1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/efi.h>
16 #include <linux/interrupt.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
22 #include <linux/mem_encrypt.h>
23 #include <linux/mm.h>
24 #include <linux/msi.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_pci.h>
29 #include <linux/of_platform.h>
30 #include <linux/percpu.h>
31 #include <linux/set_memory.h>
32 #include <linux/slab.h>
33 #include <linux/syscore_ops.h>
34
35 #include <linux/irqchip.h>
36 #include <linux/irqchip/arm-gic-v3.h>
37 #include <linux/irqchip/arm-gic-v4.h>
38
39 #include <asm/cputype.h>
40 #include <asm/exception.h>
41
42 #include "irq-gic-common.h"
43
44 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
45 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
46 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2)
47
48 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0)
49 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED (1 << 1)
50
51 static u32 lpi_id_bits;
52
53 /*
54 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
55 * deal with (one configuration byte per interrupt). PENDBASE has to
56 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
57 */
58 #define LPI_NRBITS lpi_id_bits
59 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K)
60 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
61
62 #define LPI_PROP_DEFAULT_PRIO GICD_INT_DEF_PRI
63
64 /*
65 * Collection structure - just an ID, and a redistributor address to
66 * ping. We use one per CPU as a bag of interrupts assigned to this
67 * CPU.
68 */
69 struct its_collection {
70 u64 target_address;
71 u16 col_id;
72 };
73
74 /*
75 * The ITS_BASER structure - contains memory information, cached
76 * value of BASER register configuration and ITS page size.
77 */
78 struct its_baser {
79 void *base;
80 u64 val;
81 u32 order;
82 u32 psz;
83 };
84
85 struct its_device;
86
87 /*
88 * The ITS structure - contains most of the infrastructure, with the
89 * top-level MSI domain, the command queue, the collections, and the
90 * list of devices writing to it.
91 *
92 * dev_alloc_lock has to be taken for device allocations, while the
93 * spinlock must be taken to parse data structures such as the device
94 * list.
95 */
96 struct its_node {
97 raw_spinlock_t lock;
98 struct mutex dev_alloc_lock;
99 struct list_head entry;
100 void __iomem *base;
101 void __iomem *sgir_base;
102 phys_addr_t phys_base;
103 struct its_cmd_block *cmd_base;
104 struct its_cmd_block *cmd_write;
105 struct its_baser tables[GITS_BASER_NR_REGS];
106 struct its_collection *collections;
107 struct fwnode_handle *fwnode_handle;
108 u64 (*get_msi_base)(struct its_device *its_dev);
109 u64 typer;
110 u64 cbaser_save;
111 u32 ctlr_save;
112 u32 mpidr;
113 struct list_head its_device_list;
114 u64 flags;
115 unsigned long list_nr;
116 int numa_node;
117 unsigned int msi_domain_flags;
118 u32 pre_its_base; /* for Socionext Synquacer */
119 int vlpi_redist_offset;
120 };
121
122 #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS))
123 #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP))
124 #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
125
126 #define ITS_ITT_ALIGN SZ_256
127
128 /* The maximum number of VPEID bits supported by VLPI commands */
129 #define ITS_MAX_VPEID_BITS \
130 ({ \
131 int nvpeid = 16; \
132 if (gic_rdists->has_rvpeid && \
133 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \
134 nvpeid = 1 + (gic_rdists->gicd_typer2 & \
135 GICD_TYPER2_VID); \
136 \
137 nvpeid; \
138 })
139 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS))
140
141 /* Convert page order to size in bytes */
142 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
143
144 struct event_lpi_map {
145 unsigned long *lpi_map;
146 u16 *col_map;
147 irq_hw_number_t lpi_base;
148 int nr_lpis;
149 raw_spinlock_t vlpi_lock;
150 struct its_vm *vm;
151 struct its_vlpi_map *vlpi_maps;
152 int nr_vlpis;
153 };
154
155 /*
156 * The ITS view of a device - belongs to an ITS, owns an interrupt
157 * translation table, and a list of interrupts. If it some of its
158 * LPIs are injected into a guest (GICv4), the event_map.vm field
159 * indicates which one.
160 */
161 struct its_device {
162 struct list_head entry;
163 struct its_node *its;
164 struct event_lpi_map event_map;
165 void *itt;
166 u32 nr_ites;
167 u32 device_id;
168 bool shared;
169 };
170
171 static struct {
172 raw_spinlock_t lock;
173 struct its_device *dev;
174 struct its_vpe **vpes;
175 int next_victim;
176 } vpe_proxy;
177
178 struct cpu_lpi_count {
179 atomic_t managed;
180 atomic_t unmanaged;
181 };
182
183 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
184
185 static LIST_HEAD(its_nodes);
186 static DEFINE_RAW_SPINLOCK(its_lock);
187 static struct rdists *gic_rdists;
188 static struct irq_domain *its_parent;
189
190 static unsigned long its_list_map;
191 static u16 vmovp_seq_num;
192 static DEFINE_RAW_SPINLOCK(vmovp_lock);
193
194 static DEFINE_IDA(its_vpeid_ida);
195
196 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
197 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu))
198 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
199 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K)
200
201 /*
202 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
203 * always have vSGIs mapped.
204 */
require_its_list_vmovp(struct its_vm * vm,struct its_node * its)205 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
206 {
207 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
208 }
209
get_its_list(struct its_vm * vm)210 static u16 get_its_list(struct its_vm *vm)
211 {
212 struct its_node *its;
213 unsigned long its_list = 0;
214
215 list_for_each_entry(its, &its_nodes, entry) {
216 if (!is_v4(its))
217 continue;
218
219 if (require_its_list_vmovp(vm, its))
220 __set_bit(its->list_nr, &its_list);
221 }
222
223 return (u16)its_list;
224 }
225
its_get_event_id(struct irq_data * d)226 static inline u32 its_get_event_id(struct irq_data *d)
227 {
228 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
229 return d->hwirq - its_dev->event_map.lpi_base;
230 }
231
dev_event_to_col(struct its_device * its_dev,u32 event)232 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
233 u32 event)
234 {
235 struct its_node *its = its_dev->its;
236
237 return its->collections + its_dev->event_map.col_map[event];
238 }
239
dev_event_to_vlpi_map(struct its_device * its_dev,u32 event)240 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
241 u32 event)
242 {
243 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
244 return NULL;
245
246 return &its_dev->event_map.vlpi_maps[event];
247 }
248
get_vlpi_map(struct irq_data * d)249 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
250 {
251 if (irqd_is_forwarded_to_vcpu(d)) {
252 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
253 u32 event = its_get_event_id(d);
254
255 return dev_event_to_vlpi_map(its_dev, event);
256 }
257
258 return NULL;
259 }
260
vpe_to_cpuid_lock(struct its_vpe * vpe,unsigned long * flags)261 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
262 {
263 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
264 return vpe->col_idx;
265 }
266
vpe_to_cpuid_unlock(struct its_vpe * vpe,unsigned long flags)267 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
268 {
269 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
270 }
271
272 static struct irq_chip its_vpe_irq_chip;
273
irq_to_cpuid_lock(struct irq_data * d,unsigned long * flags)274 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
275 {
276 struct its_vpe *vpe = NULL;
277 int cpu;
278
279 if (d->chip == &its_vpe_irq_chip) {
280 vpe = irq_data_get_irq_chip_data(d);
281 } else {
282 struct its_vlpi_map *map = get_vlpi_map(d);
283 if (map)
284 vpe = map->vpe;
285 }
286
287 if (vpe) {
288 cpu = vpe_to_cpuid_lock(vpe, flags);
289 } else {
290 /* Physical LPIs are already locked via the irq_desc lock */
291 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
292 cpu = its_dev->event_map.col_map[its_get_event_id(d)];
293 /* Keep GCC quiet... */
294 *flags = 0;
295 }
296
297 return cpu;
298 }
299
irq_to_cpuid_unlock(struct irq_data * d,unsigned long flags)300 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
301 {
302 struct its_vpe *vpe = NULL;
303
304 if (d->chip == &its_vpe_irq_chip) {
305 vpe = irq_data_get_irq_chip_data(d);
306 } else {
307 struct its_vlpi_map *map = get_vlpi_map(d);
308 if (map)
309 vpe = map->vpe;
310 }
311
312 if (vpe)
313 vpe_to_cpuid_unlock(vpe, flags);
314 }
315
valid_col(struct its_collection * col)316 static struct its_collection *valid_col(struct its_collection *col)
317 {
318 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
319 return NULL;
320
321 return col;
322 }
323
valid_vpe(struct its_node * its,struct its_vpe * vpe)324 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
325 {
326 if (valid_col(its->collections + vpe->col_idx))
327 return vpe;
328
329 return NULL;
330 }
331
332 /*
333 * ITS command descriptors - parameters to be encoded in a command
334 * block.
335 */
336 struct its_cmd_desc {
337 union {
338 struct {
339 struct its_device *dev;
340 u32 event_id;
341 } its_inv_cmd;
342
343 struct {
344 struct its_device *dev;
345 u32 event_id;
346 } its_clear_cmd;
347
348 struct {
349 struct its_device *dev;
350 u32 event_id;
351 } its_int_cmd;
352
353 struct {
354 struct its_device *dev;
355 int valid;
356 } its_mapd_cmd;
357
358 struct {
359 struct its_collection *col;
360 int valid;
361 } its_mapc_cmd;
362
363 struct {
364 struct its_device *dev;
365 u32 phys_id;
366 u32 event_id;
367 } its_mapti_cmd;
368
369 struct {
370 struct its_device *dev;
371 struct its_collection *col;
372 u32 event_id;
373 } its_movi_cmd;
374
375 struct {
376 struct its_device *dev;
377 u32 event_id;
378 } its_discard_cmd;
379
380 struct {
381 struct its_collection *col;
382 } its_invall_cmd;
383
384 struct {
385 struct its_vpe *vpe;
386 } its_vinvall_cmd;
387
388 struct {
389 struct its_vpe *vpe;
390 struct its_collection *col;
391 bool valid;
392 } its_vmapp_cmd;
393
394 struct {
395 struct its_vpe *vpe;
396 struct its_device *dev;
397 u32 virt_id;
398 u32 event_id;
399 bool db_enabled;
400 } its_vmapti_cmd;
401
402 struct {
403 struct its_vpe *vpe;
404 struct its_device *dev;
405 u32 event_id;
406 bool db_enabled;
407 } its_vmovi_cmd;
408
409 struct {
410 struct its_vpe *vpe;
411 struct its_collection *col;
412 u16 seq_num;
413 u16 its_list;
414 } its_vmovp_cmd;
415
416 struct {
417 struct its_vpe *vpe;
418 } its_invdb_cmd;
419
420 struct {
421 struct its_vpe *vpe;
422 u8 sgi;
423 u8 priority;
424 bool enable;
425 bool group;
426 bool clear;
427 } its_vsgi_cmd;
428 };
429 };
430
431 /*
432 * The ITS command block, which is what the ITS actually parses.
433 */
434 struct its_cmd_block {
435 union {
436 u64 raw_cmd[4];
437 __le64 raw_cmd_le[4];
438 };
439 };
440
441 #define ITS_CMD_QUEUE_SZ SZ_64K
442 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
443
444 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
445 struct its_cmd_block *,
446 struct its_cmd_desc *);
447
448 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
449 struct its_cmd_block *,
450 struct its_cmd_desc *);
451
its_mask_encode(u64 * raw_cmd,u64 val,int h,int l)452 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
453 {
454 u64 mask = GENMASK_ULL(h, l);
455 *raw_cmd &= ~mask;
456 *raw_cmd |= (val << l) & mask;
457 }
458
its_encode_cmd(struct its_cmd_block * cmd,u8 cmd_nr)459 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
460 {
461 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
462 }
463
its_encode_devid(struct its_cmd_block * cmd,u32 devid)464 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
465 {
466 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
467 }
468
its_encode_event_id(struct its_cmd_block * cmd,u32 id)469 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
470 {
471 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
472 }
473
its_encode_phys_id(struct its_cmd_block * cmd,u32 phys_id)474 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
475 {
476 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
477 }
478
its_encode_size(struct its_cmd_block * cmd,u8 size)479 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
480 {
481 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
482 }
483
its_encode_itt(struct its_cmd_block * cmd,u64 itt_addr)484 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
485 {
486 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
487 }
488
its_encode_valid(struct its_cmd_block * cmd,int valid)489 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
490 {
491 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
492 }
493
its_encode_target(struct its_cmd_block * cmd,u64 target_addr)494 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
495 {
496 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
497 }
498
its_encode_collection(struct its_cmd_block * cmd,u16 col)499 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
500 {
501 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
502 }
503
its_encode_vpeid(struct its_cmd_block * cmd,u16 vpeid)504 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
505 {
506 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
507 }
508
its_encode_virt_id(struct its_cmd_block * cmd,u32 virt_id)509 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
510 {
511 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
512 }
513
its_encode_db_phys_id(struct its_cmd_block * cmd,u32 db_phys_id)514 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
515 {
516 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
517 }
518
its_encode_db_valid(struct its_cmd_block * cmd,bool db_valid)519 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
520 {
521 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
522 }
523
its_encode_seq_num(struct its_cmd_block * cmd,u16 seq_num)524 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
525 {
526 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
527 }
528
its_encode_its_list(struct its_cmd_block * cmd,u16 its_list)529 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
530 {
531 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
532 }
533
its_encode_vpt_addr(struct its_cmd_block * cmd,u64 vpt_pa)534 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
535 {
536 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
537 }
538
its_encode_vpt_size(struct its_cmd_block * cmd,u8 vpt_size)539 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
540 {
541 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
542 }
543
its_encode_vconf_addr(struct its_cmd_block * cmd,u64 vconf_pa)544 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
545 {
546 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
547 }
548
its_encode_alloc(struct its_cmd_block * cmd,bool alloc)549 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
550 {
551 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
552 }
553
its_encode_ptz(struct its_cmd_block * cmd,bool ptz)554 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
555 {
556 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
557 }
558
its_encode_vmapp_default_db(struct its_cmd_block * cmd,u32 vpe_db_lpi)559 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
560 u32 vpe_db_lpi)
561 {
562 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
563 }
564
its_encode_vmovp_default_db(struct its_cmd_block * cmd,u32 vpe_db_lpi)565 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
566 u32 vpe_db_lpi)
567 {
568 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
569 }
570
its_encode_db(struct its_cmd_block * cmd,bool db)571 static void its_encode_db(struct its_cmd_block *cmd, bool db)
572 {
573 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
574 }
575
its_encode_sgi_intid(struct its_cmd_block * cmd,u8 sgi)576 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
577 {
578 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
579 }
580
its_encode_sgi_priority(struct its_cmd_block * cmd,u8 prio)581 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
582 {
583 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
584 }
585
its_encode_sgi_group(struct its_cmd_block * cmd,bool grp)586 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
587 {
588 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
589 }
590
its_encode_sgi_clear(struct its_cmd_block * cmd,bool clr)591 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
592 {
593 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
594 }
595
its_encode_sgi_enable(struct its_cmd_block * cmd,bool en)596 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
597 {
598 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
599 }
600
its_fixup_cmd(struct its_cmd_block * cmd)601 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
602 {
603 /* Let's fixup BE commands */
604 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
605 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
606 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
607 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
608 }
609
its_build_mapd_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)610 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
611 struct its_cmd_block *cmd,
612 struct its_cmd_desc *desc)
613 {
614 unsigned long itt_addr;
615 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
616
617 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
618 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
619
620 its_encode_cmd(cmd, GITS_CMD_MAPD);
621 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
622 its_encode_size(cmd, size - 1);
623 its_encode_itt(cmd, itt_addr);
624 its_encode_valid(cmd, desc->its_mapd_cmd.valid);
625
626 its_fixup_cmd(cmd);
627
628 return NULL;
629 }
630
its_build_mapc_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)631 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
632 struct its_cmd_block *cmd,
633 struct its_cmd_desc *desc)
634 {
635 its_encode_cmd(cmd, GITS_CMD_MAPC);
636 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
637 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
638 its_encode_valid(cmd, desc->its_mapc_cmd.valid);
639
640 its_fixup_cmd(cmd);
641
642 return desc->its_mapc_cmd.col;
643 }
644
its_build_mapti_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)645 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
646 struct its_cmd_block *cmd,
647 struct its_cmd_desc *desc)
648 {
649 struct its_collection *col;
650
651 col = dev_event_to_col(desc->its_mapti_cmd.dev,
652 desc->its_mapti_cmd.event_id);
653
654 its_encode_cmd(cmd, GITS_CMD_MAPTI);
655 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
656 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
657 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
658 its_encode_collection(cmd, col->col_id);
659
660 its_fixup_cmd(cmd);
661
662 return valid_col(col);
663 }
664
its_build_movi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)665 static struct its_collection *its_build_movi_cmd(struct its_node *its,
666 struct its_cmd_block *cmd,
667 struct its_cmd_desc *desc)
668 {
669 struct its_collection *col;
670
671 col = dev_event_to_col(desc->its_movi_cmd.dev,
672 desc->its_movi_cmd.event_id);
673
674 its_encode_cmd(cmd, GITS_CMD_MOVI);
675 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
676 its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
677 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
678
679 its_fixup_cmd(cmd);
680
681 return valid_col(col);
682 }
683
its_build_discard_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)684 static struct its_collection *its_build_discard_cmd(struct its_node *its,
685 struct its_cmd_block *cmd,
686 struct its_cmd_desc *desc)
687 {
688 struct its_collection *col;
689
690 col = dev_event_to_col(desc->its_discard_cmd.dev,
691 desc->its_discard_cmd.event_id);
692
693 its_encode_cmd(cmd, GITS_CMD_DISCARD);
694 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
695 its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
696
697 its_fixup_cmd(cmd);
698
699 return valid_col(col);
700 }
701
its_build_inv_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)702 static struct its_collection *its_build_inv_cmd(struct its_node *its,
703 struct its_cmd_block *cmd,
704 struct its_cmd_desc *desc)
705 {
706 struct its_collection *col;
707
708 col = dev_event_to_col(desc->its_inv_cmd.dev,
709 desc->its_inv_cmd.event_id);
710
711 its_encode_cmd(cmd, GITS_CMD_INV);
712 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
713 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
714
715 its_fixup_cmd(cmd);
716
717 return valid_col(col);
718 }
719
its_build_int_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)720 static struct its_collection *its_build_int_cmd(struct its_node *its,
721 struct its_cmd_block *cmd,
722 struct its_cmd_desc *desc)
723 {
724 struct its_collection *col;
725
726 col = dev_event_to_col(desc->its_int_cmd.dev,
727 desc->its_int_cmd.event_id);
728
729 its_encode_cmd(cmd, GITS_CMD_INT);
730 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
731 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
732
733 its_fixup_cmd(cmd);
734
735 return valid_col(col);
736 }
737
its_build_clear_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)738 static struct its_collection *its_build_clear_cmd(struct its_node *its,
739 struct its_cmd_block *cmd,
740 struct its_cmd_desc *desc)
741 {
742 struct its_collection *col;
743
744 col = dev_event_to_col(desc->its_clear_cmd.dev,
745 desc->its_clear_cmd.event_id);
746
747 its_encode_cmd(cmd, GITS_CMD_CLEAR);
748 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
749 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
750
751 its_fixup_cmd(cmd);
752
753 return valid_col(col);
754 }
755
its_build_invall_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)756 static struct its_collection *its_build_invall_cmd(struct its_node *its,
757 struct its_cmd_block *cmd,
758 struct its_cmd_desc *desc)
759 {
760 its_encode_cmd(cmd, GITS_CMD_INVALL);
761 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
762
763 its_fixup_cmd(cmd);
764
765 return desc->its_invall_cmd.col;
766 }
767
its_build_vinvall_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)768 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
769 struct its_cmd_block *cmd,
770 struct its_cmd_desc *desc)
771 {
772 its_encode_cmd(cmd, GITS_CMD_VINVALL);
773 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
774
775 its_fixup_cmd(cmd);
776
777 return valid_vpe(its, desc->its_vinvall_cmd.vpe);
778 }
779
its_build_vmapp_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)780 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
781 struct its_cmd_block *cmd,
782 struct its_cmd_desc *desc)
783 {
784 unsigned long vpt_addr, vconf_addr;
785 u64 target;
786 bool alloc;
787
788 its_encode_cmd(cmd, GITS_CMD_VMAPP);
789 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
790 its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
791
792 if (!desc->its_vmapp_cmd.valid) {
793 if (is_v4_1(its)) {
794 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
795 its_encode_alloc(cmd, alloc);
796 }
797
798 goto out;
799 }
800
801 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
802 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
803
804 its_encode_target(cmd, target);
805 its_encode_vpt_addr(cmd, vpt_addr);
806 its_encode_vpt_size(cmd, LPI_NRBITS - 1);
807
808 if (!is_v4_1(its))
809 goto out;
810
811 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
812
813 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
814
815 its_encode_alloc(cmd, alloc);
816
817 /*
818 * GICv4.1 provides a way to get the VLPI state, which needs the vPE
819 * to be unmapped first, and in this case, we may remap the vPE
820 * back while the VPT is not empty. So we can't assume that the
821 * VPT is empty on map. This is why we never advertise PTZ.
822 */
823 its_encode_ptz(cmd, false);
824 its_encode_vconf_addr(cmd, vconf_addr);
825 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
826
827 out:
828 its_fixup_cmd(cmd);
829
830 return valid_vpe(its, desc->its_vmapp_cmd.vpe);
831 }
832
its_build_vmapti_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)833 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
834 struct its_cmd_block *cmd,
835 struct its_cmd_desc *desc)
836 {
837 u32 db;
838
839 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
840 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
841 else
842 db = 1023;
843
844 its_encode_cmd(cmd, GITS_CMD_VMAPTI);
845 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
846 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
847 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
848 its_encode_db_phys_id(cmd, db);
849 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
850
851 its_fixup_cmd(cmd);
852
853 return valid_vpe(its, desc->its_vmapti_cmd.vpe);
854 }
855
its_build_vmovi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)856 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
857 struct its_cmd_block *cmd,
858 struct its_cmd_desc *desc)
859 {
860 u32 db;
861
862 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
863 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
864 else
865 db = 1023;
866
867 its_encode_cmd(cmd, GITS_CMD_VMOVI);
868 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
869 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
870 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
871 its_encode_db_phys_id(cmd, db);
872 its_encode_db_valid(cmd, true);
873
874 its_fixup_cmd(cmd);
875
876 return valid_vpe(its, desc->its_vmovi_cmd.vpe);
877 }
878
its_build_vmovp_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)879 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
880 struct its_cmd_block *cmd,
881 struct its_cmd_desc *desc)
882 {
883 u64 target;
884
885 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
886 its_encode_cmd(cmd, GITS_CMD_VMOVP);
887 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
888 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
889 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
890 its_encode_target(cmd, target);
891
892 if (is_v4_1(its)) {
893 its_encode_db(cmd, true);
894 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
895 }
896
897 its_fixup_cmd(cmd);
898
899 return valid_vpe(its, desc->its_vmovp_cmd.vpe);
900 }
901
its_build_vinv_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)902 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
903 struct its_cmd_block *cmd,
904 struct its_cmd_desc *desc)
905 {
906 struct its_vlpi_map *map;
907
908 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
909 desc->its_inv_cmd.event_id);
910
911 its_encode_cmd(cmd, GITS_CMD_INV);
912 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
913 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
914
915 its_fixup_cmd(cmd);
916
917 return valid_vpe(its, map->vpe);
918 }
919
its_build_vint_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)920 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
921 struct its_cmd_block *cmd,
922 struct its_cmd_desc *desc)
923 {
924 struct its_vlpi_map *map;
925
926 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
927 desc->its_int_cmd.event_id);
928
929 its_encode_cmd(cmd, GITS_CMD_INT);
930 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
931 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
932
933 its_fixup_cmd(cmd);
934
935 return valid_vpe(its, map->vpe);
936 }
937
its_build_vclear_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)938 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
939 struct its_cmd_block *cmd,
940 struct its_cmd_desc *desc)
941 {
942 struct its_vlpi_map *map;
943
944 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
945 desc->its_clear_cmd.event_id);
946
947 its_encode_cmd(cmd, GITS_CMD_CLEAR);
948 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
949 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
950
951 its_fixup_cmd(cmd);
952
953 return valid_vpe(its, map->vpe);
954 }
955
its_build_invdb_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)956 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
957 struct its_cmd_block *cmd,
958 struct its_cmd_desc *desc)
959 {
960 if (WARN_ON(!is_v4_1(its)))
961 return NULL;
962
963 its_encode_cmd(cmd, GITS_CMD_INVDB);
964 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
965
966 its_fixup_cmd(cmd);
967
968 return valid_vpe(its, desc->its_invdb_cmd.vpe);
969 }
970
its_build_vsgi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)971 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
972 struct its_cmd_block *cmd,
973 struct its_cmd_desc *desc)
974 {
975 if (WARN_ON(!is_v4_1(its)))
976 return NULL;
977
978 its_encode_cmd(cmd, GITS_CMD_VSGI);
979 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
980 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
981 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
982 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
983 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
984 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
985
986 its_fixup_cmd(cmd);
987
988 return valid_vpe(its, desc->its_vsgi_cmd.vpe);
989 }
990
its_cmd_ptr_to_offset(struct its_node * its,struct its_cmd_block * ptr)991 static u64 its_cmd_ptr_to_offset(struct its_node *its,
992 struct its_cmd_block *ptr)
993 {
994 return (ptr - its->cmd_base) * sizeof(*ptr);
995 }
996
its_queue_full(struct its_node * its)997 static int its_queue_full(struct its_node *its)
998 {
999 int widx;
1000 int ridx;
1001
1002 widx = its->cmd_write - its->cmd_base;
1003 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
1004
1005 /* This is incredibly unlikely to happen, unless the ITS locks up. */
1006 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
1007 return 1;
1008
1009 return 0;
1010 }
1011
its_allocate_entry(struct its_node * its)1012 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
1013 {
1014 struct its_cmd_block *cmd;
1015 u32 count = 1000000; /* 1s! */
1016
1017 while (its_queue_full(its)) {
1018 count--;
1019 if (!count) {
1020 pr_err_ratelimited("ITS queue not draining\n");
1021 return NULL;
1022 }
1023 cpu_relax();
1024 udelay(1);
1025 }
1026
1027 cmd = its->cmd_write++;
1028
1029 /* Handle queue wrapping */
1030 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1031 its->cmd_write = its->cmd_base;
1032
1033 /* Clear command */
1034 cmd->raw_cmd[0] = 0;
1035 cmd->raw_cmd[1] = 0;
1036 cmd->raw_cmd[2] = 0;
1037 cmd->raw_cmd[3] = 0;
1038
1039 return cmd;
1040 }
1041
its_post_commands(struct its_node * its)1042 static struct its_cmd_block *its_post_commands(struct its_node *its)
1043 {
1044 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1045
1046 writel_relaxed(wr, its->base + GITS_CWRITER);
1047
1048 return its->cmd_write;
1049 }
1050
its_flush_cmd(struct its_node * its,struct its_cmd_block * cmd)1051 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1052 {
1053 /*
1054 * Make sure the commands written to memory are observable by
1055 * the ITS.
1056 */
1057 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1058 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1059 else
1060 dsb(ishst);
1061 }
1062
its_wait_for_range_completion(struct its_node * its,u64 prev_idx,struct its_cmd_block * to)1063 static int its_wait_for_range_completion(struct its_node *its,
1064 u64 prev_idx,
1065 struct its_cmd_block *to)
1066 {
1067 u64 rd_idx, to_idx, linear_idx;
1068 u32 count = 1000000; /* 1s! */
1069
1070 /* Linearize to_idx if the command set has wrapped around */
1071 to_idx = its_cmd_ptr_to_offset(its, to);
1072 if (to_idx < prev_idx)
1073 to_idx += ITS_CMD_QUEUE_SZ;
1074
1075 linear_idx = prev_idx;
1076
1077 while (1) {
1078 s64 delta;
1079
1080 rd_idx = readl_relaxed(its->base + GITS_CREADR);
1081
1082 /*
1083 * Compute the read pointer progress, taking the
1084 * potential wrap-around into account.
1085 */
1086 delta = rd_idx - prev_idx;
1087 if (rd_idx < prev_idx)
1088 delta += ITS_CMD_QUEUE_SZ;
1089
1090 linear_idx += delta;
1091 if (linear_idx >= to_idx)
1092 break;
1093
1094 count--;
1095 if (!count) {
1096 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1097 to_idx, linear_idx);
1098 return -1;
1099 }
1100 prev_idx = rd_idx;
1101 cpu_relax();
1102 udelay(1);
1103 }
1104
1105 return 0;
1106 }
1107
1108 /* Warning, macro hell follows */
1109 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \
1110 void name(struct its_node *its, \
1111 buildtype builder, \
1112 struct its_cmd_desc *desc) \
1113 { \
1114 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \
1115 synctype *sync_obj; \
1116 unsigned long flags; \
1117 u64 rd_idx; \
1118 \
1119 raw_spin_lock_irqsave(&its->lock, flags); \
1120 \
1121 cmd = its_allocate_entry(its); \
1122 if (!cmd) { /* We're soooooo screewed... */ \
1123 raw_spin_unlock_irqrestore(&its->lock, flags); \
1124 return; \
1125 } \
1126 sync_obj = builder(its, cmd, desc); \
1127 its_flush_cmd(its, cmd); \
1128 \
1129 if (sync_obj) { \
1130 sync_cmd = its_allocate_entry(its); \
1131 if (!sync_cmd) \
1132 goto post; \
1133 \
1134 buildfn(its, sync_cmd, sync_obj); \
1135 its_flush_cmd(its, sync_cmd); \
1136 } \
1137 \
1138 post: \
1139 rd_idx = readl_relaxed(its->base + GITS_CREADR); \
1140 next_cmd = its_post_commands(its); \
1141 raw_spin_unlock_irqrestore(&its->lock, flags); \
1142 \
1143 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \
1144 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \
1145 }
1146
its_build_sync_cmd(struct its_node * its,struct its_cmd_block * sync_cmd,struct its_collection * sync_col)1147 static void its_build_sync_cmd(struct its_node *its,
1148 struct its_cmd_block *sync_cmd,
1149 struct its_collection *sync_col)
1150 {
1151 its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1152 its_encode_target(sync_cmd, sync_col->target_address);
1153
1154 its_fixup_cmd(sync_cmd);
1155 }
1156
BUILD_SINGLE_CMD_FUNC(its_send_single_command,its_cmd_builder_t,struct its_collection,its_build_sync_cmd)1157 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1158 struct its_collection, its_build_sync_cmd)
1159
1160 static void its_build_vsync_cmd(struct its_node *its,
1161 struct its_cmd_block *sync_cmd,
1162 struct its_vpe *sync_vpe)
1163 {
1164 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1165 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1166
1167 its_fixup_cmd(sync_cmd);
1168 }
1169
BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand,its_cmd_vbuilder_t,struct its_vpe,its_build_vsync_cmd)1170 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1171 struct its_vpe, its_build_vsync_cmd)
1172
1173 static void its_send_int(struct its_device *dev, u32 event_id)
1174 {
1175 struct its_cmd_desc desc;
1176
1177 desc.its_int_cmd.dev = dev;
1178 desc.its_int_cmd.event_id = event_id;
1179
1180 its_send_single_command(dev->its, its_build_int_cmd, &desc);
1181 }
1182
its_send_clear(struct its_device * dev,u32 event_id)1183 static void its_send_clear(struct its_device *dev, u32 event_id)
1184 {
1185 struct its_cmd_desc desc;
1186
1187 desc.its_clear_cmd.dev = dev;
1188 desc.its_clear_cmd.event_id = event_id;
1189
1190 its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1191 }
1192
its_send_inv(struct its_device * dev,u32 event_id)1193 static void its_send_inv(struct its_device *dev, u32 event_id)
1194 {
1195 struct its_cmd_desc desc;
1196
1197 desc.its_inv_cmd.dev = dev;
1198 desc.its_inv_cmd.event_id = event_id;
1199
1200 its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1201 }
1202
its_send_mapd(struct its_device * dev,int valid)1203 static void its_send_mapd(struct its_device *dev, int valid)
1204 {
1205 struct its_cmd_desc desc;
1206
1207 desc.its_mapd_cmd.dev = dev;
1208 desc.its_mapd_cmd.valid = !!valid;
1209
1210 its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1211 }
1212
its_send_mapc(struct its_node * its,struct its_collection * col,int valid)1213 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1214 int valid)
1215 {
1216 struct its_cmd_desc desc;
1217
1218 desc.its_mapc_cmd.col = col;
1219 desc.its_mapc_cmd.valid = !!valid;
1220
1221 its_send_single_command(its, its_build_mapc_cmd, &desc);
1222 }
1223
its_send_mapti(struct its_device * dev,u32 irq_id,u32 id)1224 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1225 {
1226 struct its_cmd_desc desc;
1227
1228 desc.its_mapti_cmd.dev = dev;
1229 desc.its_mapti_cmd.phys_id = irq_id;
1230 desc.its_mapti_cmd.event_id = id;
1231
1232 its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1233 }
1234
its_send_movi(struct its_device * dev,struct its_collection * col,u32 id)1235 static void its_send_movi(struct its_device *dev,
1236 struct its_collection *col, u32 id)
1237 {
1238 struct its_cmd_desc desc;
1239
1240 desc.its_movi_cmd.dev = dev;
1241 desc.its_movi_cmd.col = col;
1242 desc.its_movi_cmd.event_id = id;
1243
1244 its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1245 }
1246
its_send_discard(struct its_device * dev,u32 id)1247 static void its_send_discard(struct its_device *dev, u32 id)
1248 {
1249 struct its_cmd_desc desc;
1250
1251 desc.its_discard_cmd.dev = dev;
1252 desc.its_discard_cmd.event_id = id;
1253
1254 its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1255 }
1256
its_send_invall(struct its_node * its,struct its_collection * col)1257 static void its_send_invall(struct its_node *its, struct its_collection *col)
1258 {
1259 struct its_cmd_desc desc;
1260
1261 desc.its_invall_cmd.col = col;
1262
1263 its_send_single_command(its, its_build_invall_cmd, &desc);
1264 }
1265
its_send_vmapti(struct its_device * dev,u32 id)1266 static void its_send_vmapti(struct its_device *dev, u32 id)
1267 {
1268 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1269 struct its_cmd_desc desc;
1270
1271 desc.its_vmapti_cmd.vpe = map->vpe;
1272 desc.its_vmapti_cmd.dev = dev;
1273 desc.its_vmapti_cmd.virt_id = map->vintid;
1274 desc.its_vmapti_cmd.event_id = id;
1275 desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1276
1277 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1278 }
1279
its_send_vmovi(struct its_device * dev,u32 id)1280 static void its_send_vmovi(struct its_device *dev, u32 id)
1281 {
1282 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1283 struct its_cmd_desc desc;
1284
1285 desc.its_vmovi_cmd.vpe = map->vpe;
1286 desc.its_vmovi_cmd.dev = dev;
1287 desc.its_vmovi_cmd.event_id = id;
1288 desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1289
1290 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1291 }
1292
its_send_vmapp(struct its_node * its,struct its_vpe * vpe,bool valid)1293 static void its_send_vmapp(struct its_node *its,
1294 struct its_vpe *vpe, bool valid)
1295 {
1296 struct its_cmd_desc desc;
1297
1298 desc.its_vmapp_cmd.vpe = vpe;
1299 desc.its_vmapp_cmd.valid = valid;
1300 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1301
1302 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1303 }
1304
its_send_vmovp(struct its_vpe * vpe)1305 static void its_send_vmovp(struct its_vpe *vpe)
1306 {
1307 struct its_cmd_desc desc = {};
1308 struct its_node *its;
1309 unsigned long flags;
1310 int col_id = vpe->col_idx;
1311
1312 desc.its_vmovp_cmd.vpe = vpe;
1313
1314 if (!its_list_map) {
1315 its = list_first_entry(&its_nodes, struct its_node, entry);
1316 desc.its_vmovp_cmd.col = &its->collections[col_id];
1317 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1318 return;
1319 }
1320
1321 /*
1322 * Yet another marvel of the architecture. If using the
1323 * its_list "feature", we need to make sure that all ITSs
1324 * receive all VMOVP commands in the same order. The only way
1325 * to guarantee this is to make vmovp a serialization point.
1326 *
1327 * Wall <-- Head.
1328 */
1329 raw_spin_lock_irqsave(&vmovp_lock, flags);
1330
1331 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1332 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1333
1334 /* Emit VMOVPs */
1335 list_for_each_entry(its, &its_nodes, entry) {
1336 if (!is_v4(its))
1337 continue;
1338
1339 if (!require_its_list_vmovp(vpe->its_vm, its))
1340 continue;
1341
1342 desc.its_vmovp_cmd.col = &its->collections[col_id];
1343 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1344 }
1345
1346 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1347 }
1348
its_send_vinvall(struct its_node * its,struct its_vpe * vpe)1349 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1350 {
1351 struct its_cmd_desc desc;
1352
1353 desc.its_vinvall_cmd.vpe = vpe;
1354 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1355 }
1356
its_send_vinv(struct its_device * dev,u32 event_id)1357 static void its_send_vinv(struct its_device *dev, u32 event_id)
1358 {
1359 struct its_cmd_desc desc;
1360
1361 /*
1362 * There is no real VINV command. This is just a normal INV,
1363 * with a VSYNC instead of a SYNC.
1364 */
1365 desc.its_inv_cmd.dev = dev;
1366 desc.its_inv_cmd.event_id = event_id;
1367
1368 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1369 }
1370
its_send_vint(struct its_device * dev,u32 event_id)1371 static void its_send_vint(struct its_device *dev, u32 event_id)
1372 {
1373 struct its_cmd_desc desc;
1374
1375 /*
1376 * There is no real VINT command. This is just a normal INT,
1377 * with a VSYNC instead of a SYNC.
1378 */
1379 desc.its_int_cmd.dev = dev;
1380 desc.its_int_cmd.event_id = event_id;
1381
1382 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1383 }
1384
its_send_vclear(struct its_device * dev,u32 event_id)1385 static void its_send_vclear(struct its_device *dev, u32 event_id)
1386 {
1387 struct its_cmd_desc desc;
1388
1389 /*
1390 * There is no real VCLEAR command. This is just a normal CLEAR,
1391 * with a VSYNC instead of a SYNC.
1392 */
1393 desc.its_clear_cmd.dev = dev;
1394 desc.its_clear_cmd.event_id = event_id;
1395
1396 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1397 }
1398
its_send_invdb(struct its_node * its,struct its_vpe * vpe)1399 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1400 {
1401 struct its_cmd_desc desc;
1402
1403 desc.its_invdb_cmd.vpe = vpe;
1404 its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1405 }
1406
1407 /*
1408 * irqchip functions - assumes MSI, mostly.
1409 */
lpi_write_config(struct irq_data * d,u8 clr,u8 set)1410 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1411 {
1412 struct its_vlpi_map *map = get_vlpi_map(d);
1413 irq_hw_number_t hwirq;
1414 void *va;
1415 u8 *cfg;
1416
1417 if (map) {
1418 va = page_address(map->vm->vprop_page);
1419 hwirq = map->vintid;
1420
1421 /* Remember the updated property */
1422 map->properties &= ~clr;
1423 map->properties |= set | LPI_PROP_GROUP1;
1424 } else {
1425 va = gic_rdists->prop_table_va;
1426 hwirq = d->hwirq;
1427 }
1428
1429 cfg = va + hwirq - 8192;
1430 *cfg &= ~clr;
1431 *cfg |= set | LPI_PROP_GROUP1;
1432
1433 /*
1434 * Make the above write visible to the redistributors.
1435 * And yes, we're flushing exactly: One. Single. Byte.
1436 * Humpf...
1437 */
1438 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1439 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1440 else
1441 dsb(ishst);
1442 }
1443
wait_for_syncr(void __iomem * rdbase)1444 static void wait_for_syncr(void __iomem *rdbase)
1445 {
1446 while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1447 cpu_relax();
1448 }
1449
__direct_lpi_inv(struct irq_data * d,u64 val)1450 static void __direct_lpi_inv(struct irq_data *d, u64 val)
1451 {
1452 void __iomem *rdbase;
1453 unsigned long flags;
1454 int cpu;
1455
1456 /* Target the redistributor this LPI is currently routed to */
1457 cpu = irq_to_cpuid_lock(d, &flags);
1458 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1459
1460 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1461 gic_write_lpir(val, rdbase + GICR_INVLPIR);
1462 wait_for_syncr(rdbase);
1463
1464 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1465 irq_to_cpuid_unlock(d, flags);
1466 }
1467
direct_lpi_inv(struct irq_data * d)1468 static void direct_lpi_inv(struct irq_data *d)
1469 {
1470 struct its_vlpi_map *map = get_vlpi_map(d);
1471 u64 val;
1472
1473 if (map) {
1474 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1475
1476 WARN_ON(!is_v4_1(its_dev->its));
1477
1478 val = GICR_INVLPIR_V;
1479 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1480 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1481 } else {
1482 val = d->hwirq;
1483 }
1484
1485 __direct_lpi_inv(d, val);
1486 }
1487
lpi_update_config(struct irq_data * d,u8 clr,u8 set)1488 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1489 {
1490 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1491
1492 lpi_write_config(d, clr, set);
1493 if (gic_rdists->has_direct_lpi &&
1494 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1495 direct_lpi_inv(d);
1496 else if (!irqd_is_forwarded_to_vcpu(d))
1497 its_send_inv(its_dev, its_get_event_id(d));
1498 else
1499 its_send_vinv(its_dev, its_get_event_id(d));
1500 }
1501
its_vlpi_set_doorbell(struct irq_data * d,bool enable)1502 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1503 {
1504 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1505 u32 event = its_get_event_id(d);
1506 struct its_vlpi_map *map;
1507
1508 /*
1509 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1510 * here.
1511 */
1512 if (is_v4_1(its_dev->its))
1513 return;
1514
1515 map = dev_event_to_vlpi_map(its_dev, event);
1516
1517 if (map->db_enabled == enable)
1518 return;
1519
1520 map->db_enabled = enable;
1521
1522 /*
1523 * More fun with the architecture:
1524 *
1525 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1526 * value or to 1023, depending on the enable bit. But that
1527 * would be issuing a mapping for an /existing/ DevID+EventID
1528 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1529 * to the /same/ vPE, using this opportunity to adjust the
1530 * doorbell. Mouahahahaha. We loves it, Precious.
1531 */
1532 its_send_vmovi(its_dev, event);
1533 }
1534
its_mask_irq(struct irq_data * d)1535 static void its_mask_irq(struct irq_data *d)
1536 {
1537 if (irqd_is_forwarded_to_vcpu(d))
1538 its_vlpi_set_doorbell(d, false);
1539
1540 lpi_update_config(d, LPI_PROP_ENABLED, 0);
1541 }
1542
its_unmask_irq(struct irq_data * d)1543 static void its_unmask_irq(struct irq_data *d)
1544 {
1545 if (irqd_is_forwarded_to_vcpu(d))
1546 its_vlpi_set_doorbell(d, true);
1547
1548 lpi_update_config(d, 0, LPI_PROP_ENABLED);
1549 }
1550
its_read_lpi_count(struct irq_data * d,int cpu)1551 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1552 {
1553 if (irqd_affinity_is_managed(d))
1554 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1555
1556 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1557 }
1558
its_inc_lpi_count(struct irq_data * d,int cpu)1559 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1560 {
1561 if (irqd_affinity_is_managed(d))
1562 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1563 else
1564 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1565 }
1566
its_dec_lpi_count(struct irq_data * d,int cpu)1567 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1568 {
1569 if (irqd_affinity_is_managed(d))
1570 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1571 else
1572 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1573 }
1574
cpumask_pick_least_loaded(struct irq_data * d,const struct cpumask * cpu_mask)1575 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1576 const struct cpumask *cpu_mask)
1577 {
1578 unsigned int cpu = nr_cpu_ids, tmp;
1579 int count = S32_MAX;
1580
1581 for_each_cpu(tmp, cpu_mask) {
1582 int this_count = its_read_lpi_count(d, tmp);
1583 if (this_count < count) {
1584 cpu = tmp;
1585 count = this_count;
1586 }
1587 }
1588
1589 return cpu;
1590 }
1591
1592 /*
1593 * As suggested by Thomas Gleixner in:
1594 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1595 */
its_select_cpu(struct irq_data * d,const struct cpumask * aff_mask)1596 static int its_select_cpu(struct irq_data *d,
1597 const struct cpumask *aff_mask)
1598 {
1599 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1600 cpumask_var_t tmpmask;
1601 int cpu, node;
1602
1603 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
1604 return -ENOMEM;
1605
1606 node = its_dev->its->numa_node;
1607
1608 if (!irqd_affinity_is_managed(d)) {
1609 /* First try the NUMA node */
1610 if (node != NUMA_NO_NODE) {
1611 /*
1612 * Try the intersection of the affinity mask and the
1613 * node mask (and the online mask, just to be safe).
1614 */
1615 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1616 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1617
1618 /*
1619 * Ideally, we would check if the mask is empty, and
1620 * try again on the full node here.
1621 *
1622 * But it turns out that the way ACPI describes the
1623 * affinity for ITSs only deals about memory, and
1624 * not target CPUs, so it cannot describe a single
1625 * ITS placed next to two NUMA nodes.
1626 *
1627 * Instead, just fallback on the online mask. This
1628 * diverges from Thomas' suggestion above.
1629 */
1630 cpu = cpumask_pick_least_loaded(d, tmpmask);
1631 if (cpu < nr_cpu_ids)
1632 goto out;
1633
1634 /* If we can't cross sockets, give up */
1635 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1636 goto out;
1637
1638 /* If the above failed, expand the search */
1639 }
1640
1641 /* Try the intersection of the affinity and online masks */
1642 cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1643
1644 /* If that doesn't fly, the online mask is the last resort */
1645 if (cpumask_empty(tmpmask))
1646 cpumask_copy(tmpmask, cpu_online_mask);
1647
1648 cpu = cpumask_pick_least_loaded(d, tmpmask);
1649 } else {
1650 cpumask_copy(tmpmask, aff_mask);
1651
1652 /* If we cannot cross sockets, limit the search to that node */
1653 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1654 node != NUMA_NO_NODE)
1655 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1656
1657 cpu = cpumask_pick_least_loaded(d, tmpmask);
1658 }
1659 out:
1660 free_cpumask_var(tmpmask);
1661
1662 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1663 return cpu;
1664 }
1665
its_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)1666 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1667 bool force)
1668 {
1669 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1670 struct its_collection *target_col;
1671 u32 id = its_get_event_id(d);
1672 int cpu, prev_cpu;
1673
1674 /* A forwarded interrupt should use irq_set_vcpu_affinity */
1675 if (irqd_is_forwarded_to_vcpu(d))
1676 return -EINVAL;
1677
1678 prev_cpu = its_dev->event_map.col_map[id];
1679 its_dec_lpi_count(d, prev_cpu);
1680
1681 if (!force)
1682 cpu = its_select_cpu(d, mask_val);
1683 else
1684 cpu = cpumask_pick_least_loaded(d, mask_val);
1685
1686 if (cpu < 0 || cpu >= nr_cpu_ids)
1687 goto err;
1688
1689 /* don't set the affinity when the target cpu is same as current one */
1690 if (cpu != prev_cpu) {
1691 target_col = &its_dev->its->collections[cpu];
1692 its_send_movi(its_dev, target_col, id);
1693 its_dev->event_map.col_map[id] = cpu;
1694 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1695 }
1696
1697 its_inc_lpi_count(d, cpu);
1698
1699 return IRQ_SET_MASK_OK_DONE;
1700
1701 err:
1702 its_inc_lpi_count(d, prev_cpu);
1703 return -EINVAL;
1704 }
1705
its_irq_get_msi_base(struct its_device * its_dev)1706 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1707 {
1708 struct its_node *its = its_dev->its;
1709
1710 return its->phys_base + GITS_TRANSLATER;
1711 }
1712
its_irq_compose_msi_msg(struct irq_data * d,struct msi_msg * msg)1713 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1714 {
1715 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1716 struct its_node *its;
1717 u64 addr;
1718
1719 its = its_dev->its;
1720 addr = its->get_msi_base(its_dev);
1721
1722 msg->address_lo = lower_32_bits(addr);
1723 msg->address_hi = upper_32_bits(addr);
1724 msg->data = its_get_event_id(d);
1725
1726 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1727 }
1728
its_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)1729 static int its_irq_set_irqchip_state(struct irq_data *d,
1730 enum irqchip_irq_state which,
1731 bool state)
1732 {
1733 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1734 u32 event = its_get_event_id(d);
1735
1736 if (which != IRQCHIP_STATE_PENDING)
1737 return -EINVAL;
1738
1739 if (irqd_is_forwarded_to_vcpu(d)) {
1740 if (state)
1741 its_send_vint(its_dev, event);
1742 else
1743 its_send_vclear(its_dev, event);
1744 } else {
1745 if (state)
1746 its_send_int(its_dev, event);
1747 else
1748 its_send_clear(its_dev, event);
1749 }
1750
1751 return 0;
1752 }
1753
its_irq_retrigger(struct irq_data * d)1754 static int its_irq_retrigger(struct irq_data *d)
1755 {
1756 return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1757 }
1758
1759 /*
1760 * Two favourable cases:
1761 *
1762 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1763 * for vSGI delivery
1764 *
1765 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1766 * and we're better off mapping all VPEs always
1767 *
1768 * If neither (a) nor (b) is true, then we map vPEs on demand.
1769 *
1770 */
gic_requires_eager_mapping(void)1771 static bool gic_requires_eager_mapping(void)
1772 {
1773 if (!its_list_map || gic_rdists->has_rvpeid)
1774 return true;
1775
1776 return false;
1777 }
1778
its_map_vm(struct its_node * its,struct its_vm * vm)1779 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1780 {
1781 unsigned long flags;
1782
1783 if (gic_requires_eager_mapping())
1784 return;
1785
1786 raw_spin_lock_irqsave(&vmovp_lock, flags);
1787
1788 /*
1789 * If the VM wasn't mapped yet, iterate over the vpes and get
1790 * them mapped now.
1791 */
1792 vm->vlpi_count[its->list_nr]++;
1793
1794 if (vm->vlpi_count[its->list_nr] == 1) {
1795 int i;
1796
1797 for (i = 0; i < vm->nr_vpes; i++) {
1798 struct its_vpe *vpe = vm->vpes[i];
1799 struct irq_data *d = irq_get_irq_data(vpe->irq);
1800
1801 /* Map the VPE to the first possible CPU */
1802 vpe->col_idx = cpumask_first(cpu_online_mask);
1803 its_send_vmapp(its, vpe, true);
1804 its_send_vinvall(its, vpe);
1805 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1806 }
1807 }
1808
1809 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1810 }
1811
its_unmap_vm(struct its_node * its,struct its_vm * vm)1812 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1813 {
1814 unsigned long flags;
1815
1816 /* Not using the ITS list? Everything is always mapped. */
1817 if (gic_requires_eager_mapping())
1818 return;
1819
1820 raw_spin_lock_irqsave(&vmovp_lock, flags);
1821
1822 if (!--vm->vlpi_count[its->list_nr]) {
1823 int i;
1824
1825 for (i = 0; i < vm->nr_vpes; i++)
1826 its_send_vmapp(its, vm->vpes[i], false);
1827 }
1828
1829 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1830 }
1831
its_vlpi_map(struct irq_data * d,struct its_cmd_info * info)1832 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1833 {
1834 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1835 u32 event = its_get_event_id(d);
1836 int ret = 0;
1837
1838 if (!info->map)
1839 return -EINVAL;
1840
1841 raw_spin_lock(&its_dev->event_map.vlpi_lock);
1842
1843 if (!its_dev->event_map.vm) {
1844 struct its_vlpi_map *maps;
1845
1846 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1847 GFP_ATOMIC);
1848 if (!maps) {
1849 ret = -ENOMEM;
1850 goto out;
1851 }
1852
1853 its_dev->event_map.vm = info->map->vm;
1854 its_dev->event_map.vlpi_maps = maps;
1855 } else if (its_dev->event_map.vm != info->map->vm) {
1856 ret = -EINVAL;
1857 goto out;
1858 }
1859
1860 /* Get our private copy of the mapping information */
1861 its_dev->event_map.vlpi_maps[event] = *info->map;
1862
1863 if (irqd_is_forwarded_to_vcpu(d)) {
1864 /* Already mapped, move it around */
1865 its_send_vmovi(its_dev, event);
1866 } else {
1867 /* Ensure all the VPEs are mapped on this ITS */
1868 its_map_vm(its_dev->its, info->map->vm);
1869
1870 /*
1871 * Flag the interrupt as forwarded so that we can
1872 * start poking the virtual property table.
1873 */
1874 irqd_set_forwarded_to_vcpu(d);
1875
1876 /* Write out the property to the prop table */
1877 lpi_write_config(d, 0xff, info->map->properties);
1878
1879 /* Drop the physical mapping */
1880 its_send_discard(its_dev, event);
1881
1882 /* and install the virtual one */
1883 its_send_vmapti(its_dev, event);
1884
1885 /* Increment the number of VLPIs */
1886 its_dev->event_map.nr_vlpis++;
1887 }
1888
1889 out:
1890 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1891 return ret;
1892 }
1893
its_vlpi_get(struct irq_data * d,struct its_cmd_info * info)1894 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1895 {
1896 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1897 struct its_vlpi_map *map;
1898 int ret = 0;
1899
1900 raw_spin_lock(&its_dev->event_map.vlpi_lock);
1901
1902 map = get_vlpi_map(d);
1903
1904 if (!its_dev->event_map.vm || !map) {
1905 ret = -EINVAL;
1906 goto out;
1907 }
1908
1909 /* Copy our mapping information to the incoming request */
1910 *info->map = *map;
1911
1912 out:
1913 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1914 return ret;
1915 }
1916
its_vlpi_unmap(struct irq_data * d)1917 static int its_vlpi_unmap(struct irq_data *d)
1918 {
1919 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1920 u32 event = its_get_event_id(d);
1921 int ret = 0;
1922
1923 raw_spin_lock(&its_dev->event_map.vlpi_lock);
1924
1925 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1926 ret = -EINVAL;
1927 goto out;
1928 }
1929
1930 /* Drop the virtual mapping */
1931 its_send_discard(its_dev, event);
1932
1933 /* and restore the physical one */
1934 irqd_clr_forwarded_to_vcpu(d);
1935 its_send_mapti(its_dev, d->hwirq, event);
1936 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1937 LPI_PROP_ENABLED |
1938 LPI_PROP_GROUP1));
1939
1940 /* Potentially unmap the VM from this ITS */
1941 its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1942
1943 /*
1944 * Drop the refcount and make the device available again if
1945 * this was the last VLPI.
1946 */
1947 if (!--its_dev->event_map.nr_vlpis) {
1948 its_dev->event_map.vm = NULL;
1949 kfree(its_dev->event_map.vlpi_maps);
1950 }
1951
1952 out:
1953 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1954 return ret;
1955 }
1956
its_vlpi_prop_update(struct irq_data * d,struct its_cmd_info * info)1957 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1958 {
1959 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1960
1961 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1962 return -EINVAL;
1963
1964 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1965 lpi_update_config(d, 0xff, info->config);
1966 else
1967 lpi_write_config(d, 0xff, info->config);
1968 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1969
1970 return 0;
1971 }
1972
its_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)1973 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1974 {
1975 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1976 struct its_cmd_info *info = vcpu_info;
1977
1978 /* Need a v4 ITS */
1979 if (!is_v4(its_dev->its))
1980 return -EINVAL;
1981
1982 /* Unmap request? */
1983 if (!info)
1984 return its_vlpi_unmap(d);
1985
1986 switch (info->cmd_type) {
1987 case MAP_VLPI:
1988 return its_vlpi_map(d, info);
1989
1990 case GET_VLPI:
1991 return its_vlpi_get(d, info);
1992
1993 case PROP_UPDATE_VLPI:
1994 case PROP_UPDATE_AND_INV_VLPI:
1995 return its_vlpi_prop_update(d, info);
1996
1997 default:
1998 return -EINVAL;
1999 }
2000 }
2001
2002 static struct irq_chip its_irq_chip = {
2003 .name = "ITS",
2004 .irq_mask = its_mask_irq,
2005 .irq_unmask = its_unmask_irq,
2006 .irq_eoi = irq_chip_eoi_parent,
2007 .irq_set_affinity = its_set_affinity,
2008 .irq_compose_msi_msg = its_irq_compose_msi_msg,
2009 .irq_set_irqchip_state = its_irq_set_irqchip_state,
2010 .irq_retrigger = its_irq_retrigger,
2011 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity,
2012 };
2013
2014
2015 /*
2016 * How we allocate LPIs:
2017 *
2018 * lpi_range_list contains ranges of LPIs that are to available to
2019 * allocate from. To allocate LPIs, just pick the first range that
2020 * fits the required allocation, and reduce it by the required
2021 * amount. Once empty, remove the range from the list.
2022 *
2023 * To free a range of LPIs, add a free range to the list, sort it and
2024 * merge the result if the new range happens to be adjacent to an
2025 * already free block.
2026 *
2027 * The consequence of the above is that allocation is cost is low, but
2028 * freeing is expensive. We assumes that freeing rarely occurs.
2029 */
2030 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */
2031
2032 static DEFINE_MUTEX(lpi_range_lock);
2033 static LIST_HEAD(lpi_range_list);
2034
2035 struct lpi_range {
2036 struct list_head entry;
2037 u32 base_id;
2038 u32 span;
2039 };
2040
mk_lpi_range(u32 base,u32 span)2041 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2042 {
2043 struct lpi_range *range;
2044
2045 range = kmalloc(sizeof(*range), GFP_KERNEL);
2046 if (range) {
2047 range->base_id = base;
2048 range->span = span;
2049 }
2050
2051 return range;
2052 }
2053
alloc_lpi_range(u32 nr_lpis,u32 * base)2054 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2055 {
2056 struct lpi_range *range, *tmp;
2057 int err = -ENOSPC;
2058
2059 mutex_lock(&lpi_range_lock);
2060
2061 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2062 if (range->span >= nr_lpis) {
2063 *base = range->base_id;
2064 range->base_id += nr_lpis;
2065 range->span -= nr_lpis;
2066
2067 if (range->span == 0) {
2068 list_del(&range->entry);
2069 kfree(range);
2070 }
2071
2072 err = 0;
2073 break;
2074 }
2075 }
2076
2077 mutex_unlock(&lpi_range_lock);
2078
2079 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2080 return err;
2081 }
2082
merge_lpi_ranges(struct lpi_range * a,struct lpi_range * b)2083 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2084 {
2085 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2086 return;
2087 if (a->base_id + a->span != b->base_id)
2088 return;
2089 b->base_id = a->base_id;
2090 b->span += a->span;
2091 list_del(&a->entry);
2092 kfree(a);
2093 }
2094
free_lpi_range(u32 base,u32 nr_lpis)2095 static int free_lpi_range(u32 base, u32 nr_lpis)
2096 {
2097 struct lpi_range *new, *old;
2098
2099 new = mk_lpi_range(base, nr_lpis);
2100 if (!new)
2101 return -ENOMEM;
2102
2103 mutex_lock(&lpi_range_lock);
2104
2105 list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2106 if (old->base_id < base)
2107 break;
2108 }
2109 /*
2110 * old is the last element with ->base_id smaller than base,
2111 * so new goes right after it. If there are no elements with
2112 * ->base_id smaller than base, &old->entry ends up pointing
2113 * at the head of the list, and inserting new it the start of
2114 * the list is the right thing to do in that case as well.
2115 */
2116 list_add(&new->entry, &old->entry);
2117 /*
2118 * Now check if we can merge with the preceding and/or
2119 * following ranges.
2120 */
2121 merge_lpi_ranges(old, new);
2122 merge_lpi_ranges(new, list_next_entry(new, entry));
2123
2124 mutex_unlock(&lpi_range_lock);
2125 return 0;
2126 }
2127
its_lpi_init(u32 id_bits)2128 static int __init its_lpi_init(u32 id_bits)
2129 {
2130 u32 lpis = (1UL << id_bits) - 8192;
2131 u32 numlpis;
2132 int err;
2133
2134 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2135
2136 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2137 lpis = numlpis;
2138 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2139 lpis);
2140 }
2141
2142 /*
2143 * Initializing the allocator is just the same as freeing the
2144 * full range of LPIs.
2145 */
2146 err = free_lpi_range(8192, lpis);
2147 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2148 return err;
2149 }
2150
its_lpi_alloc(int nr_irqs,u32 * base,int * nr_ids)2151 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2152 {
2153 unsigned long *bitmap = NULL;
2154 int err = 0;
2155
2156 do {
2157 err = alloc_lpi_range(nr_irqs, base);
2158 if (!err)
2159 break;
2160
2161 nr_irqs /= 2;
2162 } while (nr_irqs > 0);
2163
2164 if (!nr_irqs)
2165 err = -ENOSPC;
2166
2167 if (err)
2168 goto out;
2169
2170 bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2171 if (!bitmap)
2172 goto out;
2173
2174 *nr_ids = nr_irqs;
2175
2176 out:
2177 if (!bitmap)
2178 *base = *nr_ids = 0;
2179
2180 return bitmap;
2181 }
2182
its_lpi_free(unsigned long * bitmap,u32 base,u32 nr_ids)2183 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2184 {
2185 WARN_ON(free_lpi_range(base, nr_ids));
2186 bitmap_free(bitmap);
2187 }
2188
gic_reset_prop_table(void * va)2189 static void gic_reset_prop_table(void *va)
2190 {
2191 /* Priority 0xa0, Group-1, disabled */
2192 memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2193
2194 /* Make sure the GIC will observe the written configuration */
2195 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2196 set_memory_decrypted((unsigned long)va, LPI_PROPBASE_SZ >> PAGE_SHIFT);
2197 }
2198
its_allocate_prop_table(gfp_t gfp_flags)2199 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2200 {
2201 struct page *prop_page;
2202
2203 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2204 if (!prop_page)
2205 return NULL;
2206
2207 gic_reset_prop_table(page_address(prop_page));
2208
2209 return prop_page;
2210 }
2211
its_free_prop_table(struct page * prop_page)2212 static void its_free_prop_table(struct page *prop_page)
2213 {
2214 unsigned long va = (unsigned long)page_address(prop_page);
2215
2216 set_memory_encrypted(va, LPI_PROPBASE_SZ >> PAGE_SHIFT);
2217 free_pages(va, get_order(LPI_PROPBASE_SZ));
2218 }
2219
gic_check_reserved_range(phys_addr_t addr,unsigned long size)2220 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2221 {
2222 phys_addr_t start, end, addr_end;
2223 u64 i;
2224
2225 /*
2226 * We don't bother checking for a kdump kernel as by
2227 * construction, the LPI tables are out of this kernel's
2228 * memory map.
2229 */
2230 if (is_kdump_kernel())
2231 return true;
2232
2233 addr_end = addr + size - 1;
2234
2235 for_each_reserved_mem_range(i, &start, &end) {
2236 if (addr >= start && addr_end <= end)
2237 return true;
2238 }
2239
2240 /* Not found, not a good sign... */
2241 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2242 &addr, &addr_end);
2243 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2244 return false;
2245 }
2246
gic_reserve_range(phys_addr_t addr,unsigned long size)2247 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2248 {
2249 if (efi_enabled(EFI_CONFIG_TABLES))
2250 return efi_mem_reserve_persistent(addr, size);
2251
2252 return 0;
2253 }
2254
its_setup_lpi_prop_table(void)2255 static int __init its_setup_lpi_prop_table(void)
2256 {
2257 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2258 u64 val;
2259
2260 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2261 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2262
2263 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2264 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2265 LPI_PROPBASE_SZ,
2266 MEMREMAP_WB);
2267 gic_reset_prop_table(gic_rdists->prop_table_va);
2268 } else {
2269 struct page *page;
2270
2271 lpi_id_bits = min_t(u32,
2272 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2273 ITS_MAX_LPI_NRBITS);
2274 page = its_allocate_prop_table(GFP_NOWAIT);
2275 if (!page) {
2276 pr_err("Failed to allocate PROPBASE\n");
2277 return -ENOMEM;
2278 }
2279
2280 gic_rdists->prop_table_pa = page_to_phys(page);
2281 gic_rdists->prop_table_va = page_address(page);
2282 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2283 LPI_PROPBASE_SZ));
2284 }
2285
2286 pr_info("GICv3: using LPI property table @%pa\n",
2287 &gic_rdists->prop_table_pa);
2288
2289 return its_lpi_init(lpi_id_bits);
2290 }
2291
2292 static const char *its_base_type_string[] = {
2293 [GITS_BASER_TYPE_DEVICE] = "Devices",
2294 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs",
2295 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)",
2296 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections",
2297 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)",
2298 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)",
2299 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)",
2300 };
2301
its_read_baser(struct its_node * its,struct its_baser * baser)2302 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2303 {
2304 u32 idx = baser - its->tables;
2305
2306 return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2307 }
2308
its_write_baser(struct its_node * its,struct its_baser * baser,u64 val)2309 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2310 u64 val)
2311 {
2312 u32 idx = baser - its->tables;
2313
2314 gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2315 baser->val = its_read_baser(its, baser);
2316 }
2317
its_setup_baser(struct its_node * its,struct its_baser * baser,u64 cache,u64 shr,u32 order,bool indirect)2318 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2319 u64 cache, u64 shr, u32 order, bool indirect)
2320 {
2321 u64 val = its_read_baser(its, baser);
2322 u64 esz = GITS_BASER_ENTRY_SIZE(val);
2323 u64 type = GITS_BASER_TYPE(val);
2324 u64 baser_phys, tmp;
2325 u32 alloc_pages, psz;
2326 struct page *page;
2327 void *base;
2328
2329 psz = baser->psz;
2330 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2331 if (alloc_pages > GITS_BASER_PAGES_MAX) {
2332 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2333 &its->phys_base, its_base_type_string[type],
2334 alloc_pages, GITS_BASER_PAGES_MAX);
2335 alloc_pages = GITS_BASER_PAGES_MAX;
2336 order = get_order(GITS_BASER_PAGES_MAX * psz);
2337 }
2338
2339 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2340 if (!page)
2341 return -ENOMEM;
2342
2343 base = (void *)page_address(page);
2344 baser_phys = virt_to_phys(base);
2345
2346 /* Check if the physical address of the memory is above 48bits */
2347 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2348
2349 /* 52bit PA is supported only when PageSize=64K */
2350 if (psz != SZ_64K) {
2351 pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2352 free_pages((unsigned long)base, order);
2353 return -ENXIO;
2354 }
2355
2356 /* Convert 52bit PA to 48bit field */
2357 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2358 }
2359
2360 retry_baser:
2361 val = (baser_phys |
2362 (type << GITS_BASER_TYPE_SHIFT) |
2363 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
2364 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) |
2365 cache |
2366 shr |
2367 GITS_BASER_VALID);
2368
2369 val |= indirect ? GITS_BASER_INDIRECT : 0x0;
2370
2371 switch (psz) {
2372 case SZ_4K:
2373 val |= GITS_BASER_PAGE_SIZE_4K;
2374 break;
2375 case SZ_16K:
2376 val |= GITS_BASER_PAGE_SIZE_16K;
2377 break;
2378 case SZ_64K:
2379 val |= GITS_BASER_PAGE_SIZE_64K;
2380 break;
2381 }
2382
2383 its_write_baser(its, baser, val);
2384 tmp = baser->val;
2385
2386 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2387 /*
2388 * Shareability didn't stick. Just use
2389 * whatever the read reported, which is likely
2390 * to be the only thing this redistributor
2391 * supports. If that's zero, make it
2392 * non-cacheable as well.
2393 */
2394 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2395 if (!shr) {
2396 cache = GITS_BASER_nC;
2397 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2398 }
2399 goto retry_baser;
2400 }
2401
2402 if (val != tmp) {
2403 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2404 &its->phys_base, its_base_type_string[type],
2405 val, tmp);
2406 free_pages((unsigned long)base, order);
2407 return -ENXIO;
2408 }
2409
2410 set_memory_decrypted((unsigned long)base,
2411 PAGE_ORDER_TO_SIZE(order) >> PAGE_SHIFT);
2412 baser->order = order;
2413 baser->base = base;
2414 baser->psz = psz;
2415 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2416
2417 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2418 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2419 its_base_type_string[type],
2420 (unsigned long)virt_to_phys(base),
2421 indirect ? "indirect" : "flat", (int)esz,
2422 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2423
2424 return 0;
2425 }
2426
its_parse_indirect_baser(struct its_node * its,struct its_baser * baser,u32 * order,u32 ids)2427 static bool its_parse_indirect_baser(struct its_node *its,
2428 struct its_baser *baser,
2429 u32 *order, u32 ids)
2430 {
2431 u64 tmp = its_read_baser(its, baser);
2432 u64 type = GITS_BASER_TYPE(tmp);
2433 u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2434 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2435 u32 new_order = *order;
2436 u32 psz = baser->psz;
2437 bool indirect = false;
2438
2439 /* No need to enable Indirection if memory requirement < (psz*2)bytes */
2440 if ((esz << ids) > (psz * 2)) {
2441 /*
2442 * Find out whether hw supports a single or two-level table by
2443 * table by reading bit at offset '62' after writing '1' to it.
2444 */
2445 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2446 indirect = !!(baser->val & GITS_BASER_INDIRECT);
2447
2448 if (indirect) {
2449 /*
2450 * The size of the lvl2 table is equal to ITS page size
2451 * which is 'psz'. For computing lvl1 table size,
2452 * subtract ID bits that sparse lvl2 table from 'ids'
2453 * which is reported by ITS hardware times lvl1 table
2454 * entry size.
2455 */
2456 ids -= ilog2(psz / (int)esz);
2457 esz = GITS_LVL1_ENTRY_SIZE;
2458 }
2459 }
2460
2461 /*
2462 * Allocate as many entries as required to fit the
2463 * range of device IDs that the ITS can grok... The ID
2464 * space being incredibly sparse, this results in a
2465 * massive waste of memory if two-level device table
2466 * feature is not supported by hardware.
2467 */
2468 new_order = max_t(u32, get_order(esz << ids), new_order);
2469 if (new_order >= MAX_ORDER) {
2470 new_order = MAX_ORDER - 1;
2471 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2472 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2473 &its->phys_base, its_base_type_string[type],
2474 device_ids(its), ids);
2475 }
2476
2477 *order = new_order;
2478
2479 return indirect;
2480 }
2481
compute_common_aff(u64 val)2482 static u32 compute_common_aff(u64 val)
2483 {
2484 u32 aff, clpiaff;
2485
2486 aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2487 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2488
2489 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2490 }
2491
compute_its_aff(struct its_node * its)2492 static u32 compute_its_aff(struct its_node *its)
2493 {
2494 u64 val;
2495 u32 svpet;
2496
2497 /*
2498 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2499 * the resulting affinity. We then use that to see if this match
2500 * our own affinity.
2501 */
2502 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2503 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2504 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2505 return compute_common_aff(val);
2506 }
2507
find_sibling_its(struct its_node * cur_its)2508 static struct its_node *find_sibling_its(struct its_node *cur_its)
2509 {
2510 struct its_node *its;
2511 u32 aff;
2512
2513 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2514 return NULL;
2515
2516 aff = compute_its_aff(cur_its);
2517
2518 list_for_each_entry(its, &its_nodes, entry) {
2519 u64 baser;
2520
2521 if (!is_v4_1(its) || its == cur_its)
2522 continue;
2523
2524 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2525 continue;
2526
2527 if (aff != compute_its_aff(its))
2528 continue;
2529
2530 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2531 baser = its->tables[2].val;
2532 if (!(baser & GITS_BASER_VALID))
2533 continue;
2534
2535 return its;
2536 }
2537
2538 return NULL;
2539 }
2540
its_free_tables(struct its_node * its)2541 static void its_free_tables(struct its_node *its)
2542 {
2543 int i;
2544
2545 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2546 if (its->tables[i].base) {
2547 unsigned long base = (unsigned long)its->tables[i].base;
2548 u32 order = its->tables[i].order;
2549 u32 npages = PAGE_ORDER_TO_SIZE(order) >> PAGE_SHIFT;
2550
2551 set_memory_encrypted(base, npages);
2552 free_pages(base, order);
2553 its->tables[i].base = NULL;
2554 }
2555 }
2556 }
2557
its_probe_baser_psz(struct its_node * its,struct its_baser * baser)2558 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2559 {
2560 u64 psz = SZ_64K;
2561
2562 while (psz) {
2563 u64 val, gpsz;
2564
2565 val = its_read_baser(its, baser);
2566 val &= ~GITS_BASER_PAGE_SIZE_MASK;
2567
2568 switch (psz) {
2569 case SZ_64K:
2570 gpsz = GITS_BASER_PAGE_SIZE_64K;
2571 break;
2572 case SZ_16K:
2573 gpsz = GITS_BASER_PAGE_SIZE_16K;
2574 break;
2575 case SZ_4K:
2576 default:
2577 gpsz = GITS_BASER_PAGE_SIZE_4K;
2578 break;
2579 }
2580
2581 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2582
2583 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2584 its_write_baser(its, baser, val);
2585
2586 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2587 break;
2588
2589 switch (psz) {
2590 case SZ_64K:
2591 psz = SZ_16K;
2592 break;
2593 case SZ_16K:
2594 psz = SZ_4K;
2595 break;
2596 case SZ_4K:
2597 default:
2598 return -1;
2599 }
2600 }
2601
2602 baser->psz = psz;
2603 return 0;
2604 }
2605
its_alloc_tables(struct its_node * its)2606 static int its_alloc_tables(struct its_node *its)
2607 {
2608 u64 shr = GITS_BASER_InnerShareable;
2609 u64 cache = GITS_BASER_RaWaWb;
2610 int err, i;
2611
2612 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2613 /* erratum 24313: ignore memory access type */
2614 cache = GITS_BASER_nCnB;
2615
2616 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2617 struct its_baser *baser = its->tables + i;
2618 u64 val = its_read_baser(its, baser);
2619 u64 type = GITS_BASER_TYPE(val);
2620 bool indirect = false;
2621 u32 order;
2622
2623 if (type == GITS_BASER_TYPE_NONE)
2624 continue;
2625
2626 if (its_probe_baser_psz(its, baser)) {
2627 its_free_tables(its);
2628 return -ENXIO;
2629 }
2630
2631 order = get_order(baser->psz);
2632
2633 switch (type) {
2634 case GITS_BASER_TYPE_DEVICE:
2635 indirect = its_parse_indirect_baser(its, baser, &order,
2636 device_ids(its));
2637 break;
2638
2639 case GITS_BASER_TYPE_VCPU:
2640 if (is_v4_1(its)) {
2641 struct its_node *sibling;
2642
2643 WARN_ON(i != 2);
2644 if ((sibling = find_sibling_its(its))) {
2645 *baser = sibling->tables[2];
2646 its_write_baser(its, baser, baser->val);
2647 continue;
2648 }
2649 }
2650
2651 indirect = its_parse_indirect_baser(its, baser, &order,
2652 ITS_MAX_VPEID_BITS);
2653 break;
2654 }
2655
2656 err = its_setup_baser(its, baser, cache, shr, order, indirect);
2657 if (err < 0) {
2658 its_free_tables(its);
2659 return err;
2660 }
2661
2662 /* Update settings which will be used for next BASERn */
2663 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2664 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2665 }
2666
2667 return 0;
2668 }
2669
inherit_vpe_l1_table_from_its(void)2670 static u64 inherit_vpe_l1_table_from_its(void)
2671 {
2672 struct its_node *its;
2673 u64 val;
2674 u32 aff;
2675
2676 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2677 aff = compute_common_aff(val);
2678
2679 list_for_each_entry(its, &its_nodes, entry) {
2680 u64 baser, addr;
2681
2682 if (!is_v4_1(its))
2683 continue;
2684
2685 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2686 continue;
2687
2688 if (aff != compute_its_aff(its))
2689 continue;
2690
2691 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2692 baser = its->tables[2].val;
2693 if (!(baser & GITS_BASER_VALID))
2694 continue;
2695
2696 /* We have a winner! */
2697 gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2698
2699 val = GICR_VPROPBASER_4_1_VALID;
2700 if (baser & GITS_BASER_INDIRECT)
2701 val |= GICR_VPROPBASER_4_1_INDIRECT;
2702 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2703 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2704 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2705 case GIC_PAGE_SIZE_64K:
2706 addr = GITS_BASER_ADDR_48_to_52(baser);
2707 break;
2708 default:
2709 addr = baser & GENMASK_ULL(47, 12);
2710 break;
2711 }
2712 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2713 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2714 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2715 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2716 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2717 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2718
2719 return val;
2720 }
2721
2722 return 0;
2723 }
2724
inherit_vpe_l1_table_from_rd(cpumask_t ** mask)2725 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2726 {
2727 u32 aff;
2728 u64 val;
2729 int cpu;
2730
2731 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2732 aff = compute_common_aff(val);
2733
2734 for_each_possible_cpu(cpu) {
2735 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2736
2737 if (!base || cpu == smp_processor_id())
2738 continue;
2739
2740 val = gic_read_typer(base + GICR_TYPER);
2741 if (aff != compute_common_aff(val))
2742 continue;
2743
2744 /*
2745 * At this point, we have a victim. This particular CPU
2746 * has already booted, and has an affinity that matches
2747 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2748 * Make sure we don't write the Z bit in that case.
2749 */
2750 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2751 val &= ~GICR_VPROPBASER_4_1_Z;
2752
2753 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2754 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2755
2756 return val;
2757 }
2758
2759 return 0;
2760 }
2761
allocate_vpe_l2_table(int cpu,u32 id)2762 static bool allocate_vpe_l2_table(int cpu, u32 id)
2763 {
2764 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2765 unsigned int psz, esz, idx, npg, gpsz;
2766 u64 val;
2767 struct page *page;
2768 __le64 *table;
2769
2770 if (!gic_rdists->has_rvpeid)
2771 return true;
2772
2773 /* Skip non-present CPUs */
2774 if (!base)
2775 return true;
2776
2777 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2778
2779 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2780 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2781 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2782
2783 switch (gpsz) {
2784 default:
2785 WARN_ON(1);
2786 fallthrough;
2787 case GIC_PAGE_SIZE_4K:
2788 psz = SZ_4K;
2789 break;
2790 case GIC_PAGE_SIZE_16K:
2791 psz = SZ_16K;
2792 break;
2793 case GIC_PAGE_SIZE_64K:
2794 psz = SZ_64K;
2795 break;
2796 }
2797
2798 /* Don't allow vpe_id that exceeds single, flat table limit */
2799 if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2800 return (id < (npg * psz / (esz * SZ_8)));
2801
2802 /* Compute 1st level table index & check if that exceeds table limit */
2803 idx = id >> ilog2(psz / (esz * SZ_8));
2804 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2805 return false;
2806
2807 table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2808
2809 /* Allocate memory for 2nd level table */
2810 if (!table[idx]) {
2811 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2812 if (!page)
2813 return false;
2814
2815 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2816 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2817 gic_flush_dcache_to_poc(page_address(page), psz);
2818
2819 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2820
2821 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2822 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2823 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2824
2825 /* Ensure updated table contents are visible to RD hardware */
2826 dsb(sy);
2827 }
2828
2829 return true;
2830 }
2831
allocate_vpe_l1_table(void)2832 static int allocate_vpe_l1_table(void)
2833 {
2834 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2835 u64 val, gpsz, npg, pa;
2836 unsigned int psz = SZ_64K;
2837 unsigned int np, epp, esz;
2838 struct page *page;
2839
2840 if (!gic_rdists->has_rvpeid)
2841 return 0;
2842
2843 /*
2844 * if VPENDBASER.Valid is set, disable any previously programmed
2845 * VPE by setting PendingLast while clearing Valid. This has the
2846 * effect of making sure no doorbell will be generated and we can
2847 * then safely clear VPROPBASER.Valid.
2848 */
2849 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2850 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2851 vlpi_base + GICR_VPENDBASER);
2852
2853 /*
2854 * If we can inherit the configuration from another RD, let's do
2855 * so. Otherwise, we have to go through the allocation process. We
2856 * assume that all RDs have the exact same requirements, as
2857 * nothing will work otherwise.
2858 */
2859 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2860 if (val & GICR_VPROPBASER_4_1_VALID)
2861 goto out;
2862
2863 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2864 if (!gic_data_rdist()->vpe_table_mask)
2865 return -ENOMEM;
2866
2867 val = inherit_vpe_l1_table_from_its();
2868 if (val & GICR_VPROPBASER_4_1_VALID)
2869 goto out;
2870
2871 /* First probe the page size */
2872 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2873 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2874 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2875 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2876 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2877
2878 switch (gpsz) {
2879 default:
2880 gpsz = GIC_PAGE_SIZE_4K;
2881 fallthrough;
2882 case GIC_PAGE_SIZE_4K:
2883 psz = SZ_4K;
2884 break;
2885 case GIC_PAGE_SIZE_16K:
2886 psz = SZ_16K;
2887 break;
2888 case GIC_PAGE_SIZE_64K:
2889 psz = SZ_64K;
2890 break;
2891 }
2892
2893 /*
2894 * Start populating the register from scratch, including RO fields
2895 * (which we want to print in debug cases...)
2896 */
2897 val = 0;
2898 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2899 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2900
2901 /* How many entries per GIC page? */
2902 esz++;
2903 epp = psz / (esz * SZ_8);
2904
2905 /*
2906 * If we need more than just a single L1 page, flag the table
2907 * as indirect and compute the number of required L1 pages.
2908 */
2909 if (epp < ITS_MAX_VPEID) {
2910 int nl2;
2911
2912 val |= GICR_VPROPBASER_4_1_INDIRECT;
2913
2914 /* Number of L2 pages required to cover the VPEID space */
2915 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2916
2917 /* Number of L1 pages to point to the L2 pages */
2918 npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2919 } else {
2920 npg = 1;
2921 }
2922
2923 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2924
2925 /* Right, that's the number of CPU pages we need for L1 */
2926 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2927
2928 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2929 np, npg, psz, epp, esz);
2930 page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2931 if (!page)
2932 return -ENOMEM;
2933
2934 gic_data_rdist()->vpe_l1_base = page_address(page);
2935 pa = virt_to_phys(page_address(page));
2936 WARN_ON(!IS_ALIGNED(pa, psz));
2937
2938 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2939 val |= GICR_VPROPBASER_RaWb;
2940 val |= GICR_VPROPBASER_InnerShareable;
2941 val |= GICR_VPROPBASER_4_1_Z;
2942 val |= GICR_VPROPBASER_4_1_VALID;
2943
2944 out:
2945 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2946 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2947
2948 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2949 smp_processor_id(), val,
2950 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2951
2952 return 0;
2953 }
2954
its_alloc_collections(struct its_node * its)2955 static int its_alloc_collections(struct its_node *its)
2956 {
2957 int i;
2958
2959 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2960 GFP_KERNEL);
2961 if (!its->collections)
2962 return -ENOMEM;
2963
2964 for (i = 0; i < nr_cpu_ids; i++)
2965 its->collections[i].target_address = ~0ULL;
2966
2967 return 0;
2968 }
2969
its_allocate_pending_table(gfp_t gfp_flags)2970 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2971 {
2972 struct page *pend_page;
2973 void *va;
2974
2975 pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2976 get_order(LPI_PENDBASE_SZ));
2977 if (!pend_page)
2978 return NULL;
2979
2980 /* Make sure the GIC will observe the zero-ed page */
2981 va = page_address(pend_page);
2982 gic_flush_dcache_to_poc(va, LPI_PENDBASE_SZ);
2983 set_memory_decrypted((unsigned long)va, LPI_PENDBASE_SZ >> PAGE_SHIFT);
2984
2985 return pend_page;
2986 }
2987
its_free_pending_table(struct page * pt)2988 static void its_free_pending_table(struct page *pt)
2989 {
2990 unsigned long va = (unsigned long)page_address(pt);
2991
2992 set_memory_encrypted(va, LPI_PENDBASE_SZ >> PAGE_SHIFT);
2993 free_pages(va, get_order(LPI_PENDBASE_SZ));
2994 }
2995
2996 /*
2997 * Booting with kdump and LPIs enabled is generally fine. Any other
2998 * case is wrong in the absence of firmware/EFI support.
2999 */
enabled_lpis_allowed(void)3000 static bool enabled_lpis_allowed(void)
3001 {
3002 phys_addr_t addr;
3003 u64 val;
3004
3005 /* Check whether the property table is in a reserved region */
3006 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
3007 addr = val & GENMASK_ULL(51, 12);
3008
3009 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
3010 }
3011
allocate_lpi_tables(void)3012 static int __init allocate_lpi_tables(void)
3013 {
3014 u64 val;
3015 int err, cpu;
3016
3017 /*
3018 * If LPIs are enabled while we run this from the boot CPU,
3019 * flag the RD tables as pre-allocated if the stars do align.
3020 */
3021 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
3022 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
3023 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
3024 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
3025 pr_info("GICv3: Using preallocated redistributor tables\n");
3026 }
3027
3028 err = its_setup_lpi_prop_table();
3029 if (err)
3030 return err;
3031
3032 /*
3033 * We allocate all the pending tables anyway, as we may have a
3034 * mix of RDs that have had LPIs enabled, and some that
3035 * don't. We'll free the unused ones as each CPU comes online.
3036 */
3037 for_each_possible_cpu(cpu) {
3038 struct page *pend_page;
3039
3040 pend_page = its_allocate_pending_table(GFP_NOWAIT);
3041 if (!pend_page) {
3042 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3043 return -ENOMEM;
3044 }
3045
3046 gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3047 }
3048
3049 return 0;
3050 }
3051
read_vpend_dirty_clear(void __iomem * vlpi_base)3052 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3053 {
3054 u32 count = 1000000; /* 1s! */
3055 bool clean;
3056 u64 val;
3057
3058 do {
3059 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3060 clean = !(val & GICR_VPENDBASER_Dirty);
3061 if (!clean) {
3062 count--;
3063 cpu_relax();
3064 udelay(1);
3065 }
3066 } while (!clean && count);
3067
3068 if (unlikely(!clean))
3069 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3070
3071 return val;
3072 }
3073
its_clear_vpend_valid(void __iomem * vlpi_base,u64 clr,u64 set)3074 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3075 {
3076 u64 val;
3077
3078 /* Make sure we wait until the RD is done with the initial scan */
3079 val = read_vpend_dirty_clear(vlpi_base);
3080 val &= ~GICR_VPENDBASER_Valid;
3081 val &= ~clr;
3082 val |= set;
3083 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3084
3085 val = read_vpend_dirty_clear(vlpi_base);
3086 if (unlikely(val & GICR_VPENDBASER_Dirty))
3087 val |= GICR_VPENDBASER_PendingLast;
3088
3089 return val;
3090 }
3091
its_cpu_init_lpis(void)3092 static void its_cpu_init_lpis(void)
3093 {
3094 void __iomem *rbase = gic_data_rdist_rd_base();
3095 struct page *pend_page;
3096 phys_addr_t paddr;
3097 u64 val, tmp;
3098
3099 if (gic_data_rdist()->lpi_enabled)
3100 return;
3101
3102 val = readl_relaxed(rbase + GICR_CTLR);
3103 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3104 (val & GICR_CTLR_ENABLE_LPIS)) {
3105 /*
3106 * Check that we get the same property table on all
3107 * RDs. If we don't, this is hopeless.
3108 */
3109 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3110 paddr &= GENMASK_ULL(51, 12);
3111 if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3112 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3113
3114 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3115 paddr &= GENMASK_ULL(51, 16);
3116
3117 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3118 its_free_pending_table(gic_data_rdist()->pend_page);
3119 gic_data_rdist()->pend_page = NULL;
3120
3121 goto out;
3122 }
3123
3124 pend_page = gic_data_rdist()->pend_page;
3125 paddr = page_to_phys(pend_page);
3126 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
3127
3128 /* set PROPBASE */
3129 val = (gic_rdists->prop_table_pa |
3130 GICR_PROPBASER_InnerShareable |
3131 GICR_PROPBASER_RaWaWb |
3132 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3133
3134 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3135 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3136
3137 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3138 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3139 /*
3140 * The HW reports non-shareable, we must
3141 * remove the cacheability attributes as
3142 * well.
3143 */
3144 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3145 GICR_PROPBASER_CACHEABILITY_MASK);
3146 val |= GICR_PROPBASER_nC;
3147 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3148 }
3149 pr_info_once("GIC: using cache flushing for LPI property table\n");
3150 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3151 }
3152
3153 /* set PENDBASE */
3154 val = (page_to_phys(pend_page) |
3155 GICR_PENDBASER_InnerShareable |
3156 GICR_PENDBASER_RaWaWb);
3157
3158 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3159 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3160
3161 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3162 /*
3163 * The HW reports non-shareable, we must remove the
3164 * cacheability attributes as well.
3165 */
3166 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3167 GICR_PENDBASER_CACHEABILITY_MASK);
3168 val |= GICR_PENDBASER_nC;
3169 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3170 }
3171
3172 /* Enable LPIs */
3173 val = readl_relaxed(rbase + GICR_CTLR);
3174 val |= GICR_CTLR_ENABLE_LPIS;
3175 writel_relaxed(val, rbase + GICR_CTLR);
3176
3177 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3178 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3179
3180 /*
3181 * It's possible for CPU to receive VLPIs before it is
3182 * scheduled as a vPE, especially for the first CPU, and the
3183 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3184 * as out of range and dropped by GIC.
3185 * So we initialize IDbits to known value to avoid VLPI drop.
3186 */
3187 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3188 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3189 smp_processor_id(), val);
3190 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3191
3192 /*
3193 * Also clear Valid bit of GICR_VPENDBASER, in case some
3194 * ancient programming gets left in and has possibility of
3195 * corrupting memory.
3196 */
3197 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3198 }
3199
3200 if (allocate_vpe_l1_table()) {
3201 /*
3202 * If the allocation has failed, we're in massive trouble.
3203 * Disable direct injection, and pray that no VM was
3204 * already running...
3205 */
3206 gic_rdists->has_rvpeid = false;
3207 gic_rdists->has_vlpis = false;
3208 }
3209
3210 /* Make sure the GIC has seen the above */
3211 dsb(sy);
3212 out:
3213 gic_data_rdist()->lpi_enabled = true;
3214 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3215 smp_processor_id(),
3216 gic_data_rdist()->pend_page ? "allocated" : "reserved",
3217 &paddr);
3218 }
3219
its_cpu_init_collection(struct its_node * its)3220 static void its_cpu_init_collection(struct its_node *its)
3221 {
3222 int cpu = smp_processor_id();
3223 u64 target;
3224
3225 /* avoid cross node collections and its mapping */
3226 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3227 struct device_node *cpu_node;
3228
3229 cpu_node = of_get_cpu_node(cpu, NULL);
3230 if (its->numa_node != NUMA_NO_NODE &&
3231 its->numa_node != of_node_to_nid(cpu_node))
3232 return;
3233 }
3234
3235 /*
3236 * We now have to bind each collection to its target
3237 * redistributor.
3238 */
3239 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3240 /*
3241 * This ITS wants the physical address of the
3242 * redistributor.
3243 */
3244 target = gic_data_rdist()->phys_base;
3245 } else {
3246 /* This ITS wants a linear CPU number. */
3247 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3248 target = GICR_TYPER_CPU_NUMBER(target) << 16;
3249 }
3250
3251 /* Perform collection mapping */
3252 its->collections[cpu].target_address = target;
3253 its->collections[cpu].col_id = cpu;
3254
3255 its_send_mapc(its, &its->collections[cpu], 1);
3256 its_send_invall(its, &its->collections[cpu]);
3257 }
3258
its_cpu_init_collections(void)3259 static void its_cpu_init_collections(void)
3260 {
3261 struct its_node *its;
3262
3263 raw_spin_lock(&its_lock);
3264
3265 list_for_each_entry(its, &its_nodes, entry)
3266 its_cpu_init_collection(its);
3267
3268 raw_spin_unlock(&its_lock);
3269 }
3270
its_find_device(struct its_node * its,u32 dev_id)3271 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3272 {
3273 struct its_device *its_dev = NULL, *tmp;
3274 unsigned long flags;
3275
3276 raw_spin_lock_irqsave(&its->lock, flags);
3277
3278 list_for_each_entry(tmp, &its->its_device_list, entry) {
3279 if (tmp->device_id == dev_id) {
3280 its_dev = tmp;
3281 break;
3282 }
3283 }
3284
3285 raw_spin_unlock_irqrestore(&its->lock, flags);
3286
3287 return its_dev;
3288 }
3289
its_get_baser(struct its_node * its,u32 type)3290 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3291 {
3292 int i;
3293
3294 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3295 if (GITS_BASER_TYPE(its->tables[i].val) == type)
3296 return &its->tables[i];
3297 }
3298
3299 return NULL;
3300 }
3301
its_alloc_table_entry(struct its_node * its,struct its_baser * baser,u32 id)3302 static bool its_alloc_table_entry(struct its_node *its,
3303 struct its_baser *baser, u32 id)
3304 {
3305 struct page *page;
3306 u32 esz, idx;
3307 __le64 *table;
3308
3309 /* Don't allow device id that exceeds single, flat table limit */
3310 esz = GITS_BASER_ENTRY_SIZE(baser->val);
3311 if (!(baser->val & GITS_BASER_INDIRECT))
3312 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3313
3314 /* Compute 1st level table index & check if that exceeds table limit */
3315 idx = id >> ilog2(baser->psz / esz);
3316 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3317 return false;
3318
3319 table = baser->base;
3320
3321 /* Allocate memory for 2nd level table */
3322 if (!table[idx]) {
3323 void *l2addr;
3324
3325 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3326 get_order(baser->psz));
3327 if (!page)
3328 return false;
3329
3330 l2addr = page_address(page);
3331 set_memory_decrypted((unsigned long)l2addr,
3332 baser->psz >> PAGE_SHIFT);
3333
3334 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
3335 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3336 gic_flush_dcache_to_poc(l2addr, baser->psz);
3337
3338 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3339
3340 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3341 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3342 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3343
3344 /* Ensure updated table contents are visible to ITS hardware */
3345 dsb(sy);
3346 }
3347
3348 return true;
3349 }
3350
its_alloc_device_table(struct its_node * its,u32 dev_id)3351 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3352 {
3353 struct its_baser *baser;
3354
3355 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3356
3357 /* Don't allow device id that exceeds ITS hardware limit */
3358 if (!baser)
3359 return (ilog2(dev_id) < device_ids(its));
3360
3361 return its_alloc_table_entry(its, baser, dev_id);
3362 }
3363
its_alloc_vpe_table(u32 vpe_id)3364 static bool its_alloc_vpe_table(u32 vpe_id)
3365 {
3366 struct its_node *its;
3367 int cpu;
3368
3369 /*
3370 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3371 * could try and only do it on ITSs corresponding to devices
3372 * that have interrupts targeted at this VPE, but the
3373 * complexity becomes crazy (and you have tons of memory
3374 * anyway, right?).
3375 */
3376 list_for_each_entry(its, &its_nodes, entry) {
3377 struct its_baser *baser;
3378
3379 if (!is_v4(its))
3380 continue;
3381
3382 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3383 if (!baser)
3384 return false;
3385
3386 if (!its_alloc_table_entry(its, baser, vpe_id))
3387 return false;
3388 }
3389
3390 /* Non v4.1? No need to iterate RDs and go back early. */
3391 if (!gic_rdists->has_rvpeid)
3392 return true;
3393
3394 /*
3395 * Make sure the L2 tables are allocated for all copies of
3396 * the L1 table on *all* v4.1 RDs.
3397 */
3398 for_each_possible_cpu(cpu) {
3399 if (!allocate_vpe_l2_table(cpu, vpe_id))
3400 return false;
3401 }
3402
3403 return true;
3404 }
3405
its_create_device(struct its_node * its,u32 dev_id,int nvecs,bool alloc_lpis)3406 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3407 int nvecs, bool alloc_lpis)
3408 {
3409 struct its_device *dev;
3410 unsigned long *lpi_map = NULL;
3411 unsigned long flags;
3412 u16 *col_map = NULL;
3413 void *itt;
3414 int lpi_base;
3415 int nr_lpis;
3416 int nr_ites;
3417 int sz;
3418
3419 if (!its_alloc_device_table(its, dev_id))
3420 return NULL;
3421
3422 if (WARN_ON(!is_power_of_2(nvecs)))
3423 nvecs = roundup_pow_of_two(nvecs);
3424
3425 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3426 /*
3427 * Even if the device wants a single LPI, the ITT must be
3428 * sized as a power of two (and you need at least one bit...).
3429 */
3430 nr_ites = max(2, nvecs);
3431 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3432 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3433 itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3434 if (alloc_lpis) {
3435 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3436 if (lpi_map)
3437 col_map = kcalloc(nr_lpis, sizeof(*col_map),
3438 GFP_KERNEL);
3439 } else {
3440 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3441 nr_lpis = 0;
3442 lpi_base = 0;
3443 }
3444
3445 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) {
3446 kfree(dev);
3447 kfree(itt);
3448 bitmap_free(lpi_map);
3449 kfree(col_map);
3450 return NULL;
3451 }
3452
3453 gic_flush_dcache_to_poc(itt, sz);
3454
3455 dev->its = its;
3456 dev->itt = itt;
3457 dev->nr_ites = nr_ites;
3458 dev->event_map.lpi_map = lpi_map;
3459 dev->event_map.col_map = col_map;
3460 dev->event_map.lpi_base = lpi_base;
3461 dev->event_map.nr_lpis = nr_lpis;
3462 raw_spin_lock_init(&dev->event_map.vlpi_lock);
3463 dev->device_id = dev_id;
3464 INIT_LIST_HEAD(&dev->entry);
3465
3466 raw_spin_lock_irqsave(&its->lock, flags);
3467 list_add(&dev->entry, &its->its_device_list);
3468 raw_spin_unlock_irqrestore(&its->lock, flags);
3469
3470 /* Map device to its ITT */
3471 its_send_mapd(dev, 1);
3472
3473 return dev;
3474 }
3475
its_free_device(struct its_device * its_dev)3476 static void its_free_device(struct its_device *its_dev)
3477 {
3478 unsigned long flags;
3479
3480 raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3481 list_del(&its_dev->entry);
3482 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3483 kfree(its_dev->event_map.col_map);
3484 kfree(its_dev->itt);
3485 kfree(its_dev);
3486 }
3487
its_alloc_device_irq(struct its_device * dev,int nvecs,irq_hw_number_t * hwirq)3488 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3489 {
3490 int idx;
3491
3492 /* Find a free LPI region in lpi_map and allocate them. */
3493 idx = bitmap_find_free_region(dev->event_map.lpi_map,
3494 dev->event_map.nr_lpis,
3495 get_count_order(nvecs));
3496 if (idx < 0)
3497 return -ENOSPC;
3498
3499 *hwirq = dev->event_map.lpi_base + idx;
3500
3501 return 0;
3502 }
3503
its_msi_prepare(struct irq_domain * domain,struct device * dev,int nvec,msi_alloc_info_t * info)3504 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3505 int nvec, msi_alloc_info_t *info)
3506 {
3507 struct its_node *its;
3508 struct its_device *its_dev;
3509 struct msi_domain_info *msi_info;
3510 u32 dev_id;
3511 int err = 0;
3512
3513 /*
3514 * We ignore "dev" entirely, and rely on the dev_id that has
3515 * been passed via the scratchpad. This limits this domain's
3516 * usefulness to upper layers that definitely know that they
3517 * are built on top of the ITS.
3518 */
3519 dev_id = info->scratchpad[0].ul;
3520
3521 msi_info = msi_get_domain_info(domain);
3522 its = msi_info->data;
3523
3524 if (!gic_rdists->has_direct_lpi &&
3525 vpe_proxy.dev &&
3526 vpe_proxy.dev->its == its &&
3527 dev_id == vpe_proxy.dev->device_id) {
3528 /* Bad luck. Get yourself a better implementation */
3529 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3530 dev_id);
3531 return -EINVAL;
3532 }
3533
3534 mutex_lock(&its->dev_alloc_lock);
3535 its_dev = its_find_device(its, dev_id);
3536 if (its_dev) {
3537 /*
3538 * We already have seen this ID, probably through
3539 * another alias (PCI bridge of some sort). No need to
3540 * create the device.
3541 */
3542 its_dev->shared = true;
3543 pr_debug("Reusing ITT for devID %x\n", dev_id);
3544 goto out;
3545 }
3546
3547 its_dev = its_create_device(its, dev_id, nvec, true);
3548 if (!its_dev) {
3549 err = -ENOMEM;
3550 goto out;
3551 }
3552
3553 if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3554 its_dev->shared = true;
3555
3556 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3557 out:
3558 mutex_unlock(&its->dev_alloc_lock);
3559 info->scratchpad[0].ptr = its_dev;
3560 return err;
3561 }
3562
3563 static struct msi_domain_ops its_msi_domain_ops = {
3564 .msi_prepare = its_msi_prepare,
3565 };
3566
its_irq_gic_domain_alloc(struct irq_domain * domain,unsigned int virq,irq_hw_number_t hwirq)3567 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3568 unsigned int virq,
3569 irq_hw_number_t hwirq)
3570 {
3571 struct irq_fwspec fwspec;
3572
3573 if (irq_domain_get_of_node(domain->parent)) {
3574 fwspec.fwnode = domain->parent->fwnode;
3575 fwspec.param_count = 3;
3576 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3577 fwspec.param[1] = hwirq;
3578 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3579 } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3580 fwspec.fwnode = domain->parent->fwnode;
3581 fwspec.param_count = 2;
3582 fwspec.param[0] = hwirq;
3583 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3584 } else {
3585 return -EINVAL;
3586 }
3587
3588 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3589 }
3590
its_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)3591 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3592 unsigned int nr_irqs, void *args)
3593 {
3594 msi_alloc_info_t *info = args;
3595 struct its_device *its_dev = info->scratchpad[0].ptr;
3596 struct its_node *its = its_dev->its;
3597 struct irq_data *irqd;
3598 irq_hw_number_t hwirq;
3599 int err;
3600 int i;
3601
3602 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3603 if (err)
3604 return err;
3605
3606 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3607 if (err)
3608 return err;
3609
3610 for (i = 0; i < nr_irqs; i++) {
3611 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3612 if (err)
3613 return err;
3614
3615 irq_domain_set_hwirq_and_chip(domain, virq + i,
3616 hwirq + i, &its_irq_chip, its_dev);
3617 irqd = irq_get_irq_data(virq + i);
3618 irqd_set_single_target(irqd);
3619 irqd_set_affinity_on_activate(irqd);
3620 pr_debug("ID:%d pID:%d vID:%d\n",
3621 (int)(hwirq + i - its_dev->event_map.lpi_base),
3622 (int)(hwirq + i), virq + i);
3623 }
3624
3625 return 0;
3626 }
3627
its_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)3628 static int its_irq_domain_activate(struct irq_domain *domain,
3629 struct irq_data *d, bool reserve)
3630 {
3631 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3632 u32 event = its_get_event_id(d);
3633 int cpu;
3634
3635 cpu = its_select_cpu(d, cpu_online_mask);
3636 if (cpu < 0 || cpu >= nr_cpu_ids)
3637 return -EINVAL;
3638
3639 its_inc_lpi_count(d, cpu);
3640 its_dev->event_map.col_map[event] = cpu;
3641 irq_data_update_effective_affinity(d, cpumask_of(cpu));
3642
3643 /* Map the GIC IRQ and event to the device */
3644 its_send_mapti(its_dev, d->hwirq, event);
3645 return 0;
3646 }
3647
its_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)3648 static void its_irq_domain_deactivate(struct irq_domain *domain,
3649 struct irq_data *d)
3650 {
3651 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3652 u32 event = its_get_event_id(d);
3653
3654 its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3655 /* Stop the delivery of interrupts */
3656 its_send_discard(its_dev, event);
3657 }
3658
its_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)3659 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3660 unsigned int nr_irqs)
3661 {
3662 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3663 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3664 struct its_node *its = its_dev->its;
3665 int i;
3666
3667 bitmap_release_region(its_dev->event_map.lpi_map,
3668 its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3669 get_count_order(nr_irqs));
3670
3671 for (i = 0; i < nr_irqs; i++) {
3672 struct irq_data *data = irq_domain_get_irq_data(domain,
3673 virq + i);
3674 /* Nuke the entry in the domain */
3675 irq_domain_reset_irq_data(data);
3676 }
3677
3678 mutex_lock(&its->dev_alloc_lock);
3679
3680 /*
3681 * If all interrupts have been freed, start mopping the
3682 * floor. This is conditioned on the device not being shared.
3683 */
3684 if (!its_dev->shared &&
3685 bitmap_empty(its_dev->event_map.lpi_map,
3686 its_dev->event_map.nr_lpis)) {
3687 its_lpi_free(its_dev->event_map.lpi_map,
3688 its_dev->event_map.lpi_base,
3689 its_dev->event_map.nr_lpis);
3690
3691 /* Unmap device/itt */
3692 its_send_mapd(its_dev, 0);
3693 its_free_device(its_dev);
3694 }
3695
3696 mutex_unlock(&its->dev_alloc_lock);
3697
3698 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3699 }
3700
3701 static const struct irq_domain_ops its_domain_ops = {
3702 .alloc = its_irq_domain_alloc,
3703 .free = its_irq_domain_free,
3704 .activate = its_irq_domain_activate,
3705 .deactivate = its_irq_domain_deactivate,
3706 };
3707
3708 /*
3709 * This is insane.
3710 *
3711 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3712 * likely), the only way to perform an invalidate is to use a fake
3713 * device to issue an INV command, implying that the LPI has first
3714 * been mapped to some event on that device. Since this is not exactly
3715 * cheap, we try to keep that mapping around as long as possible, and
3716 * only issue an UNMAP if we're short on available slots.
3717 *
3718 * Broken by design(tm).
3719 *
3720 * GICv4.1, on the other hand, mandates that we're able to invalidate
3721 * by writing to a MMIO register. It doesn't implement the whole of
3722 * DirectLPI, but that's good enough. And most of the time, we don't
3723 * even have to invalidate anything, as the redistributor can be told
3724 * whether to generate a doorbell or not (we thus leave it enabled,
3725 * always).
3726 */
its_vpe_db_proxy_unmap_locked(struct its_vpe * vpe)3727 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3728 {
3729 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3730 if (gic_rdists->has_rvpeid)
3731 return;
3732
3733 /* Already unmapped? */
3734 if (vpe->vpe_proxy_event == -1)
3735 return;
3736
3737 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3738 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3739
3740 /*
3741 * We don't track empty slots at all, so let's move the
3742 * next_victim pointer if we can quickly reuse that slot
3743 * instead of nuking an existing entry. Not clear that this is
3744 * always a win though, and this might just generate a ripple
3745 * effect... Let's just hope VPEs don't migrate too often.
3746 */
3747 if (vpe_proxy.vpes[vpe_proxy.next_victim])
3748 vpe_proxy.next_victim = vpe->vpe_proxy_event;
3749
3750 vpe->vpe_proxy_event = -1;
3751 }
3752
its_vpe_db_proxy_unmap(struct its_vpe * vpe)3753 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3754 {
3755 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3756 if (gic_rdists->has_rvpeid)
3757 return;
3758
3759 if (!gic_rdists->has_direct_lpi) {
3760 unsigned long flags;
3761
3762 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3763 its_vpe_db_proxy_unmap_locked(vpe);
3764 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3765 }
3766 }
3767
its_vpe_db_proxy_map_locked(struct its_vpe * vpe)3768 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3769 {
3770 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3771 if (gic_rdists->has_rvpeid)
3772 return;
3773
3774 /* Already mapped? */
3775 if (vpe->vpe_proxy_event != -1)
3776 return;
3777
3778 /* This slot was already allocated. Kick the other VPE out. */
3779 if (vpe_proxy.vpes[vpe_proxy.next_victim])
3780 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3781
3782 /* Map the new VPE instead */
3783 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3784 vpe->vpe_proxy_event = vpe_proxy.next_victim;
3785 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3786
3787 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3788 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3789 }
3790
its_vpe_db_proxy_move(struct its_vpe * vpe,int from,int to)3791 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3792 {
3793 unsigned long flags;
3794 struct its_collection *target_col;
3795
3796 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3797 if (gic_rdists->has_rvpeid)
3798 return;
3799
3800 if (gic_rdists->has_direct_lpi) {
3801 void __iomem *rdbase;
3802
3803 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3804 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3805 wait_for_syncr(rdbase);
3806
3807 return;
3808 }
3809
3810 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3811
3812 its_vpe_db_proxy_map_locked(vpe);
3813
3814 target_col = &vpe_proxy.dev->its->collections[to];
3815 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3816 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3817
3818 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3819 }
3820
its_vpe_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)3821 static int its_vpe_set_affinity(struct irq_data *d,
3822 const struct cpumask *mask_val,
3823 bool force)
3824 {
3825 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3826 struct cpumask common, *table_mask;
3827 unsigned long flags;
3828 int from, cpu;
3829
3830 /*
3831 * Changing affinity is mega expensive, so let's be as lazy as
3832 * we can and only do it if we really have to. Also, if mapped
3833 * into the proxy device, we need to move the doorbell
3834 * interrupt to its new location.
3835 *
3836 * Another thing is that changing the affinity of a vPE affects
3837 * *other interrupts* such as all the vLPIs that are routed to
3838 * this vPE. This means that the irq_desc lock is not enough to
3839 * protect us, and that we must ensure nobody samples vpe->col_idx
3840 * during the update, hence the lock below which must also be
3841 * taken on any vLPI handling path that evaluates vpe->col_idx.
3842 */
3843 from = vpe_to_cpuid_lock(vpe, &flags);
3844 table_mask = gic_data_rdist_cpu(from)->vpe_table_mask;
3845
3846 /*
3847 * If we are offered another CPU in the same GICv4.1 ITS
3848 * affinity, pick this one. Otherwise, any CPU will do.
3849 */
3850 if (table_mask && cpumask_and(&common, mask_val, table_mask))
3851 cpu = cpumask_test_cpu(from, &common) ? from : cpumask_first(&common);
3852 else
3853 cpu = cpumask_first(mask_val);
3854
3855 if (from == cpu)
3856 goto out;
3857
3858 vpe->col_idx = cpu;
3859
3860 its_send_vmovp(vpe);
3861 its_vpe_db_proxy_move(vpe, from, cpu);
3862
3863 out:
3864 irq_data_update_effective_affinity(d, cpumask_of(cpu));
3865 vpe_to_cpuid_unlock(vpe, flags);
3866
3867 return IRQ_SET_MASK_OK_DONE;
3868 }
3869
its_wait_vpt_parse_complete(void)3870 static void its_wait_vpt_parse_complete(void)
3871 {
3872 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3873 u64 val;
3874
3875 if (!gic_rdists->has_vpend_valid_dirty)
3876 return;
3877
3878 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3879 val,
3880 !(val & GICR_VPENDBASER_Dirty),
3881 1, 500));
3882 }
3883
its_vpe_schedule(struct its_vpe * vpe)3884 static void its_vpe_schedule(struct its_vpe *vpe)
3885 {
3886 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3887 u64 val;
3888
3889 /* Schedule the VPE */
3890 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3891 GENMASK_ULL(51, 12);
3892 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3893 val |= GICR_VPROPBASER_RaWb;
3894 val |= GICR_VPROPBASER_InnerShareable;
3895 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3896
3897 val = virt_to_phys(page_address(vpe->vpt_page)) &
3898 GENMASK_ULL(51, 16);
3899 val |= GICR_VPENDBASER_RaWaWb;
3900 val |= GICR_VPENDBASER_InnerShareable;
3901 /*
3902 * There is no good way of finding out if the pending table is
3903 * empty as we can race against the doorbell interrupt very
3904 * easily. So in the end, vpe->pending_last is only an
3905 * indication that the vcpu has something pending, not one
3906 * that the pending table is empty. A good implementation
3907 * would be able to read its coarse map pretty quickly anyway,
3908 * making this a tolerable issue.
3909 */
3910 val |= GICR_VPENDBASER_PendingLast;
3911 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3912 val |= GICR_VPENDBASER_Valid;
3913 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3914 }
3915
its_vpe_deschedule(struct its_vpe * vpe)3916 static void its_vpe_deschedule(struct its_vpe *vpe)
3917 {
3918 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3919 u64 val;
3920
3921 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3922
3923 vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3924 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3925 }
3926
its_vpe_invall(struct its_vpe * vpe)3927 static void its_vpe_invall(struct its_vpe *vpe)
3928 {
3929 struct its_node *its;
3930
3931 list_for_each_entry(its, &its_nodes, entry) {
3932 if (!is_v4(its))
3933 continue;
3934
3935 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3936 continue;
3937
3938 /*
3939 * Sending a VINVALL to a single ITS is enough, as all
3940 * we need is to reach the redistributors.
3941 */
3942 its_send_vinvall(its, vpe);
3943 return;
3944 }
3945 }
3946
its_vpe_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)3947 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3948 {
3949 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3950 struct its_cmd_info *info = vcpu_info;
3951
3952 switch (info->cmd_type) {
3953 case SCHEDULE_VPE:
3954 its_vpe_schedule(vpe);
3955 return 0;
3956
3957 case DESCHEDULE_VPE:
3958 its_vpe_deschedule(vpe);
3959 return 0;
3960
3961 case COMMIT_VPE:
3962 its_wait_vpt_parse_complete();
3963 return 0;
3964
3965 case INVALL_VPE:
3966 its_vpe_invall(vpe);
3967 return 0;
3968
3969 default:
3970 return -EINVAL;
3971 }
3972 }
3973
its_vpe_send_cmd(struct its_vpe * vpe,void (* cmd)(struct its_device *,u32))3974 static void its_vpe_send_cmd(struct its_vpe *vpe,
3975 void (*cmd)(struct its_device *, u32))
3976 {
3977 unsigned long flags;
3978
3979 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3980
3981 its_vpe_db_proxy_map_locked(vpe);
3982 cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3983
3984 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3985 }
3986
its_vpe_send_inv(struct irq_data * d)3987 static void its_vpe_send_inv(struct irq_data *d)
3988 {
3989 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3990
3991 if (gic_rdists->has_direct_lpi)
3992 __direct_lpi_inv(d, d->parent_data->hwirq);
3993 else
3994 its_vpe_send_cmd(vpe, its_send_inv);
3995 }
3996
its_vpe_mask_irq(struct irq_data * d)3997 static void its_vpe_mask_irq(struct irq_data *d)
3998 {
3999 /*
4000 * We need to unmask the LPI, which is described by the parent
4001 * irq_data. Instead of calling into the parent (which won't
4002 * exactly do the right thing, let's simply use the
4003 * parent_data pointer. Yes, I'm naughty.
4004 */
4005 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4006 its_vpe_send_inv(d);
4007 }
4008
its_vpe_unmask_irq(struct irq_data * d)4009 static void its_vpe_unmask_irq(struct irq_data *d)
4010 {
4011 /* Same hack as above... */
4012 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4013 its_vpe_send_inv(d);
4014 }
4015
its_vpe_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)4016 static int its_vpe_set_irqchip_state(struct irq_data *d,
4017 enum irqchip_irq_state which,
4018 bool state)
4019 {
4020 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4021
4022 if (which != IRQCHIP_STATE_PENDING)
4023 return -EINVAL;
4024
4025 if (gic_rdists->has_direct_lpi) {
4026 void __iomem *rdbase;
4027
4028 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4029 if (state) {
4030 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4031 } else {
4032 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
4033 wait_for_syncr(rdbase);
4034 }
4035 } else {
4036 if (state)
4037 its_vpe_send_cmd(vpe, its_send_int);
4038 else
4039 its_vpe_send_cmd(vpe, its_send_clear);
4040 }
4041
4042 return 0;
4043 }
4044
its_vpe_retrigger(struct irq_data * d)4045 static int its_vpe_retrigger(struct irq_data *d)
4046 {
4047 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4048 }
4049
4050 static struct irq_chip its_vpe_irq_chip = {
4051 .name = "GICv4-vpe",
4052 .irq_mask = its_vpe_mask_irq,
4053 .irq_unmask = its_vpe_unmask_irq,
4054 .irq_eoi = irq_chip_eoi_parent,
4055 .irq_set_affinity = its_vpe_set_affinity,
4056 .irq_retrigger = its_vpe_retrigger,
4057 .irq_set_irqchip_state = its_vpe_set_irqchip_state,
4058 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity,
4059 };
4060
find_4_1_its(void)4061 static struct its_node *find_4_1_its(void)
4062 {
4063 static struct its_node *its = NULL;
4064
4065 if (!its) {
4066 list_for_each_entry(its, &its_nodes, entry) {
4067 if (is_v4_1(its))
4068 return its;
4069 }
4070
4071 /* Oops? */
4072 its = NULL;
4073 }
4074
4075 return its;
4076 }
4077
its_vpe_4_1_send_inv(struct irq_data * d)4078 static void its_vpe_4_1_send_inv(struct irq_data *d)
4079 {
4080 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4081 struct its_node *its;
4082
4083 /*
4084 * GICv4.1 wants doorbells to be invalidated using the
4085 * INVDB command in order to be broadcast to all RDs. Send
4086 * it to the first valid ITS, and let the HW do its magic.
4087 */
4088 its = find_4_1_its();
4089 if (its)
4090 its_send_invdb(its, vpe);
4091 }
4092
its_vpe_4_1_mask_irq(struct irq_data * d)4093 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4094 {
4095 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4096 its_vpe_4_1_send_inv(d);
4097 }
4098
its_vpe_4_1_unmask_irq(struct irq_data * d)4099 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4100 {
4101 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4102 its_vpe_4_1_send_inv(d);
4103 }
4104
its_vpe_4_1_schedule(struct its_vpe * vpe,struct its_cmd_info * info)4105 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4106 struct its_cmd_info *info)
4107 {
4108 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4109 u64 val = 0;
4110
4111 /* Schedule the VPE */
4112 val |= GICR_VPENDBASER_Valid;
4113 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4114 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4115 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4116
4117 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4118 }
4119
its_vpe_4_1_deschedule(struct its_vpe * vpe,struct its_cmd_info * info)4120 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4121 struct its_cmd_info *info)
4122 {
4123 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4124 u64 val;
4125
4126 if (info->req_db) {
4127 unsigned long flags;
4128
4129 /*
4130 * vPE is going to block: make the vPE non-resident with
4131 * PendingLast clear and DB set. The GIC guarantees that if
4132 * we read-back PendingLast clear, then a doorbell will be
4133 * delivered when an interrupt comes.
4134 *
4135 * Note the locking to deal with the concurrent update of
4136 * pending_last from the doorbell interrupt handler that can
4137 * run concurrently.
4138 */
4139 raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4140 val = its_clear_vpend_valid(vlpi_base,
4141 GICR_VPENDBASER_PendingLast,
4142 GICR_VPENDBASER_4_1_DB);
4143 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4144 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4145 } else {
4146 /*
4147 * We're not blocking, so just make the vPE non-resident
4148 * with PendingLast set, indicating that we'll be back.
4149 */
4150 val = its_clear_vpend_valid(vlpi_base,
4151 0,
4152 GICR_VPENDBASER_PendingLast);
4153 vpe->pending_last = true;
4154 }
4155 }
4156
its_vpe_4_1_invall(struct its_vpe * vpe)4157 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4158 {
4159 void __iomem *rdbase;
4160 unsigned long flags;
4161 u64 val;
4162 int cpu;
4163
4164 val = GICR_INVALLR_V;
4165 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4166
4167 /* Target the redistributor this vPE is currently known on */
4168 cpu = vpe_to_cpuid_lock(vpe, &flags);
4169 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4170 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4171 gic_write_lpir(val, rdbase + GICR_INVALLR);
4172
4173 wait_for_syncr(rdbase);
4174 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4175 vpe_to_cpuid_unlock(vpe, flags);
4176 }
4177
its_vpe_4_1_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)4178 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4179 {
4180 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4181 struct its_cmd_info *info = vcpu_info;
4182
4183 switch (info->cmd_type) {
4184 case SCHEDULE_VPE:
4185 its_vpe_4_1_schedule(vpe, info);
4186 return 0;
4187
4188 case DESCHEDULE_VPE:
4189 its_vpe_4_1_deschedule(vpe, info);
4190 return 0;
4191
4192 case COMMIT_VPE:
4193 its_wait_vpt_parse_complete();
4194 return 0;
4195
4196 case INVALL_VPE:
4197 its_vpe_4_1_invall(vpe);
4198 return 0;
4199
4200 default:
4201 return -EINVAL;
4202 }
4203 }
4204
4205 static struct irq_chip its_vpe_4_1_irq_chip = {
4206 .name = "GICv4.1-vpe",
4207 .irq_mask = its_vpe_4_1_mask_irq,
4208 .irq_unmask = its_vpe_4_1_unmask_irq,
4209 .irq_eoi = irq_chip_eoi_parent,
4210 .irq_set_affinity = its_vpe_set_affinity,
4211 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity,
4212 };
4213
its_configure_sgi(struct irq_data * d,bool clear)4214 static void its_configure_sgi(struct irq_data *d, bool clear)
4215 {
4216 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4217 struct its_cmd_desc desc;
4218
4219 desc.its_vsgi_cmd.vpe = vpe;
4220 desc.its_vsgi_cmd.sgi = d->hwirq;
4221 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4222 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4223 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4224 desc.its_vsgi_cmd.clear = clear;
4225
4226 /*
4227 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4228 * destination VPE is mapped there. Since we map them eagerly at
4229 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4230 */
4231 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4232 }
4233
its_sgi_mask_irq(struct irq_data * d)4234 static void its_sgi_mask_irq(struct irq_data *d)
4235 {
4236 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4237
4238 vpe->sgi_config[d->hwirq].enabled = false;
4239 its_configure_sgi(d, false);
4240 }
4241
its_sgi_unmask_irq(struct irq_data * d)4242 static void its_sgi_unmask_irq(struct irq_data *d)
4243 {
4244 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4245
4246 vpe->sgi_config[d->hwirq].enabled = true;
4247 its_configure_sgi(d, false);
4248 }
4249
its_sgi_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)4250 static int its_sgi_set_affinity(struct irq_data *d,
4251 const struct cpumask *mask_val,
4252 bool force)
4253 {
4254 /*
4255 * There is no notion of affinity for virtual SGIs, at least
4256 * not on the host (since they can only be targeting a vPE).
4257 * Tell the kernel we've done whatever it asked for.
4258 */
4259 irq_data_update_effective_affinity(d, mask_val);
4260 return IRQ_SET_MASK_OK;
4261 }
4262
its_sgi_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)4263 static int its_sgi_set_irqchip_state(struct irq_data *d,
4264 enum irqchip_irq_state which,
4265 bool state)
4266 {
4267 if (which != IRQCHIP_STATE_PENDING)
4268 return -EINVAL;
4269
4270 if (state) {
4271 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4272 struct its_node *its = find_4_1_its();
4273 u64 val;
4274
4275 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4276 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4277 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4278 } else {
4279 its_configure_sgi(d, true);
4280 }
4281
4282 return 0;
4283 }
4284
its_sgi_get_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool * val)4285 static int its_sgi_get_irqchip_state(struct irq_data *d,
4286 enum irqchip_irq_state which, bool *val)
4287 {
4288 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4289 void __iomem *base;
4290 unsigned long flags;
4291 u32 count = 1000000; /* 1s! */
4292 u32 status;
4293 int cpu;
4294
4295 if (which != IRQCHIP_STATE_PENDING)
4296 return -EINVAL;
4297
4298 /*
4299 * Locking galore! We can race against two different events:
4300 *
4301 * - Concurrent vPE affinity change: we must make sure it cannot
4302 * happen, or we'll talk to the wrong redistributor. This is
4303 * identical to what happens with vLPIs.
4304 *
4305 * - Concurrent VSGIPENDR access: As it involves accessing two
4306 * MMIO registers, this must be made atomic one way or another.
4307 */
4308 cpu = vpe_to_cpuid_lock(vpe, &flags);
4309 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4310 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4311 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4312 do {
4313 status = readl_relaxed(base + GICR_VSGIPENDR);
4314 if (!(status & GICR_VSGIPENDR_BUSY))
4315 goto out;
4316
4317 count--;
4318 if (!count) {
4319 pr_err_ratelimited("Unable to get SGI status\n");
4320 goto out;
4321 }
4322 cpu_relax();
4323 udelay(1);
4324 } while (count);
4325
4326 out:
4327 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4328 vpe_to_cpuid_unlock(vpe, flags);
4329
4330 if (!count)
4331 return -ENXIO;
4332
4333 *val = !!(status & (1 << d->hwirq));
4334
4335 return 0;
4336 }
4337
its_sgi_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)4338 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4339 {
4340 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4341 struct its_cmd_info *info = vcpu_info;
4342
4343 switch (info->cmd_type) {
4344 case PROP_UPDATE_VSGI:
4345 vpe->sgi_config[d->hwirq].priority = info->priority;
4346 vpe->sgi_config[d->hwirq].group = info->group;
4347 its_configure_sgi(d, false);
4348 return 0;
4349
4350 default:
4351 return -EINVAL;
4352 }
4353 }
4354
4355 static struct irq_chip its_sgi_irq_chip = {
4356 .name = "GICv4.1-sgi",
4357 .irq_mask = its_sgi_mask_irq,
4358 .irq_unmask = its_sgi_unmask_irq,
4359 .irq_set_affinity = its_sgi_set_affinity,
4360 .irq_set_irqchip_state = its_sgi_set_irqchip_state,
4361 .irq_get_irqchip_state = its_sgi_get_irqchip_state,
4362 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity,
4363 };
4364
its_sgi_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)4365 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4366 unsigned int virq, unsigned int nr_irqs,
4367 void *args)
4368 {
4369 struct its_vpe *vpe = args;
4370 int i;
4371
4372 /* Yes, we do want 16 SGIs */
4373 WARN_ON(nr_irqs != 16);
4374
4375 for (i = 0; i < 16; i++) {
4376 vpe->sgi_config[i].priority = 0;
4377 vpe->sgi_config[i].enabled = false;
4378 vpe->sgi_config[i].group = false;
4379
4380 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4381 &its_sgi_irq_chip, vpe);
4382 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4383 }
4384
4385 return 0;
4386 }
4387
its_sgi_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)4388 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4389 unsigned int virq,
4390 unsigned int nr_irqs)
4391 {
4392 /* Nothing to do */
4393 }
4394
its_sgi_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)4395 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4396 struct irq_data *d, bool reserve)
4397 {
4398 /* Write out the initial SGI configuration */
4399 its_configure_sgi(d, false);
4400 return 0;
4401 }
4402
its_sgi_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)4403 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4404 struct irq_data *d)
4405 {
4406 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4407
4408 /*
4409 * The VSGI command is awkward:
4410 *
4411 * - To change the configuration, CLEAR must be set to false,
4412 * leaving the pending bit unchanged.
4413 * - To clear the pending bit, CLEAR must be set to true, leaving
4414 * the configuration unchanged.
4415 *
4416 * You just can't do both at once, hence the two commands below.
4417 */
4418 vpe->sgi_config[d->hwirq].enabled = false;
4419 its_configure_sgi(d, false);
4420 its_configure_sgi(d, true);
4421 }
4422
4423 static const struct irq_domain_ops its_sgi_domain_ops = {
4424 .alloc = its_sgi_irq_domain_alloc,
4425 .free = its_sgi_irq_domain_free,
4426 .activate = its_sgi_irq_domain_activate,
4427 .deactivate = its_sgi_irq_domain_deactivate,
4428 };
4429
its_vpe_id_alloc(void)4430 static int its_vpe_id_alloc(void)
4431 {
4432 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4433 }
4434
its_vpe_id_free(u16 id)4435 static void its_vpe_id_free(u16 id)
4436 {
4437 ida_simple_remove(&its_vpeid_ida, id);
4438 }
4439
its_vpe_init(struct its_vpe * vpe)4440 static int its_vpe_init(struct its_vpe *vpe)
4441 {
4442 struct page *vpt_page;
4443 int vpe_id;
4444
4445 /* Allocate vpe_id */
4446 vpe_id = its_vpe_id_alloc();
4447 if (vpe_id < 0)
4448 return vpe_id;
4449
4450 /* Allocate VPT */
4451 vpt_page = its_allocate_pending_table(GFP_KERNEL);
4452 if (!vpt_page) {
4453 its_vpe_id_free(vpe_id);
4454 return -ENOMEM;
4455 }
4456
4457 if (!its_alloc_vpe_table(vpe_id)) {
4458 its_vpe_id_free(vpe_id);
4459 its_free_pending_table(vpt_page);
4460 return -ENOMEM;
4461 }
4462
4463 raw_spin_lock_init(&vpe->vpe_lock);
4464 vpe->vpe_id = vpe_id;
4465 vpe->vpt_page = vpt_page;
4466 if (gic_rdists->has_rvpeid)
4467 atomic_set(&vpe->vmapp_count, 0);
4468 else
4469 vpe->vpe_proxy_event = -1;
4470
4471 return 0;
4472 }
4473
its_vpe_teardown(struct its_vpe * vpe)4474 static void its_vpe_teardown(struct its_vpe *vpe)
4475 {
4476 its_vpe_db_proxy_unmap(vpe);
4477 its_vpe_id_free(vpe->vpe_id);
4478 its_free_pending_table(vpe->vpt_page);
4479 }
4480
its_vpe_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)4481 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4482 unsigned int virq,
4483 unsigned int nr_irqs)
4484 {
4485 struct its_vm *vm = domain->host_data;
4486 int i;
4487
4488 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4489
4490 for (i = 0; i < nr_irqs; i++) {
4491 struct irq_data *data = irq_domain_get_irq_data(domain,
4492 virq + i);
4493 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4494
4495 BUG_ON(vm != vpe->its_vm);
4496
4497 clear_bit(data->hwirq, vm->db_bitmap);
4498 its_vpe_teardown(vpe);
4499 irq_domain_reset_irq_data(data);
4500 }
4501
4502 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4503 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4504 its_free_prop_table(vm->vprop_page);
4505 }
4506 }
4507
its_vpe_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)4508 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4509 unsigned int nr_irqs, void *args)
4510 {
4511 struct irq_chip *irqchip = &its_vpe_irq_chip;
4512 struct its_vm *vm = args;
4513 unsigned long *bitmap;
4514 struct page *vprop_page;
4515 int base, nr_ids, i, err = 0;
4516
4517 BUG_ON(!vm);
4518
4519 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4520 if (!bitmap)
4521 return -ENOMEM;
4522
4523 if (nr_ids < nr_irqs) {
4524 its_lpi_free(bitmap, base, nr_ids);
4525 return -ENOMEM;
4526 }
4527
4528 vprop_page = its_allocate_prop_table(GFP_KERNEL);
4529 if (!vprop_page) {
4530 its_lpi_free(bitmap, base, nr_ids);
4531 return -ENOMEM;
4532 }
4533
4534 vm->db_bitmap = bitmap;
4535 vm->db_lpi_base = base;
4536 vm->nr_db_lpis = nr_ids;
4537 vm->vprop_page = vprop_page;
4538
4539 if (gic_rdists->has_rvpeid)
4540 irqchip = &its_vpe_4_1_irq_chip;
4541
4542 for (i = 0; i < nr_irqs; i++) {
4543 vm->vpes[i]->vpe_db_lpi = base + i;
4544 err = its_vpe_init(vm->vpes[i]);
4545 if (err)
4546 break;
4547 err = its_irq_gic_domain_alloc(domain, virq + i,
4548 vm->vpes[i]->vpe_db_lpi);
4549 if (err)
4550 break;
4551 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4552 irqchip, vm->vpes[i]);
4553 set_bit(i, bitmap);
4554 }
4555
4556 if (err) {
4557 if (i > 0)
4558 its_vpe_irq_domain_free(domain, virq, i);
4559
4560 its_lpi_free(bitmap, base, nr_ids);
4561 its_free_prop_table(vprop_page);
4562 }
4563
4564 return err;
4565 }
4566
its_vpe_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)4567 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4568 struct irq_data *d, bool reserve)
4569 {
4570 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4571 struct its_node *its;
4572
4573 /*
4574 * If we use the list map, we issue VMAPP on demand... Unless
4575 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4576 * so that VSGIs can work.
4577 */
4578 if (!gic_requires_eager_mapping())
4579 return 0;
4580
4581 /* Map the VPE to the first possible CPU */
4582 vpe->col_idx = cpumask_first(cpu_online_mask);
4583
4584 list_for_each_entry(its, &its_nodes, entry) {
4585 if (!is_v4(its))
4586 continue;
4587
4588 its_send_vmapp(its, vpe, true);
4589 its_send_vinvall(its, vpe);
4590 }
4591
4592 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4593
4594 return 0;
4595 }
4596
its_vpe_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)4597 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4598 struct irq_data *d)
4599 {
4600 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4601 struct its_node *its;
4602
4603 /*
4604 * If we use the list map on GICv4.0, we unmap the VPE once no
4605 * VLPIs are associated with the VM.
4606 */
4607 if (!gic_requires_eager_mapping())
4608 return;
4609
4610 list_for_each_entry(its, &its_nodes, entry) {
4611 if (!is_v4(its))
4612 continue;
4613
4614 its_send_vmapp(its, vpe, false);
4615 }
4616
4617 /*
4618 * There may be a direct read to the VPT after unmapping the
4619 * vPE, to guarantee the validity of this, we make the VPT
4620 * memory coherent with the CPU caches here.
4621 */
4622 if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4623 gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4624 LPI_PENDBASE_SZ);
4625 }
4626
4627 static const struct irq_domain_ops its_vpe_domain_ops = {
4628 .alloc = its_vpe_irq_domain_alloc,
4629 .free = its_vpe_irq_domain_free,
4630 .activate = its_vpe_irq_domain_activate,
4631 .deactivate = its_vpe_irq_domain_deactivate,
4632 };
4633
its_force_quiescent(void __iomem * base)4634 static int its_force_quiescent(void __iomem *base)
4635 {
4636 u32 count = 1000000; /* 1s */
4637 u32 val;
4638
4639 val = readl_relaxed(base + GITS_CTLR);
4640 /*
4641 * GIC architecture specification requires the ITS to be both
4642 * disabled and quiescent for writes to GITS_BASER<n> or
4643 * GITS_CBASER to not have UNPREDICTABLE results.
4644 */
4645 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4646 return 0;
4647
4648 /* Disable the generation of all interrupts to this ITS */
4649 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4650 writel_relaxed(val, base + GITS_CTLR);
4651
4652 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
4653 while (1) {
4654 val = readl_relaxed(base + GITS_CTLR);
4655 if (val & GITS_CTLR_QUIESCENT)
4656 return 0;
4657
4658 count--;
4659 if (!count)
4660 return -EBUSY;
4661
4662 cpu_relax();
4663 udelay(1);
4664 }
4665 }
4666
its_enable_quirk_cavium_22375(void * data)4667 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4668 {
4669 struct its_node *its = data;
4670
4671 /* erratum 22375: only alloc 8MB table size (20 bits) */
4672 its->typer &= ~GITS_TYPER_DEVBITS;
4673 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4674 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4675
4676 return true;
4677 }
4678
its_enable_quirk_cavium_23144(void * data)4679 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4680 {
4681 struct its_node *its = data;
4682
4683 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4684
4685 return true;
4686 }
4687
its_enable_quirk_qdf2400_e0065(void * data)4688 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4689 {
4690 struct its_node *its = data;
4691
4692 /* On QDF2400, the size of the ITE is 16Bytes */
4693 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4694 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4695
4696 return true;
4697 }
4698
its_irq_get_msi_base_pre_its(struct its_device * its_dev)4699 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4700 {
4701 struct its_node *its = its_dev->its;
4702
4703 /*
4704 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4705 * which maps 32-bit writes targeted at a separate window of
4706 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4707 * with device ID taken from bits [device_id_bits + 1:2] of
4708 * the window offset.
4709 */
4710 return its->pre_its_base + (its_dev->device_id << 2);
4711 }
4712
its_enable_quirk_socionext_synquacer(void * data)4713 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4714 {
4715 struct its_node *its = data;
4716 u32 pre_its_window[2];
4717 u32 ids;
4718
4719 if (!fwnode_property_read_u32_array(its->fwnode_handle,
4720 "socionext,synquacer-pre-its",
4721 pre_its_window,
4722 ARRAY_SIZE(pre_its_window))) {
4723
4724 its->pre_its_base = pre_its_window[0];
4725 its->get_msi_base = its_irq_get_msi_base_pre_its;
4726
4727 ids = ilog2(pre_its_window[1]) - 2;
4728 if (device_ids(its) > ids) {
4729 its->typer &= ~GITS_TYPER_DEVBITS;
4730 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4731 }
4732
4733 /* the pre-ITS breaks isolation, so disable MSI remapping */
4734 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
4735 return true;
4736 }
4737 return false;
4738 }
4739
its_enable_quirk_hip07_161600802(void * data)4740 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4741 {
4742 struct its_node *its = data;
4743
4744 /*
4745 * Hip07 insists on using the wrong address for the VLPI
4746 * page. Trick it into doing the right thing...
4747 */
4748 its->vlpi_redist_offset = SZ_128K;
4749 return true;
4750 }
4751
4752 static const struct gic_quirk its_quirks[] = {
4753 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4754 {
4755 .desc = "ITS: Cavium errata 22375, 24313",
4756 .iidr = 0xa100034c, /* ThunderX pass 1.x */
4757 .mask = 0xffff0fff,
4758 .init = its_enable_quirk_cavium_22375,
4759 },
4760 #endif
4761 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4762 {
4763 .desc = "ITS: Cavium erratum 23144",
4764 .iidr = 0xa100034c, /* ThunderX pass 1.x */
4765 .mask = 0xffff0fff,
4766 .init = its_enable_quirk_cavium_23144,
4767 },
4768 #endif
4769 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4770 {
4771 .desc = "ITS: QDF2400 erratum 0065",
4772 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */
4773 .mask = 0xffffffff,
4774 .init = its_enable_quirk_qdf2400_e0065,
4775 },
4776 #endif
4777 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4778 {
4779 /*
4780 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4781 * implementation, but with a 'pre-ITS' added that requires
4782 * special handling in software.
4783 */
4784 .desc = "ITS: Socionext Synquacer pre-ITS",
4785 .iidr = 0x0001143b,
4786 .mask = 0xffffffff,
4787 .init = its_enable_quirk_socionext_synquacer,
4788 },
4789 #endif
4790 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4791 {
4792 .desc = "ITS: Hip07 erratum 161600802",
4793 .iidr = 0x00000004,
4794 .mask = 0xffffffff,
4795 .init = its_enable_quirk_hip07_161600802,
4796 },
4797 #endif
4798 {
4799 }
4800 };
4801
its_enable_quirks(struct its_node * its)4802 static void its_enable_quirks(struct its_node *its)
4803 {
4804 u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4805
4806 gic_enable_quirks(iidr, its_quirks, its);
4807 }
4808
its_save_disable(void)4809 static int its_save_disable(void)
4810 {
4811 struct its_node *its;
4812 int err = 0;
4813
4814 raw_spin_lock(&its_lock);
4815 list_for_each_entry(its, &its_nodes, entry) {
4816 void __iomem *base;
4817
4818 base = its->base;
4819 its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4820 err = its_force_quiescent(base);
4821 if (err) {
4822 pr_err("ITS@%pa: failed to quiesce: %d\n",
4823 &its->phys_base, err);
4824 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4825 goto err;
4826 }
4827
4828 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4829 }
4830
4831 err:
4832 if (err) {
4833 list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4834 void __iomem *base;
4835
4836 base = its->base;
4837 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4838 }
4839 }
4840 raw_spin_unlock(&its_lock);
4841
4842 return err;
4843 }
4844
its_restore_enable(void)4845 static void its_restore_enable(void)
4846 {
4847 struct its_node *its;
4848 int ret;
4849
4850 raw_spin_lock(&its_lock);
4851 list_for_each_entry(its, &its_nodes, entry) {
4852 void __iomem *base;
4853 int i;
4854
4855 base = its->base;
4856
4857 /*
4858 * Make sure that the ITS is disabled. If it fails to quiesce,
4859 * don't restore it since writing to CBASER or BASER<n>
4860 * registers is undefined according to the GIC v3 ITS
4861 * Specification.
4862 *
4863 * Firmware resuming with the ITS enabled is terminally broken.
4864 */
4865 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4866 ret = its_force_quiescent(base);
4867 if (ret) {
4868 pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4869 &its->phys_base, ret);
4870 continue;
4871 }
4872
4873 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4874
4875 /*
4876 * Writing CBASER resets CREADR to 0, so make CWRITER and
4877 * cmd_write line up with it.
4878 */
4879 its->cmd_write = its->cmd_base;
4880 gits_write_cwriter(0, base + GITS_CWRITER);
4881
4882 /* Restore GITS_BASER from the value cache. */
4883 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4884 struct its_baser *baser = &its->tables[i];
4885
4886 if (!(baser->val & GITS_BASER_VALID))
4887 continue;
4888
4889 its_write_baser(its, baser, baser->val);
4890 }
4891 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4892
4893 /*
4894 * Reinit the collection if it's stored in the ITS. This is
4895 * indicated by the col_id being less than the HCC field.
4896 * CID < HCC as specified in the GIC v3 Documentation.
4897 */
4898 if (its->collections[smp_processor_id()].col_id <
4899 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4900 its_cpu_init_collection(its);
4901 }
4902 raw_spin_unlock(&its_lock);
4903 }
4904
4905 static struct syscore_ops its_syscore_ops = {
4906 .suspend = its_save_disable,
4907 .resume = its_restore_enable,
4908 };
4909
its_init_domain(struct fwnode_handle * handle,struct its_node * its)4910 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
4911 {
4912 struct irq_domain *inner_domain;
4913 struct msi_domain_info *info;
4914
4915 info = kzalloc(sizeof(*info), GFP_KERNEL);
4916 if (!info)
4917 return -ENOMEM;
4918
4919 inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
4920 if (!inner_domain) {
4921 kfree(info);
4922 return -ENOMEM;
4923 }
4924
4925 inner_domain->parent = its_parent;
4926 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4927 inner_domain->flags |= its->msi_domain_flags;
4928 info->ops = &its_msi_domain_ops;
4929 info->data = its;
4930 inner_domain->host_data = info;
4931
4932 return 0;
4933 }
4934
its_init_vpe_domain(void)4935 static int its_init_vpe_domain(void)
4936 {
4937 struct its_node *its;
4938 u32 devid;
4939 int entries;
4940
4941 if (gic_rdists->has_direct_lpi) {
4942 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
4943 return 0;
4944 }
4945
4946 /* Any ITS will do, even if not v4 */
4947 its = list_first_entry(&its_nodes, struct its_node, entry);
4948
4949 entries = roundup_pow_of_two(nr_cpu_ids);
4950 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
4951 GFP_KERNEL);
4952 if (!vpe_proxy.vpes)
4953 return -ENOMEM;
4954
4955 /* Use the last possible DevID */
4956 devid = GENMASK(device_ids(its) - 1, 0);
4957 vpe_proxy.dev = its_create_device(its, devid, entries, false);
4958 if (!vpe_proxy.dev) {
4959 kfree(vpe_proxy.vpes);
4960 pr_err("ITS: Can't allocate GICv4 proxy device\n");
4961 return -ENOMEM;
4962 }
4963
4964 BUG_ON(entries > vpe_proxy.dev->nr_ites);
4965
4966 raw_spin_lock_init(&vpe_proxy.lock);
4967 vpe_proxy.next_victim = 0;
4968 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
4969 devid, vpe_proxy.dev->nr_ites);
4970
4971 return 0;
4972 }
4973
its_compute_its_list_map(struct resource * res,void __iomem * its_base)4974 static int __init its_compute_its_list_map(struct resource *res,
4975 void __iomem *its_base)
4976 {
4977 int its_number;
4978 u32 ctlr;
4979
4980 /*
4981 * This is assumed to be done early enough that we're
4982 * guaranteed to be single-threaded, hence no
4983 * locking. Should this change, we should address
4984 * this.
4985 */
4986 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
4987 if (its_number >= GICv4_ITS_LIST_MAX) {
4988 pr_err("ITS@%pa: No ITSList entry available!\n",
4989 &res->start);
4990 return -EINVAL;
4991 }
4992
4993 ctlr = readl_relaxed(its_base + GITS_CTLR);
4994 ctlr &= ~GITS_CTLR_ITS_NUMBER;
4995 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
4996 writel_relaxed(ctlr, its_base + GITS_CTLR);
4997 ctlr = readl_relaxed(its_base + GITS_CTLR);
4998 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
4999 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
5000 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
5001 }
5002
5003 if (test_and_set_bit(its_number, &its_list_map)) {
5004 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
5005 &res->start, its_number);
5006 return -EINVAL;
5007 }
5008
5009 return its_number;
5010 }
5011
its_probe_one(struct resource * res,struct fwnode_handle * handle,int numa_node)5012 static int __init its_probe_one(struct resource *res,
5013 struct fwnode_handle *handle, int numa_node)
5014 {
5015 struct its_node *its;
5016 void __iomem *its_base;
5017 u32 val, ctlr;
5018 u64 baser, tmp, typer;
5019 struct page *page;
5020 int err;
5021
5022 its_base = ioremap(res->start, SZ_64K);
5023 if (!its_base) {
5024 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
5025 return -ENOMEM;
5026 }
5027
5028 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
5029 if (val != 0x30 && val != 0x40) {
5030 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
5031 err = -ENODEV;
5032 goto out_unmap;
5033 }
5034
5035 err = its_force_quiescent(its_base);
5036 if (err) {
5037 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
5038 goto out_unmap;
5039 }
5040
5041 pr_info("ITS %pR\n", res);
5042
5043 its = kzalloc(sizeof(*its), GFP_KERNEL);
5044 if (!its) {
5045 err = -ENOMEM;
5046 goto out_unmap;
5047 }
5048
5049 raw_spin_lock_init(&its->lock);
5050 mutex_init(&its->dev_alloc_lock);
5051 INIT_LIST_HEAD(&its->entry);
5052 INIT_LIST_HEAD(&its->its_device_list);
5053 typer = gic_read_typer(its_base + GITS_TYPER);
5054 its->typer = typer;
5055 its->base = its_base;
5056 its->phys_base = res->start;
5057 if (is_v4(its)) {
5058 if (!(typer & GITS_TYPER_VMOVP)) {
5059 err = its_compute_its_list_map(res, its_base);
5060 if (err < 0)
5061 goto out_free_its;
5062
5063 its->list_nr = err;
5064
5065 pr_info("ITS@%pa: Using ITS number %d\n",
5066 &res->start, err);
5067 } else {
5068 pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
5069 }
5070
5071 if (is_v4_1(its)) {
5072 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer);
5073
5074 its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K);
5075 if (!its->sgir_base) {
5076 err = -ENOMEM;
5077 goto out_free_its;
5078 }
5079
5080 its->mpidr = readl_relaxed(its_base + GITS_MPIDR);
5081
5082 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5083 &res->start, its->mpidr, svpet);
5084 }
5085 }
5086
5087 its->numa_node = numa_node;
5088
5089 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5090 get_order(ITS_CMD_QUEUE_SZ));
5091 if (!page) {
5092 err = -ENOMEM;
5093 goto out_unmap_sgir;
5094 }
5095 its->cmd_base = (void *)page_address(page);
5096 its->cmd_write = its->cmd_base;
5097 its->fwnode_handle = handle;
5098 its->get_msi_base = its_irq_get_msi_base;
5099 its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
5100 set_memory_decrypted((unsigned long)its->cmd_base,
5101 ITS_CMD_QUEUE_SZ >> PAGE_SHIFT);
5102
5103 its_enable_quirks(its);
5104
5105 err = its_alloc_tables(its);
5106 if (err)
5107 goto out_free_cmd;
5108
5109 err = its_alloc_collections(its);
5110 if (err)
5111 goto out_free_tables;
5112
5113 baser = (virt_to_phys(its->cmd_base) |
5114 GITS_CBASER_RaWaWb |
5115 GITS_CBASER_InnerShareable |
5116 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
5117 GITS_CBASER_VALID);
5118
5119 gits_write_cbaser(baser, its->base + GITS_CBASER);
5120 tmp = gits_read_cbaser(its->base + GITS_CBASER);
5121
5122 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5123 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5124 /*
5125 * The HW reports non-shareable, we must
5126 * remove the cacheability attributes as
5127 * well.
5128 */
5129 baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5130 GITS_CBASER_CACHEABILITY_MASK);
5131 baser |= GITS_CBASER_nC;
5132 gits_write_cbaser(baser, its->base + GITS_CBASER);
5133 }
5134 pr_info("ITS: using cache flushing for cmd queue\n");
5135 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5136 }
5137
5138 gits_write_cwriter(0, its->base + GITS_CWRITER);
5139 ctlr = readl_relaxed(its->base + GITS_CTLR);
5140 ctlr |= GITS_CTLR_ENABLE;
5141 if (is_v4(its))
5142 ctlr |= GITS_CTLR_ImDe;
5143 writel_relaxed(ctlr, its->base + GITS_CTLR);
5144
5145 err = its_init_domain(handle, its);
5146 if (err)
5147 goto out_free_tables;
5148
5149 raw_spin_lock(&its_lock);
5150 list_add(&its->entry, &its_nodes);
5151 raw_spin_unlock(&its_lock);
5152
5153 return 0;
5154
5155 out_free_tables:
5156 its_free_tables(its);
5157 out_free_cmd:
5158 set_memory_encrypted((unsigned long)its->cmd_base,
5159 ITS_CMD_QUEUE_SZ >> PAGE_SHIFT);
5160 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5161 out_unmap_sgir:
5162 if (its->sgir_base)
5163 iounmap(its->sgir_base);
5164 out_free_its:
5165 kfree(its);
5166 out_unmap:
5167 iounmap(its_base);
5168 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
5169 return err;
5170 }
5171
gic_rdists_supports_plpis(void)5172 static bool gic_rdists_supports_plpis(void)
5173 {
5174 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5175 }
5176
redist_disable_lpis(void)5177 static int redist_disable_lpis(void)
5178 {
5179 void __iomem *rbase = gic_data_rdist_rd_base();
5180 u64 timeout = USEC_PER_SEC;
5181 u64 val;
5182
5183 if (!gic_rdists_supports_plpis()) {
5184 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5185 return -ENXIO;
5186 }
5187
5188 val = readl_relaxed(rbase + GICR_CTLR);
5189 if (!(val & GICR_CTLR_ENABLE_LPIS))
5190 return 0;
5191
5192 /*
5193 * If coming via a CPU hotplug event, we don't need to disable
5194 * LPIs before trying to re-enable them. They are already
5195 * configured and all is well in the world.
5196 *
5197 * If running with preallocated tables, there is nothing to do.
5198 */
5199 if (gic_data_rdist()->lpi_enabled ||
5200 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5201 return 0;
5202
5203 /*
5204 * From that point on, we only try to do some damage control.
5205 */
5206 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5207 smp_processor_id());
5208 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5209
5210 /* Disable LPIs */
5211 val &= ~GICR_CTLR_ENABLE_LPIS;
5212 writel_relaxed(val, rbase + GICR_CTLR);
5213
5214 /* Make sure any change to GICR_CTLR is observable by the GIC */
5215 dsb(sy);
5216
5217 /*
5218 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5219 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5220 * Error out if we time out waiting for RWP to clear.
5221 */
5222 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5223 if (!timeout) {
5224 pr_err("CPU%d: Timeout while disabling LPIs\n",
5225 smp_processor_id());
5226 return -ETIMEDOUT;
5227 }
5228 udelay(1);
5229 timeout--;
5230 }
5231
5232 /*
5233 * After it has been written to 1, it is IMPLEMENTATION
5234 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5235 * cleared to 0. Error out if clearing the bit failed.
5236 */
5237 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5238 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5239 return -EBUSY;
5240 }
5241
5242 return 0;
5243 }
5244
its_cpu_init(void)5245 int its_cpu_init(void)
5246 {
5247 if (!list_empty(&its_nodes)) {
5248 int ret;
5249
5250 ret = redist_disable_lpis();
5251 if (ret)
5252 return ret;
5253
5254 its_cpu_init_lpis();
5255 its_cpu_init_collections();
5256 }
5257
5258 return 0;
5259 }
5260
5261 static const struct of_device_id its_device_id[] = {
5262 { .compatible = "arm,gic-v3-its", },
5263 {},
5264 };
5265
its_of_probe(struct device_node * node)5266 static int __init its_of_probe(struct device_node *node)
5267 {
5268 struct device_node *np;
5269 struct resource res;
5270
5271 for (np = of_find_matching_node(node, its_device_id); np;
5272 np = of_find_matching_node(np, its_device_id)) {
5273 if (!of_device_is_available(np))
5274 continue;
5275 if (!of_property_read_bool(np, "msi-controller")) {
5276 pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5277 np);
5278 continue;
5279 }
5280
5281 if (of_address_to_resource(np, 0, &res)) {
5282 pr_warn("%pOF: no regs?\n", np);
5283 continue;
5284 }
5285
5286 its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
5287 }
5288 return 0;
5289 }
5290
5291 #ifdef CONFIG_ACPI
5292
5293 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5294
5295 #ifdef CONFIG_ACPI_NUMA
5296 struct its_srat_map {
5297 /* numa node id */
5298 u32 numa_node;
5299 /* GIC ITS ID */
5300 u32 its_id;
5301 };
5302
5303 static struct its_srat_map *its_srat_maps __initdata;
5304 static int its_in_srat __initdata;
5305
acpi_get_its_numa_node(u32 its_id)5306 static int __init acpi_get_its_numa_node(u32 its_id)
5307 {
5308 int i;
5309
5310 for (i = 0; i < its_in_srat; i++) {
5311 if (its_id == its_srat_maps[i].its_id)
5312 return its_srat_maps[i].numa_node;
5313 }
5314 return NUMA_NO_NODE;
5315 }
5316
gic_acpi_match_srat_its(union acpi_subtable_headers * header,const unsigned long end)5317 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5318 const unsigned long end)
5319 {
5320 return 0;
5321 }
5322
gic_acpi_parse_srat_its(union acpi_subtable_headers * header,const unsigned long end)5323 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5324 const unsigned long end)
5325 {
5326 int node;
5327 struct acpi_srat_gic_its_affinity *its_affinity;
5328
5329 its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5330 if (!its_affinity)
5331 return -EINVAL;
5332
5333 if (its_affinity->header.length < sizeof(*its_affinity)) {
5334 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5335 its_affinity->header.length);
5336 return -EINVAL;
5337 }
5338
5339 /*
5340 * Note that in theory a new proximity node could be created by this
5341 * entry as it is an SRAT resource allocation structure.
5342 * We do not currently support doing so.
5343 */
5344 node = pxm_to_node(its_affinity->proximity_domain);
5345
5346 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5347 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5348 return 0;
5349 }
5350
5351 its_srat_maps[its_in_srat].numa_node = node;
5352 its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5353 its_in_srat++;
5354 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5355 its_affinity->proximity_domain, its_affinity->its_id, node);
5356
5357 return 0;
5358 }
5359
acpi_table_parse_srat_its(void)5360 static void __init acpi_table_parse_srat_its(void)
5361 {
5362 int count;
5363
5364 count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5365 sizeof(struct acpi_table_srat),
5366 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5367 gic_acpi_match_srat_its, 0);
5368 if (count <= 0)
5369 return;
5370
5371 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5372 GFP_KERNEL);
5373 if (!its_srat_maps)
5374 return;
5375
5376 acpi_table_parse_entries(ACPI_SIG_SRAT,
5377 sizeof(struct acpi_table_srat),
5378 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5379 gic_acpi_parse_srat_its, 0);
5380 }
5381
5382 /* free the its_srat_maps after ITS probing */
acpi_its_srat_maps_free(void)5383 static void __init acpi_its_srat_maps_free(void)
5384 {
5385 kfree(its_srat_maps);
5386 }
5387 #else
acpi_table_parse_srat_its(void)5388 static void __init acpi_table_parse_srat_its(void) { }
acpi_get_its_numa_node(u32 its_id)5389 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
acpi_its_srat_maps_free(void)5390 static void __init acpi_its_srat_maps_free(void) { }
5391 #endif
5392
gic_acpi_parse_madt_its(union acpi_subtable_headers * header,const unsigned long end)5393 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5394 const unsigned long end)
5395 {
5396 struct acpi_madt_generic_translator *its_entry;
5397 struct fwnode_handle *dom_handle;
5398 struct resource res;
5399 int err;
5400
5401 its_entry = (struct acpi_madt_generic_translator *)header;
5402 memset(&res, 0, sizeof(res));
5403 res.start = its_entry->base_address;
5404 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5405 res.flags = IORESOURCE_MEM;
5406
5407 dom_handle = irq_domain_alloc_fwnode(&res.start);
5408 if (!dom_handle) {
5409 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5410 &res.start);
5411 return -ENOMEM;
5412 }
5413
5414 err = iort_register_domain_token(its_entry->translation_id, res.start,
5415 dom_handle);
5416 if (err) {
5417 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5418 &res.start, its_entry->translation_id);
5419 goto dom_err;
5420 }
5421
5422 err = its_probe_one(&res, dom_handle,
5423 acpi_get_its_numa_node(its_entry->translation_id));
5424 if (!err)
5425 return 0;
5426
5427 iort_deregister_domain_token(its_entry->translation_id);
5428 dom_err:
5429 irq_domain_free_fwnode(dom_handle);
5430 return err;
5431 }
5432
its_acpi_probe(void)5433 static void __init its_acpi_probe(void)
5434 {
5435 acpi_table_parse_srat_its();
5436 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5437 gic_acpi_parse_madt_its, 0);
5438 acpi_its_srat_maps_free();
5439 }
5440 #else
its_acpi_probe(void)5441 static void __init its_acpi_probe(void) { }
5442 #endif
5443
its_init(struct fwnode_handle * handle,struct rdists * rdists,struct irq_domain * parent_domain)5444 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5445 struct irq_domain *parent_domain)
5446 {
5447 struct device_node *of_node;
5448 struct its_node *its;
5449 bool has_v4 = false;
5450 bool has_v4_1 = false;
5451 int err;
5452
5453 gic_rdists = rdists;
5454
5455 its_parent = parent_domain;
5456 of_node = to_of_node(handle);
5457 if (of_node)
5458 its_of_probe(of_node);
5459 else
5460 its_acpi_probe();
5461
5462 if (list_empty(&its_nodes)) {
5463 pr_warn("ITS: No ITS available, not enabling LPIs\n");
5464 return -ENXIO;
5465 }
5466
5467 err = allocate_lpi_tables();
5468 if (err)
5469 return err;
5470
5471 list_for_each_entry(its, &its_nodes, entry) {
5472 has_v4 |= is_v4(its);
5473 has_v4_1 |= is_v4_1(its);
5474 }
5475
5476 /* Don't bother with inconsistent systems */
5477 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5478 rdists->has_rvpeid = false;
5479
5480 if (has_v4 & rdists->has_vlpis) {
5481 const struct irq_domain_ops *sgi_ops;
5482
5483 if (has_v4_1)
5484 sgi_ops = &its_sgi_domain_ops;
5485 else
5486 sgi_ops = NULL;
5487
5488 if (its_init_vpe_domain() ||
5489 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5490 rdists->has_vlpis = false;
5491 pr_err("ITS: Disabling GICv4 support\n");
5492 }
5493 }
5494
5495 register_syscore_ops(&its_syscore_ops);
5496
5497 return 0;
5498 }
5499