• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/efi.h>
16 #include <linux/interrupt.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
22 #include <linux/mem_encrypt.h>
23 #include <linux/mm.h>
24 #include <linux/msi.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_pci.h>
29 #include <linux/of_platform.h>
30 #include <linux/percpu.h>
31 #include <linux/set_memory.h>
32 #include <linux/slab.h>
33 #include <linux/syscore_ops.h>
34 
35 #include <linux/irqchip.h>
36 #include <linux/irqchip/arm-gic-v3.h>
37 #include <linux/irqchip/arm-gic-v4.h>
38 
39 #include <asm/cputype.h>
40 #include <asm/exception.h>
41 
42 #include "irq-gic-common.h"
43 
44 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
45 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
46 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
47 
48 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
49 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED	(1 << 1)
50 
51 static u32 lpi_id_bits;
52 
53 /*
54  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
55  * deal with (one configuration byte per interrupt). PENDBASE has to
56  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
57  */
58 #define LPI_NRBITS		lpi_id_bits
59 #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
60 #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
61 
62 #define LPI_PROP_DEFAULT_PRIO	GICD_INT_DEF_PRI
63 
64 /*
65  * Collection structure - just an ID, and a redistributor address to
66  * ping. We use one per CPU as a bag of interrupts assigned to this
67  * CPU.
68  */
69 struct its_collection {
70 	u64			target_address;
71 	u16			col_id;
72 };
73 
74 /*
75  * The ITS_BASER structure - contains memory information, cached
76  * value of BASER register configuration and ITS page size.
77  */
78 struct its_baser {
79 	void		*base;
80 	u64		val;
81 	u32		order;
82 	u32		psz;
83 };
84 
85 struct its_device;
86 
87 /*
88  * The ITS structure - contains most of the infrastructure, with the
89  * top-level MSI domain, the command queue, the collections, and the
90  * list of devices writing to it.
91  *
92  * dev_alloc_lock has to be taken for device allocations, while the
93  * spinlock must be taken to parse data structures such as the device
94  * list.
95  */
96 struct its_node {
97 	raw_spinlock_t		lock;
98 	struct mutex		dev_alloc_lock;
99 	struct list_head	entry;
100 	void __iomem		*base;
101 	void __iomem		*sgir_base;
102 	phys_addr_t		phys_base;
103 	struct its_cmd_block	*cmd_base;
104 	struct its_cmd_block	*cmd_write;
105 	struct its_baser	tables[GITS_BASER_NR_REGS];
106 	struct its_collection	*collections;
107 	struct fwnode_handle	*fwnode_handle;
108 	u64			(*get_msi_base)(struct its_device *its_dev);
109 	u64			typer;
110 	u64			cbaser_save;
111 	u32			ctlr_save;
112 	u32			mpidr;
113 	struct list_head	its_device_list;
114 	u64			flags;
115 	unsigned long		list_nr;
116 	int			numa_node;
117 	unsigned int		msi_domain_flags;
118 	u32			pre_its_base; /* for Socionext Synquacer */
119 	int			vlpi_redist_offset;
120 };
121 
122 #define is_v4(its)		(!!((its)->typer & GITS_TYPER_VLPIS))
123 #define is_v4_1(its)		(!!((its)->typer & GITS_TYPER_VMAPP))
124 #define device_ids(its)		(FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
125 
126 #define ITS_ITT_ALIGN		SZ_256
127 
128 /* The maximum number of VPEID bits supported by VLPI commands */
129 #define ITS_MAX_VPEID_BITS						\
130 	({								\
131 		int nvpeid = 16;					\
132 		if (gic_rdists->has_rvpeid &&				\
133 		    gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)		\
134 			nvpeid = 1 + (gic_rdists->gicd_typer2 &		\
135 				      GICD_TYPER2_VID);			\
136 									\
137 		nvpeid;							\
138 	})
139 #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
140 
141 /* Convert page order to size in bytes */
142 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
143 
144 struct event_lpi_map {
145 	unsigned long		*lpi_map;
146 	u16			*col_map;
147 	irq_hw_number_t		lpi_base;
148 	int			nr_lpis;
149 	raw_spinlock_t		vlpi_lock;
150 	struct its_vm		*vm;
151 	struct its_vlpi_map	*vlpi_maps;
152 	int			nr_vlpis;
153 };
154 
155 /*
156  * The ITS view of a device - belongs to an ITS, owns an interrupt
157  * translation table, and a list of interrupts.  If it some of its
158  * LPIs are injected into a guest (GICv4), the event_map.vm field
159  * indicates which one.
160  */
161 struct its_device {
162 	struct list_head	entry;
163 	struct its_node		*its;
164 	struct event_lpi_map	event_map;
165 	void			*itt;
166 	u32			nr_ites;
167 	u32			device_id;
168 	bool			shared;
169 };
170 
171 static struct {
172 	raw_spinlock_t		lock;
173 	struct its_device	*dev;
174 	struct its_vpe		**vpes;
175 	int			next_victim;
176 } vpe_proxy;
177 
178 struct cpu_lpi_count {
179 	atomic_t	managed;
180 	atomic_t	unmanaged;
181 };
182 
183 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
184 
185 static LIST_HEAD(its_nodes);
186 static DEFINE_RAW_SPINLOCK(its_lock);
187 static struct rdists *gic_rdists;
188 static struct irq_domain *its_parent;
189 
190 static unsigned long its_list_map;
191 static u16 vmovp_seq_num;
192 static DEFINE_RAW_SPINLOCK(vmovp_lock);
193 
194 static DEFINE_IDA(its_vpeid_ida);
195 
196 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
197 #define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
198 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
199 #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
200 
201 /*
202  * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
203  * always have vSGIs mapped.
204  */
require_its_list_vmovp(struct its_vm * vm,struct its_node * its)205 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
206 {
207 	return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
208 }
209 
get_its_list(struct its_vm * vm)210 static u16 get_its_list(struct its_vm *vm)
211 {
212 	struct its_node *its;
213 	unsigned long its_list = 0;
214 
215 	list_for_each_entry(its, &its_nodes, entry) {
216 		if (!is_v4(its))
217 			continue;
218 
219 		if (require_its_list_vmovp(vm, its))
220 			__set_bit(its->list_nr, &its_list);
221 	}
222 
223 	return (u16)its_list;
224 }
225 
its_get_event_id(struct irq_data * d)226 static inline u32 its_get_event_id(struct irq_data *d)
227 {
228 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
229 	return d->hwirq - its_dev->event_map.lpi_base;
230 }
231 
dev_event_to_col(struct its_device * its_dev,u32 event)232 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
233 					       u32 event)
234 {
235 	struct its_node *its = its_dev->its;
236 
237 	return its->collections + its_dev->event_map.col_map[event];
238 }
239 
dev_event_to_vlpi_map(struct its_device * its_dev,u32 event)240 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
241 					       u32 event)
242 {
243 	if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
244 		return NULL;
245 
246 	return &its_dev->event_map.vlpi_maps[event];
247 }
248 
get_vlpi_map(struct irq_data * d)249 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
250 {
251 	if (irqd_is_forwarded_to_vcpu(d)) {
252 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
253 		u32 event = its_get_event_id(d);
254 
255 		return dev_event_to_vlpi_map(its_dev, event);
256 	}
257 
258 	return NULL;
259 }
260 
vpe_to_cpuid_lock(struct its_vpe * vpe,unsigned long * flags)261 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
262 {
263 	raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
264 	return vpe->col_idx;
265 }
266 
vpe_to_cpuid_unlock(struct its_vpe * vpe,unsigned long flags)267 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
268 {
269 	raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
270 }
271 
272 static struct irq_chip its_vpe_irq_chip;
273 
irq_to_cpuid_lock(struct irq_data * d,unsigned long * flags)274 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
275 {
276 	struct its_vpe *vpe = NULL;
277 	int cpu;
278 
279 	if (d->chip == &its_vpe_irq_chip) {
280 		vpe = irq_data_get_irq_chip_data(d);
281 	} else {
282 		struct its_vlpi_map *map = get_vlpi_map(d);
283 		if (map)
284 			vpe = map->vpe;
285 	}
286 
287 	if (vpe) {
288 		cpu = vpe_to_cpuid_lock(vpe, flags);
289 	} else {
290 		/* Physical LPIs are already locked via the irq_desc lock */
291 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
292 		cpu = its_dev->event_map.col_map[its_get_event_id(d)];
293 		/* Keep GCC quiet... */
294 		*flags = 0;
295 	}
296 
297 	return cpu;
298 }
299 
irq_to_cpuid_unlock(struct irq_data * d,unsigned long flags)300 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
301 {
302 	struct its_vpe *vpe = NULL;
303 
304 	if (d->chip == &its_vpe_irq_chip) {
305 		vpe = irq_data_get_irq_chip_data(d);
306 	} else {
307 		struct its_vlpi_map *map = get_vlpi_map(d);
308 		if (map)
309 			vpe = map->vpe;
310 	}
311 
312 	if (vpe)
313 		vpe_to_cpuid_unlock(vpe, flags);
314 }
315 
valid_col(struct its_collection * col)316 static struct its_collection *valid_col(struct its_collection *col)
317 {
318 	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
319 		return NULL;
320 
321 	return col;
322 }
323 
valid_vpe(struct its_node * its,struct its_vpe * vpe)324 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
325 {
326 	if (valid_col(its->collections + vpe->col_idx))
327 		return vpe;
328 
329 	return NULL;
330 }
331 
332 /*
333  * ITS command descriptors - parameters to be encoded in a command
334  * block.
335  */
336 struct its_cmd_desc {
337 	union {
338 		struct {
339 			struct its_device *dev;
340 			u32 event_id;
341 		} its_inv_cmd;
342 
343 		struct {
344 			struct its_device *dev;
345 			u32 event_id;
346 		} its_clear_cmd;
347 
348 		struct {
349 			struct its_device *dev;
350 			u32 event_id;
351 		} its_int_cmd;
352 
353 		struct {
354 			struct its_device *dev;
355 			int valid;
356 		} its_mapd_cmd;
357 
358 		struct {
359 			struct its_collection *col;
360 			int valid;
361 		} its_mapc_cmd;
362 
363 		struct {
364 			struct its_device *dev;
365 			u32 phys_id;
366 			u32 event_id;
367 		} its_mapti_cmd;
368 
369 		struct {
370 			struct its_device *dev;
371 			struct its_collection *col;
372 			u32 event_id;
373 		} its_movi_cmd;
374 
375 		struct {
376 			struct its_device *dev;
377 			u32 event_id;
378 		} its_discard_cmd;
379 
380 		struct {
381 			struct its_collection *col;
382 		} its_invall_cmd;
383 
384 		struct {
385 			struct its_vpe *vpe;
386 		} its_vinvall_cmd;
387 
388 		struct {
389 			struct its_vpe *vpe;
390 			struct its_collection *col;
391 			bool valid;
392 		} its_vmapp_cmd;
393 
394 		struct {
395 			struct its_vpe *vpe;
396 			struct its_device *dev;
397 			u32 virt_id;
398 			u32 event_id;
399 			bool db_enabled;
400 		} its_vmapti_cmd;
401 
402 		struct {
403 			struct its_vpe *vpe;
404 			struct its_device *dev;
405 			u32 event_id;
406 			bool db_enabled;
407 		} its_vmovi_cmd;
408 
409 		struct {
410 			struct its_vpe *vpe;
411 			struct its_collection *col;
412 			u16 seq_num;
413 			u16 its_list;
414 		} its_vmovp_cmd;
415 
416 		struct {
417 			struct its_vpe *vpe;
418 		} its_invdb_cmd;
419 
420 		struct {
421 			struct its_vpe *vpe;
422 			u8 sgi;
423 			u8 priority;
424 			bool enable;
425 			bool group;
426 			bool clear;
427 		} its_vsgi_cmd;
428 	};
429 };
430 
431 /*
432  * The ITS command block, which is what the ITS actually parses.
433  */
434 struct its_cmd_block {
435 	union {
436 		u64	raw_cmd[4];
437 		__le64	raw_cmd_le[4];
438 	};
439 };
440 
441 #define ITS_CMD_QUEUE_SZ		SZ_64K
442 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
443 
444 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
445 						    struct its_cmd_block *,
446 						    struct its_cmd_desc *);
447 
448 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
449 					      struct its_cmd_block *,
450 					      struct its_cmd_desc *);
451 
its_mask_encode(u64 * raw_cmd,u64 val,int h,int l)452 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
453 {
454 	u64 mask = GENMASK_ULL(h, l);
455 	*raw_cmd &= ~mask;
456 	*raw_cmd |= (val << l) & mask;
457 }
458 
its_encode_cmd(struct its_cmd_block * cmd,u8 cmd_nr)459 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
460 {
461 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
462 }
463 
its_encode_devid(struct its_cmd_block * cmd,u32 devid)464 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
465 {
466 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
467 }
468 
its_encode_event_id(struct its_cmd_block * cmd,u32 id)469 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
470 {
471 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
472 }
473 
its_encode_phys_id(struct its_cmd_block * cmd,u32 phys_id)474 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
475 {
476 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
477 }
478 
its_encode_size(struct its_cmd_block * cmd,u8 size)479 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
480 {
481 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
482 }
483 
its_encode_itt(struct its_cmd_block * cmd,u64 itt_addr)484 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
485 {
486 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
487 }
488 
its_encode_valid(struct its_cmd_block * cmd,int valid)489 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
490 {
491 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
492 }
493 
its_encode_target(struct its_cmd_block * cmd,u64 target_addr)494 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
495 {
496 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
497 }
498 
its_encode_collection(struct its_cmd_block * cmd,u16 col)499 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
500 {
501 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
502 }
503 
its_encode_vpeid(struct its_cmd_block * cmd,u16 vpeid)504 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
505 {
506 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
507 }
508 
its_encode_virt_id(struct its_cmd_block * cmd,u32 virt_id)509 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
510 {
511 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
512 }
513 
its_encode_db_phys_id(struct its_cmd_block * cmd,u32 db_phys_id)514 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
515 {
516 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
517 }
518 
its_encode_db_valid(struct its_cmd_block * cmd,bool db_valid)519 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
520 {
521 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
522 }
523 
its_encode_seq_num(struct its_cmd_block * cmd,u16 seq_num)524 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
525 {
526 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
527 }
528 
its_encode_its_list(struct its_cmd_block * cmd,u16 its_list)529 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
530 {
531 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
532 }
533 
its_encode_vpt_addr(struct its_cmd_block * cmd,u64 vpt_pa)534 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
535 {
536 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
537 }
538 
its_encode_vpt_size(struct its_cmd_block * cmd,u8 vpt_size)539 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
540 {
541 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
542 }
543 
its_encode_vconf_addr(struct its_cmd_block * cmd,u64 vconf_pa)544 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
545 {
546 	its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
547 }
548 
its_encode_alloc(struct its_cmd_block * cmd,bool alloc)549 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
550 {
551 	its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
552 }
553 
its_encode_ptz(struct its_cmd_block * cmd,bool ptz)554 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
555 {
556 	its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
557 }
558 
its_encode_vmapp_default_db(struct its_cmd_block * cmd,u32 vpe_db_lpi)559 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
560 					u32 vpe_db_lpi)
561 {
562 	its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
563 }
564 
its_encode_vmovp_default_db(struct its_cmd_block * cmd,u32 vpe_db_lpi)565 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
566 					u32 vpe_db_lpi)
567 {
568 	its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
569 }
570 
its_encode_db(struct its_cmd_block * cmd,bool db)571 static void its_encode_db(struct its_cmd_block *cmd, bool db)
572 {
573 	its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
574 }
575 
its_encode_sgi_intid(struct its_cmd_block * cmd,u8 sgi)576 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
577 {
578 	its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
579 }
580 
its_encode_sgi_priority(struct its_cmd_block * cmd,u8 prio)581 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
582 {
583 	its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
584 }
585 
its_encode_sgi_group(struct its_cmd_block * cmd,bool grp)586 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
587 {
588 	its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
589 }
590 
its_encode_sgi_clear(struct its_cmd_block * cmd,bool clr)591 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
592 {
593 	its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
594 }
595 
its_encode_sgi_enable(struct its_cmd_block * cmd,bool en)596 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
597 {
598 	its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
599 }
600 
its_fixup_cmd(struct its_cmd_block * cmd)601 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
602 {
603 	/* Let's fixup BE commands */
604 	cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
605 	cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
606 	cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
607 	cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
608 }
609 
its_build_mapd_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)610 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
611 						 struct its_cmd_block *cmd,
612 						 struct its_cmd_desc *desc)
613 {
614 	unsigned long itt_addr;
615 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
616 
617 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
618 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
619 
620 	its_encode_cmd(cmd, GITS_CMD_MAPD);
621 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
622 	its_encode_size(cmd, size - 1);
623 	its_encode_itt(cmd, itt_addr);
624 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
625 
626 	its_fixup_cmd(cmd);
627 
628 	return NULL;
629 }
630 
its_build_mapc_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)631 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
632 						 struct its_cmd_block *cmd,
633 						 struct its_cmd_desc *desc)
634 {
635 	its_encode_cmd(cmd, GITS_CMD_MAPC);
636 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
637 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
638 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
639 
640 	its_fixup_cmd(cmd);
641 
642 	return desc->its_mapc_cmd.col;
643 }
644 
its_build_mapti_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)645 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
646 						  struct its_cmd_block *cmd,
647 						  struct its_cmd_desc *desc)
648 {
649 	struct its_collection *col;
650 
651 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
652 			       desc->its_mapti_cmd.event_id);
653 
654 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
655 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
656 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
657 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
658 	its_encode_collection(cmd, col->col_id);
659 
660 	its_fixup_cmd(cmd);
661 
662 	return valid_col(col);
663 }
664 
its_build_movi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)665 static struct its_collection *its_build_movi_cmd(struct its_node *its,
666 						 struct its_cmd_block *cmd,
667 						 struct its_cmd_desc *desc)
668 {
669 	struct its_collection *col;
670 
671 	col = dev_event_to_col(desc->its_movi_cmd.dev,
672 			       desc->its_movi_cmd.event_id);
673 
674 	its_encode_cmd(cmd, GITS_CMD_MOVI);
675 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
676 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
677 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
678 
679 	its_fixup_cmd(cmd);
680 
681 	return valid_col(col);
682 }
683 
its_build_discard_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)684 static struct its_collection *its_build_discard_cmd(struct its_node *its,
685 						    struct its_cmd_block *cmd,
686 						    struct its_cmd_desc *desc)
687 {
688 	struct its_collection *col;
689 
690 	col = dev_event_to_col(desc->its_discard_cmd.dev,
691 			       desc->its_discard_cmd.event_id);
692 
693 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
694 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
695 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
696 
697 	its_fixup_cmd(cmd);
698 
699 	return valid_col(col);
700 }
701 
its_build_inv_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)702 static struct its_collection *its_build_inv_cmd(struct its_node *its,
703 						struct its_cmd_block *cmd,
704 						struct its_cmd_desc *desc)
705 {
706 	struct its_collection *col;
707 
708 	col = dev_event_to_col(desc->its_inv_cmd.dev,
709 			       desc->its_inv_cmd.event_id);
710 
711 	its_encode_cmd(cmd, GITS_CMD_INV);
712 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
713 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
714 
715 	its_fixup_cmd(cmd);
716 
717 	return valid_col(col);
718 }
719 
its_build_int_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)720 static struct its_collection *its_build_int_cmd(struct its_node *its,
721 						struct its_cmd_block *cmd,
722 						struct its_cmd_desc *desc)
723 {
724 	struct its_collection *col;
725 
726 	col = dev_event_to_col(desc->its_int_cmd.dev,
727 			       desc->its_int_cmd.event_id);
728 
729 	its_encode_cmd(cmd, GITS_CMD_INT);
730 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
731 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
732 
733 	its_fixup_cmd(cmd);
734 
735 	return valid_col(col);
736 }
737 
its_build_clear_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)738 static struct its_collection *its_build_clear_cmd(struct its_node *its,
739 						  struct its_cmd_block *cmd,
740 						  struct its_cmd_desc *desc)
741 {
742 	struct its_collection *col;
743 
744 	col = dev_event_to_col(desc->its_clear_cmd.dev,
745 			       desc->its_clear_cmd.event_id);
746 
747 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
748 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
749 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
750 
751 	its_fixup_cmd(cmd);
752 
753 	return valid_col(col);
754 }
755 
its_build_invall_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)756 static struct its_collection *its_build_invall_cmd(struct its_node *its,
757 						   struct its_cmd_block *cmd,
758 						   struct its_cmd_desc *desc)
759 {
760 	its_encode_cmd(cmd, GITS_CMD_INVALL);
761 	its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
762 
763 	its_fixup_cmd(cmd);
764 
765 	return desc->its_invall_cmd.col;
766 }
767 
its_build_vinvall_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)768 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
769 					     struct its_cmd_block *cmd,
770 					     struct its_cmd_desc *desc)
771 {
772 	its_encode_cmd(cmd, GITS_CMD_VINVALL);
773 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
774 
775 	its_fixup_cmd(cmd);
776 
777 	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
778 }
779 
its_build_vmapp_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)780 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
781 					   struct its_cmd_block *cmd,
782 					   struct its_cmd_desc *desc)
783 {
784 	unsigned long vpt_addr, vconf_addr;
785 	u64 target;
786 	bool alloc;
787 
788 	its_encode_cmd(cmd, GITS_CMD_VMAPP);
789 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
790 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
791 
792 	if (!desc->its_vmapp_cmd.valid) {
793 		if (is_v4_1(its)) {
794 			alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
795 			its_encode_alloc(cmd, alloc);
796 		}
797 
798 		goto out;
799 	}
800 
801 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
802 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
803 
804 	its_encode_target(cmd, target);
805 	its_encode_vpt_addr(cmd, vpt_addr);
806 	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
807 
808 	if (!is_v4_1(its))
809 		goto out;
810 
811 	vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
812 
813 	alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
814 
815 	its_encode_alloc(cmd, alloc);
816 
817 	/*
818 	 * GICv4.1 provides a way to get the VLPI state, which needs the vPE
819 	 * to be unmapped first, and in this case, we may remap the vPE
820 	 * back while the VPT is not empty. So we can't assume that the
821 	 * VPT is empty on map. This is why we never advertise PTZ.
822 	 */
823 	its_encode_ptz(cmd, false);
824 	its_encode_vconf_addr(cmd, vconf_addr);
825 	its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
826 
827 out:
828 	its_fixup_cmd(cmd);
829 
830 	return valid_vpe(its, desc->its_vmapp_cmd.vpe);
831 }
832 
its_build_vmapti_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)833 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
834 					    struct its_cmd_block *cmd,
835 					    struct its_cmd_desc *desc)
836 {
837 	u32 db;
838 
839 	if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
840 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
841 	else
842 		db = 1023;
843 
844 	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
845 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
846 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
847 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
848 	its_encode_db_phys_id(cmd, db);
849 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
850 
851 	its_fixup_cmd(cmd);
852 
853 	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
854 }
855 
its_build_vmovi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)856 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
857 					   struct its_cmd_block *cmd,
858 					   struct its_cmd_desc *desc)
859 {
860 	u32 db;
861 
862 	if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
863 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
864 	else
865 		db = 1023;
866 
867 	its_encode_cmd(cmd, GITS_CMD_VMOVI);
868 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
869 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
870 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
871 	its_encode_db_phys_id(cmd, db);
872 	its_encode_db_valid(cmd, true);
873 
874 	its_fixup_cmd(cmd);
875 
876 	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
877 }
878 
its_build_vmovp_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)879 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
880 					   struct its_cmd_block *cmd,
881 					   struct its_cmd_desc *desc)
882 {
883 	u64 target;
884 
885 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
886 	its_encode_cmd(cmd, GITS_CMD_VMOVP);
887 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
888 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
889 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
890 	its_encode_target(cmd, target);
891 
892 	if (is_v4_1(its)) {
893 		its_encode_db(cmd, true);
894 		its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
895 	}
896 
897 	its_fixup_cmd(cmd);
898 
899 	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
900 }
901 
its_build_vinv_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)902 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
903 					  struct its_cmd_block *cmd,
904 					  struct its_cmd_desc *desc)
905 {
906 	struct its_vlpi_map *map;
907 
908 	map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
909 				    desc->its_inv_cmd.event_id);
910 
911 	its_encode_cmd(cmd, GITS_CMD_INV);
912 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
913 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
914 
915 	its_fixup_cmd(cmd);
916 
917 	return valid_vpe(its, map->vpe);
918 }
919 
its_build_vint_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)920 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
921 					  struct its_cmd_block *cmd,
922 					  struct its_cmd_desc *desc)
923 {
924 	struct its_vlpi_map *map;
925 
926 	map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
927 				    desc->its_int_cmd.event_id);
928 
929 	its_encode_cmd(cmd, GITS_CMD_INT);
930 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
931 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
932 
933 	its_fixup_cmd(cmd);
934 
935 	return valid_vpe(its, map->vpe);
936 }
937 
its_build_vclear_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)938 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
939 					    struct its_cmd_block *cmd,
940 					    struct its_cmd_desc *desc)
941 {
942 	struct its_vlpi_map *map;
943 
944 	map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
945 				    desc->its_clear_cmd.event_id);
946 
947 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
948 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
949 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
950 
951 	its_fixup_cmd(cmd);
952 
953 	return valid_vpe(its, map->vpe);
954 }
955 
its_build_invdb_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)956 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
957 					   struct its_cmd_block *cmd,
958 					   struct its_cmd_desc *desc)
959 {
960 	if (WARN_ON(!is_v4_1(its)))
961 		return NULL;
962 
963 	its_encode_cmd(cmd, GITS_CMD_INVDB);
964 	its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
965 
966 	its_fixup_cmd(cmd);
967 
968 	return valid_vpe(its, desc->its_invdb_cmd.vpe);
969 }
970 
its_build_vsgi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)971 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
972 					  struct its_cmd_block *cmd,
973 					  struct its_cmd_desc *desc)
974 {
975 	if (WARN_ON(!is_v4_1(its)))
976 		return NULL;
977 
978 	its_encode_cmd(cmd, GITS_CMD_VSGI);
979 	its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
980 	its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
981 	its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
982 	its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
983 	its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
984 	its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
985 
986 	its_fixup_cmd(cmd);
987 
988 	return valid_vpe(its, desc->its_vsgi_cmd.vpe);
989 }
990 
its_cmd_ptr_to_offset(struct its_node * its,struct its_cmd_block * ptr)991 static u64 its_cmd_ptr_to_offset(struct its_node *its,
992 				 struct its_cmd_block *ptr)
993 {
994 	return (ptr - its->cmd_base) * sizeof(*ptr);
995 }
996 
its_queue_full(struct its_node * its)997 static int its_queue_full(struct its_node *its)
998 {
999 	int widx;
1000 	int ridx;
1001 
1002 	widx = its->cmd_write - its->cmd_base;
1003 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
1004 
1005 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
1006 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
1007 		return 1;
1008 
1009 	return 0;
1010 }
1011 
its_allocate_entry(struct its_node * its)1012 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
1013 {
1014 	struct its_cmd_block *cmd;
1015 	u32 count = 1000000;	/* 1s! */
1016 
1017 	while (its_queue_full(its)) {
1018 		count--;
1019 		if (!count) {
1020 			pr_err_ratelimited("ITS queue not draining\n");
1021 			return NULL;
1022 		}
1023 		cpu_relax();
1024 		udelay(1);
1025 	}
1026 
1027 	cmd = its->cmd_write++;
1028 
1029 	/* Handle queue wrapping */
1030 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1031 		its->cmd_write = its->cmd_base;
1032 
1033 	/* Clear command  */
1034 	cmd->raw_cmd[0] = 0;
1035 	cmd->raw_cmd[1] = 0;
1036 	cmd->raw_cmd[2] = 0;
1037 	cmd->raw_cmd[3] = 0;
1038 
1039 	return cmd;
1040 }
1041 
its_post_commands(struct its_node * its)1042 static struct its_cmd_block *its_post_commands(struct its_node *its)
1043 {
1044 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1045 
1046 	writel_relaxed(wr, its->base + GITS_CWRITER);
1047 
1048 	return its->cmd_write;
1049 }
1050 
its_flush_cmd(struct its_node * its,struct its_cmd_block * cmd)1051 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1052 {
1053 	/*
1054 	 * Make sure the commands written to memory are observable by
1055 	 * the ITS.
1056 	 */
1057 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1058 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1059 	else
1060 		dsb(ishst);
1061 }
1062 
its_wait_for_range_completion(struct its_node * its,u64 prev_idx,struct its_cmd_block * to)1063 static int its_wait_for_range_completion(struct its_node *its,
1064 					 u64	prev_idx,
1065 					 struct its_cmd_block *to)
1066 {
1067 	u64 rd_idx, to_idx, linear_idx;
1068 	u32 count = 1000000;	/* 1s! */
1069 
1070 	/* Linearize to_idx if the command set has wrapped around */
1071 	to_idx = its_cmd_ptr_to_offset(its, to);
1072 	if (to_idx < prev_idx)
1073 		to_idx += ITS_CMD_QUEUE_SZ;
1074 
1075 	linear_idx = prev_idx;
1076 
1077 	while (1) {
1078 		s64 delta;
1079 
1080 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
1081 
1082 		/*
1083 		 * Compute the read pointer progress, taking the
1084 		 * potential wrap-around into account.
1085 		 */
1086 		delta = rd_idx - prev_idx;
1087 		if (rd_idx < prev_idx)
1088 			delta += ITS_CMD_QUEUE_SZ;
1089 
1090 		linear_idx += delta;
1091 		if (linear_idx >= to_idx)
1092 			break;
1093 
1094 		count--;
1095 		if (!count) {
1096 			pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1097 					   to_idx, linear_idx);
1098 			return -1;
1099 		}
1100 		prev_idx = rd_idx;
1101 		cpu_relax();
1102 		udelay(1);
1103 	}
1104 
1105 	return 0;
1106 }
1107 
1108 /* Warning, macro hell follows */
1109 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
1110 void name(struct its_node *its,						\
1111 	  buildtype builder,						\
1112 	  struct its_cmd_desc *desc)					\
1113 {									\
1114 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
1115 	synctype *sync_obj;						\
1116 	unsigned long flags;						\
1117 	u64 rd_idx;							\
1118 									\
1119 	raw_spin_lock_irqsave(&its->lock, flags);			\
1120 									\
1121 	cmd = its_allocate_entry(its);					\
1122 	if (!cmd) {		/* We're soooooo screewed... */		\
1123 		raw_spin_unlock_irqrestore(&its->lock, flags);		\
1124 		return;							\
1125 	}								\
1126 	sync_obj = builder(its, cmd, desc);				\
1127 	its_flush_cmd(its, cmd);					\
1128 									\
1129 	if (sync_obj) {							\
1130 		sync_cmd = its_allocate_entry(its);			\
1131 		if (!sync_cmd)						\
1132 			goto post;					\
1133 									\
1134 		buildfn(its, sync_cmd, sync_obj);			\
1135 		its_flush_cmd(its, sync_cmd);				\
1136 	}								\
1137 									\
1138 post:									\
1139 	rd_idx = readl_relaxed(its->base + GITS_CREADR);		\
1140 	next_cmd = its_post_commands(its);				\
1141 	raw_spin_unlock_irqrestore(&its->lock, flags);			\
1142 									\
1143 	if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\
1144 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
1145 }
1146 
its_build_sync_cmd(struct its_node * its,struct its_cmd_block * sync_cmd,struct its_collection * sync_col)1147 static void its_build_sync_cmd(struct its_node *its,
1148 			       struct its_cmd_block *sync_cmd,
1149 			       struct its_collection *sync_col)
1150 {
1151 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1152 	its_encode_target(sync_cmd, sync_col->target_address);
1153 
1154 	its_fixup_cmd(sync_cmd);
1155 }
1156 
BUILD_SINGLE_CMD_FUNC(its_send_single_command,its_cmd_builder_t,struct its_collection,its_build_sync_cmd)1157 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1158 			     struct its_collection, its_build_sync_cmd)
1159 
1160 static void its_build_vsync_cmd(struct its_node *its,
1161 				struct its_cmd_block *sync_cmd,
1162 				struct its_vpe *sync_vpe)
1163 {
1164 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1165 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1166 
1167 	its_fixup_cmd(sync_cmd);
1168 }
1169 
BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand,its_cmd_vbuilder_t,struct its_vpe,its_build_vsync_cmd)1170 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1171 			     struct its_vpe, its_build_vsync_cmd)
1172 
1173 static void its_send_int(struct its_device *dev, u32 event_id)
1174 {
1175 	struct its_cmd_desc desc;
1176 
1177 	desc.its_int_cmd.dev = dev;
1178 	desc.its_int_cmd.event_id = event_id;
1179 
1180 	its_send_single_command(dev->its, its_build_int_cmd, &desc);
1181 }
1182 
its_send_clear(struct its_device * dev,u32 event_id)1183 static void its_send_clear(struct its_device *dev, u32 event_id)
1184 {
1185 	struct its_cmd_desc desc;
1186 
1187 	desc.its_clear_cmd.dev = dev;
1188 	desc.its_clear_cmd.event_id = event_id;
1189 
1190 	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1191 }
1192 
its_send_inv(struct its_device * dev,u32 event_id)1193 static void its_send_inv(struct its_device *dev, u32 event_id)
1194 {
1195 	struct its_cmd_desc desc;
1196 
1197 	desc.its_inv_cmd.dev = dev;
1198 	desc.its_inv_cmd.event_id = event_id;
1199 
1200 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1201 }
1202 
its_send_mapd(struct its_device * dev,int valid)1203 static void its_send_mapd(struct its_device *dev, int valid)
1204 {
1205 	struct its_cmd_desc desc;
1206 
1207 	desc.its_mapd_cmd.dev = dev;
1208 	desc.its_mapd_cmd.valid = !!valid;
1209 
1210 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1211 }
1212 
its_send_mapc(struct its_node * its,struct its_collection * col,int valid)1213 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1214 			  int valid)
1215 {
1216 	struct its_cmd_desc desc;
1217 
1218 	desc.its_mapc_cmd.col = col;
1219 	desc.its_mapc_cmd.valid = !!valid;
1220 
1221 	its_send_single_command(its, its_build_mapc_cmd, &desc);
1222 }
1223 
its_send_mapti(struct its_device * dev,u32 irq_id,u32 id)1224 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1225 {
1226 	struct its_cmd_desc desc;
1227 
1228 	desc.its_mapti_cmd.dev = dev;
1229 	desc.its_mapti_cmd.phys_id = irq_id;
1230 	desc.its_mapti_cmd.event_id = id;
1231 
1232 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1233 }
1234 
its_send_movi(struct its_device * dev,struct its_collection * col,u32 id)1235 static void its_send_movi(struct its_device *dev,
1236 			  struct its_collection *col, u32 id)
1237 {
1238 	struct its_cmd_desc desc;
1239 
1240 	desc.its_movi_cmd.dev = dev;
1241 	desc.its_movi_cmd.col = col;
1242 	desc.its_movi_cmd.event_id = id;
1243 
1244 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1245 }
1246 
its_send_discard(struct its_device * dev,u32 id)1247 static void its_send_discard(struct its_device *dev, u32 id)
1248 {
1249 	struct its_cmd_desc desc;
1250 
1251 	desc.its_discard_cmd.dev = dev;
1252 	desc.its_discard_cmd.event_id = id;
1253 
1254 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1255 }
1256 
its_send_invall(struct its_node * its,struct its_collection * col)1257 static void its_send_invall(struct its_node *its, struct its_collection *col)
1258 {
1259 	struct its_cmd_desc desc;
1260 
1261 	desc.its_invall_cmd.col = col;
1262 
1263 	its_send_single_command(its, its_build_invall_cmd, &desc);
1264 }
1265 
its_send_vmapti(struct its_device * dev,u32 id)1266 static void its_send_vmapti(struct its_device *dev, u32 id)
1267 {
1268 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1269 	struct its_cmd_desc desc;
1270 
1271 	desc.its_vmapti_cmd.vpe = map->vpe;
1272 	desc.its_vmapti_cmd.dev = dev;
1273 	desc.its_vmapti_cmd.virt_id = map->vintid;
1274 	desc.its_vmapti_cmd.event_id = id;
1275 	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1276 
1277 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1278 }
1279 
its_send_vmovi(struct its_device * dev,u32 id)1280 static void its_send_vmovi(struct its_device *dev, u32 id)
1281 {
1282 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1283 	struct its_cmd_desc desc;
1284 
1285 	desc.its_vmovi_cmd.vpe = map->vpe;
1286 	desc.its_vmovi_cmd.dev = dev;
1287 	desc.its_vmovi_cmd.event_id = id;
1288 	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1289 
1290 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1291 }
1292 
its_send_vmapp(struct its_node * its,struct its_vpe * vpe,bool valid)1293 static void its_send_vmapp(struct its_node *its,
1294 			   struct its_vpe *vpe, bool valid)
1295 {
1296 	struct its_cmd_desc desc;
1297 
1298 	desc.its_vmapp_cmd.vpe = vpe;
1299 	desc.its_vmapp_cmd.valid = valid;
1300 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1301 
1302 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1303 }
1304 
its_send_vmovp(struct its_vpe * vpe)1305 static void its_send_vmovp(struct its_vpe *vpe)
1306 {
1307 	struct its_cmd_desc desc = {};
1308 	struct its_node *its;
1309 	unsigned long flags;
1310 	int col_id = vpe->col_idx;
1311 
1312 	desc.its_vmovp_cmd.vpe = vpe;
1313 
1314 	if (!its_list_map) {
1315 		its = list_first_entry(&its_nodes, struct its_node, entry);
1316 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1317 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1318 		return;
1319 	}
1320 
1321 	/*
1322 	 * Yet another marvel of the architecture. If using the
1323 	 * its_list "feature", we need to make sure that all ITSs
1324 	 * receive all VMOVP commands in the same order. The only way
1325 	 * to guarantee this is to make vmovp a serialization point.
1326 	 *
1327 	 * Wall <-- Head.
1328 	 */
1329 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1330 
1331 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1332 	desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1333 
1334 	/* Emit VMOVPs */
1335 	list_for_each_entry(its, &its_nodes, entry) {
1336 		if (!is_v4(its))
1337 			continue;
1338 
1339 		if (!require_its_list_vmovp(vpe->its_vm, its))
1340 			continue;
1341 
1342 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1343 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1344 	}
1345 
1346 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1347 }
1348 
its_send_vinvall(struct its_node * its,struct its_vpe * vpe)1349 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1350 {
1351 	struct its_cmd_desc desc;
1352 
1353 	desc.its_vinvall_cmd.vpe = vpe;
1354 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1355 }
1356 
its_send_vinv(struct its_device * dev,u32 event_id)1357 static void its_send_vinv(struct its_device *dev, u32 event_id)
1358 {
1359 	struct its_cmd_desc desc;
1360 
1361 	/*
1362 	 * There is no real VINV command. This is just a normal INV,
1363 	 * with a VSYNC instead of a SYNC.
1364 	 */
1365 	desc.its_inv_cmd.dev = dev;
1366 	desc.its_inv_cmd.event_id = event_id;
1367 
1368 	its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1369 }
1370 
its_send_vint(struct its_device * dev,u32 event_id)1371 static void its_send_vint(struct its_device *dev, u32 event_id)
1372 {
1373 	struct its_cmd_desc desc;
1374 
1375 	/*
1376 	 * There is no real VINT command. This is just a normal INT,
1377 	 * with a VSYNC instead of a SYNC.
1378 	 */
1379 	desc.its_int_cmd.dev = dev;
1380 	desc.its_int_cmd.event_id = event_id;
1381 
1382 	its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1383 }
1384 
its_send_vclear(struct its_device * dev,u32 event_id)1385 static void its_send_vclear(struct its_device *dev, u32 event_id)
1386 {
1387 	struct its_cmd_desc desc;
1388 
1389 	/*
1390 	 * There is no real VCLEAR command. This is just a normal CLEAR,
1391 	 * with a VSYNC instead of a SYNC.
1392 	 */
1393 	desc.its_clear_cmd.dev = dev;
1394 	desc.its_clear_cmd.event_id = event_id;
1395 
1396 	its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1397 }
1398 
its_send_invdb(struct its_node * its,struct its_vpe * vpe)1399 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1400 {
1401 	struct its_cmd_desc desc;
1402 
1403 	desc.its_invdb_cmd.vpe = vpe;
1404 	its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1405 }
1406 
1407 /*
1408  * irqchip functions - assumes MSI, mostly.
1409  */
lpi_write_config(struct irq_data * d,u8 clr,u8 set)1410 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1411 {
1412 	struct its_vlpi_map *map = get_vlpi_map(d);
1413 	irq_hw_number_t hwirq;
1414 	void *va;
1415 	u8 *cfg;
1416 
1417 	if (map) {
1418 		va = page_address(map->vm->vprop_page);
1419 		hwirq = map->vintid;
1420 
1421 		/* Remember the updated property */
1422 		map->properties &= ~clr;
1423 		map->properties |= set | LPI_PROP_GROUP1;
1424 	} else {
1425 		va = gic_rdists->prop_table_va;
1426 		hwirq = d->hwirq;
1427 	}
1428 
1429 	cfg = va + hwirq - 8192;
1430 	*cfg &= ~clr;
1431 	*cfg |= set | LPI_PROP_GROUP1;
1432 
1433 	/*
1434 	 * Make the above write visible to the redistributors.
1435 	 * And yes, we're flushing exactly: One. Single. Byte.
1436 	 * Humpf...
1437 	 */
1438 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1439 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1440 	else
1441 		dsb(ishst);
1442 }
1443 
wait_for_syncr(void __iomem * rdbase)1444 static void wait_for_syncr(void __iomem *rdbase)
1445 {
1446 	while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1447 		cpu_relax();
1448 }
1449 
__direct_lpi_inv(struct irq_data * d,u64 val)1450 static void __direct_lpi_inv(struct irq_data *d, u64 val)
1451 {
1452 	void __iomem *rdbase;
1453 	unsigned long flags;
1454 	int cpu;
1455 
1456 	/* Target the redistributor this LPI is currently routed to */
1457 	cpu = irq_to_cpuid_lock(d, &flags);
1458 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1459 
1460 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1461 	gic_write_lpir(val, rdbase + GICR_INVLPIR);
1462 	wait_for_syncr(rdbase);
1463 
1464 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1465 	irq_to_cpuid_unlock(d, flags);
1466 }
1467 
direct_lpi_inv(struct irq_data * d)1468 static void direct_lpi_inv(struct irq_data *d)
1469 {
1470 	struct its_vlpi_map *map = get_vlpi_map(d);
1471 	u64 val;
1472 
1473 	if (map) {
1474 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1475 
1476 		WARN_ON(!is_v4_1(its_dev->its));
1477 
1478 		val  = GICR_INVLPIR_V;
1479 		val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1480 		val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1481 	} else {
1482 		val = d->hwirq;
1483 	}
1484 
1485 	__direct_lpi_inv(d, val);
1486 }
1487 
lpi_update_config(struct irq_data * d,u8 clr,u8 set)1488 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1489 {
1490 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1491 
1492 	lpi_write_config(d, clr, set);
1493 	if (gic_rdists->has_direct_lpi &&
1494 	    (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1495 		direct_lpi_inv(d);
1496 	else if (!irqd_is_forwarded_to_vcpu(d))
1497 		its_send_inv(its_dev, its_get_event_id(d));
1498 	else
1499 		its_send_vinv(its_dev, its_get_event_id(d));
1500 }
1501 
its_vlpi_set_doorbell(struct irq_data * d,bool enable)1502 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1503 {
1504 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1505 	u32 event = its_get_event_id(d);
1506 	struct its_vlpi_map *map;
1507 
1508 	/*
1509 	 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1510 	 * here.
1511 	 */
1512 	if (is_v4_1(its_dev->its))
1513 		return;
1514 
1515 	map = dev_event_to_vlpi_map(its_dev, event);
1516 
1517 	if (map->db_enabled == enable)
1518 		return;
1519 
1520 	map->db_enabled = enable;
1521 
1522 	/*
1523 	 * More fun with the architecture:
1524 	 *
1525 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1526 	 * value or to 1023, depending on the enable bit. But that
1527 	 * would be issuing a mapping for an /existing/ DevID+EventID
1528 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1529 	 * to the /same/ vPE, using this opportunity to adjust the
1530 	 * doorbell. Mouahahahaha. We loves it, Precious.
1531 	 */
1532 	its_send_vmovi(its_dev, event);
1533 }
1534 
its_mask_irq(struct irq_data * d)1535 static void its_mask_irq(struct irq_data *d)
1536 {
1537 	if (irqd_is_forwarded_to_vcpu(d))
1538 		its_vlpi_set_doorbell(d, false);
1539 
1540 	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1541 }
1542 
its_unmask_irq(struct irq_data * d)1543 static void its_unmask_irq(struct irq_data *d)
1544 {
1545 	if (irqd_is_forwarded_to_vcpu(d))
1546 		its_vlpi_set_doorbell(d, true);
1547 
1548 	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1549 }
1550 
its_read_lpi_count(struct irq_data * d,int cpu)1551 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1552 {
1553 	if (irqd_affinity_is_managed(d))
1554 		return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1555 
1556 	return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1557 }
1558 
its_inc_lpi_count(struct irq_data * d,int cpu)1559 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1560 {
1561 	if (irqd_affinity_is_managed(d))
1562 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1563 	else
1564 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1565 }
1566 
its_dec_lpi_count(struct irq_data * d,int cpu)1567 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1568 {
1569 	if (irqd_affinity_is_managed(d))
1570 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1571 	else
1572 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1573 }
1574 
cpumask_pick_least_loaded(struct irq_data * d,const struct cpumask * cpu_mask)1575 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1576 					      const struct cpumask *cpu_mask)
1577 {
1578 	unsigned int cpu = nr_cpu_ids, tmp;
1579 	int count = S32_MAX;
1580 
1581 	for_each_cpu(tmp, cpu_mask) {
1582 		int this_count = its_read_lpi_count(d, tmp);
1583 		if (this_count < count) {
1584 			cpu = tmp;
1585 		        count = this_count;
1586 		}
1587 	}
1588 
1589 	return cpu;
1590 }
1591 
1592 /*
1593  * As suggested by Thomas Gleixner in:
1594  * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1595  */
its_select_cpu(struct irq_data * d,const struct cpumask * aff_mask)1596 static int its_select_cpu(struct irq_data *d,
1597 			  const struct cpumask *aff_mask)
1598 {
1599 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1600 	cpumask_var_t tmpmask;
1601 	int cpu, node;
1602 
1603 	if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
1604 		return -ENOMEM;
1605 
1606 	node = its_dev->its->numa_node;
1607 
1608 	if (!irqd_affinity_is_managed(d)) {
1609 		/* First try the NUMA node */
1610 		if (node != NUMA_NO_NODE) {
1611 			/*
1612 			 * Try the intersection of the affinity mask and the
1613 			 * node mask (and the online mask, just to be safe).
1614 			 */
1615 			cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1616 			cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1617 
1618 			/*
1619 			 * Ideally, we would check if the mask is empty, and
1620 			 * try again on the full node here.
1621 			 *
1622 			 * But it turns out that the way ACPI describes the
1623 			 * affinity for ITSs only deals about memory, and
1624 			 * not target CPUs, so it cannot describe a single
1625 			 * ITS placed next to two NUMA nodes.
1626 			 *
1627 			 * Instead, just fallback on the online mask. This
1628 			 * diverges from Thomas' suggestion above.
1629 			 */
1630 			cpu = cpumask_pick_least_loaded(d, tmpmask);
1631 			if (cpu < nr_cpu_ids)
1632 				goto out;
1633 
1634 			/* If we can't cross sockets, give up */
1635 			if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1636 				goto out;
1637 
1638 			/* If the above failed, expand the search */
1639 		}
1640 
1641 		/* Try the intersection of the affinity and online masks */
1642 		cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1643 
1644 		/* If that doesn't fly, the online mask is the last resort */
1645 		if (cpumask_empty(tmpmask))
1646 			cpumask_copy(tmpmask, cpu_online_mask);
1647 
1648 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1649 	} else {
1650 		cpumask_copy(tmpmask, aff_mask);
1651 
1652 		/* If we cannot cross sockets, limit the search to that node */
1653 		if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1654 		    node != NUMA_NO_NODE)
1655 			cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1656 
1657 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1658 	}
1659 out:
1660 	free_cpumask_var(tmpmask);
1661 
1662 	pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1663 	return cpu;
1664 }
1665 
its_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)1666 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1667 			    bool force)
1668 {
1669 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1670 	struct its_collection *target_col;
1671 	u32 id = its_get_event_id(d);
1672 	int cpu, prev_cpu;
1673 
1674 	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1675 	if (irqd_is_forwarded_to_vcpu(d))
1676 		return -EINVAL;
1677 
1678 	prev_cpu = its_dev->event_map.col_map[id];
1679 	its_dec_lpi_count(d, prev_cpu);
1680 
1681 	if (!force)
1682 		cpu = its_select_cpu(d, mask_val);
1683 	else
1684 		cpu = cpumask_pick_least_loaded(d, mask_val);
1685 
1686 	if (cpu < 0 || cpu >= nr_cpu_ids)
1687 		goto err;
1688 
1689 	/* don't set the affinity when the target cpu is same as current one */
1690 	if (cpu != prev_cpu) {
1691 		target_col = &its_dev->its->collections[cpu];
1692 		its_send_movi(its_dev, target_col, id);
1693 		its_dev->event_map.col_map[id] = cpu;
1694 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1695 	}
1696 
1697 	its_inc_lpi_count(d, cpu);
1698 
1699 	return IRQ_SET_MASK_OK_DONE;
1700 
1701 err:
1702 	its_inc_lpi_count(d, prev_cpu);
1703 	return -EINVAL;
1704 }
1705 
its_irq_get_msi_base(struct its_device * its_dev)1706 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1707 {
1708 	struct its_node *its = its_dev->its;
1709 
1710 	return its->phys_base + GITS_TRANSLATER;
1711 }
1712 
its_irq_compose_msi_msg(struct irq_data * d,struct msi_msg * msg)1713 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1714 {
1715 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1716 	struct its_node *its;
1717 	u64 addr;
1718 
1719 	its = its_dev->its;
1720 	addr = its->get_msi_base(its_dev);
1721 
1722 	msg->address_lo		= lower_32_bits(addr);
1723 	msg->address_hi		= upper_32_bits(addr);
1724 	msg->data		= its_get_event_id(d);
1725 
1726 	iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1727 }
1728 
its_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)1729 static int its_irq_set_irqchip_state(struct irq_data *d,
1730 				     enum irqchip_irq_state which,
1731 				     bool state)
1732 {
1733 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1734 	u32 event = its_get_event_id(d);
1735 
1736 	if (which != IRQCHIP_STATE_PENDING)
1737 		return -EINVAL;
1738 
1739 	if (irqd_is_forwarded_to_vcpu(d)) {
1740 		if (state)
1741 			its_send_vint(its_dev, event);
1742 		else
1743 			its_send_vclear(its_dev, event);
1744 	} else {
1745 		if (state)
1746 			its_send_int(its_dev, event);
1747 		else
1748 			its_send_clear(its_dev, event);
1749 	}
1750 
1751 	return 0;
1752 }
1753 
its_irq_retrigger(struct irq_data * d)1754 static int its_irq_retrigger(struct irq_data *d)
1755 {
1756 	return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1757 }
1758 
1759 /*
1760  * Two favourable cases:
1761  *
1762  * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1763  *     for vSGI delivery
1764  *
1765  * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1766  *     and we're better off mapping all VPEs always
1767  *
1768  * If neither (a) nor (b) is true, then we map vPEs on demand.
1769  *
1770  */
gic_requires_eager_mapping(void)1771 static bool gic_requires_eager_mapping(void)
1772 {
1773 	if (!its_list_map || gic_rdists->has_rvpeid)
1774 		return true;
1775 
1776 	return false;
1777 }
1778 
its_map_vm(struct its_node * its,struct its_vm * vm)1779 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1780 {
1781 	unsigned long flags;
1782 
1783 	if (gic_requires_eager_mapping())
1784 		return;
1785 
1786 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1787 
1788 	/*
1789 	 * If the VM wasn't mapped yet, iterate over the vpes and get
1790 	 * them mapped now.
1791 	 */
1792 	vm->vlpi_count[its->list_nr]++;
1793 
1794 	if (vm->vlpi_count[its->list_nr] == 1) {
1795 		int i;
1796 
1797 		for (i = 0; i < vm->nr_vpes; i++) {
1798 			struct its_vpe *vpe = vm->vpes[i];
1799 			struct irq_data *d = irq_get_irq_data(vpe->irq);
1800 
1801 			/* Map the VPE to the first possible CPU */
1802 			vpe->col_idx = cpumask_first(cpu_online_mask);
1803 			its_send_vmapp(its, vpe, true);
1804 			its_send_vinvall(its, vpe);
1805 			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1806 		}
1807 	}
1808 
1809 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1810 }
1811 
its_unmap_vm(struct its_node * its,struct its_vm * vm)1812 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1813 {
1814 	unsigned long flags;
1815 
1816 	/* Not using the ITS list? Everything is always mapped. */
1817 	if (gic_requires_eager_mapping())
1818 		return;
1819 
1820 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1821 
1822 	if (!--vm->vlpi_count[its->list_nr]) {
1823 		int i;
1824 
1825 		for (i = 0; i < vm->nr_vpes; i++)
1826 			its_send_vmapp(its, vm->vpes[i], false);
1827 	}
1828 
1829 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1830 }
1831 
its_vlpi_map(struct irq_data * d,struct its_cmd_info * info)1832 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1833 {
1834 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1835 	u32 event = its_get_event_id(d);
1836 	int ret = 0;
1837 
1838 	if (!info->map)
1839 		return -EINVAL;
1840 
1841 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1842 
1843 	if (!its_dev->event_map.vm) {
1844 		struct its_vlpi_map *maps;
1845 
1846 		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1847 			       GFP_ATOMIC);
1848 		if (!maps) {
1849 			ret = -ENOMEM;
1850 			goto out;
1851 		}
1852 
1853 		its_dev->event_map.vm = info->map->vm;
1854 		its_dev->event_map.vlpi_maps = maps;
1855 	} else if (its_dev->event_map.vm != info->map->vm) {
1856 		ret = -EINVAL;
1857 		goto out;
1858 	}
1859 
1860 	/* Get our private copy of the mapping information */
1861 	its_dev->event_map.vlpi_maps[event] = *info->map;
1862 
1863 	if (irqd_is_forwarded_to_vcpu(d)) {
1864 		/* Already mapped, move it around */
1865 		its_send_vmovi(its_dev, event);
1866 	} else {
1867 		/* Ensure all the VPEs are mapped on this ITS */
1868 		its_map_vm(its_dev->its, info->map->vm);
1869 
1870 		/*
1871 		 * Flag the interrupt as forwarded so that we can
1872 		 * start poking the virtual property table.
1873 		 */
1874 		irqd_set_forwarded_to_vcpu(d);
1875 
1876 		/* Write out the property to the prop table */
1877 		lpi_write_config(d, 0xff, info->map->properties);
1878 
1879 		/* Drop the physical mapping */
1880 		its_send_discard(its_dev, event);
1881 
1882 		/* and install the virtual one */
1883 		its_send_vmapti(its_dev, event);
1884 
1885 		/* Increment the number of VLPIs */
1886 		its_dev->event_map.nr_vlpis++;
1887 	}
1888 
1889 out:
1890 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1891 	return ret;
1892 }
1893 
its_vlpi_get(struct irq_data * d,struct its_cmd_info * info)1894 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1895 {
1896 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1897 	struct its_vlpi_map *map;
1898 	int ret = 0;
1899 
1900 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1901 
1902 	map = get_vlpi_map(d);
1903 
1904 	if (!its_dev->event_map.vm || !map) {
1905 		ret = -EINVAL;
1906 		goto out;
1907 	}
1908 
1909 	/* Copy our mapping information to the incoming request */
1910 	*info->map = *map;
1911 
1912 out:
1913 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1914 	return ret;
1915 }
1916 
its_vlpi_unmap(struct irq_data * d)1917 static int its_vlpi_unmap(struct irq_data *d)
1918 {
1919 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1920 	u32 event = its_get_event_id(d);
1921 	int ret = 0;
1922 
1923 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1924 
1925 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1926 		ret = -EINVAL;
1927 		goto out;
1928 	}
1929 
1930 	/* Drop the virtual mapping */
1931 	its_send_discard(its_dev, event);
1932 
1933 	/* and restore the physical one */
1934 	irqd_clr_forwarded_to_vcpu(d);
1935 	its_send_mapti(its_dev, d->hwirq, event);
1936 	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1937 				    LPI_PROP_ENABLED |
1938 				    LPI_PROP_GROUP1));
1939 
1940 	/* Potentially unmap the VM from this ITS */
1941 	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1942 
1943 	/*
1944 	 * Drop the refcount and make the device available again if
1945 	 * this was the last VLPI.
1946 	 */
1947 	if (!--its_dev->event_map.nr_vlpis) {
1948 		its_dev->event_map.vm = NULL;
1949 		kfree(its_dev->event_map.vlpi_maps);
1950 	}
1951 
1952 out:
1953 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1954 	return ret;
1955 }
1956 
its_vlpi_prop_update(struct irq_data * d,struct its_cmd_info * info)1957 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1958 {
1959 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1960 
1961 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1962 		return -EINVAL;
1963 
1964 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1965 		lpi_update_config(d, 0xff, info->config);
1966 	else
1967 		lpi_write_config(d, 0xff, info->config);
1968 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1969 
1970 	return 0;
1971 }
1972 
its_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)1973 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1974 {
1975 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1976 	struct its_cmd_info *info = vcpu_info;
1977 
1978 	/* Need a v4 ITS */
1979 	if (!is_v4(its_dev->its))
1980 		return -EINVAL;
1981 
1982 	/* Unmap request? */
1983 	if (!info)
1984 		return its_vlpi_unmap(d);
1985 
1986 	switch (info->cmd_type) {
1987 	case MAP_VLPI:
1988 		return its_vlpi_map(d, info);
1989 
1990 	case GET_VLPI:
1991 		return its_vlpi_get(d, info);
1992 
1993 	case PROP_UPDATE_VLPI:
1994 	case PROP_UPDATE_AND_INV_VLPI:
1995 		return its_vlpi_prop_update(d, info);
1996 
1997 	default:
1998 		return -EINVAL;
1999 	}
2000 }
2001 
2002 static struct irq_chip its_irq_chip = {
2003 	.name			= "ITS",
2004 	.irq_mask		= its_mask_irq,
2005 	.irq_unmask		= its_unmask_irq,
2006 	.irq_eoi		= irq_chip_eoi_parent,
2007 	.irq_set_affinity	= its_set_affinity,
2008 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
2009 	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
2010 	.irq_retrigger		= its_irq_retrigger,
2011 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
2012 };
2013 
2014 
2015 /*
2016  * How we allocate LPIs:
2017  *
2018  * lpi_range_list contains ranges of LPIs that are to available to
2019  * allocate from. To allocate LPIs, just pick the first range that
2020  * fits the required allocation, and reduce it by the required
2021  * amount. Once empty, remove the range from the list.
2022  *
2023  * To free a range of LPIs, add a free range to the list, sort it and
2024  * merge the result if the new range happens to be adjacent to an
2025  * already free block.
2026  *
2027  * The consequence of the above is that allocation is cost is low, but
2028  * freeing is expensive. We assumes that freeing rarely occurs.
2029  */
2030 #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
2031 
2032 static DEFINE_MUTEX(lpi_range_lock);
2033 static LIST_HEAD(lpi_range_list);
2034 
2035 struct lpi_range {
2036 	struct list_head	entry;
2037 	u32			base_id;
2038 	u32			span;
2039 };
2040 
mk_lpi_range(u32 base,u32 span)2041 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2042 {
2043 	struct lpi_range *range;
2044 
2045 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2046 	if (range) {
2047 		range->base_id = base;
2048 		range->span = span;
2049 	}
2050 
2051 	return range;
2052 }
2053 
alloc_lpi_range(u32 nr_lpis,u32 * base)2054 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2055 {
2056 	struct lpi_range *range, *tmp;
2057 	int err = -ENOSPC;
2058 
2059 	mutex_lock(&lpi_range_lock);
2060 
2061 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2062 		if (range->span >= nr_lpis) {
2063 			*base = range->base_id;
2064 			range->base_id += nr_lpis;
2065 			range->span -= nr_lpis;
2066 
2067 			if (range->span == 0) {
2068 				list_del(&range->entry);
2069 				kfree(range);
2070 			}
2071 
2072 			err = 0;
2073 			break;
2074 		}
2075 	}
2076 
2077 	mutex_unlock(&lpi_range_lock);
2078 
2079 	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2080 	return err;
2081 }
2082 
merge_lpi_ranges(struct lpi_range * a,struct lpi_range * b)2083 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2084 {
2085 	if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2086 		return;
2087 	if (a->base_id + a->span != b->base_id)
2088 		return;
2089 	b->base_id = a->base_id;
2090 	b->span += a->span;
2091 	list_del(&a->entry);
2092 	kfree(a);
2093 }
2094 
free_lpi_range(u32 base,u32 nr_lpis)2095 static int free_lpi_range(u32 base, u32 nr_lpis)
2096 {
2097 	struct lpi_range *new, *old;
2098 
2099 	new = mk_lpi_range(base, nr_lpis);
2100 	if (!new)
2101 		return -ENOMEM;
2102 
2103 	mutex_lock(&lpi_range_lock);
2104 
2105 	list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2106 		if (old->base_id < base)
2107 			break;
2108 	}
2109 	/*
2110 	 * old is the last element with ->base_id smaller than base,
2111 	 * so new goes right after it. If there are no elements with
2112 	 * ->base_id smaller than base, &old->entry ends up pointing
2113 	 * at the head of the list, and inserting new it the start of
2114 	 * the list is the right thing to do in that case as well.
2115 	 */
2116 	list_add(&new->entry, &old->entry);
2117 	/*
2118 	 * Now check if we can merge with the preceding and/or
2119 	 * following ranges.
2120 	 */
2121 	merge_lpi_ranges(old, new);
2122 	merge_lpi_ranges(new, list_next_entry(new, entry));
2123 
2124 	mutex_unlock(&lpi_range_lock);
2125 	return 0;
2126 }
2127 
its_lpi_init(u32 id_bits)2128 static int __init its_lpi_init(u32 id_bits)
2129 {
2130 	u32 lpis = (1UL << id_bits) - 8192;
2131 	u32 numlpis;
2132 	int err;
2133 
2134 	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2135 
2136 	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2137 		lpis = numlpis;
2138 		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2139 			lpis);
2140 	}
2141 
2142 	/*
2143 	 * Initializing the allocator is just the same as freeing the
2144 	 * full range of LPIs.
2145 	 */
2146 	err = free_lpi_range(8192, lpis);
2147 	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2148 	return err;
2149 }
2150 
its_lpi_alloc(int nr_irqs,u32 * base,int * nr_ids)2151 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2152 {
2153 	unsigned long *bitmap = NULL;
2154 	int err = 0;
2155 
2156 	do {
2157 		err = alloc_lpi_range(nr_irqs, base);
2158 		if (!err)
2159 			break;
2160 
2161 		nr_irqs /= 2;
2162 	} while (nr_irqs > 0);
2163 
2164 	if (!nr_irqs)
2165 		err = -ENOSPC;
2166 
2167 	if (err)
2168 		goto out;
2169 
2170 	bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2171 	if (!bitmap)
2172 		goto out;
2173 
2174 	*nr_ids = nr_irqs;
2175 
2176 out:
2177 	if (!bitmap)
2178 		*base = *nr_ids = 0;
2179 
2180 	return bitmap;
2181 }
2182 
its_lpi_free(unsigned long * bitmap,u32 base,u32 nr_ids)2183 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2184 {
2185 	WARN_ON(free_lpi_range(base, nr_ids));
2186 	bitmap_free(bitmap);
2187 }
2188 
gic_reset_prop_table(void * va)2189 static void gic_reset_prop_table(void *va)
2190 {
2191 	/* Priority 0xa0, Group-1, disabled */
2192 	memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2193 
2194 	/* Make sure the GIC will observe the written configuration */
2195 	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2196 	set_memory_decrypted((unsigned long)va, LPI_PROPBASE_SZ >> PAGE_SHIFT);
2197 }
2198 
its_allocate_prop_table(gfp_t gfp_flags)2199 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2200 {
2201 	struct page *prop_page;
2202 
2203 	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2204 	if (!prop_page)
2205 		return NULL;
2206 
2207 	gic_reset_prop_table(page_address(prop_page));
2208 
2209 	return prop_page;
2210 }
2211 
its_free_prop_table(struct page * prop_page)2212 static void its_free_prop_table(struct page *prop_page)
2213 {
2214 	unsigned long va = (unsigned long)page_address(prop_page);
2215 
2216 	set_memory_encrypted(va, LPI_PROPBASE_SZ >> PAGE_SHIFT);
2217 	free_pages(va, get_order(LPI_PROPBASE_SZ));
2218 }
2219 
gic_check_reserved_range(phys_addr_t addr,unsigned long size)2220 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2221 {
2222 	phys_addr_t start, end, addr_end;
2223 	u64 i;
2224 
2225 	/*
2226 	 * We don't bother checking for a kdump kernel as by
2227 	 * construction, the LPI tables are out of this kernel's
2228 	 * memory map.
2229 	 */
2230 	if (is_kdump_kernel())
2231 		return true;
2232 
2233 	addr_end = addr + size - 1;
2234 
2235 	for_each_reserved_mem_range(i, &start, &end) {
2236 		if (addr >= start && addr_end <= end)
2237 			return true;
2238 	}
2239 
2240 	/* Not found, not a good sign... */
2241 	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2242 		&addr, &addr_end);
2243 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2244 	return false;
2245 }
2246 
gic_reserve_range(phys_addr_t addr,unsigned long size)2247 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2248 {
2249 	if (efi_enabled(EFI_CONFIG_TABLES))
2250 		return efi_mem_reserve_persistent(addr, size);
2251 
2252 	return 0;
2253 }
2254 
its_setup_lpi_prop_table(void)2255 static int __init its_setup_lpi_prop_table(void)
2256 {
2257 	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2258 		u64 val;
2259 
2260 		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2261 		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2262 
2263 		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2264 		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2265 						     LPI_PROPBASE_SZ,
2266 						     MEMREMAP_WB);
2267 		gic_reset_prop_table(gic_rdists->prop_table_va);
2268 	} else {
2269 		struct page *page;
2270 
2271 		lpi_id_bits = min_t(u32,
2272 				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2273 				    ITS_MAX_LPI_NRBITS);
2274 		page = its_allocate_prop_table(GFP_NOWAIT);
2275 		if (!page) {
2276 			pr_err("Failed to allocate PROPBASE\n");
2277 			return -ENOMEM;
2278 		}
2279 
2280 		gic_rdists->prop_table_pa = page_to_phys(page);
2281 		gic_rdists->prop_table_va = page_address(page);
2282 		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2283 					  LPI_PROPBASE_SZ));
2284 	}
2285 
2286 	pr_info("GICv3: using LPI property table @%pa\n",
2287 		&gic_rdists->prop_table_pa);
2288 
2289 	return its_lpi_init(lpi_id_bits);
2290 }
2291 
2292 static const char *its_base_type_string[] = {
2293 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
2294 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
2295 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
2296 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
2297 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
2298 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
2299 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
2300 };
2301 
its_read_baser(struct its_node * its,struct its_baser * baser)2302 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2303 {
2304 	u32 idx = baser - its->tables;
2305 
2306 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2307 }
2308 
its_write_baser(struct its_node * its,struct its_baser * baser,u64 val)2309 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2310 			    u64 val)
2311 {
2312 	u32 idx = baser - its->tables;
2313 
2314 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2315 	baser->val = its_read_baser(its, baser);
2316 }
2317 
its_setup_baser(struct its_node * its,struct its_baser * baser,u64 cache,u64 shr,u32 order,bool indirect)2318 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2319 			   u64 cache, u64 shr, u32 order, bool indirect)
2320 {
2321 	u64 val = its_read_baser(its, baser);
2322 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
2323 	u64 type = GITS_BASER_TYPE(val);
2324 	u64 baser_phys, tmp;
2325 	u32 alloc_pages, psz;
2326 	struct page *page;
2327 	void *base;
2328 
2329 	psz = baser->psz;
2330 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2331 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
2332 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2333 			&its->phys_base, its_base_type_string[type],
2334 			alloc_pages, GITS_BASER_PAGES_MAX);
2335 		alloc_pages = GITS_BASER_PAGES_MAX;
2336 		order = get_order(GITS_BASER_PAGES_MAX * psz);
2337 	}
2338 
2339 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2340 	if (!page)
2341 		return -ENOMEM;
2342 
2343 	base = (void *)page_address(page);
2344 	baser_phys = virt_to_phys(base);
2345 
2346 	/* Check if the physical address of the memory is above 48bits */
2347 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2348 
2349 		/* 52bit PA is supported only when PageSize=64K */
2350 		if (psz != SZ_64K) {
2351 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2352 			free_pages((unsigned long)base, order);
2353 			return -ENXIO;
2354 		}
2355 
2356 		/* Convert 52bit PA to 48bit field */
2357 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2358 	}
2359 
2360 retry_baser:
2361 	val = (baser_phys					 |
2362 		(type << GITS_BASER_TYPE_SHIFT)			 |
2363 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
2364 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
2365 		cache						 |
2366 		shr						 |
2367 		GITS_BASER_VALID);
2368 
2369 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
2370 
2371 	switch (psz) {
2372 	case SZ_4K:
2373 		val |= GITS_BASER_PAGE_SIZE_4K;
2374 		break;
2375 	case SZ_16K:
2376 		val |= GITS_BASER_PAGE_SIZE_16K;
2377 		break;
2378 	case SZ_64K:
2379 		val |= GITS_BASER_PAGE_SIZE_64K;
2380 		break;
2381 	}
2382 
2383 	its_write_baser(its, baser, val);
2384 	tmp = baser->val;
2385 
2386 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2387 		/*
2388 		 * Shareability didn't stick. Just use
2389 		 * whatever the read reported, which is likely
2390 		 * to be the only thing this redistributor
2391 		 * supports. If that's zero, make it
2392 		 * non-cacheable as well.
2393 		 */
2394 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2395 		if (!shr) {
2396 			cache = GITS_BASER_nC;
2397 			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2398 		}
2399 		goto retry_baser;
2400 	}
2401 
2402 	if (val != tmp) {
2403 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2404 		       &its->phys_base, its_base_type_string[type],
2405 		       val, tmp);
2406 		free_pages((unsigned long)base, order);
2407 		return -ENXIO;
2408 	}
2409 
2410 	set_memory_decrypted((unsigned long)base,
2411 			     PAGE_ORDER_TO_SIZE(order) >> PAGE_SHIFT);
2412 	baser->order = order;
2413 	baser->base = base;
2414 	baser->psz = psz;
2415 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2416 
2417 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2418 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2419 		its_base_type_string[type],
2420 		(unsigned long)virt_to_phys(base),
2421 		indirect ? "indirect" : "flat", (int)esz,
2422 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2423 
2424 	return 0;
2425 }
2426 
its_parse_indirect_baser(struct its_node * its,struct its_baser * baser,u32 * order,u32 ids)2427 static bool its_parse_indirect_baser(struct its_node *its,
2428 				     struct its_baser *baser,
2429 				     u32 *order, u32 ids)
2430 {
2431 	u64 tmp = its_read_baser(its, baser);
2432 	u64 type = GITS_BASER_TYPE(tmp);
2433 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2434 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2435 	u32 new_order = *order;
2436 	u32 psz = baser->psz;
2437 	bool indirect = false;
2438 
2439 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
2440 	if ((esz << ids) > (psz * 2)) {
2441 		/*
2442 		 * Find out whether hw supports a single or two-level table by
2443 		 * table by reading bit at offset '62' after writing '1' to it.
2444 		 */
2445 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2446 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
2447 
2448 		if (indirect) {
2449 			/*
2450 			 * The size of the lvl2 table is equal to ITS page size
2451 			 * which is 'psz'. For computing lvl1 table size,
2452 			 * subtract ID bits that sparse lvl2 table from 'ids'
2453 			 * which is reported by ITS hardware times lvl1 table
2454 			 * entry size.
2455 			 */
2456 			ids -= ilog2(psz / (int)esz);
2457 			esz = GITS_LVL1_ENTRY_SIZE;
2458 		}
2459 	}
2460 
2461 	/*
2462 	 * Allocate as many entries as required to fit the
2463 	 * range of device IDs that the ITS can grok... The ID
2464 	 * space being incredibly sparse, this results in a
2465 	 * massive waste of memory if two-level device table
2466 	 * feature is not supported by hardware.
2467 	 */
2468 	new_order = max_t(u32, get_order(esz << ids), new_order);
2469 	if (new_order >= MAX_ORDER) {
2470 		new_order = MAX_ORDER - 1;
2471 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2472 		pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2473 			&its->phys_base, its_base_type_string[type],
2474 			device_ids(its), ids);
2475 	}
2476 
2477 	*order = new_order;
2478 
2479 	return indirect;
2480 }
2481 
compute_common_aff(u64 val)2482 static u32 compute_common_aff(u64 val)
2483 {
2484 	u32 aff, clpiaff;
2485 
2486 	aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2487 	clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2488 
2489 	return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2490 }
2491 
compute_its_aff(struct its_node * its)2492 static u32 compute_its_aff(struct its_node *its)
2493 {
2494 	u64 val;
2495 	u32 svpet;
2496 
2497 	/*
2498 	 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2499 	 * the resulting affinity. We then use that to see if this match
2500 	 * our own affinity.
2501 	 */
2502 	svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2503 	val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2504 	val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2505 	return compute_common_aff(val);
2506 }
2507 
find_sibling_its(struct its_node * cur_its)2508 static struct its_node *find_sibling_its(struct its_node *cur_its)
2509 {
2510 	struct its_node *its;
2511 	u32 aff;
2512 
2513 	if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2514 		return NULL;
2515 
2516 	aff = compute_its_aff(cur_its);
2517 
2518 	list_for_each_entry(its, &its_nodes, entry) {
2519 		u64 baser;
2520 
2521 		if (!is_v4_1(its) || its == cur_its)
2522 			continue;
2523 
2524 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2525 			continue;
2526 
2527 		if (aff != compute_its_aff(its))
2528 			continue;
2529 
2530 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2531 		baser = its->tables[2].val;
2532 		if (!(baser & GITS_BASER_VALID))
2533 			continue;
2534 
2535 		return its;
2536 	}
2537 
2538 	return NULL;
2539 }
2540 
its_free_tables(struct its_node * its)2541 static void its_free_tables(struct its_node *its)
2542 {
2543 	int i;
2544 
2545 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2546 		if (its->tables[i].base) {
2547 			unsigned long base = (unsigned long)its->tables[i].base;
2548 			u32 order = its->tables[i].order;
2549 			u32 npages = PAGE_ORDER_TO_SIZE(order) >> PAGE_SHIFT;
2550 
2551 			set_memory_encrypted(base, npages);
2552 			free_pages(base, order);
2553 			its->tables[i].base = NULL;
2554 		}
2555 	}
2556 }
2557 
its_probe_baser_psz(struct its_node * its,struct its_baser * baser)2558 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2559 {
2560 	u64 psz = SZ_64K;
2561 
2562 	while (psz) {
2563 		u64 val, gpsz;
2564 
2565 		val = its_read_baser(its, baser);
2566 		val &= ~GITS_BASER_PAGE_SIZE_MASK;
2567 
2568 		switch (psz) {
2569 		case SZ_64K:
2570 			gpsz = GITS_BASER_PAGE_SIZE_64K;
2571 			break;
2572 		case SZ_16K:
2573 			gpsz = GITS_BASER_PAGE_SIZE_16K;
2574 			break;
2575 		case SZ_4K:
2576 		default:
2577 			gpsz = GITS_BASER_PAGE_SIZE_4K;
2578 			break;
2579 		}
2580 
2581 		gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2582 
2583 		val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2584 		its_write_baser(its, baser, val);
2585 
2586 		if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2587 			break;
2588 
2589 		switch (psz) {
2590 		case SZ_64K:
2591 			psz = SZ_16K;
2592 			break;
2593 		case SZ_16K:
2594 			psz = SZ_4K;
2595 			break;
2596 		case SZ_4K:
2597 		default:
2598 			return -1;
2599 		}
2600 	}
2601 
2602 	baser->psz = psz;
2603 	return 0;
2604 }
2605 
its_alloc_tables(struct its_node * its)2606 static int its_alloc_tables(struct its_node *its)
2607 {
2608 	u64 shr = GITS_BASER_InnerShareable;
2609 	u64 cache = GITS_BASER_RaWaWb;
2610 	int err, i;
2611 
2612 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2613 		/* erratum 24313: ignore memory access type */
2614 		cache = GITS_BASER_nCnB;
2615 
2616 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2617 		struct its_baser *baser = its->tables + i;
2618 		u64 val = its_read_baser(its, baser);
2619 		u64 type = GITS_BASER_TYPE(val);
2620 		bool indirect = false;
2621 		u32 order;
2622 
2623 		if (type == GITS_BASER_TYPE_NONE)
2624 			continue;
2625 
2626 		if (its_probe_baser_psz(its, baser)) {
2627 			its_free_tables(its);
2628 			return -ENXIO;
2629 		}
2630 
2631 		order = get_order(baser->psz);
2632 
2633 		switch (type) {
2634 		case GITS_BASER_TYPE_DEVICE:
2635 			indirect = its_parse_indirect_baser(its, baser, &order,
2636 							    device_ids(its));
2637 			break;
2638 
2639 		case GITS_BASER_TYPE_VCPU:
2640 			if (is_v4_1(its)) {
2641 				struct its_node *sibling;
2642 
2643 				WARN_ON(i != 2);
2644 				if ((sibling = find_sibling_its(its))) {
2645 					*baser = sibling->tables[2];
2646 					its_write_baser(its, baser, baser->val);
2647 					continue;
2648 				}
2649 			}
2650 
2651 			indirect = its_parse_indirect_baser(its, baser, &order,
2652 							    ITS_MAX_VPEID_BITS);
2653 			break;
2654 		}
2655 
2656 		err = its_setup_baser(its, baser, cache, shr, order, indirect);
2657 		if (err < 0) {
2658 			its_free_tables(its);
2659 			return err;
2660 		}
2661 
2662 		/* Update settings which will be used for next BASERn */
2663 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2664 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2665 	}
2666 
2667 	return 0;
2668 }
2669 
inherit_vpe_l1_table_from_its(void)2670 static u64 inherit_vpe_l1_table_from_its(void)
2671 {
2672 	struct its_node *its;
2673 	u64 val;
2674 	u32 aff;
2675 
2676 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2677 	aff = compute_common_aff(val);
2678 
2679 	list_for_each_entry(its, &its_nodes, entry) {
2680 		u64 baser, addr;
2681 
2682 		if (!is_v4_1(its))
2683 			continue;
2684 
2685 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2686 			continue;
2687 
2688 		if (aff != compute_its_aff(its))
2689 			continue;
2690 
2691 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2692 		baser = its->tables[2].val;
2693 		if (!(baser & GITS_BASER_VALID))
2694 			continue;
2695 
2696 		/* We have a winner! */
2697 		gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2698 
2699 		val  = GICR_VPROPBASER_4_1_VALID;
2700 		if (baser & GITS_BASER_INDIRECT)
2701 			val |= GICR_VPROPBASER_4_1_INDIRECT;
2702 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2703 				  FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2704 		switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2705 		case GIC_PAGE_SIZE_64K:
2706 			addr = GITS_BASER_ADDR_48_to_52(baser);
2707 			break;
2708 		default:
2709 			addr = baser & GENMASK_ULL(47, 12);
2710 			break;
2711 		}
2712 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2713 		val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2714 				  FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2715 		val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2716 				  FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2717 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2718 
2719 		return val;
2720 	}
2721 
2722 	return 0;
2723 }
2724 
inherit_vpe_l1_table_from_rd(cpumask_t ** mask)2725 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2726 {
2727 	u32 aff;
2728 	u64 val;
2729 	int cpu;
2730 
2731 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2732 	aff = compute_common_aff(val);
2733 
2734 	for_each_possible_cpu(cpu) {
2735 		void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2736 
2737 		if (!base || cpu == smp_processor_id())
2738 			continue;
2739 
2740 		val = gic_read_typer(base + GICR_TYPER);
2741 		if (aff != compute_common_aff(val))
2742 			continue;
2743 
2744 		/*
2745 		 * At this point, we have a victim. This particular CPU
2746 		 * has already booted, and has an affinity that matches
2747 		 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2748 		 * Make sure we don't write the Z bit in that case.
2749 		 */
2750 		val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2751 		val &= ~GICR_VPROPBASER_4_1_Z;
2752 
2753 		gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2754 		*mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2755 
2756 		return val;
2757 	}
2758 
2759 	return 0;
2760 }
2761 
allocate_vpe_l2_table(int cpu,u32 id)2762 static bool allocate_vpe_l2_table(int cpu, u32 id)
2763 {
2764 	void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2765 	unsigned int psz, esz, idx, npg, gpsz;
2766 	u64 val;
2767 	struct page *page;
2768 	__le64 *table;
2769 
2770 	if (!gic_rdists->has_rvpeid)
2771 		return true;
2772 
2773 	/* Skip non-present CPUs */
2774 	if (!base)
2775 		return true;
2776 
2777 	val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2778 
2779 	esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2780 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2781 	npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2782 
2783 	switch (gpsz) {
2784 	default:
2785 		WARN_ON(1);
2786 		fallthrough;
2787 	case GIC_PAGE_SIZE_4K:
2788 		psz = SZ_4K;
2789 		break;
2790 	case GIC_PAGE_SIZE_16K:
2791 		psz = SZ_16K;
2792 		break;
2793 	case GIC_PAGE_SIZE_64K:
2794 		psz = SZ_64K;
2795 		break;
2796 	}
2797 
2798 	/* Don't allow vpe_id that exceeds single, flat table limit */
2799 	if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2800 		return (id < (npg * psz / (esz * SZ_8)));
2801 
2802 	/* Compute 1st level table index & check if that exceeds table limit */
2803 	idx = id >> ilog2(psz / (esz * SZ_8));
2804 	if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2805 		return false;
2806 
2807 	table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2808 
2809 	/* Allocate memory for 2nd level table */
2810 	if (!table[idx]) {
2811 		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2812 		if (!page)
2813 			return false;
2814 
2815 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2816 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2817 			gic_flush_dcache_to_poc(page_address(page), psz);
2818 
2819 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2820 
2821 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2822 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2823 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2824 
2825 		/* Ensure updated table contents are visible to RD hardware */
2826 		dsb(sy);
2827 	}
2828 
2829 	return true;
2830 }
2831 
allocate_vpe_l1_table(void)2832 static int allocate_vpe_l1_table(void)
2833 {
2834 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2835 	u64 val, gpsz, npg, pa;
2836 	unsigned int psz = SZ_64K;
2837 	unsigned int np, epp, esz;
2838 	struct page *page;
2839 
2840 	if (!gic_rdists->has_rvpeid)
2841 		return 0;
2842 
2843 	/*
2844 	 * if VPENDBASER.Valid is set, disable any previously programmed
2845 	 * VPE by setting PendingLast while clearing Valid. This has the
2846 	 * effect of making sure no doorbell will be generated and we can
2847 	 * then safely clear VPROPBASER.Valid.
2848 	 */
2849 	if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2850 		gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2851 				      vlpi_base + GICR_VPENDBASER);
2852 
2853 	/*
2854 	 * If we can inherit the configuration from another RD, let's do
2855 	 * so. Otherwise, we have to go through the allocation process. We
2856 	 * assume that all RDs have the exact same requirements, as
2857 	 * nothing will work otherwise.
2858 	 */
2859 	val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2860 	if (val & GICR_VPROPBASER_4_1_VALID)
2861 		goto out;
2862 
2863 	gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2864 	if (!gic_data_rdist()->vpe_table_mask)
2865 		return -ENOMEM;
2866 
2867 	val = inherit_vpe_l1_table_from_its();
2868 	if (val & GICR_VPROPBASER_4_1_VALID)
2869 		goto out;
2870 
2871 	/* First probe the page size */
2872 	val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2873 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2874 	val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2875 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2876 	esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2877 
2878 	switch (gpsz) {
2879 	default:
2880 		gpsz = GIC_PAGE_SIZE_4K;
2881 		fallthrough;
2882 	case GIC_PAGE_SIZE_4K:
2883 		psz = SZ_4K;
2884 		break;
2885 	case GIC_PAGE_SIZE_16K:
2886 		psz = SZ_16K;
2887 		break;
2888 	case GIC_PAGE_SIZE_64K:
2889 		psz = SZ_64K;
2890 		break;
2891 	}
2892 
2893 	/*
2894 	 * Start populating the register from scratch, including RO fields
2895 	 * (which we want to print in debug cases...)
2896 	 */
2897 	val = 0;
2898 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2899 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2900 
2901 	/* How many entries per GIC page? */
2902 	esz++;
2903 	epp = psz / (esz * SZ_8);
2904 
2905 	/*
2906 	 * If we need more than just a single L1 page, flag the table
2907 	 * as indirect and compute the number of required L1 pages.
2908 	 */
2909 	if (epp < ITS_MAX_VPEID) {
2910 		int nl2;
2911 
2912 		val |= GICR_VPROPBASER_4_1_INDIRECT;
2913 
2914 		/* Number of L2 pages required to cover the VPEID space */
2915 		nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2916 
2917 		/* Number of L1 pages to point to the L2 pages */
2918 		npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2919 	} else {
2920 		npg = 1;
2921 	}
2922 
2923 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2924 
2925 	/* Right, that's the number of CPU pages we need for L1 */
2926 	np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2927 
2928 	pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2929 		 np, npg, psz, epp, esz);
2930 	page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2931 	if (!page)
2932 		return -ENOMEM;
2933 
2934 	gic_data_rdist()->vpe_l1_base = page_address(page);
2935 	pa = virt_to_phys(page_address(page));
2936 	WARN_ON(!IS_ALIGNED(pa, psz));
2937 
2938 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2939 	val |= GICR_VPROPBASER_RaWb;
2940 	val |= GICR_VPROPBASER_InnerShareable;
2941 	val |= GICR_VPROPBASER_4_1_Z;
2942 	val |= GICR_VPROPBASER_4_1_VALID;
2943 
2944 out:
2945 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2946 	cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2947 
2948 	pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2949 		 smp_processor_id(), val,
2950 		 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2951 
2952 	return 0;
2953 }
2954 
its_alloc_collections(struct its_node * its)2955 static int its_alloc_collections(struct its_node *its)
2956 {
2957 	int i;
2958 
2959 	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2960 				   GFP_KERNEL);
2961 	if (!its->collections)
2962 		return -ENOMEM;
2963 
2964 	for (i = 0; i < nr_cpu_ids; i++)
2965 		its->collections[i].target_address = ~0ULL;
2966 
2967 	return 0;
2968 }
2969 
its_allocate_pending_table(gfp_t gfp_flags)2970 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2971 {
2972 	struct page *pend_page;
2973 	void *va;
2974 
2975 	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2976 				get_order(LPI_PENDBASE_SZ));
2977 	if (!pend_page)
2978 		return NULL;
2979 
2980 	/* Make sure the GIC will observe the zero-ed page */
2981 	va = page_address(pend_page);
2982 	gic_flush_dcache_to_poc(va, LPI_PENDBASE_SZ);
2983 	set_memory_decrypted((unsigned long)va, LPI_PENDBASE_SZ >> PAGE_SHIFT);
2984 
2985 	return pend_page;
2986 }
2987 
its_free_pending_table(struct page * pt)2988 static void its_free_pending_table(struct page *pt)
2989 {
2990 	unsigned long va = (unsigned long)page_address(pt);
2991 
2992 	set_memory_encrypted(va, LPI_PENDBASE_SZ >> PAGE_SHIFT);
2993 	free_pages(va, get_order(LPI_PENDBASE_SZ));
2994 }
2995 
2996 /*
2997  * Booting with kdump and LPIs enabled is generally fine. Any other
2998  * case is wrong in the absence of firmware/EFI support.
2999  */
enabled_lpis_allowed(void)3000 static bool enabled_lpis_allowed(void)
3001 {
3002 	phys_addr_t addr;
3003 	u64 val;
3004 
3005 	/* Check whether the property table is in a reserved region */
3006 	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
3007 	addr = val & GENMASK_ULL(51, 12);
3008 
3009 	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
3010 }
3011 
allocate_lpi_tables(void)3012 static int __init allocate_lpi_tables(void)
3013 {
3014 	u64 val;
3015 	int err, cpu;
3016 
3017 	/*
3018 	 * If LPIs are enabled while we run this from the boot CPU,
3019 	 * flag the RD tables as pre-allocated if the stars do align.
3020 	 */
3021 	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
3022 	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
3023 		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
3024 				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
3025 		pr_info("GICv3: Using preallocated redistributor tables\n");
3026 	}
3027 
3028 	err = its_setup_lpi_prop_table();
3029 	if (err)
3030 		return err;
3031 
3032 	/*
3033 	 * We allocate all the pending tables anyway, as we may have a
3034 	 * mix of RDs that have had LPIs enabled, and some that
3035 	 * don't. We'll free the unused ones as each CPU comes online.
3036 	 */
3037 	for_each_possible_cpu(cpu) {
3038 		struct page *pend_page;
3039 
3040 		pend_page = its_allocate_pending_table(GFP_NOWAIT);
3041 		if (!pend_page) {
3042 			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3043 			return -ENOMEM;
3044 		}
3045 
3046 		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3047 	}
3048 
3049 	return 0;
3050 }
3051 
read_vpend_dirty_clear(void __iomem * vlpi_base)3052 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3053 {
3054 	u32 count = 1000000;	/* 1s! */
3055 	bool clean;
3056 	u64 val;
3057 
3058 	do {
3059 		val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3060 		clean = !(val & GICR_VPENDBASER_Dirty);
3061 		if (!clean) {
3062 			count--;
3063 			cpu_relax();
3064 			udelay(1);
3065 		}
3066 	} while (!clean && count);
3067 
3068 	if (unlikely(!clean))
3069 		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3070 
3071 	return val;
3072 }
3073 
its_clear_vpend_valid(void __iomem * vlpi_base,u64 clr,u64 set)3074 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3075 {
3076 	u64 val;
3077 
3078 	/* Make sure we wait until the RD is done with the initial scan */
3079 	val = read_vpend_dirty_clear(vlpi_base);
3080 	val &= ~GICR_VPENDBASER_Valid;
3081 	val &= ~clr;
3082 	val |= set;
3083 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3084 
3085 	val = read_vpend_dirty_clear(vlpi_base);
3086 	if (unlikely(val & GICR_VPENDBASER_Dirty))
3087 		val |= GICR_VPENDBASER_PendingLast;
3088 
3089 	return val;
3090 }
3091 
its_cpu_init_lpis(void)3092 static void its_cpu_init_lpis(void)
3093 {
3094 	void __iomem *rbase = gic_data_rdist_rd_base();
3095 	struct page *pend_page;
3096 	phys_addr_t paddr;
3097 	u64 val, tmp;
3098 
3099 	if (gic_data_rdist()->lpi_enabled)
3100 		return;
3101 
3102 	val = readl_relaxed(rbase + GICR_CTLR);
3103 	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3104 	    (val & GICR_CTLR_ENABLE_LPIS)) {
3105 		/*
3106 		 * Check that we get the same property table on all
3107 		 * RDs. If we don't, this is hopeless.
3108 		 */
3109 		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3110 		paddr &= GENMASK_ULL(51, 12);
3111 		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3112 			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3113 
3114 		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3115 		paddr &= GENMASK_ULL(51, 16);
3116 
3117 		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3118 		its_free_pending_table(gic_data_rdist()->pend_page);
3119 		gic_data_rdist()->pend_page = NULL;
3120 
3121 		goto out;
3122 	}
3123 
3124 	pend_page = gic_data_rdist()->pend_page;
3125 	paddr = page_to_phys(pend_page);
3126 	WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
3127 
3128 	/* set PROPBASE */
3129 	val = (gic_rdists->prop_table_pa |
3130 	       GICR_PROPBASER_InnerShareable |
3131 	       GICR_PROPBASER_RaWaWb |
3132 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3133 
3134 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3135 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3136 
3137 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3138 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3139 			/*
3140 			 * The HW reports non-shareable, we must
3141 			 * remove the cacheability attributes as
3142 			 * well.
3143 			 */
3144 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3145 				 GICR_PROPBASER_CACHEABILITY_MASK);
3146 			val |= GICR_PROPBASER_nC;
3147 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3148 		}
3149 		pr_info_once("GIC: using cache flushing for LPI property table\n");
3150 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3151 	}
3152 
3153 	/* set PENDBASE */
3154 	val = (page_to_phys(pend_page) |
3155 	       GICR_PENDBASER_InnerShareable |
3156 	       GICR_PENDBASER_RaWaWb);
3157 
3158 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3159 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3160 
3161 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3162 		/*
3163 		 * The HW reports non-shareable, we must remove the
3164 		 * cacheability attributes as well.
3165 		 */
3166 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3167 			 GICR_PENDBASER_CACHEABILITY_MASK);
3168 		val |= GICR_PENDBASER_nC;
3169 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3170 	}
3171 
3172 	/* Enable LPIs */
3173 	val = readl_relaxed(rbase + GICR_CTLR);
3174 	val |= GICR_CTLR_ENABLE_LPIS;
3175 	writel_relaxed(val, rbase + GICR_CTLR);
3176 
3177 	if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3178 		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3179 
3180 		/*
3181 		 * It's possible for CPU to receive VLPIs before it is
3182 		 * scheduled as a vPE, especially for the first CPU, and the
3183 		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3184 		 * as out of range and dropped by GIC.
3185 		 * So we initialize IDbits to known value to avoid VLPI drop.
3186 		 */
3187 		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3188 		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3189 			smp_processor_id(), val);
3190 		gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3191 
3192 		/*
3193 		 * Also clear Valid bit of GICR_VPENDBASER, in case some
3194 		 * ancient programming gets left in and has possibility of
3195 		 * corrupting memory.
3196 		 */
3197 		val = its_clear_vpend_valid(vlpi_base, 0, 0);
3198 	}
3199 
3200 	if (allocate_vpe_l1_table()) {
3201 		/*
3202 		 * If the allocation has failed, we're in massive trouble.
3203 		 * Disable direct injection, and pray that no VM was
3204 		 * already running...
3205 		 */
3206 		gic_rdists->has_rvpeid = false;
3207 		gic_rdists->has_vlpis = false;
3208 	}
3209 
3210 	/* Make sure the GIC has seen the above */
3211 	dsb(sy);
3212 out:
3213 	gic_data_rdist()->lpi_enabled = true;
3214 	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3215 		smp_processor_id(),
3216 		gic_data_rdist()->pend_page ? "allocated" : "reserved",
3217 		&paddr);
3218 }
3219 
its_cpu_init_collection(struct its_node * its)3220 static void its_cpu_init_collection(struct its_node *its)
3221 {
3222 	int cpu = smp_processor_id();
3223 	u64 target;
3224 
3225 	/* avoid cross node collections and its mapping */
3226 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3227 		struct device_node *cpu_node;
3228 
3229 		cpu_node = of_get_cpu_node(cpu, NULL);
3230 		if (its->numa_node != NUMA_NO_NODE &&
3231 			its->numa_node != of_node_to_nid(cpu_node))
3232 			return;
3233 	}
3234 
3235 	/*
3236 	 * We now have to bind each collection to its target
3237 	 * redistributor.
3238 	 */
3239 	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3240 		/*
3241 		 * This ITS wants the physical address of the
3242 		 * redistributor.
3243 		 */
3244 		target = gic_data_rdist()->phys_base;
3245 	} else {
3246 		/* This ITS wants a linear CPU number. */
3247 		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3248 		target = GICR_TYPER_CPU_NUMBER(target) << 16;
3249 	}
3250 
3251 	/* Perform collection mapping */
3252 	its->collections[cpu].target_address = target;
3253 	its->collections[cpu].col_id = cpu;
3254 
3255 	its_send_mapc(its, &its->collections[cpu], 1);
3256 	its_send_invall(its, &its->collections[cpu]);
3257 }
3258 
its_cpu_init_collections(void)3259 static void its_cpu_init_collections(void)
3260 {
3261 	struct its_node *its;
3262 
3263 	raw_spin_lock(&its_lock);
3264 
3265 	list_for_each_entry(its, &its_nodes, entry)
3266 		its_cpu_init_collection(its);
3267 
3268 	raw_spin_unlock(&its_lock);
3269 }
3270 
its_find_device(struct its_node * its,u32 dev_id)3271 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3272 {
3273 	struct its_device *its_dev = NULL, *tmp;
3274 	unsigned long flags;
3275 
3276 	raw_spin_lock_irqsave(&its->lock, flags);
3277 
3278 	list_for_each_entry(tmp, &its->its_device_list, entry) {
3279 		if (tmp->device_id == dev_id) {
3280 			its_dev = tmp;
3281 			break;
3282 		}
3283 	}
3284 
3285 	raw_spin_unlock_irqrestore(&its->lock, flags);
3286 
3287 	return its_dev;
3288 }
3289 
its_get_baser(struct its_node * its,u32 type)3290 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3291 {
3292 	int i;
3293 
3294 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3295 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
3296 			return &its->tables[i];
3297 	}
3298 
3299 	return NULL;
3300 }
3301 
its_alloc_table_entry(struct its_node * its,struct its_baser * baser,u32 id)3302 static bool its_alloc_table_entry(struct its_node *its,
3303 				  struct its_baser *baser, u32 id)
3304 {
3305 	struct page *page;
3306 	u32 esz, idx;
3307 	__le64 *table;
3308 
3309 	/* Don't allow device id that exceeds single, flat table limit */
3310 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
3311 	if (!(baser->val & GITS_BASER_INDIRECT))
3312 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3313 
3314 	/* Compute 1st level table index & check if that exceeds table limit */
3315 	idx = id >> ilog2(baser->psz / esz);
3316 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3317 		return false;
3318 
3319 	table = baser->base;
3320 
3321 	/* Allocate memory for 2nd level table */
3322 	if (!table[idx]) {
3323 		void *l2addr;
3324 
3325 		page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3326 					get_order(baser->psz));
3327 		if (!page)
3328 			return false;
3329 
3330 		l2addr = page_address(page);
3331 		set_memory_decrypted((unsigned long)l2addr,
3332 				     baser->psz >> PAGE_SHIFT);
3333 
3334 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
3335 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3336 			gic_flush_dcache_to_poc(l2addr, baser->psz);
3337 
3338 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3339 
3340 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3341 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3342 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3343 
3344 		/* Ensure updated table contents are visible to ITS hardware */
3345 		dsb(sy);
3346 	}
3347 
3348 	return true;
3349 }
3350 
its_alloc_device_table(struct its_node * its,u32 dev_id)3351 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3352 {
3353 	struct its_baser *baser;
3354 
3355 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3356 
3357 	/* Don't allow device id that exceeds ITS hardware limit */
3358 	if (!baser)
3359 		return (ilog2(dev_id) < device_ids(its));
3360 
3361 	return its_alloc_table_entry(its, baser, dev_id);
3362 }
3363 
its_alloc_vpe_table(u32 vpe_id)3364 static bool its_alloc_vpe_table(u32 vpe_id)
3365 {
3366 	struct its_node *its;
3367 	int cpu;
3368 
3369 	/*
3370 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3371 	 * could try and only do it on ITSs corresponding to devices
3372 	 * that have interrupts targeted at this VPE, but the
3373 	 * complexity becomes crazy (and you have tons of memory
3374 	 * anyway, right?).
3375 	 */
3376 	list_for_each_entry(its, &its_nodes, entry) {
3377 		struct its_baser *baser;
3378 
3379 		if (!is_v4(its))
3380 			continue;
3381 
3382 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3383 		if (!baser)
3384 			return false;
3385 
3386 		if (!its_alloc_table_entry(its, baser, vpe_id))
3387 			return false;
3388 	}
3389 
3390 	/* Non v4.1? No need to iterate RDs and go back early. */
3391 	if (!gic_rdists->has_rvpeid)
3392 		return true;
3393 
3394 	/*
3395 	 * Make sure the L2 tables are allocated for all copies of
3396 	 * the L1 table on *all* v4.1 RDs.
3397 	 */
3398 	for_each_possible_cpu(cpu) {
3399 		if (!allocate_vpe_l2_table(cpu, vpe_id))
3400 			return false;
3401 	}
3402 
3403 	return true;
3404 }
3405 
its_create_device(struct its_node * its,u32 dev_id,int nvecs,bool alloc_lpis)3406 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3407 					    int nvecs, bool alloc_lpis)
3408 {
3409 	struct its_device *dev;
3410 	unsigned long *lpi_map = NULL;
3411 	unsigned long flags;
3412 	u16 *col_map = NULL;
3413 	void *itt;
3414 	int lpi_base;
3415 	int nr_lpis;
3416 	int nr_ites;
3417 	int sz;
3418 
3419 	if (!its_alloc_device_table(its, dev_id))
3420 		return NULL;
3421 
3422 	if (WARN_ON(!is_power_of_2(nvecs)))
3423 		nvecs = roundup_pow_of_two(nvecs);
3424 
3425 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3426 	/*
3427 	 * Even if the device wants a single LPI, the ITT must be
3428 	 * sized as a power of two (and you need at least one bit...).
3429 	 */
3430 	nr_ites = max(2, nvecs);
3431 	sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3432 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3433 	itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3434 	if (alloc_lpis) {
3435 		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3436 		if (lpi_map)
3437 			col_map = kcalloc(nr_lpis, sizeof(*col_map),
3438 					  GFP_KERNEL);
3439 	} else {
3440 		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3441 		nr_lpis = 0;
3442 		lpi_base = 0;
3443 	}
3444 
3445 	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
3446 		kfree(dev);
3447 		kfree(itt);
3448 		bitmap_free(lpi_map);
3449 		kfree(col_map);
3450 		return NULL;
3451 	}
3452 
3453 	gic_flush_dcache_to_poc(itt, sz);
3454 
3455 	dev->its = its;
3456 	dev->itt = itt;
3457 	dev->nr_ites = nr_ites;
3458 	dev->event_map.lpi_map = lpi_map;
3459 	dev->event_map.col_map = col_map;
3460 	dev->event_map.lpi_base = lpi_base;
3461 	dev->event_map.nr_lpis = nr_lpis;
3462 	raw_spin_lock_init(&dev->event_map.vlpi_lock);
3463 	dev->device_id = dev_id;
3464 	INIT_LIST_HEAD(&dev->entry);
3465 
3466 	raw_spin_lock_irqsave(&its->lock, flags);
3467 	list_add(&dev->entry, &its->its_device_list);
3468 	raw_spin_unlock_irqrestore(&its->lock, flags);
3469 
3470 	/* Map device to its ITT */
3471 	its_send_mapd(dev, 1);
3472 
3473 	return dev;
3474 }
3475 
its_free_device(struct its_device * its_dev)3476 static void its_free_device(struct its_device *its_dev)
3477 {
3478 	unsigned long flags;
3479 
3480 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3481 	list_del(&its_dev->entry);
3482 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3483 	kfree(its_dev->event_map.col_map);
3484 	kfree(its_dev->itt);
3485 	kfree(its_dev);
3486 }
3487 
its_alloc_device_irq(struct its_device * dev,int nvecs,irq_hw_number_t * hwirq)3488 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3489 {
3490 	int idx;
3491 
3492 	/* Find a free LPI region in lpi_map and allocate them. */
3493 	idx = bitmap_find_free_region(dev->event_map.lpi_map,
3494 				      dev->event_map.nr_lpis,
3495 				      get_count_order(nvecs));
3496 	if (idx < 0)
3497 		return -ENOSPC;
3498 
3499 	*hwirq = dev->event_map.lpi_base + idx;
3500 
3501 	return 0;
3502 }
3503 
its_msi_prepare(struct irq_domain * domain,struct device * dev,int nvec,msi_alloc_info_t * info)3504 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3505 			   int nvec, msi_alloc_info_t *info)
3506 {
3507 	struct its_node *its;
3508 	struct its_device *its_dev;
3509 	struct msi_domain_info *msi_info;
3510 	u32 dev_id;
3511 	int err = 0;
3512 
3513 	/*
3514 	 * We ignore "dev" entirely, and rely on the dev_id that has
3515 	 * been passed via the scratchpad. This limits this domain's
3516 	 * usefulness to upper layers that definitely know that they
3517 	 * are built on top of the ITS.
3518 	 */
3519 	dev_id = info->scratchpad[0].ul;
3520 
3521 	msi_info = msi_get_domain_info(domain);
3522 	its = msi_info->data;
3523 
3524 	if (!gic_rdists->has_direct_lpi &&
3525 	    vpe_proxy.dev &&
3526 	    vpe_proxy.dev->its == its &&
3527 	    dev_id == vpe_proxy.dev->device_id) {
3528 		/* Bad luck. Get yourself a better implementation */
3529 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3530 			  dev_id);
3531 		return -EINVAL;
3532 	}
3533 
3534 	mutex_lock(&its->dev_alloc_lock);
3535 	its_dev = its_find_device(its, dev_id);
3536 	if (its_dev) {
3537 		/*
3538 		 * We already have seen this ID, probably through
3539 		 * another alias (PCI bridge of some sort). No need to
3540 		 * create the device.
3541 		 */
3542 		its_dev->shared = true;
3543 		pr_debug("Reusing ITT for devID %x\n", dev_id);
3544 		goto out;
3545 	}
3546 
3547 	its_dev = its_create_device(its, dev_id, nvec, true);
3548 	if (!its_dev) {
3549 		err = -ENOMEM;
3550 		goto out;
3551 	}
3552 
3553 	if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3554 		its_dev->shared = true;
3555 
3556 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3557 out:
3558 	mutex_unlock(&its->dev_alloc_lock);
3559 	info->scratchpad[0].ptr = its_dev;
3560 	return err;
3561 }
3562 
3563 static struct msi_domain_ops its_msi_domain_ops = {
3564 	.msi_prepare	= its_msi_prepare,
3565 };
3566 
its_irq_gic_domain_alloc(struct irq_domain * domain,unsigned int virq,irq_hw_number_t hwirq)3567 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3568 				    unsigned int virq,
3569 				    irq_hw_number_t hwirq)
3570 {
3571 	struct irq_fwspec fwspec;
3572 
3573 	if (irq_domain_get_of_node(domain->parent)) {
3574 		fwspec.fwnode = domain->parent->fwnode;
3575 		fwspec.param_count = 3;
3576 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3577 		fwspec.param[1] = hwirq;
3578 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3579 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3580 		fwspec.fwnode = domain->parent->fwnode;
3581 		fwspec.param_count = 2;
3582 		fwspec.param[0] = hwirq;
3583 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3584 	} else {
3585 		return -EINVAL;
3586 	}
3587 
3588 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3589 }
3590 
its_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)3591 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3592 				unsigned int nr_irqs, void *args)
3593 {
3594 	msi_alloc_info_t *info = args;
3595 	struct its_device *its_dev = info->scratchpad[0].ptr;
3596 	struct its_node *its = its_dev->its;
3597 	struct irq_data *irqd;
3598 	irq_hw_number_t hwirq;
3599 	int err;
3600 	int i;
3601 
3602 	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3603 	if (err)
3604 		return err;
3605 
3606 	err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3607 	if (err)
3608 		return err;
3609 
3610 	for (i = 0; i < nr_irqs; i++) {
3611 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3612 		if (err)
3613 			return err;
3614 
3615 		irq_domain_set_hwirq_and_chip(domain, virq + i,
3616 					      hwirq + i, &its_irq_chip, its_dev);
3617 		irqd = irq_get_irq_data(virq + i);
3618 		irqd_set_single_target(irqd);
3619 		irqd_set_affinity_on_activate(irqd);
3620 		pr_debug("ID:%d pID:%d vID:%d\n",
3621 			 (int)(hwirq + i - its_dev->event_map.lpi_base),
3622 			 (int)(hwirq + i), virq + i);
3623 	}
3624 
3625 	return 0;
3626 }
3627 
its_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)3628 static int its_irq_domain_activate(struct irq_domain *domain,
3629 				   struct irq_data *d, bool reserve)
3630 {
3631 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3632 	u32 event = its_get_event_id(d);
3633 	int cpu;
3634 
3635 	cpu = its_select_cpu(d, cpu_online_mask);
3636 	if (cpu < 0 || cpu >= nr_cpu_ids)
3637 		return -EINVAL;
3638 
3639 	its_inc_lpi_count(d, cpu);
3640 	its_dev->event_map.col_map[event] = cpu;
3641 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3642 
3643 	/* Map the GIC IRQ and event to the device */
3644 	its_send_mapti(its_dev, d->hwirq, event);
3645 	return 0;
3646 }
3647 
its_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)3648 static void its_irq_domain_deactivate(struct irq_domain *domain,
3649 				      struct irq_data *d)
3650 {
3651 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3652 	u32 event = its_get_event_id(d);
3653 
3654 	its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3655 	/* Stop the delivery of interrupts */
3656 	its_send_discard(its_dev, event);
3657 }
3658 
its_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)3659 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3660 				unsigned int nr_irqs)
3661 {
3662 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3663 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3664 	struct its_node *its = its_dev->its;
3665 	int i;
3666 
3667 	bitmap_release_region(its_dev->event_map.lpi_map,
3668 			      its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3669 			      get_count_order(nr_irqs));
3670 
3671 	for (i = 0; i < nr_irqs; i++) {
3672 		struct irq_data *data = irq_domain_get_irq_data(domain,
3673 								virq + i);
3674 		/* Nuke the entry in the domain */
3675 		irq_domain_reset_irq_data(data);
3676 	}
3677 
3678 	mutex_lock(&its->dev_alloc_lock);
3679 
3680 	/*
3681 	 * If all interrupts have been freed, start mopping the
3682 	 * floor. This is conditioned on the device not being shared.
3683 	 */
3684 	if (!its_dev->shared &&
3685 	    bitmap_empty(its_dev->event_map.lpi_map,
3686 			 its_dev->event_map.nr_lpis)) {
3687 		its_lpi_free(its_dev->event_map.lpi_map,
3688 			     its_dev->event_map.lpi_base,
3689 			     its_dev->event_map.nr_lpis);
3690 
3691 		/* Unmap device/itt */
3692 		its_send_mapd(its_dev, 0);
3693 		its_free_device(its_dev);
3694 	}
3695 
3696 	mutex_unlock(&its->dev_alloc_lock);
3697 
3698 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3699 }
3700 
3701 static const struct irq_domain_ops its_domain_ops = {
3702 	.alloc			= its_irq_domain_alloc,
3703 	.free			= its_irq_domain_free,
3704 	.activate		= its_irq_domain_activate,
3705 	.deactivate		= its_irq_domain_deactivate,
3706 };
3707 
3708 /*
3709  * This is insane.
3710  *
3711  * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3712  * likely), the only way to perform an invalidate is to use a fake
3713  * device to issue an INV command, implying that the LPI has first
3714  * been mapped to some event on that device. Since this is not exactly
3715  * cheap, we try to keep that mapping around as long as possible, and
3716  * only issue an UNMAP if we're short on available slots.
3717  *
3718  * Broken by design(tm).
3719  *
3720  * GICv4.1, on the other hand, mandates that we're able to invalidate
3721  * by writing to a MMIO register. It doesn't implement the whole of
3722  * DirectLPI, but that's good enough. And most of the time, we don't
3723  * even have to invalidate anything, as the redistributor can be told
3724  * whether to generate a doorbell or not (we thus leave it enabled,
3725  * always).
3726  */
its_vpe_db_proxy_unmap_locked(struct its_vpe * vpe)3727 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3728 {
3729 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3730 	if (gic_rdists->has_rvpeid)
3731 		return;
3732 
3733 	/* Already unmapped? */
3734 	if (vpe->vpe_proxy_event == -1)
3735 		return;
3736 
3737 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3738 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3739 
3740 	/*
3741 	 * We don't track empty slots at all, so let's move the
3742 	 * next_victim pointer if we can quickly reuse that slot
3743 	 * instead of nuking an existing entry. Not clear that this is
3744 	 * always a win though, and this might just generate a ripple
3745 	 * effect... Let's just hope VPEs don't migrate too often.
3746 	 */
3747 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3748 		vpe_proxy.next_victim = vpe->vpe_proxy_event;
3749 
3750 	vpe->vpe_proxy_event = -1;
3751 }
3752 
its_vpe_db_proxy_unmap(struct its_vpe * vpe)3753 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3754 {
3755 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3756 	if (gic_rdists->has_rvpeid)
3757 		return;
3758 
3759 	if (!gic_rdists->has_direct_lpi) {
3760 		unsigned long flags;
3761 
3762 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3763 		its_vpe_db_proxy_unmap_locked(vpe);
3764 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3765 	}
3766 }
3767 
its_vpe_db_proxy_map_locked(struct its_vpe * vpe)3768 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3769 {
3770 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3771 	if (gic_rdists->has_rvpeid)
3772 		return;
3773 
3774 	/* Already mapped? */
3775 	if (vpe->vpe_proxy_event != -1)
3776 		return;
3777 
3778 	/* This slot was already allocated. Kick the other VPE out. */
3779 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3780 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3781 
3782 	/* Map the new VPE instead */
3783 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3784 	vpe->vpe_proxy_event = vpe_proxy.next_victim;
3785 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3786 
3787 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3788 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3789 }
3790 
its_vpe_db_proxy_move(struct its_vpe * vpe,int from,int to)3791 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3792 {
3793 	unsigned long flags;
3794 	struct its_collection *target_col;
3795 
3796 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3797 	if (gic_rdists->has_rvpeid)
3798 		return;
3799 
3800 	if (gic_rdists->has_direct_lpi) {
3801 		void __iomem *rdbase;
3802 
3803 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3804 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3805 		wait_for_syncr(rdbase);
3806 
3807 		return;
3808 	}
3809 
3810 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3811 
3812 	its_vpe_db_proxy_map_locked(vpe);
3813 
3814 	target_col = &vpe_proxy.dev->its->collections[to];
3815 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3816 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3817 
3818 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3819 }
3820 
its_vpe_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)3821 static int its_vpe_set_affinity(struct irq_data *d,
3822 				const struct cpumask *mask_val,
3823 				bool force)
3824 {
3825 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3826 	struct cpumask common, *table_mask;
3827 	unsigned long flags;
3828 	int from, cpu;
3829 
3830 	/*
3831 	 * Changing affinity is mega expensive, so let's be as lazy as
3832 	 * we can and only do it if we really have to. Also, if mapped
3833 	 * into the proxy device, we need to move the doorbell
3834 	 * interrupt to its new location.
3835 	 *
3836 	 * Another thing is that changing the affinity of a vPE affects
3837 	 * *other interrupts* such as all the vLPIs that are routed to
3838 	 * this vPE. This means that the irq_desc lock is not enough to
3839 	 * protect us, and that we must ensure nobody samples vpe->col_idx
3840 	 * during the update, hence the lock below which must also be
3841 	 * taken on any vLPI handling path that evaluates vpe->col_idx.
3842 	 */
3843 	from = vpe_to_cpuid_lock(vpe, &flags);
3844 	table_mask = gic_data_rdist_cpu(from)->vpe_table_mask;
3845 
3846 	/*
3847 	 * If we are offered another CPU in the same GICv4.1 ITS
3848 	 * affinity, pick this one. Otherwise, any CPU will do.
3849 	 */
3850 	if (table_mask && cpumask_and(&common, mask_val, table_mask))
3851 		cpu = cpumask_test_cpu(from, &common) ? from : cpumask_first(&common);
3852 	else
3853 		cpu = cpumask_first(mask_val);
3854 
3855 	if (from == cpu)
3856 		goto out;
3857 
3858 	vpe->col_idx = cpu;
3859 
3860 	its_send_vmovp(vpe);
3861 	its_vpe_db_proxy_move(vpe, from, cpu);
3862 
3863 out:
3864 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3865 	vpe_to_cpuid_unlock(vpe, flags);
3866 
3867 	return IRQ_SET_MASK_OK_DONE;
3868 }
3869 
its_wait_vpt_parse_complete(void)3870 static void its_wait_vpt_parse_complete(void)
3871 {
3872 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3873 	u64 val;
3874 
3875 	if (!gic_rdists->has_vpend_valid_dirty)
3876 		return;
3877 
3878 	WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3879 						       val,
3880 						       !(val & GICR_VPENDBASER_Dirty),
3881 						       1, 500));
3882 }
3883 
its_vpe_schedule(struct its_vpe * vpe)3884 static void its_vpe_schedule(struct its_vpe *vpe)
3885 {
3886 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3887 	u64 val;
3888 
3889 	/* Schedule the VPE */
3890 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3891 		GENMASK_ULL(51, 12);
3892 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3893 	val |= GICR_VPROPBASER_RaWb;
3894 	val |= GICR_VPROPBASER_InnerShareable;
3895 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3896 
3897 	val  = virt_to_phys(page_address(vpe->vpt_page)) &
3898 		GENMASK_ULL(51, 16);
3899 	val |= GICR_VPENDBASER_RaWaWb;
3900 	val |= GICR_VPENDBASER_InnerShareable;
3901 	/*
3902 	 * There is no good way of finding out if the pending table is
3903 	 * empty as we can race against the doorbell interrupt very
3904 	 * easily. So in the end, vpe->pending_last is only an
3905 	 * indication that the vcpu has something pending, not one
3906 	 * that the pending table is empty. A good implementation
3907 	 * would be able to read its coarse map pretty quickly anyway,
3908 	 * making this a tolerable issue.
3909 	 */
3910 	val |= GICR_VPENDBASER_PendingLast;
3911 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3912 	val |= GICR_VPENDBASER_Valid;
3913 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3914 }
3915 
its_vpe_deschedule(struct its_vpe * vpe)3916 static void its_vpe_deschedule(struct its_vpe *vpe)
3917 {
3918 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3919 	u64 val;
3920 
3921 	val = its_clear_vpend_valid(vlpi_base, 0, 0);
3922 
3923 	vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3924 	vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3925 }
3926 
its_vpe_invall(struct its_vpe * vpe)3927 static void its_vpe_invall(struct its_vpe *vpe)
3928 {
3929 	struct its_node *its;
3930 
3931 	list_for_each_entry(its, &its_nodes, entry) {
3932 		if (!is_v4(its))
3933 			continue;
3934 
3935 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3936 			continue;
3937 
3938 		/*
3939 		 * Sending a VINVALL to a single ITS is enough, as all
3940 		 * we need is to reach the redistributors.
3941 		 */
3942 		its_send_vinvall(its, vpe);
3943 		return;
3944 	}
3945 }
3946 
its_vpe_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)3947 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3948 {
3949 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3950 	struct its_cmd_info *info = vcpu_info;
3951 
3952 	switch (info->cmd_type) {
3953 	case SCHEDULE_VPE:
3954 		its_vpe_schedule(vpe);
3955 		return 0;
3956 
3957 	case DESCHEDULE_VPE:
3958 		its_vpe_deschedule(vpe);
3959 		return 0;
3960 
3961 	case COMMIT_VPE:
3962 		its_wait_vpt_parse_complete();
3963 		return 0;
3964 
3965 	case INVALL_VPE:
3966 		its_vpe_invall(vpe);
3967 		return 0;
3968 
3969 	default:
3970 		return -EINVAL;
3971 	}
3972 }
3973 
its_vpe_send_cmd(struct its_vpe * vpe,void (* cmd)(struct its_device *,u32))3974 static void its_vpe_send_cmd(struct its_vpe *vpe,
3975 			     void (*cmd)(struct its_device *, u32))
3976 {
3977 	unsigned long flags;
3978 
3979 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3980 
3981 	its_vpe_db_proxy_map_locked(vpe);
3982 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3983 
3984 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3985 }
3986 
its_vpe_send_inv(struct irq_data * d)3987 static void its_vpe_send_inv(struct irq_data *d)
3988 {
3989 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3990 
3991 	if (gic_rdists->has_direct_lpi)
3992 		__direct_lpi_inv(d, d->parent_data->hwirq);
3993 	else
3994 		its_vpe_send_cmd(vpe, its_send_inv);
3995 }
3996 
its_vpe_mask_irq(struct irq_data * d)3997 static void its_vpe_mask_irq(struct irq_data *d)
3998 {
3999 	/*
4000 	 * We need to unmask the LPI, which is described by the parent
4001 	 * irq_data. Instead of calling into the parent (which won't
4002 	 * exactly do the right thing, let's simply use the
4003 	 * parent_data pointer. Yes, I'm naughty.
4004 	 */
4005 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4006 	its_vpe_send_inv(d);
4007 }
4008 
its_vpe_unmask_irq(struct irq_data * d)4009 static void its_vpe_unmask_irq(struct irq_data *d)
4010 {
4011 	/* Same hack as above... */
4012 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4013 	its_vpe_send_inv(d);
4014 }
4015 
its_vpe_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)4016 static int its_vpe_set_irqchip_state(struct irq_data *d,
4017 				     enum irqchip_irq_state which,
4018 				     bool state)
4019 {
4020 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4021 
4022 	if (which != IRQCHIP_STATE_PENDING)
4023 		return -EINVAL;
4024 
4025 	if (gic_rdists->has_direct_lpi) {
4026 		void __iomem *rdbase;
4027 
4028 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4029 		if (state) {
4030 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4031 		} else {
4032 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
4033 			wait_for_syncr(rdbase);
4034 		}
4035 	} else {
4036 		if (state)
4037 			its_vpe_send_cmd(vpe, its_send_int);
4038 		else
4039 			its_vpe_send_cmd(vpe, its_send_clear);
4040 	}
4041 
4042 	return 0;
4043 }
4044 
its_vpe_retrigger(struct irq_data * d)4045 static int its_vpe_retrigger(struct irq_data *d)
4046 {
4047 	return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4048 }
4049 
4050 static struct irq_chip its_vpe_irq_chip = {
4051 	.name			= "GICv4-vpe",
4052 	.irq_mask		= its_vpe_mask_irq,
4053 	.irq_unmask		= its_vpe_unmask_irq,
4054 	.irq_eoi		= irq_chip_eoi_parent,
4055 	.irq_set_affinity	= its_vpe_set_affinity,
4056 	.irq_retrigger		= its_vpe_retrigger,
4057 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
4058 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
4059 };
4060 
find_4_1_its(void)4061 static struct its_node *find_4_1_its(void)
4062 {
4063 	static struct its_node *its = NULL;
4064 
4065 	if (!its) {
4066 		list_for_each_entry(its, &its_nodes, entry) {
4067 			if (is_v4_1(its))
4068 				return its;
4069 		}
4070 
4071 		/* Oops? */
4072 		its = NULL;
4073 	}
4074 
4075 	return its;
4076 }
4077 
its_vpe_4_1_send_inv(struct irq_data * d)4078 static void its_vpe_4_1_send_inv(struct irq_data *d)
4079 {
4080 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4081 	struct its_node *its;
4082 
4083 	/*
4084 	 * GICv4.1 wants doorbells to be invalidated using the
4085 	 * INVDB command in order to be broadcast to all RDs. Send
4086 	 * it to the first valid ITS, and let the HW do its magic.
4087 	 */
4088 	its = find_4_1_its();
4089 	if (its)
4090 		its_send_invdb(its, vpe);
4091 }
4092 
its_vpe_4_1_mask_irq(struct irq_data * d)4093 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4094 {
4095 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4096 	its_vpe_4_1_send_inv(d);
4097 }
4098 
its_vpe_4_1_unmask_irq(struct irq_data * d)4099 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4100 {
4101 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4102 	its_vpe_4_1_send_inv(d);
4103 }
4104 
its_vpe_4_1_schedule(struct its_vpe * vpe,struct its_cmd_info * info)4105 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4106 				 struct its_cmd_info *info)
4107 {
4108 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4109 	u64 val = 0;
4110 
4111 	/* Schedule the VPE */
4112 	val |= GICR_VPENDBASER_Valid;
4113 	val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4114 	val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4115 	val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4116 
4117 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4118 }
4119 
its_vpe_4_1_deschedule(struct its_vpe * vpe,struct its_cmd_info * info)4120 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4121 				   struct its_cmd_info *info)
4122 {
4123 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4124 	u64 val;
4125 
4126 	if (info->req_db) {
4127 		unsigned long flags;
4128 
4129 		/*
4130 		 * vPE is going to block: make the vPE non-resident with
4131 		 * PendingLast clear and DB set. The GIC guarantees that if
4132 		 * we read-back PendingLast clear, then a doorbell will be
4133 		 * delivered when an interrupt comes.
4134 		 *
4135 		 * Note the locking to deal with the concurrent update of
4136 		 * pending_last from the doorbell interrupt handler that can
4137 		 * run concurrently.
4138 		 */
4139 		raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4140 		val = its_clear_vpend_valid(vlpi_base,
4141 					    GICR_VPENDBASER_PendingLast,
4142 					    GICR_VPENDBASER_4_1_DB);
4143 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4144 		raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4145 	} else {
4146 		/*
4147 		 * We're not blocking, so just make the vPE non-resident
4148 		 * with PendingLast set, indicating that we'll be back.
4149 		 */
4150 		val = its_clear_vpend_valid(vlpi_base,
4151 					    0,
4152 					    GICR_VPENDBASER_PendingLast);
4153 		vpe->pending_last = true;
4154 	}
4155 }
4156 
its_vpe_4_1_invall(struct its_vpe * vpe)4157 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4158 {
4159 	void __iomem *rdbase;
4160 	unsigned long flags;
4161 	u64 val;
4162 	int cpu;
4163 
4164 	val  = GICR_INVALLR_V;
4165 	val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4166 
4167 	/* Target the redistributor this vPE is currently known on */
4168 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4169 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4170 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4171 	gic_write_lpir(val, rdbase + GICR_INVALLR);
4172 
4173 	wait_for_syncr(rdbase);
4174 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4175 	vpe_to_cpuid_unlock(vpe, flags);
4176 }
4177 
its_vpe_4_1_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)4178 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4179 {
4180 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4181 	struct its_cmd_info *info = vcpu_info;
4182 
4183 	switch (info->cmd_type) {
4184 	case SCHEDULE_VPE:
4185 		its_vpe_4_1_schedule(vpe, info);
4186 		return 0;
4187 
4188 	case DESCHEDULE_VPE:
4189 		its_vpe_4_1_deschedule(vpe, info);
4190 		return 0;
4191 
4192 	case COMMIT_VPE:
4193 		its_wait_vpt_parse_complete();
4194 		return 0;
4195 
4196 	case INVALL_VPE:
4197 		its_vpe_4_1_invall(vpe);
4198 		return 0;
4199 
4200 	default:
4201 		return -EINVAL;
4202 	}
4203 }
4204 
4205 static struct irq_chip its_vpe_4_1_irq_chip = {
4206 	.name			= "GICv4.1-vpe",
4207 	.irq_mask		= its_vpe_4_1_mask_irq,
4208 	.irq_unmask		= its_vpe_4_1_unmask_irq,
4209 	.irq_eoi		= irq_chip_eoi_parent,
4210 	.irq_set_affinity	= its_vpe_set_affinity,
4211 	.irq_set_vcpu_affinity	= its_vpe_4_1_set_vcpu_affinity,
4212 };
4213 
its_configure_sgi(struct irq_data * d,bool clear)4214 static void its_configure_sgi(struct irq_data *d, bool clear)
4215 {
4216 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4217 	struct its_cmd_desc desc;
4218 
4219 	desc.its_vsgi_cmd.vpe = vpe;
4220 	desc.its_vsgi_cmd.sgi = d->hwirq;
4221 	desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4222 	desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4223 	desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4224 	desc.its_vsgi_cmd.clear = clear;
4225 
4226 	/*
4227 	 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4228 	 * destination VPE is mapped there. Since we map them eagerly at
4229 	 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4230 	 */
4231 	its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4232 }
4233 
its_sgi_mask_irq(struct irq_data * d)4234 static void its_sgi_mask_irq(struct irq_data *d)
4235 {
4236 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4237 
4238 	vpe->sgi_config[d->hwirq].enabled = false;
4239 	its_configure_sgi(d, false);
4240 }
4241 
its_sgi_unmask_irq(struct irq_data * d)4242 static void its_sgi_unmask_irq(struct irq_data *d)
4243 {
4244 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4245 
4246 	vpe->sgi_config[d->hwirq].enabled = true;
4247 	its_configure_sgi(d, false);
4248 }
4249 
its_sgi_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)4250 static int its_sgi_set_affinity(struct irq_data *d,
4251 				const struct cpumask *mask_val,
4252 				bool force)
4253 {
4254 	/*
4255 	 * There is no notion of affinity for virtual SGIs, at least
4256 	 * not on the host (since they can only be targeting a vPE).
4257 	 * Tell the kernel we've done whatever it asked for.
4258 	 */
4259 	irq_data_update_effective_affinity(d, mask_val);
4260 	return IRQ_SET_MASK_OK;
4261 }
4262 
its_sgi_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)4263 static int its_sgi_set_irqchip_state(struct irq_data *d,
4264 				     enum irqchip_irq_state which,
4265 				     bool state)
4266 {
4267 	if (which != IRQCHIP_STATE_PENDING)
4268 		return -EINVAL;
4269 
4270 	if (state) {
4271 		struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4272 		struct its_node *its = find_4_1_its();
4273 		u64 val;
4274 
4275 		val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4276 		val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4277 		writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4278 	} else {
4279 		its_configure_sgi(d, true);
4280 	}
4281 
4282 	return 0;
4283 }
4284 
its_sgi_get_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool * val)4285 static int its_sgi_get_irqchip_state(struct irq_data *d,
4286 				     enum irqchip_irq_state which, bool *val)
4287 {
4288 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4289 	void __iomem *base;
4290 	unsigned long flags;
4291 	u32 count = 1000000;	/* 1s! */
4292 	u32 status;
4293 	int cpu;
4294 
4295 	if (which != IRQCHIP_STATE_PENDING)
4296 		return -EINVAL;
4297 
4298 	/*
4299 	 * Locking galore! We can race against two different events:
4300 	 *
4301 	 * - Concurrent vPE affinity change: we must make sure it cannot
4302 	 *   happen, or we'll talk to the wrong redistributor. This is
4303 	 *   identical to what happens with vLPIs.
4304 	 *
4305 	 * - Concurrent VSGIPENDR access: As it involves accessing two
4306 	 *   MMIO registers, this must be made atomic one way or another.
4307 	 */
4308 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4309 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4310 	base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4311 	writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4312 	do {
4313 		status = readl_relaxed(base + GICR_VSGIPENDR);
4314 		if (!(status & GICR_VSGIPENDR_BUSY))
4315 			goto out;
4316 
4317 		count--;
4318 		if (!count) {
4319 			pr_err_ratelimited("Unable to get SGI status\n");
4320 			goto out;
4321 		}
4322 		cpu_relax();
4323 		udelay(1);
4324 	} while (count);
4325 
4326 out:
4327 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4328 	vpe_to_cpuid_unlock(vpe, flags);
4329 
4330 	if (!count)
4331 		return -ENXIO;
4332 
4333 	*val = !!(status & (1 << d->hwirq));
4334 
4335 	return 0;
4336 }
4337 
its_sgi_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)4338 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4339 {
4340 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4341 	struct its_cmd_info *info = vcpu_info;
4342 
4343 	switch (info->cmd_type) {
4344 	case PROP_UPDATE_VSGI:
4345 		vpe->sgi_config[d->hwirq].priority = info->priority;
4346 		vpe->sgi_config[d->hwirq].group = info->group;
4347 		its_configure_sgi(d, false);
4348 		return 0;
4349 
4350 	default:
4351 		return -EINVAL;
4352 	}
4353 }
4354 
4355 static struct irq_chip its_sgi_irq_chip = {
4356 	.name			= "GICv4.1-sgi",
4357 	.irq_mask		= its_sgi_mask_irq,
4358 	.irq_unmask		= its_sgi_unmask_irq,
4359 	.irq_set_affinity	= its_sgi_set_affinity,
4360 	.irq_set_irqchip_state	= its_sgi_set_irqchip_state,
4361 	.irq_get_irqchip_state	= its_sgi_get_irqchip_state,
4362 	.irq_set_vcpu_affinity	= its_sgi_set_vcpu_affinity,
4363 };
4364 
its_sgi_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)4365 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4366 				    unsigned int virq, unsigned int nr_irqs,
4367 				    void *args)
4368 {
4369 	struct its_vpe *vpe = args;
4370 	int i;
4371 
4372 	/* Yes, we do want 16 SGIs */
4373 	WARN_ON(nr_irqs != 16);
4374 
4375 	for (i = 0; i < 16; i++) {
4376 		vpe->sgi_config[i].priority = 0;
4377 		vpe->sgi_config[i].enabled = false;
4378 		vpe->sgi_config[i].group = false;
4379 
4380 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4381 					      &its_sgi_irq_chip, vpe);
4382 		irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4383 	}
4384 
4385 	return 0;
4386 }
4387 
its_sgi_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)4388 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4389 				    unsigned int virq,
4390 				    unsigned int nr_irqs)
4391 {
4392 	/* Nothing to do */
4393 }
4394 
its_sgi_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)4395 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4396 				       struct irq_data *d, bool reserve)
4397 {
4398 	/* Write out the initial SGI configuration */
4399 	its_configure_sgi(d, false);
4400 	return 0;
4401 }
4402 
its_sgi_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)4403 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4404 					  struct irq_data *d)
4405 {
4406 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4407 
4408 	/*
4409 	 * The VSGI command is awkward:
4410 	 *
4411 	 * - To change the configuration, CLEAR must be set to false,
4412 	 *   leaving the pending bit unchanged.
4413 	 * - To clear the pending bit, CLEAR must be set to true, leaving
4414 	 *   the configuration unchanged.
4415 	 *
4416 	 * You just can't do both at once, hence the two commands below.
4417 	 */
4418 	vpe->sgi_config[d->hwirq].enabled = false;
4419 	its_configure_sgi(d, false);
4420 	its_configure_sgi(d, true);
4421 }
4422 
4423 static const struct irq_domain_ops its_sgi_domain_ops = {
4424 	.alloc		= its_sgi_irq_domain_alloc,
4425 	.free		= its_sgi_irq_domain_free,
4426 	.activate	= its_sgi_irq_domain_activate,
4427 	.deactivate	= its_sgi_irq_domain_deactivate,
4428 };
4429 
its_vpe_id_alloc(void)4430 static int its_vpe_id_alloc(void)
4431 {
4432 	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4433 }
4434 
its_vpe_id_free(u16 id)4435 static void its_vpe_id_free(u16 id)
4436 {
4437 	ida_simple_remove(&its_vpeid_ida, id);
4438 }
4439 
its_vpe_init(struct its_vpe * vpe)4440 static int its_vpe_init(struct its_vpe *vpe)
4441 {
4442 	struct page *vpt_page;
4443 	int vpe_id;
4444 
4445 	/* Allocate vpe_id */
4446 	vpe_id = its_vpe_id_alloc();
4447 	if (vpe_id < 0)
4448 		return vpe_id;
4449 
4450 	/* Allocate VPT */
4451 	vpt_page = its_allocate_pending_table(GFP_KERNEL);
4452 	if (!vpt_page) {
4453 		its_vpe_id_free(vpe_id);
4454 		return -ENOMEM;
4455 	}
4456 
4457 	if (!its_alloc_vpe_table(vpe_id)) {
4458 		its_vpe_id_free(vpe_id);
4459 		its_free_pending_table(vpt_page);
4460 		return -ENOMEM;
4461 	}
4462 
4463 	raw_spin_lock_init(&vpe->vpe_lock);
4464 	vpe->vpe_id = vpe_id;
4465 	vpe->vpt_page = vpt_page;
4466 	if (gic_rdists->has_rvpeid)
4467 		atomic_set(&vpe->vmapp_count, 0);
4468 	else
4469 		vpe->vpe_proxy_event = -1;
4470 
4471 	return 0;
4472 }
4473 
its_vpe_teardown(struct its_vpe * vpe)4474 static void its_vpe_teardown(struct its_vpe *vpe)
4475 {
4476 	its_vpe_db_proxy_unmap(vpe);
4477 	its_vpe_id_free(vpe->vpe_id);
4478 	its_free_pending_table(vpe->vpt_page);
4479 }
4480 
its_vpe_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)4481 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4482 				    unsigned int virq,
4483 				    unsigned int nr_irqs)
4484 {
4485 	struct its_vm *vm = domain->host_data;
4486 	int i;
4487 
4488 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4489 
4490 	for (i = 0; i < nr_irqs; i++) {
4491 		struct irq_data *data = irq_domain_get_irq_data(domain,
4492 								virq + i);
4493 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4494 
4495 		BUG_ON(vm != vpe->its_vm);
4496 
4497 		clear_bit(data->hwirq, vm->db_bitmap);
4498 		its_vpe_teardown(vpe);
4499 		irq_domain_reset_irq_data(data);
4500 	}
4501 
4502 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4503 		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4504 		its_free_prop_table(vm->vprop_page);
4505 	}
4506 }
4507 
its_vpe_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)4508 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4509 				    unsigned int nr_irqs, void *args)
4510 {
4511 	struct irq_chip *irqchip = &its_vpe_irq_chip;
4512 	struct its_vm *vm = args;
4513 	unsigned long *bitmap;
4514 	struct page *vprop_page;
4515 	int base, nr_ids, i, err = 0;
4516 
4517 	BUG_ON(!vm);
4518 
4519 	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4520 	if (!bitmap)
4521 		return -ENOMEM;
4522 
4523 	if (nr_ids < nr_irqs) {
4524 		its_lpi_free(bitmap, base, nr_ids);
4525 		return -ENOMEM;
4526 	}
4527 
4528 	vprop_page = its_allocate_prop_table(GFP_KERNEL);
4529 	if (!vprop_page) {
4530 		its_lpi_free(bitmap, base, nr_ids);
4531 		return -ENOMEM;
4532 	}
4533 
4534 	vm->db_bitmap = bitmap;
4535 	vm->db_lpi_base = base;
4536 	vm->nr_db_lpis = nr_ids;
4537 	vm->vprop_page = vprop_page;
4538 
4539 	if (gic_rdists->has_rvpeid)
4540 		irqchip = &its_vpe_4_1_irq_chip;
4541 
4542 	for (i = 0; i < nr_irqs; i++) {
4543 		vm->vpes[i]->vpe_db_lpi = base + i;
4544 		err = its_vpe_init(vm->vpes[i]);
4545 		if (err)
4546 			break;
4547 		err = its_irq_gic_domain_alloc(domain, virq + i,
4548 					       vm->vpes[i]->vpe_db_lpi);
4549 		if (err)
4550 			break;
4551 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4552 					      irqchip, vm->vpes[i]);
4553 		set_bit(i, bitmap);
4554 	}
4555 
4556 	if (err) {
4557 		if (i > 0)
4558 			its_vpe_irq_domain_free(domain, virq, i);
4559 
4560 		its_lpi_free(bitmap, base, nr_ids);
4561 		its_free_prop_table(vprop_page);
4562 	}
4563 
4564 	return err;
4565 }
4566 
its_vpe_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)4567 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4568 				       struct irq_data *d, bool reserve)
4569 {
4570 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4571 	struct its_node *its;
4572 
4573 	/*
4574 	 * If we use the list map, we issue VMAPP on demand... Unless
4575 	 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4576 	 * so that VSGIs can work.
4577 	 */
4578 	if (!gic_requires_eager_mapping())
4579 		return 0;
4580 
4581 	/* Map the VPE to the first possible CPU */
4582 	vpe->col_idx = cpumask_first(cpu_online_mask);
4583 
4584 	list_for_each_entry(its, &its_nodes, entry) {
4585 		if (!is_v4(its))
4586 			continue;
4587 
4588 		its_send_vmapp(its, vpe, true);
4589 		its_send_vinvall(its, vpe);
4590 	}
4591 
4592 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4593 
4594 	return 0;
4595 }
4596 
its_vpe_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)4597 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4598 					  struct irq_data *d)
4599 {
4600 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4601 	struct its_node *its;
4602 
4603 	/*
4604 	 * If we use the list map on GICv4.0, we unmap the VPE once no
4605 	 * VLPIs are associated with the VM.
4606 	 */
4607 	if (!gic_requires_eager_mapping())
4608 		return;
4609 
4610 	list_for_each_entry(its, &its_nodes, entry) {
4611 		if (!is_v4(its))
4612 			continue;
4613 
4614 		its_send_vmapp(its, vpe, false);
4615 	}
4616 
4617 	/*
4618 	 * There may be a direct read to the VPT after unmapping the
4619 	 * vPE, to guarantee the validity of this, we make the VPT
4620 	 * memory coherent with the CPU caches here.
4621 	 */
4622 	if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4623 		gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4624 					LPI_PENDBASE_SZ);
4625 }
4626 
4627 static const struct irq_domain_ops its_vpe_domain_ops = {
4628 	.alloc			= its_vpe_irq_domain_alloc,
4629 	.free			= its_vpe_irq_domain_free,
4630 	.activate		= its_vpe_irq_domain_activate,
4631 	.deactivate		= its_vpe_irq_domain_deactivate,
4632 };
4633 
its_force_quiescent(void __iomem * base)4634 static int its_force_quiescent(void __iomem *base)
4635 {
4636 	u32 count = 1000000;	/* 1s */
4637 	u32 val;
4638 
4639 	val = readl_relaxed(base + GITS_CTLR);
4640 	/*
4641 	 * GIC architecture specification requires the ITS to be both
4642 	 * disabled and quiescent for writes to GITS_BASER<n> or
4643 	 * GITS_CBASER to not have UNPREDICTABLE results.
4644 	 */
4645 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4646 		return 0;
4647 
4648 	/* Disable the generation of all interrupts to this ITS */
4649 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4650 	writel_relaxed(val, base + GITS_CTLR);
4651 
4652 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
4653 	while (1) {
4654 		val = readl_relaxed(base + GITS_CTLR);
4655 		if (val & GITS_CTLR_QUIESCENT)
4656 			return 0;
4657 
4658 		count--;
4659 		if (!count)
4660 			return -EBUSY;
4661 
4662 		cpu_relax();
4663 		udelay(1);
4664 	}
4665 }
4666 
its_enable_quirk_cavium_22375(void * data)4667 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4668 {
4669 	struct its_node *its = data;
4670 
4671 	/* erratum 22375: only alloc 8MB table size (20 bits) */
4672 	its->typer &= ~GITS_TYPER_DEVBITS;
4673 	its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4674 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4675 
4676 	return true;
4677 }
4678 
its_enable_quirk_cavium_23144(void * data)4679 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4680 {
4681 	struct its_node *its = data;
4682 
4683 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4684 
4685 	return true;
4686 }
4687 
its_enable_quirk_qdf2400_e0065(void * data)4688 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4689 {
4690 	struct its_node *its = data;
4691 
4692 	/* On QDF2400, the size of the ITE is 16Bytes */
4693 	its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4694 	its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4695 
4696 	return true;
4697 }
4698 
its_irq_get_msi_base_pre_its(struct its_device * its_dev)4699 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4700 {
4701 	struct its_node *its = its_dev->its;
4702 
4703 	/*
4704 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4705 	 * which maps 32-bit writes targeted at a separate window of
4706 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4707 	 * with device ID taken from bits [device_id_bits + 1:2] of
4708 	 * the window offset.
4709 	 */
4710 	return its->pre_its_base + (its_dev->device_id << 2);
4711 }
4712 
its_enable_quirk_socionext_synquacer(void * data)4713 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4714 {
4715 	struct its_node *its = data;
4716 	u32 pre_its_window[2];
4717 	u32 ids;
4718 
4719 	if (!fwnode_property_read_u32_array(its->fwnode_handle,
4720 					   "socionext,synquacer-pre-its",
4721 					   pre_its_window,
4722 					   ARRAY_SIZE(pre_its_window))) {
4723 
4724 		its->pre_its_base = pre_its_window[0];
4725 		its->get_msi_base = its_irq_get_msi_base_pre_its;
4726 
4727 		ids = ilog2(pre_its_window[1]) - 2;
4728 		if (device_ids(its) > ids) {
4729 			its->typer &= ~GITS_TYPER_DEVBITS;
4730 			its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4731 		}
4732 
4733 		/* the pre-ITS breaks isolation, so disable MSI remapping */
4734 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
4735 		return true;
4736 	}
4737 	return false;
4738 }
4739 
its_enable_quirk_hip07_161600802(void * data)4740 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4741 {
4742 	struct its_node *its = data;
4743 
4744 	/*
4745 	 * Hip07 insists on using the wrong address for the VLPI
4746 	 * page. Trick it into doing the right thing...
4747 	 */
4748 	its->vlpi_redist_offset = SZ_128K;
4749 	return true;
4750 }
4751 
4752 static const struct gic_quirk its_quirks[] = {
4753 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4754 	{
4755 		.desc	= "ITS: Cavium errata 22375, 24313",
4756 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4757 		.mask	= 0xffff0fff,
4758 		.init	= its_enable_quirk_cavium_22375,
4759 	},
4760 #endif
4761 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4762 	{
4763 		.desc	= "ITS: Cavium erratum 23144",
4764 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4765 		.mask	= 0xffff0fff,
4766 		.init	= its_enable_quirk_cavium_23144,
4767 	},
4768 #endif
4769 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4770 	{
4771 		.desc	= "ITS: QDF2400 erratum 0065",
4772 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
4773 		.mask	= 0xffffffff,
4774 		.init	= its_enable_quirk_qdf2400_e0065,
4775 	},
4776 #endif
4777 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4778 	{
4779 		/*
4780 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4781 		 * implementation, but with a 'pre-ITS' added that requires
4782 		 * special handling in software.
4783 		 */
4784 		.desc	= "ITS: Socionext Synquacer pre-ITS",
4785 		.iidr	= 0x0001143b,
4786 		.mask	= 0xffffffff,
4787 		.init	= its_enable_quirk_socionext_synquacer,
4788 	},
4789 #endif
4790 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4791 	{
4792 		.desc	= "ITS: Hip07 erratum 161600802",
4793 		.iidr	= 0x00000004,
4794 		.mask	= 0xffffffff,
4795 		.init	= its_enable_quirk_hip07_161600802,
4796 	},
4797 #endif
4798 	{
4799 	}
4800 };
4801 
its_enable_quirks(struct its_node * its)4802 static void its_enable_quirks(struct its_node *its)
4803 {
4804 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4805 
4806 	gic_enable_quirks(iidr, its_quirks, its);
4807 }
4808 
its_save_disable(void)4809 static int its_save_disable(void)
4810 {
4811 	struct its_node *its;
4812 	int err = 0;
4813 
4814 	raw_spin_lock(&its_lock);
4815 	list_for_each_entry(its, &its_nodes, entry) {
4816 		void __iomem *base;
4817 
4818 		base = its->base;
4819 		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4820 		err = its_force_quiescent(base);
4821 		if (err) {
4822 			pr_err("ITS@%pa: failed to quiesce: %d\n",
4823 			       &its->phys_base, err);
4824 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4825 			goto err;
4826 		}
4827 
4828 		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4829 	}
4830 
4831 err:
4832 	if (err) {
4833 		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4834 			void __iomem *base;
4835 
4836 			base = its->base;
4837 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4838 		}
4839 	}
4840 	raw_spin_unlock(&its_lock);
4841 
4842 	return err;
4843 }
4844 
its_restore_enable(void)4845 static void its_restore_enable(void)
4846 {
4847 	struct its_node *its;
4848 	int ret;
4849 
4850 	raw_spin_lock(&its_lock);
4851 	list_for_each_entry(its, &its_nodes, entry) {
4852 		void __iomem *base;
4853 		int i;
4854 
4855 		base = its->base;
4856 
4857 		/*
4858 		 * Make sure that the ITS is disabled. If it fails to quiesce,
4859 		 * don't restore it since writing to CBASER or BASER<n>
4860 		 * registers is undefined according to the GIC v3 ITS
4861 		 * Specification.
4862 		 *
4863 		 * Firmware resuming with the ITS enabled is terminally broken.
4864 		 */
4865 		WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4866 		ret = its_force_quiescent(base);
4867 		if (ret) {
4868 			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4869 			       &its->phys_base, ret);
4870 			continue;
4871 		}
4872 
4873 		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4874 
4875 		/*
4876 		 * Writing CBASER resets CREADR to 0, so make CWRITER and
4877 		 * cmd_write line up with it.
4878 		 */
4879 		its->cmd_write = its->cmd_base;
4880 		gits_write_cwriter(0, base + GITS_CWRITER);
4881 
4882 		/* Restore GITS_BASER from the value cache. */
4883 		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4884 			struct its_baser *baser = &its->tables[i];
4885 
4886 			if (!(baser->val & GITS_BASER_VALID))
4887 				continue;
4888 
4889 			its_write_baser(its, baser, baser->val);
4890 		}
4891 		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4892 
4893 		/*
4894 		 * Reinit the collection if it's stored in the ITS. This is
4895 		 * indicated by the col_id being less than the HCC field.
4896 		 * CID < HCC as specified in the GIC v3 Documentation.
4897 		 */
4898 		if (its->collections[smp_processor_id()].col_id <
4899 		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4900 			its_cpu_init_collection(its);
4901 	}
4902 	raw_spin_unlock(&its_lock);
4903 }
4904 
4905 static struct syscore_ops its_syscore_ops = {
4906 	.suspend = its_save_disable,
4907 	.resume = its_restore_enable,
4908 };
4909 
its_init_domain(struct fwnode_handle * handle,struct its_node * its)4910 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
4911 {
4912 	struct irq_domain *inner_domain;
4913 	struct msi_domain_info *info;
4914 
4915 	info = kzalloc(sizeof(*info), GFP_KERNEL);
4916 	if (!info)
4917 		return -ENOMEM;
4918 
4919 	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
4920 	if (!inner_domain) {
4921 		kfree(info);
4922 		return -ENOMEM;
4923 	}
4924 
4925 	inner_domain->parent = its_parent;
4926 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4927 	inner_domain->flags |= its->msi_domain_flags;
4928 	info->ops = &its_msi_domain_ops;
4929 	info->data = its;
4930 	inner_domain->host_data = info;
4931 
4932 	return 0;
4933 }
4934 
its_init_vpe_domain(void)4935 static int its_init_vpe_domain(void)
4936 {
4937 	struct its_node *its;
4938 	u32 devid;
4939 	int entries;
4940 
4941 	if (gic_rdists->has_direct_lpi) {
4942 		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
4943 		return 0;
4944 	}
4945 
4946 	/* Any ITS will do, even if not v4 */
4947 	its = list_first_entry(&its_nodes, struct its_node, entry);
4948 
4949 	entries = roundup_pow_of_two(nr_cpu_ids);
4950 	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
4951 				 GFP_KERNEL);
4952 	if (!vpe_proxy.vpes)
4953 		return -ENOMEM;
4954 
4955 	/* Use the last possible DevID */
4956 	devid = GENMASK(device_ids(its) - 1, 0);
4957 	vpe_proxy.dev = its_create_device(its, devid, entries, false);
4958 	if (!vpe_proxy.dev) {
4959 		kfree(vpe_proxy.vpes);
4960 		pr_err("ITS: Can't allocate GICv4 proxy device\n");
4961 		return -ENOMEM;
4962 	}
4963 
4964 	BUG_ON(entries > vpe_proxy.dev->nr_ites);
4965 
4966 	raw_spin_lock_init(&vpe_proxy.lock);
4967 	vpe_proxy.next_victim = 0;
4968 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
4969 		devid, vpe_proxy.dev->nr_ites);
4970 
4971 	return 0;
4972 }
4973 
its_compute_its_list_map(struct resource * res,void __iomem * its_base)4974 static int __init its_compute_its_list_map(struct resource *res,
4975 					   void __iomem *its_base)
4976 {
4977 	int its_number;
4978 	u32 ctlr;
4979 
4980 	/*
4981 	 * This is assumed to be done early enough that we're
4982 	 * guaranteed to be single-threaded, hence no
4983 	 * locking. Should this change, we should address
4984 	 * this.
4985 	 */
4986 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
4987 	if (its_number >= GICv4_ITS_LIST_MAX) {
4988 		pr_err("ITS@%pa: No ITSList entry available!\n",
4989 		       &res->start);
4990 		return -EINVAL;
4991 	}
4992 
4993 	ctlr = readl_relaxed(its_base + GITS_CTLR);
4994 	ctlr &= ~GITS_CTLR_ITS_NUMBER;
4995 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
4996 	writel_relaxed(ctlr, its_base + GITS_CTLR);
4997 	ctlr = readl_relaxed(its_base + GITS_CTLR);
4998 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
4999 		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
5000 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
5001 	}
5002 
5003 	if (test_and_set_bit(its_number, &its_list_map)) {
5004 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
5005 		       &res->start, its_number);
5006 		return -EINVAL;
5007 	}
5008 
5009 	return its_number;
5010 }
5011 
its_probe_one(struct resource * res,struct fwnode_handle * handle,int numa_node)5012 static int __init its_probe_one(struct resource *res,
5013 				struct fwnode_handle *handle, int numa_node)
5014 {
5015 	struct its_node *its;
5016 	void __iomem *its_base;
5017 	u32 val, ctlr;
5018 	u64 baser, tmp, typer;
5019 	struct page *page;
5020 	int err;
5021 
5022 	its_base = ioremap(res->start, SZ_64K);
5023 	if (!its_base) {
5024 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
5025 		return -ENOMEM;
5026 	}
5027 
5028 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
5029 	if (val != 0x30 && val != 0x40) {
5030 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
5031 		err = -ENODEV;
5032 		goto out_unmap;
5033 	}
5034 
5035 	err = its_force_quiescent(its_base);
5036 	if (err) {
5037 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
5038 		goto out_unmap;
5039 	}
5040 
5041 	pr_info("ITS %pR\n", res);
5042 
5043 	its = kzalloc(sizeof(*its), GFP_KERNEL);
5044 	if (!its) {
5045 		err = -ENOMEM;
5046 		goto out_unmap;
5047 	}
5048 
5049 	raw_spin_lock_init(&its->lock);
5050 	mutex_init(&its->dev_alloc_lock);
5051 	INIT_LIST_HEAD(&its->entry);
5052 	INIT_LIST_HEAD(&its->its_device_list);
5053 	typer = gic_read_typer(its_base + GITS_TYPER);
5054 	its->typer = typer;
5055 	its->base = its_base;
5056 	its->phys_base = res->start;
5057 	if (is_v4(its)) {
5058 		if (!(typer & GITS_TYPER_VMOVP)) {
5059 			err = its_compute_its_list_map(res, its_base);
5060 			if (err < 0)
5061 				goto out_free_its;
5062 
5063 			its->list_nr = err;
5064 
5065 			pr_info("ITS@%pa: Using ITS number %d\n",
5066 				&res->start, err);
5067 		} else {
5068 			pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
5069 		}
5070 
5071 		if (is_v4_1(its)) {
5072 			u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer);
5073 
5074 			its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K);
5075 			if (!its->sgir_base) {
5076 				err = -ENOMEM;
5077 				goto out_free_its;
5078 			}
5079 
5080 			its->mpidr = readl_relaxed(its_base + GITS_MPIDR);
5081 
5082 			pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5083 				&res->start, its->mpidr, svpet);
5084 		}
5085 	}
5086 
5087 	its->numa_node = numa_node;
5088 
5089 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5090 				get_order(ITS_CMD_QUEUE_SZ));
5091 	if (!page) {
5092 		err = -ENOMEM;
5093 		goto out_unmap_sgir;
5094 	}
5095 	its->cmd_base = (void *)page_address(page);
5096 	its->cmd_write = its->cmd_base;
5097 	its->fwnode_handle = handle;
5098 	its->get_msi_base = its_irq_get_msi_base;
5099 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
5100 	set_memory_decrypted((unsigned long)its->cmd_base,
5101 			     ITS_CMD_QUEUE_SZ >> PAGE_SHIFT);
5102 
5103 	its_enable_quirks(its);
5104 
5105 	err = its_alloc_tables(its);
5106 	if (err)
5107 		goto out_free_cmd;
5108 
5109 	err = its_alloc_collections(its);
5110 	if (err)
5111 		goto out_free_tables;
5112 
5113 	baser = (virt_to_phys(its->cmd_base)	|
5114 		 GITS_CBASER_RaWaWb		|
5115 		 GITS_CBASER_InnerShareable	|
5116 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
5117 		 GITS_CBASER_VALID);
5118 
5119 	gits_write_cbaser(baser, its->base + GITS_CBASER);
5120 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
5121 
5122 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5123 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5124 			/*
5125 			 * The HW reports non-shareable, we must
5126 			 * remove the cacheability attributes as
5127 			 * well.
5128 			 */
5129 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5130 				   GITS_CBASER_CACHEABILITY_MASK);
5131 			baser |= GITS_CBASER_nC;
5132 			gits_write_cbaser(baser, its->base + GITS_CBASER);
5133 		}
5134 		pr_info("ITS: using cache flushing for cmd queue\n");
5135 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5136 	}
5137 
5138 	gits_write_cwriter(0, its->base + GITS_CWRITER);
5139 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5140 	ctlr |= GITS_CTLR_ENABLE;
5141 	if (is_v4(its))
5142 		ctlr |= GITS_CTLR_ImDe;
5143 	writel_relaxed(ctlr, its->base + GITS_CTLR);
5144 
5145 	err = its_init_domain(handle, its);
5146 	if (err)
5147 		goto out_free_tables;
5148 
5149 	raw_spin_lock(&its_lock);
5150 	list_add(&its->entry, &its_nodes);
5151 	raw_spin_unlock(&its_lock);
5152 
5153 	return 0;
5154 
5155 out_free_tables:
5156 	its_free_tables(its);
5157 out_free_cmd:
5158 	set_memory_encrypted((unsigned long)its->cmd_base,
5159 			     ITS_CMD_QUEUE_SZ >> PAGE_SHIFT);
5160 	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5161 out_unmap_sgir:
5162 	if (its->sgir_base)
5163 		iounmap(its->sgir_base);
5164 out_free_its:
5165 	kfree(its);
5166 out_unmap:
5167 	iounmap(its_base);
5168 	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
5169 	return err;
5170 }
5171 
gic_rdists_supports_plpis(void)5172 static bool gic_rdists_supports_plpis(void)
5173 {
5174 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5175 }
5176 
redist_disable_lpis(void)5177 static int redist_disable_lpis(void)
5178 {
5179 	void __iomem *rbase = gic_data_rdist_rd_base();
5180 	u64 timeout = USEC_PER_SEC;
5181 	u64 val;
5182 
5183 	if (!gic_rdists_supports_plpis()) {
5184 		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5185 		return -ENXIO;
5186 	}
5187 
5188 	val = readl_relaxed(rbase + GICR_CTLR);
5189 	if (!(val & GICR_CTLR_ENABLE_LPIS))
5190 		return 0;
5191 
5192 	/*
5193 	 * If coming via a CPU hotplug event, we don't need to disable
5194 	 * LPIs before trying to re-enable them. They are already
5195 	 * configured and all is well in the world.
5196 	 *
5197 	 * If running with preallocated tables, there is nothing to do.
5198 	 */
5199 	if (gic_data_rdist()->lpi_enabled ||
5200 	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5201 		return 0;
5202 
5203 	/*
5204 	 * From that point on, we only try to do some damage control.
5205 	 */
5206 	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5207 		smp_processor_id());
5208 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5209 
5210 	/* Disable LPIs */
5211 	val &= ~GICR_CTLR_ENABLE_LPIS;
5212 	writel_relaxed(val, rbase + GICR_CTLR);
5213 
5214 	/* Make sure any change to GICR_CTLR is observable by the GIC */
5215 	dsb(sy);
5216 
5217 	/*
5218 	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5219 	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5220 	 * Error out if we time out waiting for RWP to clear.
5221 	 */
5222 	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5223 		if (!timeout) {
5224 			pr_err("CPU%d: Timeout while disabling LPIs\n",
5225 			       smp_processor_id());
5226 			return -ETIMEDOUT;
5227 		}
5228 		udelay(1);
5229 		timeout--;
5230 	}
5231 
5232 	/*
5233 	 * After it has been written to 1, it is IMPLEMENTATION
5234 	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5235 	 * cleared to 0. Error out if clearing the bit failed.
5236 	 */
5237 	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5238 		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5239 		return -EBUSY;
5240 	}
5241 
5242 	return 0;
5243 }
5244 
its_cpu_init(void)5245 int its_cpu_init(void)
5246 {
5247 	if (!list_empty(&its_nodes)) {
5248 		int ret;
5249 
5250 		ret = redist_disable_lpis();
5251 		if (ret)
5252 			return ret;
5253 
5254 		its_cpu_init_lpis();
5255 		its_cpu_init_collections();
5256 	}
5257 
5258 	return 0;
5259 }
5260 
5261 static const struct of_device_id its_device_id[] = {
5262 	{	.compatible	= "arm,gic-v3-its",	},
5263 	{},
5264 };
5265 
its_of_probe(struct device_node * node)5266 static int __init its_of_probe(struct device_node *node)
5267 {
5268 	struct device_node *np;
5269 	struct resource res;
5270 
5271 	for (np = of_find_matching_node(node, its_device_id); np;
5272 	     np = of_find_matching_node(np, its_device_id)) {
5273 		if (!of_device_is_available(np))
5274 			continue;
5275 		if (!of_property_read_bool(np, "msi-controller")) {
5276 			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5277 				np);
5278 			continue;
5279 		}
5280 
5281 		if (of_address_to_resource(np, 0, &res)) {
5282 			pr_warn("%pOF: no regs?\n", np);
5283 			continue;
5284 		}
5285 
5286 		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
5287 	}
5288 	return 0;
5289 }
5290 
5291 #ifdef CONFIG_ACPI
5292 
5293 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5294 
5295 #ifdef CONFIG_ACPI_NUMA
5296 struct its_srat_map {
5297 	/* numa node id */
5298 	u32	numa_node;
5299 	/* GIC ITS ID */
5300 	u32	its_id;
5301 };
5302 
5303 static struct its_srat_map *its_srat_maps __initdata;
5304 static int its_in_srat __initdata;
5305 
acpi_get_its_numa_node(u32 its_id)5306 static int __init acpi_get_its_numa_node(u32 its_id)
5307 {
5308 	int i;
5309 
5310 	for (i = 0; i < its_in_srat; i++) {
5311 		if (its_id == its_srat_maps[i].its_id)
5312 			return its_srat_maps[i].numa_node;
5313 	}
5314 	return NUMA_NO_NODE;
5315 }
5316 
gic_acpi_match_srat_its(union acpi_subtable_headers * header,const unsigned long end)5317 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5318 					  const unsigned long end)
5319 {
5320 	return 0;
5321 }
5322 
gic_acpi_parse_srat_its(union acpi_subtable_headers * header,const unsigned long end)5323 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5324 			 const unsigned long end)
5325 {
5326 	int node;
5327 	struct acpi_srat_gic_its_affinity *its_affinity;
5328 
5329 	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5330 	if (!its_affinity)
5331 		return -EINVAL;
5332 
5333 	if (its_affinity->header.length < sizeof(*its_affinity)) {
5334 		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5335 			its_affinity->header.length);
5336 		return -EINVAL;
5337 	}
5338 
5339 	/*
5340 	 * Note that in theory a new proximity node could be created by this
5341 	 * entry as it is an SRAT resource allocation structure.
5342 	 * We do not currently support doing so.
5343 	 */
5344 	node = pxm_to_node(its_affinity->proximity_domain);
5345 
5346 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5347 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5348 		return 0;
5349 	}
5350 
5351 	its_srat_maps[its_in_srat].numa_node = node;
5352 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5353 	its_in_srat++;
5354 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5355 		its_affinity->proximity_domain, its_affinity->its_id, node);
5356 
5357 	return 0;
5358 }
5359 
acpi_table_parse_srat_its(void)5360 static void __init acpi_table_parse_srat_its(void)
5361 {
5362 	int count;
5363 
5364 	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5365 			sizeof(struct acpi_table_srat),
5366 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5367 			gic_acpi_match_srat_its, 0);
5368 	if (count <= 0)
5369 		return;
5370 
5371 	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5372 				      GFP_KERNEL);
5373 	if (!its_srat_maps)
5374 		return;
5375 
5376 	acpi_table_parse_entries(ACPI_SIG_SRAT,
5377 			sizeof(struct acpi_table_srat),
5378 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5379 			gic_acpi_parse_srat_its, 0);
5380 }
5381 
5382 /* free the its_srat_maps after ITS probing */
acpi_its_srat_maps_free(void)5383 static void __init acpi_its_srat_maps_free(void)
5384 {
5385 	kfree(its_srat_maps);
5386 }
5387 #else
acpi_table_parse_srat_its(void)5388 static void __init acpi_table_parse_srat_its(void)	{ }
acpi_get_its_numa_node(u32 its_id)5389 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
acpi_its_srat_maps_free(void)5390 static void __init acpi_its_srat_maps_free(void) { }
5391 #endif
5392 
gic_acpi_parse_madt_its(union acpi_subtable_headers * header,const unsigned long end)5393 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5394 					  const unsigned long end)
5395 {
5396 	struct acpi_madt_generic_translator *its_entry;
5397 	struct fwnode_handle *dom_handle;
5398 	struct resource res;
5399 	int err;
5400 
5401 	its_entry = (struct acpi_madt_generic_translator *)header;
5402 	memset(&res, 0, sizeof(res));
5403 	res.start = its_entry->base_address;
5404 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5405 	res.flags = IORESOURCE_MEM;
5406 
5407 	dom_handle = irq_domain_alloc_fwnode(&res.start);
5408 	if (!dom_handle) {
5409 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5410 		       &res.start);
5411 		return -ENOMEM;
5412 	}
5413 
5414 	err = iort_register_domain_token(its_entry->translation_id, res.start,
5415 					 dom_handle);
5416 	if (err) {
5417 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5418 		       &res.start, its_entry->translation_id);
5419 		goto dom_err;
5420 	}
5421 
5422 	err = its_probe_one(&res, dom_handle,
5423 			acpi_get_its_numa_node(its_entry->translation_id));
5424 	if (!err)
5425 		return 0;
5426 
5427 	iort_deregister_domain_token(its_entry->translation_id);
5428 dom_err:
5429 	irq_domain_free_fwnode(dom_handle);
5430 	return err;
5431 }
5432 
its_acpi_probe(void)5433 static void __init its_acpi_probe(void)
5434 {
5435 	acpi_table_parse_srat_its();
5436 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5437 			      gic_acpi_parse_madt_its, 0);
5438 	acpi_its_srat_maps_free();
5439 }
5440 #else
its_acpi_probe(void)5441 static void __init its_acpi_probe(void) { }
5442 #endif
5443 
its_init(struct fwnode_handle * handle,struct rdists * rdists,struct irq_domain * parent_domain)5444 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5445 		    struct irq_domain *parent_domain)
5446 {
5447 	struct device_node *of_node;
5448 	struct its_node *its;
5449 	bool has_v4 = false;
5450 	bool has_v4_1 = false;
5451 	int err;
5452 
5453 	gic_rdists = rdists;
5454 
5455 	its_parent = parent_domain;
5456 	of_node = to_of_node(handle);
5457 	if (of_node)
5458 		its_of_probe(of_node);
5459 	else
5460 		its_acpi_probe();
5461 
5462 	if (list_empty(&its_nodes)) {
5463 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
5464 		return -ENXIO;
5465 	}
5466 
5467 	err = allocate_lpi_tables();
5468 	if (err)
5469 		return err;
5470 
5471 	list_for_each_entry(its, &its_nodes, entry) {
5472 		has_v4 |= is_v4(its);
5473 		has_v4_1 |= is_v4_1(its);
5474 	}
5475 
5476 	/* Don't bother with inconsistent systems */
5477 	if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5478 		rdists->has_rvpeid = false;
5479 
5480 	if (has_v4 & rdists->has_vlpis) {
5481 		const struct irq_domain_ops *sgi_ops;
5482 
5483 		if (has_v4_1)
5484 			sgi_ops = &its_sgi_domain_ops;
5485 		else
5486 			sgi_ops = NULL;
5487 
5488 		if (its_init_vpe_domain() ||
5489 		    its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5490 			rdists->has_vlpis = false;
5491 			pr_err("ITS: Disabling GICv4 support\n");
5492 		}
5493 	}
5494 
5495 	register_syscore_ops(&its_syscore_ops);
5496 
5497 	return 0;
5498 }
5499