1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4
5 #include <linux/errno.h>
6
7 #ifdef __KERNEL__
8
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/mmap_lock.h>
19 #include <linux/range.h>
20 #include <linux/pfn.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/bit_spinlock.h>
23 #include <linux/shrinker.h>
24 #include <linux/resource.h>
25 #include <linux/page_ext.h>
26 #include <linux/err.h>
27 #include <linux/page-flags.h>
28 #include <linux/page_ref.h>
29 #include <linux/memremap.h>
30 #include <linux/overflow.h>
31 #include <linux/sizes.h>
32 #include <linux/sched.h>
33 #include <linux/pgtable.h>
34 #include <linux/kasan.h>
35 #include <linux/android_kabi.h>
36
37 struct mempolicy;
38 struct anon_vma;
39 struct anon_vma_chain;
40 struct file_ra_state;
41 struct user_struct;
42 struct writeback_control;
43 struct bdi_writeback;
44 struct pt_regs;
45
46 extern int sysctl_page_lock_unfairness;
47
48 void init_mm_internals(void);
49
50 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
51 extern unsigned long max_mapnr;
52
set_max_mapnr(unsigned long limit)53 static inline void set_max_mapnr(unsigned long limit)
54 {
55 max_mapnr = limit;
56 }
57 #else
set_max_mapnr(unsigned long limit)58 static inline void set_max_mapnr(unsigned long limit) { }
59 #endif
60
61 extern atomic_long_t _totalram_pages;
totalram_pages(void)62 static inline unsigned long totalram_pages(void)
63 {
64 return (unsigned long)atomic_long_read(&_totalram_pages);
65 }
66
totalram_pages_inc(void)67 static inline void totalram_pages_inc(void)
68 {
69 atomic_long_inc(&_totalram_pages);
70 }
71
totalram_pages_dec(void)72 static inline void totalram_pages_dec(void)
73 {
74 atomic_long_dec(&_totalram_pages);
75 }
76
totalram_pages_add(long count)77 static inline void totalram_pages_add(long count)
78 {
79 atomic_long_add(count, &_totalram_pages);
80 }
81
82 extern void * high_memory;
83 extern int page_cluster;
84
85 #ifdef CONFIG_SYSCTL
86 extern int sysctl_legacy_va_layout;
87 #else
88 #define sysctl_legacy_va_layout 0
89 #endif
90
91 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
92 extern const int mmap_rnd_bits_min;
93 extern const int mmap_rnd_bits_max;
94 extern int mmap_rnd_bits __read_mostly;
95 #endif
96 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
97 extern const int mmap_rnd_compat_bits_min;
98 extern const int mmap_rnd_compat_bits_max;
99 extern int mmap_rnd_compat_bits __read_mostly;
100 #endif
101
102 #include <asm/page.h>
103 #include <asm/processor.h>
104
105 /*
106 * Architectures that support memory tagging (assigning tags to memory regions,
107 * embedding these tags into addresses that point to these memory regions, and
108 * checking that the memory and the pointer tags match on memory accesses)
109 * redefine this macro to strip tags from pointers.
110 * It's defined as noop for architectures that don't support memory tagging.
111 */
112 #ifndef untagged_addr
113 #define untagged_addr(addr) (addr)
114 #endif
115
116 #ifndef __pa_symbol
117 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
118 #endif
119
120 #ifndef page_to_virt
121 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
122 #endif
123
124 #ifndef lm_alias
125 #define lm_alias(x) __va(__pa_symbol(x))
126 #endif
127
128 /*
129 * To prevent common memory management code establishing
130 * a zero page mapping on a read fault.
131 * This macro should be defined within <asm/pgtable.h>.
132 * s390 does this to prevent multiplexing of hardware bits
133 * related to the physical page in case of virtualization.
134 */
135 #ifndef mm_forbids_zeropage
136 #define mm_forbids_zeropage(X) (0)
137 #endif
138
139 /*
140 * On some architectures it is expensive to call memset() for small sizes.
141 * If an architecture decides to implement their own version of
142 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
143 * define their own version of this macro in <asm/pgtable.h>
144 */
145 #if BITS_PER_LONG == 64
146 /* This function must be updated when the size of struct page grows above 80
147 * or reduces below 56. The idea that compiler optimizes out switch()
148 * statement, and only leaves move/store instructions. Also the compiler can
149 * combine write statements if they are both assignments and can be reordered,
150 * this can result in several of the writes here being dropped.
151 */
152 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
__mm_zero_struct_page(struct page * page)153 static inline void __mm_zero_struct_page(struct page *page)
154 {
155 unsigned long *_pp = (void *)page;
156
157 /* Check that struct page is either 56, 64, 72, or 80 bytes */
158 BUILD_BUG_ON(sizeof(struct page) & 7);
159 BUILD_BUG_ON(sizeof(struct page) < 56);
160 BUILD_BUG_ON(sizeof(struct page) > 80);
161
162 switch (sizeof(struct page)) {
163 case 80:
164 _pp[9] = 0;
165 fallthrough;
166 case 72:
167 _pp[8] = 0;
168 fallthrough;
169 case 64:
170 _pp[7] = 0;
171 fallthrough;
172 case 56:
173 _pp[6] = 0;
174 _pp[5] = 0;
175 _pp[4] = 0;
176 _pp[3] = 0;
177 _pp[2] = 0;
178 _pp[1] = 0;
179 _pp[0] = 0;
180 }
181 }
182 #else
183 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
184 #endif
185
186 /*
187 * Default maximum number of active map areas, this limits the number of vmas
188 * per mm struct. Users can overwrite this number by sysctl but there is a
189 * problem.
190 *
191 * When a program's coredump is generated as ELF format, a section is created
192 * per a vma. In ELF, the number of sections is represented in unsigned short.
193 * This means the number of sections should be smaller than 65535 at coredump.
194 * Because the kernel adds some informative sections to a image of program at
195 * generating coredump, we need some margin. The number of extra sections is
196 * 1-3 now and depends on arch. We use "5" as safe margin, here.
197 *
198 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
199 * not a hard limit any more. Although some userspace tools can be surprised by
200 * that.
201 */
202 #define MAPCOUNT_ELF_CORE_MARGIN (5)
203 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
204
205 extern int sysctl_max_map_count;
206
207 extern unsigned long sysctl_user_reserve_kbytes;
208 extern unsigned long sysctl_admin_reserve_kbytes;
209
210 extern int sysctl_overcommit_memory;
211 extern int sysctl_overcommit_ratio;
212 extern unsigned long sysctl_overcommit_kbytes;
213
214 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
215 loff_t *);
216 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
217 loff_t *);
218 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
219 loff_t *);
220 /*
221 * Any attempt to mark this function as static leads to build failure
222 * when CONFIG_DEBUG_INFO_BTF is enabled because __add_to_page_cache_locked()
223 * is referred to by BPF code. This must be visible for error injection.
224 */
225 int __add_to_page_cache_locked(struct page *page, struct address_space *mapping,
226 pgoff_t index, gfp_t gfp, void **shadowp);
227
228 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
229 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
230 #else
231 #define nth_page(page,n) ((page) + (n))
232 #endif
233
234 /* to align the pointer to the (next) page boundary */
235 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
236
237 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
238 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
239
240 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
241
242 void setup_initial_init_mm(void *start_code, void *end_code,
243 void *end_data, void *brk);
244
245 /*
246 * Linux kernel virtual memory manager primitives.
247 * The idea being to have a "virtual" mm in the same way
248 * we have a virtual fs - giving a cleaner interface to the
249 * mm details, and allowing different kinds of memory mappings
250 * (from shared memory to executable loading to arbitrary
251 * mmap() functions).
252 */
253
254 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
255 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
256 void vm_area_free_no_check(struct vm_area_struct *);
257 void vm_area_free(struct vm_area_struct *);
258
259 #ifndef CONFIG_MMU
260 extern struct rb_root nommu_region_tree;
261 extern struct rw_semaphore nommu_region_sem;
262
263 extern unsigned int kobjsize(const void *objp);
264 #endif
265
266 /*
267 * vm_flags in vm_area_struct, see mm_types.h.
268 * When changing, update also include/trace/events/mmflags.h
269 */
270 #define VM_NONE 0x00000000
271
272 #define VM_READ 0x00000001 /* currently active flags */
273 #define VM_WRITE 0x00000002
274 #define VM_EXEC 0x00000004
275 #define VM_SHARED 0x00000008
276
277 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
278 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
279 #define VM_MAYWRITE 0x00000020
280 #define VM_MAYEXEC 0x00000040
281 #define VM_MAYSHARE 0x00000080
282
283 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
284 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
285 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
286 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
287
288 #define VM_LOCKED 0x00002000
289 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
290
291 /* Used by sys_madvise() */
292 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
293 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
294
295 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
296 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
297 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
298 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
299 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
300 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
301 #define VM_SYNC 0x00800000 /* Synchronous page faults */
302 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
303 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
304 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
305
306 #ifdef CONFIG_MEM_SOFT_DIRTY
307 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
308 #else
309 # define VM_SOFTDIRTY 0
310 #endif
311
312 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
313 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
314 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
315 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
316
317 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
318 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
319 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
320 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
321 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
322 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
323 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
324 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
325 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
326 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
327 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
328 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
329
330 #ifdef CONFIG_ARCH_HAS_PKEYS
331 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
332 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
333 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
334 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
335 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
336 #ifdef CONFIG_PPC
337 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
338 #else
339 # define VM_PKEY_BIT4 0
340 #endif
341 #endif /* CONFIG_ARCH_HAS_PKEYS */
342
343 #if defined(CONFIG_X86)
344 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
345 #elif defined(CONFIG_PPC)
346 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
347 #elif defined(CONFIG_PARISC)
348 # define VM_GROWSUP VM_ARCH_1
349 #elif defined(CONFIG_IA64)
350 # define VM_GROWSUP VM_ARCH_1
351 #elif defined(CONFIG_SPARC64)
352 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
353 # define VM_ARCH_CLEAR VM_SPARC_ADI
354 #elif defined(CONFIG_ARM64)
355 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
356 # define VM_ARCH_CLEAR VM_ARM64_BTI
357 #elif !defined(CONFIG_MMU)
358 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
359 #endif
360
361 #if defined(CONFIG_ARM64_MTE)
362 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
363 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
364 #else
365 # define VM_MTE VM_NONE
366 # define VM_MTE_ALLOWED VM_NONE
367 #endif
368
369 #ifndef VM_GROWSUP
370 # define VM_GROWSUP VM_NONE
371 #endif
372
373 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
374 # define VM_UFFD_MINOR_BIT 37
375 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
376 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
377 # define VM_UFFD_MINOR VM_NONE
378 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
379
380 /* Bits set in the VMA until the stack is in its final location */
381 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
382
383 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
384
385 /* Common data flag combinations */
386 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
387 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
388 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
389 VM_MAYWRITE | VM_MAYEXEC)
390 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
391 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
392
393 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
394 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
395 #endif
396
397 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
398 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
399 #endif
400
401 #ifdef CONFIG_STACK_GROWSUP
402 #define VM_STACK VM_GROWSUP
403 #else
404 #define VM_STACK VM_GROWSDOWN
405 #endif
406
407 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
408
409 /* VMA basic access permission flags */
410 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
411
412
413 /*
414 * Special vmas that are non-mergable, non-mlock()able.
415 */
416 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
417
418 /* This mask prevents VMA from being scanned with khugepaged */
419 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
420
421 /* This mask defines which mm->def_flags a process can inherit its parent */
422 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
423
424 /* This mask is used to clear all the VMA flags used by mlock */
425 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
426
427 /* Arch-specific flags to clear when updating VM flags on protection change */
428 #ifndef VM_ARCH_CLEAR
429 # define VM_ARCH_CLEAR VM_NONE
430 #endif
431 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
432
433 /*
434 * mapping from the currently active vm_flags protection bits (the
435 * low four bits) to a page protection mask..
436 */
437 extern pgprot_t protection_map[16];
438
439 /**
440 * enum fault_flag - Fault flag definitions.
441 * @FAULT_FLAG_WRITE: Fault was a write fault.
442 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
443 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
444 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
445 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
446 * @FAULT_FLAG_TRIED: The fault has been tried once.
447 * @FAULT_FLAG_USER: The fault originated in userspace.
448 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
449 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
450 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
451 * @FAULT_FLAG_SPECULATIVE: The fault is handled without holding the mmap lock.
452 *
453 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
454 * whether we would allow page faults to retry by specifying these two
455 * fault flags correctly. Currently there can be three legal combinations:
456 *
457 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
458 * this is the first try
459 *
460 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
461 * we've already tried at least once
462 *
463 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
464 *
465 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
466 * be used. Note that page faults can be allowed to retry for multiple times,
467 * in which case we'll have an initial fault with flags (a) then later on
468 * continuous faults with flags (b). We should always try to detect pending
469 * signals before a retry to make sure the continuous page faults can still be
470 * interrupted if necessary.
471 */
472 enum fault_flag {
473 FAULT_FLAG_WRITE = 1 << 0,
474 FAULT_FLAG_MKWRITE = 1 << 1,
475 FAULT_FLAG_ALLOW_RETRY = 1 << 2,
476 FAULT_FLAG_RETRY_NOWAIT = 1 << 3,
477 FAULT_FLAG_KILLABLE = 1 << 4,
478 FAULT_FLAG_TRIED = 1 << 5,
479 FAULT_FLAG_USER = 1 << 6,
480 FAULT_FLAG_REMOTE = 1 << 7,
481 FAULT_FLAG_INSTRUCTION = 1 << 8,
482 FAULT_FLAG_INTERRUPTIBLE = 1 << 9,
483 FAULT_FLAG_SPECULATIVE = 1 << 10,
484 };
485
486 /*
487 * The default fault flags that should be used by most of the
488 * arch-specific page fault handlers.
489 */
490 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
491 FAULT_FLAG_KILLABLE | \
492 FAULT_FLAG_INTERRUPTIBLE)
493
494 /**
495 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
496 * @flags: Fault flags.
497 *
498 * This is mostly used for places where we want to try to avoid taking
499 * the mmap_lock for too long a time when waiting for another condition
500 * to change, in which case we can try to be polite to release the
501 * mmap_lock in the first round to avoid potential starvation of other
502 * processes that would also want the mmap_lock.
503 *
504 * Return: true if the page fault allows retry and this is the first
505 * attempt of the fault handling; false otherwise.
506 */
fault_flag_allow_retry_first(enum fault_flag flags)507 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
508 {
509 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
510 (!(flags & FAULT_FLAG_TRIED));
511 }
512
513 #define FAULT_FLAG_TRACE \
514 { FAULT_FLAG_WRITE, "WRITE" }, \
515 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
516 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
517 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
518 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
519 { FAULT_FLAG_TRIED, "TRIED" }, \
520 { FAULT_FLAG_USER, "USER" }, \
521 { FAULT_FLAG_REMOTE, "REMOTE" }, \
522 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
523 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
524 { FAULT_FLAG_SPECULATIVE, "SPECULATIVE" }
525
526 /*
527 * vm_fault is filled by the pagefault handler and passed to the vma's
528 * ->fault function. The vma's ->fault is responsible for returning a bitmask
529 * of VM_FAULT_xxx flags that give details about how the fault was handled.
530 *
531 * MM layer fills up gfp_mask for page allocations but fault handler might
532 * alter it if its implementation requires a different allocation context.
533 *
534 * pgoff should be used in favour of virtual_address, if possible.
535 */
536 struct vm_fault {
537 const struct {
538 struct vm_area_struct *vma; /* Target VMA */
539 gfp_t gfp_mask; /* gfp mask to be used for allocations */
540 pgoff_t pgoff; /* Logical page offset based on vma */
541 unsigned long address; /* Faulting virtual address */
542 };
543 enum fault_flag flags; /* FAULT_FLAG_xxx flags
544 * XXX: should really be 'const' */
545 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
546 unsigned long seq;
547 pmd_t orig_pmd;
548 #endif
549 pmd_t *pmd; /* Pointer to pmd entry matching
550 * the 'address' */
551 pud_t *pud; /* Pointer to pud entry matching
552 * the 'address'
553 */
554 union {
555 pte_t orig_pte; /* Value of PTE at the time of fault */
556 #ifndef CONFIG_SPECULATIVE_PAGE_FAULT
557 pmd_t orig_pmd; /* Value of PMD at the time of fault,
558 * used by PMD fault only.
559 */
560 #endif
561 };
562
563 struct page *cow_page; /* Page handler may use for COW fault */
564 struct page *page; /* ->fault handlers should return a
565 * page here, unless VM_FAULT_NOPAGE
566 * is set (which is also implied by
567 * VM_FAULT_ERROR).
568 */
569 /* These three entries are valid only while holding ptl lock */
570 pte_t *pte; /* Pointer to pte entry matching
571 * the 'address'. NULL if the page
572 * table hasn't been allocated.
573 */
574 spinlock_t *ptl; /* Page table lock.
575 * Protects pte page table if 'pte'
576 * is not NULL, otherwise pmd.
577 */
578 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
579 * vm_ops->map_pages() sets up a page
580 * table from atomic context.
581 * do_fault_around() pre-allocates
582 * page table to avoid allocation from
583 * atomic context.
584 */
585 };
586
587 /* page entry size for vm->huge_fault() */
588 enum page_entry_size {
589 PE_SIZE_PTE = 0,
590 PE_SIZE_PMD,
591 PE_SIZE_PUD,
592 };
593
594 /*
595 * These are the virtual MM functions - opening of an area, closing and
596 * unmapping it (needed to keep files on disk up-to-date etc), pointer
597 * to the functions called when a no-page or a wp-page exception occurs.
598 */
599 struct vm_operations_struct {
600 void (*open)(struct vm_area_struct * area);
601 void (*close)(struct vm_area_struct * area);
602 /* Called any time before splitting to check if it's allowed */
603 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
604 int (*mremap)(struct vm_area_struct *area);
605 /*
606 * Called by mprotect() to make driver-specific permission
607 * checks before mprotect() is finalised. The VMA must not
608 * be modified. Returns 0 if eprotect() can proceed.
609 */
610 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
611 unsigned long end, unsigned long newflags);
612 vm_fault_t (*fault)(struct vm_fault *vmf);
613 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
614 enum page_entry_size pe_size);
615 vm_fault_t (*map_pages)(struct vm_fault *vmf,
616 pgoff_t start_pgoff, pgoff_t end_pgoff);
617 unsigned long (*pagesize)(struct vm_area_struct * area);
618
619 /* notification that a previously read-only page is about to become
620 * writable, if an error is returned it will cause a SIGBUS */
621 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
622
623 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
624 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
625
626 /* called by access_process_vm when get_user_pages() fails, typically
627 * for use by special VMAs. See also generic_access_phys() for a generic
628 * implementation useful for any iomem mapping.
629 */
630 int (*access)(struct vm_area_struct *vma, unsigned long addr,
631 void *buf, int len, int write);
632
633 /* Called by the /proc/PID/maps code to ask the vma whether it
634 * has a special name. Returning non-NULL will also cause this
635 * vma to be dumped unconditionally. */
636 const char *(*name)(struct vm_area_struct *vma);
637
638 #ifdef CONFIG_NUMA
639 /*
640 * set_policy() op must add a reference to any non-NULL @new mempolicy
641 * to hold the policy upon return. Caller should pass NULL @new to
642 * remove a policy and fall back to surrounding context--i.e. do not
643 * install a MPOL_DEFAULT policy, nor the task or system default
644 * mempolicy.
645 */
646 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
647
648 /*
649 * get_policy() op must add reference [mpol_get()] to any policy at
650 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
651 * in mm/mempolicy.c will do this automatically.
652 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
653 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
654 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
655 * must return NULL--i.e., do not "fallback" to task or system default
656 * policy.
657 */
658 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
659 unsigned long addr);
660 #endif
661 /*
662 * Called by vm_normal_page() for special PTEs to find the
663 * page for @addr. This is useful if the default behavior
664 * (using pte_page()) would not find the correct page.
665 */
666 struct page *(*find_special_page)(struct vm_area_struct *vma,
667 unsigned long addr);
668 /*
669 * speculative indicates that the vm_operations support
670 * speculative page faults. This allows ->fault and ->map_pages
671 * to be called with FAULT_FLAG_SPECULATIVE set; such calls will
672 * run within an rcu read locked section and with mmap lock not held.
673 */
674 bool speculative;
675
676 ANDROID_KABI_RESERVE(1);
677 ANDROID_KABI_RESERVE(2);
678 ANDROID_KABI_RESERVE(3);
679 ANDROID_KABI_RESERVE(4);
680 };
681
INIT_VMA(struct vm_area_struct * vma)682 static inline void INIT_VMA(struct vm_area_struct *vma)
683 {
684 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
685 /* Start from 0 to use atomic_inc_unless_negative() in get_vma() */
686 atomic_set(&vma->file_ref_count, 0);
687 #endif
688 INIT_LIST_HEAD(&vma->anon_vma_chain);
689 }
690
vma_init(struct vm_area_struct * vma,struct mm_struct * mm)691 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
692 {
693 static const struct vm_operations_struct dummy_vm_ops = {};
694
695 memset(vma, 0, sizeof(*vma));
696 vma->vm_mm = mm;
697 vma->vm_ops = &dummy_vm_ops;
698 INIT_VMA(vma);
699 }
700
vma_set_anonymous(struct vm_area_struct * vma)701 static inline void vma_set_anonymous(struct vm_area_struct *vma)
702 {
703 vma->vm_ops = NULL;
704 }
705
vma_is_anonymous(struct vm_area_struct * vma)706 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
707 {
708 return !vma->vm_ops;
709 }
710
vma_is_temporary_stack(struct vm_area_struct * vma)711 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
712 {
713 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
714
715 if (!maybe_stack)
716 return false;
717
718 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
719 VM_STACK_INCOMPLETE_SETUP)
720 return true;
721
722 return false;
723 }
724
vma_is_foreign(struct vm_area_struct * vma)725 static inline bool vma_is_foreign(struct vm_area_struct *vma)
726 {
727 if (!current->mm)
728 return true;
729
730 if (current->mm != vma->vm_mm)
731 return true;
732
733 return false;
734 }
735
vma_is_accessible(struct vm_area_struct * vma)736 static inline bool vma_is_accessible(struct vm_area_struct *vma)
737 {
738 return vma->vm_flags & VM_ACCESS_FLAGS;
739 }
740
vma_can_speculate(struct vm_area_struct * vma,unsigned int flags)741 static inline bool vma_can_speculate(struct vm_area_struct *vma,
742 unsigned int flags)
743 {
744 if (vma_is_anonymous(vma))
745 return true;
746 if (!vma->vm_ops->speculative)
747 return false;
748 if (!(flags & FAULT_FLAG_WRITE))
749 return true;
750 if (!(vma->vm_flags & VM_SHARED))
751 return true;
752 return false;
753 }
754
755 #ifdef CONFIG_SHMEM
756 /*
757 * The vma_is_shmem is not inline because it is used only by slow
758 * paths in userfault.
759 */
760 bool vma_is_shmem(struct vm_area_struct *vma);
761 #else
vma_is_shmem(struct vm_area_struct * vma)762 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
763 #endif
764
765 int vma_is_stack_for_current(struct vm_area_struct *vma);
766
767 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
768 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
769
770 struct mmu_gather;
771 struct inode;
772
773 #include <linux/huge_mm.h>
774
775 /*
776 * Methods to modify the page usage count.
777 *
778 * What counts for a page usage:
779 * - cache mapping (page->mapping)
780 * - private data (page->private)
781 * - page mapped in a task's page tables, each mapping
782 * is counted separately
783 *
784 * Also, many kernel routines increase the page count before a critical
785 * routine so they can be sure the page doesn't go away from under them.
786 */
787
788 /*
789 * Drop a ref, return true if the refcount fell to zero (the page has no users)
790 */
put_page_testzero(struct page * page)791 static inline int put_page_testzero(struct page *page)
792 {
793 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
794 return page_ref_dec_and_test(page);
795 }
796
797 /*
798 * Try to grab a ref unless the page has a refcount of zero, return false if
799 * that is the case.
800 * This can be called when MMU is off so it must not access
801 * any of the virtual mappings.
802 */
get_page_unless_zero(struct page * page)803 static inline int get_page_unless_zero(struct page *page)
804 {
805 return page_ref_add_unless(page, 1, 0);
806 }
807
808 extern int page_is_ram(unsigned long pfn);
809
810 enum {
811 REGION_INTERSECTS,
812 REGION_DISJOINT,
813 REGION_MIXED,
814 };
815
816 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
817 unsigned long desc);
818
819 /* Support for virtually mapped pages */
820 struct page *vmalloc_to_page(const void *addr);
821 unsigned long vmalloc_to_pfn(const void *addr);
822
823 /*
824 * Determine if an address is within the vmalloc range
825 *
826 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
827 * is no special casing required.
828 */
829
830 #ifndef is_ioremap_addr
831 #define is_ioremap_addr(x) is_vmalloc_addr(x)
832 #endif
833
834 #ifdef CONFIG_MMU
835 extern bool is_vmalloc_addr(const void *x);
836 extern int is_vmalloc_or_module_addr(const void *x);
837 #else
is_vmalloc_addr(const void * x)838 static inline bool is_vmalloc_addr(const void *x)
839 {
840 return false;
841 }
is_vmalloc_or_module_addr(const void * x)842 static inline int is_vmalloc_or_module_addr(const void *x)
843 {
844 return 0;
845 }
846 #endif
847
848 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
kvmalloc(size_t size,gfp_t flags)849 static inline void *kvmalloc(size_t size, gfp_t flags)
850 {
851 return kvmalloc_node(size, flags, NUMA_NO_NODE);
852 }
kvzalloc_node(size_t size,gfp_t flags,int node)853 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
854 {
855 return kvmalloc_node(size, flags | __GFP_ZERO, node);
856 }
kvzalloc(size_t size,gfp_t flags)857 static inline void *kvzalloc(size_t size, gfp_t flags)
858 {
859 return kvmalloc(size, flags | __GFP_ZERO);
860 }
861
kvmalloc_array(size_t n,size_t size,gfp_t flags)862 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
863 {
864 size_t bytes;
865
866 if (unlikely(check_mul_overflow(n, size, &bytes)))
867 return NULL;
868
869 return kvmalloc(bytes, flags);
870 }
871
kvcalloc(size_t n,size_t size,gfp_t flags)872 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
873 {
874 return kvmalloc_array(n, size, flags | __GFP_ZERO);
875 }
876
877 extern void *kvrealloc(const void *p, size_t oldsize, size_t newsize,
878 gfp_t flags);
879 extern void kvfree(const void *addr);
880 extern void kvfree_sensitive(const void *addr, size_t len);
881
head_compound_mapcount(struct page * head)882 static inline int head_compound_mapcount(struct page *head)
883 {
884 return atomic_read(compound_mapcount_ptr(head)) + 1;
885 }
886
887 /*
888 * Mapcount of compound page as a whole, does not include mapped sub-pages.
889 *
890 * Must be called only for compound pages or any their tail sub-pages.
891 */
compound_mapcount(struct page * page)892 static inline int compound_mapcount(struct page *page)
893 {
894 VM_BUG_ON_PAGE(!PageCompound(page), page);
895 page = compound_head(page);
896 return head_compound_mapcount(page);
897 }
898
899 /*
900 * The atomic page->_mapcount, starts from -1: so that transitions
901 * both from it and to it can be tracked, using atomic_inc_and_test
902 * and atomic_add_negative(-1).
903 */
page_mapcount_reset(struct page * page)904 static inline void page_mapcount_reset(struct page *page)
905 {
906 atomic_set(&(page)->_mapcount, -1);
907 }
908
909 int __page_mapcount(struct page *page);
910
911 /*
912 * Mapcount of 0-order page; when compound sub-page, includes
913 * compound_mapcount().
914 *
915 * Result is undefined for pages which cannot be mapped into userspace.
916 * For example SLAB or special types of pages. See function page_has_type().
917 * They use this place in struct page differently.
918 */
page_mapcount(struct page * page)919 static inline int page_mapcount(struct page *page)
920 {
921 if (unlikely(PageCompound(page)))
922 return __page_mapcount(page);
923 return atomic_read(&page->_mapcount) + 1;
924 }
925
926 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
927 int total_mapcount(struct page *page);
928 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
929 #else
total_mapcount(struct page * page)930 static inline int total_mapcount(struct page *page)
931 {
932 return page_mapcount(page);
933 }
page_trans_huge_mapcount(struct page * page,int * total_mapcount)934 static inline int page_trans_huge_mapcount(struct page *page,
935 int *total_mapcount)
936 {
937 int mapcount = page_mapcount(page);
938 if (total_mapcount)
939 *total_mapcount = mapcount;
940 return mapcount;
941 }
942 #endif
943
virt_to_head_page(const void * x)944 static inline struct page *virt_to_head_page(const void *x)
945 {
946 struct page *page = virt_to_page(x);
947
948 return compound_head(page);
949 }
950
951 void __put_page(struct page *page);
952
953 void put_pages_list(struct list_head *pages);
954
955 void split_page(struct page *page, unsigned int order);
956 void copy_huge_page(struct page *dst, struct page *src);
957
958 /*
959 * Compound pages have a destructor function. Provide a
960 * prototype for that function and accessor functions.
961 * These are _only_ valid on the head of a compound page.
962 */
963 typedef void compound_page_dtor(struct page *);
964
965 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
966 enum compound_dtor_id {
967 NULL_COMPOUND_DTOR,
968 COMPOUND_PAGE_DTOR,
969 #ifdef CONFIG_HUGETLB_PAGE
970 HUGETLB_PAGE_DTOR,
971 #endif
972 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
973 TRANSHUGE_PAGE_DTOR,
974 #endif
975 NR_COMPOUND_DTORS,
976 };
977 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
978
set_compound_page_dtor(struct page * page,enum compound_dtor_id compound_dtor)979 static inline void set_compound_page_dtor(struct page *page,
980 enum compound_dtor_id compound_dtor)
981 {
982 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
983 page[1].compound_dtor = compound_dtor;
984 }
985
destroy_compound_page(struct page * page)986 static inline void destroy_compound_page(struct page *page)
987 {
988 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
989 compound_page_dtors[page[1].compound_dtor](page);
990 }
991
compound_order(struct page * page)992 static inline unsigned int compound_order(struct page *page)
993 {
994 if (!PageHead(page))
995 return 0;
996 return page[1].compound_order;
997 }
998
hpage_pincount_available(struct page * page)999 static inline bool hpage_pincount_available(struct page *page)
1000 {
1001 /*
1002 * Can the page->hpage_pinned_refcount field be used? That field is in
1003 * the 3rd page of the compound page, so the smallest (2-page) compound
1004 * pages cannot support it.
1005 */
1006 page = compound_head(page);
1007 return PageCompound(page) && compound_order(page) > 1;
1008 }
1009
head_compound_pincount(struct page * head)1010 static inline int head_compound_pincount(struct page *head)
1011 {
1012 return atomic_read(compound_pincount_ptr(head));
1013 }
1014
compound_pincount(struct page * page)1015 static inline int compound_pincount(struct page *page)
1016 {
1017 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
1018 page = compound_head(page);
1019 return head_compound_pincount(page);
1020 }
1021
set_compound_order(struct page * page,unsigned int order)1022 static inline void set_compound_order(struct page *page, unsigned int order)
1023 {
1024 page[1].compound_order = order;
1025 page[1].compound_nr = 1U << order;
1026 }
1027
1028 /* Returns the number of pages in this potentially compound page. */
compound_nr(struct page * page)1029 static inline unsigned long compound_nr(struct page *page)
1030 {
1031 if (!PageHead(page))
1032 return 1;
1033 return page[1].compound_nr;
1034 }
1035
1036 /* Returns the number of bytes in this potentially compound page. */
page_size(struct page * page)1037 static inline unsigned long page_size(struct page *page)
1038 {
1039 return PAGE_SIZE << compound_order(page);
1040 }
1041
1042 /* Returns the number of bits needed for the number of bytes in a page */
page_shift(struct page * page)1043 static inline unsigned int page_shift(struct page *page)
1044 {
1045 return PAGE_SHIFT + compound_order(page);
1046 }
1047
1048 void free_compound_page(struct page *page);
1049
1050 #ifdef CONFIG_MMU
1051 /*
1052 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1053 * servicing faults for write access. In the normal case, do always want
1054 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1055 * that do not have writing enabled, when used by access_process_vm.
1056 */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)1057 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1058 {
1059 if (likely(vma->vm_flags & VM_WRITE))
1060 pte = pte_mkwrite(pte);
1061 return pte;
1062 }
1063
1064 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1065 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
1066
1067 vm_fault_t finish_fault(struct vm_fault *vmf);
1068 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1069 #endif
1070
1071 /*
1072 * Multiple processes may "see" the same page. E.g. for untouched
1073 * mappings of /dev/null, all processes see the same page full of
1074 * zeroes, and text pages of executables and shared libraries have
1075 * only one copy in memory, at most, normally.
1076 *
1077 * For the non-reserved pages, page_count(page) denotes a reference count.
1078 * page_count() == 0 means the page is free. page->lru is then used for
1079 * freelist management in the buddy allocator.
1080 * page_count() > 0 means the page has been allocated.
1081 *
1082 * Pages are allocated by the slab allocator in order to provide memory
1083 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1084 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1085 * unless a particular usage is carefully commented. (the responsibility of
1086 * freeing the kmalloc memory is the caller's, of course).
1087 *
1088 * A page may be used by anyone else who does a __get_free_page().
1089 * In this case, page_count still tracks the references, and should only
1090 * be used through the normal accessor functions. The top bits of page->flags
1091 * and page->virtual store page management information, but all other fields
1092 * are unused and could be used privately, carefully. The management of this
1093 * page is the responsibility of the one who allocated it, and those who have
1094 * subsequently been given references to it.
1095 *
1096 * The other pages (we may call them "pagecache pages") are completely
1097 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1098 * The following discussion applies only to them.
1099 *
1100 * A pagecache page contains an opaque `private' member, which belongs to the
1101 * page's address_space. Usually, this is the address of a circular list of
1102 * the page's disk buffers. PG_private must be set to tell the VM to call
1103 * into the filesystem to release these pages.
1104 *
1105 * A page may belong to an inode's memory mapping. In this case, page->mapping
1106 * is the pointer to the inode, and page->index is the file offset of the page,
1107 * in units of PAGE_SIZE.
1108 *
1109 * If pagecache pages are not associated with an inode, they are said to be
1110 * anonymous pages. These may become associated with the swapcache, and in that
1111 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1112 *
1113 * In either case (swapcache or inode backed), the pagecache itself holds one
1114 * reference to the page. Setting PG_private should also increment the
1115 * refcount. The each user mapping also has a reference to the page.
1116 *
1117 * The pagecache pages are stored in a per-mapping radix tree, which is
1118 * rooted at mapping->i_pages, and indexed by offset.
1119 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1120 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1121 *
1122 * All pagecache pages may be subject to I/O:
1123 * - inode pages may need to be read from disk,
1124 * - inode pages which have been modified and are MAP_SHARED may need
1125 * to be written back to the inode on disk,
1126 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1127 * modified may need to be swapped out to swap space and (later) to be read
1128 * back into memory.
1129 */
1130
1131 /*
1132 * The zone field is never updated after free_area_init_core()
1133 * sets it, so none of the operations on it need to be atomic.
1134 */
1135
1136 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1137 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1138 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1139 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
1140 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
1141 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1142 #define LRU_GEN_PGOFF (KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
1143 #define LRU_REFS_PGOFF (LRU_GEN_PGOFF - LRU_REFS_WIDTH)
1144
1145 /*
1146 * Define the bit shifts to access each section. For non-existent
1147 * sections we define the shift as 0; that plus a 0 mask ensures
1148 * the compiler will optimise away reference to them.
1149 */
1150 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1151 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1152 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
1153 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1154 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1155
1156 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1157 #ifdef NODE_NOT_IN_PAGE_FLAGS
1158 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
1159 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1160 SECTIONS_PGOFF : ZONES_PGOFF)
1161 #else
1162 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
1163 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1164 NODES_PGOFF : ZONES_PGOFF)
1165 #endif
1166
1167 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1168
1169 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1170 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1171 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
1172 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
1173 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
1174 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
1175
page_zonenum(const struct page * page)1176 static inline enum zone_type page_zonenum(const struct page *page)
1177 {
1178 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1179 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1180 }
1181
1182 #ifdef CONFIG_ZONE_DEVICE
is_zone_device_page(const struct page * page)1183 static inline bool is_zone_device_page(const struct page *page)
1184 {
1185 return page_zonenum(page) == ZONE_DEVICE;
1186 }
1187 extern void memmap_init_zone_device(struct zone *, unsigned long,
1188 unsigned long, struct dev_pagemap *);
1189 #else
is_zone_device_page(const struct page * page)1190 static inline bool is_zone_device_page(const struct page *page)
1191 {
1192 return false;
1193 }
1194 #endif
1195
is_zone_movable_page(const struct page * page)1196 static inline bool is_zone_movable_page(const struct page *page)
1197 {
1198 return page_zonenum(page) == ZONE_MOVABLE;
1199 }
1200
1201 #ifdef CONFIG_DEV_PAGEMAP_OPS
1202 void free_devmap_managed_page(struct page *page);
1203 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1204
page_is_devmap_managed(struct page * page)1205 static inline bool page_is_devmap_managed(struct page *page)
1206 {
1207 if (!static_branch_unlikely(&devmap_managed_key))
1208 return false;
1209 if (!is_zone_device_page(page))
1210 return false;
1211 switch (page->pgmap->type) {
1212 case MEMORY_DEVICE_PRIVATE:
1213 case MEMORY_DEVICE_FS_DAX:
1214 return true;
1215 default:
1216 break;
1217 }
1218 return false;
1219 }
1220
1221 void put_devmap_managed_page(struct page *page);
1222
1223 #else /* CONFIG_DEV_PAGEMAP_OPS */
page_is_devmap_managed(struct page * page)1224 static inline bool page_is_devmap_managed(struct page *page)
1225 {
1226 return false;
1227 }
1228
put_devmap_managed_page(struct page * page)1229 static inline void put_devmap_managed_page(struct page *page)
1230 {
1231 }
1232 #endif /* CONFIG_DEV_PAGEMAP_OPS */
1233
is_device_private_page(const struct page * page)1234 static inline bool is_device_private_page(const struct page *page)
1235 {
1236 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1237 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1238 is_zone_device_page(page) &&
1239 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1240 }
1241
is_pci_p2pdma_page(const struct page * page)1242 static inline bool is_pci_p2pdma_page(const struct page *page)
1243 {
1244 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1245 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1246 is_zone_device_page(page) &&
1247 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1248 }
1249
1250 /* 127: arbitrary random number, small enough to assemble well */
1251 #define page_ref_zero_or_close_to_overflow(page) \
1252 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1253
get_page(struct page * page)1254 static inline void get_page(struct page *page)
1255 {
1256 page = compound_head(page);
1257 /*
1258 * Getting a normal page or the head of a compound page
1259 * requires to already have an elevated page->_refcount.
1260 */
1261 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1262 page_ref_inc(page);
1263 }
1264
1265 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1266 struct page *try_grab_compound_head(struct page *page, int refs,
1267 unsigned int flags);
1268
1269
try_get_page(struct page * page)1270 static inline __must_check bool try_get_page(struct page *page)
1271 {
1272 page = compound_head(page);
1273 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1274 return false;
1275 page_ref_inc(page);
1276 return true;
1277 }
1278
put_page(struct page * page)1279 static inline void put_page(struct page *page)
1280 {
1281 page = compound_head(page);
1282
1283 /*
1284 * For devmap managed pages we need to catch refcount transition from
1285 * 2 to 1, when refcount reach one it means the page is free and we
1286 * need to inform the device driver through callback. See
1287 * include/linux/memremap.h and HMM for details.
1288 */
1289 if (page_is_devmap_managed(page)) {
1290 put_devmap_managed_page(page);
1291 return;
1292 }
1293
1294 if (put_page_testzero(page))
1295 __put_page(page);
1296 }
1297
1298 /*
1299 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1300 * the page's refcount so that two separate items are tracked: the original page
1301 * reference count, and also a new count of how many pin_user_pages() calls were
1302 * made against the page. ("gup-pinned" is another term for the latter).
1303 *
1304 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1305 * distinct from normal pages. As such, the unpin_user_page() call (and its
1306 * variants) must be used in order to release gup-pinned pages.
1307 *
1308 * Choice of value:
1309 *
1310 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1311 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1312 * simpler, due to the fact that adding an even power of two to the page
1313 * refcount has the effect of using only the upper N bits, for the code that
1314 * counts up using the bias value. This means that the lower bits are left for
1315 * the exclusive use of the original code that increments and decrements by one
1316 * (or at least, by much smaller values than the bias value).
1317 *
1318 * Of course, once the lower bits overflow into the upper bits (and this is
1319 * OK, because subtraction recovers the original values), then visual inspection
1320 * no longer suffices to directly view the separate counts. However, for normal
1321 * applications that don't have huge page reference counts, this won't be an
1322 * issue.
1323 *
1324 * Locking: the lockless algorithm described in page_cache_get_speculative()
1325 * and page_cache_gup_pin_speculative() provides safe operation for
1326 * get_user_pages and page_mkclean and other calls that race to set up page
1327 * table entries.
1328 */
1329 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1330
1331 void unpin_user_page(struct page *page);
1332 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1333 bool make_dirty);
1334 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1335 bool make_dirty);
1336 void unpin_user_pages(struct page **pages, unsigned long npages);
1337
1338 /**
1339 * page_maybe_dma_pinned - Report if a page is pinned for DMA.
1340 * @page: The page.
1341 *
1342 * This function checks if a page has been pinned via a call to
1343 * a function in the pin_user_pages() family.
1344 *
1345 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1346 * because it means "definitely not pinned for DMA", but true means "probably
1347 * pinned for DMA, but possibly a false positive due to having at least
1348 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1349 *
1350 * False positives are OK, because: a) it's unlikely for a page to get that many
1351 * refcounts, and b) all the callers of this routine are expected to be able to
1352 * deal gracefully with a false positive.
1353 *
1354 * For huge pages, the result will be exactly correct. That's because we have
1355 * more tracking data available: the 3rd struct page in the compound page is
1356 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1357 * scheme).
1358 *
1359 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1360 *
1361 * Return: True, if it is likely that the page has been "dma-pinned".
1362 * False, if the page is definitely not dma-pinned.
1363 */
page_maybe_dma_pinned(struct page * page)1364 static inline bool page_maybe_dma_pinned(struct page *page)
1365 {
1366 if (hpage_pincount_available(page))
1367 return compound_pincount(page) > 0;
1368
1369 /*
1370 * page_ref_count() is signed. If that refcount overflows, then
1371 * page_ref_count() returns a negative value, and callers will avoid
1372 * further incrementing the refcount.
1373 *
1374 * Here, for that overflow case, use the signed bit to count a little
1375 * bit higher via unsigned math, and thus still get an accurate result.
1376 */
1377 return ((unsigned int)page_ref_count(compound_head(page))) >=
1378 GUP_PIN_COUNTING_BIAS;
1379 }
1380
is_cow_mapping(vm_flags_t flags)1381 static inline bool is_cow_mapping(vm_flags_t flags)
1382 {
1383 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1384 }
1385
1386 /*
1387 * This should most likely only be called during fork() to see whether we
1388 * should break the cow immediately for a page on the src mm.
1389 */
page_needs_cow_for_dma(struct vm_area_struct * vma,struct page * page)1390 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1391 struct page *page)
1392 {
1393 if (!is_cow_mapping(vma->vm_flags))
1394 return false;
1395
1396 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1397 return false;
1398
1399 return page_maybe_dma_pinned(page);
1400 }
1401
1402 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1403 #define SECTION_IN_PAGE_FLAGS
1404 #endif
1405
1406 /*
1407 * The identification function is mainly used by the buddy allocator for
1408 * determining if two pages could be buddies. We are not really identifying
1409 * the zone since we could be using the section number id if we do not have
1410 * node id available in page flags.
1411 * We only guarantee that it will return the same value for two combinable
1412 * pages in a zone.
1413 */
page_zone_id(struct page * page)1414 static inline int page_zone_id(struct page *page)
1415 {
1416 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1417 }
1418
1419 #ifdef NODE_NOT_IN_PAGE_FLAGS
1420 extern int page_to_nid(const struct page *page);
1421 #else
page_to_nid(const struct page * page)1422 static inline int page_to_nid(const struct page *page)
1423 {
1424 struct page *p = (struct page *)page;
1425
1426 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1427 }
1428 #endif
1429
1430 #ifdef CONFIG_NUMA_BALANCING
cpu_pid_to_cpupid(int cpu,int pid)1431 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1432 {
1433 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1434 }
1435
cpupid_to_pid(int cpupid)1436 static inline int cpupid_to_pid(int cpupid)
1437 {
1438 return cpupid & LAST__PID_MASK;
1439 }
1440
cpupid_to_cpu(int cpupid)1441 static inline int cpupid_to_cpu(int cpupid)
1442 {
1443 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1444 }
1445
cpupid_to_nid(int cpupid)1446 static inline int cpupid_to_nid(int cpupid)
1447 {
1448 return cpu_to_node(cpupid_to_cpu(cpupid));
1449 }
1450
cpupid_pid_unset(int cpupid)1451 static inline bool cpupid_pid_unset(int cpupid)
1452 {
1453 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1454 }
1455
cpupid_cpu_unset(int cpupid)1456 static inline bool cpupid_cpu_unset(int cpupid)
1457 {
1458 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1459 }
1460
__cpupid_match_pid(pid_t task_pid,int cpupid)1461 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1462 {
1463 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1464 }
1465
1466 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1467 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
page_cpupid_xchg_last(struct page * page,int cpupid)1468 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1469 {
1470 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1471 }
1472
page_cpupid_last(struct page * page)1473 static inline int page_cpupid_last(struct page *page)
1474 {
1475 return page->_last_cpupid;
1476 }
page_cpupid_reset_last(struct page * page)1477 static inline void page_cpupid_reset_last(struct page *page)
1478 {
1479 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1480 }
1481 #else
page_cpupid_last(struct page * page)1482 static inline int page_cpupid_last(struct page *page)
1483 {
1484 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1485 }
1486
1487 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1488
page_cpupid_reset_last(struct page * page)1489 static inline void page_cpupid_reset_last(struct page *page)
1490 {
1491 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1492 }
1493 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1494 #else /* !CONFIG_NUMA_BALANCING */
page_cpupid_xchg_last(struct page * page,int cpupid)1495 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1496 {
1497 return page_to_nid(page); /* XXX */
1498 }
1499
page_cpupid_last(struct page * page)1500 static inline int page_cpupid_last(struct page *page)
1501 {
1502 return page_to_nid(page); /* XXX */
1503 }
1504
cpupid_to_nid(int cpupid)1505 static inline int cpupid_to_nid(int cpupid)
1506 {
1507 return -1;
1508 }
1509
cpupid_to_pid(int cpupid)1510 static inline int cpupid_to_pid(int cpupid)
1511 {
1512 return -1;
1513 }
1514
cpupid_to_cpu(int cpupid)1515 static inline int cpupid_to_cpu(int cpupid)
1516 {
1517 return -1;
1518 }
1519
cpu_pid_to_cpupid(int nid,int pid)1520 static inline int cpu_pid_to_cpupid(int nid, int pid)
1521 {
1522 return -1;
1523 }
1524
cpupid_pid_unset(int cpupid)1525 static inline bool cpupid_pid_unset(int cpupid)
1526 {
1527 return true;
1528 }
1529
page_cpupid_reset_last(struct page * page)1530 static inline void page_cpupid_reset_last(struct page *page)
1531 {
1532 }
1533
cpupid_match_pid(struct task_struct * task,int cpupid)1534 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1535 {
1536 return false;
1537 }
1538 #endif /* CONFIG_NUMA_BALANCING */
1539
1540 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1541
1542 /*
1543 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1544 * setting tags for all pages to native kernel tag value 0xff, as the default
1545 * value 0x00 maps to 0xff.
1546 */
1547
page_kasan_tag(const struct page * page)1548 static inline u8 page_kasan_tag(const struct page *page)
1549 {
1550 u8 tag = 0xff;
1551
1552 if (kasan_enabled()) {
1553 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1554 tag ^= 0xff;
1555 }
1556
1557 return tag;
1558 }
1559
page_kasan_tag_set(struct page * page,u8 tag)1560 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1561 {
1562 unsigned long old_flags, flags;
1563
1564 if (!kasan_enabled())
1565 return;
1566
1567 tag ^= 0xff;
1568 old_flags = READ_ONCE(page->flags);
1569 do {
1570 flags = old_flags;
1571 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1572 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1573 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1574 }
1575
page_kasan_tag_reset(struct page * page)1576 static inline void page_kasan_tag_reset(struct page *page)
1577 {
1578 if (kasan_enabled())
1579 page_kasan_tag_set(page, 0xff);
1580 }
1581
1582 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1583
page_kasan_tag(const struct page * page)1584 static inline u8 page_kasan_tag(const struct page *page)
1585 {
1586 return 0xff;
1587 }
1588
page_kasan_tag_set(struct page * page,u8 tag)1589 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
page_kasan_tag_reset(struct page * page)1590 static inline void page_kasan_tag_reset(struct page *page) { }
1591
1592 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1593
page_zone(const struct page * page)1594 static inline struct zone *page_zone(const struct page *page)
1595 {
1596 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1597 }
1598
page_pgdat(const struct page * page)1599 static inline pg_data_t *page_pgdat(const struct page *page)
1600 {
1601 return NODE_DATA(page_to_nid(page));
1602 }
1603
1604 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)1605 static inline void set_page_section(struct page *page, unsigned long section)
1606 {
1607 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1608 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1609 }
1610
page_to_section(const struct page * page)1611 static inline unsigned long page_to_section(const struct page *page)
1612 {
1613 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1614 }
1615 #endif
1616
1617 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1618 #ifdef CONFIG_MIGRATION
is_pinnable_page(struct page * page)1619 static inline bool is_pinnable_page(struct page *page)
1620 {
1621 #ifdef CONFIG_CMA
1622 int mt = get_pageblock_migratetype(page);
1623
1624 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1625 return false;
1626 #endif
1627 return !is_zone_movable_page(page) || is_zero_pfn(page_to_pfn(page));
1628 }
1629 #else
is_pinnable_page(struct page * page)1630 static inline bool is_pinnable_page(struct page *page)
1631 {
1632 return true;
1633 }
1634 #endif
1635
set_page_zone(struct page * page,enum zone_type zone)1636 static inline void set_page_zone(struct page *page, enum zone_type zone)
1637 {
1638 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1639 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1640 }
1641
set_page_node(struct page * page,unsigned long node)1642 static inline void set_page_node(struct page *page, unsigned long node)
1643 {
1644 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1645 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1646 }
1647
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)1648 static inline void set_page_links(struct page *page, enum zone_type zone,
1649 unsigned long node, unsigned long pfn)
1650 {
1651 set_page_zone(page, zone);
1652 set_page_node(page, node);
1653 #ifdef SECTION_IN_PAGE_FLAGS
1654 set_page_section(page, pfn_to_section_nr(pfn));
1655 #endif
1656 }
1657
1658 /*
1659 * Some inline functions in vmstat.h depend on page_zone()
1660 */
1661 #include <linux/vmstat.h>
1662
lowmem_page_address(const struct page * page)1663 static __always_inline void *lowmem_page_address(const struct page *page)
1664 {
1665 return page_to_virt(page);
1666 }
1667
1668 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1669 #define HASHED_PAGE_VIRTUAL
1670 #endif
1671
1672 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)1673 static inline void *page_address(const struct page *page)
1674 {
1675 return page->virtual;
1676 }
set_page_address(struct page * page,void * address)1677 static inline void set_page_address(struct page *page, void *address)
1678 {
1679 page->virtual = address;
1680 }
1681 #define page_address_init() do { } while(0)
1682 #endif
1683
1684 #if defined(HASHED_PAGE_VIRTUAL)
1685 void *page_address(const struct page *page);
1686 void set_page_address(struct page *page, void *virtual);
1687 void page_address_init(void);
1688 #endif
1689
1690 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1691 #define page_address(page) lowmem_page_address(page)
1692 #define set_page_address(page, address) do { } while(0)
1693 #define page_address_init() do { } while(0)
1694 #endif
1695
1696 extern void *page_rmapping(struct page *page);
1697 extern struct anon_vma *page_anon_vma(struct page *page);
1698 extern struct address_space *page_mapping(struct page *page);
1699
1700 extern struct address_space *__page_file_mapping(struct page *);
1701
1702 static inline
page_file_mapping(struct page * page)1703 struct address_space *page_file_mapping(struct page *page)
1704 {
1705 if (unlikely(PageSwapCache(page)))
1706 return __page_file_mapping(page);
1707
1708 return page->mapping;
1709 }
1710
1711 extern pgoff_t __page_file_index(struct page *page);
1712
1713 /*
1714 * Return the pagecache index of the passed page. Regular pagecache pages
1715 * use ->index whereas swapcache pages use swp_offset(->private)
1716 */
page_index(struct page * page)1717 static inline pgoff_t page_index(struct page *page)
1718 {
1719 if (unlikely(PageSwapCache(page)))
1720 return __page_file_index(page);
1721 return page->index;
1722 }
1723
1724 bool page_mapped(struct page *page);
1725 struct address_space *page_mapping(struct page *page);
1726
1727 /*
1728 * Return true only if the page has been allocated with
1729 * ALLOC_NO_WATERMARKS and the low watermark was not
1730 * met implying that the system is under some pressure.
1731 */
page_is_pfmemalloc(const struct page * page)1732 static inline bool page_is_pfmemalloc(const struct page *page)
1733 {
1734 /*
1735 * lru.next has bit 1 set if the page is allocated from the
1736 * pfmemalloc reserves. Callers may simply overwrite it if
1737 * they do not need to preserve that information.
1738 */
1739 return (uintptr_t)page->lru.next & BIT(1);
1740 }
1741
1742 /*
1743 * Only to be called by the page allocator on a freshly allocated
1744 * page.
1745 */
set_page_pfmemalloc(struct page * page)1746 static inline void set_page_pfmemalloc(struct page *page)
1747 {
1748 page->lru.next = (void *)BIT(1);
1749 }
1750
clear_page_pfmemalloc(struct page * page)1751 static inline void clear_page_pfmemalloc(struct page *page)
1752 {
1753 page->lru.next = NULL;
1754 }
1755
1756 /*
1757 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1758 */
1759 extern void pagefault_out_of_memory(void);
1760
1761 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1762 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
1763
1764 /*
1765 * Flags passed to show_mem() and show_free_areas() to suppress output in
1766 * various contexts.
1767 */
1768 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1769
1770 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1771
1772 #ifdef CONFIG_MMU
1773 extern bool can_do_mlock(void);
1774 #else
can_do_mlock(void)1775 static inline bool can_do_mlock(void) { return false; }
1776 #endif
1777 extern int user_shm_lock(size_t, struct ucounts *);
1778 extern void user_shm_unlock(size_t, struct ucounts *);
1779
1780 /*
1781 * Parameter block passed down to zap_pte_range in exceptional cases.
1782 */
1783 struct zap_details {
1784 struct address_space *check_mapping; /* Check page->mapping if set */
1785 pgoff_t first_index; /* Lowest page->index to unmap */
1786 pgoff_t last_index; /* Highest page->index to unmap */
1787 struct page *single_page; /* Locked page to be unmapped */
1788 };
1789
1790 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1791 pte_t pte);
1792 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1793 pmd_t pmd);
1794
1795 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1796 unsigned long size);
1797 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1798 unsigned long size);
1799 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1800 unsigned long start, unsigned long end);
1801
1802 struct mmu_notifier_range;
1803
1804 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1805 unsigned long end, unsigned long floor, unsigned long ceiling);
1806 int
1807 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1808 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
1809 struct mmu_notifier_range *range, pte_t **ptepp,
1810 pmd_t **pmdpp, spinlock_t **ptlp);
1811 int follow_pte(struct mm_struct *mm, unsigned long address,
1812 pte_t **ptepp, spinlock_t **ptlp);
1813 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1814 unsigned long *pfn);
1815 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1816 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1817 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1818 void *buf, int len, int write);
1819
1820 extern void truncate_pagecache(struct inode *inode, loff_t new);
1821 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1822 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1823 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1824 int truncate_inode_page(struct address_space *mapping, struct page *page);
1825 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1826 int invalidate_inode_page(struct page *page);
1827
1828 #ifdef CONFIG_MMU
1829 extern vm_fault_t do_handle_mm_fault(struct vm_area_struct *vma,
1830 unsigned long address, unsigned int flags,
1831 unsigned long seq, struct pt_regs *regs);
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)1832 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1833 unsigned long address, unsigned int flags,
1834 struct pt_regs *regs)
1835 {
1836 return do_handle_mm_fault(vma, address, flags, 0, regs);
1837 }
1838 extern int fixup_user_fault(struct mm_struct *mm,
1839 unsigned long address, unsigned int fault_flags,
1840 bool *unlocked);
1841 void unmap_mapping_page(struct page *page);
1842 void unmap_mapping_pages(struct address_space *mapping,
1843 pgoff_t start, pgoff_t nr, bool even_cows);
1844 void unmap_mapping_range(struct address_space *mapping,
1845 loff_t const holebegin, loff_t const holelen, int even_cows);
1846 #else
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)1847 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1848 unsigned long address, unsigned int flags,
1849 struct pt_regs *regs)
1850 {
1851 /* should never happen if there's no MMU */
1852 BUG();
1853 return VM_FAULT_SIGBUS;
1854 }
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)1855 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1856 unsigned int fault_flags, bool *unlocked)
1857 {
1858 /* should never happen if there's no MMU */
1859 BUG();
1860 return -EFAULT;
1861 }
unmap_mapping_page(struct page * page)1862 static inline void unmap_mapping_page(struct page *page) { }
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)1863 static inline void unmap_mapping_pages(struct address_space *mapping,
1864 pgoff_t start, pgoff_t nr, bool even_cows) { }
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)1865 static inline void unmap_mapping_range(struct address_space *mapping,
1866 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1867 #endif
1868
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)1869 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1870 loff_t const holebegin, loff_t const holelen)
1871 {
1872 unmap_mapping_range(mapping, holebegin, holelen, 0);
1873 }
1874
1875 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1876 void *buf, int len, unsigned int gup_flags);
1877 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1878 void *buf, int len, unsigned int gup_flags);
1879 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1880 void *buf, int len, unsigned int gup_flags);
1881
1882 long get_user_pages_remote(struct mm_struct *mm,
1883 unsigned long start, unsigned long nr_pages,
1884 unsigned int gup_flags, struct page **pages,
1885 struct vm_area_struct **vmas, int *locked);
1886 long pin_user_pages_remote(struct mm_struct *mm,
1887 unsigned long start, unsigned long nr_pages,
1888 unsigned int gup_flags, struct page **pages,
1889 struct vm_area_struct **vmas, int *locked);
1890 long get_user_pages(unsigned long start, unsigned long nr_pages,
1891 unsigned int gup_flags, struct page **pages,
1892 struct vm_area_struct **vmas);
1893 long pin_user_pages(unsigned long start, unsigned long nr_pages,
1894 unsigned int gup_flags, struct page **pages,
1895 struct vm_area_struct **vmas);
1896 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1897 unsigned int gup_flags, struct page **pages, int *locked);
1898 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1899 unsigned int gup_flags, struct page **pages, int *locked);
1900 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1901 struct page **pages, unsigned int gup_flags);
1902 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1903 struct page **pages, unsigned int gup_flags);
1904
1905 int get_user_pages_fast(unsigned long start, int nr_pages,
1906 unsigned int gup_flags, struct page **pages);
1907 int pin_user_pages_fast(unsigned long start, int nr_pages,
1908 unsigned int gup_flags, struct page **pages);
1909
1910 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1911 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1912 struct task_struct *task, bool bypass_rlim);
1913
1914 struct kvec;
1915 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1916 struct page **pages);
1917 struct page *get_dump_page(unsigned long addr);
1918
1919 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1920 extern void do_invalidatepage(struct page *page, unsigned int offset,
1921 unsigned int length);
1922
1923 int redirty_page_for_writepage(struct writeback_control *wbc,
1924 struct page *page);
1925 void account_page_cleaned(struct page *page, struct address_space *mapping,
1926 struct bdi_writeback *wb);
1927 int set_page_dirty(struct page *page);
1928 int set_page_dirty_lock(struct page *page);
1929 void __cancel_dirty_page(struct page *page);
cancel_dirty_page(struct page * page)1930 static inline void cancel_dirty_page(struct page *page)
1931 {
1932 /* Avoid atomic ops, locking, etc. when not actually needed. */
1933 if (PageDirty(page))
1934 __cancel_dirty_page(page);
1935 }
1936 int clear_page_dirty_for_io(struct page *page);
1937
1938 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1939
1940 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1941 unsigned long old_addr, struct vm_area_struct *new_vma,
1942 unsigned long new_addr, unsigned long len,
1943 bool need_rmap_locks);
1944
1945 /*
1946 * Flags used by change_protection(). For now we make it a bitmap so
1947 * that we can pass in multiple flags just like parameters. However
1948 * for now all the callers are only use one of the flags at the same
1949 * time.
1950 */
1951 /* Whether we should allow dirty bit accounting */
1952 #define MM_CP_DIRTY_ACCT (1UL << 0)
1953 /* Whether this protection change is for NUMA hints */
1954 #define MM_CP_PROT_NUMA (1UL << 1)
1955 /* Whether this change is for write protecting */
1956 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1957 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1958 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1959 MM_CP_UFFD_WP_RESOLVE)
1960
1961 extern unsigned long change_protection(struct mmu_gather *tlb,
1962 struct vm_area_struct *vma, unsigned long start,
1963 unsigned long end, pgprot_t newprot,
1964 unsigned long cp_flags);
1965 extern int mprotect_fixup(struct mmu_gather *tlb, struct vm_area_struct *vma,
1966 struct vm_area_struct **pprev, unsigned long start,
1967 unsigned long end, unsigned long newflags);
1968
1969 /*
1970 * doesn't attempt to fault and will return short.
1971 */
1972 int get_user_pages_fast_only(unsigned long start, int nr_pages,
1973 unsigned int gup_flags, struct page **pages);
1974 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1975 unsigned int gup_flags, struct page **pages);
1976
get_user_page_fast_only(unsigned long addr,unsigned int gup_flags,struct page ** pagep)1977 static inline bool get_user_page_fast_only(unsigned long addr,
1978 unsigned int gup_flags, struct page **pagep)
1979 {
1980 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1981 }
1982 /*
1983 * per-process(per-mm_struct) statistics.
1984 */
get_mm_counter(struct mm_struct * mm,int member)1985 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1986 {
1987 long val = atomic_long_read(&mm->rss_stat.count[member]);
1988
1989 #ifdef SPLIT_RSS_COUNTING
1990 /*
1991 * counter is updated in asynchronous manner and may go to minus.
1992 * But it's never be expected number for users.
1993 */
1994 if (val < 0)
1995 val = 0;
1996 #endif
1997 return (unsigned long)val;
1998 }
1999
2000 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
2001
add_mm_counter(struct mm_struct * mm,int member,long value)2002 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2003 {
2004 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
2005
2006 mm_trace_rss_stat(mm, member, count);
2007 }
2008
inc_mm_counter(struct mm_struct * mm,int member)2009 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2010 {
2011 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
2012
2013 mm_trace_rss_stat(mm, member, count);
2014 }
2015
dec_mm_counter(struct mm_struct * mm,int member)2016 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2017 {
2018 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
2019
2020 mm_trace_rss_stat(mm, member, count);
2021 }
2022
2023 /* Optimized variant when page is already known not to be PageAnon */
mm_counter_file(struct page * page)2024 static inline int mm_counter_file(struct page *page)
2025 {
2026 if (PageSwapBacked(page))
2027 return MM_SHMEMPAGES;
2028 return MM_FILEPAGES;
2029 }
2030
mm_counter(struct page * page)2031 static inline int mm_counter(struct page *page)
2032 {
2033 if (PageAnon(page))
2034 return MM_ANONPAGES;
2035 return mm_counter_file(page);
2036 }
2037
get_mm_rss(struct mm_struct * mm)2038 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2039 {
2040 return get_mm_counter(mm, MM_FILEPAGES) +
2041 get_mm_counter(mm, MM_ANONPAGES) +
2042 get_mm_counter(mm, MM_SHMEMPAGES);
2043 }
2044
get_mm_hiwater_rss(struct mm_struct * mm)2045 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2046 {
2047 return max(mm->hiwater_rss, get_mm_rss(mm));
2048 }
2049
get_mm_hiwater_vm(struct mm_struct * mm)2050 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2051 {
2052 return max(mm->hiwater_vm, mm->total_vm);
2053 }
2054
update_hiwater_rss(struct mm_struct * mm)2055 static inline void update_hiwater_rss(struct mm_struct *mm)
2056 {
2057 unsigned long _rss = get_mm_rss(mm);
2058
2059 if ((mm)->hiwater_rss < _rss)
2060 (mm)->hiwater_rss = _rss;
2061 }
2062
update_hiwater_vm(struct mm_struct * mm)2063 static inline void update_hiwater_vm(struct mm_struct *mm)
2064 {
2065 if (mm->hiwater_vm < mm->total_vm)
2066 mm->hiwater_vm = mm->total_vm;
2067 }
2068
reset_mm_hiwater_rss(struct mm_struct * mm)2069 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2070 {
2071 mm->hiwater_rss = get_mm_rss(mm);
2072 }
2073
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)2074 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2075 struct mm_struct *mm)
2076 {
2077 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2078
2079 if (*maxrss < hiwater_rss)
2080 *maxrss = hiwater_rss;
2081 }
2082
2083 #if defined(SPLIT_RSS_COUNTING)
2084 void sync_mm_rss(struct mm_struct *mm);
2085 #else
sync_mm_rss(struct mm_struct * mm)2086 static inline void sync_mm_rss(struct mm_struct *mm)
2087 {
2088 }
2089 #endif
2090
2091 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
pte_special(pte_t pte)2092 static inline int pte_special(pte_t pte)
2093 {
2094 return 0;
2095 }
2096
pte_mkspecial(pte_t pte)2097 static inline pte_t pte_mkspecial(pte_t pte)
2098 {
2099 return pte;
2100 }
2101 #endif
2102
2103 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
pte_devmap(pte_t pte)2104 static inline int pte_devmap(pte_t pte)
2105 {
2106 return 0;
2107 }
2108 #endif
2109
2110 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2111
2112 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2113 spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2114 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2115 spinlock_t **ptl)
2116 {
2117 pte_t *ptep;
2118 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2119 return ptep;
2120 }
2121
2122 #ifdef __PAGETABLE_P4D_FOLDED
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2123 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2124 unsigned long address)
2125 {
2126 return 0;
2127 }
2128 #else
2129 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2130 #endif
2131
2132 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2133 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2134 unsigned long address)
2135 {
2136 return 0;
2137 }
mm_inc_nr_puds(struct mm_struct * mm)2138 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
mm_dec_nr_puds(struct mm_struct * mm)2139 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2140
2141 #else
2142 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2143
mm_inc_nr_puds(struct mm_struct * mm)2144 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2145 {
2146 if (mm_pud_folded(mm))
2147 return;
2148 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2149 }
2150
mm_dec_nr_puds(struct mm_struct * mm)2151 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2152 {
2153 if (mm_pud_folded(mm))
2154 return;
2155 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2156 }
2157 #endif
2158
2159 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2160 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2161 unsigned long address)
2162 {
2163 return 0;
2164 }
2165
mm_inc_nr_pmds(struct mm_struct * mm)2166 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
mm_dec_nr_pmds(struct mm_struct * mm)2167 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2168
2169 #else
2170 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2171
mm_inc_nr_pmds(struct mm_struct * mm)2172 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2173 {
2174 if (mm_pmd_folded(mm))
2175 return;
2176 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2177 }
2178
mm_dec_nr_pmds(struct mm_struct * mm)2179 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2180 {
2181 if (mm_pmd_folded(mm))
2182 return;
2183 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2184 }
2185 #endif
2186
2187 #ifdef CONFIG_MMU
mm_pgtables_bytes_init(struct mm_struct * mm)2188 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2189 {
2190 atomic_long_set(&mm->pgtables_bytes, 0);
2191 }
2192
mm_pgtables_bytes(const struct mm_struct * mm)2193 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2194 {
2195 return atomic_long_read(&mm->pgtables_bytes);
2196 }
2197
mm_inc_nr_ptes(struct mm_struct * mm)2198 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2199 {
2200 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2201 }
2202
mm_dec_nr_ptes(struct mm_struct * mm)2203 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2204 {
2205 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2206 }
2207 #else
2208
mm_pgtables_bytes_init(struct mm_struct * mm)2209 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
mm_pgtables_bytes(const struct mm_struct * mm)2210 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2211 {
2212 return 0;
2213 }
2214
mm_inc_nr_ptes(struct mm_struct * mm)2215 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
mm_dec_nr_ptes(struct mm_struct * mm)2216 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2217 #endif
2218
2219 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2220 int __pte_alloc_kernel(pmd_t *pmd);
2221
2222 #if defined(CONFIG_MMU)
2223
p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2224 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2225 unsigned long address)
2226 {
2227 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2228 NULL : p4d_offset(pgd, address);
2229 }
2230
pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2231 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2232 unsigned long address)
2233 {
2234 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2235 NULL : pud_offset(p4d, address);
2236 }
2237
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2238 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2239 {
2240 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2241 NULL: pmd_offset(pud, address);
2242 }
2243 #endif /* CONFIG_MMU */
2244
2245 #if USE_SPLIT_PTE_PTLOCKS
2246 #if ALLOC_SPLIT_PTLOCKS
2247 void __init ptlock_cache_init(void);
2248 extern bool ptlock_alloc(struct page *page);
2249 extern void ptlock_free(struct page *page);
2250
ptlock_ptr(struct page * page)2251 static inline spinlock_t *ptlock_ptr(struct page *page)
2252 {
2253 return page->ptl;
2254 }
2255 #else /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)2256 static inline void ptlock_cache_init(void)
2257 {
2258 }
2259
ptlock_alloc(struct page * page)2260 static inline bool ptlock_alloc(struct page *page)
2261 {
2262 return true;
2263 }
2264
ptlock_free(struct page * page)2265 static inline void ptlock_free(struct page *page)
2266 {
2267 }
2268
ptlock_ptr(struct page * page)2269 static inline spinlock_t *ptlock_ptr(struct page *page)
2270 {
2271 return &page->ptl;
2272 }
2273 #endif /* ALLOC_SPLIT_PTLOCKS */
2274
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2275 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2276 {
2277 return ptlock_ptr(pmd_page(*pmd));
2278 }
2279
ptlock_init(struct page * page)2280 static inline bool ptlock_init(struct page *page)
2281 {
2282 /*
2283 * prep_new_page() initialize page->private (and therefore page->ptl)
2284 * with 0. Make sure nobody took it in use in between.
2285 *
2286 * It can happen if arch try to use slab for page table allocation:
2287 * slab code uses page->slab_cache, which share storage with page->ptl.
2288 */
2289 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2290 if (!ptlock_alloc(page))
2291 return false;
2292 spin_lock_init(ptlock_ptr(page));
2293 return true;
2294 }
2295
2296 #else /* !USE_SPLIT_PTE_PTLOCKS */
2297 /*
2298 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2299 */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2300 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2301 {
2302 return &mm->page_table_lock;
2303 }
ptlock_cache_init(void)2304 static inline void ptlock_cache_init(void) {}
ptlock_init(struct page * page)2305 static inline bool ptlock_init(struct page *page) { return true; }
ptlock_free(struct page * page)2306 static inline void ptlock_free(struct page *page) {}
2307 #endif /* USE_SPLIT_PTE_PTLOCKS */
2308
pgtable_init(void)2309 static inline void pgtable_init(void)
2310 {
2311 ptlock_cache_init();
2312 pgtable_cache_init();
2313 }
2314
pgtable_pte_page_ctor(struct page * page)2315 static inline bool pgtable_pte_page_ctor(struct page *page)
2316 {
2317 if (!ptlock_init(page))
2318 return false;
2319 __SetPageTable(page);
2320 inc_lruvec_page_state(page, NR_PAGETABLE);
2321 return true;
2322 }
2323
pgtable_pte_page_dtor(struct page * page)2324 static inline void pgtable_pte_page_dtor(struct page *page)
2325 {
2326 ptlock_free(page);
2327 __ClearPageTable(page);
2328 dec_lruvec_page_state(page, NR_PAGETABLE);
2329 }
2330
2331 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
2332 ({ \
2333 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
2334 pte_t *__pte = pte_offset_map(pmd, address); \
2335 *(ptlp) = __ptl; \
2336 spin_lock(__ptl); \
2337 __pte; \
2338 })
2339
2340 #define pte_unmap_unlock(pte, ptl) do { \
2341 spin_unlock(ptl); \
2342 pte_unmap(pte); \
2343 } while (0)
2344
2345 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2346
2347 #define pte_alloc_map(mm, pmd, address) \
2348 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2349
2350 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
2351 (pte_alloc(mm, pmd) ? \
2352 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2353
2354 #define pte_alloc_kernel(pmd, address) \
2355 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2356 NULL: pte_offset_kernel(pmd, address))
2357
2358 #if USE_SPLIT_PMD_PTLOCKS
2359
pmd_to_page(pmd_t * pmd)2360 static struct page *pmd_to_page(pmd_t *pmd)
2361 {
2362 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2363 return virt_to_page((void *)((unsigned long) pmd & mask));
2364 }
2365
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)2366 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2367 {
2368 return ptlock_ptr(pmd_to_page(pmd));
2369 }
2370
pmd_ptlock_init(struct page * page)2371 static inline bool pmd_ptlock_init(struct page *page)
2372 {
2373 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2374 page->pmd_huge_pte = NULL;
2375 #endif
2376 return ptlock_init(page);
2377 }
2378
pmd_ptlock_free(struct page * page)2379 static inline void pmd_ptlock_free(struct page *page)
2380 {
2381 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2382 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2383 #endif
2384 ptlock_free(page);
2385 }
2386
2387 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2388
2389 #else
2390
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)2391 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2392 {
2393 return &mm->page_table_lock;
2394 }
2395
pmd_ptlock_init(struct page * page)2396 static inline bool pmd_ptlock_init(struct page *page) { return true; }
pmd_ptlock_free(struct page * page)2397 static inline void pmd_ptlock_free(struct page *page) {}
2398
2399 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2400
2401 #endif
2402
pmd_lock(struct mm_struct * mm,pmd_t * pmd)2403 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2404 {
2405 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2406 spin_lock(ptl);
2407 return ptl;
2408 }
2409
pgtable_pmd_page_ctor(struct page * page)2410 static inline bool pgtable_pmd_page_ctor(struct page *page)
2411 {
2412 if (!pmd_ptlock_init(page))
2413 return false;
2414 __SetPageTable(page);
2415 inc_lruvec_page_state(page, NR_PAGETABLE);
2416 return true;
2417 }
2418
pgtable_pmd_page_dtor(struct page * page)2419 static inline void pgtable_pmd_page_dtor(struct page *page)
2420 {
2421 pmd_ptlock_free(page);
2422 __ClearPageTable(page);
2423 dec_lruvec_page_state(page, NR_PAGETABLE);
2424 }
2425
2426 /*
2427 * No scalability reason to split PUD locks yet, but follow the same pattern
2428 * as the PMD locks to make it easier if we decide to. The VM should not be
2429 * considered ready to switch to split PUD locks yet; there may be places
2430 * which need to be converted from page_table_lock.
2431 */
pud_lockptr(struct mm_struct * mm,pud_t * pud)2432 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2433 {
2434 return &mm->page_table_lock;
2435 }
2436
pud_lock(struct mm_struct * mm,pud_t * pud)2437 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2438 {
2439 spinlock_t *ptl = pud_lockptr(mm, pud);
2440
2441 spin_lock(ptl);
2442 return ptl;
2443 }
2444
2445 extern void __init pagecache_init(void);
2446 extern void __init free_area_init_memoryless_node(int nid);
2447 extern void free_initmem(void);
2448
2449 /*
2450 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2451 * into the buddy system. The freed pages will be poisoned with pattern
2452 * "poison" if it's within range [0, UCHAR_MAX].
2453 * Return pages freed into the buddy system.
2454 */
2455 extern unsigned long free_reserved_area(void *start, void *end,
2456 int poison, const char *s);
2457
2458 extern void adjust_managed_page_count(struct page *page, long count);
2459 extern void mem_init_print_info(void);
2460
2461 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2462
2463 /* Free the reserved page into the buddy system, so it gets managed. */
free_reserved_page(struct page * page)2464 static inline void free_reserved_page(struct page *page)
2465 {
2466 ClearPageReserved(page);
2467 init_page_count(page);
2468 __free_page(page);
2469 adjust_managed_page_count(page, 1);
2470 }
2471 #define free_highmem_page(page) free_reserved_page(page)
2472
mark_page_reserved(struct page * page)2473 static inline void mark_page_reserved(struct page *page)
2474 {
2475 SetPageReserved(page);
2476 adjust_managed_page_count(page, -1);
2477 }
2478
2479 /*
2480 * Default method to free all the __init memory into the buddy system.
2481 * The freed pages will be poisoned with pattern "poison" if it's within
2482 * range [0, UCHAR_MAX].
2483 * Return pages freed into the buddy system.
2484 */
free_initmem_default(int poison)2485 static inline unsigned long free_initmem_default(int poison)
2486 {
2487 extern char __init_begin[], __init_end[];
2488
2489 return free_reserved_area(&__init_begin, &__init_end,
2490 poison, "unused kernel image (initmem)");
2491 }
2492
get_num_physpages(void)2493 static inline unsigned long get_num_physpages(void)
2494 {
2495 int nid;
2496 unsigned long phys_pages = 0;
2497
2498 for_each_online_node(nid)
2499 phys_pages += node_present_pages(nid);
2500
2501 return phys_pages;
2502 }
2503
2504 /*
2505 * Using memblock node mappings, an architecture may initialise its
2506 * zones, allocate the backing mem_map and account for memory holes in an
2507 * architecture independent manner.
2508 *
2509 * An architecture is expected to register range of page frames backed by
2510 * physical memory with memblock_add[_node]() before calling
2511 * free_area_init() passing in the PFN each zone ends at. At a basic
2512 * usage, an architecture is expected to do something like
2513 *
2514 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2515 * max_highmem_pfn};
2516 * for_each_valid_physical_page_range()
2517 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
2518 * free_area_init(max_zone_pfns);
2519 */
2520 void free_area_init(unsigned long *max_zone_pfn);
2521 unsigned long node_map_pfn_alignment(void);
2522 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2523 unsigned long end_pfn);
2524 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2525 unsigned long end_pfn);
2526 extern void get_pfn_range_for_nid(unsigned int nid,
2527 unsigned long *start_pfn, unsigned long *end_pfn);
2528 extern unsigned long find_min_pfn_with_active_regions(void);
2529
2530 #ifndef CONFIG_NUMA
early_pfn_to_nid(unsigned long pfn)2531 static inline int early_pfn_to_nid(unsigned long pfn)
2532 {
2533 return 0;
2534 }
2535 #else
2536 /* please see mm/page_alloc.c */
2537 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2538 #endif
2539
2540 extern void set_dma_reserve(unsigned long new_dma_reserve);
2541 extern void memmap_init_range(unsigned long, int, unsigned long,
2542 unsigned long, unsigned long, enum meminit_context,
2543 struct vmem_altmap *, int migratetype);
2544 extern void setup_per_zone_wmarks(void);
2545 extern void calculate_min_free_kbytes(void);
2546 extern int __meminit init_per_zone_wmark_min(void);
2547 extern void mem_init(void);
2548 extern void __init mmap_init(void);
2549 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2550 extern long si_mem_available(void);
2551 extern void si_meminfo(struct sysinfo * val);
2552 extern void si_meminfo_node(struct sysinfo *val, int nid);
2553 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2554 extern unsigned long arch_reserved_kernel_pages(void);
2555 #endif
2556
2557 extern __printf(3, 4)
2558 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2559
2560 extern void setup_per_cpu_pageset(void);
2561
2562 /* page_alloc.c */
2563 extern int min_free_kbytes;
2564 extern int watermark_boost_factor;
2565 extern int watermark_scale_factor;
2566 extern bool arch_has_descending_max_zone_pfns(void);
2567
2568 /* nommu.c */
2569 extern atomic_long_t mmap_pages_allocated;
2570 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2571
2572 /* interval_tree.c */
2573 void vma_interval_tree_insert(struct vm_area_struct *node,
2574 struct rb_root_cached *root);
2575 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2576 struct vm_area_struct *prev,
2577 struct rb_root_cached *root);
2578 void vma_interval_tree_remove(struct vm_area_struct *node,
2579 struct rb_root_cached *root);
2580 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2581 unsigned long start, unsigned long last);
2582 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2583 unsigned long start, unsigned long last);
2584
2585 #define vma_interval_tree_foreach(vma, root, start, last) \
2586 for (vma = vma_interval_tree_iter_first(root, start, last); \
2587 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2588
2589 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2590 struct rb_root_cached *root);
2591 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2592 struct rb_root_cached *root);
2593 struct anon_vma_chain *
2594 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2595 unsigned long start, unsigned long last);
2596 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2597 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2598 #ifdef CONFIG_DEBUG_VM_RB
2599 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2600 #endif
2601
2602 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
2603 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2604 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2605
2606 /* mmap.c */
2607 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2608 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2609 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2610 struct vm_area_struct *expand);
vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert)2611 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2612 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2613 {
2614 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2615 }
2616 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2617 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2618 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2619 struct mempolicy *, struct vm_userfaultfd_ctx, struct anon_vma_name *);
2620 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2621 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2622 unsigned long addr, int new_below);
2623 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2624 unsigned long addr, int new_below);
2625 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2626 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2627 struct rb_node **, struct rb_node *);
2628 extern void unlink_file_vma(struct vm_area_struct *);
2629 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2630 unsigned long addr, unsigned long len, pgoff_t pgoff,
2631 bool *need_rmap_locks);
2632 extern void exit_mmap(struct mm_struct *);
2633
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)2634 static inline int check_data_rlimit(unsigned long rlim,
2635 unsigned long new,
2636 unsigned long start,
2637 unsigned long end_data,
2638 unsigned long start_data)
2639 {
2640 if (rlim < RLIM_INFINITY) {
2641 if (((new - start) + (end_data - start_data)) > rlim)
2642 return -ENOSPC;
2643 }
2644
2645 return 0;
2646 }
2647
2648 extern int mm_take_all_locks(struct mm_struct *mm);
2649 extern void mm_drop_all_locks(struct mm_struct *mm);
2650
2651 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2652 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2653 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2654 extern struct file *get_task_exe_file(struct task_struct *task);
2655
2656 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2657 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2658
2659 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2660 const struct vm_special_mapping *sm);
2661 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2662 unsigned long addr, unsigned long len,
2663 unsigned long flags,
2664 const struct vm_special_mapping *spec);
2665 /* This is an obsolete alternative to _install_special_mapping. */
2666 extern int install_special_mapping(struct mm_struct *mm,
2667 unsigned long addr, unsigned long len,
2668 unsigned long flags, struct page **pages);
2669
2670 unsigned long randomize_stack_top(unsigned long stack_top);
2671 unsigned long randomize_page(unsigned long start, unsigned long range);
2672
2673 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2674
2675 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2676 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2677 struct list_head *uf);
2678 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2679 unsigned long len, unsigned long prot, unsigned long flags,
2680 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2681 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2682 struct list_head *uf, bool downgrade);
2683 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2684 struct list_head *uf);
2685 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2686
2687 #ifdef CONFIG_MMU
2688 extern int __mm_populate(unsigned long addr, unsigned long len,
2689 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)2690 static inline void mm_populate(unsigned long addr, unsigned long len)
2691 {
2692 /* Ignore errors */
2693 (void) __mm_populate(addr, len, 1);
2694 }
2695 #else
mm_populate(unsigned long addr,unsigned long len)2696 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2697 #endif
2698
2699 /* These take the mm semaphore themselves */
2700 extern int __must_check vm_brk(unsigned long, unsigned long);
2701 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2702 extern int vm_munmap(unsigned long, size_t);
2703 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2704 unsigned long, unsigned long,
2705 unsigned long, unsigned long);
2706
2707 struct vm_unmapped_area_info {
2708 #define VM_UNMAPPED_AREA_TOPDOWN 1
2709 unsigned long flags;
2710 unsigned long length;
2711 unsigned long low_limit;
2712 unsigned long high_limit;
2713 unsigned long align_mask;
2714 unsigned long align_offset;
2715 };
2716
2717 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2718
2719 /* truncate.c */
2720 extern void truncate_inode_pages(struct address_space *, loff_t);
2721 extern void truncate_inode_pages_range(struct address_space *,
2722 loff_t lstart, loff_t lend);
2723 extern void truncate_inode_pages_final(struct address_space *);
2724
2725 /* generic vm_area_ops exported for stackable file systems */
2726 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2727 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
2728 pgoff_t start_pgoff, pgoff_t end_pgoff);
2729 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2730
2731 /* mm/page-writeback.c */
2732 int __must_check write_one_page(struct page *page);
2733 void task_dirty_inc(struct task_struct *tsk);
2734
2735 extern unsigned long stack_guard_gap;
2736 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2737 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2738
2739 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2740 extern int expand_downwards(struct vm_area_struct *vma,
2741 unsigned long address);
2742 #if VM_GROWSUP
2743 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2744 #else
2745 #define expand_upwards(vma, address) (0)
2746 #endif
2747
2748 extern struct vm_area_struct *find_vma_from_tree(struct mm_struct *mm,
2749 unsigned long addr);
2750 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2751 extern struct vm_area_struct * __find_vma(struct mm_struct * mm, unsigned long addr);
2752 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2753 struct vm_area_struct **pprev);
2754
2755 static inline
find_vma(struct mm_struct * mm,unsigned long addr)2756 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2757 {
2758 mmap_assert_locked(mm);
2759 return __find_vma(mm, addr);
2760 }
2761
2762 /**
2763 * find_vma_intersection() - Look up the first VMA which intersects the interval
2764 * @mm: The process address space.
2765 * @start_addr: The inclusive start user address.
2766 * @end_addr: The exclusive end user address.
2767 *
2768 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
2769 * start_addr < end_addr.
2770 */
2771 static inline
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)2772 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
2773 unsigned long start_addr,
2774 unsigned long end_addr)
2775 {
2776 struct vm_area_struct *vma = find_vma(mm, start_addr);
2777
2778 if (vma && end_addr <= vma->vm_start)
2779 vma = NULL;
2780 return vma;
2781 }
2782
2783 /**
2784 * vma_lookup() - Find a VMA at a specific address
2785 * @mm: The process address space.
2786 * @addr: The user address.
2787 *
2788 * Return: The vm_area_struct at the given address, %NULL otherwise.
2789 */
2790 static inline
vma_lookup(struct mm_struct * mm,unsigned long addr)2791 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2792 {
2793 struct vm_area_struct *vma = find_vma(mm, addr);
2794
2795 if (vma && addr < vma->vm_start)
2796 vma = NULL;
2797
2798 return vma;
2799 }
2800
vm_start_gap(struct vm_area_struct * vma)2801 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2802 {
2803 unsigned long vm_start = vma->vm_start;
2804
2805 if (vma->vm_flags & VM_GROWSDOWN) {
2806 vm_start -= stack_guard_gap;
2807 if (vm_start > vma->vm_start)
2808 vm_start = 0;
2809 }
2810 return vm_start;
2811 }
2812
vm_end_gap(struct vm_area_struct * vma)2813 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2814 {
2815 unsigned long vm_end = vma->vm_end;
2816
2817 if (vma->vm_flags & VM_GROWSUP) {
2818 vm_end += stack_guard_gap;
2819 if (vm_end < vma->vm_end)
2820 vm_end = -PAGE_SIZE;
2821 }
2822 return vm_end;
2823 }
2824
vma_pages(struct vm_area_struct * vma)2825 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2826 {
2827 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2828 }
2829
2830 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)2831 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2832 unsigned long vm_start, unsigned long vm_end)
2833 {
2834 struct vm_area_struct *vma = find_vma(mm, vm_start);
2835
2836 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2837 vma = NULL;
2838
2839 return vma;
2840 }
2841
range_in_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)2842 static inline bool range_in_vma(struct vm_area_struct *vma,
2843 unsigned long start, unsigned long end)
2844 {
2845 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2846 }
2847
2848 #ifdef CONFIG_MMU
2849 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2850 void vma_set_page_prot(struct vm_area_struct *vma);
2851 #else
vm_get_page_prot(unsigned long vm_flags)2852 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2853 {
2854 return __pgprot(0);
2855 }
vma_set_page_prot(struct vm_area_struct * vma)2856 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2857 {
2858 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2859 }
2860 #endif
2861
2862 void vma_set_file(struct vm_area_struct *vma, struct file *file);
2863
2864 #ifdef CONFIG_NUMA_BALANCING
2865 unsigned long change_prot_numa(struct vm_area_struct *vma,
2866 unsigned long start, unsigned long end);
2867 #endif
2868
2869 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2870 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2871 unsigned long pfn, unsigned long size, pgprot_t);
2872 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2873 unsigned long pfn, unsigned long size, pgprot_t prot);
2874 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2875 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2876 struct page **pages, unsigned long *num);
2877 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2878 unsigned long num);
2879 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2880 unsigned long num);
2881 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2882 unsigned long pfn);
2883 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2884 unsigned long pfn, pgprot_t pgprot);
2885 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2886 pfn_t pfn);
2887 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2888 pfn_t pfn, pgprot_t pgprot);
2889 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2890 unsigned long addr, pfn_t pfn);
2891 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2892
vmf_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)2893 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2894 unsigned long addr, struct page *page)
2895 {
2896 int err = vm_insert_page(vma, addr, page);
2897
2898 if (err == -ENOMEM)
2899 return VM_FAULT_OOM;
2900 if (err < 0 && err != -EBUSY)
2901 return VM_FAULT_SIGBUS;
2902
2903 return VM_FAULT_NOPAGE;
2904 }
2905
2906 #ifndef io_remap_pfn_range
io_remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2907 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2908 unsigned long addr, unsigned long pfn,
2909 unsigned long size, pgprot_t prot)
2910 {
2911 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2912 }
2913 #endif
2914
vmf_error(int err)2915 static inline vm_fault_t vmf_error(int err)
2916 {
2917 if (err == -ENOMEM)
2918 return VM_FAULT_OOM;
2919 return VM_FAULT_SIGBUS;
2920 }
2921
2922 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2923 unsigned int foll_flags);
2924
2925 #define FOLL_WRITE 0x01 /* check pte is writable */
2926 #define FOLL_TOUCH 0x02 /* mark page accessed */
2927 #define FOLL_GET 0x04 /* do get_page on page */
2928 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2929 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2930 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2931 * and return without waiting upon it */
2932 #define FOLL_POPULATE 0x40 /* fault in pages (with FOLL_MLOCK) */
2933 #define FOLL_NOFAULT 0x80 /* do not fault in pages */
2934 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2935 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2936 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2937 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2938 #define FOLL_MLOCK 0x1000 /* lock present pages */
2939 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2940 #define FOLL_COW 0x4000 /* internal GUP flag */
2941 #define FOLL_ANON 0x8000 /* don't do file mappings */
2942 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
2943 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
2944 #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
2945 #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
2946
2947 /*
2948 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2949 * other. Here is what they mean, and how to use them:
2950 *
2951 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2952 * period _often_ under userspace control. This is in contrast to
2953 * iov_iter_get_pages(), whose usages are transient.
2954 *
2955 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2956 * lifetime enforced by the filesystem and we need guarantees that longterm
2957 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2958 * the filesystem. Ideas for this coordination include revoking the longterm
2959 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2960 * added after the problem with filesystems was found FS DAX VMAs are
2961 * specifically failed. Filesystem pages are still subject to bugs and use of
2962 * FOLL_LONGTERM should be avoided on those pages.
2963 *
2964 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2965 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2966 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2967 * is due to an incompatibility with the FS DAX check and
2968 * FAULT_FLAG_ALLOW_RETRY.
2969 *
2970 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2971 * that region. And so, CMA attempts to migrate the page before pinning, when
2972 * FOLL_LONGTERM is specified.
2973 *
2974 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2975 * but an additional pin counting system) will be invoked. This is intended for
2976 * anything that gets a page reference and then touches page data (for example,
2977 * Direct IO). This lets the filesystem know that some non-file-system entity is
2978 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2979 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2980 * a call to unpin_user_page().
2981 *
2982 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2983 * and separate refcounting mechanisms, however, and that means that each has
2984 * its own acquire and release mechanisms:
2985 *
2986 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2987 *
2988 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2989 *
2990 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2991 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2992 * calls applied to them, and that's perfectly OK. This is a constraint on the
2993 * callers, not on the pages.)
2994 *
2995 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2996 * directly by the caller. That's in order to help avoid mismatches when
2997 * releasing pages: get_user_pages*() pages must be released via put_page(),
2998 * while pin_user_pages*() pages must be released via unpin_user_page().
2999 *
3000 * Please see Documentation/core-api/pin_user_pages.rst for more information.
3001 */
3002
vm_fault_to_errno(vm_fault_t vm_fault,int foll_flags)3003 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3004 {
3005 if (vm_fault & VM_FAULT_OOM)
3006 return -ENOMEM;
3007 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3008 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3009 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3010 return -EFAULT;
3011 return 0;
3012 }
3013
3014 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3015 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3016 unsigned long size, pte_fn_t fn, void *data);
3017 extern int apply_to_existing_page_range(struct mm_struct *mm,
3018 unsigned long address, unsigned long size,
3019 pte_fn_t fn, void *data);
3020
3021 extern void init_mem_debugging_and_hardening(void);
3022 #ifdef CONFIG_PAGE_POISONING
3023 extern void __kernel_poison_pages(struct page *page, int numpages);
3024 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3025 extern bool _page_poisoning_enabled_early;
3026 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
page_poisoning_enabled(void)3027 static inline bool page_poisoning_enabled(void)
3028 {
3029 return _page_poisoning_enabled_early;
3030 }
3031 /*
3032 * For use in fast paths after init_mem_debugging() has run, or when a
3033 * false negative result is not harmful when called too early.
3034 */
page_poisoning_enabled_static(void)3035 static inline bool page_poisoning_enabled_static(void)
3036 {
3037 return static_branch_unlikely(&_page_poisoning_enabled);
3038 }
kernel_poison_pages(struct page * page,int numpages)3039 static inline void kernel_poison_pages(struct page *page, int numpages)
3040 {
3041 if (page_poisoning_enabled_static())
3042 __kernel_poison_pages(page, numpages);
3043 }
kernel_unpoison_pages(struct page * page,int numpages)3044 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3045 {
3046 if (page_poisoning_enabled_static())
3047 __kernel_unpoison_pages(page, numpages);
3048 }
3049 #else
page_poisoning_enabled(void)3050 static inline bool page_poisoning_enabled(void) { return false; }
page_poisoning_enabled_static(void)3051 static inline bool page_poisoning_enabled_static(void) { return false; }
__kernel_poison_pages(struct page * page,int nunmpages)3052 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
kernel_poison_pages(struct page * page,int numpages)3053 static inline void kernel_poison_pages(struct page *page, int numpages) { }
kernel_unpoison_pages(struct page * page,int numpages)3054 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3055 #endif
3056
3057 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
want_init_on_alloc(gfp_t flags)3058 static inline bool want_init_on_alloc(gfp_t flags)
3059 {
3060 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3061 &init_on_alloc))
3062 return true;
3063 return flags & __GFP_ZERO;
3064 }
3065
3066 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
want_init_on_free(void)3067 static inline bool want_init_on_free(void)
3068 {
3069 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3070 &init_on_free);
3071 }
3072
3073 extern bool _debug_pagealloc_enabled_early;
3074 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3075
debug_pagealloc_enabled(void)3076 static inline bool debug_pagealloc_enabled(void)
3077 {
3078 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3079 _debug_pagealloc_enabled_early;
3080 }
3081
3082 /*
3083 * For use in fast paths after init_debug_pagealloc() has run, or when a
3084 * false negative result is not harmful when called too early.
3085 */
debug_pagealloc_enabled_static(void)3086 static inline bool debug_pagealloc_enabled_static(void)
3087 {
3088 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3089 return false;
3090
3091 return static_branch_unlikely(&_debug_pagealloc_enabled);
3092 }
3093
3094 #ifdef CONFIG_DEBUG_PAGEALLOC
3095 /*
3096 * To support DEBUG_PAGEALLOC architecture must ensure that
3097 * __kernel_map_pages() never fails
3098 */
3099 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3100
debug_pagealloc_map_pages(struct page * page,int numpages)3101 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3102 {
3103 if (debug_pagealloc_enabled_static())
3104 __kernel_map_pages(page, numpages, 1);
3105 }
3106
debug_pagealloc_unmap_pages(struct page * page,int numpages)3107 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3108 {
3109 if (debug_pagealloc_enabled_static())
3110 __kernel_map_pages(page, numpages, 0);
3111 }
3112 #else /* CONFIG_DEBUG_PAGEALLOC */
debug_pagealloc_map_pages(struct page * page,int numpages)3113 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
debug_pagealloc_unmap_pages(struct page * page,int numpages)3114 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3115 #endif /* CONFIG_DEBUG_PAGEALLOC */
3116
3117 #ifdef __HAVE_ARCH_GATE_AREA
3118 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3119 extern int in_gate_area_no_mm(unsigned long addr);
3120 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3121 #else
get_gate_vma(struct mm_struct * mm)3122 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3123 {
3124 return NULL;
3125 }
in_gate_area_no_mm(unsigned long addr)3126 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
in_gate_area(struct mm_struct * mm,unsigned long addr)3127 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3128 {
3129 return 0;
3130 }
3131 #endif /* __HAVE_ARCH_GATE_AREA */
3132
3133 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3134
3135 #ifdef CONFIG_SYSCTL
3136 extern int sysctl_drop_caches;
3137 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3138 loff_t *);
3139 #endif
3140
3141 void drop_slab(void);
3142 void drop_slab_node(int nid);
3143
3144 #ifndef CONFIG_MMU
3145 #define randomize_va_space 0
3146 #else
3147 extern int randomize_va_space;
3148 #endif
3149
3150 const char * arch_vma_name(struct vm_area_struct *vma);
3151 #ifdef CONFIG_MMU
3152 void print_vma_addr(char *prefix, unsigned long rip);
3153 #else
print_vma_addr(char * prefix,unsigned long rip)3154 static inline void print_vma_addr(char *prefix, unsigned long rip)
3155 {
3156 }
3157 #endif
3158
3159 int vmemmap_remap_free(unsigned long start, unsigned long end,
3160 unsigned long reuse);
3161 int vmemmap_remap_alloc(unsigned long start, unsigned long end,
3162 unsigned long reuse, gfp_t gfp_mask);
3163
3164 void *sparse_buffer_alloc(unsigned long size);
3165 struct page * __populate_section_memmap(unsigned long pfn,
3166 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
3167 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3168 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3169 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3170 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3171 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3172 struct vmem_altmap *altmap);
3173 void *vmemmap_alloc_block(unsigned long size, int node);
3174 struct vmem_altmap;
3175 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3176 struct vmem_altmap *altmap);
3177 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3178 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3179 int node, struct vmem_altmap *altmap);
3180 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3181 struct vmem_altmap *altmap);
3182 void vmemmap_populate_print_last(void);
3183 #ifdef CONFIG_MEMORY_HOTPLUG
3184 void vmemmap_free(unsigned long start, unsigned long end,
3185 struct vmem_altmap *altmap);
3186 #endif
3187 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3188 unsigned long nr_pages);
3189
3190 enum mf_flags {
3191 MF_COUNT_INCREASED = 1 << 0,
3192 MF_ACTION_REQUIRED = 1 << 1,
3193 MF_MUST_KILL = 1 << 2,
3194 MF_SOFT_OFFLINE = 1 << 3,
3195 };
3196 extern int memory_failure(unsigned long pfn, int flags);
3197 extern void memory_failure_queue_kick(int cpu);
3198 extern int unpoison_memory(unsigned long pfn);
3199 extern int sysctl_memory_failure_early_kill;
3200 extern int sysctl_memory_failure_recovery;
3201 extern void shake_page(struct page *p);
3202 extern atomic_long_t num_poisoned_pages __read_mostly;
3203 extern int soft_offline_page(unsigned long pfn, int flags);
3204 #ifdef CONFIG_MEMORY_FAILURE
3205 extern void memory_failure_queue(unsigned long pfn, int flags);
3206 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags);
3207 #else
memory_failure_queue(unsigned long pfn,int flags)3208 static inline void memory_failure_queue(unsigned long pfn, int flags)
3209 {
3210 }
__get_huge_page_for_hwpoison(unsigned long pfn,int flags)3211 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags)
3212 {
3213 return 0;
3214 }
3215 #endif
3216
3217
3218 /*
3219 * Error handlers for various types of pages.
3220 */
3221 enum mf_result {
3222 MF_IGNORED, /* Error: cannot be handled */
3223 MF_FAILED, /* Error: handling failed */
3224 MF_DELAYED, /* Will be handled later */
3225 MF_RECOVERED, /* Successfully recovered */
3226 };
3227
3228 enum mf_action_page_type {
3229 MF_MSG_KERNEL,
3230 MF_MSG_KERNEL_HIGH_ORDER,
3231 MF_MSG_SLAB,
3232 MF_MSG_DIFFERENT_COMPOUND,
3233 MF_MSG_POISONED_HUGE,
3234 MF_MSG_HUGE,
3235 MF_MSG_FREE_HUGE,
3236 MF_MSG_NON_PMD_HUGE,
3237 MF_MSG_UNMAP_FAILED,
3238 MF_MSG_DIRTY_SWAPCACHE,
3239 MF_MSG_CLEAN_SWAPCACHE,
3240 MF_MSG_DIRTY_MLOCKED_LRU,
3241 MF_MSG_CLEAN_MLOCKED_LRU,
3242 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3243 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3244 MF_MSG_DIRTY_LRU,
3245 MF_MSG_CLEAN_LRU,
3246 MF_MSG_TRUNCATED_LRU,
3247 MF_MSG_BUDDY,
3248 MF_MSG_BUDDY_2ND,
3249 MF_MSG_DAX,
3250 MF_MSG_UNSPLIT_THP,
3251 MF_MSG_UNKNOWN,
3252 };
3253
3254 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3255 extern void clear_huge_page(struct page *page,
3256 unsigned long addr_hint,
3257 unsigned int pages_per_huge_page);
3258 extern void copy_user_huge_page(struct page *dst, struct page *src,
3259 unsigned long addr_hint,
3260 struct vm_area_struct *vma,
3261 unsigned int pages_per_huge_page);
3262 extern long copy_huge_page_from_user(struct page *dst_page,
3263 const void __user *usr_src,
3264 unsigned int pages_per_huge_page,
3265 bool allow_pagefault);
3266
3267 /**
3268 * vma_is_special_huge - Are transhuge page-table entries considered special?
3269 * @vma: Pointer to the struct vm_area_struct to consider
3270 *
3271 * Whether transhuge page-table entries are considered "special" following
3272 * the definition in vm_normal_page().
3273 *
3274 * Return: true if transhuge page-table entries should be considered special,
3275 * false otherwise.
3276 */
vma_is_special_huge(const struct vm_area_struct * vma)3277 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3278 {
3279 return vma_is_dax(vma) || (vma->vm_file &&
3280 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3281 }
3282
3283 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3284
3285 #ifdef CONFIG_DEBUG_PAGEALLOC
3286 extern unsigned int _debug_guardpage_minorder;
3287 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3288
debug_guardpage_minorder(void)3289 static inline unsigned int debug_guardpage_minorder(void)
3290 {
3291 return _debug_guardpage_minorder;
3292 }
3293
debug_guardpage_enabled(void)3294 static inline bool debug_guardpage_enabled(void)
3295 {
3296 return static_branch_unlikely(&_debug_guardpage_enabled);
3297 }
3298
page_is_guard(struct page * page)3299 static inline bool page_is_guard(struct page *page)
3300 {
3301 if (!debug_guardpage_enabled())
3302 return false;
3303
3304 return PageGuard(page);
3305 }
3306 #else
debug_guardpage_minorder(void)3307 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
debug_guardpage_enabled(void)3308 static inline bool debug_guardpage_enabled(void) { return false; }
page_is_guard(struct page * page)3309 static inline bool page_is_guard(struct page *page) { return false; }
3310 #endif /* CONFIG_DEBUG_PAGEALLOC */
3311
3312 #if MAX_NUMNODES > 1
3313 void __init setup_nr_node_ids(void);
3314 #else
setup_nr_node_ids(void)3315 static inline void setup_nr_node_ids(void) {}
3316 #endif
3317
3318 extern int memcmp_pages(struct page *page1, struct page *page2);
3319
pages_identical(struct page * page1,struct page * page2)3320 static inline int pages_identical(struct page *page1, struct page *page2)
3321 {
3322 return !memcmp_pages(page1, page2);
3323 }
3324
3325 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3326 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3327 pgoff_t first_index, pgoff_t nr,
3328 pgoff_t bitmap_pgoff,
3329 unsigned long *bitmap,
3330 pgoff_t *start,
3331 pgoff_t *end);
3332
3333 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3334 pgoff_t first_index, pgoff_t nr);
3335 #endif
3336
3337 extern int sysctl_nr_trim_pages;
3338 extern int reclaim_shmem_address_space(struct address_space *mapping);
3339
3340 #ifdef CONFIG_PRINTK
3341 void mem_dump_obj(void *object);
3342 #else
mem_dump_obj(void * object)3343 static inline void mem_dump_obj(void *object) {}
3344 #endif
3345
3346 /**
3347 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3348 * @seals: the seals to check
3349 * @vma: the vma to operate on
3350 *
3351 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3352 * the vma flags. Return 0 if check pass, or <0 for errors.
3353 */
seal_check_future_write(int seals,struct vm_area_struct * vma)3354 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3355 {
3356 if (seals & F_SEAL_FUTURE_WRITE) {
3357 /*
3358 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3359 * "future write" seal active.
3360 */
3361 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3362 return -EPERM;
3363
3364 /*
3365 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3366 * MAP_SHARED and read-only, take care to not allow mprotect to
3367 * revert protections on such mappings. Do this only for shared
3368 * mappings. For private mappings, don't need to mask
3369 * VM_MAYWRITE as we still want them to be COW-writable.
3370 */
3371 if (vma->vm_flags & VM_SHARED)
3372 vma->vm_flags &= ~(VM_MAYWRITE);
3373 }
3374
3375 return 0;
3376 }
3377
3378 #ifdef CONFIG_ANON_VMA_NAME
3379 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3380 unsigned long len_in,
3381 struct anon_vma_name *anon_name);
3382 #else
3383 static inline int
madvise_set_anon_name(struct mm_struct * mm,unsigned long start,unsigned long len_in,struct anon_vma_name * anon_name)3384 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3385 unsigned long len_in, struct anon_vma_name *anon_name) {
3386 return 0;
3387 }
3388 #endif
3389
3390 #ifdef CONFIG_MMU
3391 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
3392
3393 bool __pte_map_lock(struct vm_fault *vmf);
3394
pte_map_lock(struct vm_fault * vmf)3395 static inline bool pte_map_lock(struct vm_fault *vmf)
3396 {
3397 VM_BUG_ON(vmf->pte);
3398 return __pte_map_lock(vmf);
3399 }
3400
pte_spinlock(struct vm_fault * vmf)3401 static inline bool pte_spinlock(struct vm_fault *vmf)
3402 {
3403 VM_BUG_ON(!vmf->pte);
3404 return __pte_map_lock(vmf);
3405 }
3406
3407 struct vm_area_struct *get_vma(struct mm_struct *mm, unsigned long addr);
3408 void put_vma(struct vm_area_struct *vma);
3409
3410 #else /* !CONFIG_SPECULATIVE_PAGE_FAULT */
3411
3412 #define pte_map_lock(___vmf) \
3413 ({ \
3414 ___vmf->pte = pte_offset_map_lock(___vmf->vma->vm_mm, ___vmf->pmd,\
3415 ___vmf->address, &___vmf->ptl); \
3416 true; \
3417 })
3418
3419 #define pte_spinlock(___vmf) \
3420 ({ \
3421 ___vmf->ptl = pte_lockptr(___vmf->vma->vm_mm, ___vmf->pmd); \
3422 spin_lock(___vmf->ptl); \
3423 true; \
3424 })
3425
3426 #endif /* CONFIG_SPECULATIVE_PAGE_FAULT */
3427 #endif /* CONFIG_MMU */
3428
3429 #endif /* __KERNEL__ */
3430 #endif /* _LINUX_MM_H */
3431