1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Filesystem-level keyring for fscrypt
4 *
5 * Copyright 2019 Google LLC
6 */
7
8 /*
9 * This file implements management of fscrypt master keys in the
10 * filesystem-level keyring, including the ioctls:
11 *
12 * - FS_IOC_ADD_ENCRYPTION_KEY
13 * - FS_IOC_REMOVE_ENCRYPTION_KEY
14 * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS
15 * - FS_IOC_GET_ENCRYPTION_KEY_STATUS
16 *
17 * See the "User API" section of Documentation/filesystems/fscrypt.rst for more
18 * information about these ioctls.
19 */
20
21 #include <asm/unaligned.h>
22 #include <crypto/skcipher.h>
23 #include <linux/key-type.h>
24 #include <linux/random.h>
25 #include <linux/seq_file.h>
26
27 #include "fscrypt_private.h"
28
29 /* The master encryption keys for a filesystem (->s_master_keys) */
30 struct fscrypt_keyring {
31 /*
32 * Lock that protects ->key_hashtable. It does *not* protect the
33 * fscrypt_master_key structs themselves.
34 */
35 spinlock_t lock;
36
37 /* Hash table that maps fscrypt_key_specifier to fscrypt_master_key */
38 struct hlist_head key_hashtable[128];
39 };
40
wipe_master_key_secret(struct fscrypt_master_key_secret * secret)41 static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret)
42 {
43 fscrypt_destroy_hkdf(&secret->hkdf);
44 memzero_explicit(secret, sizeof(*secret));
45 }
46
move_master_key_secret(struct fscrypt_master_key_secret * dst,struct fscrypt_master_key_secret * src)47 static void move_master_key_secret(struct fscrypt_master_key_secret *dst,
48 struct fscrypt_master_key_secret *src)
49 {
50 memcpy(dst, src, sizeof(*dst));
51 memzero_explicit(src, sizeof(*src));
52 }
53
fscrypt_free_master_key(struct rcu_head * head)54 static void fscrypt_free_master_key(struct rcu_head *head)
55 {
56 struct fscrypt_master_key *mk =
57 container_of(head, struct fscrypt_master_key, mk_rcu_head);
58 /*
59 * The master key secret and any embedded subkeys should have already
60 * been wiped when the last active reference to the fscrypt_master_key
61 * struct was dropped; doing it here would be unnecessarily late.
62 * Nevertheless, use kfree_sensitive() in case anything was missed.
63 */
64 kfree_sensitive(mk);
65 }
66
fscrypt_put_master_key(struct fscrypt_master_key * mk)67 void fscrypt_put_master_key(struct fscrypt_master_key *mk)
68 {
69 if (!refcount_dec_and_test(&mk->mk_struct_refs))
70 return;
71 /*
72 * No structural references left, so free ->mk_users, and also free the
73 * fscrypt_master_key struct itself after an RCU grace period ensures
74 * that concurrent keyring lookups can no longer find it.
75 */
76 WARN_ON(refcount_read(&mk->mk_active_refs) != 0);
77 key_put(mk->mk_users);
78 mk->mk_users = NULL;
79 call_rcu(&mk->mk_rcu_head, fscrypt_free_master_key);
80 }
81
fscrypt_put_master_key_activeref(struct fscrypt_master_key * mk)82 void fscrypt_put_master_key_activeref(struct fscrypt_master_key *mk)
83 {
84 struct super_block *sb = mk->mk_sb;
85 struct fscrypt_keyring *keyring = sb->s_master_keys;
86 size_t i;
87
88 if (!refcount_dec_and_test(&mk->mk_active_refs))
89 return;
90 /*
91 * No active references left, so complete the full removal of this
92 * fscrypt_master_key struct by removing it from the keyring and
93 * destroying any subkeys embedded in it.
94 */
95
96 spin_lock(&keyring->lock);
97 hlist_del_rcu(&mk->mk_node);
98 spin_unlock(&keyring->lock);
99
100 /*
101 * ->mk_active_refs == 0 implies that ->mk_secret is not present and
102 * that ->mk_decrypted_inodes is empty.
103 */
104 WARN_ON(is_master_key_secret_present(&mk->mk_secret));
105 WARN_ON(!list_empty(&mk->mk_decrypted_inodes));
106
107 for (i = 0; i <= FSCRYPT_MODE_MAX; i++) {
108 fscrypt_destroy_prepared_key(&mk->mk_direct_keys[i]);
109 fscrypt_destroy_prepared_key(&mk->mk_iv_ino_lblk_64_keys[i]);
110 fscrypt_destroy_prepared_key(&mk->mk_iv_ino_lblk_32_keys[i]);
111 }
112 memzero_explicit(&mk->mk_ino_hash_key,
113 sizeof(mk->mk_ino_hash_key));
114 mk->mk_ino_hash_key_initialized = false;
115
116 /* Drop the structural ref associated with the active refs. */
117 fscrypt_put_master_key(mk);
118 }
119
valid_key_spec(const struct fscrypt_key_specifier * spec)120 static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec)
121 {
122 if (spec->__reserved)
123 return false;
124 return master_key_spec_len(spec) != 0;
125 }
126
fscrypt_user_key_instantiate(struct key * key,struct key_preparsed_payload * prep)127 static int fscrypt_user_key_instantiate(struct key *key,
128 struct key_preparsed_payload *prep)
129 {
130 /*
131 * We just charge FSCRYPT_MAX_KEY_SIZE bytes to the user's key quota for
132 * each key, regardless of the exact key size. The amount of memory
133 * actually used is greater than the size of the raw key anyway.
134 */
135 return key_payload_reserve(key, FSCRYPT_MAX_KEY_SIZE);
136 }
137
fscrypt_user_key_describe(const struct key * key,struct seq_file * m)138 static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m)
139 {
140 seq_puts(m, key->description);
141 }
142
143 /*
144 * Type of key in ->mk_users. Each key of this type represents a particular
145 * user who has added a particular master key.
146 *
147 * Note that the name of this key type really should be something like
148 * ".fscrypt-user" instead of simply ".fscrypt". But the shorter name is chosen
149 * mainly for simplicity of presentation in /proc/keys when read by a non-root
150 * user. And it is expected to be rare that a key is actually added by multiple
151 * users, since users should keep their encryption keys confidential.
152 */
153 static struct key_type key_type_fscrypt_user = {
154 .name = ".fscrypt",
155 .instantiate = fscrypt_user_key_instantiate,
156 .describe = fscrypt_user_key_describe,
157 };
158
159 #define FSCRYPT_MK_USERS_DESCRIPTION_SIZE \
160 (CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \
161 CONST_STRLEN("-users") + 1)
162
163 #define FSCRYPT_MK_USER_DESCRIPTION_SIZE \
164 (2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1)
165
format_mk_users_keyring_description(char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])166 static void format_mk_users_keyring_description(
167 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],
168 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
169 {
170 sprintf(description, "fscrypt-%*phN-users",
171 FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier);
172 }
173
format_mk_user_description(char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE],const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])174 static void format_mk_user_description(
175 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE],
176 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
177 {
178
179 sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE,
180 mk_identifier, __kuid_val(current_fsuid()));
181 }
182
183 /* Create ->s_master_keys if needed. Synchronized by fscrypt_add_key_mutex. */
allocate_filesystem_keyring(struct super_block * sb)184 static int allocate_filesystem_keyring(struct super_block *sb)
185 {
186 struct fscrypt_keyring *keyring;
187
188 if (sb->s_master_keys)
189 return 0;
190
191 keyring = kzalloc(sizeof(*keyring), GFP_KERNEL);
192 if (!keyring)
193 return -ENOMEM;
194 spin_lock_init(&keyring->lock);
195 /*
196 * Pairs with the smp_load_acquire() in fscrypt_find_master_key().
197 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that
198 * concurrent tasks can ACQUIRE it.
199 */
200 smp_store_release(&sb->s_master_keys, keyring);
201 return 0;
202 }
203
204 /*
205 * Release all encryption keys that have been added to the filesystem, along
206 * with the keyring that contains them.
207 *
208 * This is called at unmount time. The filesystem's underlying block device(s)
209 * are still available at this time; this is important because after user file
210 * accesses have been allowed, this function may need to evict keys from the
211 * keyslots of an inline crypto engine, which requires the block device(s).
212 *
213 * This is also called when the super_block is being freed. This is needed to
214 * avoid a memory leak if mounting fails after the "test_dummy_encryption"
215 * option was processed, as in that case the unmount-time call isn't made.
216 */
fscrypt_destroy_keyring(struct super_block * sb)217 void fscrypt_destroy_keyring(struct super_block *sb)
218 {
219 struct fscrypt_keyring *keyring = sb->s_master_keys;
220 size_t i;
221
222 if (!keyring)
223 return;
224
225 for (i = 0; i < ARRAY_SIZE(keyring->key_hashtable); i++) {
226 struct hlist_head *bucket = &keyring->key_hashtable[i];
227 struct fscrypt_master_key *mk;
228 struct hlist_node *tmp;
229
230 hlist_for_each_entry_safe(mk, tmp, bucket, mk_node) {
231 /*
232 * Since all inodes were already evicted, every key
233 * remaining in the keyring should have an empty inode
234 * list, and should only still be in the keyring due to
235 * the single active ref associated with ->mk_secret.
236 * There should be no structural refs beyond the one
237 * associated with the active ref.
238 */
239 WARN_ON(refcount_read(&mk->mk_active_refs) != 1);
240 WARN_ON(refcount_read(&mk->mk_struct_refs) != 1);
241 WARN_ON(!is_master_key_secret_present(&mk->mk_secret));
242 wipe_master_key_secret(&mk->mk_secret);
243 fscrypt_put_master_key_activeref(mk);
244 }
245 }
246 kfree_sensitive(keyring);
247 sb->s_master_keys = NULL;
248 }
249
250 static struct hlist_head *
fscrypt_mk_hash_bucket(struct fscrypt_keyring * keyring,const struct fscrypt_key_specifier * mk_spec)251 fscrypt_mk_hash_bucket(struct fscrypt_keyring *keyring,
252 const struct fscrypt_key_specifier *mk_spec)
253 {
254 /*
255 * Since key specifiers should be "random" values, it is sufficient to
256 * use a trivial hash function that just takes the first several bits of
257 * the key specifier.
258 */
259 unsigned long i = get_unaligned((unsigned long *)&mk_spec->u);
260
261 return &keyring->key_hashtable[i % ARRAY_SIZE(keyring->key_hashtable)];
262 }
263
264 /*
265 * Find the specified master key struct in ->s_master_keys and take a structural
266 * ref to it. The structural ref guarantees that the key struct continues to
267 * exist, but it does *not* guarantee that ->s_master_keys continues to contain
268 * the key struct. The structural ref needs to be dropped by
269 * fscrypt_put_master_key(). Returns NULL if the key struct is not found.
270 */
271 struct fscrypt_master_key *
fscrypt_find_master_key(struct super_block * sb,const struct fscrypt_key_specifier * mk_spec)272 fscrypt_find_master_key(struct super_block *sb,
273 const struct fscrypt_key_specifier *mk_spec)
274 {
275 struct fscrypt_keyring *keyring;
276 struct hlist_head *bucket;
277 struct fscrypt_master_key *mk;
278
279 /*
280 * Pairs with the smp_store_release() in allocate_filesystem_keyring().
281 * I.e., another task can publish ->s_master_keys concurrently,
282 * executing a RELEASE barrier. We need to use smp_load_acquire() here
283 * to safely ACQUIRE the memory the other task published.
284 */
285 keyring = smp_load_acquire(&sb->s_master_keys);
286 if (keyring == NULL)
287 return NULL; /* No keyring yet, so no keys yet. */
288
289 bucket = fscrypt_mk_hash_bucket(keyring, mk_spec);
290 rcu_read_lock();
291 switch (mk_spec->type) {
292 case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
293 hlist_for_each_entry_rcu(mk, bucket, mk_node) {
294 if (mk->mk_spec.type ==
295 FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
296 memcmp(mk->mk_spec.u.descriptor,
297 mk_spec->u.descriptor,
298 FSCRYPT_KEY_DESCRIPTOR_SIZE) == 0 &&
299 refcount_inc_not_zero(&mk->mk_struct_refs))
300 goto out;
301 }
302 break;
303 case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
304 hlist_for_each_entry_rcu(mk, bucket, mk_node) {
305 if (mk->mk_spec.type ==
306 FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
307 memcmp(mk->mk_spec.u.identifier,
308 mk_spec->u.identifier,
309 FSCRYPT_KEY_IDENTIFIER_SIZE) == 0 &&
310 refcount_inc_not_zero(&mk->mk_struct_refs))
311 goto out;
312 }
313 break;
314 }
315 mk = NULL;
316 out:
317 rcu_read_unlock();
318 return mk;
319 }
320
allocate_master_key_users_keyring(struct fscrypt_master_key * mk)321 static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk)
322 {
323 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE];
324 struct key *keyring;
325
326 format_mk_users_keyring_description(description,
327 mk->mk_spec.u.identifier);
328 keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
329 current_cred(), KEY_POS_SEARCH |
330 KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW,
331 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
332 if (IS_ERR(keyring))
333 return PTR_ERR(keyring);
334
335 mk->mk_users = keyring;
336 return 0;
337 }
338
339 /*
340 * Find the current user's "key" in the master key's ->mk_users.
341 * Returns ERR_PTR(-ENOKEY) if not found.
342 */
find_master_key_user(struct fscrypt_master_key * mk)343 static struct key *find_master_key_user(struct fscrypt_master_key *mk)
344 {
345 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
346 key_ref_t keyref;
347
348 format_mk_user_description(description, mk->mk_spec.u.identifier);
349
350 /*
351 * We need to mark the keyring reference as "possessed" so that we
352 * acquire permission to search it, via the KEY_POS_SEARCH permission.
353 */
354 keyref = keyring_search(make_key_ref(mk->mk_users, true /*possessed*/),
355 &key_type_fscrypt_user, description, false);
356 if (IS_ERR(keyref)) {
357 if (PTR_ERR(keyref) == -EAGAIN || /* not found */
358 PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */
359 keyref = ERR_PTR(-ENOKEY);
360 return ERR_CAST(keyref);
361 }
362 return key_ref_to_ptr(keyref);
363 }
364
365 /*
366 * Give the current user a "key" in ->mk_users. This charges the user's quota
367 * and marks the master key as added by the current user, so that it cannot be
368 * removed by another user with the key. Either ->mk_sem must be held for
369 * write, or the master key must be still undergoing initialization.
370 */
add_master_key_user(struct fscrypt_master_key * mk)371 static int add_master_key_user(struct fscrypt_master_key *mk)
372 {
373 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
374 struct key *mk_user;
375 int err;
376
377 format_mk_user_description(description, mk->mk_spec.u.identifier);
378 mk_user = key_alloc(&key_type_fscrypt_user, description,
379 current_fsuid(), current_gid(), current_cred(),
380 KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL);
381 if (IS_ERR(mk_user))
382 return PTR_ERR(mk_user);
383
384 err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL);
385 key_put(mk_user);
386 return err;
387 }
388
389 /*
390 * Remove the current user's "key" from ->mk_users.
391 * ->mk_sem must be held for write.
392 *
393 * Returns 0 if removed, -ENOKEY if not found, or another -errno code.
394 */
remove_master_key_user(struct fscrypt_master_key * mk)395 static int remove_master_key_user(struct fscrypt_master_key *mk)
396 {
397 struct key *mk_user;
398 int err;
399
400 mk_user = find_master_key_user(mk);
401 if (IS_ERR(mk_user))
402 return PTR_ERR(mk_user);
403 err = key_unlink(mk->mk_users, mk_user);
404 key_put(mk_user);
405 return err;
406 }
407
408 /*
409 * Allocate a new fscrypt_master_key, transfer the given secret over to it, and
410 * insert it into sb->s_master_keys.
411 */
add_new_master_key(struct super_block * sb,struct fscrypt_master_key_secret * secret,const struct fscrypt_key_specifier * mk_spec)412 static int add_new_master_key(struct super_block *sb,
413 struct fscrypt_master_key_secret *secret,
414 const struct fscrypt_key_specifier *mk_spec)
415 {
416 struct fscrypt_keyring *keyring = sb->s_master_keys;
417 struct fscrypt_master_key *mk;
418 int err;
419
420 mk = kzalloc(sizeof(*mk), GFP_KERNEL);
421 if (!mk)
422 return -ENOMEM;
423
424 mk->mk_sb = sb;
425 init_rwsem(&mk->mk_sem);
426 refcount_set(&mk->mk_struct_refs, 1);
427 mk->mk_spec = *mk_spec;
428
429 INIT_LIST_HEAD(&mk->mk_decrypted_inodes);
430 spin_lock_init(&mk->mk_decrypted_inodes_lock);
431
432 if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
433 err = allocate_master_key_users_keyring(mk);
434 if (err)
435 goto out_put;
436 err = add_master_key_user(mk);
437 if (err)
438 goto out_put;
439 }
440
441 move_master_key_secret(&mk->mk_secret, secret);
442 refcount_set(&mk->mk_active_refs, 1); /* ->mk_secret is present */
443
444 spin_lock(&keyring->lock);
445 hlist_add_head_rcu(&mk->mk_node,
446 fscrypt_mk_hash_bucket(keyring, mk_spec));
447 spin_unlock(&keyring->lock);
448 return 0;
449
450 out_put:
451 fscrypt_put_master_key(mk);
452 return err;
453 }
454
455 #define KEY_DEAD 1
456
add_existing_master_key(struct fscrypt_master_key * mk,struct fscrypt_master_key_secret * secret)457 static int add_existing_master_key(struct fscrypt_master_key *mk,
458 struct fscrypt_master_key_secret *secret)
459 {
460 int err;
461
462 /*
463 * If the current user is already in ->mk_users, then there's nothing to
464 * do. Otherwise, we need to add the user to ->mk_users. (Neither is
465 * applicable for v1 policy keys, which have NULL ->mk_users.)
466 */
467 if (mk->mk_users) {
468 struct key *mk_user = find_master_key_user(mk);
469
470 if (mk_user != ERR_PTR(-ENOKEY)) {
471 if (IS_ERR(mk_user))
472 return PTR_ERR(mk_user);
473 key_put(mk_user);
474 return 0;
475 }
476 err = add_master_key_user(mk);
477 if (err)
478 return err;
479 }
480
481 /* Re-add the secret if needed. */
482 if (!is_master_key_secret_present(&mk->mk_secret)) {
483 if (!refcount_inc_not_zero(&mk->mk_active_refs))
484 return KEY_DEAD;
485 move_master_key_secret(&mk->mk_secret, secret);
486 }
487
488 return 0;
489 }
490
do_add_master_key(struct super_block * sb,struct fscrypt_master_key_secret * secret,const struct fscrypt_key_specifier * mk_spec)491 static int do_add_master_key(struct super_block *sb,
492 struct fscrypt_master_key_secret *secret,
493 const struct fscrypt_key_specifier *mk_spec)
494 {
495 static DEFINE_MUTEX(fscrypt_add_key_mutex);
496 struct fscrypt_master_key *mk;
497 int err;
498
499 mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */
500
501 mk = fscrypt_find_master_key(sb, mk_spec);
502 if (!mk) {
503 /* Didn't find the key in ->s_master_keys. Add it. */
504 err = allocate_filesystem_keyring(sb);
505 if (!err)
506 err = add_new_master_key(sb, secret, mk_spec);
507 } else {
508 /*
509 * Found the key in ->s_master_keys. Re-add the secret if
510 * needed, and add the user to ->mk_users if needed.
511 */
512 down_write(&mk->mk_sem);
513 err = add_existing_master_key(mk, secret);
514 up_write(&mk->mk_sem);
515 if (err == KEY_DEAD) {
516 /*
517 * We found a key struct, but it's already been fully
518 * removed. Ignore the old struct and add a new one.
519 * fscrypt_add_key_mutex means we don't need to worry
520 * about concurrent adds.
521 */
522 err = add_new_master_key(sb, secret, mk_spec);
523 }
524 fscrypt_put_master_key(mk);
525 }
526 mutex_unlock(&fscrypt_add_key_mutex);
527 return err;
528 }
529
530 /* Size of software "secret" derived from hardware-wrapped key */
531 #define RAW_SECRET_SIZE 32
532
add_master_key(struct super_block * sb,struct fscrypt_master_key_secret * secret,struct fscrypt_key_specifier * key_spec)533 static int add_master_key(struct super_block *sb,
534 struct fscrypt_master_key_secret *secret,
535 struct fscrypt_key_specifier *key_spec)
536 {
537 int err;
538
539 if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
540 u8 _kdf_key[RAW_SECRET_SIZE];
541 u8 *kdf_key = secret->raw;
542 unsigned int kdf_key_size = secret->size;
543
544 if (secret->is_hw_wrapped) {
545 kdf_key = _kdf_key;
546 kdf_key_size = RAW_SECRET_SIZE;
547 err = fscrypt_derive_raw_secret(sb, secret->raw,
548 secret->size,
549 kdf_key, kdf_key_size);
550 if (err)
551 return err;
552 }
553 err = fscrypt_init_hkdf(&secret->hkdf, kdf_key, kdf_key_size);
554 /*
555 * Now that the HKDF context is initialized, the raw HKDF key is
556 * no longer needed.
557 */
558 memzero_explicit(kdf_key, kdf_key_size);
559 if (err)
560 return err;
561
562 /* Calculate the key identifier */
563 err = fscrypt_hkdf_expand(&secret->hkdf,
564 HKDF_CONTEXT_KEY_IDENTIFIER, NULL, 0,
565 key_spec->u.identifier,
566 FSCRYPT_KEY_IDENTIFIER_SIZE);
567 if (err)
568 return err;
569 }
570 return do_add_master_key(sb, secret, key_spec);
571 }
572
fscrypt_provisioning_key_preparse(struct key_preparsed_payload * prep)573 static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep)
574 {
575 const struct fscrypt_provisioning_key_payload *payload = prep->data;
576
577 BUILD_BUG_ON(FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE < FSCRYPT_MAX_KEY_SIZE);
578
579 if (prep->datalen < sizeof(*payload) + FSCRYPT_MIN_KEY_SIZE ||
580 prep->datalen > sizeof(*payload) + FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE)
581 return -EINVAL;
582
583 if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
584 payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER)
585 return -EINVAL;
586
587 if (payload->__reserved)
588 return -EINVAL;
589
590 prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL);
591 if (!prep->payload.data[0])
592 return -ENOMEM;
593
594 prep->quotalen = prep->datalen;
595 return 0;
596 }
597
fscrypt_provisioning_key_free_preparse(struct key_preparsed_payload * prep)598 static void fscrypt_provisioning_key_free_preparse(
599 struct key_preparsed_payload *prep)
600 {
601 kfree_sensitive(prep->payload.data[0]);
602 }
603
fscrypt_provisioning_key_describe(const struct key * key,struct seq_file * m)604 static void fscrypt_provisioning_key_describe(const struct key *key,
605 struct seq_file *m)
606 {
607 seq_puts(m, key->description);
608 if (key_is_positive(key)) {
609 const struct fscrypt_provisioning_key_payload *payload =
610 key->payload.data[0];
611
612 seq_printf(m, ": %u [%u]", key->datalen, payload->type);
613 }
614 }
615
fscrypt_provisioning_key_destroy(struct key * key)616 static void fscrypt_provisioning_key_destroy(struct key *key)
617 {
618 kfree_sensitive(key->payload.data[0]);
619 }
620
621 static struct key_type key_type_fscrypt_provisioning = {
622 .name = "fscrypt-provisioning",
623 .preparse = fscrypt_provisioning_key_preparse,
624 .free_preparse = fscrypt_provisioning_key_free_preparse,
625 .instantiate = generic_key_instantiate,
626 .describe = fscrypt_provisioning_key_describe,
627 .destroy = fscrypt_provisioning_key_destroy,
628 };
629
630 /*
631 * Retrieve the raw key from the Linux keyring key specified by 'key_id', and
632 * store it into 'secret'.
633 *
634 * The key must be of type "fscrypt-provisioning" and must have the field
635 * fscrypt_provisioning_key_payload::type set to 'type', indicating that it's
636 * only usable with fscrypt with the particular KDF version identified by
637 * 'type'. We don't use the "logon" key type because there's no way to
638 * completely restrict the use of such keys; they can be used by any kernel API
639 * that accepts "logon" keys and doesn't require a specific service prefix.
640 *
641 * The ability to specify the key via Linux keyring key is intended for cases
642 * where userspace needs to re-add keys after the filesystem is unmounted and
643 * re-mounted. Most users should just provide the raw key directly instead.
644 */
get_keyring_key(u32 key_id,u32 type,struct fscrypt_master_key_secret * secret)645 static int get_keyring_key(u32 key_id, u32 type,
646 struct fscrypt_master_key_secret *secret)
647 {
648 key_ref_t ref;
649 struct key *key;
650 const struct fscrypt_provisioning_key_payload *payload;
651 int err;
652
653 ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH);
654 if (IS_ERR(ref))
655 return PTR_ERR(ref);
656 key = key_ref_to_ptr(ref);
657
658 if (key->type != &key_type_fscrypt_provisioning)
659 goto bad_key;
660 payload = key->payload.data[0];
661
662 /* Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. */
663 if (payload->type != type)
664 goto bad_key;
665
666 secret->size = key->datalen - sizeof(*payload);
667 memcpy(secret->raw, payload->raw, secret->size);
668 err = 0;
669 goto out_put;
670
671 bad_key:
672 err = -EKEYREJECTED;
673 out_put:
674 key_ref_put(ref);
675 return err;
676 }
677
678 /*
679 * Add a master encryption key to the filesystem, causing all files which were
680 * encrypted with it to appear "unlocked" (decrypted) when accessed.
681 *
682 * When adding a key for use by v1 encryption policies, this ioctl is
683 * privileged, and userspace must provide the 'key_descriptor'.
684 *
685 * When adding a key for use by v2+ encryption policies, this ioctl is
686 * unprivileged. This is needed, in general, to allow non-root users to use
687 * encryption without encountering the visibility problems of process-subscribed
688 * keyrings and the inability to properly remove keys. This works by having
689 * each key identified by its cryptographically secure hash --- the
690 * 'key_identifier'. The cryptographic hash ensures that a malicious user
691 * cannot add the wrong key for a given identifier. Furthermore, each added key
692 * is charged to the appropriate user's quota for the keyrings service, which
693 * prevents a malicious user from adding too many keys. Finally, we forbid a
694 * user from removing a key while other users have added it too, which prevents
695 * a user who knows another user's key from causing a denial-of-service by
696 * removing it at an inopportune time. (We tolerate that a user who knows a key
697 * can prevent other users from removing it.)
698 *
699 * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of
700 * Documentation/filesystems/fscrypt.rst.
701 */
fscrypt_ioctl_add_key(struct file * filp,void __user * _uarg)702 int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg)
703 {
704 struct super_block *sb = file_inode(filp)->i_sb;
705 struct fscrypt_add_key_arg __user *uarg = _uarg;
706 struct fscrypt_add_key_arg arg;
707 struct fscrypt_master_key_secret secret;
708 int err;
709
710 if (copy_from_user(&arg, uarg, sizeof(arg)))
711 return -EFAULT;
712
713 if (!valid_key_spec(&arg.key_spec))
714 return -EINVAL;
715
716 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
717 return -EINVAL;
718
719 /*
720 * Only root can add keys that are identified by an arbitrary descriptor
721 * rather than by a cryptographic hash --- since otherwise a malicious
722 * user could add the wrong key.
723 */
724 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
725 !capable(CAP_SYS_ADMIN))
726 return -EACCES;
727
728 memset(&secret, 0, sizeof(secret));
729
730 if (arg.__flags) {
731 if (arg.__flags & ~__FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED)
732 return -EINVAL;
733 if (arg.key_spec.type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER)
734 return -EINVAL;
735 secret.is_hw_wrapped = true;
736 }
737
738 if (arg.key_id) {
739 if (arg.raw_size != 0)
740 return -EINVAL;
741 err = get_keyring_key(arg.key_id, arg.key_spec.type, &secret);
742 if (err)
743 goto out_wipe_secret;
744 err = -EINVAL;
745 if (secret.size > FSCRYPT_MAX_KEY_SIZE && !secret.is_hw_wrapped)
746 goto out_wipe_secret;
747 } else {
748 if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE ||
749 arg.raw_size > (secret.is_hw_wrapped ?
750 FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE :
751 FSCRYPT_MAX_KEY_SIZE))
752 return -EINVAL;
753 secret.size = arg.raw_size;
754 err = -EFAULT;
755 if (copy_from_user(secret.raw, uarg->raw, secret.size))
756 goto out_wipe_secret;
757 }
758
759 err = add_master_key(sb, &secret, &arg.key_spec);
760 if (err)
761 goto out_wipe_secret;
762
763 /* Return the key identifier to userspace, if applicable */
764 err = -EFAULT;
765 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
766 copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier,
767 FSCRYPT_KEY_IDENTIFIER_SIZE))
768 goto out_wipe_secret;
769 err = 0;
770 out_wipe_secret:
771 wipe_master_key_secret(&secret);
772 return err;
773 }
774 EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key);
775
776 /*
777 * Add the key for '-o test_dummy_encryption' to the filesystem keyring.
778 *
779 * Use a per-boot random key to prevent people from misusing this option.
780 */
fscrypt_add_test_dummy_key(struct super_block * sb,struct fscrypt_key_specifier * key_spec)781 int fscrypt_add_test_dummy_key(struct super_block *sb,
782 struct fscrypt_key_specifier *key_spec)
783 {
784 static u8 test_key[FSCRYPT_MAX_KEY_SIZE];
785 struct fscrypt_master_key_secret secret;
786 int err;
787
788 get_random_once(test_key, FSCRYPT_MAX_KEY_SIZE);
789
790 memset(&secret, 0, sizeof(secret));
791 secret.size = FSCRYPT_MAX_KEY_SIZE;
792 memcpy(secret.raw, test_key, FSCRYPT_MAX_KEY_SIZE);
793
794 err = add_master_key(sb, &secret, key_spec);
795 wipe_master_key_secret(&secret);
796 return err;
797 }
798
799 /*
800 * Verify that the current user has added a master key with the given identifier
801 * (returns -ENOKEY if not). This is needed to prevent a user from encrypting
802 * their files using some other user's key which they don't actually know.
803 * Cryptographically this isn't much of a problem, but the semantics of this
804 * would be a bit weird, so it's best to just forbid it.
805 *
806 * The system administrator (CAP_FOWNER) can override this, which should be
807 * enough for any use cases where encryption policies are being set using keys
808 * that were chosen ahead of time but aren't available at the moment.
809 *
810 * Note that the key may have already removed by the time this returns, but
811 * that's okay; we just care whether the key was there at some point.
812 *
813 * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code
814 */
fscrypt_verify_key_added(struct super_block * sb,const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])815 int fscrypt_verify_key_added(struct super_block *sb,
816 const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
817 {
818 struct fscrypt_key_specifier mk_spec;
819 struct fscrypt_master_key *mk;
820 struct key *mk_user;
821 int err;
822
823 mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
824 memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE);
825
826 mk = fscrypt_find_master_key(sb, &mk_spec);
827 if (!mk) {
828 err = -ENOKEY;
829 goto out;
830 }
831 down_read(&mk->mk_sem);
832 mk_user = find_master_key_user(mk);
833 if (IS_ERR(mk_user)) {
834 err = PTR_ERR(mk_user);
835 } else {
836 key_put(mk_user);
837 err = 0;
838 }
839 up_read(&mk->mk_sem);
840 fscrypt_put_master_key(mk);
841 out:
842 if (err == -ENOKEY && capable(CAP_FOWNER))
843 err = 0;
844 return err;
845 }
846
847 /*
848 * Try to evict the inode's dentries from the dentry cache. If the inode is a
849 * directory, then it can have at most one dentry; however, that dentry may be
850 * pinned by child dentries, so first try to evict the children too.
851 */
shrink_dcache_inode(struct inode * inode)852 static void shrink_dcache_inode(struct inode *inode)
853 {
854 struct dentry *dentry;
855
856 if (S_ISDIR(inode->i_mode)) {
857 dentry = d_find_any_alias(inode);
858 if (dentry) {
859 shrink_dcache_parent(dentry);
860 dput(dentry);
861 }
862 }
863 d_prune_aliases(inode);
864 }
865
evict_dentries_for_decrypted_inodes(struct fscrypt_master_key * mk)866 static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk)
867 {
868 struct fscrypt_info *ci;
869 struct inode *inode;
870 struct inode *toput_inode = NULL;
871
872 spin_lock(&mk->mk_decrypted_inodes_lock);
873
874 list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) {
875 inode = ci->ci_inode;
876 spin_lock(&inode->i_lock);
877 if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
878 spin_unlock(&inode->i_lock);
879 continue;
880 }
881 __iget(inode);
882 spin_unlock(&inode->i_lock);
883 spin_unlock(&mk->mk_decrypted_inodes_lock);
884
885 shrink_dcache_inode(inode);
886 iput(toput_inode);
887 toput_inode = inode;
888
889 spin_lock(&mk->mk_decrypted_inodes_lock);
890 }
891
892 spin_unlock(&mk->mk_decrypted_inodes_lock);
893 iput(toput_inode);
894 }
895
check_for_busy_inodes(struct super_block * sb,struct fscrypt_master_key * mk)896 static int check_for_busy_inodes(struct super_block *sb,
897 struct fscrypt_master_key *mk)
898 {
899 struct list_head *pos;
900 size_t busy_count = 0;
901 unsigned long ino;
902 char ino_str[50] = "";
903
904 spin_lock(&mk->mk_decrypted_inodes_lock);
905
906 list_for_each(pos, &mk->mk_decrypted_inodes)
907 busy_count++;
908
909 if (busy_count == 0) {
910 spin_unlock(&mk->mk_decrypted_inodes_lock);
911 return 0;
912 }
913
914 {
915 /* select an example file to show for debugging purposes */
916 struct inode *inode =
917 list_first_entry(&mk->mk_decrypted_inodes,
918 struct fscrypt_info,
919 ci_master_key_link)->ci_inode;
920 ino = inode->i_ino;
921 }
922 spin_unlock(&mk->mk_decrypted_inodes_lock);
923
924 /* If the inode is currently being created, ino may still be 0. */
925 if (ino)
926 snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino);
927
928 fscrypt_warn(NULL,
929 "%s: %zu inode(s) still busy after removing key with %s %*phN%s",
930 sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec),
931 master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u,
932 ino_str);
933 return -EBUSY;
934 }
935
try_to_lock_encrypted_files(struct super_block * sb,struct fscrypt_master_key * mk)936 static int try_to_lock_encrypted_files(struct super_block *sb,
937 struct fscrypt_master_key *mk)
938 {
939 int err1;
940 int err2;
941
942 /*
943 * An inode can't be evicted while it is dirty or has dirty pages.
944 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes.
945 *
946 * Just do it the easy way: call sync_filesystem(). It's overkill, but
947 * it works, and it's more important to minimize the amount of caches we
948 * drop than the amount of data we sync. Also, unprivileged users can
949 * already call sync_filesystem() via sys_syncfs() or sys_sync().
950 */
951 down_read(&sb->s_umount);
952 err1 = sync_filesystem(sb);
953 up_read(&sb->s_umount);
954 /* If a sync error occurs, still try to evict as much as possible. */
955
956 /*
957 * Inodes are pinned by their dentries, so we have to evict their
958 * dentries. shrink_dcache_sb() would suffice, but would be overkill
959 * and inappropriate for use by unprivileged users. So instead go
960 * through the inodes' alias lists and try to evict each dentry.
961 */
962 evict_dentries_for_decrypted_inodes(mk);
963
964 /*
965 * evict_dentries_for_decrypted_inodes() already iput() each inode in
966 * the list; any inodes for which that dropped the last reference will
967 * have been evicted due to fscrypt_drop_inode() detecting the key
968 * removal and telling the VFS to evict the inode. So to finish, we
969 * just need to check whether any inodes couldn't be evicted.
970 */
971 err2 = check_for_busy_inodes(sb, mk);
972
973 return err1 ?: err2;
974 }
975
976 /*
977 * Try to remove an fscrypt master encryption key.
978 *
979 * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's
980 * claim to the key, then removes the key itself if no other users have claims.
981 * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the
982 * key itself.
983 *
984 * To "remove the key itself", first we wipe the actual master key secret, so
985 * that no more inodes can be unlocked with it. Then we try to evict all cached
986 * inodes that had been unlocked with the key.
987 *
988 * If all inodes were evicted, then we unlink the fscrypt_master_key from the
989 * keyring. Otherwise it remains in the keyring in the "incompletely removed"
990 * state (without the actual secret key) where it tracks the list of remaining
991 * inodes. Userspace can execute the ioctl again later to retry eviction, or
992 * alternatively can re-add the secret key again.
993 *
994 * For more details, see the "Removing keys" section of
995 * Documentation/filesystems/fscrypt.rst.
996 */
do_remove_key(struct file * filp,void __user * _uarg,bool all_users)997 static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users)
998 {
999 struct super_block *sb = file_inode(filp)->i_sb;
1000 struct fscrypt_remove_key_arg __user *uarg = _uarg;
1001 struct fscrypt_remove_key_arg arg;
1002 struct fscrypt_master_key *mk;
1003 u32 status_flags = 0;
1004 int err;
1005 bool inodes_remain;
1006
1007 if (copy_from_user(&arg, uarg, sizeof(arg)))
1008 return -EFAULT;
1009
1010 if (!valid_key_spec(&arg.key_spec))
1011 return -EINVAL;
1012
1013 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1014 return -EINVAL;
1015
1016 /*
1017 * Only root can add and remove keys that are identified by an arbitrary
1018 * descriptor rather than by a cryptographic hash.
1019 */
1020 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
1021 !capable(CAP_SYS_ADMIN))
1022 return -EACCES;
1023
1024 /* Find the key being removed. */
1025 mk = fscrypt_find_master_key(sb, &arg.key_spec);
1026 if (!mk)
1027 return -ENOKEY;
1028 down_write(&mk->mk_sem);
1029
1030 /* If relevant, remove current user's (or all users) claim to the key */
1031 if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) {
1032 if (all_users)
1033 err = keyring_clear(mk->mk_users);
1034 else
1035 err = remove_master_key_user(mk);
1036 if (err) {
1037 up_write(&mk->mk_sem);
1038 goto out_put_key;
1039 }
1040 if (mk->mk_users->keys.nr_leaves_on_tree != 0) {
1041 /*
1042 * Other users have still added the key too. We removed
1043 * the current user's claim to the key, but we still
1044 * can't remove the key itself.
1045 */
1046 status_flags |=
1047 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS;
1048 err = 0;
1049 up_write(&mk->mk_sem);
1050 goto out_put_key;
1051 }
1052 }
1053
1054 /* No user claims remaining. Go ahead and wipe the secret. */
1055 err = -ENOKEY;
1056 if (is_master_key_secret_present(&mk->mk_secret)) {
1057 wipe_master_key_secret(&mk->mk_secret);
1058 fscrypt_put_master_key_activeref(mk);
1059 err = 0;
1060 }
1061 inodes_remain = refcount_read(&mk->mk_active_refs) > 0;
1062 up_write(&mk->mk_sem);
1063
1064 if (inodes_remain) {
1065 /* Some inodes still reference this key; try to evict them. */
1066 err = try_to_lock_encrypted_files(sb, mk);
1067 if (err == -EBUSY) {
1068 status_flags |=
1069 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY;
1070 err = 0;
1071 }
1072 }
1073 /*
1074 * We return 0 if we successfully did something: removed a claim to the
1075 * key, wiped the secret, or tried locking the files again. Users need
1076 * to check the informational status flags if they care whether the key
1077 * has been fully removed including all files locked.
1078 */
1079 out_put_key:
1080 fscrypt_put_master_key(mk);
1081 if (err == 0)
1082 err = put_user(status_flags, &uarg->removal_status_flags);
1083 return err;
1084 }
1085
fscrypt_ioctl_remove_key(struct file * filp,void __user * uarg)1086 int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg)
1087 {
1088 return do_remove_key(filp, uarg, false);
1089 }
1090 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key);
1091
fscrypt_ioctl_remove_key_all_users(struct file * filp,void __user * uarg)1092 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg)
1093 {
1094 if (!capable(CAP_SYS_ADMIN))
1095 return -EACCES;
1096 return do_remove_key(filp, uarg, true);
1097 }
1098 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users);
1099
1100 /*
1101 * Retrieve the status of an fscrypt master encryption key.
1102 *
1103 * We set ->status to indicate whether the key is absent, present, or
1104 * incompletely removed. "Incompletely removed" means that the master key
1105 * secret has been removed, but some files which had been unlocked with it are
1106 * still in use. This field allows applications to easily determine the state
1107 * of an encrypted directory without using a hack such as trying to open a
1108 * regular file in it (which can confuse the "incompletely removed" state with
1109 * absent or present).
1110 *
1111 * In addition, for v2 policy keys we allow applications to determine, via
1112 * ->status_flags and ->user_count, whether the key has been added by the
1113 * current user, by other users, or by both. Most applications should not need
1114 * this, since ordinarily only one user should know a given key. However, if a
1115 * secret key is shared by multiple users, applications may wish to add an
1116 * already-present key to prevent other users from removing it. This ioctl can
1117 * be used to check whether that really is the case before the work is done to
1118 * add the key --- which might e.g. require prompting the user for a passphrase.
1119 *
1120 * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of
1121 * Documentation/filesystems/fscrypt.rst.
1122 */
fscrypt_ioctl_get_key_status(struct file * filp,void __user * uarg)1123 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg)
1124 {
1125 struct super_block *sb = file_inode(filp)->i_sb;
1126 struct fscrypt_get_key_status_arg arg;
1127 struct fscrypt_master_key *mk;
1128 int err;
1129
1130 if (copy_from_user(&arg, uarg, sizeof(arg)))
1131 return -EFAULT;
1132
1133 if (!valid_key_spec(&arg.key_spec))
1134 return -EINVAL;
1135
1136 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1137 return -EINVAL;
1138
1139 arg.status_flags = 0;
1140 arg.user_count = 0;
1141 memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved));
1142
1143 mk = fscrypt_find_master_key(sb, &arg.key_spec);
1144 if (!mk) {
1145 arg.status = FSCRYPT_KEY_STATUS_ABSENT;
1146 err = 0;
1147 goto out;
1148 }
1149 down_read(&mk->mk_sem);
1150
1151 if (!is_master_key_secret_present(&mk->mk_secret)) {
1152 arg.status = refcount_read(&mk->mk_active_refs) > 0 ?
1153 FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED :
1154 FSCRYPT_KEY_STATUS_ABSENT /* raced with full removal */;
1155 err = 0;
1156 goto out_release_key;
1157 }
1158
1159 arg.status = FSCRYPT_KEY_STATUS_PRESENT;
1160 if (mk->mk_users) {
1161 struct key *mk_user;
1162
1163 arg.user_count = mk->mk_users->keys.nr_leaves_on_tree;
1164 mk_user = find_master_key_user(mk);
1165 if (!IS_ERR(mk_user)) {
1166 arg.status_flags |=
1167 FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF;
1168 key_put(mk_user);
1169 } else if (mk_user != ERR_PTR(-ENOKEY)) {
1170 err = PTR_ERR(mk_user);
1171 goto out_release_key;
1172 }
1173 }
1174 err = 0;
1175 out_release_key:
1176 up_read(&mk->mk_sem);
1177 fscrypt_put_master_key(mk);
1178 out:
1179 if (!err && copy_to_user(uarg, &arg, sizeof(arg)))
1180 err = -EFAULT;
1181 return err;
1182 }
1183 EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status);
1184
fscrypt_init_keyring(void)1185 int __init fscrypt_init_keyring(void)
1186 {
1187 int err;
1188
1189 err = register_key_type(&key_type_fscrypt_user);
1190 if (err)
1191 return err;
1192
1193 err = register_key_type(&key_type_fscrypt_provisioning);
1194 if (err)
1195 goto err_unregister_fscrypt_user;
1196
1197 return 0;
1198
1199 err_unregister_fscrypt_user:
1200 unregister_key_type(&key_type_fscrypt_user);
1201 return err;
1202 }
1203