1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4 * Copyright 2016-2019 HabanaLabs, Ltd.
5 * All Rights Reserved.
6 */
7
8 #include "habanalabs.h"
9
10 #include <linux/slab.h>
11
12 /*
13 * hl_queue_add_ptr - add to pi or ci and checks if it wraps around
14 *
15 * @ptr: the current pi/ci value
16 * @val: the amount to add
17 *
18 * Add val to ptr. It can go until twice the queue length.
19 */
hl_hw_queue_add_ptr(u32 ptr,u16 val)20 inline u32 hl_hw_queue_add_ptr(u32 ptr, u16 val)
21 {
22 ptr += val;
23 ptr &= ((HL_QUEUE_LENGTH << 1) - 1);
24 return ptr;
25 }
queue_ci_get(atomic_t * ci,u32 queue_len)26 static inline int queue_ci_get(atomic_t *ci, u32 queue_len)
27 {
28 return atomic_read(ci) & ((queue_len << 1) - 1);
29 }
30
queue_free_slots(struct hl_hw_queue * q,u32 queue_len)31 static inline int queue_free_slots(struct hl_hw_queue *q, u32 queue_len)
32 {
33 int delta = (q->pi - queue_ci_get(&q->ci, queue_len));
34
35 if (delta >= 0)
36 return (queue_len - delta);
37 else
38 return (abs(delta) - queue_len);
39 }
40
hl_hw_queue_update_ci(struct hl_cs * cs)41 void hl_hw_queue_update_ci(struct hl_cs *cs)
42 {
43 struct hl_device *hdev = cs->ctx->hdev;
44 struct hl_hw_queue *q;
45 int i;
46
47 if (hdev->disabled)
48 return;
49
50 q = &hdev->kernel_queues[0];
51
52 /* There are no internal queues if H/W queues are being used */
53 if (!hdev->asic_prop.max_queues || q->queue_type == QUEUE_TYPE_HW)
54 return;
55
56 /* We must increment CI for every queue that will never get a
57 * completion, there are 2 scenarios this can happen:
58 * 1. All queues of a non completion CS will never get a completion.
59 * 2. Internal queues never gets completion.
60 */
61 for (i = 0 ; i < hdev->asic_prop.max_queues ; i++, q++) {
62 if (!cs_needs_completion(cs) || q->queue_type == QUEUE_TYPE_INT)
63 atomic_add(cs->jobs_in_queue_cnt[i], &q->ci);
64 }
65 }
66
67 /*
68 * hl_hw_queue_submit_bd() - Submit a buffer descriptor to an external or a
69 * H/W queue.
70 * @hdev: pointer to habanalabs device structure
71 * @q: pointer to habanalabs queue structure
72 * @ctl: BD's control word
73 * @len: BD's length
74 * @ptr: BD's pointer
75 *
76 * This function assumes there is enough space on the queue to submit a new
77 * BD to it. It initializes the next BD and calls the device specific
78 * function to set the pi (and doorbell)
79 *
80 * This function must be called when the scheduler mutex is taken
81 *
82 */
hl_hw_queue_submit_bd(struct hl_device * hdev,struct hl_hw_queue * q,u32 ctl,u32 len,u64 ptr)83 void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q,
84 u32 ctl, u32 len, u64 ptr)
85 {
86 struct hl_bd *bd;
87
88 bd = q->kernel_address;
89 bd += hl_pi_2_offset(q->pi);
90 bd->ctl = cpu_to_le32(ctl);
91 bd->len = cpu_to_le32(len);
92 bd->ptr = cpu_to_le64(ptr);
93
94 q->pi = hl_queue_inc_ptr(q->pi);
95 hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi);
96 }
97
98 /*
99 * ext_queue_sanity_checks - perform some sanity checks on external queue
100 *
101 * @hdev : pointer to hl_device structure
102 * @q : pointer to hl_hw_queue structure
103 * @num_of_entries : how many entries to check for space
104 * @reserve_cq_entry : whether to reserve an entry in the cq
105 *
106 * H/W queues spinlock should be taken before calling this function
107 *
108 * Perform the following:
109 * - Make sure we have enough space in the h/w queue
110 * - Make sure we have enough space in the completion queue
111 * - Reserve space in the completion queue (needs to be reversed if there
112 * is a failure down the road before the actual submission of work). Only
113 * do this action if reserve_cq_entry is true
114 *
115 */
ext_queue_sanity_checks(struct hl_device * hdev,struct hl_hw_queue * q,int num_of_entries,bool reserve_cq_entry)116 static int ext_queue_sanity_checks(struct hl_device *hdev,
117 struct hl_hw_queue *q, int num_of_entries,
118 bool reserve_cq_entry)
119 {
120 atomic_t *free_slots =
121 &hdev->completion_queue[q->cq_id].free_slots_cnt;
122 int free_slots_cnt;
123
124 /* Check we have enough space in the queue */
125 free_slots_cnt = queue_free_slots(q, HL_QUEUE_LENGTH);
126
127 if (free_slots_cnt < num_of_entries) {
128 dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
129 q->hw_queue_id, num_of_entries);
130 return -EAGAIN;
131 }
132
133 if (reserve_cq_entry) {
134 /*
135 * Check we have enough space in the completion queue
136 * Add -1 to counter (decrement) unless counter was already 0
137 * In that case, CQ is full so we can't submit a new CB because
138 * we won't get ack on its completion
139 * atomic_add_unless will return 0 if counter was already 0
140 */
141 if (atomic_add_negative(num_of_entries * -1, free_slots)) {
142 dev_dbg(hdev->dev, "No space for %d on CQ %d\n",
143 num_of_entries, q->hw_queue_id);
144 atomic_add(num_of_entries, free_slots);
145 return -EAGAIN;
146 }
147 }
148
149 return 0;
150 }
151
152 /*
153 * int_queue_sanity_checks - perform some sanity checks on internal queue
154 *
155 * @hdev : pointer to hl_device structure
156 * @q : pointer to hl_hw_queue structure
157 * @num_of_entries : how many entries to check for space
158 *
159 * H/W queues spinlock should be taken before calling this function
160 *
161 * Perform the following:
162 * - Make sure we have enough space in the h/w queue
163 *
164 */
int_queue_sanity_checks(struct hl_device * hdev,struct hl_hw_queue * q,int num_of_entries)165 static int int_queue_sanity_checks(struct hl_device *hdev,
166 struct hl_hw_queue *q,
167 int num_of_entries)
168 {
169 int free_slots_cnt;
170
171 if (num_of_entries > q->int_queue_len) {
172 dev_err(hdev->dev,
173 "Cannot populate queue %u with %u jobs\n",
174 q->hw_queue_id, num_of_entries);
175 return -ENOMEM;
176 }
177
178 /* Check we have enough space in the queue */
179 free_slots_cnt = queue_free_slots(q, q->int_queue_len);
180
181 if (free_slots_cnt < num_of_entries) {
182 dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
183 q->hw_queue_id, num_of_entries);
184 return -EAGAIN;
185 }
186
187 return 0;
188 }
189
190 /*
191 * hw_queue_sanity_checks() - Make sure we have enough space in the h/w queue
192 * @hdev: Pointer to hl_device structure.
193 * @q: Pointer to hl_hw_queue structure.
194 * @num_of_entries: How many entries to check for space.
195 *
196 * Notice: We do not reserve queue entries so this function mustn't be called
197 * more than once per CS for the same queue
198 *
199 */
hw_queue_sanity_checks(struct hl_device * hdev,struct hl_hw_queue * q,int num_of_entries)200 static int hw_queue_sanity_checks(struct hl_device *hdev, struct hl_hw_queue *q,
201 int num_of_entries)
202 {
203 int free_slots_cnt;
204
205 /* Check we have enough space in the queue */
206 free_slots_cnt = queue_free_slots(q, HL_QUEUE_LENGTH);
207
208 if (free_slots_cnt < num_of_entries) {
209 dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
210 q->hw_queue_id, num_of_entries);
211 return -EAGAIN;
212 }
213
214 return 0;
215 }
216
217 /*
218 * hl_hw_queue_send_cb_no_cmpl - send a single CB (not a JOB) without completion
219 *
220 * @hdev: pointer to hl_device structure
221 * @hw_queue_id: Queue's type
222 * @cb_size: size of CB
223 * @cb_ptr: pointer to CB location
224 *
225 * This function sends a single CB, that must NOT generate a completion entry.
226 * Sending CPU messages can be done instead via 'hl_hw_queue_submit_bd()'
227 */
hl_hw_queue_send_cb_no_cmpl(struct hl_device * hdev,u32 hw_queue_id,u32 cb_size,u64 cb_ptr)228 int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
229 u32 cb_size, u64 cb_ptr)
230 {
231 struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id];
232 int rc = 0;
233
234 hdev->asic_funcs->hw_queues_lock(hdev);
235
236 if (hdev->disabled) {
237 rc = -EPERM;
238 goto out;
239 }
240
241 /*
242 * hl_hw_queue_send_cb_no_cmpl() is called for queues of a H/W queue
243 * type only on init phase, when the queues are empty and being tested,
244 * so there is no need for sanity checks.
245 */
246 if (q->queue_type != QUEUE_TYPE_HW) {
247 rc = ext_queue_sanity_checks(hdev, q, 1, false);
248 if (rc)
249 goto out;
250 }
251
252 hl_hw_queue_submit_bd(hdev, q, 0, cb_size, cb_ptr);
253
254 out:
255 hdev->asic_funcs->hw_queues_unlock(hdev);
256
257 return rc;
258 }
259
260 /*
261 * ext_queue_schedule_job - submit a JOB to an external queue
262 *
263 * @job: pointer to the job that needs to be submitted to the queue
264 *
265 * This function must be called when the scheduler mutex is taken
266 *
267 */
ext_queue_schedule_job(struct hl_cs_job * job)268 static void ext_queue_schedule_job(struct hl_cs_job *job)
269 {
270 struct hl_device *hdev = job->cs->ctx->hdev;
271 struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
272 struct hl_cq_entry cq_pkt;
273 struct hl_cq *cq;
274 u64 cq_addr;
275 struct hl_cb *cb;
276 u32 ctl;
277 u32 len;
278 u64 ptr;
279
280 /*
281 * Update the JOB ID inside the BD CTL so the device would know what
282 * to write in the completion queue
283 */
284 ctl = ((q->pi << BD_CTL_SHADOW_INDEX_SHIFT) & BD_CTL_SHADOW_INDEX_MASK);
285
286 cb = job->patched_cb;
287 len = job->job_cb_size;
288 ptr = cb->bus_address;
289
290 /* Skip completion flow in case this is a non completion CS */
291 if (!cs_needs_completion(job->cs))
292 goto submit_bd;
293
294 cq_pkt.data = cpu_to_le32(
295 ((q->pi << CQ_ENTRY_SHADOW_INDEX_SHIFT)
296 & CQ_ENTRY_SHADOW_INDEX_MASK) |
297 FIELD_PREP(CQ_ENTRY_SHADOW_INDEX_VALID_MASK, 1) |
298 FIELD_PREP(CQ_ENTRY_READY_MASK, 1));
299
300 /*
301 * No need to protect pi_offset because scheduling to the
302 * H/W queues is done under the scheduler mutex
303 *
304 * No need to check if CQ is full because it was already
305 * checked in ext_queue_sanity_checks
306 */
307 cq = &hdev->completion_queue[q->cq_id];
308 cq_addr = cq->bus_address + cq->pi * sizeof(struct hl_cq_entry);
309
310 hdev->asic_funcs->add_end_of_cb_packets(hdev, cb->kernel_address, len,
311 cq_addr,
312 le32_to_cpu(cq_pkt.data),
313 q->msi_vec,
314 job->contains_dma_pkt);
315
316 q->shadow_queue[hl_pi_2_offset(q->pi)] = job;
317
318 cq->pi = hl_cq_inc_ptr(cq->pi);
319
320 submit_bd:
321 hl_hw_queue_submit_bd(hdev, q, ctl, len, ptr);
322 }
323
324 /*
325 * int_queue_schedule_job - submit a JOB to an internal queue
326 *
327 * @job: pointer to the job that needs to be submitted to the queue
328 *
329 * This function must be called when the scheduler mutex is taken
330 *
331 */
int_queue_schedule_job(struct hl_cs_job * job)332 static void int_queue_schedule_job(struct hl_cs_job *job)
333 {
334 struct hl_device *hdev = job->cs->ctx->hdev;
335 struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
336 struct hl_bd bd;
337 __le64 *pi;
338
339 bd.ctl = 0;
340 bd.len = cpu_to_le32(job->job_cb_size);
341
342 if (job->is_kernel_allocated_cb)
343 /* bus_address is actually a mmu mapped address
344 * allocated from an internal pool
345 */
346 bd.ptr = cpu_to_le64(job->user_cb->bus_address);
347 else
348 bd.ptr = cpu_to_le64((u64) (uintptr_t) job->user_cb);
349
350 pi = q->kernel_address + (q->pi & (q->int_queue_len - 1)) * sizeof(bd);
351
352 q->pi++;
353 q->pi &= ((q->int_queue_len << 1) - 1);
354
355 hdev->asic_funcs->pqe_write(hdev, pi, &bd);
356
357 hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi);
358 }
359
360 /*
361 * hw_queue_schedule_job - submit a JOB to a H/W queue
362 *
363 * @job: pointer to the job that needs to be submitted to the queue
364 *
365 * This function must be called when the scheduler mutex is taken
366 *
367 */
hw_queue_schedule_job(struct hl_cs_job * job)368 static void hw_queue_schedule_job(struct hl_cs_job *job)
369 {
370 struct hl_device *hdev = job->cs->ctx->hdev;
371 struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
372 u64 ptr;
373 u32 offset, ctl, len;
374
375 /*
376 * Upon PQE completion, COMP_DATA is used as the write data to the
377 * completion queue (QMAN HBW message), and COMP_OFFSET is used as the
378 * write address offset in the SM block (QMAN LBW message).
379 * The write address offset is calculated as "COMP_OFFSET << 2".
380 */
381 offset = job->cs->sequence & (hdev->asic_prop.max_pending_cs - 1);
382 ctl = ((offset << BD_CTL_COMP_OFFSET_SHIFT) & BD_CTL_COMP_OFFSET_MASK) |
383 ((q->pi << BD_CTL_COMP_DATA_SHIFT) & BD_CTL_COMP_DATA_MASK);
384
385 len = job->job_cb_size;
386
387 /*
388 * A patched CB is created only if a user CB was allocated by driver and
389 * MMU is disabled. If MMU is enabled, the user CB should be used
390 * instead. If the user CB wasn't allocated by driver, assume that it
391 * holds an address.
392 */
393 if (job->patched_cb)
394 ptr = job->patched_cb->bus_address;
395 else if (job->is_kernel_allocated_cb)
396 ptr = job->user_cb->bus_address;
397 else
398 ptr = (u64) (uintptr_t) job->user_cb;
399
400 hl_hw_queue_submit_bd(hdev, q, ctl, len, ptr);
401 }
402
init_signal_cs(struct hl_device * hdev,struct hl_cs_job * job,struct hl_cs_compl * cs_cmpl)403 static int init_signal_cs(struct hl_device *hdev,
404 struct hl_cs_job *job, struct hl_cs_compl *cs_cmpl)
405 {
406 struct hl_sync_stream_properties *prop;
407 struct hl_hw_sob *hw_sob;
408 u32 q_idx;
409 int rc = 0;
410
411 q_idx = job->hw_queue_id;
412 prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
413 hw_sob = &prop->hw_sob[prop->curr_sob_offset];
414
415 cs_cmpl->hw_sob = hw_sob;
416 cs_cmpl->sob_val = prop->next_sob_val;
417
418 dev_dbg(hdev->dev,
419 "generate signal CB, sob_id: %d, sob val: %u, q_idx: %d, seq: %llu\n",
420 cs_cmpl->hw_sob->sob_id, cs_cmpl->sob_val, q_idx,
421 cs_cmpl->cs_seq);
422
423 /* we set an EB since we must make sure all oeprations are done
424 * when sending the signal
425 */
426 hdev->asic_funcs->gen_signal_cb(hdev, job->patched_cb,
427 cs_cmpl->hw_sob->sob_id, 0, true);
428
429 rc = hl_cs_signal_sob_wraparound_handler(hdev, q_idx, &hw_sob, 1,
430 false);
431
432 return rc;
433 }
434
hl_hw_queue_encaps_sig_set_sob_info(struct hl_device * hdev,struct hl_cs * cs,struct hl_cs_job * job,struct hl_cs_compl * cs_cmpl)435 void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev,
436 struct hl_cs *cs, struct hl_cs_job *job,
437 struct hl_cs_compl *cs_cmpl)
438 {
439 struct hl_cs_encaps_sig_handle *handle = cs->encaps_sig_hdl;
440 u32 offset = 0;
441
442 cs_cmpl->hw_sob = handle->hw_sob;
443
444 /* Note that encaps_sig_wait_offset was validated earlier in the flow
445 * for offset value which exceeds the max reserved signal count.
446 * always decrement 1 of the offset since when the user
447 * set offset 1 for example he mean to wait only for the first
448 * signal only, which will be pre_sob_val, and if he set offset 2
449 * then the value required is (pre_sob_val + 1) and so on...
450 * if user set wait offset to 0, then treat it as legacy wait cs,
451 * wait for the next signal.
452 */
453 if (job->encaps_sig_wait_offset)
454 offset = job->encaps_sig_wait_offset - 1;
455
456 cs_cmpl->sob_val = handle->pre_sob_val + offset;
457 }
458
init_wait_cs(struct hl_device * hdev,struct hl_cs * cs,struct hl_cs_job * job,struct hl_cs_compl * cs_cmpl)459 static int init_wait_cs(struct hl_device *hdev, struct hl_cs *cs,
460 struct hl_cs_job *job, struct hl_cs_compl *cs_cmpl)
461 {
462 struct hl_gen_wait_properties wait_prop;
463 struct hl_sync_stream_properties *prop;
464 struct hl_cs_compl *signal_cs_cmpl;
465 u32 q_idx;
466
467 q_idx = job->hw_queue_id;
468 prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
469
470 signal_cs_cmpl = container_of(cs->signal_fence,
471 struct hl_cs_compl,
472 base_fence);
473
474 if (cs->encaps_signals) {
475 /* use the encaps signal handle stored earlier in the flow
476 * and set the SOB information from the encaps
477 * signals handle
478 */
479 hl_hw_queue_encaps_sig_set_sob_info(hdev, cs, job, cs_cmpl);
480
481 dev_dbg(hdev->dev, "Wait for encaps signals handle, qidx(%u), CS sequence(%llu), sob val: 0x%x, offset: %u\n",
482 cs->encaps_sig_hdl->q_idx,
483 cs->encaps_sig_hdl->cs_seq,
484 cs_cmpl->sob_val,
485 job->encaps_sig_wait_offset);
486 } else {
487 /* Copy the SOB id and value of the signal CS */
488 cs_cmpl->hw_sob = signal_cs_cmpl->hw_sob;
489 cs_cmpl->sob_val = signal_cs_cmpl->sob_val;
490 }
491
492 /* check again if the signal cs already completed.
493 * if yes then don't send any wait cs since the hw_sob
494 * could be in reset already. if signal is not completed
495 * then get refcount to hw_sob to prevent resetting the sob
496 * while wait cs is not submitted.
497 * note that this check is protected by two locks,
498 * hw queue lock and completion object lock,
499 * and the same completion object lock also protects
500 * the hw_sob reset handler function.
501 * The hw_queue lock prevent out of sync of hw_sob
502 * refcount value, changed by signal/wait flows.
503 */
504 spin_lock(&signal_cs_cmpl->lock);
505
506 if (completion_done(&cs->signal_fence->completion)) {
507 spin_unlock(&signal_cs_cmpl->lock);
508 return -EINVAL;
509 }
510
511 kref_get(&cs_cmpl->hw_sob->kref);
512
513 spin_unlock(&signal_cs_cmpl->lock);
514
515 dev_dbg(hdev->dev,
516 "generate wait CB, sob_id: %d, sob_val: 0x%x, mon_id: %d, q_idx: %d, seq: %llu\n",
517 cs_cmpl->hw_sob->sob_id, cs_cmpl->sob_val,
518 prop->base_mon_id, q_idx, cs->sequence);
519
520 wait_prop.data = (void *) job->patched_cb;
521 wait_prop.sob_base = cs_cmpl->hw_sob->sob_id;
522 wait_prop.sob_mask = 0x1;
523 wait_prop.sob_val = cs_cmpl->sob_val;
524 wait_prop.mon_id = prop->base_mon_id;
525 wait_prop.q_idx = q_idx;
526 wait_prop.size = 0;
527
528 hdev->asic_funcs->gen_wait_cb(hdev, &wait_prop);
529
530 mb();
531 hl_fence_put(cs->signal_fence);
532 cs->signal_fence = NULL;
533
534 return 0;
535 }
536
537 /*
538 * init_signal_wait_cs - initialize a signal/wait CS
539 * @cs: pointer to the signal/wait CS
540 *
541 * H/W queues spinlock should be taken before calling this function
542 */
init_signal_wait_cs(struct hl_cs * cs)543 static int init_signal_wait_cs(struct hl_cs *cs)
544 {
545 struct hl_ctx *ctx = cs->ctx;
546 struct hl_device *hdev = ctx->hdev;
547 struct hl_cs_job *job;
548 struct hl_cs_compl *cs_cmpl =
549 container_of(cs->fence, struct hl_cs_compl, base_fence);
550 int rc = 0;
551
552 /* There is only one job in a signal/wait CS */
553 job = list_first_entry(&cs->job_list, struct hl_cs_job,
554 cs_node);
555
556 if (cs->type & CS_TYPE_SIGNAL)
557 rc = init_signal_cs(hdev, job, cs_cmpl);
558 else if (cs->type & CS_TYPE_WAIT)
559 rc = init_wait_cs(hdev, cs, job, cs_cmpl);
560
561 return rc;
562 }
563
encaps_sig_first_staged_cs_handler(struct hl_device * hdev,struct hl_cs * cs)564 static int encaps_sig_first_staged_cs_handler
565 (struct hl_device *hdev, struct hl_cs *cs)
566 {
567 struct hl_cs_compl *cs_cmpl =
568 container_of(cs->fence,
569 struct hl_cs_compl, base_fence);
570 struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
571 struct hl_encaps_signals_mgr *mgr;
572 int rc = 0;
573
574 mgr = &hdev->compute_ctx->sig_mgr;
575
576 spin_lock(&mgr->lock);
577 encaps_sig_hdl = idr_find(&mgr->handles, cs->encaps_sig_hdl_id);
578 if (encaps_sig_hdl) {
579 /*
580 * Set handler CS sequence,
581 * the CS which contains the encapsulated signals.
582 */
583 encaps_sig_hdl->cs_seq = cs->sequence;
584 /* store the handle and set encaps signal indication,
585 * to be used later in cs_do_release to put the last
586 * reference to encaps signals handlers.
587 */
588 cs_cmpl->encaps_signals = true;
589 cs_cmpl->encaps_sig_hdl = encaps_sig_hdl;
590
591 /* set hw_sob pointer in completion object
592 * since it's used in cs_do_release flow to put
593 * refcount to sob
594 */
595 cs_cmpl->hw_sob = encaps_sig_hdl->hw_sob;
596 cs_cmpl->sob_val = encaps_sig_hdl->pre_sob_val +
597 encaps_sig_hdl->count;
598
599 dev_dbg(hdev->dev, "CS seq (%llu) added to encaps signal handler id (%u), count(%u), qidx(%u), sob(%u), val(%u)\n",
600 cs->sequence, encaps_sig_hdl->id,
601 encaps_sig_hdl->count,
602 encaps_sig_hdl->q_idx,
603 cs_cmpl->hw_sob->sob_id,
604 cs_cmpl->sob_val);
605
606 } else {
607 dev_err(hdev->dev, "encaps handle id(%u) wasn't found!\n",
608 cs->encaps_sig_hdl_id);
609 rc = -EINVAL;
610 }
611
612 spin_unlock(&mgr->lock);
613
614 return rc;
615 }
616
617 /*
618 * hl_hw_queue_schedule_cs - schedule a command submission
619 * @cs: pointer to the CS
620 */
hl_hw_queue_schedule_cs(struct hl_cs * cs)621 int hl_hw_queue_schedule_cs(struct hl_cs *cs)
622 {
623 enum hl_device_status status;
624 struct hl_cs_counters_atomic *cntr;
625 struct hl_ctx *ctx = cs->ctx;
626 struct hl_device *hdev = ctx->hdev;
627 struct hl_cs_job *job, *tmp;
628 struct hl_hw_queue *q;
629 int rc = 0, i, cq_cnt;
630 bool first_entry;
631 u32 max_queues;
632
633 cntr = &hdev->aggregated_cs_counters;
634
635 hdev->asic_funcs->hw_queues_lock(hdev);
636
637 if (!hl_device_operational(hdev, &status)) {
638 atomic64_inc(&cntr->device_in_reset_drop_cnt);
639 atomic64_inc(&ctx->cs_counters.device_in_reset_drop_cnt);
640 dev_err(hdev->dev,
641 "device is %s, CS rejected!\n", hdev->status[status]);
642 rc = -EPERM;
643 goto out;
644 }
645
646 max_queues = hdev->asic_prop.max_queues;
647
648 q = &hdev->kernel_queues[0];
649 for (i = 0, cq_cnt = 0 ; i < max_queues ; i++, q++) {
650 if (cs->jobs_in_queue_cnt[i]) {
651 switch (q->queue_type) {
652 case QUEUE_TYPE_EXT:
653 rc = ext_queue_sanity_checks(hdev, q,
654 cs->jobs_in_queue_cnt[i],
655 cs_needs_completion(cs) ?
656 true : false);
657 break;
658 case QUEUE_TYPE_INT:
659 rc = int_queue_sanity_checks(hdev, q,
660 cs->jobs_in_queue_cnt[i]);
661 break;
662 case QUEUE_TYPE_HW:
663 rc = hw_queue_sanity_checks(hdev, q,
664 cs->jobs_in_queue_cnt[i]);
665 break;
666 default:
667 dev_err(hdev->dev, "Queue type %d is invalid\n",
668 q->queue_type);
669 rc = -EINVAL;
670 break;
671 }
672
673 if (rc) {
674 atomic64_inc(
675 &ctx->cs_counters.queue_full_drop_cnt);
676 atomic64_inc(&cntr->queue_full_drop_cnt);
677 goto unroll_cq_resv;
678 }
679
680 if (q->queue_type == QUEUE_TYPE_EXT)
681 cq_cnt++;
682 }
683 }
684
685 if ((cs->type == CS_TYPE_SIGNAL) || (cs->type == CS_TYPE_WAIT)) {
686 rc = init_signal_wait_cs(cs);
687 if (rc)
688 goto unroll_cq_resv;
689 } else if (cs->type == CS_TYPE_COLLECTIVE_WAIT) {
690 rc = hdev->asic_funcs->collective_wait_init_cs(cs);
691 if (rc)
692 goto unroll_cq_resv;
693 }
694
695
696 if (cs->encaps_signals && cs->staged_first) {
697 rc = encaps_sig_first_staged_cs_handler(hdev, cs);
698 if (rc)
699 goto unroll_cq_resv;
700 }
701
702 spin_lock(&hdev->cs_mirror_lock);
703
704 /* Verify staged CS exists and add to the staged list */
705 if (cs->staged_cs && !cs->staged_first) {
706 struct hl_cs *staged_cs;
707
708 staged_cs = hl_staged_cs_find_first(hdev, cs->staged_sequence);
709 if (!staged_cs) {
710 dev_err(hdev->dev,
711 "Cannot find staged submission sequence %llu",
712 cs->staged_sequence);
713 rc = -EINVAL;
714 goto unlock_cs_mirror;
715 }
716
717 if (is_staged_cs_last_exists(hdev, staged_cs)) {
718 dev_err(hdev->dev,
719 "Staged submission sequence %llu already submitted",
720 cs->staged_sequence);
721 rc = -EINVAL;
722 goto unlock_cs_mirror;
723 }
724
725 list_add_tail(&cs->staged_cs_node, &staged_cs->staged_cs_node);
726
727 /* update stream map of the first CS */
728 if (hdev->supports_wait_for_multi_cs)
729 staged_cs->fence->stream_master_qid_map |=
730 cs->fence->stream_master_qid_map;
731 }
732
733 list_add_tail(&cs->mirror_node, &hdev->cs_mirror_list);
734
735 /* Queue TDR if the CS is the first entry and if timeout is wanted */
736 first_entry = list_first_entry(&hdev->cs_mirror_list,
737 struct hl_cs, mirror_node) == cs;
738 if ((hdev->timeout_jiffies != MAX_SCHEDULE_TIMEOUT) &&
739 first_entry && cs_needs_timeout(cs)) {
740 cs->tdr_active = true;
741 schedule_delayed_work(&cs->work_tdr, cs->timeout_jiffies);
742
743 }
744
745 spin_unlock(&hdev->cs_mirror_lock);
746
747 list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
748 switch (job->queue_type) {
749 case QUEUE_TYPE_EXT:
750 ext_queue_schedule_job(job);
751 break;
752 case QUEUE_TYPE_INT:
753 int_queue_schedule_job(job);
754 break;
755 case QUEUE_TYPE_HW:
756 hw_queue_schedule_job(job);
757 break;
758 default:
759 break;
760 }
761
762 cs->submitted = true;
763
764 goto out;
765
766 unlock_cs_mirror:
767 spin_unlock(&hdev->cs_mirror_lock);
768 unroll_cq_resv:
769 q = &hdev->kernel_queues[0];
770 for (i = 0 ; (i < max_queues) && (cq_cnt > 0) ; i++, q++) {
771 if ((q->queue_type == QUEUE_TYPE_EXT) &&
772 (cs->jobs_in_queue_cnt[i])) {
773 atomic_t *free_slots =
774 &hdev->completion_queue[i].free_slots_cnt;
775 atomic_add(cs->jobs_in_queue_cnt[i], free_slots);
776 cq_cnt--;
777 }
778 }
779
780 out:
781 hdev->asic_funcs->hw_queues_unlock(hdev);
782
783 return rc;
784 }
785
786 /*
787 * hl_hw_queue_inc_ci_kernel - increment ci for kernel's queue
788 *
789 * @hdev: pointer to hl_device structure
790 * @hw_queue_id: which queue to increment its ci
791 */
hl_hw_queue_inc_ci_kernel(struct hl_device * hdev,u32 hw_queue_id)792 void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id)
793 {
794 struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id];
795
796 atomic_inc(&q->ci);
797 }
798
ext_and_cpu_queue_init(struct hl_device * hdev,struct hl_hw_queue * q,bool is_cpu_queue)799 static int ext_and_cpu_queue_init(struct hl_device *hdev, struct hl_hw_queue *q,
800 bool is_cpu_queue)
801 {
802 void *p;
803 int rc;
804
805 if (is_cpu_queue)
806 p = hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev,
807 HL_QUEUE_SIZE_IN_BYTES,
808 &q->bus_address);
809 else
810 p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev,
811 HL_QUEUE_SIZE_IN_BYTES,
812 &q->bus_address,
813 GFP_KERNEL | __GFP_ZERO);
814 if (!p)
815 return -ENOMEM;
816
817 q->kernel_address = p;
818
819 q->shadow_queue = kmalloc_array(HL_QUEUE_LENGTH,
820 sizeof(*q->shadow_queue),
821 GFP_KERNEL);
822 if (!q->shadow_queue) {
823 dev_err(hdev->dev,
824 "Failed to allocate shadow queue for H/W queue %d\n",
825 q->hw_queue_id);
826 rc = -ENOMEM;
827 goto free_queue;
828 }
829
830 /* Make sure read/write pointers are initialized to start of queue */
831 atomic_set(&q->ci, 0);
832 q->pi = 0;
833
834 return 0;
835
836 free_queue:
837 if (is_cpu_queue)
838 hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev,
839 HL_QUEUE_SIZE_IN_BYTES,
840 q->kernel_address);
841 else
842 hdev->asic_funcs->asic_dma_free_coherent(hdev,
843 HL_QUEUE_SIZE_IN_BYTES,
844 q->kernel_address,
845 q->bus_address);
846
847 return rc;
848 }
849
int_queue_init(struct hl_device * hdev,struct hl_hw_queue * q)850 static int int_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
851 {
852 void *p;
853
854 p = hdev->asic_funcs->get_int_queue_base(hdev, q->hw_queue_id,
855 &q->bus_address, &q->int_queue_len);
856 if (!p) {
857 dev_err(hdev->dev,
858 "Failed to get base address for internal queue %d\n",
859 q->hw_queue_id);
860 return -EFAULT;
861 }
862
863 q->kernel_address = p;
864 q->pi = 0;
865 atomic_set(&q->ci, 0);
866
867 return 0;
868 }
869
cpu_queue_init(struct hl_device * hdev,struct hl_hw_queue * q)870 static int cpu_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
871 {
872 return ext_and_cpu_queue_init(hdev, q, true);
873 }
874
ext_queue_init(struct hl_device * hdev,struct hl_hw_queue * q)875 static int ext_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
876 {
877 return ext_and_cpu_queue_init(hdev, q, false);
878 }
879
hw_queue_init(struct hl_device * hdev,struct hl_hw_queue * q)880 static int hw_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
881 {
882 void *p;
883
884 p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev,
885 HL_QUEUE_SIZE_IN_BYTES,
886 &q->bus_address,
887 GFP_KERNEL | __GFP_ZERO);
888 if (!p)
889 return -ENOMEM;
890
891 q->kernel_address = p;
892
893 /* Make sure read/write pointers are initialized to start of queue */
894 atomic_set(&q->ci, 0);
895 q->pi = 0;
896
897 return 0;
898 }
899
sync_stream_queue_init(struct hl_device * hdev,u32 q_idx)900 static void sync_stream_queue_init(struct hl_device *hdev, u32 q_idx)
901 {
902 struct hl_sync_stream_properties *sync_stream_prop;
903 struct asic_fixed_properties *prop = &hdev->asic_prop;
904 struct hl_hw_sob *hw_sob;
905 int sob, reserved_mon_idx, queue_idx;
906
907 sync_stream_prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
908
909 /* We use 'collective_mon_idx' as a running index in order to reserve
910 * monitors for collective master/slave queues.
911 * collective master queue gets 2 reserved monitors
912 * collective slave queue gets 1 reserved monitor
913 */
914 if (hdev->kernel_queues[q_idx].collective_mode ==
915 HL_COLLECTIVE_MASTER) {
916 reserved_mon_idx = hdev->collective_mon_idx;
917
918 /* reserve the first monitor for collective master queue */
919 sync_stream_prop->collective_mstr_mon_id[0] =
920 prop->collective_first_mon + reserved_mon_idx;
921
922 /* reserve the second monitor for collective master queue */
923 sync_stream_prop->collective_mstr_mon_id[1] =
924 prop->collective_first_mon + reserved_mon_idx + 1;
925
926 hdev->collective_mon_idx += HL_COLLECTIVE_RSVD_MSTR_MONS;
927 } else if (hdev->kernel_queues[q_idx].collective_mode ==
928 HL_COLLECTIVE_SLAVE) {
929 reserved_mon_idx = hdev->collective_mon_idx++;
930
931 /* reserve a monitor for collective slave queue */
932 sync_stream_prop->collective_slave_mon_id =
933 prop->collective_first_mon + reserved_mon_idx;
934 }
935
936 if (!hdev->kernel_queues[q_idx].supports_sync_stream)
937 return;
938
939 queue_idx = hdev->sync_stream_queue_idx++;
940
941 sync_stream_prop->base_sob_id = prop->sync_stream_first_sob +
942 (queue_idx * HL_RSVD_SOBS);
943 sync_stream_prop->base_mon_id = prop->sync_stream_first_mon +
944 (queue_idx * HL_RSVD_MONS);
945 sync_stream_prop->next_sob_val = 1;
946 sync_stream_prop->curr_sob_offset = 0;
947
948 for (sob = 0 ; sob < HL_RSVD_SOBS ; sob++) {
949 hw_sob = &sync_stream_prop->hw_sob[sob];
950 hw_sob->hdev = hdev;
951 hw_sob->sob_id = sync_stream_prop->base_sob_id + sob;
952 hw_sob->sob_addr =
953 hdev->asic_funcs->get_sob_addr(hdev, hw_sob->sob_id);
954 hw_sob->q_idx = q_idx;
955 kref_init(&hw_sob->kref);
956 }
957 }
958
sync_stream_queue_reset(struct hl_device * hdev,u32 q_idx)959 static void sync_stream_queue_reset(struct hl_device *hdev, u32 q_idx)
960 {
961 struct hl_sync_stream_properties *prop =
962 &hdev->kernel_queues[q_idx].sync_stream_prop;
963
964 /*
965 * In case we got here due to a stuck CS, the refcnt might be bigger
966 * than 1 and therefore we reset it.
967 */
968 kref_init(&prop->hw_sob[prop->curr_sob_offset].kref);
969 prop->curr_sob_offset = 0;
970 prop->next_sob_val = 1;
971 }
972
973 /*
974 * queue_init - main initialization function for H/W queue object
975 *
976 * @hdev: pointer to hl_device device structure
977 * @q: pointer to hl_hw_queue queue structure
978 * @hw_queue_id: The id of the H/W queue
979 *
980 * Allocate dma-able memory for the queue and initialize fields
981 * Returns 0 on success
982 */
queue_init(struct hl_device * hdev,struct hl_hw_queue * q,u32 hw_queue_id)983 static int queue_init(struct hl_device *hdev, struct hl_hw_queue *q,
984 u32 hw_queue_id)
985 {
986 int rc;
987
988 q->hw_queue_id = hw_queue_id;
989
990 switch (q->queue_type) {
991 case QUEUE_TYPE_EXT:
992 rc = ext_queue_init(hdev, q);
993 break;
994 case QUEUE_TYPE_INT:
995 rc = int_queue_init(hdev, q);
996 break;
997 case QUEUE_TYPE_CPU:
998 rc = cpu_queue_init(hdev, q);
999 break;
1000 case QUEUE_TYPE_HW:
1001 rc = hw_queue_init(hdev, q);
1002 break;
1003 case QUEUE_TYPE_NA:
1004 q->valid = 0;
1005 return 0;
1006 default:
1007 dev_crit(hdev->dev, "wrong queue type %d during init\n",
1008 q->queue_type);
1009 rc = -EINVAL;
1010 break;
1011 }
1012
1013 sync_stream_queue_init(hdev, q->hw_queue_id);
1014
1015 if (rc)
1016 return rc;
1017
1018 q->valid = 1;
1019
1020 return 0;
1021 }
1022
1023 /*
1024 * hw_queue_fini - destroy queue
1025 *
1026 * @hdev: pointer to hl_device device structure
1027 * @q: pointer to hl_hw_queue queue structure
1028 *
1029 * Free the queue memory
1030 */
queue_fini(struct hl_device * hdev,struct hl_hw_queue * q)1031 static void queue_fini(struct hl_device *hdev, struct hl_hw_queue *q)
1032 {
1033 if (!q->valid)
1034 return;
1035
1036 /*
1037 * If we arrived here, there are no jobs waiting on this queue
1038 * so we can safely remove it.
1039 * This is because this function can only called when:
1040 * 1. Either a context is deleted, which only can occur if all its
1041 * jobs were finished
1042 * 2. A context wasn't able to be created due to failure or timeout,
1043 * which means there are no jobs on the queue yet
1044 *
1045 * The only exception are the queues of the kernel context, but
1046 * if they are being destroyed, it means that the entire module is
1047 * being removed. If the module is removed, it means there is no open
1048 * user context. It also means that if a job was submitted by
1049 * the kernel driver (e.g. context creation), the job itself was
1050 * released by the kernel driver when a timeout occurred on its
1051 * Completion. Thus, we don't need to release it again.
1052 */
1053
1054 if (q->queue_type == QUEUE_TYPE_INT)
1055 return;
1056
1057 kfree(q->shadow_queue);
1058
1059 if (q->queue_type == QUEUE_TYPE_CPU)
1060 hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev,
1061 HL_QUEUE_SIZE_IN_BYTES,
1062 q->kernel_address);
1063 else
1064 hdev->asic_funcs->asic_dma_free_coherent(hdev,
1065 HL_QUEUE_SIZE_IN_BYTES,
1066 q->kernel_address,
1067 q->bus_address);
1068 }
1069
hl_hw_queues_create(struct hl_device * hdev)1070 int hl_hw_queues_create(struct hl_device *hdev)
1071 {
1072 struct asic_fixed_properties *asic = &hdev->asic_prop;
1073 struct hl_hw_queue *q;
1074 int i, rc, q_ready_cnt;
1075
1076 hdev->kernel_queues = kcalloc(asic->max_queues,
1077 sizeof(*hdev->kernel_queues), GFP_KERNEL);
1078
1079 if (!hdev->kernel_queues) {
1080 dev_err(hdev->dev, "Not enough memory for H/W queues\n");
1081 return -ENOMEM;
1082 }
1083
1084 /* Initialize the H/W queues */
1085 for (i = 0, q_ready_cnt = 0, q = hdev->kernel_queues;
1086 i < asic->max_queues ; i++, q_ready_cnt++, q++) {
1087
1088 q->queue_type = asic->hw_queues_props[i].type;
1089 q->supports_sync_stream =
1090 asic->hw_queues_props[i].supports_sync_stream;
1091 q->collective_mode = asic->hw_queues_props[i].collective_mode;
1092 rc = queue_init(hdev, q, i);
1093 if (rc) {
1094 dev_err(hdev->dev,
1095 "failed to initialize queue %d\n", i);
1096 goto release_queues;
1097 }
1098 }
1099
1100 return 0;
1101
1102 release_queues:
1103 for (i = 0, q = hdev->kernel_queues ; i < q_ready_cnt ; i++, q++)
1104 queue_fini(hdev, q);
1105
1106 kfree(hdev->kernel_queues);
1107
1108 return rc;
1109 }
1110
hl_hw_queues_destroy(struct hl_device * hdev)1111 void hl_hw_queues_destroy(struct hl_device *hdev)
1112 {
1113 struct hl_hw_queue *q;
1114 u32 max_queues = hdev->asic_prop.max_queues;
1115 int i;
1116
1117 for (i = 0, q = hdev->kernel_queues ; i < max_queues ; i++, q++)
1118 queue_fini(hdev, q);
1119
1120 kfree(hdev->kernel_queues);
1121 }
1122
hl_hw_queue_reset(struct hl_device * hdev,bool hard_reset)1123 void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset)
1124 {
1125 struct hl_hw_queue *q;
1126 u32 max_queues = hdev->asic_prop.max_queues;
1127 int i;
1128
1129 for (i = 0, q = hdev->kernel_queues ; i < max_queues ; i++, q++) {
1130 if ((!q->valid) ||
1131 ((!hard_reset) && (q->queue_type == QUEUE_TYPE_CPU)))
1132 continue;
1133 q->pi = 0;
1134 atomic_set(&q->ci, 0);
1135
1136 if (q->supports_sync_stream)
1137 sync_stream_queue_reset(hdev, q->hw_queue_id);
1138 }
1139 }
1140