• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  *
4  * Copyright SUSE Linux Products GmbH 2010
5  *
6  * Authors: Alexander Graf <agraf@suse.de>
7  */
8 
9 #ifndef __ASM_KVM_BOOK3S_64_H__
10 #define __ASM_KVM_BOOK3S_64_H__
11 
12 #include <linux/string.h>
13 #include <asm/bitops.h>
14 #include <asm/book3s/64/mmu-hash.h>
15 #include <asm/cpu_has_feature.h>
16 #include <asm/ppc-opcode.h>
17 #include <asm/pte-walk.h>
18 
19 #ifdef CONFIG_PPC_PSERIES
kvmhv_on_pseries(void)20 static inline bool kvmhv_on_pseries(void)
21 {
22 	return !cpu_has_feature(CPU_FTR_HVMODE);
23 }
24 #else
kvmhv_on_pseries(void)25 static inline bool kvmhv_on_pseries(void)
26 {
27 	return false;
28 }
29 #endif
30 
31 /*
32  * Structure for a nested guest, that is, for a guest that is managed by
33  * one of our guests.
34  */
35 struct kvm_nested_guest {
36 	struct kvm *l1_host;		/* L1 VM that owns this nested guest */
37 	int l1_lpid;			/* lpid L1 guest thinks this guest is */
38 	int shadow_lpid;		/* real lpid of this nested guest */
39 	pgd_t *shadow_pgtable;		/* our page table for this guest */
40 	u64 l1_gr_to_hr;		/* L1's addr of part'n-scoped table */
41 	u64 process_table;		/* process table entry for this guest */
42 	long refcnt;			/* number of pointers to this struct */
43 	struct mutex tlb_lock;		/* serialize page faults and tlbies */
44 	struct kvm_nested_guest *next;
45 	cpumask_t need_tlb_flush;
46 	cpumask_t cpu_in_guest;
47 	short prev_cpu[NR_CPUS];
48 	u8 radix;			/* is this nested guest radix */
49 };
50 
51 /*
52  * We define a nested rmap entry as a single 64-bit quantity
53  * 0xFFF0000000000000	12-bit lpid field
54  * 0x000FFFFFFFFFF000	40-bit guest 4k page frame number
55  * 0x0000000000000001	1-bit  single entry flag
56  */
57 #define RMAP_NESTED_LPID_MASK		0xFFF0000000000000UL
58 #define RMAP_NESTED_LPID_SHIFT		(52)
59 #define RMAP_NESTED_GPA_MASK		0x000FFFFFFFFFF000UL
60 #define RMAP_NESTED_IS_SINGLE_ENTRY	0x0000000000000001UL
61 
62 /* Structure for a nested guest rmap entry */
63 struct rmap_nested {
64 	struct llist_node list;
65 	u64 rmap;
66 };
67 
68 /*
69  * for_each_nest_rmap_safe - iterate over the list of nested rmap entries
70  *			     safe against removal of the list entry or NULL list
71  * @pos:	a (struct rmap_nested *) to use as a loop cursor
72  * @node:	pointer to the first entry
73  *		NOTE: this can be NULL
74  * @rmapp:	an (unsigned long *) in which to return the rmap entries on each
75  *		iteration
76  *		NOTE: this must point to already allocated memory
77  *
78  * The nested_rmap is a llist of (struct rmap_nested) entries pointed to by the
79  * rmap entry in the memslot. The list is always terminated by a "single entry"
80  * stored in the list element of the final entry of the llist. If there is ONLY
81  * a single entry then this is itself in the rmap entry of the memslot, not a
82  * llist head pointer.
83  *
84  * Note that the iterator below assumes that a nested rmap entry is always
85  * non-zero.  This is true for our usage because the LPID field is always
86  * non-zero (zero is reserved for the host).
87  *
88  * This should be used to iterate over the list of rmap_nested entries with
89  * processing done on the u64 rmap value given by each iteration. This is safe
90  * against removal of list entries and it is always safe to call free on (pos).
91  *
92  * e.g.
93  * struct rmap_nested *cursor;
94  * struct llist_node *first;
95  * unsigned long rmap;
96  * for_each_nest_rmap_safe(cursor, first, &rmap) {
97  *	do_something(rmap);
98  *	free(cursor);
99  * }
100  */
101 #define for_each_nest_rmap_safe(pos, node, rmapp)			       \
102 	for ((pos) = llist_entry((node), typeof(*(pos)), list);		       \
103 	     (node) &&							       \
104 	     (*(rmapp) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ?     \
105 			  ((u64) (node)) : ((pos)->rmap))) &&		       \
106 	     (((node) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ?      \
107 			 ((struct llist_node *) ((pos) = NULL)) :	       \
108 			 (pos)->list.next)), true);			       \
109 	     (pos) = llist_entry((node), typeof(*(pos)), list))
110 
111 struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid,
112 					  bool create);
113 void kvmhv_put_nested(struct kvm_nested_guest *gp);
114 int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid);
115 
116 /* Encoding of first parameter for H_TLB_INVALIDATE */
117 #define H_TLBIE_P1_ENC(ric, prs, r)	(___PPC_RIC(ric) | ___PPC_PRS(prs) | \
118 					 ___PPC_R(r))
119 
120 /* Power architecture requires HPT is at least 256kiB, at most 64TiB */
121 #define PPC_MIN_HPT_ORDER	18
122 #define PPC_MAX_HPT_ORDER	46
123 
124 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
svcpu_get(struct kvm_vcpu * vcpu)125 static inline struct kvmppc_book3s_shadow_vcpu *svcpu_get(struct kvm_vcpu *vcpu)
126 {
127 	preempt_disable();
128 	return &get_paca()->shadow_vcpu;
129 }
130 
svcpu_put(struct kvmppc_book3s_shadow_vcpu * svcpu)131 static inline void svcpu_put(struct kvmppc_book3s_shadow_vcpu *svcpu)
132 {
133 	preempt_enable();
134 }
135 #endif
136 
137 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
138 
kvm_is_radix(struct kvm * kvm)139 static inline bool kvm_is_radix(struct kvm *kvm)
140 {
141 	return kvm->arch.radix;
142 }
143 
kvmhv_vcpu_is_radix(struct kvm_vcpu * vcpu)144 static inline bool kvmhv_vcpu_is_radix(struct kvm_vcpu *vcpu)
145 {
146 	bool radix;
147 
148 	if (vcpu->arch.nested)
149 		radix = vcpu->arch.nested->radix;
150 	else
151 		radix = kvm_is_radix(vcpu->kvm);
152 
153 	return radix;
154 }
155 
156 int kvmhv_vcpu_entry_p9(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr);
157 
158 #define KVM_DEFAULT_HPT_ORDER	24	/* 16MB HPT by default */
159 #endif
160 
161 /*
162  * Invalid HDSISR value which is used to indicate when HW has not set the reg.
163  * Used to work around an errata.
164  */
165 #define HDSISR_CANARY	0x7fff
166 
167 /*
168  * We use a lock bit in HPTE dword 0 to synchronize updates and
169  * accesses to each HPTE, and another bit to indicate non-present
170  * HPTEs.
171  */
172 #define HPTE_V_HVLOCK	0x40UL
173 #define HPTE_V_ABSENT	0x20UL
174 
175 /*
176  * We use this bit in the guest_rpte field of the revmap entry
177  * to indicate a modified HPTE.
178  */
179 #define HPTE_GR_MODIFIED	(1ul << 62)
180 
181 /* These bits are reserved in the guest view of the HPTE */
182 #define HPTE_GR_RESERVED	HPTE_GR_MODIFIED
183 
try_lock_hpte(__be64 * hpte,unsigned long bits)184 static inline long try_lock_hpte(__be64 *hpte, unsigned long bits)
185 {
186 	unsigned long tmp, old;
187 	__be64 be_lockbit, be_bits;
188 
189 	/*
190 	 * We load/store in native endian, but the HTAB is in big endian. If
191 	 * we byte swap all data we apply on the PTE we're implicitly correct
192 	 * again.
193 	 */
194 	be_lockbit = cpu_to_be64(HPTE_V_HVLOCK);
195 	be_bits = cpu_to_be64(bits);
196 
197 	asm volatile("	ldarx	%0,0,%2\n"
198 		     "	and.	%1,%0,%3\n"
199 		     "	bne	2f\n"
200 		     "	or	%0,%0,%4\n"
201 		     "  stdcx.	%0,0,%2\n"
202 		     "	beq+	2f\n"
203 		     "	mr	%1,%3\n"
204 		     "2:	isync"
205 		     : "=&r" (tmp), "=&r" (old)
206 		     : "r" (hpte), "r" (be_bits), "r" (be_lockbit)
207 		     : "cc", "memory");
208 	return old == 0;
209 }
210 
unlock_hpte(__be64 * hpte,unsigned long hpte_v)211 static inline void unlock_hpte(__be64 *hpte, unsigned long hpte_v)
212 {
213 	hpte_v &= ~HPTE_V_HVLOCK;
214 	asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
215 	hpte[0] = cpu_to_be64(hpte_v);
216 }
217 
218 /* Without barrier */
__unlock_hpte(__be64 * hpte,unsigned long hpte_v)219 static inline void __unlock_hpte(__be64 *hpte, unsigned long hpte_v)
220 {
221 	hpte_v &= ~HPTE_V_HVLOCK;
222 	hpte[0] = cpu_to_be64(hpte_v);
223 }
224 
225 /*
226  * These functions encode knowledge of the POWER7/8/9 hardware
227  * interpretations of the HPTE LP (large page size) field.
228  */
kvmppc_hpte_page_shifts(unsigned long h,unsigned long l)229 static inline int kvmppc_hpte_page_shifts(unsigned long h, unsigned long l)
230 {
231 	unsigned int lphi;
232 
233 	if (!(h & HPTE_V_LARGE))
234 		return 12;	/* 4kB */
235 	lphi = (l >> 16) & 0xf;
236 	switch ((l >> 12) & 0xf) {
237 	case 0:
238 		return !lphi ? 24 : 0;		/* 16MB */
239 		break;
240 	case 1:
241 		return 16;			/* 64kB */
242 		break;
243 	case 3:
244 		return !lphi ? 34 : 0;		/* 16GB */
245 		break;
246 	case 7:
247 		return (16 << 8) + 12;		/* 64kB in 4kB */
248 		break;
249 	case 8:
250 		if (!lphi)
251 			return (24 << 8) + 16;	/* 16MB in 64kkB */
252 		if (lphi == 3)
253 			return (24 << 8) + 12;	/* 16MB in 4kB */
254 		break;
255 	}
256 	return 0;
257 }
258 
kvmppc_hpte_base_page_shift(unsigned long h,unsigned long l)259 static inline int kvmppc_hpte_base_page_shift(unsigned long h, unsigned long l)
260 {
261 	return kvmppc_hpte_page_shifts(h, l) & 0xff;
262 }
263 
kvmppc_hpte_actual_page_shift(unsigned long h,unsigned long l)264 static inline int kvmppc_hpte_actual_page_shift(unsigned long h, unsigned long l)
265 {
266 	int tmp = kvmppc_hpte_page_shifts(h, l);
267 
268 	if (tmp >= 0x100)
269 		tmp >>= 8;
270 	return tmp;
271 }
272 
kvmppc_actual_pgsz(unsigned long v,unsigned long r)273 static inline unsigned long kvmppc_actual_pgsz(unsigned long v, unsigned long r)
274 {
275 	int shift = kvmppc_hpte_actual_page_shift(v, r);
276 
277 	if (shift)
278 		return 1ul << shift;
279 	return 0;
280 }
281 
kvmppc_pgsize_lp_encoding(int base_shift,int actual_shift)282 static inline int kvmppc_pgsize_lp_encoding(int base_shift, int actual_shift)
283 {
284 	switch (base_shift) {
285 	case 12:
286 		switch (actual_shift) {
287 		case 12:
288 			return 0;
289 		case 16:
290 			return 7;
291 		case 24:
292 			return 0x38;
293 		}
294 		break;
295 	case 16:
296 		switch (actual_shift) {
297 		case 16:
298 			return 1;
299 		case 24:
300 			return 8;
301 		}
302 		break;
303 	case 24:
304 		return 0;
305 	}
306 	return -1;
307 }
308 
compute_tlbie_rb(unsigned long v,unsigned long r,unsigned long pte_index)309 static inline unsigned long compute_tlbie_rb(unsigned long v, unsigned long r,
310 					     unsigned long pte_index)
311 {
312 	int a_pgshift, b_pgshift;
313 	unsigned long rb = 0, va_low, sllp;
314 
315 	b_pgshift = a_pgshift = kvmppc_hpte_page_shifts(v, r);
316 	if (a_pgshift >= 0x100) {
317 		b_pgshift &= 0xff;
318 		a_pgshift >>= 8;
319 	}
320 
321 	/*
322 	 * Ignore the top 14 bits of va
323 	 * v have top two bits covering segment size, hence move
324 	 * by 16 bits, Also clear the lower HPTE_V_AVPN_SHIFT (7) bits.
325 	 * AVA field in v also have the lower 23 bits ignored.
326 	 * For base page size 4K we need 14 .. 65 bits (so need to
327 	 * collect extra 11 bits)
328 	 * For others we need 14..14+i
329 	 */
330 	/* This covers 14..54 bits of va*/
331 	rb = (v & ~0x7fUL) << 16;		/* AVA field */
332 
333 	/*
334 	 * AVA in v had cleared lower 23 bits. We need to derive
335 	 * that from pteg index
336 	 */
337 	va_low = pte_index >> 3;
338 	if (v & HPTE_V_SECONDARY)
339 		va_low = ~va_low;
340 	/*
341 	 * get the vpn bits from va_low using reverse of hashing.
342 	 * In v we have va with 23 bits dropped and then left shifted
343 	 * HPTE_V_AVPN_SHIFT (7) bits. Now to find vsid we need
344 	 * right shift it with (SID_SHIFT - (23 - 7))
345 	 */
346 	if (!(v & HPTE_V_1TB_SEG))
347 		va_low ^= v >> (SID_SHIFT - 16);
348 	else
349 		va_low ^= v >> (SID_SHIFT_1T - 16);
350 	va_low &= 0x7ff;
351 
352 	if (b_pgshift <= 12) {
353 		if (a_pgshift > 12) {
354 			sllp = (a_pgshift == 16) ? 5 : 4;
355 			rb |= sllp << 5;	/*  AP field */
356 		}
357 		rb |= (va_low & 0x7ff) << 12;	/* remaining 11 bits of AVA */
358 	} else {
359 		int aval_shift;
360 		/*
361 		 * remaining bits of AVA/LP fields
362 		 * Also contain the rr bits of LP
363 		 */
364 		rb |= (va_low << b_pgshift) & 0x7ff000;
365 		/*
366 		 * Now clear not needed LP bits based on actual psize
367 		 */
368 		rb &= ~((1ul << a_pgshift) - 1);
369 		/*
370 		 * AVAL field 58..77 - base_page_shift bits of va
371 		 * we have space for 58..64 bits, Missing bits should
372 		 * be zero filled. +1 is to take care of L bit shift
373 		 */
374 		aval_shift = 64 - (77 - b_pgshift) + 1;
375 		rb |= ((va_low << aval_shift) & 0xfe);
376 
377 		rb |= 1;		/* L field */
378 		rb |= r & 0xff000 & ((1ul << a_pgshift) - 1); /* LP field */
379 	}
380 	rb |= (v >> HPTE_V_SSIZE_SHIFT) << 8;	/* B field */
381 	return rb;
382 }
383 
hpte_rpn(unsigned long ptel,unsigned long psize)384 static inline unsigned long hpte_rpn(unsigned long ptel, unsigned long psize)
385 {
386 	return ((ptel & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT;
387 }
388 
hpte_is_writable(unsigned long ptel)389 static inline int hpte_is_writable(unsigned long ptel)
390 {
391 	unsigned long pp = ptel & (HPTE_R_PP0 | HPTE_R_PP);
392 
393 	return pp != PP_RXRX && pp != PP_RXXX;
394 }
395 
hpte_make_readonly(unsigned long ptel)396 static inline unsigned long hpte_make_readonly(unsigned long ptel)
397 {
398 	if ((ptel & HPTE_R_PP0) || (ptel & HPTE_R_PP) == PP_RWXX)
399 		ptel = (ptel & ~HPTE_R_PP) | PP_RXXX;
400 	else
401 		ptel |= PP_RXRX;
402 	return ptel;
403 }
404 
hpte_cache_flags_ok(unsigned long hptel,bool is_ci)405 static inline bool hpte_cache_flags_ok(unsigned long hptel, bool is_ci)
406 {
407 	unsigned int wimg = hptel & HPTE_R_WIMG;
408 
409 	/* Handle SAO */
410 	if (wimg == (HPTE_R_W | HPTE_R_I | HPTE_R_M) &&
411 	    cpu_has_feature(CPU_FTR_ARCH_206))
412 		wimg = HPTE_R_M;
413 
414 	if (!is_ci)
415 		return wimg == HPTE_R_M;
416 	/*
417 	 * if host is mapped cache inhibited, make sure hptel also have
418 	 * cache inhibited.
419 	 */
420 	if (wimg & HPTE_R_W) /* FIXME!! is this ok for all guest. ? */
421 		return false;
422 	return !!(wimg & HPTE_R_I);
423 }
424 
425 /*
426  * If it's present and writable, atomically set dirty and referenced bits and
427  * return the PTE, otherwise return 0.
428  */
kvmppc_read_update_linux_pte(pte_t * ptep,int writing)429 static inline pte_t kvmppc_read_update_linux_pte(pte_t *ptep, int writing)
430 {
431 	pte_t old_pte, new_pte = __pte(0);
432 
433 	while (1) {
434 		/*
435 		 * Make sure we don't reload from ptep
436 		 */
437 		old_pte = READ_ONCE(*ptep);
438 		/*
439 		 * wait until H_PAGE_BUSY is clear then set it atomically
440 		 */
441 		if (unlikely(pte_val(old_pte) & H_PAGE_BUSY)) {
442 			cpu_relax();
443 			continue;
444 		}
445 		/* If pte is not present return None */
446 		if (unlikely(!pte_present(old_pte)))
447 			return __pte(0);
448 
449 		new_pte = pte_mkyoung(old_pte);
450 		if (writing && pte_write(old_pte))
451 			new_pte = pte_mkdirty(new_pte);
452 
453 		if (pte_xchg(ptep, old_pte, new_pte))
454 			break;
455 	}
456 	return new_pte;
457 }
458 
hpte_read_permission(unsigned long pp,unsigned long key)459 static inline bool hpte_read_permission(unsigned long pp, unsigned long key)
460 {
461 	if (key)
462 		return PP_RWRX <= pp && pp <= PP_RXRX;
463 	return true;
464 }
465 
hpte_write_permission(unsigned long pp,unsigned long key)466 static inline bool hpte_write_permission(unsigned long pp, unsigned long key)
467 {
468 	if (key)
469 		return pp == PP_RWRW;
470 	return pp <= PP_RWRW;
471 }
472 
hpte_get_skey_perm(unsigned long hpte_r,unsigned long amr)473 static inline int hpte_get_skey_perm(unsigned long hpte_r, unsigned long amr)
474 {
475 	unsigned long skey;
476 
477 	skey = ((hpte_r & HPTE_R_KEY_HI) >> 57) |
478 		((hpte_r & HPTE_R_KEY_LO) >> 9);
479 	return (amr >> (62 - 2 * skey)) & 3;
480 }
481 
lock_rmap(unsigned long * rmap)482 static inline void lock_rmap(unsigned long *rmap)
483 {
484 	do {
485 		while (test_bit(KVMPPC_RMAP_LOCK_BIT, rmap))
486 			cpu_relax();
487 	} while (test_and_set_bit_lock(KVMPPC_RMAP_LOCK_BIT, rmap));
488 }
489 
unlock_rmap(unsigned long * rmap)490 static inline void unlock_rmap(unsigned long *rmap)
491 {
492 	__clear_bit_unlock(KVMPPC_RMAP_LOCK_BIT, rmap);
493 }
494 
slot_is_aligned(struct kvm_memory_slot * memslot,unsigned long pagesize)495 static inline bool slot_is_aligned(struct kvm_memory_slot *memslot,
496 				   unsigned long pagesize)
497 {
498 	unsigned long mask = (pagesize >> PAGE_SHIFT) - 1;
499 
500 	if (pagesize <= PAGE_SIZE)
501 		return true;
502 	return !(memslot->base_gfn & mask) && !(memslot->npages & mask);
503 }
504 
505 /*
506  * This works for 4k, 64k and 16M pages on POWER7,
507  * and 4k and 16M pages on PPC970.
508  */
slb_pgsize_encoding(unsigned long psize)509 static inline unsigned long slb_pgsize_encoding(unsigned long psize)
510 {
511 	unsigned long senc = 0;
512 
513 	if (psize > 0x1000) {
514 		senc = SLB_VSID_L;
515 		if (psize == 0x10000)
516 			senc |= SLB_VSID_LP_01;
517 	}
518 	return senc;
519 }
520 
is_vrma_hpte(unsigned long hpte_v)521 static inline int is_vrma_hpte(unsigned long hpte_v)
522 {
523 	return (hpte_v & ~0xffffffUL) ==
524 		(HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)));
525 }
526 
527 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
528 /*
529  * Note modification of an HPTE; set the HPTE modified bit
530  * if anyone is interested.
531  */
note_hpte_modification(struct kvm * kvm,struct revmap_entry * rev)532 static inline void note_hpte_modification(struct kvm *kvm,
533 					  struct revmap_entry *rev)
534 {
535 	if (atomic_read(&kvm->arch.hpte_mod_interest))
536 		rev->guest_rpte |= HPTE_GR_MODIFIED;
537 }
538 
539 /*
540  * Like kvm_memslots(), but for use in real mode when we can't do
541  * any RCU stuff (since the secondary threads are offline from the
542  * kernel's point of view), and we can't print anything.
543  * Thus we use rcu_dereference_raw() rather than rcu_dereference_check().
544  */
kvm_memslots_raw(struct kvm * kvm)545 static inline struct kvm_memslots *kvm_memslots_raw(struct kvm *kvm)
546 {
547 	return rcu_dereference_raw_check(kvm->memslots[0]);
548 }
549 
550 extern void kvmppc_mmu_debugfs_init(struct kvm *kvm);
551 extern void kvmhv_radix_debugfs_init(struct kvm *kvm);
552 
553 extern void kvmhv_rm_send_ipi(int cpu);
554 
kvmppc_hpt_npte(struct kvm_hpt_info * hpt)555 static inline unsigned long kvmppc_hpt_npte(struct kvm_hpt_info *hpt)
556 {
557 	/* HPTEs are 2**4 bytes long */
558 	return 1UL << (hpt->order - 4);
559 }
560 
kvmppc_hpt_mask(struct kvm_hpt_info * hpt)561 static inline unsigned long kvmppc_hpt_mask(struct kvm_hpt_info *hpt)
562 {
563 	/* 128 (2**7) bytes in each HPTEG */
564 	return (1UL << (hpt->order - 7)) - 1;
565 }
566 
567 /* Set bits in a dirty bitmap, which is in LE format */
set_dirty_bits(unsigned long * map,unsigned long i,unsigned long npages)568 static inline void set_dirty_bits(unsigned long *map, unsigned long i,
569 				  unsigned long npages)
570 {
571 
572 	if (npages >= 8)
573 		memset((char *)map + i / 8, 0xff, npages / 8);
574 	else
575 		for (; npages; ++i, --npages)
576 			__set_bit_le(i, map);
577 }
578 
set_dirty_bits_atomic(unsigned long * map,unsigned long i,unsigned long npages)579 static inline void set_dirty_bits_atomic(unsigned long *map, unsigned long i,
580 					 unsigned long npages)
581 {
582 	if (npages >= 8)
583 		memset((char *)map + i / 8, 0xff, npages / 8);
584 	else
585 		for (; npages; ++i, --npages)
586 			set_bit_le(i, map);
587 }
588 
sanitize_msr(u64 msr)589 static inline u64 sanitize_msr(u64 msr)
590 {
591 	msr &= ~MSR_HV;
592 	msr |= MSR_ME;
593 	return msr;
594 }
595 
596 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
copy_from_checkpoint(struct kvm_vcpu * vcpu)597 static inline void copy_from_checkpoint(struct kvm_vcpu *vcpu)
598 {
599 	vcpu->arch.regs.ccr  = vcpu->arch.cr_tm;
600 	vcpu->arch.regs.xer = vcpu->arch.xer_tm;
601 	vcpu->arch.regs.link  = vcpu->arch.lr_tm;
602 	vcpu->arch.regs.ctr = vcpu->arch.ctr_tm;
603 	vcpu->arch.amr = vcpu->arch.amr_tm;
604 	vcpu->arch.ppr = vcpu->arch.ppr_tm;
605 	vcpu->arch.dscr = vcpu->arch.dscr_tm;
606 	vcpu->arch.tar = vcpu->arch.tar_tm;
607 	memcpy(vcpu->arch.regs.gpr, vcpu->arch.gpr_tm,
608 	       sizeof(vcpu->arch.regs.gpr));
609 	vcpu->arch.fp  = vcpu->arch.fp_tm;
610 	vcpu->arch.vr  = vcpu->arch.vr_tm;
611 	vcpu->arch.vrsave = vcpu->arch.vrsave_tm;
612 }
613 
copy_to_checkpoint(struct kvm_vcpu * vcpu)614 static inline void copy_to_checkpoint(struct kvm_vcpu *vcpu)
615 {
616 	vcpu->arch.cr_tm  = vcpu->arch.regs.ccr;
617 	vcpu->arch.xer_tm = vcpu->arch.regs.xer;
618 	vcpu->arch.lr_tm  = vcpu->arch.regs.link;
619 	vcpu->arch.ctr_tm = vcpu->arch.regs.ctr;
620 	vcpu->arch.amr_tm = vcpu->arch.amr;
621 	vcpu->arch.ppr_tm = vcpu->arch.ppr;
622 	vcpu->arch.dscr_tm = vcpu->arch.dscr;
623 	vcpu->arch.tar_tm = vcpu->arch.tar;
624 	memcpy(vcpu->arch.gpr_tm, vcpu->arch.regs.gpr,
625 	       sizeof(vcpu->arch.regs.gpr));
626 	vcpu->arch.fp_tm  = vcpu->arch.fp;
627 	vcpu->arch.vr_tm  = vcpu->arch.vr;
628 	vcpu->arch.vrsave_tm = vcpu->arch.vrsave;
629 }
630 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
631 
632 extern int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte,
633 			     unsigned long gpa, unsigned int level,
634 			     unsigned long mmu_seq, unsigned int lpid,
635 			     unsigned long *rmapp, struct rmap_nested **n_rmap);
636 extern void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp,
637 				   struct rmap_nested **n_rmap);
638 extern void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp,
639 					   unsigned long clr, unsigned long set,
640 					   unsigned long hpa, unsigned long nbytes);
641 extern void kvmhv_remove_nest_rmap_range(struct kvm *kvm,
642 				const struct kvm_memory_slot *memslot,
643 				unsigned long gpa, unsigned long hpa,
644 				unsigned long nbytes);
645 
646 static inline pte_t *
find_kvm_secondary_pte_unlocked(struct kvm * kvm,unsigned long ea,unsigned * hshift)647 find_kvm_secondary_pte_unlocked(struct kvm *kvm, unsigned long ea,
648 				unsigned *hshift)
649 {
650 	pte_t *pte;
651 
652 	pte = __find_linux_pte(kvm->arch.pgtable, ea, NULL, hshift);
653 	return pte;
654 }
655 
find_kvm_secondary_pte(struct kvm * kvm,unsigned long ea,unsigned * hshift)656 static inline pte_t *find_kvm_secondary_pte(struct kvm *kvm, unsigned long ea,
657 					    unsigned *hshift)
658 {
659 	pte_t *pte;
660 
661 	VM_WARN(!spin_is_locked(&kvm->mmu_lock),
662 		"%s called with kvm mmu_lock not held \n", __func__);
663 	pte = __find_linux_pte(kvm->arch.pgtable, ea, NULL, hshift);
664 
665 	return pte;
666 }
667 
find_kvm_host_pte(struct kvm * kvm,unsigned long mmu_seq,unsigned long ea,unsigned * hshift)668 static inline pte_t *find_kvm_host_pte(struct kvm *kvm, unsigned long mmu_seq,
669 				       unsigned long ea, unsigned *hshift)
670 {
671 	pte_t *pte;
672 
673 	VM_WARN(!spin_is_locked(&kvm->mmu_lock),
674 		"%s called with kvm mmu_lock not held \n", __func__);
675 
676 	if (mmu_notifier_retry(kvm, mmu_seq))
677 		return NULL;
678 
679 	pte = __find_linux_pte(kvm->mm->pgd, ea, NULL, hshift);
680 
681 	return pte;
682 }
683 
684 extern pte_t *find_kvm_nested_guest_pte(struct kvm *kvm, unsigned long lpid,
685 					unsigned long ea, unsigned *hshift);
686 
687 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
688 
689 #endif /* __ASM_KVM_BOOK3S_64_H__ */
690