• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1991, 1992  Linus Torvalds
4  *  Copyright (C) 2001  Andrea Arcangeli <andrea@suse.de> SuSE
5  *  Copyright (C) 2016 - 2020 Christoph Hellwig
6  */
7 
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/slab.h>
11 #include <linux/kmod.h>
12 #include <linux/major.h>
13 #include <linux/device_cgroup.h>
14 #include <linux/blkdev.h>
15 #include <linux/backing-dev.h>
16 #include <linux/module.h>
17 #include <linux/blkpg.h>
18 #include <linux/magic.h>
19 #include <linux/buffer_head.h>
20 #include <linux/swap.h>
21 #include <linux/writeback.h>
22 #include <linux/mount.h>
23 #include <linux/pseudo_fs.h>
24 #include <linux/uio.h>
25 #include <linux/namei.h>
26 #include <linux/cleancache.h>
27 #include <linux/part_stat.h>
28 #include <linux/uaccess.h>
29 #include "../fs/internal.h"
30 #include "blk.h"
31 
32 struct bdev_inode {
33 	struct block_device bdev;
34 	struct inode vfs_inode;
35 };
36 
BDEV_I(struct inode * inode)37 static inline struct bdev_inode *BDEV_I(struct inode *inode)
38 {
39 	return container_of(inode, struct bdev_inode, vfs_inode);
40 }
41 
I_BDEV(struct inode * inode)42 struct block_device *I_BDEV(struct inode *inode)
43 {
44 	return &BDEV_I(inode)->bdev;
45 }
46 EXPORT_SYMBOL(I_BDEV);
47 
bdev_write_inode(struct block_device * bdev)48 static void bdev_write_inode(struct block_device *bdev)
49 {
50 	struct inode *inode = bdev->bd_inode;
51 	int ret;
52 
53 	spin_lock(&inode->i_lock);
54 	while (inode->i_state & I_DIRTY) {
55 		spin_unlock(&inode->i_lock);
56 		ret = write_inode_now(inode, true);
57 		if (ret) {
58 			char name[BDEVNAME_SIZE];
59 			pr_warn_ratelimited("VFS: Dirty inode writeback failed "
60 					    "for block device %s (err=%d).\n",
61 					    bdevname(bdev, name), ret);
62 		}
63 		spin_lock(&inode->i_lock);
64 	}
65 	spin_unlock(&inode->i_lock);
66 }
67 
68 /* Kill _all_ buffers and pagecache , dirty or not.. */
kill_bdev(struct block_device * bdev)69 static void kill_bdev(struct block_device *bdev)
70 {
71 	struct address_space *mapping = bdev->bd_inode->i_mapping;
72 
73 	if (mapping_empty(mapping))
74 		return;
75 
76 	invalidate_bh_lrus();
77 	truncate_inode_pages(mapping, 0);
78 }
79 
80 /* Invalidate clean unused buffers and pagecache. */
invalidate_bdev(struct block_device * bdev)81 void invalidate_bdev(struct block_device *bdev)
82 {
83 	struct address_space *mapping = bdev->bd_inode->i_mapping;
84 
85 	if (mapping->nrpages) {
86 		invalidate_bh_lrus();
87 		lru_add_drain_all();	/* make sure all lru add caches are flushed */
88 		invalidate_mapping_pages(mapping, 0, -1);
89 	}
90 	/* 99% of the time, we don't need to flush the cleancache on the bdev.
91 	 * But, for the strange corners, lets be cautious
92 	 */
93 	cleancache_invalidate_inode(mapping);
94 }
95 EXPORT_SYMBOL(invalidate_bdev);
96 
97 /*
98  * Drop all buffers & page cache for given bdev range. This function bails
99  * with error if bdev has other exclusive owner (such as filesystem).
100  */
truncate_bdev_range(struct block_device * bdev,fmode_t mode,loff_t lstart,loff_t lend)101 int truncate_bdev_range(struct block_device *bdev, fmode_t mode,
102 			loff_t lstart, loff_t lend)
103 {
104 	/*
105 	 * If we don't hold exclusive handle for the device, upgrade to it
106 	 * while we discard the buffer cache to avoid discarding buffers
107 	 * under live filesystem.
108 	 */
109 	if (!(mode & FMODE_EXCL)) {
110 		int err = bd_prepare_to_claim(bdev, truncate_bdev_range);
111 		if (err)
112 			goto invalidate;
113 	}
114 
115 	truncate_inode_pages_range(bdev->bd_inode->i_mapping, lstart, lend);
116 	if (!(mode & FMODE_EXCL))
117 		bd_abort_claiming(bdev, truncate_bdev_range);
118 	return 0;
119 
120 invalidate:
121 	/*
122 	 * Someone else has handle exclusively open. Try invalidating instead.
123 	 * The 'end' argument is inclusive so the rounding is safe.
124 	 */
125 	return invalidate_inode_pages2_range(bdev->bd_inode->i_mapping,
126 					     lstart >> PAGE_SHIFT,
127 					     lend >> PAGE_SHIFT);
128 }
129 
set_init_blocksize(struct block_device * bdev)130 static void set_init_blocksize(struct block_device *bdev)
131 {
132 	unsigned int bsize = bdev_logical_block_size(bdev);
133 	loff_t size = i_size_read(bdev->bd_inode);
134 
135 	while (bsize < PAGE_SIZE) {
136 		if (size & bsize)
137 			break;
138 		bsize <<= 1;
139 	}
140 	bdev->bd_inode->i_blkbits = blksize_bits(bsize);
141 }
142 
set_blocksize(struct block_device * bdev,int size)143 int set_blocksize(struct block_device *bdev, int size)
144 {
145 	/* Size must be a power of two, and between 512 and PAGE_SIZE */
146 	if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
147 		return -EINVAL;
148 
149 	/* Size cannot be smaller than the size supported by the device */
150 	if (size < bdev_logical_block_size(bdev))
151 		return -EINVAL;
152 
153 	/* Don't change the size if it is same as current */
154 	if (bdev->bd_inode->i_blkbits != blksize_bits(size)) {
155 		sync_blockdev(bdev);
156 		bdev->bd_inode->i_blkbits = blksize_bits(size);
157 		kill_bdev(bdev);
158 	}
159 	return 0;
160 }
161 
162 EXPORT_SYMBOL(set_blocksize);
163 
sb_set_blocksize(struct super_block * sb,int size)164 int sb_set_blocksize(struct super_block *sb, int size)
165 {
166 	if (set_blocksize(sb->s_bdev, size))
167 		return 0;
168 	/* If we get here, we know size is power of two
169 	 * and it's value is between 512 and PAGE_SIZE */
170 	sb->s_blocksize = size;
171 	sb->s_blocksize_bits = blksize_bits(size);
172 	return sb->s_blocksize;
173 }
174 
175 EXPORT_SYMBOL(sb_set_blocksize);
176 
sb_min_blocksize(struct super_block * sb,int size)177 int sb_min_blocksize(struct super_block *sb, int size)
178 {
179 	int minsize = bdev_logical_block_size(sb->s_bdev);
180 	if (size < minsize)
181 		size = minsize;
182 	return sb_set_blocksize(sb, size);
183 }
184 
185 EXPORT_SYMBOL(sb_min_blocksize);
186 
sync_blockdev_nowait(struct block_device * bdev)187 int sync_blockdev_nowait(struct block_device *bdev)
188 {
189 	if (!bdev)
190 		return 0;
191 	return filemap_flush(bdev->bd_inode->i_mapping);
192 }
193 EXPORT_SYMBOL_GPL(sync_blockdev_nowait);
194 
195 /*
196  * Write out and wait upon all the dirty data associated with a block
197  * device via its mapping.  Does not take the superblock lock.
198  */
sync_blockdev(struct block_device * bdev)199 int sync_blockdev(struct block_device *bdev)
200 {
201 	if (!bdev)
202 		return 0;
203 	return filemap_write_and_wait(bdev->bd_inode->i_mapping);
204 }
205 EXPORT_SYMBOL(sync_blockdev);
206 
207 /*
208  * Write out and wait upon all dirty data associated with this
209  * device.   Filesystem data as well as the underlying block
210  * device.  Takes the superblock lock.
211  */
fsync_bdev(struct block_device * bdev)212 int fsync_bdev(struct block_device *bdev)
213 {
214 	struct super_block *sb = get_super(bdev);
215 	if (sb) {
216 		int res = sync_filesystem(sb);
217 		drop_super(sb);
218 		return res;
219 	}
220 	return sync_blockdev(bdev);
221 }
222 EXPORT_SYMBOL(fsync_bdev);
223 
224 /**
225  * freeze_bdev  --  lock a filesystem and force it into a consistent state
226  * @bdev:	blockdevice to lock
227  *
228  * If a superblock is found on this device, we take the s_umount semaphore
229  * on it to make sure nobody unmounts until the snapshot creation is done.
230  * The reference counter (bd_fsfreeze_count) guarantees that only the last
231  * unfreeze process can unfreeze the frozen filesystem actually when multiple
232  * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
233  * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
234  * actually.
235  */
freeze_bdev(struct block_device * bdev)236 int freeze_bdev(struct block_device *bdev)
237 {
238 	struct super_block *sb;
239 	int error = 0;
240 
241 	mutex_lock(&bdev->bd_fsfreeze_mutex);
242 	if (++bdev->bd_fsfreeze_count > 1)
243 		goto done;
244 
245 	sb = get_active_super(bdev);
246 	if (!sb)
247 		goto sync;
248 	if (sb->s_op->freeze_super)
249 		error = sb->s_op->freeze_super(sb);
250 	else
251 		error = freeze_super(sb);
252 	deactivate_super(sb);
253 
254 	if (error) {
255 		bdev->bd_fsfreeze_count--;
256 		goto done;
257 	}
258 	bdev->bd_fsfreeze_sb = sb;
259 
260 sync:
261 	sync_blockdev(bdev);
262 done:
263 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
264 	return error;
265 }
266 EXPORT_SYMBOL(freeze_bdev);
267 
268 /**
269  * thaw_bdev  -- unlock filesystem
270  * @bdev:	blockdevice to unlock
271  *
272  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
273  */
thaw_bdev(struct block_device * bdev)274 int thaw_bdev(struct block_device *bdev)
275 {
276 	struct super_block *sb;
277 	int error = -EINVAL;
278 
279 	mutex_lock(&bdev->bd_fsfreeze_mutex);
280 	if (!bdev->bd_fsfreeze_count)
281 		goto out;
282 
283 	error = 0;
284 	if (--bdev->bd_fsfreeze_count > 0)
285 		goto out;
286 
287 	sb = bdev->bd_fsfreeze_sb;
288 	if (!sb)
289 		goto out;
290 
291 	if (sb->s_op->thaw_super)
292 		error = sb->s_op->thaw_super(sb);
293 	else
294 		error = thaw_super(sb);
295 	if (error)
296 		bdev->bd_fsfreeze_count++;
297 	else
298 		bdev->bd_fsfreeze_sb = NULL;
299 out:
300 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
301 	return error;
302 }
303 EXPORT_SYMBOL(thaw_bdev);
304 
305 /**
306  * bdev_read_page() - Start reading a page from a block device
307  * @bdev: The device to read the page from
308  * @sector: The offset on the device to read the page to (need not be aligned)
309  * @page: The page to read
310  *
311  * On entry, the page should be locked.  It will be unlocked when the page
312  * has been read.  If the block driver implements rw_page synchronously,
313  * that will be true on exit from this function, but it need not be.
314  *
315  * Errors returned by this function are usually "soft", eg out of memory, or
316  * queue full; callers should try a different route to read this page rather
317  * than propagate an error back up the stack.
318  *
319  * Return: negative errno if an error occurs, 0 if submission was successful.
320  */
bdev_read_page(struct block_device * bdev,sector_t sector,struct page * page)321 int bdev_read_page(struct block_device *bdev, sector_t sector,
322 			struct page *page)
323 {
324 	const struct block_device_operations *ops = bdev->bd_disk->fops;
325 	int result = -EOPNOTSUPP;
326 
327 	if (!ops->rw_page || bdev_get_integrity(bdev))
328 		return result;
329 
330 	result = blk_queue_enter(bdev->bd_disk->queue, 0);
331 	if (result)
332 		return result;
333 	result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
334 			      REQ_OP_READ);
335 	blk_queue_exit(bdev->bd_disk->queue);
336 	return result;
337 }
338 
339 /**
340  * bdev_write_page() - Start writing a page to a block device
341  * @bdev: The device to write the page to
342  * @sector: The offset on the device to write the page to (need not be aligned)
343  * @page: The page to write
344  * @wbc: The writeback_control for the write
345  *
346  * On entry, the page should be locked and not currently under writeback.
347  * On exit, if the write started successfully, the page will be unlocked and
348  * under writeback.  If the write failed already (eg the driver failed to
349  * queue the page to the device), the page will still be locked.  If the
350  * caller is a ->writepage implementation, it will need to unlock the page.
351  *
352  * Errors returned by this function are usually "soft", eg out of memory, or
353  * queue full; callers should try a different route to write this page rather
354  * than propagate an error back up the stack.
355  *
356  * Return: negative errno if an error occurs, 0 if submission was successful.
357  */
bdev_write_page(struct block_device * bdev,sector_t sector,struct page * page,struct writeback_control * wbc)358 int bdev_write_page(struct block_device *bdev, sector_t sector,
359 			struct page *page, struct writeback_control *wbc)
360 {
361 	int result;
362 	const struct block_device_operations *ops = bdev->bd_disk->fops;
363 
364 	if (!ops->rw_page || bdev_get_integrity(bdev))
365 		return -EOPNOTSUPP;
366 	result = blk_queue_enter(bdev->bd_disk->queue, 0);
367 	if (result)
368 		return result;
369 
370 	set_page_writeback(page);
371 	result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
372 			      REQ_OP_WRITE);
373 	if (result) {
374 		end_page_writeback(page);
375 	} else {
376 		clean_page_buffers(page);
377 		unlock_page(page);
378 	}
379 	blk_queue_exit(bdev->bd_disk->queue);
380 	return result;
381 }
382 
383 /*
384  * pseudo-fs
385  */
386 
387 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
388 static struct kmem_cache * bdev_cachep __read_mostly;
389 
bdev_alloc_inode(struct super_block * sb)390 static struct inode *bdev_alloc_inode(struct super_block *sb)
391 {
392 	struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
393 
394 	if (!ei)
395 		return NULL;
396 	memset(&ei->bdev, 0, sizeof(ei->bdev));
397 	return &ei->vfs_inode;
398 }
399 
bdev_free_inode(struct inode * inode)400 static void bdev_free_inode(struct inode *inode)
401 {
402 	struct block_device *bdev = I_BDEV(inode);
403 
404 	free_percpu(bdev->bd_stats);
405 	kfree(bdev->bd_meta_info);
406 
407 	if (!bdev_is_partition(bdev)) {
408 		if (bdev->bd_disk && bdev->bd_disk->bdi)
409 			bdi_put(bdev->bd_disk->bdi);
410 		kfree(bdev->bd_disk);
411 	}
412 
413 	if (MAJOR(bdev->bd_dev) == BLOCK_EXT_MAJOR)
414 		blk_free_ext_minor(MINOR(bdev->bd_dev));
415 
416 	kmem_cache_free(bdev_cachep, BDEV_I(inode));
417 }
418 
init_once(void * data)419 static void init_once(void *data)
420 {
421 	struct bdev_inode *ei = data;
422 
423 	inode_init_once(&ei->vfs_inode);
424 }
425 
bdev_evict_inode(struct inode * inode)426 static void bdev_evict_inode(struct inode *inode)
427 {
428 	truncate_inode_pages_final(&inode->i_data);
429 	invalidate_inode_buffers(inode); /* is it needed here? */
430 	clear_inode(inode);
431 }
432 
433 static const struct super_operations bdev_sops = {
434 	.statfs = simple_statfs,
435 	.alloc_inode = bdev_alloc_inode,
436 	.free_inode = bdev_free_inode,
437 	.drop_inode = generic_delete_inode,
438 	.evict_inode = bdev_evict_inode,
439 };
440 
bd_init_fs_context(struct fs_context * fc)441 static int bd_init_fs_context(struct fs_context *fc)
442 {
443 	struct pseudo_fs_context *ctx = init_pseudo(fc, BDEVFS_MAGIC);
444 	if (!ctx)
445 		return -ENOMEM;
446 	fc->s_iflags |= SB_I_CGROUPWB;
447 	ctx->ops = &bdev_sops;
448 	return 0;
449 }
450 
451 static struct file_system_type bd_type = {
452 	.name		= "bdev",
453 	.init_fs_context = bd_init_fs_context,
454 	.kill_sb	= kill_anon_super,
455 };
456 
457 struct super_block *blockdev_superblock __read_mostly;
458 EXPORT_SYMBOL_GPL(blockdev_superblock);
459 
bdev_cache_init(void)460 void __init bdev_cache_init(void)
461 {
462 	int err;
463 	static struct vfsmount *bd_mnt;
464 
465 	bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
466 			0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
467 				SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
468 			init_once);
469 	err = register_filesystem(&bd_type);
470 	if (err)
471 		panic("Cannot register bdev pseudo-fs");
472 	bd_mnt = kern_mount(&bd_type);
473 	if (IS_ERR(bd_mnt))
474 		panic("Cannot create bdev pseudo-fs");
475 	blockdev_superblock = bd_mnt->mnt_sb;   /* For writeback */
476 }
477 
bdev_alloc(struct gendisk * disk,u8 partno)478 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno)
479 {
480 	struct block_device *bdev;
481 	struct inode *inode;
482 
483 	inode = new_inode(blockdev_superblock);
484 	if (!inode)
485 		return NULL;
486 	inode->i_mode = S_IFBLK;
487 	inode->i_rdev = 0;
488 	inode->i_data.a_ops = &def_blk_aops;
489 	mapping_set_gfp_mask(&inode->i_data, GFP_USER);
490 
491 	bdev = I_BDEV(inode);
492 	mutex_init(&bdev->bd_fsfreeze_mutex);
493 	spin_lock_init(&bdev->bd_size_lock);
494 	bdev->bd_partno = partno;
495 	bdev->bd_inode = inode;
496 	bdev->bd_stats = alloc_percpu(struct disk_stats);
497 	if (!bdev->bd_stats) {
498 		iput(inode);
499 		return NULL;
500 	}
501 	bdev->bd_disk = disk;
502 	return bdev;
503 }
504 
bdev_add(struct block_device * bdev,dev_t dev)505 void bdev_add(struct block_device *bdev, dev_t dev)
506 {
507 	bdev->bd_dev = dev;
508 	bdev->bd_inode->i_rdev = dev;
509 	bdev->bd_inode->i_ino = dev;
510 	insert_inode_hash(bdev->bd_inode);
511 }
512 
nr_blockdev_pages(void)513 long nr_blockdev_pages(void)
514 {
515 	struct inode *inode;
516 	long ret = 0;
517 
518 	spin_lock(&blockdev_superblock->s_inode_list_lock);
519 	list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list)
520 		ret += inode->i_mapping->nrpages;
521 	spin_unlock(&blockdev_superblock->s_inode_list_lock);
522 
523 	return ret;
524 }
525 
526 /**
527  * bd_may_claim - test whether a block device can be claimed
528  * @bdev: block device of interest
529  * @whole: whole block device containing @bdev, may equal @bdev
530  * @holder: holder trying to claim @bdev
531  *
532  * Test whether @bdev can be claimed by @holder.
533  *
534  * CONTEXT:
535  * spin_lock(&bdev_lock).
536  *
537  * RETURNS:
538  * %true if @bdev can be claimed, %false otherwise.
539  */
bd_may_claim(struct block_device * bdev,struct block_device * whole,void * holder)540 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
541 			 void *holder)
542 {
543 	if (bdev->bd_holder == holder)
544 		return true;	 /* already a holder */
545 	else if (bdev->bd_holder != NULL)
546 		return false; 	 /* held by someone else */
547 	else if (whole == bdev)
548 		return true;  	 /* is a whole device which isn't held */
549 
550 	else if (whole->bd_holder == bd_may_claim)
551 		return true; 	 /* is a partition of a device that is being partitioned */
552 	else if (whole->bd_holder != NULL)
553 		return false;	 /* is a partition of a held device */
554 	else
555 		return true;	 /* is a partition of an un-held device */
556 }
557 
558 /**
559  * bd_prepare_to_claim - claim a block device
560  * @bdev: block device of interest
561  * @holder: holder trying to claim @bdev
562  *
563  * Claim @bdev.  This function fails if @bdev is already claimed by another
564  * holder and waits if another claiming is in progress. return, the caller
565  * has ownership of bd_claiming and bd_holder[s].
566  *
567  * RETURNS:
568  * 0 if @bdev can be claimed, -EBUSY otherwise.
569  */
bd_prepare_to_claim(struct block_device * bdev,void * holder)570 int bd_prepare_to_claim(struct block_device *bdev, void *holder)
571 {
572 	struct block_device *whole = bdev_whole(bdev);
573 
574 	if (WARN_ON_ONCE(!holder))
575 		return -EINVAL;
576 retry:
577 	spin_lock(&bdev_lock);
578 	/* if someone else claimed, fail */
579 	if (!bd_may_claim(bdev, whole, holder)) {
580 		spin_unlock(&bdev_lock);
581 		return -EBUSY;
582 	}
583 
584 	/* if claiming is already in progress, wait for it to finish */
585 	if (whole->bd_claiming) {
586 		wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
587 		DEFINE_WAIT(wait);
588 
589 		prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
590 		spin_unlock(&bdev_lock);
591 		schedule();
592 		finish_wait(wq, &wait);
593 		goto retry;
594 	}
595 
596 	/* yay, all mine */
597 	whole->bd_claiming = holder;
598 	spin_unlock(&bdev_lock);
599 	return 0;
600 }
601 EXPORT_SYMBOL_GPL(bd_prepare_to_claim); /* only for the loop driver */
602 
bd_clear_claiming(struct block_device * whole,void * holder)603 static void bd_clear_claiming(struct block_device *whole, void *holder)
604 {
605 	lockdep_assert_held(&bdev_lock);
606 	/* tell others that we're done */
607 	BUG_ON(whole->bd_claiming != holder);
608 	whole->bd_claiming = NULL;
609 	wake_up_bit(&whole->bd_claiming, 0);
610 }
611 
612 /**
613  * bd_finish_claiming - finish claiming of a block device
614  * @bdev: block device of interest
615  * @holder: holder that has claimed @bdev
616  *
617  * Finish exclusive open of a block device. Mark the device as exlusively
618  * open by the holder and wake up all waiters for exclusive open to finish.
619  */
bd_finish_claiming(struct block_device * bdev,void * holder)620 static void bd_finish_claiming(struct block_device *bdev, void *holder)
621 {
622 	struct block_device *whole = bdev_whole(bdev);
623 
624 	spin_lock(&bdev_lock);
625 	BUG_ON(!bd_may_claim(bdev, whole, holder));
626 	/*
627 	 * Note that for a whole device bd_holders will be incremented twice,
628 	 * and bd_holder will be set to bd_may_claim before being set to holder
629 	 */
630 	whole->bd_holders++;
631 	whole->bd_holder = bd_may_claim;
632 	bdev->bd_holders++;
633 	bdev->bd_holder = holder;
634 	bd_clear_claiming(whole, holder);
635 	spin_unlock(&bdev_lock);
636 }
637 
638 /**
639  * bd_abort_claiming - abort claiming of a block device
640  * @bdev: block device of interest
641  * @holder: holder that has claimed @bdev
642  *
643  * Abort claiming of a block device when the exclusive open failed. This can be
644  * also used when exclusive open is not actually desired and we just needed
645  * to block other exclusive openers for a while.
646  */
bd_abort_claiming(struct block_device * bdev,void * holder)647 void bd_abort_claiming(struct block_device *bdev, void *holder)
648 {
649 	spin_lock(&bdev_lock);
650 	bd_clear_claiming(bdev_whole(bdev), holder);
651 	spin_unlock(&bdev_lock);
652 }
653 EXPORT_SYMBOL(bd_abort_claiming);
654 
blkdev_flush_mapping(struct block_device * bdev)655 static void blkdev_flush_mapping(struct block_device *bdev)
656 {
657 	WARN_ON_ONCE(bdev->bd_holders);
658 	sync_blockdev(bdev);
659 	kill_bdev(bdev);
660 	bdev_write_inode(bdev);
661 }
662 
blkdev_get_whole(struct block_device * bdev,fmode_t mode)663 static int blkdev_get_whole(struct block_device *bdev, fmode_t mode)
664 {
665 	struct gendisk *disk = bdev->bd_disk;
666 	int ret = 0;
667 
668 	if (disk->fops->open) {
669 		ret = disk->fops->open(bdev, mode);
670 		if (ret) {
671 			/* avoid ghost partitions on a removed medium */
672 			if (ret == -ENOMEDIUM &&
673 			     test_bit(GD_NEED_PART_SCAN, &disk->state))
674 				bdev_disk_changed(disk, true);
675 			return ret;
676 		}
677 	}
678 
679 	if (!bdev->bd_openers)
680 		set_init_blocksize(bdev);
681 	if (test_bit(GD_NEED_PART_SCAN, &disk->state))
682 		bdev_disk_changed(disk, false);
683 	bdev->bd_openers++;
684 	return 0;;
685 }
686 
blkdev_put_whole(struct block_device * bdev,fmode_t mode)687 static void blkdev_put_whole(struct block_device *bdev, fmode_t mode)
688 {
689 	if (!--bdev->bd_openers)
690 		blkdev_flush_mapping(bdev);
691 	if (bdev->bd_disk->fops->release)
692 		bdev->bd_disk->fops->release(bdev->bd_disk, mode);
693 }
694 
blkdev_get_part(struct block_device * part,fmode_t mode)695 static int blkdev_get_part(struct block_device *part, fmode_t mode)
696 {
697 	struct gendisk *disk = part->bd_disk;
698 	int ret;
699 
700 	if (part->bd_openers)
701 		goto done;
702 
703 	ret = blkdev_get_whole(bdev_whole(part), mode);
704 	if (ret)
705 		return ret;
706 
707 	ret = -ENXIO;
708 	if (!bdev_nr_sectors(part))
709 		goto out_blkdev_put;
710 
711 	disk->open_partitions++;
712 	set_init_blocksize(part);
713 done:
714 	part->bd_openers++;
715 	return 0;
716 
717 out_blkdev_put:
718 	blkdev_put_whole(bdev_whole(part), mode);
719 	return ret;
720 }
721 
blkdev_put_part(struct block_device * part,fmode_t mode)722 static void blkdev_put_part(struct block_device *part, fmode_t mode)
723 {
724 	struct block_device *whole = bdev_whole(part);
725 
726 	if (--part->bd_openers)
727 		return;
728 	blkdev_flush_mapping(part);
729 	whole->bd_disk->open_partitions--;
730 	blkdev_put_whole(whole, mode);
731 }
732 
blkdev_get_no_open(dev_t dev)733 struct block_device *blkdev_get_no_open(dev_t dev)
734 {
735 	struct block_device *bdev;
736 	struct inode *inode;
737 
738 	inode = ilookup(blockdev_superblock, dev);
739 	if (!inode) {
740 		blk_request_module(dev);
741 		inode = ilookup(blockdev_superblock, dev);
742 		if (!inode)
743 			return NULL;
744 	}
745 
746 	/* switch from the inode reference to a device mode one: */
747 	bdev = &BDEV_I(inode)->bdev;
748 	if (!kobject_get_unless_zero(&bdev->bd_device.kobj))
749 		bdev = NULL;
750 	iput(inode);
751 
752 	if (!bdev)
753 		return NULL;
754 	if ((bdev->bd_disk->flags & GENHD_FL_HIDDEN) ||
755 	    !try_module_get(bdev->bd_disk->fops->owner)) {
756 		put_device(&bdev->bd_device);
757 		return NULL;
758 	}
759 
760 	return bdev;
761 }
762 
blkdev_put_no_open(struct block_device * bdev)763 void blkdev_put_no_open(struct block_device *bdev)
764 {
765 	module_put(bdev->bd_disk->fops->owner);
766 	put_device(&bdev->bd_device);
767 }
768 
769 /**
770  * blkdev_get_by_dev - open a block device by device number
771  * @dev: device number of block device to open
772  * @mode: FMODE_* mask
773  * @holder: exclusive holder identifier
774  *
775  * Open the block device described by device number @dev. If @mode includes
776  * %FMODE_EXCL, the block device is opened with exclusive access.  Specifying
777  * %FMODE_EXCL with a %NULL @holder is invalid.  Exclusive opens may nest for
778  * the same @holder.
779  *
780  * Use this interface ONLY if you really do not have anything better - i.e. when
781  * you are behind a truly sucky interface and all you are given is a device
782  * number.  Everything else should use blkdev_get_by_path().
783  *
784  * CONTEXT:
785  * Might sleep.
786  *
787  * RETURNS:
788  * Reference to the block_device on success, ERR_PTR(-errno) on failure.
789  */
blkdev_get_by_dev(dev_t dev,fmode_t mode,void * holder)790 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
791 {
792 	bool unblock_events = true;
793 	struct block_device *bdev;
794 	struct gendisk *disk;
795 	int ret;
796 
797 	ret = devcgroup_check_permission(DEVCG_DEV_BLOCK,
798 			MAJOR(dev), MINOR(dev),
799 			((mode & FMODE_READ) ? DEVCG_ACC_READ : 0) |
800 			((mode & FMODE_WRITE) ? DEVCG_ACC_WRITE : 0));
801 	if (ret)
802 		return ERR_PTR(ret);
803 
804 	bdev = blkdev_get_no_open(dev);
805 	if (!bdev)
806 		return ERR_PTR(-ENXIO);
807 	disk = bdev->bd_disk;
808 
809 	if (mode & FMODE_EXCL) {
810 		ret = bd_prepare_to_claim(bdev, holder);
811 		if (ret)
812 			goto put_blkdev;
813 	}
814 
815 	disk_block_events(disk);
816 
817 	mutex_lock(&disk->open_mutex);
818 	ret = -ENXIO;
819 	if (!disk_live(disk))
820 		goto abort_claiming;
821 	if (bdev_is_partition(bdev))
822 		ret = blkdev_get_part(bdev, mode);
823 	else
824 		ret = blkdev_get_whole(bdev, mode);
825 	if (ret)
826 		goto abort_claiming;
827 	if (mode & FMODE_EXCL) {
828 		bd_finish_claiming(bdev, holder);
829 
830 		/*
831 		 * Block event polling for write claims if requested.  Any write
832 		 * holder makes the write_holder state stick until all are
833 		 * released.  This is good enough and tracking individual
834 		 * writeable reference is too fragile given the way @mode is
835 		 * used in blkdev_get/put().
836 		 */
837 		if ((mode & FMODE_WRITE) && !bdev->bd_write_holder &&
838 		    (disk->event_flags & DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE)) {
839 			bdev->bd_write_holder = true;
840 			unblock_events = false;
841 		}
842 	}
843 	mutex_unlock(&disk->open_mutex);
844 
845 	if (unblock_events)
846 		disk_unblock_events(disk);
847 	return bdev;
848 
849 abort_claiming:
850 	if (mode & FMODE_EXCL)
851 		bd_abort_claiming(bdev, holder);
852 	mutex_unlock(&disk->open_mutex);
853 	disk_unblock_events(disk);
854 put_blkdev:
855 	blkdev_put_no_open(bdev);
856 	return ERR_PTR(ret);
857 }
858 EXPORT_SYMBOL(blkdev_get_by_dev);
859 
860 /**
861  * blkdev_get_by_path - open a block device by name
862  * @path: path to the block device to open
863  * @mode: FMODE_* mask
864  * @holder: exclusive holder identifier
865  *
866  * Open the block device described by the device file at @path.  If @mode
867  * includes %FMODE_EXCL, the block device is opened with exclusive access.
868  * Specifying %FMODE_EXCL with a %NULL @holder is invalid.  Exclusive opens may
869  * nest for the same @holder.
870  *
871  * CONTEXT:
872  * Might sleep.
873  *
874  * RETURNS:
875  * Reference to the block_device on success, ERR_PTR(-errno) on failure.
876  */
blkdev_get_by_path(const char * path,fmode_t mode,void * holder)877 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
878 					void *holder)
879 {
880 	struct block_device *bdev;
881 	dev_t dev;
882 	int error;
883 
884 	error = lookup_bdev(path, &dev);
885 	if (error)
886 		return ERR_PTR(error);
887 
888 	bdev = blkdev_get_by_dev(dev, mode, holder);
889 	if (!IS_ERR(bdev) && (mode & FMODE_WRITE) && bdev_read_only(bdev)) {
890 		blkdev_put(bdev, mode);
891 		return ERR_PTR(-EACCES);
892 	}
893 
894 	return bdev;
895 }
896 EXPORT_SYMBOL(blkdev_get_by_path);
897 
blkdev_put(struct block_device * bdev,fmode_t mode)898 void blkdev_put(struct block_device *bdev, fmode_t mode)
899 {
900 	struct gendisk *disk = bdev->bd_disk;
901 
902 	/*
903 	 * Sync early if it looks like we're the last one.  If someone else
904 	 * opens the block device between now and the decrement of bd_openers
905 	 * then we did a sync that we didn't need to, but that's not the end
906 	 * of the world and we want to avoid long (could be several minute)
907 	 * syncs while holding the mutex.
908 	 */
909 	if (bdev->bd_openers == 1)
910 		sync_blockdev(bdev);
911 
912 	mutex_lock(&disk->open_mutex);
913 	if (mode & FMODE_EXCL) {
914 		struct block_device *whole = bdev_whole(bdev);
915 		bool bdev_free;
916 
917 		/*
918 		 * Release a claim on the device.  The holder fields
919 		 * are protected with bdev_lock.  open_mutex is to
920 		 * synchronize disk_holder unlinking.
921 		 */
922 		spin_lock(&bdev_lock);
923 
924 		WARN_ON_ONCE(--bdev->bd_holders < 0);
925 		WARN_ON_ONCE(--whole->bd_holders < 0);
926 
927 		if ((bdev_free = !bdev->bd_holders))
928 			bdev->bd_holder = NULL;
929 		if (!whole->bd_holders)
930 			whole->bd_holder = NULL;
931 
932 		spin_unlock(&bdev_lock);
933 
934 		/*
935 		 * If this was the last claim, remove holder link and
936 		 * unblock evpoll if it was a write holder.
937 		 */
938 		if (bdev_free && bdev->bd_write_holder) {
939 			disk_unblock_events(disk);
940 			bdev->bd_write_holder = false;
941 		}
942 	}
943 
944 	/*
945 	 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
946 	 * event.  This is to ensure detection of media removal commanded
947 	 * from userland - e.g. eject(1).
948 	 */
949 	disk_flush_events(disk, DISK_EVENT_MEDIA_CHANGE);
950 
951 	if (bdev_is_partition(bdev))
952 		blkdev_put_part(bdev, mode);
953 	else
954 		blkdev_put_whole(bdev, mode);
955 	mutex_unlock(&disk->open_mutex);
956 
957 	blkdev_put_no_open(bdev);
958 }
959 EXPORT_SYMBOL(blkdev_put);
960 
961 /**
962  * lookup_bdev  - lookup a struct block_device by name
963  * @pathname:	special file representing the block device
964  * @dev:	return value of the block device's dev_t
965  *
966  * Get a reference to the blockdevice at @pathname in the current
967  * namespace if possible and return it.  Return ERR_PTR(error)
968  * otherwise.
969  */
lookup_bdev(const char * pathname,dev_t * dev)970 int lookup_bdev(const char *pathname, dev_t *dev)
971 {
972 	struct inode *inode;
973 	struct path path;
974 	int error;
975 
976 	if (!pathname || !*pathname)
977 		return -EINVAL;
978 
979 	error = kern_path(pathname, LOOKUP_FOLLOW, &path);
980 	if (error)
981 		return error;
982 
983 	inode = d_backing_inode(path.dentry);
984 	error = -ENOTBLK;
985 	if (!S_ISBLK(inode->i_mode))
986 		goto out_path_put;
987 	error = -EACCES;
988 	if (!may_open_dev(&path))
989 		goto out_path_put;
990 
991 	*dev = inode->i_rdev;
992 	error = 0;
993 out_path_put:
994 	path_put(&path);
995 	return error;
996 }
997 EXPORT_SYMBOL(lookup_bdev);
998 
__invalidate_device(struct block_device * bdev,bool kill_dirty)999 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1000 {
1001 	struct super_block *sb = get_super(bdev);
1002 	int res = 0;
1003 
1004 	if (sb) {
1005 		/*
1006 		 * no need to lock the super, get_super holds the
1007 		 * read mutex so the filesystem cannot go away
1008 		 * under us (->put_super runs with the write lock
1009 		 * hold).
1010 		 */
1011 		shrink_dcache_sb(sb);
1012 		res = invalidate_inodes(sb, kill_dirty);
1013 		drop_super(sb);
1014 	}
1015 	invalidate_bdev(bdev);
1016 	return res;
1017 }
1018 EXPORT_SYMBOL(__invalidate_device);
1019 
sync_bdevs(bool wait)1020 void sync_bdevs(bool wait)
1021 {
1022 	struct inode *inode, *old_inode = NULL;
1023 
1024 	spin_lock(&blockdev_superblock->s_inode_list_lock);
1025 	list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1026 		struct address_space *mapping = inode->i_mapping;
1027 		struct block_device *bdev;
1028 
1029 		spin_lock(&inode->i_lock);
1030 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1031 		    mapping->nrpages == 0) {
1032 			spin_unlock(&inode->i_lock);
1033 			continue;
1034 		}
1035 		__iget(inode);
1036 		spin_unlock(&inode->i_lock);
1037 		spin_unlock(&blockdev_superblock->s_inode_list_lock);
1038 		/*
1039 		 * We hold a reference to 'inode' so it couldn't have been
1040 		 * removed from s_inodes list while we dropped the
1041 		 * s_inode_list_lock  We cannot iput the inode now as we can
1042 		 * be holding the last reference and we cannot iput it under
1043 		 * s_inode_list_lock. So we keep the reference and iput it
1044 		 * later.
1045 		 */
1046 		iput(old_inode);
1047 		old_inode = inode;
1048 		bdev = I_BDEV(inode);
1049 
1050 		mutex_lock(&bdev->bd_disk->open_mutex);
1051 		if (!bdev->bd_openers) {
1052 			; /* skip */
1053 		} else if (wait) {
1054 			/*
1055 			 * We keep the error status of individual mapping so
1056 			 * that applications can catch the writeback error using
1057 			 * fsync(2). See filemap_fdatawait_keep_errors() for
1058 			 * details.
1059 			 */
1060 			filemap_fdatawait_keep_errors(inode->i_mapping);
1061 		} else {
1062 			filemap_fdatawrite(inode->i_mapping);
1063 		}
1064 		mutex_unlock(&bdev->bd_disk->open_mutex);
1065 
1066 		spin_lock(&blockdev_superblock->s_inode_list_lock);
1067 	}
1068 	spin_unlock(&blockdev_superblock->s_inode_list_lock);
1069 	iput(old_inode);
1070 }
1071