back to a
340  * safe choice.
341  */
find_supported_vector_length(unsigned int vl)342 static unsigned int find_supported_vector_length(unsigned int vl)
343 {
344 	int bit;
345 	int max_vl = sve_max_vl;
346 
347 	if (WARN_ON(!sve_vl_valid(vl)))
348 		vl = SVE_VL_MIN;
349 
350 	if (WARN_ON(!sve_vl_valid(max_vl)))
351 		max_vl = SVE_VL_MIN;
352 
353 	if (vl > max_vl)
354 		vl = max_vl;
355 
356 	bit = find_next_bit(sve_vq_map, SVE_VQ_MAX,
357 			    __vq_to_bit(sve_vq_from_vl(vl)));
358 	return sve_vl_from_vq(__bit_to_vq(bit));
359 }
360 
361 #if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL)
362 
sve_proc_do_default_vl(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)363 static int sve_proc_do_default_vl(struct ctl_table *table, int write,
364 				  void *buffer, size_t *lenp, loff_t *ppos)
365 {
366 	int ret;
367 	int vl = get_sve_default_vl();
368 	struct ctl_table tmp_table = {
369 		.data = &vl,
370 		.maxlen = sizeof(vl),
371 	};
372 
373 	ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
374 	if (ret || !write)
375 		return ret;
376 
377 	/* Writing -1 has the special meaning "set to max": */
378 	if (vl == -1)
379 		vl = sve_max_vl;
380 
381 	if (!sve_vl_valid(vl))
382 		return -EINVAL;
383 
384 	set_sve_default_vl(find_supported_vector_length(vl));
385 	return 0;
386 }
387 
388 static struct ctl_table sve_default_vl_table[] = {
389 	{
390 		.procname	= "sve_default_vector_length",
391 		.mode		= 0644,
392 		.proc_handler	= sve_proc_do_default_vl,
393 	},
394 	{ }
395 };
396 
sve_sysctl_init(void)397 static int __init sve_sysctl_init(void)
398 {
399 	if (system_supports_sve())
400 		if (!register_sysctl("abi", sve_default_vl_table))
401 			return -EINVAL;
402 
403 	return 0;
404 }
405 
406 #else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
sve_sysctl_init(void)407 static int __init sve_sysctl_init(void) { return 0; }
408 #endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
409 
410 #define ZREG(sve_state, vq, n) ((char *)(sve_state) +		\
411 	(SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
412 
413 #ifdef CONFIG_CPU_BIG_ENDIAN
arm64_cpu_to_le128(__uint128_t x)414 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
415 {
416 	u64 a = swab64(x);
417 	u64 b = swab64(x >> 64);
418 
419 	return ((__uint128_t)a << 64) | b;
420 }
421 #else
arm64_cpu_to_le128(__uint128_t x)422 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
423 {
424 	return x;
425 }
426 #endif
427 
428 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
429 
__fpsimd_to_sve(void * sst,struct user_fpsimd_state const * fst,unsigned int vq)430 static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst,
431 			    unsigned int vq)
432 {
433 	unsigned int i;
434 	__uint128_t *p;
435 
436 	for (i = 0; i < SVE_NUM_ZREGS; ++i) {
437 		p = (__uint128_t *)ZREG(sst, vq, i);
438 		*p = arm64_cpu_to_le128(fst->vregs[i]);
439 	}
440 }
441 
442 /*
443  * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
444  * task->thread.sve_state.
445  *
446  * Task can be a non-runnable task, or current.  In the latter case,
447  * the caller must have ownership of the cpu FPSIMD context before calling
448  * this function.
449  * task->thread.sve_state must point to at least sve_state_size(task)
450  * bytes of allocated kernel memory.
451  * task->thread.uw.fpsimd_state must be up to date before calling this
452  * function.
453  */
fpsimd_to_sve(struct task_struct * task)454 static void fpsimd_to_sve(struct task_struct *task)
455 {
456 	unsigned int vq;
457 	void *sst = task->thread.sve_state;
458 	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
459 
460 	if (!system_supports_sve())
461 		return;
462 
463 	vq = sve_vq_from_vl(task->thread.sve_vl);
464 	__fpsimd_to_sve(sst, fst, vq);
465 }
466 
467 /*
468  * Transfer the SVE state in task->thread.sve_state to
469  * task->thread.uw.fpsimd_state.
470  *
471  * Task can be a non-runnable task, or current.  In the latter case,
472  * the caller must have ownership of the cpu FPSIMD context before calling
473  * this function.
474  * task->thread.sve_state must point to at least sve_state_size(task)
475  * bytes of allocated kernel memory.
476  * task->thread.sve_state must be up to date before calling this function.
477  */
sve_to_fpsimd(struct task_struct * task)478 static void sve_to_fpsimd(struct task_struct *task)
479 {
480 	unsigned int vq;
481 	void const *sst = task->thread.sve_state;
482 	struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
483 	unsigned int i;
484 	__uint128_t const *p;
485 
486 	if (!system_supports_sve())
487 		return;
488 
489 	vq = sve_vq_from_vl(task->thread.sve_vl);
490 	for (i = 0; i < SVE_NUM_ZREGS; ++i) {
491 		p = (__uint128_t const *)ZREG(sst, vq, i);
492 		fst->vregs[i] = arm64_le128_to_cpu(*p);
493 	}
494 }
495 
496 #ifdef CONFIG_ARM64_SVE
497 
498 /*
499  * Return how many bytes of memory are required to store the full SVE
500  * state for task, given task's currently configured vector length.
501  */
sve_state_size(struct task_struct const * task)502 size_t sve_state_size(struct task_struct const *task)
503 {
504 	return SVE_SIG_REGS_SIZE(sve_vq_from_vl(task->thread.sve_vl));
505 }
506 
507 /*
508  * Ensure that task->thread.sve_state is allocated and sufficiently large.
509  *
510  * This function should be used only in preparation for replacing
511  * task->thread.sve_state with new data.  The memory is always zeroed
512  * here to prevent stale data from showing through: this is done in
513  * the interest of testability and predictability: except in the
514  * do_sve_acc() case, there is no ABI requirement to hide stale data
515  * written previously be task.
516  */
sve_alloc(struct task_struct * task)517 void sve_alloc(struct task_struct *task)
518 {
519 	if (task->thread.sve_state) {
520 		memset(task->thread.sve_state, 0, sve_state_size(task));
521 		return;
522 	}
523 
524 	/* This is a small allocation (maximum ~8KB) and Should Not Fail. */
525 	task->thread.sve_state =
526 		kzalloc(sve_state_size(task), GFP_KERNEL);
527 }
528 
529 
530 /*
531  * Ensure that task->thread.sve_state is up to date with respect to
532  * the user task, irrespective of when SVE is in use or not.
533  *
534  * This should only be called by ptrace.  task must be non-runnable.
535  * task->thread.sve_state must point to at least sve_state_size(task)
536  * bytes of allocated kernel memory.
537  */
fpsimd_sync_to_sve(struct task_struct * task)538 void fpsimd_sync_to_sve(struct task_struct *task)
539 {
540 	if (!test_tsk_thread_flag(task, TIF_SVE))
541 		fpsimd_to_sve(task);
542 }
543 
544 /*
545  * Ensure that task->thread.uw.fpsimd_state is up to date with respect to
546  * the user task, irrespective of whether SVE is in use or not.
547  *
548  * This should only be called by ptrace.  task must be non-runnable.
549  * task->thread.sve_state must point to at least sve_state_size(task)
550  * bytes of allocated kernel memory.
551  */
sve_sync_to_fpsimd(struct task_struct * task)552 void sve_sync_to_fpsimd(struct task_struct *task)
553 {
554 	if (test_tsk_thread_flag(task, TIF_SVE))
555 		sve_to_fpsimd(task);
556 }
557 
558 /*
559  * Ensure that task->thread.sve_state is up to date with respect to
560  * the task->thread.uw.fpsimd_state.
561  *
562  * This should only be called by ptrace to merge new FPSIMD register
563  * values into a task for which SVE is currently active.
564  * task must be non-runnable.
565  * task->thread.sve_state must point to at least sve_state_size(task)
566  * bytes of allocated kernel memory.
567  * task->thread.uw.fpsimd_state must already have been initialised with
568  * the new FPSIMD register values to be merged in.
569  */
sve_sync_from_fpsimd_zeropad(struct task_struct * task)570 void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
571 {
572 	unsigned int vq;
573 	void *sst = task->thread.sve_state;
574 	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
575 
576 	if (!test_tsk_thread_flag(task, TIF_SVE))
577 		return;
578 
579 	vq = sve_vq_from_vl(task->thread.sve_vl);
580 
581 	memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
582 	__fpsimd_to_sve(sst, fst, vq);
583 }
584 
sve_set_vector_length(struct task_struct * task,unsigned long vl,unsigned long flags)585 int sve_set_vector_length(struct task_struct *task,
586 			  unsigned long vl, unsigned long flags)
587 {
588 	if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
589 				     PR_SVE_SET_VL_ONEXEC))
590 		return -EINVAL;
591 
592 	if (!sve_vl_valid(vl))
593 		return -EINVAL;
594 
595 	/*
596 	 * Clamp to the maximum vector length that VL-agnostic SVE code can
597 	 * work with.  A flag may be assigned in the future to allow setting
598 	 * of larger vector lengths without confusing older software.
599 	 */
600 	if (vl > SVE_VL_ARCH_MAX)
601 		vl = SVE_VL_ARCH_MAX;
602 
603 	vl = find_supported_vector_length(vl);
604 
605 	if (flags & (PR_SVE_VL_INHERIT |
606 		     PR_SVE_SET_VL_ONEXEC))
607 		task->thread.sve_vl_onexec = vl;
608 	else
609 		/* Reset VL to system default on next exec: */
610 		task->thread.sve_vl_onexec = 0;
611 
612 	/* Only actually set the VL if not deferred: */
613 	if (flags & PR_SVE_SET_VL_ONEXEC)
614 		goto out;
615 
616 	if (vl == task->thread.sve_vl)
617 		goto out;
618 
619 	/*
620 	 * To ensure the FPSIMD bits of the SVE vector registers are preserved,
621 	 * write any live register state back to task_struct, and convert to a
622 	 * non-SVE thread.
623 	 */
624 	if (task == current) {
625 		get_cpu_fpsimd_context();
626 
627 		fpsimd_save();
628 	}
629 
630 	fpsimd_flush_task_state(task);
631 	if (test_and_clear_tsk_thread_flag(task, TIF_SVE))
632 		sve_to_fpsimd(task);
633 
634 	if (task == current)
635 		put_cpu_fpsimd_context();
636 
637 	/*
638 	 * Force reallocation of task SVE state to the correct size
639 	 * on next use:
640 	 */
641 	sve_free(task);
642 
643 	task->thread.sve_vl = vl;
644 
645 out:
646 	update_tsk_thread_flag(task, TIF_SVE_VL_INHERIT,
647 			       flags & PR_SVE_VL_INHERIT);
648 
649 	return 0;
650 }
651 
652 /*
653  * Encode the current vector length and flags for return.
654  * This is only required for prctl(): ptrace has separate fields
655  *
656  * flags are as for sve_set_vector_length().
657  */
sve_prctl_status(unsigned long flags)658 static int sve_prctl_status(unsigned long flags)
659 {
660 	int ret;
661 
662 	if (flags & PR_SVE_SET_VL_ONEXEC)
663 		ret = current->thread.sve_vl_onexec;
664 	else
665 		ret = current->thread.sve_vl;
666 
667 	if (test_thread_flag(TIF_SVE_VL_INHERIT))
668 		ret |= PR_SVE_VL_INHERIT;
669 
670 	return ret;
671 }
672 
673 /* PR_SVE_SET_VL */
sve_set_current_vl(unsigned long arg)674 int sve_set_current_vl(unsigned long arg)
675 {
676 	unsigned long vl, flags;
677 	int ret;
678 
679 	vl = arg & PR_SVE_VL_LEN_MASK;
680 	flags = arg & ~vl;
681 
682 	if (!system_supports_sve() || is_compat_task())
683 		return -EINVAL;
684 
685 	ret = sve_set_vector_length(current, vl, flags);
686 	if (ret)
687 		return ret;
688 
689 	return sve_prctl_status(flags);
690 }
691 
692 /* PR_SVE_GET_VL */
sve_get_current_vl(void)693 int sve_get_current_vl(void)
694 {
695 	if (!system_supports_sve() || is_compat_task())
696 		return -EINVAL;
697 
698 	return sve_prctl_status(0);
699 }
700 
sve_probe_vqs(DECLARE_BITMAP (map,SVE_VQ_MAX))701 static void sve_probe_vqs(DECLARE_BITMAP(map, SVE_VQ_MAX))
702 {
703 	unsigned int vq, vl;
704 	unsigned long zcr;
705 
706 	bitmap_zero(map, SVE_VQ_MAX);
707 
708 	zcr = ZCR_ELx_LEN_MASK;
709 	zcr = read_sysreg_s(SYS_ZCR_EL1) & ~zcr;
710 
711 	for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
712 		write_sysreg_s(zcr | (vq - 1), SYS_ZCR_EL1); /* self-syncing */
713 		vl = sve_get_vl();
714 		vq = sve_vq_from_vl(vl); /* skip intervening lengths */
715 		set_bit(__vq_to_bit(vq), map);
716 	}
717 }
718 
719 /*
720  * Initialise the set of known supported VQs for the boot CPU.
721  * This is called during kernel boot, before secondary CPUs are brought up.
722  */
sve_init_vq_map(void)723 void __init sve_init_vq_map(void)
724 {
725 	sve_probe_vqs(sve_vq_map);
726 	bitmap_copy(sve_vq_partial_map, sve_vq_map, SVE_VQ_MAX);
727 }
728 
729 /*
730  * If we haven't committed to the set of supported VQs yet, filter out
731  * those not supported by the current CPU.
732  * This function is called during the bring-up of early secondary CPUs only.
733  */
sve_update_vq_map(void)734 void sve_update_vq_map(void)
735 {
736 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
737 
738 	sve_probe_vqs(tmp_map);
739 	bitmap_and(sve_vq_map, sve_vq_map, tmp_map, SVE_VQ_MAX);
740 	bitmap_or(sve_vq_partial_map, sve_vq_partial_map, tmp_map, SVE_VQ_MAX);
741 }
742 
743 /*
744  * Check whether the current CPU supports all VQs in the committed set.
745  * This function is called during the bring-up of late secondary CPUs only.
746  */
sve_verify_vq_map(void)747 int sve_verify_vq_map(void)
748 {
749 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
750 	unsigned long b;
751 
752 	sve_probe_vqs(tmp_map);
753 
754 	bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
755 	if (bitmap_intersects(tmp_map, sve_vq_map, SVE_VQ_MAX)) {
756 		pr_warn("SVE: cpu%d: Required vector length(s) missing\n",
757 			smp_processor_id());
758 		return -EINVAL;
759 	}
760 
761 	if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
762 		return 0;
763 
764 	/*
765 	 * For KVM, it is necessary to ensure that this CPU doesn't
766 	 * support any vector length that guests may have probed as
767 	 * unsupported.
768 	 */
769 
770 	/* Recover the set of supported VQs: */
771 	bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
772 	/* Find VQs supported that are not globally supported: */
773 	bitmap_andnot(tmp_map, tmp_map, sve_vq_map, SVE_VQ_MAX);
774 
775 	/* Find the lowest such VQ, if any: */
776 	b = find_last_bit(tmp_map, SVE_VQ_MAX);
777 	if (b >= SVE_VQ_MAX)
778 		return 0; /* no mismatches */
779 
780 	/*
781 	 * Mismatches above sve_max_virtualisable_vl are fine, since
782 	 * no guest is allowed to configure ZCR_EL2.LEN to exceed this:
783 	 */
784 	if (sve_vl_from_vq(__bit_to_vq(b)) <= sve_max_virtualisable_vl) {
785 		pr_warn("SVE: cpu%d: Unsupported vector length(s) present\n",
786 			smp_processor_id());
787 		return -EINVAL;
788 	}
789 
790 	return 0;
791 }
792 
sve_efi_setup(void)793 static void __init sve_efi_setup(void)
794 {
795 	if (!IS_ENABLED(CONFIG_EFI))
796 		return;
797 
798 	/*
799 	 * alloc_percpu() warns and prints a backtrace if this goes wrong.
800 	 * This is evidence of a crippled system and we are returning void,
801 	 * so no attempt is made to handle this situation here.
802 	 */
803 	if (!sve_vl_valid(sve_max_vl))
804 		goto fail;
805 
806 	efi_sve_state = __alloc_percpu(
807 		SVE_SIG_REGS_SIZE(sve_vq_from_vl(sve_max_vl)), SVE_VQ_BYTES);
808 	if (!efi_sve_state)
809 		goto fail;
810 
811 	return;
812 
813 fail:
814 	panic("Cannot allocate percpu memory for EFI SVE save/restore");
815 }
816 
817 /*
818  * Enable SVE for EL1.
819  * Intended for use by the cpufeatures code during CPU boot.
820  */
sve_kernel_enable(const struct arm64_cpu_capabilities * __always_unused p)821 void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
822 {
823 	write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
824 	isb();
825 }
826 
827 /*
828  * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
829  * vector length.
830  *
831  * Use only if SVE is present.
832  * This function clobbers the SVE vector length.
833  */
read_zcr_features(void)834 u64 read_zcr_features(void)
835 {
836 	u64 zcr;
837 	unsigned int vq_max;
838 
839 	/*
840 	 * Set the maximum possible VL, and write zeroes to all other
841 	 * bits to see if they stick.
842 	 */
843 	sve_kernel_enable(NULL);
844 	write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);
845 
846 	zcr = read_sysreg_s(SYS_ZCR_EL1);
847 	zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */
848 	vq_max = sve_vq_from_vl(sve_get_vl());
849 	zcr |= vq_max - 1; /* set LEN field to maximum effective value */
850 
851 	return zcr;
852 }
853 
sve_setup(void)854 void __init sve_setup(void)
855 {
856 	u64 zcr;
857 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
858 	unsigned long b;
859 
860 	if (!system_supports_sve())
861 		return;
862 
863 	/*
864 	 * The SVE architecture mandates support for 128-bit vectors,
865 	 * so sve_vq_map must have at least SVE_VQ_MIN set.
866 	 * If something went wrong, at least try to patch it up:
867 	 */
868 	if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), sve_vq_map)))
869 		set_bit(__vq_to_bit(SVE_VQ_MIN), sve_vq_map);
870 
871 	zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
872 	sve_max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1);
873 
874 	/*
875 	 * Sanity-check that the max VL we determined through CPU features
876 	 * corresponds properly to sve_vq_map.  If not, do our best:
877 	 */
878 	if (WARN_ON(sve_max_vl != find_supported_vector_length(sve_max_vl)))
879 		sve_max_vl = find_supported_vector_length(sve_max_vl);
880 
881 	/*
882 	 * For the default VL, pick the maximum supported value <= 64.
883 	 * VL == 64 is guaranteed not to grow the signal frame.
884 	 */
885 	set_sve_default_vl(find_supported_vector_length(64));
886 
887 	bitmap_andnot(tmp_map, sve_vq_partial_map, sve_vq_map,
888 		      SVE_VQ_MAX);
889 
890 	b = find_last_bit(tmp_map, SVE_VQ_MAX);
891 	if (b >= SVE_VQ_MAX)
892 		/* No non-virtualisable VLs found */
893 		sve_max_virtualisable_vl = SVE_VQ_MAX;
894 	else if (WARN_ON(b == SVE_VQ_MAX - 1))
895 		/* No virtualisable VLs?  This is architecturally forbidden. */
896 		sve_max_virtualisable_vl = SVE_VQ_MIN;
897 	else /* b + 1 < SVE_VQ_MAX */
898 		sve_max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
899 
900 	if (sve_max_virtualisable_vl > sve_max_vl)
901 		sve_max_virtualisable_vl = sve_max_vl;
902 
903 	pr_info("SVE: maximum available vector length %u bytes per vector\n",
904 		sve_max_vl);
905 	pr_info("SVE: default vector length %u bytes per vector\n",
906 		get_sve_default_vl());
907 
908 	/* KVM decides whether to support mismatched systems. Just warn here: */
909 	if (sve_max_virtualisable_vl < sve_max_vl)
910 		pr_warn("SVE: unvirtualisable vector lengths present\n");
911 
912 	sve_efi_setup();
913 }
914 
915 /*
916  * Called from the put_task_struct() path, which cannot get here
917  * unless dead_task is really dead and not schedulable.
918  */
fpsimd_release_task(struct task_struct * dead_task)919 void fpsimd_release_task(struct task_struct *dead_task)
920 {
921 	__sve_free(dead_task);
922 }
923 
924 #endif /* CONFIG_ARM64_SVE */
925 
926 /*
927  * Trapped SVE access
928  *
929  * Storage is allocated for the full SVE state, the current FPSIMD
930  * register contents are migrated across, and the access trap is
931  * disabled.
932  *
933  * TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state()
934  * would have disabled the SVE access trap for userspace during
935  * ret_to_user, making an SVE access trap impossible in that case.
936  */
do_sve_acc(unsigned int esr,struct pt_regs * regs)937 void do_sve_acc(unsigned int esr, struct pt_regs *regs)
938 {
939 	/* Even if we chose not to use SVE, the hardware could still trap: */
940 	if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
941 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
942 		return;
943 	}
944 
945 	sve_alloc(current);
946 	if (!current->thread.sve_state) {
947 		force_sig(SIGKILL);
948 		return;
949 	}
950 
951 	get_cpu_fpsimd_context();
952 
953 	if (test_and_set_thread_flag(TIF_SVE))
954 		WARN_ON(1); /* SVE access shouldn't have trapped */
955 
956 	/*
957 	 * Convert the FPSIMD state to SVE, zeroing all the state that
958 	 * is not shared with FPSIMD. If (as is likely) the current
959 	 * state is live in the registers then do this there and
960 	 * update our metadata for the current task including
961 	 * disabling the trap, otherwise update our in-memory copy.
962 	 */
963 	if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
964 		unsigned long vq_minus_one =
965 			sve_vq_from_vl(current->thread.sve_vl) - 1;
966 		sve_set_vq(vq_minus_one);
967 		sve_flush_live(vq_minus_one);
968 		fpsimd_bind_task_to_cpu();
969 	} else {
970 		fpsimd_to_sve(current);
971 	}
972 
973 	put_cpu_fpsimd_context();
974 }
975 
976 /*
977  * Trapped FP/ASIMD access.
978  */
do_fpsimd_acc(unsigned int esr,struct pt_regs * regs)979 void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs)
980 {
981 	/* TODO: implement lazy context saving/restoring */
982 	WARN_ON(1);
983 }
984 
985 /*
986  * Raise a SIGFPE for the current process.
987  */
do_fpsimd_exc(unsigned int esr,struct pt_regs * regs)988 void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs)
989 {
990 	unsigned int si_code = FPE_FLTUNK;
991 
992 	if (esr & ESR_ELx_FP_EXC_TFV) {
993 		if (esr & FPEXC_IOF)
994 			si_code = FPE_FLTINV;
995 		else if (esr & FPEXC_DZF)
996 			si_code = FPE_FLTDIV;
997 		else if (esr & FPEXC_OFF)
998 			si_code = FPE_FLTOVF;
999 		else if (esr & FPEXC_UFF)
1000 			si_code = FPE_FLTUND;
1001 		else if (esr & FPEXC_IXF)
1002 			si_code = FPE_FLTRES;
1003 	}
1004 
1005 	send_sig_fault(SIGFPE, si_code,
1006 		       (void __user *)instruction_pointer(regs),
1007 		       current);
1008 }
1009 
fpsimd_thread_switch(struct task_struct * next)1010 void fpsimd_thread_switch(struct task_struct *next)
1011 {
1012 	bool wrong_task, wrong_cpu;
1013 
1014 	if (!system_supports_fpsimd())
1015 		return;
1016 
1017 	__get_cpu_fpsimd_context();
1018 
1019 	/* Save unsaved fpsimd state, if any: */
1020 	fpsimd_save();
1021 
1022 	/*
1023 	 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
1024 	 * state.  For kernel threads, FPSIMD registers are never loaded
1025 	 * and wrong_task and wrong_cpu will always be true.
1026 	 */
1027 	wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
1028 					&next->thread.uw.fpsimd_state;
1029 	wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
1030 
1031 	update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
1032 			       wrong_task || wrong_cpu);
1033 
1034 	__put_cpu_fpsimd_context();
1035 }
1036 
fpsimd_flush_thread(void)1037 void fpsimd_flush_thread(void)
1038 {
1039 	int vl, supported_vl;
1040 
1041 	if (!system_supports_fpsimd())
1042 		return;
1043 
1044 	get_cpu_fpsimd_context();
1045 
1046 	fpsimd_flush_task_state(current);
1047 	memset(&current->thread.uw.fpsimd_state, 0,
1048 	       sizeof(current->thread.uw.fpsimd_state));
1049 
1050 	if (system_supports_sve()) {
1051 		clear_thread_flag(TIF_SVE);
1052 		sve_free(current);
1053 
1054 		/*
1055 		 * Reset the task vector length as required.
1056 		 * This is where we ensure that all user tasks have a valid
1057 		 * vector length configured: no kernel task can become a user
1058 		 * task without an exec and hence a call to this function.
1059 		 * By the time the first call to this function is made, all
1060 		 * early hardware probing is complete, so __sve_default_vl
1061 		 * should be valid.
1062 		 * If a bug causes this to go wrong, we make some noise and
1063 		 * try to fudge thread.sve_vl to a safe value here.
1064 		 */
1065 		vl = current->thread.sve_vl_onexec ?
1066 			current->thread.sve_vl_onexec : get_sve_default_vl();
1067 
1068 		if (WARN_ON(!sve_vl_valid(vl)))
1069 			vl = SVE_VL_MIN;
1070 
1071 		supported_vl = find_supported_vector_length(vl);
1072 		if (WARN_ON(supported_vl != vl))
1073 			vl = supported_vl;
1074 
1075 		current->thread.sve_vl = vl;
1076 
1077 		/*
1078 		 * If the task is not set to inherit, ensure that the vector
1079 		 * length will be reset by a subsequent exec:
1080 		 */
1081 		if (!test_thread_flag(TIF_SVE_VL_INHERIT))
1082 			current->thread.sve_vl_onexec = 0;
1083 	}
1084 
1085 	put_cpu_fpsimd_context();
1086 }
1087 
1088 /*
1089  * Save the userland FPSIMD state of 'current' to memory, but only if the state
1090  * currently held in the registers does in fact belong to 'current'
1091  */
fpsimd_preserve_current_state(void)1092 void fpsimd_preserve_current_state(void)
1093 {
1094 	if (!system_supports_fpsimd())
1095 		return;
1096 
1097 	get_cpu_fpsimd_context();
1098 	fpsimd_save();
1099 	put_cpu_fpsimd_context();
1100 }
1101 
1102 /*
1103  * Like fpsimd_preserve_current_state(), but ensure that
1104  * current->thread.uw.fpsimd_state is updated so that it can be copied to
1105  * the signal frame.
1106  */
fpsimd_signal_preserve_current_state(void)1107 void fpsimd_signal_preserve_current_state(void)
1108 {
1109 	fpsimd_preserve_current_state();
1110 	if (test_thread_flag(TIF_SVE))
1111 		sve_to_fpsimd(current);
1112 }
1113 
1114 /*
1115  * Associate current's FPSIMD context with this cpu
1116  * The caller must have ownership of the cpu FPSIMD context before calling
1117  * this function.
1118  */
fpsimd_bind_task_to_cpu(void)1119 static void fpsimd_bind_task_to_cpu(void)
1120 {
1121 	struct fpsimd_last_state_struct *last =
1122 		this_cpu_ptr(&fpsimd_last_state);
1123 
1124 	WARN_ON(!system_supports_fpsimd());
1125 	last->st = &current->thread.uw.fpsimd_state;
1126 	last->sve_state = current->thread.sve_state;
1127 	last->sve_vl = current->thread.sve_vl;
1128 	current->thread.fpsimd_cpu = smp_processor_id();
1129 
1130 	if (system_supports_sve()) {
1131 		/* Toggle SVE trapping for userspace if needed */
1132 		if (test_thread_flag(TIF_SVE))
1133 			sve_user_enable();
1134 		else
1135 			sve_user_disable();
1136 
1137 		/* Serialised by exception return to user */
1138 	}
1139 }
1140 
fpsimd_bind_state_to_cpu(struct user_fpsimd_state * st,void * sve_state,unsigned int sve_vl)1141 void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *st, void *sve_state,
1142 			      unsigned int sve_vl)
1143 {
1144 	struct fpsimd_last_state_struct *last =
1145 		this_cpu_ptr(&fpsimd_last_state);
1146 
1147 	WARN_ON(!system_supports_fpsimd());
1148 	WARN_ON(!in_softirq() && !irqs_disabled());
1149 
1150 	last->st = st;
1151 	last->sve_state = sve_state;
1152 	last->sve_vl = sve_vl;
1153 }
1154 
1155 /*
1156  * Load the userland FPSIMD state of 'current' from memory, but only if the
1157  * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1158  * state of 'current'
1159  */
fpsimd_restore_current_state(void)1160 void fpsimd_restore_current_state(void)
1161 {
1162 	/*
1163 	 * For the tasks that were created before we detected the absence of
1164 	 * FP/SIMD, the TIF_FOREIGN_FPSTATE could be set via fpsimd_thread_switch(),
1165 	 * e.g, init. This could be then inherited by the children processes.
1166 	 * If we later detect that the system doesn't support FP/SIMD,
1167 	 * we must clear the flag for  all the tasks to indicate that the
1168 	 * FPSTATE is clean (as we can't have one) to avoid looping for ever in
1169 	 * do_notify_resume().
1170 	 */
1171 	if (!system_supports_fpsimd()) {
1172 		clear_thread_flag(TIF_FOREIGN_FPSTATE);
1173 		return;
1174 	}
1175 
1176 	get_cpu_fpsimd_context();
1177 
1178 	if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1179 		task_fpsimd_load();
1180 		fpsimd_bind_task_to_cpu();
1181 	}
1182 
1183 	put_cpu_fpsimd_context();
1184 }
1185 
1186 /*
1187  * Load an updated userland FPSIMD state for 'current' from memory and set the
1188  * flag that indicates that the FPSIMD register contents are the most recent
1189  * FPSIMD state of 'current'
1190  */
fpsimd_update_current_state(struct user_fpsimd_state const * state)1191 void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1192 {
1193 	if (WARN_ON(!system_supports_fpsimd()))
1194 		return;
1195 
1196 	get_cpu_fpsimd_context();
1197 
1198 	current->thread.uw.fpsimd_state = *state;
1199 	if (test_thread_flag(TIF_SVE))
1200 		fpsimd_to_sve(current);
1201 
1202 	task_fpsimd_load();
1203 	fpsimd_bind_task_to_cpu();
1204 
1205 	clear_thread_flag(TIF_FOREIGN_FPSTATE);
1206 
1207 	put_cpu_fpsimd_context();
1208 }
1209 
1210 /*
1211  * Invalidate live CPU copies of task t's FPSIMD state
1212  *
1213  * This function may be called with preemption enabled.  The barrier()
1214  * ensures that the assignment to fpsimd_cpu is visible to any
1215  * preemption/softirq that could race with set_tsk_thread_flag(), so
1216  * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
1217  *
1218  * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
1219  * subsequent code.
1220  */
fpsimd_flush_task_state(struct task_struct * t)1221 void fpsimd_flush_task_state(struct task_struct *t)
1222 {
1223 	t->thread.fpsimd_cpu = NR_CPUS;
1224 	/*
1225 	 * If we don't support fpsimd, bail out after we have
1226 	 * reset the fpsimd_cpu for this task and clear the
1227 	 * FPSTATE.
1228 	 */
1229 	if (!system_supports_fpsimd())
1230 		return;
1231 	barrier();
1232 	set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
1233 
1234 	barrier();
1235 }
1236 
1237 /*
1238  * Invalidate any task's FPSIMD state that is present on this cpu.
1239  * The FPSIMD context should be acquired with get_cpu_fpsimd_context()
1240  * before calling this function.
1241  */
fpsimd_flush_cpu_state(void)1242 static void fpsimd_flush_cpu_state(void)
1243 {
1244 	WARN_ON(!system_supports_fpsimd());
1245 	__this_cpu_write(fpsimd_last_state.st, NULL);
1246 	set_thread_flag(TIF_FOREIGN_FPSTATE);
1247 }
1248 
1249 /*
1250  * Save the FPSIMD state to memory and invalidate cpu view.
1251  * This function must be called with preemption disabled.
1252  */
fpsimd_save_and_flush_cpu_state(void)1253 void fpsimd_save_and_flush_cpu_state(void)
1254 {
1255 	if (!system_supports_fpsimd())
1256 		return;
1257 	WARN_ON(preemptible());
1258 	__get_cpu_fpsimd_context();
1259 	fpsimd_save();
1260 	fpsimd_flush_cpu_state();
1261 	__put_cpu_fpsimd_context();
1262 }
1263 
1264 #ifdef CONFIG_KERNEL_MODE_NEON
1265 
1266 /*
1267  * Kernel-side NEON support functions
1268  */
1269 
1270 /*
1271  * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1272  * context
1273  *
1274  * Must not be called unless may_use_simd() returns true.
1275  * Task context in the FPSIMD registers is saved back to memory as necessary.
1276  *
1277  * A matching call to kernel_neon_end() must be made before returning from the
1278  * calling context.
1279  *
1280  * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1281  * called.
1282  */
kernel_neon_begin(void)1283 void kernel_neon_begin(void)
1284 {
1285 	if (WARN_ON(!system_supports_fpsimd()))
1286 		return;
1287 
1288 	BUG_ON(!may_use_simd());
1289 
1290 	get_cpu_fpsimd_context();
1291 
1292 	/* Save unsaved fpsimd state, if any: */
1293 	fpsimd_save();
1294 
1295 	/* Invalidate any task state remaining in the fpsimd regs: */
1296 	fpsimd_flush_cpu_state();
1297 }
1298 EXPORT_SYMBOL(kernel_neon_begin);
1299 
1300 /*
1301  * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1302  *
1303  * Must be called from a context in which kernel_neon_begin() was previously
1304  * called, with no call to kernel_neon_end() in the meantime.
1305  *
1306  * The caller must not use the FPSIMD registers after this function is called,
1307  * unless kernel_neon_begin() is called again in the meantime.
1308  */
kernel_neon_end(void)1309 void kernel_neon_end(void)
1310 {
1311 	if (!system_supports_fpsimd())
1312 		return;
1313 
1314 	put_cpu_fpsimd_context();
1315 }
1316 EXPORT_SYMBOL(kernel_neon_end);
1317 
1318 #ifdef CONFIG_EFI
1319 
1320 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
1321 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
1322 static DEFINE_PER_CPU(bool, efi_sve_state_used);
1323 
1324 /*
1325  * EFI runtime services support functions
1326  *
1327  * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1328  * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1329  * is always used rather than being an optional accelerator.
1330  *
1331  * These functions provide the necessary support for ensuring FPSIMD
1332  * save/restore in the contexts from which EFI is used.
1333  *
1334  * Do not use them for any other purpose -- if tempted to do so, you are
1335  * either doing something wrong or you need to propose some refactoring.
1336  */
1337 
1338 /*
1339  * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1340  */
__efi_fpsimd_begin(void)1341 void __efi_fpsimd_begin(void)
1342 {
1343 	if (!system_supports_fpsimd())
1344 		return;
1345 
1346 	WARN_ON(preemptible());
1347 
1348 	if (may_use_simd()) {
1349 		kernel_neon_begin();
1350 	} else {
1351 		/*
1352 		 * If !efi_sve_state, SVE can't be in use yet and doesn't need
1353 		 * preserving:
1354 		 */
1355 		if (system_supports_sve() && likely(efi_sve_state)) {
1356 			char *sve_state = this_cpu_ptr(efi_sve_state);
1357 
1358 			__this_cpu_write(efi_sve_state_used, true);
1359 
1360 			sve_save_state(sve_state + sve_ffr_offset(sve_max_vl),
1361 				       &this_cpu_ptr(&efi_fpsimd_state)->fpsr);
1362 		} else {
1363 			fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
1364 		}
1365 
1366 		__this_cpu_write(efi_fpsimd_state_used, true);
1367 	}
1368 }
1369 
1370 /*
1371  * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
1372  */
__efi_fpsimd_end(void)1373 void __efi_fpsimd_end(void)
1374 {
1375 	if (!system_supports_fpsimd())
1376 		return;
1377 
1378 	if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
1379 		kernel_neon_end();
1380 	} else {
1381 		if (system_supports_sve() &&
1382 		    likely(__this_cpu_read(efi_sve_state_used))) {
1383 			char const *sve_state = this_cpu_ptr(efi_sve_state);
1384 
1385 			sve_load_state(sve_state + sve_ffr_offset(sve_max_vl),
1386 				       &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
1387 				       sve_vq_from_vl(sve_get_vl()) - 1);
1388 
1389 			__this_cpu_write(efi_sve_state_used, false);
1390 		} else {
1391 			fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
1392 		}
1393 	}
1394 }
1395 
1396 #endif /* CONFIG_EFI */
1397 
1398 #endif /* CONFIG_KERNEL_MODE_NEON */
1399 
1400 #ifdef CONFIG_CPU_PM
fpsimd_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)1401 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
1402 				  unsigned long cmd, void *v)
1403 {
1404 	switch (cmd) {
1405 	case CPU_PM_ENTER:
1406 		fpsimd_save_and_flush_cpu_state();
1407 		break;
1408 	case CPU_PM_EXIT:
1409 		break;
1410 	case CPU_PM_ENTER_FAILED:
1411 	default:
1412 		return NOTIFY_DONE;
1413 	}
1414 	return NOTIFY_OK;
1415 }
1416 
1417 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
1418 	.notifier_call = fpsimd_cpu_pm_notifier,
1419 };
1420 
fpsimd_pm_init(void)1421 static void __init fpsimd_pm_init(void)
1422 {
1423 	cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
1424 }
1425 
1426 #else
fpsimd_pm_init(void)1427 static inline void fpsimd_pm_init(void) { }
1428 #endif /* CONFIG_CPU_PM */
1429 
1430 #ifdef CONFIG_HOTPLUG_CPU
fpsimd_cpu_dead(unsigned int cpu)1431 static int fpsimd_cpu_dead(unsigned int cpu)
1432 {
1433 	per_cpu(fpsimd_last_state.st, cpu) = NULL;
1434 	return 0;
1435 }
1436 
fpsimd_hotplug_init(void)1437 static inline void fpsimd_hotplug_init(void)
1438 {
1439 	cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
1440 				  NULL, fpsimd_cpu_dead);
1441 }
1442 
1443 #else
fpsimd_hotplug_init(void)1444 static inline void fpsimd_hotplug_init(void) { }
1445 #endif
1446 
1447 /*
1448  * FP/SIMD support code initialisation.
1449  */
fpsimd_init(void)1450 static int __init fpsimd_init(void)
1451 {
1452 	if (cpu_have_named_feature(FP)) {
1453 		fpsimd_pm_init();
1454 		fpsimd_hotplug_init();
1455 	} else {
1456 		pr_notice("Floating-point is not implemented\n");
1457 	}
1458 
1459 	if (!cpu_have_named_feature(ASIMD))
1460 		pr_notice("Advanced SIMD is not implemented\n");
1461 
1462 	return sve_sysctl_init();
1463 }
1464 core_initcall(fpsimd_init);
1465