• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
2 /*
3  * Copyright(c) 2015 - 2020 Intel Corporation.
4  */
5 
6 #include <linux/topology.h>
7 #include <linux/cpumask.h>
8 #include <linux/module.h>
9 #include <linux/interrupt.h>
10 #include <linux/numa.h>
11 
12 #include "hfi.h"
13 #include "affinity.h"
14 #include "sdma.h"
15 #include "trace.h"
16 
17 struct hfi1_affinity_node_list node_affinity = {
18 	.list = LIST_HEAD_INIT(node_affinity.list),
19 	.lock = __MUTEX_INITIALIZER(node_affinity.lock)
20 };
21 
22 /* Name of IRQ types, indexed by enum irq_type */
23 static const char * const irq_type_names[] = {
24 	"SDMA",
25 	"RCVCTXT",
26 	"NETDEVCTXT",
27 	"GENERAL",
28 	"OTHER",
29 };
30 
31 /* Per NUMA node count of HFI devices */
32 static unsigned int *hfi1_per_node_cntr;
33 
init_cpu_mask_set(struct cpu_mask_set * set)34 static inline void init_cpu_mask_set(struct cpu_mask_set *set)
35 {
36 	cpumask_clear(&set->mask);
37 	cpumask_clear(&set->used);
38 	set->gen = 0;
39 }
40 
41 /* Increment generation of CPU set if needed */
_cpu_mask_set_gen_inc(struct cpu_mask_set * set)42 static void _cpu_mask_set_gen_inc(struct cpu_mask_set *set)
43 {
44 	if (cpumask_equal(&set->mask, &set->used)) {
45 		/*
46 		 * We've used up all the CPUs, bump up the generation
47 		 * and reset the 'used' map
48 		 */
49 		set->gen++;
50 		cpumask_clear(&set->used);
51 	}
52 }
53 
_cpu_mask_set_gen_dec(struct cpu_mask_set * set)54 static void _cpu_mask_set_gen_dec(struct cpu_mask_set *set)
55 {
56 	if (cpumask_empty(&set->used) && set->gen) {
57 		set->gen--;
58 		cpumask_copy(&set->used, &set->mask);
59 	}
60 }
61 
62 /* Get the first CPU from the list of unused CPUs in a CPU set data structure */
cpu_mask_set_get_first(struct cpu_mask_set * set,cpumask_var_t diff)63 static int cpu_mask_set_get_first(struct cpu_mask_set *set, cpumask_var_t diff)
64 {
65 	int cpu;
66 
67 	if (!diff || !set)
68 		return -EINVAL;
69 
70 	_cpu_mask_set_gen_inc(set);
71 
72 	/* Find out CPUs left in CPU mask */
73 	cpumask_andnot(diff, &set->mask, &set->used);
74 
75 	cpu = cpumask_first(diff);
76 	if (cpu >= nr_cpu_ids) /* empty */
77 		cpu = -EINVAL;
78 	else
79 		cpumask_set_cpu(cpu, &set->used);
80 
81 	return cpu;
82 }
83 
cpu_mask_set_put(struct cpu_mask_set * set,int cpu)84 static void cpu_mask_set_put(struct cpu_mask_set *set, int cpu)
85 {
86 	if (!set)
87 		return;
88 
89 	cpumask_clear_cpu(cpu, &set->used);
90 	_cpu_mask_set_gen_dec(set);
91 }
92 
93 /* Initialize non-HT cpu cores mask */
init_real_cpu_mask(void)94 void init_real_cpu_mask(void)
95 {
96 	int possible, curr_cpu, i, ht;
97 
98 	cpumask_clear(&node_affinity.real_cpu_mask);
99 
100 	/* Start with cpu online mask as the real cpu mask */
101 	cpumask_copy(&node_affinity.real_cpu_mask, cpu_online_mask);
102 
103 	/*
104 	 * Remove HT cores from the real cpu mask.  Do this in two steps below.
105 	 */
106 	possible = cpumask_weight(&node_affinity.real_cpu_mask);
107 	ht = cpumask_weight(topology_sibling_cpumask(
108 				cpumask_first(&node_affinity.real_cpu_mask)));
109 	/*
110 	 * Step 1.  Skip over the first N HT siblings and use them as the
111 	 * "real" cores.  Assumes that HT cores are not enumerated in
112 	 * succession (except in the single core case).
113 	 */
114 	curr_cpu = cpumask_first(&node_affinity.real_cpu_mask);
115 	for (i = 0; i < possible / ht; i++)
116 		curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask);
117 	/*
118 	 * Step 2.  Remove the remaining HT siblings.  Use cpumask_next() to
119 	 * skip any gaps.
120 	 */
121 	for (; i < possible; i++) {
122 		cpumask_clear_cpu(curr_cpu, &node_affinity.real_cpu_mask);
123 		curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask);
124 	}
125 }
126 
node_affinity_init(void)127 int node_affinity_init(void)
128 {
129 	int node;
130 	struct pci_dev *dev = NULL;
131 	const struct pci_device_id *ids = hfi1_pci_tbl;
132 
133 	cpumask_clear(&node_affinity.proc.used);
134 	cpumask_copy(&node_affinity.proc.mask, cpu_online_mask);
135 
136 	node_affinity.proc.gen = 0;
137 	node_affinity.num_core_siblings =
138 				cpumask_weight(topology_sibling_cpumask(
139 					cpumask_first(&node_affinity.proc.mask)
140 					));
141 	node_affinity.num_possible_nodes = num_possible_nodes();
142 	node_affinity.num_online_nodes = num_online_nodes();
143 	node_affinity.num_online_cpus = num_online_cpus();
144 
145 	/*
146 	 * The real cpu mask is part of the affinity struct but it has to be
147 	 * initialized early. It is needed to calculate the number of user
148 	 * contexts in set_up_context_variables().
149 	 */
150 	init_real_cpu_mask();
151 
152 	hfi1_per_node_cntr = kcalloc(node_affinity.num_possible_nodes,
153 				     sizeof(*hfi1_per_node_cntr), GFP_KERNEL);
154 	if (!hfi1_per_node_cntr)
155 		return -ENOMEM;
156 
157 	while (ids->vendor) {
158 		dev = NULL;
159 		while ((dev = pci_get_device(ids->vendor, ids->device, dev))) {
160 			node = pcibus_to_node(dev->bus);
161 			if (node < 0)
162 				goto out;
163 
164 			hfi1_per_node_cntr[node]++;
165 		}
166 		ids++;
167 	}
168 
169 	return 0;
170 
171 out:
172 	/*
173 	 * Invalid PCI NUMA node information found, note it, and populate
174 	 * our database 1:1.
175 	 */
176 	pr_err("HFI: Invalid PCI NUMA node. Performance may be affected\n");
177 	pr_err("HFI: System BIOS may need to be upgraded\n");
178 	for (node = 0; node < node_affinity.num_possible_nodes; node++)
179 		hfi1_per_node_cntr[node] = 1;
180 
181 	pci_dev_put(dev);
182 
183 	return 0;
184 }
185 
node_affinity_destroy(struct hfi1_affinity_node * entry)186 static void node_affinity_destroy(struct hfi1_affinity_node *entry)
187 {
188 	free_percpu(entry->comp_vect_affinity);
189 	kfree(entry);
190 }
191 
node_affinity_destroy_all(void)192 void node_affinity_destroy_all(void)
193 {
194 	struct list_head *pos, *q;
195 	struct hfi1_affinity_node *entry;
196 
197 	mutex_lock(&node_affinity.lock);
198 	list_for_each_safe(pos, q, &node_affinity.list) {
199 		entry = list_entry(pos, struct hfi1_affinity_node,
200 				   list);
201 		list_del(pos);
202 		node_affinity_destroy(entry);
203 	}
204 	mutex_unlock(&node_affinity.lock);
205 	kfree(hfi1_per_node_cntr);
206 }
207 
node_affinity_allocate(int node)208 static struct hfi1_affinity_node *node_affinity_allocate(int node)
209 {
210 	struct hfi1_affinity_node *entry;
211 
212 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
213 	if (!entry)
214 		return NULL;
215 	entry->node = node;
216 	entry->comp_vect_affinity = alloc_percpu(u16);
217 	INIT_LIST_HEAD(&entry->list);
218 
219 	return entry;
220 }
221 
222 /*
223  * It appends an entry to the list.
224  * It *must* be called with node_affinity.lock held.
225  */
node_affinity_add_tail(struct hfi1_affinity_node * entry)226 static void node_affinity_add_tail(struct hfi1_affinity_node *entry)
227 {
228 	list_add_tail(&entry->list, &node_affinity.list);
229 }
230 
231 /* It must be called with node_affinity.lock held */
node_affinity_lookup(int node)232 static struct hfi1_affinity_node *node_affinity_lookup(int node)
233 {
234 	struct list_head *pos;
235 	struct hfi1_affinity_node *entry;
236 
237 	list_for_each(pos, &node_affinity.list) {
238 		entry = list_entry(pos, struct hfi1_affinity_node, list);
239 		if (entry->node == node)
240 			return entry;
241 	}
242 
243 	return NULL;
244 }
245 
per_cpu_affinity_get(cpumask_var_t possible_cpumask,u16 __percpu * comp_vect_affinity)246 static int per_cpu_affinity_get(cpumask_var_t possible_cpumask,
247 				u16 __percpu *comp_vect_affinity)
248 {
249 	int curr_cpu;
250 	u16 cntr;
251 	u16 prev_cntr;
252 	int ret_cpu;
253 
254 	if (!possible_cpumask) {
255 		ret_cpu = -EINVAL;
256 		goto fail;
257 	}
258 
259 	if (!comp_vect_affinity) {
260 		ret_cpu = -EINVAL;
261 		goto fail;
262 	}
263 
264 	ret_cpu = cpumask_first(possible_cpumask);
265 	if (ret_cpu >= nr_cpu_ids) {
266 		ret_cpu = -EINVAL;
267 		goto fail;
268 	}
269 
270 	prev_cntr = *per_cpu_ptr(comp_vect_affinity, ret_cpu);
271 	for_each_cpu(curr_cpu, possible_cpumask) {
272 		cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu);
273 
274 		if (cntr < prev_cntr) {
275 			ret_cpu = curr_cpu;
276 			prev_cntr = cntr;
277 		}
278 	}
279 
280 	*per_cpu_ptr(comp_vect_affinity, ret_cpu) += 1;
281 
282 fail:
283 	return ret_cpu;
284 }
285 
per_cpu_affinity_put_max(cpumask_var_t possible_cpumask,u16 __percpu * comp_vect_affinity)286 static int per_cpu_affinity_put_max(cpumask_var_t possible_cpumask,
287 				    u16 __percpu *comp_vect_affinity)
288 {
289 	int curr_cpu;
290 	int max_cpu;
291 	u16 cntr;
292 	u16 prev_cntr;
293 
294 	if (!possible_cpumask)
295 		return -EINVAL;
296 
297 	if (!comp_vect_affinity)
298 		return -EINVAL;
299 
300 	max_cpu = cpumask_first(possible_cpumask);
301 	if (max_cpu >= nr_cpu_ids)
302 		return -EINVAL;
303 
304 	prev_cntr = *per_cpu_ptr(comp_vect_affinity, max_cpu);
305 	for_each_cpu(curr_cpu, possible_cpumask) {
306 		cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu);
307 
308 		if (cntr > prev_cntr) {
309 			max_cpu = curr_cpu;
310 			prev_cntr = cntr;
311 		}
312 	}
313 
314 	*per_cpu_ptr(comp_vect_affinity, max_cpu) -= 1;
315 
316 	return max_cpu;
317 }
318 
319 /*
320  * Non-interrupt CPUs are used first, then interrupt CPUs.
321  * Two already allocated cpu masks must be passed.
322  */
_dev_comp_vect_cpu_get(struct hfi1_devdata * dd,struct hfi1_affinity_node * entry,cpumask_var_t non_intr_cpus,cpumask_var_t available_cpus)323 static int _dev_comp_vect_cpu_get(struct hfi1_devdata *dd,
324 				  struct hfi1_affinity_node *entry,
325 				  cpumask_var_t non_intr_cpus,
326 				  cpumask_var_t available_cpus)
327 	__must_hold(&node_affinity.lock)
328 {
329 	int cpu;
330 	struct cpu_mask_set *set = dd->comp_vect;
331 
332 	lockdep_assert_held(&node_affinity.lock);
333 	if (!non_intr_cpus) {
334 		cpu = -1;
335 		goto fail;
336 	}
337 
338 	if (!available_cpus) {
339 		cpu = -1;
340 		goto fail;
341 	}
342 
343 	/* Available CPUs for pinning completion vectors */
344 	_cpu_mask_set_gen_inc(set);
345 	cpumask_andnot(available_cpus, &set->mask, &set->used);
346 
347 	/* Available CPUs without SDMA engine interrupts */
348 	cpumask_andnot(non_intr_cpus, available_cpus,
349 		       &entry->def_intr.used);
350 
351 	/* If there are non-interrupt CPUs available, use them first */
352 	if (!cpumask_empty(non_intr_cpus))
353 		cpu = cpumask_first(non_intr_cpus);
354 	else /* Otherwise, use interrupt CPUs */
355 		cpu = cpumask_first(available_cpus);
356 
357 	if (cpu >= nr_cpu_ids) { /* empty */
358 		cpu = -1;
359 		goto fail;
360 	}
361 	cpumask_set_cpu(cpu, &set->used);
362 
363 fail:
364 	return cpu;
365 }
366 
_dev_comp_vect_cpu_put(struct hfi1_devdata * dd,int cpu)367 static void _dev_comp_vect_cpu_put(struct hfi1_devdata *dd, int cpu)
368 {
369 	struct cpu_mask_set *set = dd->comp_vect;
370 
371 	if (cpu < 0)
372 		return;
373 
374 	cpu_mask_set_put(set, cpu);
375 }
376 
377 /* _dev_comp_vect_mappings_destroy() is reentrant */
_dev_comp_vect_mappings_destroy(struct hfi1_devdata * dd)378 static void _dev_comp_vect_mappings_destroy(struct hfi1_devdata *dd)
379 {
380 	int i, cpu;
381 
382 	if (!dd->comp_vect_mappings)
383 		return;
384 
385 	for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
386 		cpu = dd->comp_vect_mappings[i];
387 		_dev_comp_vect_cpu_put(dd, cpu);
388 		dd->comp_vect_mappings[i] = -1;
389 		hfi1_cdbg(AFFINITY,
390 			  "[%s] Release CPU %d from completion vector %d",
391 			  rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), cpu, i);
392 	}
393 
394 	kfree(dd->comp_vect_mappings);
395 	dd->comp_vect_mappings = NULL;
396 }
397 
398 /*
399  * This function creates the table for looking up CPUs for completion vectors.
400  * num_comp_vectors needs to have been initilized before calling this function.
401  */
_dev_comp_vect_mappings_create(struct hfi1_devdata * dd,struct hfi1_affinity_node * entry)402 static int _dev_comp_vect_mappings_create(struct hfi1_devdata *dd,
403 					  struct hfi1_affinity_node *entry)
404 	__must_hold(&node_affinity.lock)
405 {
406 	int i, cpu, ret;
407 	cpumask_var_t non_intr_cpus;
408 	cpumask_var_t available_cpus;
409 
410 	lockdep_assert_held(&node_affinity.lock);
411 
412 	if (!zalloc_cpumask_var(&non_intr_cpus, GFP_KERNEL))
413 		return -ENOMEM;
414 
415 	if (!zalloc_cpumask_var(&available_cpus, GFP_KERNEL)) {
416 		free_cpumask_var(non_intr_cpus);
417 		return -ENOMEM;
418 	}
419 
420 	dd->comp_vect_mappings = kcalloc(dd->comp_vect_possible_cpus,
421 					 sizeof(*dd->comp_vect_mappings),
422 					 GFP_KERNEL);
423 	if (!dd->comp_vect_mappings) {
424 		ret = -ENOMEM;
425 		goto fail;
426 	}
427 	for (i = 0; i < dd->comp_vect_possible_cpus; i++)
428 		dd->comp_vect_mappings[i] = -1;
429 
430 	for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
431 		cpu = _dev_comp_vect_cpu_get(dd, entry, non_intr_cpus,
432 					     available_cpus);
433 		if (cpu < 0) {
434 			ret = -EINVAL;
435 			goto fail;
436 		}
437 
438 		dd->comp_vect_mappings[i] = cpu;
439 		hfi1_cdbg(AFFINITY,
440 			  "[%s] Completion Vector %d -> CPU %d",
441 			  rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), i, cpu);
442 	}
443 
444 	free_cpumask_var(available_cpus);
445 	free_cpumask_var(non_intr_cpus);
446 	return 0;
447 
448 fail:
449 	free_cpumask_var(available_cpus);
450 	free_cpumask_var(non_intr_cpus);
451 	_dev_comp_vect_mappings_destroy(dd);
452 
453 	return ret;
454 }
455 
hfi1_comp_vectors_set_up(struct hfi1_devdata * dd)456 int hfi1_comp_vectors_set_up(struct hfi1_devdata *dd)
457 {
458 	int ret;
459 	struct hfi1_affinity_node *entry;
460 
461 	mutex_lock(&node_affinity.lock);
462 	entry = node_affinity_lookup(dd->node);
463 	if (!entry) {
464 		ret = -EINVAL;
465 		goto unlock;
466 	}
467 	ret = _dev_comp_vect_mappings_create(dd, entry);
468 unlock:
469 	mutex_unlock(&node_affinity.lock);
470 
471 	return ret;
472 }
473 
hfi1_comp_vectors_clean_up(struct hfi1_devdata * dd)474 void hfi1_comp_vectors_clean_up(struct hfi1_devdata *dd)
475 {
476 	_dev_comp_vect_mappings_destroy(dd);
477 }
478 
hfi1_comp_vect_mappings_lookup(struct rvt_dev_info * rdi,int comp_vect)479 int hfi1_comp_vect_mappings_lookup(struct rvt_dev_info *rdi, int comp_vect)
480 {
481 	struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
482 	struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
483 
484 	if (!dd->comp_vect_mappings)
485 		return -EINVAL;
486 	if (comp_vect >= dd->comp_vect_possible_cpus)
487 		return -EINVAL;
488 
489 	return dd->comp_vect_mappings[comp_vect];
490 }
491 
492 /*
493  * It assumes dd->comp_vect_possible_cpus is available.
494  */
_dev_comp_vect_cpu_mask_init(struct hfi1_devdata * dd,struct hfi1_affinity_node * entry,bool first_dev_init)495 static int _dev_comp_vect_cpu_mask_init(struct hfi1_devdata *dd,
496 					struct hfi1_affinity_node *entry,
497 					bool first_dev_init)
498 	__must_hold(&node_affinity.lock)
499 {
500 	int i, j, curr_cpu;
501 	int possible_cpus_comp_vect = 0;
502 	struct cpumask *dev_comp_vect_mask = &dd->comp_vect->mask;
503 
504 	lockdep_assert_held(&node_affinity.lock);
505 	/*
506 	 * If there's only one CPU available for completion vectors, then
507 	 * there will only be one completion vector available. Othewise,
508 	 * the number of completion vector available will be the number of
509 	 * available CPUs divide it by the number of devices in the
510 	 * local NUMA node.
511 	 */
512 	if (cpumask_weight(&entry->comp_vect_mask) == 1) {
513 		possible_cpus_comp_vect = 1;
514 		dd_dev_warn(dd,
515 			    "Number of kernel receive queues is too large for completion vector affinity to be effective\n");
516 	} else {
517 		possible_cpus_comp_vect +=
518 			cpumask_weight(&entry->comp_vect_mask) /
519 				       hfi1_per_node_cntr[dd->node];
520 
521 		/*
522 		 * If the completion vector CPUs available doesn't divide
523 		 * evenly among devices, then the first device device to be
524 		 * initialized gets an extra CPU.
525 		 */
526 		if (first_dev_init &&
527 		    cpumask_weight(&entry->comp_vect_mask) %
528 		    hfi1_per_node_cntr[dd->node] != 0)
529 			possible_cpus_comp_vect++;
530 	}
531 
532 	dd->comp_vect_possible_cpus = possible_cpus_comp_vect;
533 
534 	/* Reserving CPUs for device completion vector */
535 	for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
536 		curr_cpu = per_cpu_affinity_get(&entry->comp_vect_mask,
537 						entry->comp_vect_affinity);
538 		if (curr_cpu < 0)
539 			goto fail;
540 
541 		cpumask_set_cpu(curr_cpu, dev_comp_vect_mask);
542 	}
543 
544 	hfi1_cdbg(AFFINITY,
545 		  "[%s] Completion vector affinity CPU set(s) %*pbl",
546 		  rvt_get_ibdev_name(&(dd)->verbs_dev.rdi),
547 		  cpumask_pr_args(dev_comp_vect_mask));
548 
549 	return 0;
550 
551 fail:
552 	for (j = 0; j < i; j++)
553 		per_cpu_affinity_put_max(&entry->comp_vect_mask,
554 					 entry->comp_vect_affinity);
555 
556 	return curr_cpu;
557 }
558 
559 /*
560  * It assumes dd->comp_vect_possible_cpus is available.
561  */
_dev_comp_vect_cpu_mask_clean_up(struct hfi1_devdata * dd,struct hfi1_affinity_node * entry)562 static void _dev_comp_vect_cpu_mask_clean_up(struct hfi1_devdata *dd,
563 					     struct hfi1_affinity_node *entry)
564 	__must_hold(&node_affinity.lock)
565 {
566 	int i, cpu;
567 
568 	lockdep_assert_held(&node_affinity.lock);
569 	if (!dd->comp_vect_possible_cpus)
570 		return;
571 
572 	for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
573 		cpu = per_cpu_affinity_put_max(&dd->comp_vect->mask,
574 					       entry->comp_vect_affinity);
575 		/* Clearing CPU in device completion vector cpu mask */
576 		if (cpu >= 0)
577 			cpumask_clear_cpu(cpu, &dd->comp_vect->mask);
578 	}
579 
580 	dd->comp_vect_possible_cpus = 0;
581 }
582 
583 /*
584  * Interrupt affinity.
585  *
586  * non-rcv avail gets a default mask that
587  * starts as possible cpus with threads reset
588  * and each rcv avail reset.
589  *
590  * rcv avail gets node relative 1 wrapping back
591  * to the node relative 1 as necessary.
592  *
593  */
hfi1_dev_affinity_init(struct hfi1_devdata * dd)594 int hfi1_dev_affinity_init(struct hfi1_devdata *dd)
595 {
596 	struct hfi1_affinity_node *entry;
597 	const struct cpumask *local_mask;
598 	int curr_cpu, possible, i, ret;
599 	bool new_entry = false;
600 
601 	local_mask = cpumask_of_node(dd->node);
602 	if (cpumask_first(local_mask) >= nr_cpu_ids)
603 		local_mask = topology_core_cpumask(0);
604 
605 	mutex_lock(&node_affinity.lock);
606 	entry = node_affinity_lookup(dd->node);
607 
608 	/*
609 	 * If this is the first time this NUMA node's affinity is used,
610 	 * create an entry in the global affinity structure and initialize it.
611 	 */
612 	if (!entry) {
613 		entry = node_affinity_allocate(dd->node);
614 		if (!entry) {
615 			dd_dev_err(dd,
616 				   "Unable to allocate global affinity node\n");
617 			ret = -ENOMEM;
618 			goto fail;
619 		}
620 		new_entry = true;
621 
622 		init_cpu_mask_set(&entry->def_intr);
623 		init_cpu_mask_set(&entry->rcv_intr);
624 		cpumask_clear(&entry->comp_vect_mask);
625 		cpumask_clear(&entry->general_intr_mask);
626 		/* Use the "real" cpu mask of this node as the default */
627 		cpumask_and(&entry->def_intr.mask, &node_affinity.real_cpu_mask,
628 			    local_mask);
629 
630 		/* fill in the receive list */
631 		possible = cpumask_weight(&entry->def_intr.mask);
632 		curr_cpu = cpumask_first(&entry->def_intr.mask);
633 
634 		if (possible == 1) {
635 			/* only one CPU, everyone will use it */
636 			cpumask_set_cpu(curr_cpu, &entry->rcv_intr.mask);
637 			cpumask_set_cpu(curr_cpu, &entry->general_intr_mask);
638 		} else {
639 			/*
640 			 * The general/control context will be the first CPU in
641 			 * the default list, so it is removed from the default
642 			 * list and added to the general interrupt list.
643 			 */
644 			cpumask_clear_cpu(curr_cpu, &entry->def_intr.mask);
645 			cpumask_set_cpu(curr_cpu, &entry->general_intr_mask);
646 			curr_cpu = cpumask_next(curr_cpu,
647 						&entry->def_intr.mask);
648 
649 			/*
650 			 * Remove the remaining kernel receive queues from
651 			 * the default list and add them to the receive list.
652 			 */
653 			for (i = 0;
654 			     i < (dd->n_krcv_queues - 1) *
655 				  hfi1_per_node_cntr[dd->node];
656 			     i++) {
657 				cpumask_clear_cpu(curr_cpu,
658 						  &entry->def_intr.mask);
659 				cpumask_set_cpu(curr_cpu,
660 						&entry->rcv_intr.mask);
661 				curr_cpu = cpumask_next(curr_cpu,
662 							&entry->def_intr.mask);
663 				if (curr_cpu >= nr_cpu_ids)
664 					break;
665 			}
666 
667 			/*
668 			 * If there ends up being 0 CPU cores leftover for SDMA
669 			 * engines, use the same CPU cores as general/control
670 			 * context.
671 			 */
672 			if (cpumask_weight(&entry->def_intr.mask) == 0)
673 				cpumask_copy(&entry->def_intr.mask,
674 					     &entry->general_intr_mask);
675 		}
676 
677 		/* Determine completion vector CPUs for the entire node */
678 		cpumask_and(&entry->comp_vect_mask,
679 			    &node_affinity.real_cpu_mask, local_mask);
680 		cpumask_andnot(&entry->comp_vect_mask,
681 			       &entry->comp_vect_mask,
682 			       &entry->rcv_intr.mask);
683 		cpumask_andnot(&entry->comp_vect_mask,
684 			       &entry->comp_vect_mask,
685 			       &entry->general_intr_mask);
686 
687 		/*
688 		 * If there ends up being 0 CPU cores leftover for completion
689 		 * vectors, use the same CPU core as the general/control
690 		 * context.
691 		 */
692 		if (cpumask_weight(&entry->comp_vect_mask) == 0)
693 			cpumask_copy(&entry->comp_vect_mask,
694 				     &entry->general_intr_mask);
695 	}
696 
697 	ret = _dev_comp_vect_cpu_mask_init(dd, entry, new_entry);
698 	if (ret < 0)
699 		goto fail;
700 
701 	if (new_entry)
702 		node_affinity_add_tail(entry);
703 
704 	dd->affinity_entry = entry;
705 	mutex_unlock(&node_affinity.lock);
706 
707 	return 0;
708 
709 fail:
710 	if (new_entry)
711 		node_affinity_destroy(entry);
712 	mutex_unlock(&node_affinity.lock);
713 	return ret;
714 }
715 
hfi1_dev_affinity_clean_up(struct hfi1_devdata * dd)716 void hfi1_dev_affinity_clean_up(struct hfi1_devdata *dd)
717 {
718 	struct hfi1_affinity_node *entry;
719 
720 	mutex_lock(&node_affinity.lock);
721 	if (!dd->affinity_entry)
722 		goto unlock;
723 	entry = node_affinity_lookup(dd->node);
724 	if (!entry)
725 		goto unlock;
726 
727 	/*
728 	 * Free device completion vector CPUs to be used by future
729 	 * completion vectors
730 	 */
731 	_dev_comp_vect_cpu_mask_clean_up(dd, entry);
732 unlock:
733 	dd->affinity_entry = NULL;
734 	mutex_unlock(&node_affinity.lock);
735 }
736 
737 /*
738  * Function updates the irq affinity hint for msix after it has been changed
739  * by the user using the /proc/irq interface. This function only accepts
740  * one cpu in the mask.
741  */
hfi1_update_sdma_affinity(struct hfi1_msix_entry * msix,int cpu)742 static void hfi1_update_sdma_affinity(struct hfi1_msix_entry *msix, int cpu)
743 {
744 	struct sdma_engine *sde = msix->arg;
745 	struct hfi1_devdata *dd = sde->dd;
746 	struct hfi1_affinity_node *entry;
747 	struct cpu_mask_set *set;
748 	int i, old_cpu;
749 
750 	if (cpu > num_online_cpus() || cpu == sde->cpu)
751 		return;
752 
753 	mutex_lock(&node_affinity.lock);
754 	entry = node_affinity_lookup(dd->node);
755 	if (!entry)
756 		goto unlock;
757 
758 	old_cpu = sde->cpu;
759 	sde->cpu = cpu;
760 	cpumask_clear(&msix->mask);
761 	cpumask_set_cpu(cpu, &msix->mask);
762 	dd_dev_dbg(dd, "IRQ: %u, type %s engine %u -> cpu: %d\n",
763 		   msix->irq, irq_type_names[msix->type],
764 		   sde->this_idx, cpu);
765 	irq_set_affinity_hint(msix->irq, &msix->mask);
766 
767 	/*
768 	 * Set the new cpu in the hfi1_affinity_node and clean
769 	 * the old cpu if it is not used by any other IRQ
770 	 */
771 	set = &entry->def_intr;
772 	cpumask_set_cpu(cpu, &set->mask);
773 	cpumask_set_cpu(cpu, &set->used);
774 	for (i = 0; i < dd->msix_info.max_requested; i++) {
775 		struct hfi1_msix_entry *other_msix;
776 
777 		other_msix = &dd->msix_info.msix_entries[i];
778 		if (other_msix->type != IRQ_SDMA || other_msix == msix)
779 			continue;
780 
781 		if (cpumask_test_cpu(old_cpu, &other_msix->mask))
782 			goto unlock;
783 	}
784 	cpumask_clear_cpu(old_cpu, &set->mask);
785 	cpumask_clear_cpu(old_cpu, &set->used);
786 unlock:
787 	mutex_unlock(&node_affinity.lock);
788 }
789 
hfi1_irq_notifier_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)790 static void hfi1_irq_notifier_notify(struct irq_affinity_notify *notify,
791 				     const cpumask_t *mask)
792 {
793 	int cpu = cpumask_first(mask);
794 	struct hfi1_msix_entry *msix = container_of(notify,
795 						    struct hfi1_msix_entry,
796 						    notify);
797 
798 	/* Only one CPU configuration supported currently */
799 	hfi1_update_sdma_affinity(msix, cpu);
800 }
801 
hfi1_irq_notifier_release(struct kref * ref)802 static void hfi1_irq_notifier_release(struct kref *ref)
803 {
804 	/*
805 	 * This is required by affinity notifier. We don't have anything to
806 	 * free here.
807 	 */
808 }
809 
hfi1_setup_sdma_notifier(struct hfi1_msix_entry * msix)810 static void hfi1_setup_sdma_notifier(struct hfi1_msix_entry *msix)
811 {
812 	struct irq_affinity_notify *notify = &msix->notify;
813 
814 	notify->irq = msix->irq;
815 	notify->notify = hfi1_irq_notifier_notify;
816 	notify->release = hfi1_irq_notifier_release;
817 
818 	if (irq_set_affinity_notifier(notify->irq, notify))
819 		pr_err("Failed to register sdma irq affinity notifier for irq %d\n",
820 		       notify->irq);
821 }
822 
hfi1_cleanup_sdma_notifier(struct hfi1_msix_entry * msix)823 static void hfi1_cleanup_sdma_notifier(struct hfi1_msix_entry *msix)
824 {
825 	struct irq_affinity_notify *notify = &msix->notify;
826 
827 	if (irq_set_affinity_notifier(notify->irq, NULL))
828 		pr_err("Failed to cleanup sdma irq affinity notifier for irq %d\n",
829 		       notify->irq);
830 }
831 
832 /*
833  * Function sets the irq affinity for msix.
834  * It *must* be called with node_affinity.lock held.
835  */
get_irq_affinity(struct hfi1_devdata * dd,struct hfi1_msix_entry * msix)836 static int get_irq_affinity(struct hfi1_devdata *dd,
837 			    struct hfi1_msix_entry *msix)
838 {
839 	cpumask_var_t diff;
840 	struct hfi1_affinity_node *entry;
841 	struct cpu_mask_set *set = NULL;
842 	struct sdma_engine *sde = NULL;
843 	struct hfi1_ctxtdata *rcd = NULL;
844 	char extra[64];
845 	int cpu = -1;
846 
847 	extra[0] = '\0';
848 	cpumask_clear(&msix->mask);
849 
850 	entry = node_affinity_lookup(dd->node);
851 
852 	switch (msix->type) {
853 	case IRQ_SDMA:
854 		sde = (struct sdma_engine *)msix->arg;
855 		scnprintf(extra, 64, "engine %u", sde->this_idx);
856 		set = &entry->def_intr;
857 		break;
858 	case IRQ_GENERAL:
859 		cpu = cpumask_first(&entry->general_intr_mask);
860 		break;
861 	case IRQ_RCVCTXT:
862 		rcd = (struct hfi1_ctxtdata *)msix->arg;
863 		if (rcd->ctxt == HFI1_CTRL_CTXT)
864 			cpu = cpumask_first(&entry->general_intr_mask);
865 		else
866 			set = &entry->rcv_intr;
867 		scnprintf(extra, 64, "ctxt %u", rcd->ctxt);
868 		break;
869 	case IRQ_NETDEVCTXT:
870 		rcd = (struct hfi1_ctxtdata *)msix->arg;
871 		set = &entry->def_intr;
872 		scnprintf(extra, 64, "ctxt %u", rcd->ctxt);
873 		break;
874 	default:
875 		dd_dev_err(dd, "Invalid IRQ type %d\n", msix->type);
876 		return -EINVAL;
877 	}
878 
879 	/*
880 	 * The general and control contexts are placed on a particular
881 	 * CPU, which is set above. Skip accounting for it. Everything else
882 	 * finds its CPU here.
883 	 */
884 	if (cpu == -1 && set) {
885 		if (!zalloc_cpumask_var(&diff, GFP_KERNEL))
886 			return -ENOMEM;
887 
888 		cpu = cpu_mask_set_get_first(set, diff);
889 		if (cpu < 0) {
890 			free_cpumask_var(diff);
891 			dd_dev_err(dd, "Failure to obtain CPU for IRQ\n");
892 			return cpu;
893 		}
894 
895 		free_cpumask_var(diff);
896 	}
897 
898 	cpumask_set_cpu(cpu, &msix->mask);
899 	dd_dev_info(dd, "IRQ: %u, type %s %s -> cpu: %d\n",
900 		    msix->irq, irq_type_names[msix->type],
901 		    extra, cpu);
902 	irq_set_affinity_hint(msix->irq, &msix->mask);
903 
904 	if (msix->type == IRQ_SDMA) {
905 		sde->cpu = cpu;
906 		hfi1_setup_sdma_notifier(msix);
907 	}
908 
909 	return 0;
910 }
911 
hfi1_get_irq_affinity(struct hfi1_devdata * dd,struct hfi1_msix_entry * msix)912 int hfi1_get_irq_affinity(struct hfi1_devdata *dd, struct hfi1_msix_entry *msix)
913 {
914 	int ret;
915 
916 	mutex_lock(&node_affinity.lock);
917 	ret = get_irq_affinity(dd, msix);
918 	mutex_unlock(&node_affinity.lock);
919 	return ret;
920 }
921 
hfi1_put_irq_affinity(struct hfi1_devdata * dd,struct hfi1_msix_entry * msix)922 void hfi1_put_irq_affinity(struct hfi1_devdata *dd,
923 			   struct hfi1_msix_entry *msix)
924 {
925 	struct cpu_mask_set *set = NULL;
926 	struct hfi1_affinity_node *entry;
927 
928 	mutex_lock(&node_affinity.lock);
929 	entry = node_affinity_lookup(dd->node);
930 
931 	switch (msix->type) {
932 	case IRQ_SDMA:
933 		set = &entry->def_intr;
934 		hfi1_cleanup_sdma_notifier(msix);
935 		break;
936 	case IRQ_GENERAL:
937 		/* Don't do accounting for general contexts */
938 		break;
939 	case IRQ_RCVCTXT: {
940 		struct hfi1_ctxtdata *rcd = msix->arg;
941 
942 		/* Don't do accounting for control contexts */
943 		if (rcd->ctxt != HFI1_CTRL_CTXT)
944 			set = &entry->rcv_intr;
945 		break;
946 	}
947 	case IRQ_NETDEVCTXT:
948 		set = &entry->def_intr;
949 		break;
950 	default:
951 		mutex_unlock(&node_affinity.lock);
952 		return;
953 	}
954 
955 	if (set) {
956 		cpumask_andnot(&set->used, &set->used, &msix->mask);
957 		_cpu_mask_set_gen_dec(set);
958 	}
959 
960 	irq_set_affinity_hint(msix->irq, NULL);
961 	cpumask_clear(&msix->mask);
962 	mutex_unlock(&node_affinity.lock);
963 }
964 
965 /* This should be called with node_affinity.lock held */
find_hw_thread_mask(uint hw_thread_no,cpumask_var_t hw_thread_mask,struct hfi1_affinity_node_list * affinity)966 static void find_hw_thread_mask(uint hw_thread_no, cpumask_var_t hw_thread_mask,
967 				struct hfi1_affinity_node_list *affinity)
968 {
969 	int possible, curr_cpu, i;
970 	uint num_cores_per_socket = node_affinity.num_online_cpus /
971 					affinity->num_core_siblings /
972 						node_affinity.num_online_nodes;
973 
974 	cpumask_copy(hw_thread_mask, &affinity->proc.mask);
975 	if (affinity->num_core_siblings > 0) {
976 		/* Removing other siblings not needed for now */
977 		possible = cpumask_weight(hw_thread_mask);
978 		curr_cpu = cpumask_first(hw_thread_mask);
979 		for (i = 0;
980 		     i < num_cores_per_socket * node_affinity.num_online_nodes;
981 		     i++)
982 			curr_cpu = cpumask_next(curr_cpu, hw_thread_mask);
983 
984 		for (; i < possible; i++) {
985 			cpumask_clear_cpu(curr_cpu, hw_thread_mask);
986 			curr_cpu = cpumask_next(curr_cpu, hw_thread_mask);
987 		}
988 
989 		/* Identifying correct HW threads within physical cores */
990 		cpumask_shift_left(hw_thread_mask, hw_thread_mask,
991 				   num_cores_per_socket *
992 				   node_affinity.num_online_nodes *
993 				   hw_thread_no);
994 	}
995 }
996 
hfi1_get_proc_affinity(int node)997 int hfi1_get_proc_affinity(int node)
998 {
999 	int cpu = -1, ret, i;
1000 	struct hfi1_affinity_node *entry;
1001 	cpumask_var_t diff, hw_thread_mask, available_mask, intrs_mask;
1002 	const struct cpumask *node_mask,
1003 		*proc_mask = current->cpus_ptr;
1004 	struct hfi1_affinity_node_list *affinity = &node_affinity;
1005 	struct cpu_mask_set *set = &affinity->proc;
1006 
1007 	/*
1008 	 * check whether process/context affinity has already
1009 	 * been set
1010 	 */
1011 	if (current->nr_cpus_allowed == 1) {
1012 		hfi1_cdbg(PROC, "PID %u %s affinity set to CPU %*pbl",
1013 			  current->pid, current->comm,
1014 			  cpumask_pr_args(proc_mask));
1015 		/*
1016 		 * Mark the pre-set CPU as used. This is atomic so we don't
1017 		 * need the lock
1018 		 */
1019 		cpu = cpumask_first(proc_mask);
1020 		cpumask_set_cpu(cpu, &set->used);
1021 		goto done;
1022 	} else if (current->nr_cpus_allowed < cpumask_weight(&set->mask)) {
1023 		hfi1_cdbg(PROC, "PID %u %s affinity set to CPU set(s) %*pbl",
1024 			  current->pid, current->comm,
1025 			  cpumask_pr_args(proc_mask));
1026 		goto done;
1027 	}
1028 
1029 	/*
1030 	 * The process does not have a preset CPU affinity so find one to
1031 	 * recommend using the following algorithm:
1032 	 *
1033 	 * For each user process that is opening a context on HFI Y:
1034 	 *  a) If all cores are filled, reinitialize the bitmask
1035 	 *  b) Fill real cores first, then HT cores (First set of HT
1036 	 *     cores on all physical cores, then second set of HT core,
1037 	 *     and, so on) in the following order:
1038 	 *
1039 	 *     1. Same NUMA node as HFI Y and not running an IRQ
1040 	 *        handler
1041 	 *     2. Same NUMA node as HFI Y and running an IRQ handler
1042 	 *     3. Different NUMA node to HFI Y and not running an IRQ
1043 	 *        handler
1044 	 *     4. Different NUMA node to HFI Y and running an IRQ
1045 	 *        handler
1046 	 *  c) Mark core as filled in the bitmask. As user processes are
1047 	 *     done, clear cores from the bitmask.
1048 	 */
1049 
1050 	ret = zalloc_cpumask_var(&diff, GFP_KERNEL);
1051 	if (!ret)
1052 		goto done;
1053 	ret = zalloc_cpumask_var(&hw_thread_mask, GFP_KERNEL);
1054 	if (!ret)
1055 		goto free_diff;
1056 	ret = zalloc_cpumask_var(&available_mask, GFP_KERNEL);
1057 	if (!ret)
1058 		goto free_hw_thread_mask;
1059 	ret = zalloc_cpumask_var(&intrs_mask, GFP_KERNEL);
1060 	if (!ret)
1061 		goto free_available_mask;
1062 
1063 	mutex_lock(&affinity->lock);
1064 	/*
1065 	 * If we've used all available HW threads, clear the mask and start
1066 	 * overloading.
1067 	 */
1068 	_cpu_mask_set_gen_inc(set);
1069 
1070 	/*
1071 	 * If NUMA node has CPUs used by interrupt handlers, include them in the
1072 	 * interrupt handler mask.
1073 	 */
1074 	entry = node_affinity_lookup(node);
1075 	if (entry) {
1076 		cpumask_copy(intrs_mask, (entry->def_intr.gen ?
1077 					  &entry->def_intr.mask :
1078 					  &entry->def_intr.used));
1079 		cpumask_or(intrs_mask, intrs_mask, (entry->rcv_intr.gen ?
1080 						    &entry->rcv_intr.mask :
1081 						    &entry->rcv_intr.used));
1082 		cpumask_or(intrs_mask, intrs_mask, &entry->general_intr_mask);
1083 	}
1084 	hfi1_cdbg(PROC, "CPUs used by interrupts: %*pbl",
1085 		  cpumask_pr_args(intrs_mask));
1086 
1087 	cpumask_copy(hw_thread_mask, &set->mask);
1088 
1089 	/*
1090 	 * If HT cores are enabled, identify which HW threads within the
1091 	 * physical cores should be used.
1092 	 */
1093 	if (affinity->num_core_siblings > 0) {
1094 		for (i = 0; i < affinity->num_core_siblings; i++) {
1095 			find_hw_thread_mask(i, hw_thread_mask, affinity);
1096 
1097 			/*
1098 			 * If there's at least one available core for this HW
1099 			 * thread number, stop looking for a core.
1100 			 *
1101 			 * diff will always be not empty at least once in this
1102 			 * loop as the used mask gets reset when
1103 			 * (set->mask == set->used) before this loop.
1104 			 */
1105 			cpumask_andnot(diff, hw_thread_mask, &set->used);
1106 			if (!cpumask_empty(diff))
1107 				break;
1108 		}
1109 	}
1110 	hfi1_cdbg(PROC, "Same available HW thread on all physical CPUs: %*pbl",
1111 		  cpumask_pr_args(hw_thread_mask));
1112 
1113 	node_mask = cpumask_of_node(node);
1114 	hfi1_cdbg(PROC, "Device on NUMA %u, CPUs %*pbl", node,
1115 		  cpumask_pr_args(node_mask));
1116 
1117 	/* Get cpumask of available CPUs on preferred NUMA */
1118 	cpumask_and(available_mask, hw_thread_mask, node_mask);
1119 	cpumask_andnot(available_mask, available_mask, &set->used);
1120 	hfi1_cdbg(PROC, "Available CPUs on NUMA %u: %*pbl", node,
1121 		  cpumask_pr_args(available_mask));
1122 
1123 	/*
1124 	 * At first, we don't want to place processes on the same
1125 	 * CPUs as interrupt handlers. Then, CPUs running interrupt
1126 	 * handlers are used.
1127 	 *
1128 	 * 1) If diff is not empty, then there are CPUs not running
1129 	 *    non-interrupt handlers available, so diff gets copied
1130 	 *    over to available_mask.
1131 	 * 2) If diff is empty, then all CPUs not running interrupt
1132 	 *    handlers are taken, so available_mask contains all
1133 	 *    available CPUs running interrupt handlers.
1134 	 * 3) If available_mask is empty, then all CPUs on the
1135 	 *    preferred NUMA node are taken, so other NUMA nodes are
1136 	 *    used for process assignments using the same method as
1137 	 *    the preferred NUMA node.
1138 	 */
1139 	cpumask_andnot(diff, available_mask, intrs_mask);
1140 	if (!cpumask_empty(diff))
1141 		cpumask_copy(available_mask, diff);
1142 
1143 	/* If we don't have CPUs on the preferred node, use other NUMA nodes */
1144 	if (cpumask_empty(available_mask)) {
1145 		cpumask_andnot(available_mask, hw_thread_mask, &set->used);
1146 		/* Excluding preferred NUMA cores */
1147 		cpumask_andnot(available_mask, available_mask, node_mask);
1148 		hfi1_cdbg(PROC,
1149 			  "Preferred NUMA node cores are taken, cores available in other NUMA nodes: %*pbl",
1150 			  cpumask_pr_args(available_mask));
1151 
1152 		/*
1153 		 * At first, we don't want to place processes on the same
1154 		 * CPUs as interrupt handlers.
1155 		 */
1156 		cpumask_andnot(diff, available_mask, intrs_mask);
1157 		if (!cpumask_empty(diff))
1158 			cpumask_copy(available_mask, diff);
1159 	}
1160 	hfi1_cdbg(PROC, "Possible CPUs for process: %*pbl",
1161 		  cpumask_pr_args(available_mask));
1162 
1163 	cpu = cpumask_first(available_mask);
1164 	if (cpu >= nr_cpu_ids) /* empty */
1165 		cpu = -1;
1166 	else
1167 		cpumask_set_cpu(cpu, &set->used);
1168 
1169 	mutex_unlock(&affinity->lock);
1170 	hfi1_cdbg(PROC, "Process assigned to CPU %d", cpu);
1171 
1172 	free_cpumask_var(intrs_mask);
1173 free_available_mask:
1174 	free_cpumask_var(available_mask);
1175 free_hw_thread_mask:
1176 	free_cpumask_var(hw_thread_mask);
1177 free_diff:
1178 	free_cpumask_var(diff);
1179 done:
1180 	return cpu;
1181 }
1182 
hfi1_put_proc_affinity(int cpu)1183 void hfi1_put_proc_affinity(int cpu)
1184 {
1185 	struct hfi1_affinity_node_list *affinity = &node_affinity;
1186 	struct cpu_mask_set *set = &affinity->proc;
1187 
1188 	if (cpu < 0)
1189 		return;
1190 
1191 	mutex_lock(&affinity->lock);
1192 	cpu_mask_set_put(set, cpu);
1193 	hfi1_cdbg(PROC, "Returning CPU %d for future process assignment", cpu);
1194 	mutex_unlock(&affinity->lock);
1195 }
1196