1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * SMP support for ppc.
4 *
5 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
6 * deal of code from the sparc and intel versions.
7 *
8 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
9 *
10 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
11 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
12 */
13
14 #undef DEBUG
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/task_stack.h>
20 #include <linux/sched/topology.h>
21 #include <linux/smp.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/init.h>
25 #include <linux/spinlock.h>
26 #include <linux/cache.h>
27 #include <linux/err.h>
28 #include <linux/device.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/profile.h>
33 #include <linux/processor.h>
34 #include <linux/random.h>
35 #include <linux/stackprotector.h>
36 #include <linux/pgtable.h>
37 #include <linux/clockchips.h>
38
39 #include <asm/ptrace.h>
40 #include <linux/atomic.h>
41 #include <asm/irq.h>
42 #include <asm/hw_irq.h>
43 #include <asm/kvm_ppc.h>
44 #include <asm/dbell.h>
45 #include <asm/page.h>
46 #include <asm/prom.h>
47 #include <asm/smp.h>
48 #include <asm/time.h>
49 #include <asm/machdep.h>
50 #include <asm/cputhreads.h>
51 #include <asm/cputable.h>
52 #include <asm/mpic.h>
53 #include <asm/vdso_datapage.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/paca.h>
56 #endif
57 #include <asm/vdso.h>
58 #include <asm/debug.h>
59 #include <asm/kexec.h>
60 #include <asm/asm-prototypes.h>
61 #include <asm/cpu_has_feature.h>
62 #include <asm/ftrace.h>
63 #include <asm/kup.h>
64 #include <asm/fadump.h>
65
66 #ifdef DEBUG
67 #include <asm/udbg.h>
68 #define DBG(fmt...) udbg_printf(fmt)
69 #else
70 #define DBG(fmt...)
71 #endif
72
73 #ifdef CONFIG_HOTPLUG_CPU
74 /* State of each CPU during hotplug phases */
75 static DEFINE_PER_CPU(int, cpu_state) = { 0 };
76 #endif
77
78 struct task_struct *secondary_current;
79 bool has_big_cores;
80 bool coregroup_enabled;
81 bool thread_group_shares_l2;
82 bool thread_group_shares_l3;
83
84 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
85 DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map);
86 DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
87 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
88 static DEFINE_PER_CPU(cpumask_var_t, cpu_coregroup_map);
89
90 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
91 EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
92 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
93 EXPORT_SYMBOL_GPL(has_big_cores);
94
95 enum {
96 #ifdef CONFIG_SCHED_SMT
97 smt_idx,
98 #endif
99 cache_idx,
100 mc_idx,
101 die_idx,
102 };
103
104 #define MAX_THREAD_LIST_SIZE 8
105 #define THREAD_GROUP_SHARE_L1 1
106 #define THREAD_GROUP_SHARE_L2_L3 2
107 struct thread_groups {
108 unsigned int property;
109 unsigned int nr_groups;
110 unsigned int threads_per_group;
111 unsigned int thread_list[MAX_THREAD_LIST_SIZE];
112 };
113
114 /* Maximum number of properties that groups of threads within a core can share */
115 #define MAX_THREAD_GROUP_PROPERTIES 2
116
117 struct thread_groups_list {
118 unsigned int nr_properties;
119 struct thread_groups property_tgs[MAX_THREAD_GROUP_PROPERTIES];
120 };
121
122 static struct thread_groups_list tgl[NR_CPUS] __initdata;
123 /*
124 * On big-cores system, thread_group_l1_cache_map for each CPU corresponds to
125 * the set its siblings that share the L1-cache.
126 */
127 DEFINE_PER_CPU(cpumask_var_t, thread_group_l1_cache_map);
128
129 /*
130 * On some big-cores system, thread_group_l2_cache_map for each CPU
131 * corresponds to the set its siblings within the core that share the
132 * L2-cache.
133 */
134 DEFINE_PER_CPU(cpumask_var_t, thread_group_l2_cache_map);
135
136 /*
137 * On P10, thread_group_l3_cache_map for each CPU is equal to the
138 * thread_group_l2_cache_map
139 */
140 DEFINE_PER_CPU(cpumask_var_t, thread_group_l3_cache_map);
141
142 /* SMP operations for this machine */
143 struct smp_ops_t *smp_ops;
144
145 /* Can't be static due to PowerMac hackery */
146 volatile unsigned int cpu_callin_map[NR_CPUS];
147
148 int smt_enabled_at_boot = 1;
149
150 /*
151 * Returns 1 if the specified cpu should be brought up during boot.
152 * Used to inhibit booting threads if they've been disabled or
153 * limited on the command line
154 */
smp_generic_cpu_bootable(unsigned int nr)155 int smp_generic_cpu_bootable(unsigned int nr)
156 {
157 /* Special case - we inhibit secondary thread startup
158 * during boot if the user requests it.
159 */
160 if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
161 if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
162 return 0;
163 if (smt_enabled_at_boot
164 && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
165 return 0;
166 }
167
168 return 1;
169 }
170
171
172 #ifdef CONFIG_PPC64
smp_generic_kick_cpu(int nr)173 int smp_generic_kick_cpu(int nr)
174 {
175 if (nr < 0 || nr >= nr_cpu_ids)
176 return -EINVAL;
177
178 /*
179 * The processor is currently spinning, waiting for the
180 * cpu_start field to become non-zero After we set cpu_start,
181 * the processor will continue on to secondary_start
182 */
183 if (!paca_ptrs[nr]->cpu_start) {
184 paca_ptrs[nr]->cpu_start = 1;
185 smp_mb();
186 return 0;
187 }
188
189 #ifdef CONFIG_HOTPLUG_CPU
190 /*
191 * Ok it's not there, so it might be soft-unplugged, let's
192 * try to bring it back
193 */
194 generic_set_cpu_up(nr);
195 smp_wmb();
196 smp_send_reschedule(nr);
197 #endif /* CONFIG_HOTPLUG_CPU */
198
199 return 0;
200 }
201 #endif /* CONFIG_PPC64 */
202
call_function_action(int irq,void * data)203 static irqreturn_t call_function_action(int irq, void *data)
204 {
205 generic_smp_call_function_interrupt();
206 return IRQ_HANDLED;
207 }
208
reschedule_action(int irq,void * data)209 static irqreturn_t reschedule_action(int irq, void *data)
210 {
211 scheduler_ipi();
212 return IRQ_HANDLED;
213 }
214
215 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
tick_broadcast_ipi_action(int irq,void * data)216 static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
217 {
218 timer_broadcast_interrupt();
219 return IRQ_HANDLED;
220 }
221 #endif
222
223 #ifdef CONFIG_NMI_IPI
nmi_ipi_action(int irq,void * data)224 static irqreturn_t nmi_ipi_action(int irq, void *data)
225 {
226 smp_handle_nmi_ipi(get_irq_regs());
227 return IRQ_HANDLED;
228 }
229 #endif
230
231 static irq_handler_t smp_ipi_action[] = {
232 [PPC_MSG_CALL_FUNCTION] = call_function_action,
233 [PPC_MSG_RESCHEDULE] = reschedule_action,
234 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
235 [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
236 #endif
237 #ifdef CONFIG_NMI_IPI
238 [PPC_MSG_NMI_IPI] = nmi_ipi_action,
239 #endif
240 };
241
242 /*
243 * The NMI IPI is a fallback and not truly non-maskable. It is simpler
244 * than going through the call function infrastructure, and strongly
245 * serialized, so it is more appropriate for debugging.
246 */
247 const char *smp_ipi_name[] = {
248 [PPC_MSG_CALL_FUNCTION] = "ipi call function",
249 [PPC_MSG_RESCHEDULE] = "ipi reschedule",
250 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
251 [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
252 #endif
253 #ifdef CONFIG_NMI_IPI
254 [PPC_MSG_NMI_IPI] = "nmi ipi",
255 #endif
256 };
257
258 /* optional function to request ipi, for controllers with >= 4 ipis */
smp_request_message_ipi(int virq,int msg)259 int smp_request_message_ipi(int virq, int msg)
260 {
261 int err;
262
263 if (msg < 0 || msg > PPC_MSG_NMI_IPI)
264 return -EINVAL;
265 #ifndef CONFIG_NMI_IPI
266 if (msg == PPC_MSG_NMI_IPI)
267 return 1;
268 #endif
269
270 err = request_irq(virq, smp_ipi_action[msg],
271 IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
272 smp_ipi_name[msg], NULL);
273 WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
274 virq, smp_ipi_name[msg], err);
275
276 return err;
277 }
278
279 #ifdef CONFIG_PPC_SMP_MUXED_IPI
280 struct cpu_messages {
281 long messages; /* current messages */
282 };
283 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
284
smp_muxed_ipi_set_message(int cpu,int msg)285 void smp_muxed_ipi_set_message(int cpu, int msg)
286 {
287 struct cpu_messages *info = &per_cpu(ipi_message, cpu);
288 char *message = (char *)&info->messages;
289
290 /*
291 * Order previous accesses before accesses in the IPI handler.
292 */
293 smp_mb();
294 message[msg] = 1;
295 }
296
smp_muxed_ipi_message_pass(int cpu,int msg)297 void smp_muxed_ipi_message_pass(int cpu, int msg)
298 {
299 smp_muxed_ipi_set_message(cpu, msg);
300
301 /*
302 * cause_ipi functions are required to include a full barrier
303 * before doing whatever causes the IPI.
304 */
305 smp_ops->cause_ipi(cpu);
306 }
307
308 #ifdef __BIG_ENDIAN__
309 #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
310 #else
311 #define IPI_MESSAGE(A) (1uL << (8 * (A)))
312 #endif
313
smp_ipi_demux(void)314 irqreturn_t smp_ipi_demux(void)
315 {
316 mb(); /* order any irq clear */
317
318 return smp_ipi_demux_relaxed();
319 }
320
321 /* sync-free variant. Callers should ensure synchronization */
smp_ipi_demux_relaxed(void)322 irqreturn_t smp_ipi_demux_relaxed(void)
323 {
324 struct cpu_messages *info;
325 unsigned long all;
326
327 info = this_cpu_ptr(&ipi_message);
328 do {
329 all = xchg(&info->messages, 0);
330 #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
331 /*
332 * Must check for PPC_MSG_RM_HOST_ACTION messages
333 * before PPC_MSG_CALL_FUNCTION messages because when
334 * a VM is destroyed, we call kick_all_cpus_sync()
335 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
336 * messages have completed before we free any VCPUs.
337 */
338 if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
339 kvmppc_xics_ipi_action();
340 #endif
341 if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
342 generic_smp_call_function_interrupt();
343 if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
344 scheduler_ipi();
345 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
346 if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
347 timer_broadcast_interrupt();
348 #endif
349 #ifdef CONFIG_NMI_IPI
350 if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
351 nmi_ipi_action(0, NULL);
352 #endif
353 } while (info->messages);
354
355 return IRQ_HANDLED;
356 }
357 #endif /* CONFIG_PPC_SMP_MUXED_IPI */
358
do_message_pass(int cpu,int msg)359 static inline void do_message_pass(int cpu, int msg)
360 {
361 if (smp_ops->message_pass)
362 smp_ops->message_pass(cpu, msg);
363 #ifdef CONFIG_PPC_SMP_MUXED_IPI
364 else
365 smp_muxed_ipi_message_pass(cpu, msg);
366 #endif
367 }
368
smp_send_reschedule(int cpu)369 void smp_send_reschedule(int cpu)
370 {
371 if (likely(smp_ops))
372 do_message_pass(cpu, PPC_MSG_RESCHEDULE);
373 }
374 EXPORT_SYMBOL_GPL(smp_send_reschedule);
375
arch_send_call_function_single_ipi(int cpu)376 void arch_send_call_function_single_ipi(int cpu)
377 {
378 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
379 }
380
arch_send_call_function_ipi_mask(const struct cpumask * mask)381 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
382 {
383 unsigned int cpu;
384
385 for_each_cpu(cpu, mask)
386 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
387 }
388
389 #ifdef CONFIG_NMI_IPI
390
391 /*
392 * "NMI IPI" system.
393 *
394 * NMI IPIs may not be recoverable, so should not be used as ongoing part of
395 * a running system. They can be used for crash, debug, halt/reboot, etc.
396 *
397 * The IPI call waits with interrupts disabled until all targets enter the
398 * NMI handler, then returns. Subsequent IPIs can be issued before targets
399 * have returned from their handlers, so there is no guarantee about
400 * concurrency or re-entrancy.
401 *
402 * A new NMI can be issued before all targets exit the handler.
403 *
404 * The IPI call may time out without all targets entering the NMI handler.
405 * In that case, there is some logic to recover (and ignore subsequent
406 * NMI interrupts that may eventually be raised), but the platform interrupt
407 * handler may not be able to distinguish this from other exception causes,
408 * which may cause a crash.
409 */
410
411 static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
412 static struct cpumask nmi_ipi_pending_mask;
413 static bool nmi_ipi_busy = false;
414 static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
415
nmi_ipi_lock_start(unsigned long * flags)416 static void nmi_ipi_lock_start(unsigned long *flags)
417 {
418 raw_local_irq_save(*flags);
419 hard_irq_disable();
420 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
421 raw_local_irq_restore(*flags);
422 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
423 raw_local_irq_save(*flags);
424 hard_irq_disable();
425 }
426 }
427
nmi_ipi_lock(void)428 static void nmi_ipi_lock(void)
429 {
430 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
431 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
432 }
433
nmi_ipi_unlock(void)434 static void nmi_ipi_unlock(void)
435 {
436 smp_mb();
437 WARN_ON(atomic_read(&__nmi_ipi_lock) != 1);
438 atomic_set(&__nmi_ipi_lock, 0);
439 }
440
nmi_ipi_unlock_end(unsigned long * flags)441 static void nmi_ipi_unlock_end(unsigned long *flags)
442 {
443 nmi_ipi_unlock();
444 raw_local_irq_restore(*flags);
445 }
446
447 /*
448 * Platform NMI handler calls this to ack
449 */
smp_handle_nmi_ipi(struct pt_regs * regs)450 int smp_handle_nmi_ipi(struct pt_regs *regs)
451 {
452 void (*fn)(struct pt_regs *) = NULL;
453 unsigned long flags;
454 int me = raw_smp_processor_id();
455 int ret = 0;
456
457 /*
458 * Unexpected NMIs are possible here because the interrupt may not
459 * be able to distinguish NMI IPIs from other types of NMIs, or
460 * because the caller may have timed out.
461 */
462 nmi_ipi_lock_start(&flags);
463 if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) {
464 cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
465 fn = READ_ONCE(nmi_ipi_function);
466 WARN_ON_ONCE(!fn);
467 ret = 1;
468 }
469 nmi_ipi_unlock_end(&flags);
470
471 if (fn)
472 fn(regs);
473
474 return ret;
475 }
476
do_smp_send_nmi_ipi(int cpu,bool safe)477 static void do_smp_send_nmi_ipi(int cpu, bool safe)
478 {
479 if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
480 return;
481
482 if (cpu >= 0) {
483 do_message_pass(cpu, PPC_MSG_NMI_IPI);
484 } else {
485 int c;
486
487 for_each_online_cpu(c) {
488 if (c == raw_smp_processor_id())
489 continue;
490 do_message_pass(c, PPC_MSG_NMI_IPI);
491 }
492 }
493 }
494
495 /*
496 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
497 * - fn is the target callback function.
498 * - delay_us > 0 is the delay before giving up waiting for targets to
499 * begin executing the handler, == 0 specifies indefinite delay.
500 */
__smp_send_nmi_ipi(int cpu,void (* fn)(struct pt_regs *),u64 delay_us,bool safe)501 static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *),
502 u64 delay_us, bool safe)
503 {
504 unsigned long flags;
505 int me = raw_smp_processor_id();
506 int ret = 1;
507
508 BUG_ON(cpu == me);
509 BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
510
511 if (unlikely(!smp_ops))
512 return 0;
513
514 nmi_ipi_lock_start(&flags);
515 while (nmi_ipi_busy) {
516 nmi_ipi_unlock_end(&flags);
517 spin_until_cond(!nmi_ipi_busy);
518 nmi_ipi_lock_start(&flags);
519 }
520 nmi_ipi_busy = true;
521 nmi_ipi_function = fn;
522
523 WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask));
524
525 if (cpu < 0) {
526 /* ALL_OTHERS */
527 cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
528 cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
529 } else {
530 cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
531 }
532
533 nmi_ipi_unlock();
534
535 /* Interrupts remain hard disabled */
536
537 do_smp_send_nmi_ipi(cpu, safe);
538
539 nmi_ipi_lock();
540 /* nmi_ipi_busy is set here, so unlock/lock is okay */
541 while (!cpumask_empty(&nmi_ipi_pending_mask)) {
542 nmi_ipi_unlock();
543 udelay(1);
544 nmi_ipi_lock();
545 if (delay_us) {
546 delay_us--;
547 if (!delay_us)
548 break;
549 }
550 }
551
552 if (!cpumask_empty(&nmi_ipi_pending_mask)) {
553 /* Timeout waiting for CPUs to call smp_handle_nmi_ipi */
554 ret = 0;
555 cpumask_clear(&nmi_ipi_pending_mask);
556 }
557
558 nmi_ipi_function = NULL;
559 nmi_ipi_busy = false;
560
561 nmi_ipi_unlock_end(&flags);
562
563 return ret;
564 }
565
smp_send_nmi_ipi(int cpu,void (* fn)(struct pt_regs *),u64 delay_us)566 int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
567 {
568 return __smp_send_nmi_ipi(cpu, fn, delay_us, false);
569 }
570
smp_send_safe_nmi_ipi(int cpu,void (* fn)(struct pt_regs *),u64 delay_us)571 int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
572 {
573 return __smp_send_nmi_ipi(cpu, fn, delay_us, true);
574 }
575 #endif /* CONFIG_NMI_IPI */
576
577 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
tick_broadcast(const struct cpumask * mask)578 void tick_broadcast(const struct cpumask *mask)
579 {
580 unsigned int cpu;
581
582 for_each_cpu(cpu, mask)
583 do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
584 }
585 #endif
586
587 #ifdef CONFIG_DEBUGGER
debugger_ipi_callback(struct pt_regs * regs)588 static void debugger_ipi_callback(struct pt_regs *regs)
589 {
590 debugger_ipi(regs);
591 }
592
smp_send_debugger_break(void)593 void smp_send_debugger_break(void)
594 {
595 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
596 }
597 #endif
598
599 #ifdef CONFIG_KEXEC_CORE
crash_send_ipi(void (* crash_ipi_callback)(struct pt_regs *))600 void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
601 {
602 int cpu;
603
604 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
605 if (kdump_in_progress() && crash_wake_offline) {
606 for_each_present_cpu(cpu) {
607 if (cpu_online(cpu))
608 continue;
609 /*
610 * crash_ipi_callback will wait for
611 * all cpus, including offline CPUs.
612 * We don't care about nmi_ipi_function.
613 * Offline cpus will jump straight into
614 * crash_ipi_callback, we can skip the
615 * entire NMI dance and waiting for
616 * cpus to clear pending mask, etc.
617 */
618 do_smp_send_nmi_ipi(cpu, false);
619 }
620 }
621 }
622 #endif
623
624 #ifdef CONFIG_NMI_IPI
crash_stop_this_cpu(struct pt_regs * regs)625 static void crash_stop_this_cpu(struct pt_regs *regs)
626 #else
627 static void crash_stop_this_cpu(void *dummy)
628 #endif
629 {
630 /*
631 * Just busy wait here and avoid marking CPU as offline to ensure
632 * register data is captured appropriately.
633 */
634 while (1)
635 cpu_relax();
636 }
637
crash_smp_send_stop(void)638 void crash_smp_send_stop(void)
639 {
640 static bool stopped = false;
641
642 /*
643 * In case of fadump, register data for all CPUs is captured by f/w
644 * on ibm,os-term rtas call. Skip IPI callbacks to other CPUs before
645 * this rtas call to avoid tricky post processing of those CPUs'
646 * backtraces.
647 */
648 if (should_fadump_crash())
649 return;
650
651 if (stopped)
652 return;
653
654 stopped = true;
655
656 #ifdef CONFIG_NMI_IPI
657 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_stop_this_cpu, 1000000);
658 #else
659 smp_call_function(crash_stop_this_cpu, NULL, 0);
660 #endif /* CONFIG_NMI_IPI */
661 }
662
663 #ifdef CONFIG_NMI_IPI
nmi_stop_this_cpu(struct pt_regs * regs)664 static void nmi_stop_this_cpu(struct pt_regs *regs)
665 {
666 /*
667 * IRQs are already hard disabled by the smp_handle_nmi_ipi.
668 */
669 set_cpu_online(smp_processor_id(), false);
670
671 spin_begin();
672 while (1)
673 spin_cpu_relax();
674 }
675
smp_send_stop(void)676 void smp_send_stop(void)
677 {
678 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
679 }
680
681 #else /* CONFIG_NMI_IPI */
682
stop_this_cpu(void * dummy)683 static void stop_this_cpu(void *dummy)
684 {
685 hard_irq_disable();
686
687 /*
688 * Offlining CPUs in stop_this_cpu can result in scheduler warnings,
689 * (see commit de6e5d38417e), but printk_safe_flush_on_panic() wants
690 * to know other CPUs are offline before it breaks locks to flush
691 * printk buffers, in case we panic()ed while holding the lock.
692 */
693 set_cpu_online(smp_processor_id(), false);
694
695 spin_begin();
696 while (1)
697 spin_cpu_relax();
698 }
699
smp_send_stop(void)700 void smp_send_stop(void)
701 {
702 static bool stopped = false;
703
704 /*
705 * Prevent waiting on csd lock from a previous smp_send_stop.
706 * This is racy, but in general callers try to do the right
707 * thing and only fire off one smp_send_stop (e.g., see
708 * kernel/panic.c)
709 */
710 if (stopped)
711 return;
712
713 stopped = true;
714
715 smp_call_function(stop_this_cpu, NULL, 0);
716 }
717 #endif /* CONFIG_NMI_IPI */
718
719 struct task_struct *current_set[NR_CPUS];
720
smp_store_cpu_info(int id)721 static void smp_store_cpu_info(int id)
722 {
723 per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
724 #ifdef CONFIG_PPC_FSL_BOOK3E
725 per_cpu(next_tlbcam_idx, id)
726 = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
727 #endif
728 }
729
730 /*
731 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
732 * rather than just passing around the cpumask we pass around a function that
733 * returns the that cpumask for the given CPU.
734 */
set_cpus_related(int i,int j,struct cpumask * (* get_cpumask)(int))735 static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
736 {
737 cpumask_set_cpu(i, get_cpumask(j));
738 cpumask_set_cpu(j, get_cpumask(i));
739 }
740
741 #ifdef CONFIG_HOTPLUG_CPU
set_cpus_unrelated(int i,int j,struct cpumask * (* get_cpumask)(int))742 static void set_cpus_unrelated(int i, int j,
743 struct cpumask *(*get_cpumask)(int))
744 {
745 cpumask_clear_cpu(i, get_cpumask(j));
746 cpumask_clear_cpu(j, get_cpumask(i));
747 }
748 #endif
749
750 /*
751 * Extends set_cpus_related. Instead of setting one CPU at a time in
752 * dstmask, set srcmask at oneshot. dstmask should be super set of srcmask.
753 */
or_cpumasks_related(int i,int j,struct cpumask * (* srcmask)(int),struct cpumask * (* dstmask)(int))754 static void or_cpumasks_related(int i, int j, struct cpumask *(*srcmask)(int),
755 struct cpumask *(*dstmask)(int))
756 {
757 struct cpumask *mask;
758 int k;
759
760 mask = srcmask(j);
761 for_each_cpu(k, srcmask(i))
762 cpumask_or(dstmask(k), dstmask(k), mask);
763
764 if (i == j)
765 return;
766
767 mask = srcmask(i);
768 for_each_cpu(k, srcmask(j))
769 cpumask_or(dstmask(k), dstmask(k), mask);
770 }
771
772 /*
773 * parse_thread_groups: Parses the "ibm,thread-groups" device tree
774 * property for the CPU device node @dn and stores
775 * the parsed output in the thread_groups_list
776 * structure @tglp.
777 *
778 * @dn: The device node of the CPU device.
779 * @tglp: Pointer to a thread group list structure into which the parsed
780 * output of "ibm,thread-groups" is stored.
781 *
782 * ibm,thread-groups[0..N-1] array defines which group of threads in
783 * the CPU-device node can be grouped together based on the property.
784 *
785 * This array can represent thread groupings for multiple properties.
786 *
787 * ibm,thread-groups[i + 0] tells us the property based on which the
788 * threads are being grouped together. If this value is 1, it implies
789 * that the threads in the same group share L1, translation cache. If
790 * the value is 2, it implies that the threads in the same group share
791 * the same L2 cache.
792 *
793 * ibm,thread-groups[i+1] tells us how many such thread groups exist for the
794 * property ibm,thread-groups[i]
795 *
796 * ibm,thread-groups[i+2] tells us the number of threads in each such
797 * group.
798 * Suppose k = (ibm,thread-groups[i+1] * ibm,thread-groups[i+2]), then,
799 *
800 * ibm,thread-groups[i+3..i+k+2] (is the list of threads identified by
801 * "ibm,ppc-interrupt-server#s" arranged as per their membership in
802 * the grouping.
803 *
804 * Example:
805 * If "ibm,thread-groups" = [1,2,4,8,10,12,14,9,11,13,15,2,2,4,8,10,12,14,9,11,13,15]
806 * This can be decomposed up into two consecutive arrays:
807 * a) [1,2,4,8,10,12,14,9,11,13,15]
808 * b) [2,2,4,8,10,12,14,9,11,13,15]
809 *
810 * where in,
811 *
812 * a) provides information of Property "1" being shared by "2" groups,
813 * each with "4" threads each. The "ibm,ppc-interrupt-server#s" of
814 * the first group is {8,10,12,14} and the
815 * "ibm,ppc-interrupt-server#s" of the second group is
816 * {9,11,13,15}. Property "1" is indicative of the thread in the
817 * group sharing L1 cache, translation cache and Instruction Data
818 * flow.
819 *
820 * b) provides information of Property "2" being shared by "2" groups,
821 * each group with "4" threads. The "ibm,ppc-interrupt-server#s" of
822 * the first group is {8,10,12,14} and the
823 * "ibm,ppc-interrupt-server#s" of the second group is
824 * {9,11,13,15}. Property "2" indicates that the threads in each
825 * group share the L2-cache.
826 *
827 * Returns 0 on success, -EINVAL if the property does not exist,
828 * -ENODATA if property does not have a value, and -EOVERFLOW if the
829 * property data isn't large enough.
830 */
parse_thread_groups(struct device_node * dn,struct thread_groups_list * tglp)831 static int parse_thread_groups(struct device_node *dn,
832 struct thread_groups_list *tglp)
833 {
834 unsigned int property_idx = 0;
835 u32 *thread_group_array;
836 size_t total_threads;
837 int ret = 0, count;
838 u32 *thread_list;
839 int i = 0;
840
841 count = of_property_count_u32_elems(dn, "ibm,thread-groups");
842 thread_group_array = kcalloc(count, sizeof(u32), GFP_KERNEL);
843 ret = of_property_read_u32_array(dn, "ibm,thread-groups",
844 thread_group_array, count);
845 if (ret)
846 goto out_free;
847
848 while (i < count && property_idx < MAX_THREAD_GROUP_PROPERTIES) {
849 int j;
850 struct thread_groups *tg = &tglp->property_tgs[property_idx++];
851
852 tg->property = thread_group_array[i];
853 tg->nr_groups = thread_group_array[i + 1];
854 tg->threads_per_group = thread_group_array[i + 2];
855 total_threads = tg->nr_groups * tg->threads_per_group;
856
857 thread_list = &thread_group_array[i + 3];
858
859 for (j = 0; j < total_threads; j++)
860 tg->thread_list[j] = thread_list[j];
861 i = i + 3 + total_threads;
862 }
863
864 tglp->nr_properties = property_idx;
865
866 out_free:
867 kfree(thread_group_array);
868 return ret;
869 }
870
871 /*
872 * get_cpu_thread_group_start : Searches the thread group in tg->thread_list
873 * that @cpu belongs to.
874 *
875 * @cpu : The logical CPU whose thread group is being searched.
876 * @tg : The thread-group structure of the CPU node which @cpu belongs
877 * to.
878 *
879 * Returns the index to tg->thread_list that points to the the start
880 * of the thread_group that @cpu belongs to.
881 *
882 * Returns -1 if cpu doesn't belong to any of the groups pointed to by
883 * tg->thread_list.
884 */
get_cpu_thread_group_start(int cpu,struct thread_groups * tg)885 static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg)
886 {
887 int hw_cpu_id = get_hard_smp_processor_id(cpu);
888 int i, j;
889
890 for (i = 0; i < tg->nr_groups; i++) {
891 int group_start = i * tg->threads_per_group;
892
893 for (j = 0; j < tg->threads_per_group; j++) {
894 int idx = group_start + j;
895
896 if (tg->thread_list[idx] == hw_cpu_id)
897 return group_start;
898 }
899 }
900
901 return -1;
902 }
903
get_thread_groups(int cpu,int group_property,int * err)904 static struct thread_groups *__init get_thread_groups(int cpu,
905 int group_property,
906 int *err)
907 {
908 struct device_node *dn = of_get_cpu_node(cpu, NULL);
909 struct thread_groups_list *cpu_tgl = &tgl[cpu];
910 struct thread_groups *tg = NULL;
911 int i;
912 *err = 0;
913
914 if (!dn) {
915 *err = -ENODATA;
916 return NULL;
917 }
918
919 if (!cpu_tgl->nr_properties) {
920 *err = parse_thread_groups(dn, cpu_tgl);
921 if (*err)
922 goto out;
923 }
924
925 for (i = 0; i < cpu_tgl->nr_properties; i++) {
926 if (cpu_tgl->property_tgs[i].property == group_property) {
927 tg = &cpu_tgl->property_tgs[i];
928 break;
929 }
930 }
931
932 if (!tg)
933 *err = -EINVAL;
934 out:
935 of_node_put(dn);
936 return tg;
937 }
938
update_mask_from_threadgroup(cpumask_var_t * mask,struct thread_groups * tg,int cpu,int cpu_group_start)939 static int update_mask_from_threadgroup(cpumask_var_t *mask, struct thread_groups *tg, int cpu, int cpu_group_start)
940 {
941 int first_thread = cpu_first_thread_sibling(cpu);
942 int i;
943
944 zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cpu));
945
946 for (i = first_thread; i < first_thread + threads_per_core; i++) {
947 int i_group_start = get_cpu_thread_group_start(i, tg);
948
949 if (unlikely(i_group_start == -1)) {
950 WARN_ON_ONCE(1);
951 return -ENODATA;
952 }
953
954 if (i_group_start == cpu_group_start)
955 cpumask_set_cpu(i, *mask);
956 }
957
958 return 0;
959 }
960
init_thread_group_cache_map(int cpu,int cache_property)961 static int __init init_thread_group_cache_map(int cpu, int cache_property)
962
963 {
964 int cpu_group_start = -1, err = 0;
965 struct thread_groups *tg = NULL;
966 cpumask_var_t *mask = NULL;
967
968 if (cache_property != THREAD_GROUP_SHARE_L1 &&
969 cache_property != THREAD_GROUP_SHARE_L2_L3)
970 return -EINVAL;
971
972 tg = get_thread_groups(cpu, cache_property, &err);
973
974 if (!tg)
975 return err;
976
977 cpu_group_start = get_cpu_thread_group_start(cpu, tg);
978
979 if (unlikely(cpu_group_start == -1)) {
980 WARN_ON_ONCE(1);
981 return -ENODATA;
982 }
983
984 if (cache_property == THREAD_GROUP_SHARE_L1) {
985 mask = &per_cpu(thread_group_l1_cache_map, cpu);
986 update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
987 }
988 else if (cache_property == THREAD_GROUP_SHARE_L2_L3) {
989 mask = &per_cpu(thread_group_l2_cache_map, cpu);
990 update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
991 mask = &per_cpu(thread_group_l3_cache_map, cpu);
992 update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
993 }
994
995
996 return 0;
997 }
998
999 static bool shared_caches;
1000
1001 #ifdef CONFIG_SCHED_SMT
1002 /* cpumask of CPUs with asymmetric SMT dependency */
powerpc_smt_flags(void)1003 static int powerpc_smt_flags(void)
1004 {
1005 int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1006
1007 if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
1008 printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
1009 flags |= SD_ASYM_PACKING;
1010 }
1011 return flags;
1012 }
1013 #endif
1014
1015 /*
1016 * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
1017 * This topology makes it *much* cheaper to migrate tasks between adjacent cores
1018 * since the migrated task remains cache hot. We want to take advantage of this
1019 * at the scheduler level so an extra topology level is required.
1020 */
powerpc_shared_cache_flags(void)1021 static int powerpc_shared_cache_flags(void)
1022 {
1023 return SD_SHARE_PKG_RESOURCES;
1024 }
1025
1026 /*
1027 * We can't just pass cpu_l2_cache_mask() directly because
1028 * returns a non-const pointer and the compiler barfs on that.
1029 */
shared_cache_mask(int cpu)1030 static const struct cpumask *shared_cache_mask(int cpu)
1031 {
1032 return per_cpu(cpu_l2_cache_map, cpu);
1033 }
1034
1035 #ifdef CONFIG_SCHED_SMT
smallcore_smt_mask(int cpu)1036 static const struct cpumask *smallcore_smt_mask(int cpu)
1037 {
1038 return cpu_smallcore_mask(cpu);
1039 }
1040 #endif
1041
cpu_coregroup_mask(int cpu)1042 static struct cpumask *cpu_coregroup_mask(int cpu)
1043 {
1044 return per_cpu(cpu_coregroup_map, cpu);
1045 }
1046
has_coregroup_support(void)1047 static bool has_coregroup_support(void)
1048 {
1049 return coregroup_enabled;
1050 }
1051
cpu_mc_mask(int cpu)1052 static const struct cpumask *cpu_mc_mask(int cpu)
1053 {
1054 return cpu_coregroup_mask(cpu);
1055 }
1056
1057 static struct sched_domain_topology_level powerpc_topology[] = {
1058 #ifdef CONFIG_SCHED_SMT
1059 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1060 #endif
1061 { shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
1062 { cpu_mc_mask, SD_INIT_NAME(MC) },
1063 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1064 { NULL, },
1065 };
1066
init_big_cores(void)1067 static int __init init_big_cores(void)
1068 {
1069 int cpu;
1070
1071 for_each_possible_cpu(cpu) {
1072 int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L1);
1073
1074 if (err)
1075 return err;
1076
1077 zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu),
1078 GFP_KERNEL,
1079 cpu_to_node(cpu));
1080 }
1081
1082 has_big_cores = true;
1083
1084 for_each_possible_cpu(cpu) {
1085 int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L2_L3);
1086
1087 if (err)
1088 return err;
1089 }
1090
1091 thread_group_shares_l2 = true;
1092 thread_group_shares_l3 = true;
1093 pr_debug("L2/L3 cache only shared by the threads in the small core\n");
1094
1095 return 0;
1096 }
1097
smp_prepare_cpus(unsigned int max_cpus)1098 void __init smp_prepare_cpus(unsigned int max_cpus)
1099 {
1100 unsigned int cpu;
1101
1102 DBG("smp_prepare_cpus\n");
1103
1104 /*
1105 * setup_cpu may need to be called on the boot cpu. We havent
1106 * spun any cpus up but lets be paranoid.
1107 */
1108 BUG_ON(boot_cpuid != smp_processor_id());
1109
1110 /* Fixup boot cpu */
1111 smp_store_cpu_info(boot_cpuid);
1112 cpu_callin_map[boot_cpuid] = 1;
1113
1114 for_each_possible_cpu(cpu) {
1115 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
1116 GFP_KERNEL, cpu_to_node(cpu));
1117 zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
1118 GFP_KERNEL, cpu_to_node(cpu));
1119 zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
1120 GFP_KERNEL, cpu_to_node(cpu));
1121 if (has_coregroup_support())
1122 zalloc_cpumask_var_node(&per_cpu(cpu_coregroup_map, cpu),
1123 GFP_KERNEL, cpu_to_node(cpu));
1124
1125 #ifdef CONFIG_NUMA
1126 /*
1127 * numa_node_id() works after this.
1128 */
1129 if (cpu_present(cpu)) {
1130 set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
1131 set_cpu_numa_mem(cpu,
1132 local_memory_node(numa_cpu_lookup_table[cpu]));
1133 }
1134 #endif
1135 }
1136
1137 /* Init the cpumasks so the boot CPU is related to itself */
1138 cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
1139 cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
1140 cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
1141
1142 if (has_coregroup_support())
1143 cpumask_set_cpu(boot_cpuid, cpu_coregroup_mask(boot_cpuid));
1144
1145 init_big_cores();
1146 if (has_big_cores) {
1147 cpumask_set_cpu(boot_cpuid,
1148 cpu_smallcore_mask(boot_cpuid));
1149 }
1150
1151 if (cpu_to_chip_id(boot_cpuid) != -1) {
1152 int idx = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1153
1154 /*
1155 * All threads of a core will all belong to the same core,
1156 * chip_id_lookup_table will have one entry per core.
1157 * Assumption: if boot_cpuid doesn't have a chip-id, then no
1158 * other CPUs, will also not have chip-id.
1159 */
1160 chip_id_lookup_table = kcalloc(idx, sizeof(int), GFP_KERNEL);
1161 if (chip_id_lookup_table)
1162 memset(chip_id_lookup_table, -1, sizeof(int) * idx);
1163 }
1164
1165 if (smp_ops && smp_ops->probe)
1166 smp_ops->probe();
1167 }
1168
smp_prepare_boot_cpu(void)1169 void smp_prepare_boot_cpu(void)
1170 {
1171 BUG_ON(smp_processor_id() != boot_cpuid);
1172 #ifdef CONFIG_PPC64
1173 paca_ptrs[boot_cpuid]->__current = current;
1174 #endif
1175 set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
1176 current_set[boot_cpuid] = current;
1177 }
1178
1179 #ifdef CONFIG_HOTPLUG_CPU
1180
generic_cpu_disable(void)1181 int generic_cpu_disable(void)
1182 {
1183 unsigned int cpu = smp_processor_id();
1184
1185 if (cpu == boot_cpuid)
1186 return -EBUSY;
1187
1188 set_cpu_online(cpu, false);
1189 #ifdef CONFIG_PPC64
1190 vdso_data->processorCount--;
1191 #endif
1192 /* Update affinity of all IRQs previously aimed at this CPU */
1193 irq_migrate_all_off_this_cpu();
1194
1195 /*
1196 * Depending on the details of the interrupt controller, it's possible
1197 * that one of the interrupts we just migrated away from this CPU is
1198 * actually already pending on this CPU. If we leave it in that state
1199 * the interrupt will never be EOI'ed, and will never fire again. So
1200 * temporarily enable interrupts here, to allow any pending interrupt to
1201 * be received (and EOI'ed), before we take this CPU offline.
1202 */
1203 local_irq_enable();
1204 mdelay(1);
1205 local_irq_disable();
1206
1207 return 0;
1208 }
1209
generic_cpu_die(unsigned int cpu)1210 void generic_cpu_die(unsigned int cpu)
1211 {
1212 int i;
1213
1214 for (i = 0; i < 100; i++) {
1215 smp_rmb();
1216 if (is_cpu_dead(cpu))
1217 return;
1218 msleep(100);
1219 }
1220 printk(KERN_ERR "CPU%d didn't die...\n", cpu);
1221 }
1222
generic_set_cpu_dead(unsigned int cpu)1223 void generic_set_cpu_dead(unsigned int cpu)
1224 {
1225 per_cpu(cpu_state, cpu) = CPU_DEAD;
1226 }
1227
1228 /*
1229 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
1230 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
1231 * which makes the delay in generic_cpu_die() not happen.
1232 */
generic_set_cpu_up(unsigned int cpu)1233 void generic_set_cpu_up(unsigned int cpu)
1234 {
1235 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1236 }
1237
generic_check_cpu_restart(unsigned int cpu)1238 int generic_check_cpu_restart(unsigned int cpu)
1239 {
1240 return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
1241 }
1242
is_cpu_dead(unsigned int cpu)1243 int is_cpu_dead(unsigned int cpu)
1244 {
1245 return per_cpu(cpu_state, cpu) == CPU_DEAD;
1246 }
1247
secondaries_inhibited(void)1248 static bool secondaries_inhibited(void)
1249 {
1250 return kvm_hv_mode_active();
1251 }
1252
1253 #else /* HOTPLUG_CPU */
1254
1255 #define secondaries_inhibited() 0
1256
1257 #endif
1258
cpu_idle_thread_init(unsigned int cpu,struct task_struct * idle)1259 static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
1260 {
1261 #ifdef CONFIG_PPC64
1262 paca_ptrs[cpu]->__current = idle;
1263 paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) +
1264 THREAD_SIZE - STACK_FRAME_OVERHEAD;
1265 #endif
1266 idle->cpu = cpu;
1267 secondary_current = current_set[cpu] = idle;
1268 }
1269
__cpu_up(unsigned int cpu,struct task_struct * tidle)1270 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1271 {
1272 int rc, c;
1273
1274 /*
1275 * Don't allow secondary threads to come online if inhibited
1276 */
1277 if (threads_per_core > 1 && secondaries_inhibited() &&
1278 cpu_thread_in_subcore(cpu))
1279 return -EBUSY;
1280
1281 if (smp_ops == NULL ||
1282 (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
1283 return -EINVAL;
1284
1285 cpu_idle_thread_init(cpu, tidle);
1286
1287 /*
1288 * The platform might need to allocate resources prior to bringing
1289 * up the CPU
1290 */
1291 if (smp_ops->prepare_cpu) {
1292 rc = smp_ops->prepare_cpu(cpu);
1293 if (rc)
1294 return rc;
1295 }
1296
1297 /* Make sure callin-map entry is 0 (can be leftover a CPU
1298 * hotplug
1299 */
1300 cpu_callin_map[cpu] = 0;
1301
1302 /* The information for processor bringup must
1303 * be written out to main store before we release
1304 * the processor.
1305 */
1306 smp_mb();
1307
1308 /* wake up cpus */
1309 DBG("smp: kicking cpu %d\n", cpu);
1310 rc = smp_ops->kick_cpu(cpu);
1311 if (rc) {
1312 pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
1313 return rc;
1314 }
1315
1316 /*
1317 * wait to see if the cpu made a callin (is actually up).
1318 * use this value that I found through experimentation.
1319 * -- Cort
1320 */
1321 if (system_state < SYSTEM_RUNNING)
1322 for (c = 50000; c && !cpu_callin_map[cpu]; c--)
1323 udelay(100);
1324 #ifdef CONFIG_HOTPLUG_CPU
1325 else
1326 /*
1327 * CPUs can take much longer to come up in the
1328 * hotplug case. Wait five seconds.
1329 */
1330 for (c = 5000; c && !cpu_callin_map[cpu]; c--)
1331 msleep(1);
1332 #endif
1333
1334 if (!cpu_callin_map[cpu]) {
1335 printk(KERN_ERR "Processor %u is stuck.\n", cpu);
1336 return -ENOENT;
1337 }
1338
1339 DBG("Processor %u found.\n", cpu);
1340
1341 if (smp_ops->give_timebase)
1342 smp_ops->give_timebase();
1343
1344 /* Wait until cpu puts itself in the online & active maps */
1345 spin_until_cond(cpu_online(cpu));
1346
1347 return 0;
1348 }
1349
1350 /* Return the value of the reg property corresponding to the given
1351 * logical cpu.
1352 */
cpu_to_core_id(int cpu)1353 int cpu_to_core_id(int cpu)
1354 {
1355 struct device_node *np;
1356 const __be32 *reg;
1357 int id = -1;
1358
1359 np = of_get_cpu_node(cpu, NULL);
1360 if (!np)
1361 goto out;
1362
1363 reg = of_get_property(np, "reg", NULL);
1364 if (!reg)
1365 goto out;
1366
1367 id = be32_to_cpup(reg);
1368 out:
1369 of_node_put(np);
1370 return id;
1371 }
1372 EXPORT_SYMBOL_GPL(cpu_to_core_id);
1373
1374 /* Helper routines for cpu to core mapping */
cpu_core_index_of_thread(int cpu)1375 int cpu_core_index_of_thread(int cpu)
1376 {
1377 return cpu >> threads_shift;
1378 }
1379 EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
1380
cpu_first_thread_of_core(int core)1381 int cpu_first_thread_of_core(int core)
1382 {
1383 return core << threads_shift;
1384 }
1385 EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
1386
1387 /* Must be called when no change can occur to cpu_present_mask,
1388 * i.e. during cpu online or offline.
1389 */
cpu_to_l2cache(int cpu)1390 static struct device_node *cpu_to_l2cache(int cpu)
1391 {
1392 struct device_node *np;
1393 struct device_node *cache;
1394
1395 if (!cpu_present(cpu))
1396 return NULL;
1397
1398 np = of_get_cpu_node(cpu, NULL);
1399 if (np == NULL)
1400 return NULL;
1401
1402 cache = of_find_next_cache_node(np);
1403
1404 of_node_put(np);
1405
1406 return cache;
1407 }
1408
update_mask_by_l2(int cpu,cpumask_var_t * mask)1409 static bool update_mask_by_l2(int cpu, cpumask_var_t *mask)
1410 {
1411 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1412 struct device_node *l2_cache, *np;
1413 int i;
1414
1415 if (has_big_cores)
1416 submask_fn = cpu_smallcore_mask;
1417
1418 /*
1419 * If the threads in a thread-group share L2 cache, then the
1420 * L2-mask can be obtained from thread_group_l2_cache_map.
1421 */
1422 if (thread_group_shares_l2) {
1423 cpumask_set_cpu(cpu, cpu_l2_cache_mask(cpu));
1424
1425 for_each_cpu(i, per_cpu(thread_group_l2_cache_map, cpu)) {
1426 if (cpu_online(i))
1427 set_cpus_related(i, cpu, cpu_l2_cache_mask);
1428 }
1429
1430 /* Verify that L1-cache siblings are a subset of L2 cache-siblings */
1431 if (!cpumask_equal(submask_fn(cpu), cpu_l2_cache_mask(cpu)) &&
1432 !cpumask_subset(submask_fn(cpu), cpu_l2_cache_mask(cpu))) {
1433 pr_warn_once("CPU %d : Inconsistent L1 and L2 cache siblings\n",
1434 cpu);
1435 }
1436
1437 return true;
1438 }
1439
1440 l2_cache = cpu_to_l2cache(cpu);
1441 if (!l2_cache || !*mask) {
1442 /* Assume only core siblings share cache with this CPU */
1443 for_each_cpu(i, cpu_sibling_mask(cpu))
1444 set_cpus_related(cpu, i, cpu_l2_cache_mask);
1445
1446 return false;
1447 }
1448
1449 cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
1450
1451 /* Update l2-cache mask with all the CPUs that are part of submask */
1452 or_cpumasks_related(cpu, cpu, submask_fn, cpu_l2_cache_mask);
1453
1454 /* Skip all CPUs already part of current CPU l2-cache mask */
1455 cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(cpu));
1456
1457 for_each_cpu(i, *mask) {
1458 /*
1459 * when updating the marks the current CPU has not been marked
1460 * online, but we need to update the cache masks
1461 */
1462 np = cpu_to_l2cache(i);
1463
1464 /* Skip all CPUs already part of current CPU l2-cache */
1465 if (np == l2_cache) {
1466 or_cpumasks_related(cpu, i, submask_fn, cpu_l2_cache_mask);
1467 cpumask_andnot(*mask, *mask, submask_fn(i));
1468 } else {
1469 cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(i));
1470 }
1471
1472 of_node_put(np);
1473 }
1474 of_node_put(l2_cache);
1475
1476 return true;
1477 }
1478
1479 #ifdef CONFIG_HOTPLUG_CPU
remove_cpu_from_masks(int cpu)1480 static void remove_cpu_from_masks(int cpu)
1481 {
1482 struct cpumask *(*mask_fn)(int) = cpu_sibling_mask;
1483 int i;
1484
1485 unmap_cpu_from_node(cpu);
1486
1487 if (shared_caches)
1488 mask_fn = cpu_l2_cache_mask;
1489
1490 for_each_cpu(i, mask_fn(cpu)) {
1491 set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
1492 set_cpus_unrelated(cpu, i, cpu_sibling_mask);
1493 if (has_big_cores)
1494 set_cpus_unrelated(cpu, i, cpu_smallcore_mask);
1495 }
1496
1497 for_each_cpu(i, cpu_core_mask(cpu))
1498 set_cpus_unrelated(cpu, i, cpu_core_mask);
1499
1500 if (has_coregroup_support()) {
1501 for_each_cpu(i, cpu_coregroup_mask(cpu))
1502 set_cpus_unrelated(cpu, i, cpu_coregroup_mask);
1503 }
1504 }
1505 #endif
1506
add_cpu_to_smallcore_masks(int cpu)1507 static inline void add_cpu_to_smallcore_masks(int cpu)
1508 {
1509 int i;
1510
1511 if (!has_big_cores)
1512 return;
1513
1514 cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu));
1515
1516 for_each_cpu(i, per_cpu(thread_group_l1_cache_map, cpu)) {
1517 if (cpu_online(i))
1518 set_cpus_related(i, cpu, cpu_smallcore_mask);
1519 }
1520 }
1521
update_coregroup_mask(int cpu,cpumask_var_t * mask)1522 static void update_coregroup_mask(int cpu, cpumask_var_t *mask)
1523 {
1524 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1525 int coregroup_id = cpu_to_coregroup_id(cpu);
1526 int i;
1527
1528 if (shared_caches)
1529 submask_fn = cpu_l2_cache_mask;
1530
1531 if (!*mask) {
1532 /* Assume only siblings are part of this CPU's coregroup */
1533 for_each_cpu(i, submask_fn(cpu))
1534 set_cpus_related(cpu, i, cpu_coregroup_mask);
1535
1536 return;
1537 }
1538
1539 cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
1540
1541 /* Update coregroup mask with all the CPUs that are part of submask */
1542 or_cpumasks_related(cpu, cpu, submask_fn, cpu_coregroup_mask);
1543
1544 /* Skip all CPUs already part of coregroup mask */
1545 cpumask_andnot(*mask, *mask, cpu_coregroup_mask(cpu));
1546
1547 for_each_cpu(i, *mask) {
1548 /* Skip all CPUs not part of this coregroup */
1549 if (coregroup_id == cpu_to_coregroup_id(i)) {
1550 or_cpumasks_related(cpu, i, submask_fn, cpu_coregroup_mask);
1551 cpumask_andnot(*mask, *mask, submask_fn(i));
1552 } else {
1553 cpumask_andnot(*mask, *mask, cpu_coregroup_mask(i));
1554 }
1555 }
1556 }
1557
add_cpu_to_masks(int cpu)1558 static void add_cpu_to_masks(int cpu)
1559 {
1560 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1561 int first_thread = cpu_first_thread_sibling(cpu);
1562 cpumask_var_t mask;
1563 int chip_id = -1;
1564 bool ret;
1565 int i;
1566
1567 /*
1568 * This CPU will not be in the online mask yet so we need to manually
1569 * add it to it's own thread sibling mask.
1570 */
1571 map_cpu_to_node(cpu, cpu_to_node(cpu));
1572 cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
1573 cpumask_set_cpu(cpu, cpu_core_mask(cpu));
1574
1575 for (i = first_thread; i < first_thread + threads_per_core; i++)
1576 if (cpu_online(i))
1577 set_cpus_related(i, cpu, cpu_sibling_mask);
1578
1579 add_cpu_to_smallcore_masks(cpu);
1580
1581 /* In CPU-hotplug path, hence use GFP_ATOMIC */
1582 ret = alloc_cpumask_var_node(&mask, GFP_ATOMIC, cpu_to_node(cpu));
1583 update_mask_by_l2(cpu, &mask);
1584
1585 if (has_coregroup_support())
1586 update_coregroup_mask(cpu, &mask);
1587
1588 if (chip_id_lookup_table && ret)
1589 chip_id = cpu_to_chip_id(cpu);
1590
1591 if (shared_caches)
1592 submask_fn = cpu_l2_cache_mask;
1593
1594 /* Update core_mask with all the CPUs that are part of submask */
1595 or_cpumasks_related(cpu, cpu, submask_fn, cpu_core_mask);
1596
1597 /* Skip all CPUs already part of current CPU core mask */
1598 cpumask_andnot(mask, cpu_online_mask, cpu_core_mask(cpu));
1599
1600 /* If chip_id is -1; limit the cpu_core_mask to within DIE*/
1601 if (chip_id == -1)
1602 cpumask_and(mask, mask, cpu_cpu_mask(cpu));
1603
1604 for_each_cpu(i, mask) {
1605 if (chip_id == cpu_to_chip_id(i)) {
1606 or_cpumasks_related(cpu, i, submask_fn, cpu_core_mask);
1607 cpumask_andnot(mask, mask, submask_fn(i));
1608 } else {
1609 cpumask_andnot(mask, mask, cpu_core_mask(i));
1610 }
1611 }
1612
1613 free_cpumask_var(mask);
1614 }
1615
1616 /* Activate a secondary processor. */
start_secondary(void * unused)1617 void start_secondary(void *unused)
1618 {
1619 unsigned int cpu = raw_smp_processor_id();
1620
1621 /* PPC64 calls setup_kup() in early_setup_secondary() */
1622 if (IS_ENABLED(CONFIG_PPC32))
1623 setup_kup();
1624
1625 mmgrab(&init_mm);
1626 current->active_mm = &init_mm;
1627
1628 smp_store_cpu_info(cpu);
1629 set_dec(tb_ticks_per_jiffy);
1630 rcu_cpu_starting(cpu);
1631 cpu_callin_map[cpu] = 1;
1632
1633 if (smp_ops->setup_cpu)
1634 smp_ops->setup_cpu(cpu);
1635 if (smp_ops->take_timebase)
1636 smp_ops->take_timebase();
1637
1638 secondary_cpu_time_init();
1639
1640 #ifdef CONFIG_PPC64
1641 if (system_state == SYSTEM_RUNNING)
1642 vdso_data->processorCount++;
1643
1644 vdso_getcpu_init();
1645 #endif
1646 set_numa_node(numa_cpu_lookup_table[cpu]);
1647 set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
1648
1649 /* Update topology CPU masks */
1650 add_cpu_to_masks(cpu);
1651
1652 /*
1653 * Check for any shared caches. Note that this must be done on a
1654 * per-core basis because one core in the pair might be disabled.
1655 */
1656 if (!shared_caches) {
1657 struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask;
1658 struct cpumask *mask = cpu_l2_cache_mask(cpu);
1659
1660 if (has_big_cores)
1661 sibling_mask = cpu_smallcore_mask;
1662
1663 if (cpumask_weight(mask) > cpumask_weight(sibling_mask(cpu)))
1664 shared_caches = true;
1665 }
1666
1667 smp_wmb();
1668 notify_cpu_starting(cpu);
1669 set_cpu_online(cpu, true);
1670
1671 boot_init_stack_canary();
1672
1673 local_irq_enable();
1674
1675 /* We can enable ftrace for secondary cpus now */
1676 this_cpu_enable_ftrace();
1677
1678 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
1679
1680 BUG();
1681 }
1682
1683 #ifdef CONFIG_PROFILING
setup_profiling_timer(unsigned int multiplier)1684 int setup_profiling_timer(unsigned int multiplier)
1685 {
1686 return 0;
1687 }
1688 #endif
1689
fixup_topology(void)1690 static void fixup_topology(void)
1691 {
1692 int i;
1693
1694 #ifdef CONFIG_SCHED_SMT
1695 if (has_big_cores) {
1696 pr_info("Big cores detected but using small core scheduling\n");
1697 powerpc_topology[smt_idx].mask = smallcore_smt_mask;
1698 }
1699 #endif
1700
1701 if (!has_coregroup_support())
1702 powerpc_topology[mc_idx].mask = powerpc_topology[cache_idx].mask;
1703
1704 /*
1705 * Try to consolidate topology levels here instead of
1706 * allowing scheduler to degenerate.
1707 * - Dont consolidate if masks are different.
1708 * - Dont consolidate if sd_flags exists and are different.
1709 */
1710 for (i = 1; i <= die_idx; i++) {
1711 if (powerpc_topology[i].mask != powerpc_topology[i - 1].mask)
1712 continue;
1713
1714 if (powerpc_topology[i].sd_flags && powerpc_topology[i - 1].sd_flags &&
1715 powerpc_topology[i].sd_flags != powerpc_topology[i - 1].sd_flags)
1716 continue;
1717
1718 if (!powerpc_topology[i - 1].sd_flags)
1719 powerpc_topology[i - 1].sd_flags = powerpc_topology[i].sd_flags;
1720
1721 powerpc_topology[i].mask = powerpc_topology[i + 1].mask;
1722 powerpc_topology[i].sd_flags = powerpc_topology[i + 1].sd_flags;
1723 #ifdef CONFIG_SCHED_DEBUG
1724 powerpc_topology[i].name = powerpc_topology[i + 1].name;
1725 #endif
1726 }
1727 }
1728
smp_cpus_done(unsigned int max_cpus)1729 void __init smp_cpus_done(unsigned int max_cpus)
1730 {
1731 /*
1732 * We are running pinned to the boot CPU, see rest_init().
1733 */
1734 if (smp_ops && smp_ops->setup_cpu)
1735 smp_ops->setup_cpu(boot_cpuid);
1736
1737 if (smp_ops && smp_ops->bringup_done)
1738 smp_ops->bringup_done();
1739
1740 dump_numa_cpu_topology();
1741
1742 fixup_topology();
1743 set_sched_topology(powerpc_topology);
1744 }
1745
1746 #ifdef CONFIG_HOTPLUG_CPU
__cpu_disable(void)1747 int __cpu_disable(void)
1748 {
1749 int cpu = smp_processor_id();
1750 int err;
1751
1752 if (!smp_ops->cpu_disable)
1753 return -ENOSYS;
1754
1755 this_cpu_disable_ftrace();
1756
1757 err = smp_ops->cpu_disable();
1758 if (err)
1759 return err;
1760
1761 /* Update sibling maps */
1762 remove_cpu_from_masks(cpu);
1763
1764 return 0;
1765 }
1766
__cpu_die(unsigned int cpu)1767 void __cpu_die(unsigned int cpu)
1768 {
1769 if (smp_ops->cpu_die)
1770 smp_ops->cpu_die(cpu);
1771 }
1772
arch_cpu_idle_dead(void)1773 void arch_cpu_idle_dead(void)
1774 {
1775 /*
1776 * Disable on the down path. This will be re-enabled by
1777 * start_secondary() via start_secondary_resume() below
1778 */
1779 this_cpu_disable_ftrace();
1780
1781 if (smp_ops->cpu_offline_self)
1782 smp_ops->cpu_offline_self();
1783
1784 /* If we return, we re-enter start_secondary */
1785 start_secondary_resume();
1786 }
1787
1788 #endif
1789