1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2020 Intel Corporation
4 */
5
6 #include <linux/stop_machine.h>
7
8 #include <asm/set_memory.h>
9 #include <asm/smp.h>
10
11 #include <drm/i915_drm.h>
12
13 #include "gem/i915_gem_lmem.h"
14
15 #include "intel_gt.h"
16 #include "i915_drv.h"
17 #include "i915_scatterlist.h"
18 #include "i915_vgpu.h"
19
20 #include "intel_gtt.h"
21 #include "gen8_ppgtt.h"
22
23 static int
24 i915_get_ggtt_vma_pages(struct i915_vma *vma);
25
i915_ggtt_color_adjust(const struct drm_mm_node * node,unsigned long color,u64 * start,u64 * end)26 static void i915_ggtt_color_adjust(const struct drm_mm_node *node,
27 unsigned long color,
28 u64 *start,
29 u64 *end)
30 {
31 if (i915_node_color_differs(node, color))
32 *start += I915_GTT_PAGE_SIZE;
33
34 /*
35 * Also leave a space between the unallocated reserved node after the
36 * GTT and any objects within the GTT, i.e. we use the color adjustment
37 * to insert a guard page to prevent prefetches crossing over the
38 * GTT boundary.
39 */
40 node = list_next_entry(node, node_list);
41 if (node->color != color)
42 *end -= I915_GTT_PAGE_SIZE;
43 }
44
ggtt_init_hw(struct i915_ggtt * ggtt)45 static int ggtt_init_hw(struct i915_ggtt *ggtt)
46 {
47 struct drm_i915_private *i915 = ggtt->vm.i915;
48
49 i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
50
51 ggtt->vm.is_ggtt = true;
52
53 /* Only VLV supports read-only GGTT mappings */
54 ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
55
56 if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
57 ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust;
58
59 if (ggtt->mappable_end) {
60 if (!io_mapping_init_wc(&ggtt->iomap,
61 ggtt->gmadr.start,
62 ggtt->mappable_end)) {
63 ggtt->vm.cleanup(&ggtt->vm);
64 return -EIO;
65 }
66
67 ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start,
68 ggtt->mappable_end);
69 }
70
71 intel_ggtt_init_fences(ggtt);
72
73 return 0;
74 }
75
76 /**
77 * i915_ggtt_init_hw - Initialize GGTT hardware
78 * @i915: i915 device
79 */
i915_ggtt_init_hw(struct drm_i915_private * i915)80 int i915_ggtt_init_hw(struct drm_i915_private *i915)
81 {
82 int ret;
83
84 /*
85 * Note that we use page colouring to enforce a guard page at the
86 * end of the address space. This is required as the CS may prefetch
87 * beyond the end of the batch buffer, across the page boundary,
88 * and beyond the end of the GTT if we do not provide a guard.
89 */
90 ret = ggtt_init_hw(&i915->ggtt);
91 if (ret)
92 return ret;
93
94 return 0;
95 }
96
97 /*
98 * Certain Gen5 chipsets require idling the GPU before
99 * unmapping anything from the GTT when VT-d is enabled.
100 */
needs_idle_maps(struct drm_i915_private * i915)101 static bool needs_idle_maps(struct drm_i915_private *i915)
102 {
103 /*
104 * Query intel_iommu to see if we need the workaround. Presumably that
105 * was loaded first.
106 */
107 if (!intel_vtd_active())
108 return false;
109
110 if (GRAPHICS_VER(i915) == 5 && IS_MOBILE(i915))
111 return true;
112
113 if (GRAPHICS_VER(i915) == 12)
114 return true; /* XXX DMAR fault reason 7 */
115
116 return false;
117 }
118
i915_ggtt_suspend(struct i915_ggtt * ggtt)119 void i915_ggtt_suspend(struct i915_ggtt *ggtt)
120 {
121 struct i915_vma *vma, *vn;
122 int open;
123
124 mutex_lock(&ggtt->vm.mutex);
125
126 /* Skip rewriting PTE on VMA unbind. */
127 open = atomic_xchg(&ggtt->vm.open, 0);
128
129 list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
130 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
131 i915_vma_wait_for_bind(vma);
132
133 if (i915_vma_is_pinned(vma))
134 continue;
135
136 if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) {
137 __i915_vma_evict(vma);
138 drm_mm_remove_node(&vma->node);
139 }
140 }
141
142 ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
143 ggtt->invalidate(ggtt);
144 atomic_set(&ggtt->vm.open, open);
145
146 mutex_unlock(&ggtt->vm.mutex);
147
148 intel_gt_check_and_clear_faults(ggtt->vm.gt);
149 }
150
gen6_ggtt_invalidate(struct i915_ggtt * ggtt)151 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
152 {
153 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
154
155 spin_lock_irq(&uncore->lock);
156 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
157 intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6);
158 spin_unlock_irq(&uncore->lock);
159 }
160
gen8_ggtt_invalidate(struct i915_ggtt * ggtt)161 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt)
162 {
163 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
164
165 /*
166 * Note that as an uncached mmio write, this will flush the
167 * WCB of the writes into the GGTT before it triggers the invalidate.
168 */
169 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
170 }
171
guc_ggtt_invalidate(struct i915_ggtt * ggtt)172 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
173 {
174 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
175 struct drm_i915_private *i915 = ggtt->vm.i915;
176
177 gen8_ggtt_invalidate(ggtt);
178
179 if (GRAPHICS_VER(i915) >= 12)
180 intel_uncore_write_fw(uncore, GEN12_GUC_TLB_INV_CR,
181 GEN12_GUC_TLB_INV_CR_INVALIDATE);
182 else
183 intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE);
184 }
185
gmch_ggtt_invalidate(struct i915_ggtt * ggtt)186 static void gmch_ggtt_invalidate(struct i915_ggtt *ggtt)
187 {
188 intel_gtt_chipset_flush();
189 }
190
gen8_ggtt_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 flags)191 u64 gen8_ggtt_pte_encode(dma_addr_t addr,
192 enum i915_cache_level level,
193 u32 flags)
194 {
195 gen8_pte_t pte = addr | _PAGE_PRESENT;
196
197 if (flags & PTE_LM)
198 pte |= GEN12_GGTT_PTE_LM;
199
200 return pte;
201 }
202
gen8_set_pte(void __iomem * addr,gen8_pte_t pte)203 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
204 {
205 writeq(pte, addr);
206 }
207
gen8_ggtt_insert_page(struct i915_address_space * vm,dma_addr_t addr,u64 offset,enum i915_cache_level level,u32 flags)208 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
209 dma_addr_t addr,
210 u64 offset,
211 enum i915_cache_level level,
212 u32 flags)
213 {
214 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
215 gen8_pte_t __iomem *pte =
216 (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
217
218 gen8_set_pte(pte, gen8_ggtt_pte_encode(addr, level, flags));
219
220 ggtt->invalidate(ggtt);
221 }
222
gen8_ggtt_insert_entries(struct i915_address_space * vm,struct i915_vma * vma,enum i915_cache_level level,u32 flags)223 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
224 struct i915_vma *vma,
225 enum i915_cache_level level,
226 u32 flags)
227 {
228 const gen8_pte_t pte_encode = gen8_ggtt_pte_encode(0, level, flags);
229 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
230 gen8_pte_t __iomem *gte;
231 gen8_pte_t __iomem *end;
232 struct sgt_iter iter;
233 dma_addr_t addr;
234
235 /*
236 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
237 * not to allow the user to override access to a read only page.
238 */
239
240 gte = (gen8_pte_t __iomem *)ggtt->gsm;
241 gte += vma->node.start / I915_GTT_PAGE_SIZE;
242 end = gte + vma->node.size / I915_GTT_PAGE_SIZE;
243
244 for_each_sgt_daddr(addr, iter, vma->pages)
245 gen8_set_pte(gte++, pte_encode | addr);
246 GEM_BUG_ON(gte > end);
247
248 /* Fill the allocated but "unused" space beyond the end of the buffer */
249 while (gte < end)
250 gen8_set_pte(gte++, vm->scratch[0]->encode);
251
252 /*
253 * We want to flush the TLBs only after we're certain all the PTE
254 * updates have finished.
255 */
256 ggtt->invalidate(ggtt);
257 }
258
gen6_ggtt_insert_page(struct i915_address_space * vm,dma_addr_t addr,u64 offset,enum i915_cache_level level,u32 flags)259 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
260 dma_addr_t addr,
261 u64 offset,
262 enum i915_cache_level level,
263 u32 flags)
264 {
265 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
266 gen6_pte_t __iomem *pte =
267 (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
268
269 iowrite32(vm->pte_encode(addr, level, flags), pte);
270
271 ggtt->invalidate(ggtt);
272 }
273
274 /*
275 * Binds an object into the global gtt with the specified cache level.
276 * The object will be accessible to the GPU via commands whose operands
277 * reference offsets within the global GTT as well as accessible by the GPU
278 * through the GMADR mapped BAR (i915->mm.gtt->gtt).
279 */
gen6_ggtt_insert_entries(struct i915_address_space * vm,struct i915_vma * vma,enum i915_cache_level level,u32 flags)280 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
281 struct i915_vma *vma,
282 enum i915_cache_level level,
283 u32 flags)
284 {
285 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
286 gen6_pte_t __iomem *gte;
287 gen6_pte_t __iomem *end;
288 struct sgt_iter iter;
289 dma_addr_t addr;
290
291 gte = (gen6_pte_t __iomem *)ggtt->gsm;
292 gte += vma->node.start / I915_GTT_PAGE_SIZE;
293 end = gte + vma->node.size / I915_GTT_PAGE_SIZE;
294
295 for_each_sgt_daddr(addr, iter, vma->pages)
296 iowrite32(vm->pte_encode(addr, level, flags), gte++);
297 GEM_BUG_ON(gte > end);
298
299 /* Fill the allocated but "unused" space beyond the end of the buffer */
300 while (gte < end)
301 iowrite32(vm->scratch[0]->encode, gte++);
302
303 /*
304 * We want to flush the TLBs only after we're certain all the PTE
305 * updates have finished.
306 */
307 ggtt->invalidate(ggtt);
308 }
309
nop_clear_range(struct i915_address_space * vm,u64 start,u64 length)310 static void nop_clear_range(struct i915_address_space *vm,
311 u64 start, u64 length)
312 {
313 }
314
gen8_ggtt_clear_range(struct i915_address_space * vm,u64 start,u64 length)315 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
316 u64 start, u64 length)
317 {
318 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
319 unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
320 unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
321 const gen8_pte_t scratch_pte = vm->scratch[0]->encode;
322 gen8_pte_t __iomem *gtt_base =
323 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
324 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
325 int i;
326
327 if (WARN(num_entries > max_entries,
328 "First entry = %d; Num entries = %d (max=%d)\n",
329 first_entry, num_entries, max_entries))
330 num_entries = max_entries;
331
332 for (i = 0; i < num_entries; i++)
333 gen8_set_pte(>t_base[i], scratch_pte);
334 }
335
bxt_vtd_ggtt_wa(struct i915_address_space * vm)336 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
337 {
338 /*
339 * Make sure the internal GAM fifo has been cleared of all GTT
340 * writes before exiting stop_machine(). This guarantees that
341 * any aperture accesses waiting to start in another process
342 * cannot back up behind the GTT writes causing a hang.
343 * The register can be any arbitrary GAM register.
344 */
345 intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6);
346 }
347
348 struct insert_page {
349 struct i915_address_space *vm;
350 dma_addr_t addr;
351 u64 offset;
352 enum i915_cache_level level;
353 };
354
bxt_vtd_ggtt_insert_page__cb(void * _arg)355 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
356 {
357 struct insert_page *arg = _arg;
358
359 gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
360 bxt_vtd_ggtt_wa(arg->vm);
361
362 return 0;
363 }
364
bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space * vm,dma_addr_t addr,u64 offset,enum i915_cache_level level,u32 unused)365 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
366 dma_addr_t addr,
367 u64 offset,
368 enum i915_cache_level level,
369 u32 unused)
370 {
371 struct insert_page arg = { vm, addr, offset, level };
372
373 stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
374 }
375
376 struct insert_entries {
377 struct i915_address_space *vm;
378 struct i915_vma *vma;
379 enum i915_cache_level level;
380 u32 flags;
381 };
382
bxt_vtd_ggtt_insert_entries__cb(void * _arg)383 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
384 {
385 struct insert_entries *arg = _arg;
386
387 gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
388 bxt_vtd_ggtt_wa(arg->vm);
389
390 return 0;
391 }
392
bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space * vm,struct i915_vma * vma,enum i915_cache_level level,u32 flags)393 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
394 struct i915_vma *vma,
395 enum i915_cache_level level,
396 u32 flags)
397 {
398 struct insert_entries arg = { vm, vma, level, flags };
399
400 stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
401 }
402
gen6_ggtt_clear_range(struct i915_address_space * vm,u64 start,u64 length)403 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
404 u64 start, u64 length)
405 {
406 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
407 unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
408 unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
409 gen6_pte_t scratch_pte, __iomem *gtt_base =
410 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
411 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
412 int i;
413
414 if (WARN(num_entries > max_entries,
415 "First entry = %d; Num entries = %d (max=%d)\n",
416 first_entry, num_entries, max_entries))
417 num_entries = max_entries;
418
419 scratch_pte = vm->scratch[0]->encode;
420 for (i = 0; i < num_entries; i++)
421 iowrite32(scratch_pte, >t_base[i]);
422 }
423
i915_ggtt_insert_page(struct i915_address_space * vm,dma_addr_t addr,u64 offset,enum i915_cache_level cache_level,u32 unused)424 static void i915_ggtt_insert_page(struct i915_address_space *vm,
425 dma_addr_t addr,
426 u64 offset,
427 enum i915_cache_level cache_level,
428 u32 unused)
429 {
430 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
431 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
432
433 intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
434 }
435
i915_ggtt_insert_entries(struct i915_address_space * vm,struct i915_vma * vma,enum i915_cache_level cache_level,u32 unused)436 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
437 struct i915_vma *vma,
438 enum i915_cache_level cache_level,
439 u32 unused)
440 {
441 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
442 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
443
444 intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
445 flags);
446 }
447
i915_ggtt_clear_range(struct i915_address_space * vm,u64 start,u64 length)448 static void i915_ggtt_clear_range(struct i915_address_space *vm,
449 u64 start, u64 length)
450 {
451 intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
452 }
453
ggtt_bind_vma(struct i915_address_space * vm,struct i915_vm_pt_stash * stash,struct i915_vma * vma,enum i915_cache_level cache_level,u32 flags)454 static void ggtt_bind_vma(struct i915_address_space *vm,
455 struct i915_vm_pt_stash *stash,
456 struct i915_vma *vma,
457 enum i915_cache_level cache_level,
458 u32 flags)
459 {
460 struct drm_i915_gem_object *obj = vma->obj;
461 u32 pte_flags;
462
463 if (i915_vma_is_bound(vma, ~flags & I915_VMA_BIND_MASK))
464 return;
465
466 /* Applicable to VLV (gen8+ do not support RO in the GGTT) */
467 pte_flags = 0;
468 if (i915_gem_object_is_readonly(obj))
469 pte_flags |= PTE_READ_ONLY;
470 if (i915_gem_object_is_lmem(obj))
471 pte_flags |= PTE_LM;
472
473 vm->insert_entries(vm, vma, cache_level, pte_flags);
474 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
475 }
476
ggtt_unbind_vma(struct i915_address_space * vm,struct i915_vma * vma)477 static void ggtt_unbind_vma(struct i915_address_space *vm, struct i915_vma *vma)
478 {
479 vm->clear_range(vm, vma->node.start, vma->size);
480 }
481
ggtt_reserve_guc_top(struct i915_ggtt * ggtt)482 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
483 {
484 u64 size;
485 int ret;
486
487 if (!intel_uc_uses_guc(&ggtt->vm.gt->uc))
488 return 0;
489
490 GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP);
491 size = ggtt->vm.total - GUC_GGTT_TOP;
492
493 ret = i915_gem_gtt_reserve(&ggtt->vm, &ggtt->uc_fw, size,
494 GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE,
495 PIN_NOEVICT);
496 if (ret)
497 drm_dbg(&ggtt->vm.i915->drm,
498 "Failed to reserve top of GGTT for GuC\n");
499
500 return ret;
501 }
502
ggtt_release_guc_top(struct i915_ggtt * ggtt)503 static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
504 {
505 if (drm_mm_node_allocated(&ggtt->uc_fw))
506 drm_mm_remove_node(&ggtt->uc_fw);
507 }
508
cleanup_init_ggtt(struct i915_ggtt * ggtt)509 static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
510 {
511 ggtt_release_guc_top(ggtt);
512 if (drm_mm_node_allocated(&ggtt->error_capture))
513 drm_mm_remove_node(&ggtt->error_capture);
514 mutex_destroy(&ggtt->error_mutex);
515 }
516
init_ggtt(struct i915_ggtt * ggtt)517 static int init_ggtt(struct i915_ggtt *ggtt)
518 {
519 /*
520 * Let GEM Manage all of the aperture.
521 *
522 * However, leave one page at the end still bound to the scratch page.
523 * There are a number of places where the hardware apparently prefetches
524 * past the end of the object, and we've seen multiple hangs with the
525 * GPU head pointer stuck in a batchbuffer bound at the last page of the
526 * aperture. One page should be enough to keep any prefetching inside
527 * of the aperture.
528 */
529 unsigned long hole_start, hole_end;
530 struct drm_mm_node *entry;
531 int ret;
532
533 /*
534 * GuC requires all resources that we're sharing with it to be placed in
535 * non-WOPCM memory. If GuC is not present or not in use we still need a
536 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
537 * why.
538 */
539 ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
540 intel_wopcm_guc_size(&ggtt->vm.i915->wopcm));
541
542 ret = intel_vgt_balloon(ggtt);
543 if (ret)
544 return ret;
545
546 mutex_init(&ggtt->error_mutex);
547 if (ggtt->mappable_end) {
548 /*
549 * Reserve a mappable slot for our lockless error capture.
550 *
551 * We strongly prefer taking address 0x0 in order to protect
552 * other critical buffers against accidental overwrites,
553 * as writing to address 0 is a very common mistake.
554 *
555 * Since 0 may already be in use by the system (e.g. the BIOS
556 * framebuffer), we let the reservation fail quietly and hope
557 * 0 remains reserved always.
558 *
559 * If we fail to reserve 0, and then fail to find any space
560 * for an error-capture, remain silent. We can afford not
561 * to reserve an error_capture node as we have fallback
562 * paths, and we trust that 0 will remain reserved. However,
563 * the only likely reason for failure to insert is a driver
564 * bug, which we expect to cause other failures...
565 */
566 ggtt->error_capture.size = I915_GTT_PAGE_SIZE;
567 ggtt->error_capture.color = I915_COLOR_UNEVICTABLE;
568 if (drm_mm_reserve_node(&ggtt->vm.mm, &ggtt->error_capture))
569 drm_mm_insert_node_in_range(&ggtt->vm.mm,
570 &ggtt->error_capture,
571 ggtt->error_capture.size, 0,
572 ggtt->error_capture.color,
573 0, ggtt->mappable_end,
574 DRM_MM_INSERT_LOW);
575 }
576 if (drm_mm_node_allocated(&ggtt->error_capture))
577 drm_dbg(&ggtt->vm.i915->drm,
578 "Reserved GGTT:[%llx, %llx] for use by error capture\n",
579 ggtt->error_capture.start,
580 ggtt->error_capture.start + ggtt->error_capture.size);
581
582 /*
583 * The upper portion of the GuC address space has a sizeable hole
584 * (several MB) that is inaccessible by GuC. Reserve this range within
585 * GGTT as it can comfortably hold GuC/HuC firmware images.
586 */
587 ret = ggtt_reserve_guc_top(ggtt);
588 if (ret)
589 goto err;
590
591 /* Clear any non-preallocated blocks */
592 drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
593 drm_dbg(&ggtt->vm.i915->drm,
594 "clearing unused GTT space: [%lx, %lx]\n",
595 hole_start, hole_end);
596 ggtt->vm.clear_range(&ggtt->vm, hole_start,
597 hole_end - hole_start);
598 }
599
600 /* And finally clear the reserved guard page */
601 ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
602
603 return 0;
604
605 err:
606 cleanup_init_ggtt(ggtt);
607 return ret;
608 }
609
aliasing_gtt_bind_vma(struct i915_address_space * vm,struct i915_vm_pt_stash * stash,struct i915_vma * vma,enum i915_cache_level cache_level,u32 flags)610 static void aliasing_gtt_bind_vma(struct i915_address_space *vm,
611 struct i915_vm_pt_stash *stash,
612 struct i915_vma *vma,
613 enum i915_cache_level cache_level,
614 u32 flags)
615 {
616 u32 pte_flags;
617
618 /* Currently applicable only to VLV */
619 pte_flags = 0;
620 if (i915_gem_object_is_readonly(vma->obj))
621 pte_flags |= PTE_READ_ONLY;
622
623 if (flags & I915_VMA_LOCAL_BIND)
624 ppgtt_bind_vma(&i915_vm_to_ggtt(vm)->alias->vm,
625 stash, vma, cache_level, flags);
626
627 if (flags & I915_VMA_GLOBAL_BIND)
628 vm->insert_entries(vm, vma, cache_level, pte_flags);
629 }
630
aliasing_gtt_unbind_vma(struct i915_address_space * vm,struct i915_vma * vma)631 static void aliasing_gtt_unbind_vma(struct i915_address_space *vm,
632 struct i915_vma *vma)
633 {
634 if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
635 vm->clear_range(vm, vma->node.start, vma->size);
636
637 if (i915_vma_is_bound(vma, I915_VMA_LOCAL_BIND))
638 ppgtt_unbind_vma(&i915_vm_to_ggtt(vm)->alias->vm, vma);
639 }
640
init_aliasing_ppgtt(struct i915_ggtt * ggtt)641 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
642 {
643 struct i915_vm_pt_stash stash = {};
644 struct i915_ppgtt *ppgtt;
645 int err;
646
647 ppgtt = i915_ppgtt_create(ggtt->vm.gt);
648 if (IS_ERR(ppgtt))
649 return PTR_ERR(ppgtt);
650
651 if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
652 err = -ENODEV;
653 goto err_ppgtt;
654 }
655
656 err = i915_vm_alloc_pt_stash(&ppgtt->vm, &stash, ggtt->vm.total);
657 if (err)
658 goto err_ppgtt;
659
660 i915_gem_object_lock(ppgtt->vm.scratch[0], NULL);
661 err = i915_vm_map_pt_stash(&ppgtt->vm, &stash);
662 i915_gem_object_unlock(ppgtt->vm.scratch[0]);
663 if (err)
664 goto err_stash;
665
666 /*
667 * Note we only pre-allocate as far as the end of the global
668 * GTT. On 48b / 4-level page-tables, the difference is very,
669 * very significant! We have to preallocate as GVT/vgpu does
670 * not like the page directory disappearing.
671 */
672 ppgtt->vm.allocate_va_range(&ppgtt->vm, &stash, 0, ggtt->vm.total);
673
674 ggtt->alias = ppgtt;
675 ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags;
676
677 GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
678 ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
679
680 GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
681 ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
682
683 i915_vm_free_pt_stash(&ppgtt->vm, &stash);
684 return 0;
685
686 err_stash:
687 i915_vm_free_pt_stash(&ppgtt->vm, &stash);
688 err_ppgtt:
689 i915_vm_put(&ppgtt->vm);
690 return err;
691 }
692
fini_aliasing_ppgtt(struct i915_ggtt * ggtt)693 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
694 {
695 struct i915_ppgtt *ppgtt;
696
697 ppgtt = fetch_and_zero(&ggtt->alias);
698 if (!ppgtt)
699 return;
700
701 i915_vm_put(&ppgtt->vm);
702
703 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
704 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
705 }
706
i915_init_ggtt(struct drm_i915_private * i915)707 int i915_init_ggtt(struct drm_i915_private *i915)
708 {
709 int ret;
710
711 ret = init_ggtt(&i915->ggtt);
712 if (ret)
713 return ret;
714
715 if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
716 ret = init_aliasing_ppgtt(&i915->ggtt);
717 if (ret)
718 cleanup_init_ggtt(&i915->ggtt);
719 }
720
721 return 0;
722 }
723
ggtt_cleanup_hw(struct i915_ggtt * ggtt)724 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
725 {
726 struct i915_vma *vma, *vn;
727
728 atomic_set(&ggtt->vm.open, 0);
729
730 rcu_barrier(); /* flush the RCU'ed__i915_vm_release */
731 flush_workqueue(ggtt->vm.i915->wq);
732
733 mutex_lock(&ggtt->vm.mutex);
734
735 list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
736 WARN_ON(__i915_vma_unbind(vma));
737
738 if (drm_mm_node_allocated(&ggtt->error_capture))
739 drm_mm_remove_node(&ggtt->error_capture);
740 mutex_destroy(&ggtt->error_mutex);
741
742 ggtt_release_guc_top(ggtt);
743 intel_vgt_deballoon(ggtt);
744
745 ggtt->vm.cleanup(&ggtt->vm);
746
747 mutex_unlock(&ggtt->vm.mutex);
748 i915_address_space_fini(&ggtt->vm);
749
750 arch_phys_wc_del(ggtt->mtrr);
751
752 if (ggtt->iomap.size)
753 io_mapping_fini(&ggtt->iomap);
754 }
755
756 /**
757 * i915_ggtt_driver_release - Clean up GGTT hardware initialization
758 * @i915: i915 device
759 */
i915_ggtt_driver_release(struct drm_i915_private * i915)760 void i915_ggtt_driver_release(struct drm_i915_private *i915)
761 {
762 struct i915_ggtt *ggtt = &i915->ggtt;
763
764 fini_aliasing_ppgtt(ggtt);
765
766 intel_ggtt_fini_fences(ggtt);
767 ggtt_cleanup_hw(ggtt);
768 }
769
770 /**
771 * i915_ggtt_driver_late_release - Cleanup of GGTT that needs to be done after
772 * all free objects have been drained.
773 * @i915: i915 device
774 */
i915_ggtt_driver_late_release(struct drm_i915_private * i915)775 void i915_ggtt_driver_late_release(struct drm_i915_private *i915)
776 {
777 struct i915_ggtt *ggtt = &i915->ggtt;
778
779 GEM_WARN_ON(kref_read(&ggtt->vm.resv_ref) != 1);
780 dma_resv_fini(&ggtt->vm._resv);
781 }
782
gen6_get_total_gtt_size(u16 snb_gmch_ctl)783 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
784 {
785 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
786 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
787 return snb_gmch_ctl << 20;
788 }
789
gen8_get_total_gtt_size(u16 bdw_gmch_ctl)790 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
791 {
792 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
793 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
794 if (bdw_gmch_ctl)
795 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
796
797 #ifdef CONFIG_X86_32
798 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
799 if (bdw_gmch_ctl > 4)
800 bdw_gmch_ctl = 4;
801 #endif
802
803 return bdw_gmch_ctl << 20;
804 }
805
chv_get_total_gtt_size(u16 gmch_ctrl)806 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
807 {
808 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
809 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
810
811 if (gmch_ctrl)
812 return 1 << (20 + gmch_ctrl);
813
814 return 0;
815 }
816
ggtt_probe_common(struct i915_ggtt * ggtt,u64 size)817 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
818 {
819 struct drm_i915_private *i915 = ggtt->vm.i915;
820 struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
821 phys_addr_t phys_addr;
822 u32 pte_flags;
823 int ret;
824
825 /* For Modern GENs the PTEs and register space are split in the BAR */
826 phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
827
828 /*
829 * On BXT+/ICL+ writes larger than 64 bit to the GTT pagetable range
830 * will be dropped. For WC mappings in general we have 64 byte burst
831 * writes when the WC buffer is flushed, so we can't use it, but have to
832 * resort to an uncached mapping. The WC issue is easily caught by the
833 * readback check when writing GTT PTE entries.
834 */
835 if (IS_GEN9_LP(i915) || GRAPHICS_VER(i915) >= 11)
836 ggtt->gsm = ioremap(phys_addr, size);
837 else
838 ggtt->gsm = ioremap_wc(phys_addr, size);
839 if (!ggtt->gsm) {
840 drm_err(&i915->drm, "Failed to map the ggtt page table\n");
841 return -ENOMEM;
842 }
843
844 kref_init(&ggtt->vm.resv_ref);
845 ret = setup_scratch_page(&ggtt->vm);
846 if (ret) {
847 drm_err(&i915->drm, "Scratch setup failed\n");
848 /* iounmap will also get called at remove, but meh */
849 iounmap(ggtt->gsm);
850 return ret;
851 }
852
853 pte_flags = 0;
854 if (i915_gem_object_is_lmem(ggtt->vm.scratch[0]))
855 pte_flags |= PTE_LM;
856
857 ggtt->vm.scratch[0]->encode =
858 ggtt->vm.pte_encode(px_dma(ggtt->vm.scratch[0]),
859 I915_CACHE_NONE, pte_flags);
860
861 return 0;
862 }
863
ggtt_set_pages(struct i915_vma * vma)864 int ggtt_set_pages(struct i915_vma *vma)
865 {
866 int ret;
867
868 GEM_BUG_ON(vma->pages);
869
870 ret = i915_get_ggtt_vma_pages(vma);
871 if (ret)
872 return ret;
873
874 vma->page_sizes = vma->obj->mm.page_sizes;
875
876 return 0;
877 }
878
gen6_gmch_remove(struct i915_address_space * vm)879 static void gen6_gmch_remove(struct i915_address_space *vm)
880 {
881 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
882
883 iounmap(ggtt->gsm);
884 free_scratch(vm);
885 }
886
pci_resource(struct pci_dev * pdev,int bar)887 static struct resource pci_resource(struct pci_dev *pdev, int bar)
888 {
889 return (struct resource)DEFINE_RES_MEM(pci_resource_start(pdev, bar),
890 pci_resource_len(pdev, bar));
891 }
892
gen8_gmch_probe(struct i915_ggtt * ggtt)893 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
894 {
895 struct drm_i915_private *i915 = ggtt->vm.i915;
896 struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
897 unsigned int size;
898 u16 snb_gmch_ctl;
899
900 /* TODO: We're not aware of mappable constraints on gen8 yet */
901 if (!HAS_LMEM(i915)) {
902 ggtt->gmadr = pci_resource(pdev, 2);
903 ggtt->mappable_end = resource_size(&ggtt->gmadr);
904 }
905
906 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
907 if (IS_CHERRYVIEW(i915))
908 size = chv_get_total_gtt_size(snb_gmch_ctl);
909 else
910 size = gen8_get_total_gtt_size(snb_gmch_ctl);
911
912 ggtt->vm.alloc_pt_dma = alloc_pt_dma;
913
914 ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
915 ggtt->vm.cleanup = gen6_gmch_remove;
916 ggtt->vm.insert_page = gen8_ggtt_insert_page;
917 ggtt->vm.clear_range = nop_clear_range;
918 if (intel_scanout_needs_vtd_wa(i915))
919 ggtt->vm.clear_range = gen8_ggtt_clear_range;
920
921 ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
922
923 /*
924 * Serialize GTT updates with aperture access on BXT if VT-d is on,
925 * and always on CHV.
926 */
927 if (intel_vm_no_concurrent_access_wa(i915)) {
928 ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
929 ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL;
930 ggtt->vm.bind_async_flags =
931 I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
932 }
933
934 ggtt->invalidate = gen8_ggtt_invalidate;
935
936 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
937 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
938 ggtt->vm.vma_ops.set_pages = ggtt_set_pages;
939 ggtt->vm.vma_ops.clear_pages = clear_pages;
940
941 ggtt->vm.pte_encode = gen8_ggtt_pte_encode;
942
943 setup_private_pat(ggtt->vm.gt->uncore);
944
945 return ggtt_probe_common(ggtt, size);
946 }
947
snb_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 flags)948 static u64 snb_pte_encode(dma_addr_t addr,
949 enum i915_cache_level level,
950 u32 flags)
951 {
952 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
953
954 switch (level) {
955 case I915_CACHE_L3_LLC:
956 case I915_CACHE_LLC:
957 pte |= GEN6_PTE_CACHE_LLC;
958 break;
959 case I915_CACHE_NONE:
960 pte |= GEN6_PTE_UNCACHED;
961 break;
962 default:
963 MISSING_CASE(level);
964 }
965
966 return pte;
967 }
968
ivb_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 flags)969 static u64 ivb_pte_encode(dma_addr_t addr,
970 enum i915_cache_level level,
971 u32 flags)
972 {
973 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
974
975 switch (level) {
976 case I915_CACHE_L3_LLC:
977 pte |= GEN7_PTE_CACHE_L3_LLC;
978 break;
979 case I915_CACHE_LLC:
980 pte |= GEN6_PTE_CACHE_LLC;
981 break;
982 case I915_CACHE_NONE:
983 pte |= GEN6_PTE_UNCACHED;
984 break;
985 default:
986 MISSING_CASE(level);
987 }
988
989 return pte;
990 }
991
byt_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 flags)992 static u64 byt_pte_encode(dma_addr_t addr,
993 enum i915_cache_level level,
994 u32 flags)
995 {
996 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
997
998 if (!(flags & PTE_READ_ONLY))
999 pte |= BYT_PTE_WRITEABLE;
1000
1001 if (level != I915_CACHE_NONE)
1002 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
1003
1004 return pte;
1005 }
1006
hsw_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 flags)1007 static u64 hsw_pte_encode(dma_addr_t addr,
1008 enum i915_cache_level level,
1009 u32 flags)
1010 {
1011 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1012
1013 if (level != I915_CACHE_NONE)
1014 pte |= HSW_WB_LLC_AGE3;
1015
1016 return pte;
1017 }
1018
iris_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 flags)1019 static u64 iris_pte_encode(dma_addr_t addr,
1020 enum i915_cache_level level,
1021 u32 flags)
1022 {
1023 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1024
1025 switch (level) {
1026 case I915_CACHE_NONE:
1027 break;
1028 case I915_CACHE_WT:
1029 pte |= HSW_WT_ELLC_LLC_AGE3;
1030 break;
1031 default:
1032 pte |= HSW_WB_ELLC_LLC_AGE3;
1033 break;
1034 }
1035
1036 return pte;
1037 }
1038
gen6_gmch_probe(struct i915_ggtt * ggtt)1039 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
1040 {
1041 struct drm_i915_private *i915 = ggtt->vm.i915;
1042 struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1043 unsigned int size;
1044 u16 snb_gmch_ctl;
1045
1046 ggtt->gmadr = pci_resource(pdev, 2);
1047 ggtt->mappable_end = resource_size(&ggtt->gmadr);
1048
1049 /*
1050 * 64/512MB is the current min/max we actually know of, but this is
1051 * just a coarse sanity check.
1052 */
1053 if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
1054 drm_err(&i915->drm, "Unknown GMADR size (%pa)\n",
1055 &ggtt->mappable_end);
1056 return -ENXIO;
1057 }
1058
1059 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1060
1061 size = gen6_get_total_gtt_size(snb_gmch_ctl);
1062 ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
1063
1064 ggtt->vm.alloc_pt_dma = alloc_pt_dma;
1065
1066 ggtt->vm.clear_range = nop_clear_range;
1067 if (!HAS_FULL_PPGTT(i915) || intel_scanout_needs_vtd_wa(i915))
1068 ggtt->vm.clear_range = gen6_ggtt_clear_range;
1069 ggtt->vm.insert_page = gen6_ggtt_insert_page;
1070 ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
1071 ggtt->vm.cleanup = gen6_gmch_remove;
1072
1073 ggtt->invalidate = gen6_ggtt_invalidate;
1074
1075 if (HAS_EDRAM(i915))
1076 ggtt->vm.pte_encode = iris_pte_encode;
1077 else if (IS_HASWELL(i915))
1078 ggtt->vm.pte_encode = hsw_pte_encode;
1079 else if (IS_VALLEYVIEW(i915))
1080 ggtt->vm.pte_encode = byt_pte_encode;
1081 else if (GRAPHICS_VER(i915) >= 7)
1082 ggtt->vm.pte_encode = ivb_pte_encode;
1083 else
1084 ggtt->vm.pte_encode = snb_pte_encode;
1085
1086 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
1087 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
1088 ggtt->vm.vma_ops.set_pages = ggtt_set_pages;
1089 ggtt->vm.vma_ops.clear_pages = clear_pages;
1090
1091 return ggtt_probe_common(ggtt, size);
1092 }
1093
i915_gmch_remove(struct i915_address_space * vm)1094 static void i915_gmch_remove(struct i915_address_space *vm)
1095 {
1096 intel_gmch_remove();
1097 }
1098
i915_gmch_probe(struct i915_ggtt * ggtt)1099 static int i915_gmch_probe(struct i915_ggtt *ggtt)
1100 {
1101 struct drm_i915_private *i915 = ggtt->vm.i915;
1102 phys_addr_t gmadr_base;
1103 int ret;
1104
1105 ret = intel_gmch_probe(i915->bridge_dev, to_pci_dev(i915->drm.dev), NULL);
1106 if (!ret) {
1107 drm_err(&i915->drm, "failed to set up gmch\n");
1108 return -EIO;
1109 }
1110
1111 intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
1112
1113 ggtt->gmadr =
1114 (struct resource)DEFINE_RES_MEM(gmadr_base, ggtt->mappable_end);
1115
1116 ggtt->vm.alloc_pt_dma = alloc_pt_dma;
1117
1118 if (needs_idle_maps(i915)) {
1119 drm_notice(&i915->drm,
1120 "Flushing DMA requests before IOMMU unmaps; performance may be degraded\n");
1121 ggtt->do_idle_maps = true;
1122 }
1123
1124 ggtt->vm.insert_page = i915_ggtt_insert_page;
1125 ggtt->vm.insert_entries = i915_ggtt_insert_entries;
1126 ggtt->vm.clear_range = i915_ggtt_clear_range;
1127 ggtt->vm.cleanup = i915_gmch_remove;
1128
1129 ggtt->invalidate = gmch_ggtt_invalidate;
1130
1131 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
1132 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
1133 ggtt->vm.vma_ops.set_pages = ggtt_set_pages;
1134 ggtt->vm.vma_ops.clear_pages = clear_pages;
1135
1136 if (unlikely(ggtt->do_idle_maps))
1137 drm_notice(&i915->drm,
1138 "Applying Ironlake quirks for intel_iommu\n");
1139
1140 return 0;
1141 }
1142
ggtt_probe_hw(struct i915_ggtt * ggtt,struct intel_gt * gt)1143 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
1144 {
1145 struct drm_i915_private *i915 = gt->i915;
1146 int ret;
1147
1148 ggtt->vm.gt = gt;
1149 ggtt->vm.i915 = i915;
1150 ggtt->vm.dma = i915->drm.dev;
1151 dma_resv_init(&ggtt->vm._resv);
1152
1153 if (GRAPHICS_VER(i915) <= 5)
1154 ret = i915_gmch_probe(ggtt);
1155 else if (GRAPHICS_VER(i915) < 8)
1156 ret = gen6_gmch_probe(ggtt);
1157 else
1158 ret = gen8_gmch_probe(ggtt);
1159 if (ret) {
1160 dma_resv_fini(&ggtt->vm._resv);
1161 return ret;
1162 }
1163
1164 if ((ggtt->vm.total - 1) >> 32) {
1165 drm_err(&i915->drm,
1166 "We never expected a Global GTT with more than 32bits"
1167 " of address space! Found %lldM!\n",
1168 ggtt->vm.total >> 20);
1169 ggtt->vm.total = 1ULL << 32;
1170 ggtt->mappable_end =
1171 min_t(u64, ggtt->mappable_end, ggtt->vm.total);
1172 }
1173
1174 if (ggtt->mappable_end > ggtt->vm.total) {
1175 drm_err(&i915->drm,
1176 "mappable aperture extends past end of GGTT,"
1177 " aperture=%pa, total=%llx\n",
1178 &ggtt->mappable_end, ggtt->vm.total);
1179 ggtt->mappable_end = ggtt->vm.total;
1180 }
1181
1182 /* GMADR is the PCI mmio aperture into the global GTT. */
1183 drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20);
1184 drm_dbg(&i915->drm, "GMADR size = %lluM\n",
1185 (u64)ggtt->mappable_end >> 20);
1186 drm_dbg(&i915->drm, "DSM size = %lluM\n",
1187 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
1188
1189 return 0;
1190 }
1191
1192 /**
1193 * i915_ggtt_probe_hw - Probe GGTT hardware location
1194 * @i915: i915 device
1195 */
i915_ggtt_probe_hw(struct drm_i915_private * i915)1196 int i915_ggtt_probe_hw(struct drm_i915_private *i915)
1197 {
1198 int ret;
1199
1200 ret = ggtt_probe_hw(&i915->ggtt, &i915->gt);
1201 if (ret)
1202 return ret;
1203
1204 if (intel_vtd_active())
1205 drm_info(&i915->drm, "VT-d active for gfx access\n");
1206
1207 return 0;
1208 }
1209
i915_ggtt_enable_hw(struct drm_i915_private * i915)1210 int i915_ggtt_enable_hw(struct drm_i915_private *i915)
1211 {
1212 if (GRAPHICS_VER(i915) < 6 && !intel_enable_gtt())
1213 return -EIO;
1214
1215 return 0;
1216 }
1217
i915_ggtt_enable_guc(struct i915_ggtt * ggtt)1218 void i915_ggtt_enable_guc(struct i915_ggtt *ggtt)
1219 {
1220 GEM_BUG_ON(ggtt->invalidate != gen8_ggtt_invalidate);
1221
1222 ggtt->invalidate = guc_ggtt_invalidate;
1223
1224 ggtt->invalidate(ggtt);
1225 }
1226
i915_ggtt_disable_guc(struct i915_ggtt * ggtt)1227 void i915_ggtt_disable_guc(struct i915_ggtt *ggtt)
1228 {
1229 /* XXX Temporary pardon for error unload */
1230 if (ggtt->invalidate == gen8_ggtt_invalidate)
1231 return;
1232
1233 /* We should only be called after i915_ggtt_enable_guc() */
1234 GEM_BUG_ON(ggtt->invalidate != guc_ggtt_invalidate);
1235
1236 ggtt->invalidate = gen8_ggtt_invalidate;
1237
1238 ggtt->invalidate(ggtt);
1239 }
1240
i915_ggtt_resume(struct i915_ggtt * ggtt)1241 void i915_ggtt_resume(struct i915_ggtt *ggtt)
1242 {
1243 struct i915_vma *vma;
1244 bool flush = false;
1245 int open;
1246
1247 intel_gt_check_and_clear_faults(ggtt->vm.gt);
1248
1249 /* First fill our portion of the GTT with scratch pages */
1250 ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
1251
1252 /* Skip rewriting PTE on VMA unbind. */
1253 open = atomic_xchg(&ggtt->vm.open, 0);
1254
1255 /* clflush objects bound into the GGTT and rebind them. */
1256 list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link) {
1257 struct drm_i915_gem_object *obj = vma->obj;
1258 unsigned int was_bound =
1259 atomic_read(&vma->flags) & I915_VMA_BIND_MASK;
1260
1261 GEM_BUG_ON(!was_bound);
1262 vma->ops->bind_vma(&ggtt->vm, NULL, vma,
1263 obj ? obj->cache_level : 0,
1264 was_bound);
1265 if (obj) { /* only used during resume => exclusive access */
1266 flush |= fetch_and_zero(&obj->write_domain);
1267 obj->read_domains |= I915_GEM_DOMAIN_GTT;
1268 }
1269 }
1270
1271 atomic_set(&ggtt->vm.open, open);
1272 ggtt->invalidate(ggtt);
1273
1274 if (flush)
1275 wbinvd_on_all_cpus();
1276
1277 if (GRAPHICS_VER(ggtt->vm.i915) >= 8)
1278 setup_private_pat(ggtt->vm.gt->uncore);
1279
1280 intel_ggtt_restore_fences(ggtt);
1281 }
1282
1283 static struct scatterlist *
rotate_pages(struct drm_i915_gem_object * obj,unsigned int offset,unsigned int width,unsigned int height,unsigned int src_stride,unsigned int dst_stride,struct sg_table * st,struct scatterlist * sg)1284 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
1285 unsigned int width, unsigned int height,
1286 unsigned int src_stride, unsigned int dst_stride,
1287 struct sg_table *st, struct scatterlist *sg)
1288 {
1289 unsigned int column, row;
1290 unsigned int src_idx;
1291
1292 for (column = 0; column < width; column++) {
1293 unsigned int left;
1294
1295 src_idx = src_stride * (height - 1) + column + offset;
1296 for (row = 0; row < height; row++) {
1297 st->nents++;
1298 /*
1299 * We don't need the pages, but need to initialize
1300 * the entries so the sg list can be happily traversed.
1301 * The only thing we need are DMA addresses.
1302 */
1303 sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
1304 sg_dma_address(sg) =
1305 i915_gem_object_get_dma_address(obj, src_idx);
1306 sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
1307 sg = sg_next(sg);
1308 src_idx -= src_stride;
1309 }
1310
1311 left = (dst_stride - height) * I915_GTT_PAGE_SIZE;
1312
1313 if (!left)
1314 continue;
1315
1316 st->nents++;
1317
1318 /*
1319 * The DE ignores the PTEs for the padding tiles, the sg entry
1320 * here is just a conenience to indicate how many padding PTEs
1321 * to insert at this spot.
1322 */
1323 sg_set_page(sg, NULL, left, 0);
1324 sg_dma_address(sg) = 0;
1325 sg_dma_len(sg) = left;
1326 sg = sg_next(sg);
1327 }
1328
1329 return sg;
1330 }
1331
1332 static noinline struct sg_table *
intel_rotate_pages(struct intel_rotation_info * rot_info,struct drm_i915_gem_object * obj)1333 intel_rotate_pages(struct intel_rotation_info *rot_info,
1334 struct drm_i915_gem_object *obj)
1335 {
1336 unsigned int size = intel_rotation_info_size(rot_info);
1337 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1338 struct sg_table *st;
1339 struct scatterlist *sg;
1340 int ret = -ENOMEM;
1341 int i;
1342
1343 /* Allocate target SG list. */
1344 st = kmalloc(sizeof(*st), GFP_KERNEL);
1345 if (!st)
1346 goto err_st_alloc;
1347
1348 ret = sg_alloc_table(st, size, GFP_KERNEL);
1349 if (ret)
1350 goto err_sg_alloc;
1351
1352 st->nents = 0;
1353 sg = st->sgl;
1354
1355 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
1356 sg = rotate_pages(obj, rot_info->plane[i].offset,
1357 rot_info->plane[i].width, rot_info->plane[i].height,
1358 rot_info->plane[i].src_stride,
1359 rot_info->plane[i].dst_stride,
1360 st, sg);
1361
1362 return st;
1363
1364 err_sg_alloc:
1365 kfree(st);
1366 err_st_alloc:
1367
1368 drm_dbg(&i915->drm, "Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1369 obj->base.size, rot_info->plane[0].width,
1370 rot_info->plane[0].height, size);
1371
1372 return ERR_PTR(ret);
1373 }
1374
1375 static struct scatterlist *
remap_pages(struct drm_i915_gem_object * obj,unsigned int offset,unsigned int width,unsigned int height,unsigned int src_stride,unsigned int dst_stride,struct sg_table * st,struct scatterlist * sg)1376 remap_pages(struct drm_i915_gem_object *obj, unsigned int offset,
1377 unsigned int width, unsigned int height,
1378 unsigned int src_stride, unsigned int dst_stride,
1379 struct sg_table *st, struct scatterlist *sg)
1380 {
1381 unsigned int row;
1382
1383 for (row = 0; row < height; row++) {
1384 unsigned int left = width * I915_GTT_PAGE_SIZE;
1385
1386 while (left) {
1387 dma_addr_t addr;
1388 unsigned int length;
1389
1390 /*
1391 * We don't need the pages, but need to initialize
1392 * the entries so the sg list can be happily traversed.
1393 * The only thing we need are DMA addresses.
1394 */
1395
1396 addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
1397
1398 length = min(left, length);
1399
1400 st->nents++;
1401
1402 sg_set_page(sg, NULL, length, 0);
1403 sg_dma_address(sg) = addr;
1404 sg_dma_len(sg) = length;
1405 sg = sg_next(sg);
1406
1407 offset += length / I915_GTT_PAGE_SIZE;
1408 left -= length;
1409 }
1410
1411 offset += src_stride - width;
1412
1413 left = (dst_stride - width) * I915_GTT_PAGE_SIZE;
1414
1415 if (!left)
1416 continue;
1417
1418 st->nents++;
1419
1420 /*
1421 * The DE ignores the PTEs for the padding tiles, the sg entry
1422 * here is just a conenience to indicate how many padding PTEs
1423 * to insert at this spot.
1424 */
1425 sg_set_page(sg, NULL, left, 0);
1426 sg_dma_address(sg) = 0;
1427 sg_dma_len(sg) = left;
1428 sg = sg_next(sg);
1429 }
1430
1431 return sg;
1432 }
1433
1434 static noinline struct sg_table *
intel_remap_pages(struct intel_remapped_info * rem_info,struct drm_i915_gem_object * obj)1435 intel_remap_pages(struct intel_remapped_info *rem_info,
1436 struct drm_i915_gem_object *obj)
1437 {
1438 unsigned int size = intel_remapped_info_size(rem_info);
1439 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1440 struct sg_table *st;
1441 struct scatterlist *sg;
1442 int ret = -ENOMEM;
1443 int i;
1444
1445 /* Allocate target SG list. */
1446 st = kmalloc(sizeof(*st), GFP_KERNEL);
1447 if (!st)
1448 goto err_st_alloc;
1449
1450 ret = sg_alloc_table(st, size, GFP_KERNEL);
1451 if (ret)
1452 goto err_sg_alloc;
1453
1454 st->nents = 0;
1455 sg = st->sgl;
1456
1457 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
1458 sg = remap_pages(obj, rem_info->plane[i].offset,
1459 rem_info->plane[i].width, rem_info->plane[i].height,
1460 rem_info->plane[i].src_stride, rem_info->plane[i].dst_stride,
1461 st, sg);
1462 }
1463
1464 i915_sg_trim(st);
1465
1466 return st;
1467
1468 err_sg_alloc:
1469 kfree(st);
1470 err_st_alloc:
1471
1472 drm_dbg(&i915->drm, "Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1473 obj->base.size, rem_info->plane[0].width,
1474 rem_info->plane[0].height, size);
1475
1476 return ERR_PTR(ret);
1477 }
1478
1479 static noinline struct sg_table *
intel_partial_pages(const struct i915_ggtt_view * view,struct drm_i915_gem_object * obj)1480 intel_partial_pages(const struct i915_ggtt_view *view,
1481 struct drm_i915_gem_object *obj)
1482 {
1483 struct sg_table *st;
1484 struct scatterlist *sg, *iter;
1485 unsigned int count = view->partial.size;
1486 unsigned int offset;
1487 int ret = -ENOMEM;
1488
1489 st = kmalloc(sizeof(*st), GFP_KERNEL);
1490 if (!st)
1491 goto err_st_alloc;
1492
1493 ret = sg_alloc_table(st, count, GFP_KERNEL);
1494 if (ret)
1495 goto err_sg_alloc;
1496
1497 iter = i915_gem_object_get_sg_dma(obj, view->partial.offset, &offset);
1498 GEM_BUG_ON(!iter);
1499
1500 sg = st->sgl;
1501 st->nents = 0;
1502 do {
1503 unsigned int len;
1504
1505 len = min(sg_dma_len(iter) - (offset << PAGE_SHIFT),
1506 count << PAGE_SHIFT);
1507 sg_set_page(sg, NULL, len, 0);
1508 sg_dma_address(sg) =
1509 sg_dma_address(iter) + (offset << PAGE_SHIFT);
1510 sg_dma_len(sg) = len;
1511
1512 st->nents++;
1513 count -= len >> PAGE_SHIFT;
1514 if (count == 0) {
1515 sg_mark_end(sg);
1516 i915_sg_trim(st); /* Drop any unused tail entries. */
1517
1518 return st;
1519 }
1520
1521 sg = __sg_next(sg);
1522 iter = __sg_next(iter);
1523 offset = 0;
1524 } while (1);
1525
1526 err_sg_alloc:
1527 kfree(st);
1528 err_st_alloc:
1529 return ERR_PTR(ret);
1530 }
1531
1532 static int
i915_get_ggtt_vma_pages(struct i915_vma * vma)1533 i915_get_ggtt_vma_pages(struct i915_vma *vma)
1534 {
1535 int ret;
1536
1537 /*
1538 * The vma->pages are only valid within the lifespan of the borrowed
1539 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
1540 * must be the vma->pages. A simple rule is that vma->pages must only
1541 * be accessed when the obj->mm.pages are pinned.
1542 */
1543 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
1544
1545 switch (vma->ggtt_view.type) {
1546 default:
1547 GEM_BUG_ON(vma->ggtt_view.type);
1548 fallthrough;
1549 case I915_GGTT_VIEW_NORMAL:
1550 vma->pages = vma->obj->mm.pages;
1551 return 0;
1552
1553 case I915_GGTT_VIEW_ROTATED:
1554 vma->pages =
1555 intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
1556 break;
1557
1558 case I915_GGTT_VIEW_REMAPPED:
1559 vma->pages =
1560 intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
1561 break;
1562
1563 case I915_GGTT_VIEW_PARTIAL:
1564 vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
1565 break;
1566 }
1567
1568 ret = 0;
1569 if (IS_ERR(vma->pages)) {
1570 ret = PTR_ERR(vma->pages);
1571 vma->pages = NULL;
1572 drm_err(&vma->vm->i915->drm,
1573 "Failed to get pages for VMA view type %u (%d)!\n",
1574 vma->ggtt_view.type, ret);
1575 }
1576 return ret;
1577 }
1578