1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
4 * {mikejc|engebret}@us.ibm.com
5 *
6 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
7 *
8 * SMP scalability work:
9 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
10 *
11 * Module name: htab.c
12 *
13 * Description:
14 * PowerPC Hashed Page Table functions
15 */
16
17 #undef DEBUG
18 #undef DEBUG_LOW
19
20 #define pr_fmt(fmt) "hash-mmu: " fmt
21 #include <linux/spinlock.h>
22 #include <linux/errno.h>
23 #include <linux/sched/mm.h>
24 #include <linux/proc_fs.h>
25 #include <linux/stat.h>
26 #include <linux/sysctl.h>
27 #include <linux/export.h>
28 #include <linux/ctype.h>
29 #include <linux/cache.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/memblock.h>
33 #include <linux/context_tracking.h>
34 #include <linux/libfdt.h>
35 #include <linux/pkeys.h>
36 #include <linux/hugetlb.h>
37 #include <linux/cpu.h>
38 #include <linux/pgtable.h>
39 #include <linux/debugfs.h>
40
41 #include <asm/interrupt.h>
42 #include <asm/processor.h>
43 #include <asm/mmu.h>
44 #include <asm/mmu_context.h>
45 #include <asm/page.h>
46 #include <asm/types.h>
47 #include <linux/uaccess.h>
48 #include <asm/machdep.h>
49 #include <asm/prom.h>
50 #include <asm/io.h>
51 #include <asm/eeh.h>
52 #include <asm/tlb.h>
53 #include <asm/cacheflush.h>
54 #include <asm/cputable.h>
55 #include <asm/sections.h>
56 #include <asm/copro.h>
57 #include <asm/udbg.h>
58 #include <asm/code-patching.h>
59 #include <asm/fadump.h>
60 #include <asm/firmware.h>
61 #include <asm/tm.h>
62 #include <asm/trace.h>
63 #include <asm/ps3.h>
64 #include <asm/pte-walk.h>
65 #include <asm/asm-prototypes.h>
66 #include <asm/ultravisor.h>
67
68 #include <mm/mmu_decl.h>
69
70 #include "internal.h"
71
72
73 #ifdef DEBUG
74 #define DBG(fmt...) udbg_printf(fmt)
75 #else
76 #define DBG(fmt...)
77 #endif
78
79 #ifdef DEBUG_LOW
80 #define DBG_LOW(fmt...) udbg_printf(fmt)
81 #else
82 #define DBG_LOW(fmt...)
83 #endif
84
85 #define KB (1024)
86 #define MB (1024*KB)
87 #define GB (1024L*MB)
88
89 /*
90 * Note: pte --> Linux PTE
91 * HPTE --> PowerPC Hashed Page Table Entry
92 *
93 * Execution context:
94 * htab_initialize is called with the MMU off (of course), but
95 * the kernel has been copied down to zero so it can directly
96 * reference global data. At this point it is very difficult
97 * to print debug info.
98 *
99 */
100
101 static unsigned long _SDR1;
102 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
103 EXPORT_SYMBOL_GPL(mmu_psize_defs);
104
105 u8 hpte_page_sizes[1 << LP_BITS];
106 EXPORT_SYMBOL_GPL(hpte_page_sizes);
107
108 struct hash_pte *htab_address;
109 unsigned long htab_size_bytes;
110 unsigned long htab_hash_mask;
111 EXPORT_SYMBOL_GPL(htab_hash_mask);
112 int mmu_linear_psize = MMU_PAGE_4K;
113 EXPORT_SYMBOL_GPL(mmu_linear_psize);
114 int mmu_virtual_psize = MMU_PAGE_4K;
115 int mmu_vmalloc_psize = MMU_PAGE_4K;
116 EXPORT_SYMBOL_GPL(mmu_vmalloc_psize);
117 #ifdef CONFIG_SPARSEMEM_VMEMMAP
118 int mmu_vmemmap_psize = MMU_PAGE_4K;
119 #endif
120 int mmu_io_psize = MMU_PAGE_4K;
121 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
122 EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
123 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
124 u16 mmu_slb_size = 64;
125 EXPORT_SYMBOL_GPL(mmu_slb_size);
126 #ifdef CONFIG_PPC_64K_PAGES
127 int mmu_ci_restrictions;
128 #endif
129 #ifdef CONFIG_DEBUG_PAGEALLOC
130 static u8 *linear_map_hash_slots;
131 static unsigned long linear_map_hash_count;
132 static DEFINE_SPINLOCK(linear_map_hash_lock);
133 #endif /* CONFIG_DEBUG_PAGEALLOC */
134 struct mmu_hash_ops mmu_hash_ops;
135 EXPORT_SYMBOL(mmu_hash_ops);
136
137 /*
138 * These are definitions of page sizes arrays to be used when none
139 * is provided by the firmware.
140 */
141
142 /*
143 * Fallback (4k pages only)
144 */
145 static struct mmu_psize_def mmu_psize_defaults[] = {
146 [MMU_PAGE_4K] = {
147 .shift = 12,
148 .sllp = 0,
149 .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
150 .avpnm = 0,
151 .tlbiel = 0,
152 },
153 };
154
155 /*
156 * POWER4, GPUL, POWER5
157 *
158 * Support for 16Mb large pages
159 */
160 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
161 [MMU_PAGE_4K] = {
162 .shift = 12,
163 .sllp = 0,
164 .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
165 .avpnm = 0,
166 .tlbiel = 1,
167 },
168 [MMU_PAGE_16M] = {
169 .shift = 24,
170 .sllp = SLB_VSID_L,
171 .penc = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
172 [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
173 .avpnm = 0x1UL,
174 .tlbiel = 0,
175 },
176 };
177
178 /*
179 * 'R' and 'C' update notes:
180 * - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
181 * create writeable HPTEs without C set, because the hcall H_PROTECT
182 * that we use in that case will not update C
183 * - The above is however not a problem, because we also don't do that
184 * fancy "no flush" variant of eviction and we use H_REMOVE which will
185 * do the right thing and thus we don't have the race I described earlier
186 *
187 * - Under bare metal, we do have the race, so we need R and C set
188 * - We make sure R is always set and never lost
189 * - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
190 */
htab_convert_pte_flags(unsigned long pteflags,unsigned long flags)191 unsigned long htab_convert_pte_flags(unsigned long pteflags, unsigned long flags)
192 {
193 unsigned long rflags = 0;
194
195 /* _PAGE_EXEC -> NOEXEC */
196 if ((pteflags & _PAGE_EXEC) == 0)
197 rflags |= HPTE_R_N;
198 /*
199 * PPP bits:
200 * Linux uses slb key 0 for kernel and 1 for user.
201 * kernel RW areas are mapped with PPP=0b000
202 * User area is mapped with PPP=0b010 for read/write
203 * or PPP=0b011 for read-only (including writeable but clean pages).
204 */
205 if (pteflags & _PAGE_PRIVILEGED) {
206 /*
207 * Kernel read only mapped with ppp bits 0b110
208 */
209 if (!(pteflags & _PAGE_WRITE)) {
210 if (mmu_has_feature(MMU_FTR_KERNEL_RO))
211 rflags |= (HPTE_R_PP0 | 0x2);
212 else
213 rflags |= 0x3;
214 }
215 } else {
216 if (pteflags & _PAGE_RWX)
217 rflags |= 0x2;
218 if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY)))
219 rflags |= 0x1;
220 }
221 /*
222 * We can't allow hardware to update hpte bits. Hence always
223 * set 'R' bit and set 'C' if it is a write fault
224 */
225 rflags |= HPTE_R_R;
226
227 if (pteflags & _PAGE_DIRTY)
228 rflags |= HPTE_R_C;
229 /*
230 * Add in WIG bits
231 */
232
233 if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT)
234 rflags |= HPTE_R_I;
235 else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)
236 rflags |= (HPTE_R_I | HPTE_R_G);
237 else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO)
238 rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M);
239 else
240 /*
241 * Add memory coherence if cache inhibited is not set
242 */
243 rflags |= HPTE_R_M;
244
245 rflags |= pte_to_hpte_pkey_bits(pteflags, flags);
246 return rflags;
247 }
248
htab_bolt_mapping(unsigned long vstart,unsigned long vend,unsigned long pstart,unsigned long prot,int psize,int ssize)249 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
250 unsigned long pstart, unsigned long prot,
251 int psize, int ssize)
252 {
253 unsigned long vaddr, paddr;
254 unsigned int step, shift;
255 int ret = 0;
256
257 shift = mmu_psize_defs[psize].shift;
258 step = 1 << shift;
259
260 prot = htab_convert_pte_flags(prot, HPTE_USE_KERNEL_KEY);
261
262 DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
263 vstart, vend, pstart, prot, psize, ssize);
264
265 /* Carefully map only the possible range */
266 vaddr = ALIGN(vstart, step);
267 paddr = ALIGN(pstart, step);
268 vend = ALIGN_DOWN(vend, step);
269
270 for (; vaddr < vend; vaddr += step, paddr += step) {
271 unsigned long hash, hpteg;
272 unsigned long vsid = get_kernel_vsid(vaddr, ssize);
273 unsigned long vpn = hpt_vpn(vaddr, vsid, ssize);
274 unsigned long tprot = prot;
275 bool secondary_hash = false;
276
277 /*
278 * If we hit a bad address return error.
279 */
280 if (!vsid)
281 return -1;
282 /* Make kernel text executable */
283 if (overlaps_kernel_text(vaddr, vaddr + step))
284 tprot &= ~HPTE_R_N;
285
286 /*
287 * If relocatable, check if it overlaps interrupt vectors that
288 * are copied down to real 0. For relocatable kernel
289 * (e.g. kdump case) we copy interrupt vectors down to real
290 * address 0. Mark that region as executable. This is
291 * because on p8 system with relocation on exception feature
292 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
293 * in order to execute the interrupt handlers in virtual
294 * mode the vector region need to be marked as executable.
295 */
296 if ((PHYSICAL_START > MEMORY_START) &&
297 overlaps_interrupt_vector_text(vaddr, vaddr + step))
298 tprot &= ~HPTE_R_N;
299
300 hash = hpt_hash(vpn, shift, ssize);
301 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
302
303 BUG_ON(!mmu_hash_ops.hpte_insert);
304 repeat:
305 ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
306 HPTE_V_BOLTED, psize, psize,
307 ssize);
308 if (ret == -1) {
309 /*
310 * Try to to keep bolted entries in primary.
311 * Remove non bolted entries and try insert again
312 */
313 ret = mmu_hash_ops.hpte_remove(hpteg);
314 if (ret != -1)
315 ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
316 HPTE_V_BOLTED, psize, psize,
317 ssize);
318 if (ret == -1 && !secondary_hash) {
319 secondary_hash = true;
320 hpteg = ((~hash & htab_hash_mask) * HPTES_PER_GROUP);
321 goto repeat;
322 }
323 }
324
325 if (ret < 0)
326 break;
327
328 cond_resched();
329 #ifdef CONFIG_DEBUG_PAGEALLOC
330 if (debug_pagealloc_enabled() &&
331 (paddr >> PAGE_SHIFT) < linear_map_hash_count)
332 linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
333 #endif /* CONFIG_DEBUG_PAGEALLOC */
334 }
335 return ret < 0 ? ret : 0;
336 }
337
htab_remove_mapping(unsigned long vstart,unsigned long vend,int psize,int ssize)338 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
339 int psize, int ssize)
340 {
341 unsigned long vaddr, time_limit;
342 unsigned int step, shift;
343 int rc;
344 int ret = 0;
345
346 shift = mmu_psize_defs[psize].shift;
347 step = 1 << shift;
348
349 if (!mmu_hash_ops.hpte_removebolted)
350 return -ENODEV;
351
352 /* Unmap the full range specificied */
353 vaddr = ALIGN_DOWN(vstart, step);
354 time_limit = jiffies + HZ;
355
356 for (;vaddr < vend; vaddr += step) {
357 rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize);
358
359 /*
360 * For large number of mappings introduce a cond_resched()
361 * to prevent softlockup warnings.
362 */
363 if (time_after(jiffies, time_limit)) {
364 cond_resched();
365 time_limit = jiffies + HZ;
366 }
367 if (rc == -ENOENT) {
368 ret = -ENOENT;
369 continue;
370 }
371 if (rc < 0)
372 return rc;
373 }
374
375 return ret;
376 }
377
378 static bool disable_1tb_segments = false;
379
parse_disable_1tb_segments(char * p)380 static int __init parse_disable_1tb_segments(char *p)
381 {
382 disable_1tb_segments = true;
383 return 0;
384 }
385 early_param("disable_1tb_segments", parse_disable_1tb_segments);
386
htab_dt_scan_seg_sizes(unsigned long node,const char * uname,int depth,void * data)387 static int __init htab_dt_scan_seg_sizes(unsigned long node,
388 const char *uname, int depth,
389 void *data)
390 {
391 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
392 const __be32 *prop;
393 int size = 0;
394
395 /* We are scanning "cpu" nodes only */
396 if (type == NULL || strcmp(type, "cpu") != 0)
397 return 0;
398
399 prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
400 if (prop == NULL)
401 return 0;
402 for (; size >= 4; size -= 4, ++prop) {
403 if (be32_to_cpu(prop[0]) == 40) {
404 DBG("1T segment support detected\n");
405
406 if (disable_1tb_segments) {
407 DBG("1T segments disabled by command line\n");
408 break;
409 }
410
411 cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
412 return 1;
413 }
414 }
415 cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
416 return 0;
417 }
418
get_idx_from_shift(unsigned int shift)419 static int __init get_idx_from_shift(unsigned int shift)
420 {
421 int idx = -1;
422
423 switch (shift) {
424 case 0xc:
425 idx = MMU_PAGE_4K;
426 break;
427 case 0x10:
428 idx = MMU_PAGE_64K;
429 break;
430 case 0x14:
431 idx = MMU_PAGE_1M;
432 break;
433 case 0x18:
434 idx = MMU_PAGE_16M;
435 break;
436 case 0x22:
437 idx = MMU_PAGE_16G;
438 break;
439 }
440 return idx;
441 }
442
htab_dt_scan_page_sizes(unsigned long node,const char * uname,int depth,void * data)443 static int __init htab_dt_scan_page_sizes(unsigned long node,
444 const char *uname, int depth,
445 void *data)
446 {
447 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
448 const __be32 *prop;
449 int size = 0;
450
451 /* We are scanning "cpu" nodes only */
452 if (type == NULL || strcmp(type, "cpu") != 0)
453 return 0;
454
455 prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
456 if (!prop)
457 return 0;
458
459 pr_info("Page sizes from device-tree:\n");
460 size /= 4;
461 cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
462 while(size > 0) {
463 unsigned int base_shift = be32_to_cpu(prop[0]);
464 unsigned int slbenc = be32_to_cpu(prop[1]);
465 unsigned int lpnum = be32_to_cpu(prop[2]);
466 struct mmu_psize_def *def;
467 int idx, base_idx;
468
469 size -= 3; prop += 3;
470 base_idx = get_idx_from_shift(base_shift);
471 if (base_idx < 0) {
472 /* skip the pte encoding also */
473 prop += lpnum * 2; size -= lpnum * 2;
474 continue;
475 }
476 def = &mmu_psize_defs[base_idx];
477 if (base_idx == MMU_PAGE_16M)
478 cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
479
480 def->shift = base_shift;
481 if (base_shift <= 23)
482 def->avpnm = 0;
483 else
484 def->avpnm = (1 << (base_shift - 23)) - 1;
485 def->sllp = slbenc;
486 /*
487 * We don't know for sure what's up with tlbiel, so
488 * for now we only set it for 4K and 64K pages
489 */
490 if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
491 def->tlbiel = 1;
492 else
493 def->tlbiel = 0;
494
495 while (size > 0 && lpnum) {
496 unsigned int shift = be32_to_cpu(prop[0]);
497 int penc = be32_to_cpu(prop[1]);
498
499 prop += 2; size -= 2;
500 lpnum--;
501
502 idx = get_idx_from_shift(shift);
503 if (idx < 0)
504 continue;
505
506 if (penc == -1)
507 pr_err("Invalid penc for base_shift=%d "
508 "shift=%d\n", base_shift, shift);
509
510 def->penc[idx] = penc;
511 pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
512 " avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
513 base_shift, shift, def->sllp,
514 def->avpnm, def->tlbiel, def->penc[idx]);
515 }
516 }
517
518 return 1;
519 }
520
521 #ifdef CONFIG_HUGETLB_PAGE
522 /*
523 * Scan for 16G memory blocks that have been set aside for huge pages
524 * and reserve those blocks for 16G huge pages.
525 */
htab_dt_scan_hugepage_blocks(unsigned long node,const char * uname,int depth,void * data)526 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
527 const char *uname, int depth,
528 void *data) {
529 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
530 const __be64 *addr_prop;
531 const __be32 *page_count_prop;
532 unsigned int expected_pages;
533 long unsigned int phys_addr;
534 long unsigned int block_size;
535
536 /* We are scanning "memory" nodes only */
537 if (type == NULL || strcmp(type, "memory") != 0)
538 return 0;
539
540 /*
541 * This property is the log base 2 of the number of virtual pages that
542 * will represent this memory block.
543 */
544 page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
545 if (page_count_prop == NULL)
546 return 0;
547 expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
548 addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
549 if (addr_prop == NULL)
550 return 0;
551 phys_addr = be64_to_cpu(addr_prop[0]);
552 block_size = be64_to_cpu(addr_prop[1]);
553 if (block_size != (16 * GB))
554 return 0;
555 printk(KERN_INFO "Huge page(16GB) memory: "
556 "addr = 0x%lX size = 0x%lX pages = %d\n",
557 phys_addr, block_size, expected_pages);
558 if (phys_addr + block_size * expected_pages <= memblock_end_of_DRAM()) {
559 memblock_reserve(phys_addr, block_size * expected_pages);
560 pseries_add_gpage(phys_addr, block_size, expected_pages);
561 }
562 return 0;
563 }
564 #endif /* CONFIG_HUGETLB_PAGE */
565
mmu_psize_set_default_penc(void)566 static void mmu_psize_set_default_penc(void)
567 {
568 int bpsize, apsize;
569 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
570 for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
571 mmu_psize_defs[bpsize].penc[apsize] = -1;
572 }
573
574 #ifdef CONFIG_PPC_64K_PAGES
575
might_have_hea(void)576 static bool might_have_hea(void)
577 {
578 /*
579 * The HEA ethernet adapter requires awareness of the
580 * GX bus. Without that awareness we can easily assume
581 * we will never see an HEA ethernet device.
582 */
583 #ifdef CONFIG_IBMEBUS
584 return !cpu_has_feature(CPU_FTR_ARCH_207S) &&
585 firmware_has_feature(FW_FEATURE_SPLPAR);
586 #else
587 return false;
588 #endif
589 }
590
591 #endif /* #ifdef CONFIG_PPC_64K_PAGES */
592
htab_scan_page_sizes(void)593 static void __init htab_scan_page_sizes(void)
594 {
595 int rc;
596
597 /* se the invalid penc to -1 */
598 mmu_psize_set_default_penc();
599
600 /* Default to 4K pages only */
601 memcpy(mmu_psize_defs, mmu_psize_defaults,
602 sizeof(mmu_psize_defaults));
603
604 /*
605 * Try to find the available page sizes in the device-tree
606 */
607 rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
608 if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) {
609 /*
610 * Nothing in the device-tree, but the CPU supports 16M pages,
611 * so let's fallback on a known size list for 16M capable CPUs.
612 */
613 memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
614 sizeof(mmu_psize_defaults_gp));
615 }
616
617 #ifdef CONFIG_HUGETLB_PAGE
618 if (!hugetlb_disabled && !early_radix_enabled() ) {
619 /* Reserve 16G huge page memory sections for huge pages */
620 of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
621 }
622 #endif /* CONFIG_HUGETLB_PAGE */
623 }
624
625 /*
626 * Fill in the hpte_page_sizes[] array.
627 * We go through the mmu_psize_defs[] array looking for all the
628 * supported base/actual page size combinations. Each combination
629 * has a unique pagesize encoding (penc) value in the low bits of
630 * the LP field of the HPTE. For actual page sizes less than 1MB,
631 * some of the upper LP bits are used for RPN bits, meaning that
632 * we need to fill in several entries in hpte_page_sizes[].
633 *
634 * In diagrammatic form, with r = RPN bits and z = page size bits:
635 * PTE LP actual page size
636 * rrrr rrrz >=8KB
637 * rrrr rrzz >=16KB
638 * rrrr rzzz >=32KB
639 * rrrr zzzz >=64KB
640 * ...
641 *
642 * The zzzz bits are implementation-specific but are chosen so that
643 * no encoding for a larger page size uses the same value in its
644 * low-order N bits as the encoding for the 2^(12+N) byte page size
645 * (if it exists).
646 */
init_hpte_page_sizes(void)647 static void init_hpte_page_sizes(void)
648 {
649 long int ap, bp;
650 long int shift, penc;
651
652 for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) {
653 if (!mmu_psize_defs[bp].shift)
654 continue; /* not a supported page size */
655 for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) {
656 penc = mmu_psize_defs[bp].penc[ap];
657 if (penc == -1 || !mmu_psize_defs[ap].shift)
658 continue;
659 shift = mmu_psize_defs[ap].shift - LP_SHIFT;
660 if (shift <= 0)
661 continue; /* should never happen */
662 /*
663 * For page sizes less than 1MB, this loop
664 * replicates the entry for all possible values
665 * of the rrrr bits.
666 */
667 while (penc < (1 << LP_BITS)) {
668 hpte_page_sizes[penc] = (ap << 4) | bp;
669 penc += 1 << shift;
670 }
671 }
672 }
673 }
674
htab_init_page_sizes(void)675 static void __init htab_init_page_sizes(void)
676 {
677 bool aligned = true;
678 init_hpte_page_sizes();
679
680 if (!debug_pagealloc_enabled()) {
681 /*
682 * Pick a size for the linear mapping. Currently, we only
683 * support 16M, 1M and 4K which is the default
684 */
685 if (IS_ENABLED(CONFIG_STRICT_KERNEL_RWX) &&
686 (unsigned long)_stext % 0x1000000) {
687 if (mmu_psize_defs[MMU_PAGE_16M].shift)
688 pr_warn("Kernel not 16M aligned, disabling 16M linear map alignment\n");
689 aligned = false;
690 }
691
692 if (mmu_psize_defs[MMU_PAGE_16M].shift && aligned)
693 mmu_linear_psize = MMU_PAGE_16M;
694 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
695 mmu_linear_psize = MMU_PAGE_1M;
696 }
697
698 #ifdef CONFIG_PPC_64K_PAGES
699 /*
700 * Pick a size for the ordinary pages. Default is 4K, we support
701 * 64K for user mappings and vmalloc if supported by the processor.
702 * We only use 64k for ioremap if the processor
703 * (and firmware) support cache-inhibited large pages.
704 * If not, we use 4k and set mmu_ci_restrictions so that
705 * hash_page knows to switch processes that use cache-inhibited
706 * mappings to 4k pages.
707 */
708 if (mmu_psize_defs[MMU_PAGE_64K].shift) {
709 mmu_virtual_psize = MMU_PAGE_64K;
710 mmu_vmalloc_psize = MMU_PAGE_64K;
711 if (mmu_linear_psize == MMU_PAGE_4K)
712 mmu_linear_psize = MMU_PAGE_64K;
713 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
714 /*
715 * When running on pSeries using 64k pages for ioremap
716 * would stop us accessing the HEA ethernet. So if we
717 * have the chance of ever seeing one, stay at 4k.
718 */
719 if (!might_have_hea())
720 mmu_io_psize = MMU_PAGE_64K;
721 } else
722 mmu_ci_restrictions = 1;
723 }
724 #endif /* CONFIG_PPC_64K_PAGES */
725
726 #ifdef CONFIG_SPARSEMEM_VMEMMAP
727 /*
728 * We try to use 16M pages for vmemmap if that is supported
729 * and we have at least 1G of RAM at boot
730 */
731 if (mmu_psize_defs[MMU_PAGE_16M].shift &&
732 memblock_phys_mem_size() >= 0x40000000)
733 mmu_vmemmap_psize = MMU_PAGE_16M;
734 else
735 mmu_vmemmap_psize = mmu_virtual_psize;
736 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
737
738 printk(KERN_DEBUG "Page orders: linear mapping = %d, "
739 "virtual = %d, io = %d"
740 #ifdef CONFIG_SPARSEMEM_VMEMMAP
741 ", vmemmap = %d"
742 #endif
743 "\n",
744 mmu_psize_defs[mmu_linear_psize].shift,
745 mmu_psize_defs[mmu_virtual_psize].shift,
746 mmu_psize_defs[mmu_io_psize].shift
747 #ifdef CONFIG_SPARSEMEM_VMEMMAP
748 ,mmu_psize_defs[mmu_vmemmap_psize].shift
749 #endif
750 );
751 }
752
htab_dt_scan_pftsize(unsigned long node,const char * uname,int depth,void * data)753 static int __init htab_dt_scan_pftsize(unsigned long node,
754 const char *uname, int depth,
755 void *data)
756 {
757 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
758 const __be32 *prop;
759
760 /* We are scanning "cpu" nodes only */
761 if (type == NULL || strcmp(type, "cpu") != 0)
762 return 0;
763
764 prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
765 if (prop != NULL) {
766 /* pft_size[0] is the NUMA CEC cookie */
767 ppc64_pft_size = be32_to_cpu(prop[1]);
768 return 1;
769 }
770 return 0;
771 }
772
htab_shift_for_mem_size(unsigned long mem_size)773 unsigned htab_shift_for_mem_size(unsigned long mem_size)
774 {
775 unsigned memshift = __ilog2(mem_size);
776 unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift;
777 unsigned pteg_shift;
778
779 /* round mem_size up to next power of 2 */
780 if ((1UL << memshift) < mem_size)
781 memshift += 1;
782
783 /* aim for 2 pages / pteg */
784 pteg_shift = memshift - (pshift + 1);
785
786 /*
787 * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
788 * size permitted by the architecture.
789 */
790 return max(pteg_shift + 7, 18U);
791 }
792
htab_get_table_size(void)793 static unsigned long __init htab_get_table_size(void)
794 {
795 /*
796 * If hash size isn't already provided by the platform, we try to
797 * retrieve it from the device-tree. If it's not there neither, we
798 * calculate it now based on the total RAM size
799 */
800 if (ppc64_pft_size == 0)
801 of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
802 if (ppc64_pft_size)
803 return 1UL << ppc64_pft_size;
804
805 return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
806 }
807
808 #ifdef CONFIG_MEMORY_HOTPLUG
resize_hpt_for_hotplug(unsigned long new_mem_size)809 static int resize_hpt_for_hotplug(unsigned long new_mem_size)
810 {
811 unsigned target_hpt_shift;
812
813 if (!mmu_hash_ops.resize_hpt)
814 return 0;
815
816 target_hpt_shift = htab_shift_for_mem_size(new_mem_size);
817
818 /*
819 * To avoid lots of HPT resizes if memory size is fluctuating
820 * across a boundary, we deliberately have some hysterisis
821 * here: we immediately increase the HPT size if the target
822 * shift exceeds the current shift, but we won't attempt to
823 * reduce unless the target shift is at least 2 below the
824 * current shift
825 */
826 if (target_hpt_shift > ppc64_pft_size ||
827 target_hpt_shift < ppc64_pft_size - 1)
828 return mmu_hash_ops.resize_hpt(target_hpt_shift);
829
830 return 0;
831 }
832
hash__create_section_mapping(unsigned long start,unsigned long end,int nid,pgprot_t prot)833 int hash__create_section_mapping(unsigned long start, unsigned long end,
834 int nid, pgprot_t prot)
835 {
836 int rc;
837
838 if (end >= H_VMALLOC_START) {
839 pr_warn("Outside the supported range\n");
840 return -1;
841 }
842
843 resize_hpt_for_hotplug(memblock_phys_mem_size());
844
845 rc = htab_bolt_mapping(start, end, __pa(start),
846 pgprot_val(prot), mmu_linear_psize,
847 mmu_kernel_ssize);
848
849 if (rc < 0) {
850 int rc2 = htab_remove_mapping(start, end, mmu_linear_psize,
851 mmu_kernel_ssize);
852 BUG_ON(rc2 && (rc2 != -ENOENT));
853 }
854 return rc;
855 }
856
hash__remove_section_mapping(unsigned long start,unsigned long end)857 int hash__remove_section_mapping(unsigned long start, unsigned long end)
858 {
859 int rc = htab_remove_mapping(start, end, mmu_linear_psize,
860 mmu_kernel_ssize);
861
862 if (resize_hpt_for_hotplug(memblock_phys_mem_size()) == -ENOSPC)
863 pr_warn("Hash collision while resizing HPT\n");
864
865 return rc;
866 }
867 #endif /* CONFIG_MEMORY_HOTPLUG */
868
hash_init_partition_table(phys_addr_t hash_table,unsigned long htab_size)869 static void __init hash_init_partition_table(phys_addr_t hash_table,
870 unsigned long htab_size)
871 {
872 mmu_partition_table_init();
873
874 /*
875 * PS field (VRMA page size) is not used for LPID 0, hence set to 0.
876 * For now, UPRT is 0 and we have no segment table.
877 */
878 htab_size = __ilog2(htab_size) - 18;
879 mmu_partition_table_set_entry(0, hash_table | htab_size, 0, false);
880 pr_info("Partition table %p\n", partition_tb);
881 }
882
htab_initialize(void)883 static void __init htab_initialize(void)
884 {
885 unsigned long table;
886 unsigned long pteg_count;
887 unsigned long prot;
888 phys_addr_t base = 0, size = 0, end;
889 u64 i;
890
891 DBG(" -> htab_initialize()\n");
892
893 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
894 mmu_kernel_ssize = MMU_SEGSIZE_1T;
895 mmu_highuser_ssize = MMU_SEGSIZE_1T;
896 printk(KERN_INFO "Using 1TB segments\n");
897 }
898
899 if (stress_slb_enabled)
900 static_branch_enable(&stress_slb_key);
901
902 /*
903 * Calculate the required size of the htab. We want the number of
904 * PTEGs to equal one half the number of real pages.
905 */
906 htab_size_bytes = htab_get_table_size();
907 pteg_count = htab_size_bytes >> 7;
908
909 htab_hash_mask = pteg_count - 1;
910
911 if (firmware_has_feature(FW_FEATURE_LPAR) ||
912 firmware_has_feature(FW_FEATURE_PS3_LV1)) {
913 /* Using a hypervisor which owns the htab */
914 htab_address = NULL;
915 _SDR1 = 0;
916 #ifdef CONFIG_FA_DUMP
917 /*
918 * If firmware assisted dump is active firmware preserves
919 * the contents of htab along with entire partition memory.
920 * Clear the htab if firmware assisted dump is active so
921 * that we dont end up using old mappings.
922 */
923 if (is_fadump_active() && mmu_hash_ops.hpte_clear_all)
924 mmu_hash_ops.hpte_clear_all();
925 #endif
926 } else {
927 unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE;
928
929 #ifdef CONFIG_PPC_CELL
930 /*
931 * Cell may require the hash table down low when using the
932 * Axon IOMMU in order to fit the dynamic region over it, see
933 * comments in cell/iommu.c
934 */
935 if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) {
936 limit = 0x80000000;
937 pr_info("Hash table forced below 2G for Axon IOMMU\n");
938 }
939 #endif /* CONFIG_PPC_CELL */
940
941 table = memblock_phys_alloc_range(htab_size_bytes,
942 htab_size_bytes,
943 0, limit);
944 if (!table)
945 panic("ERROR: Failed to allocate %pa bytes below %pa\n",
946 &htab_size_bytes, &limit);
947
948 DBG("Hash table allocated at %lx, size: %lx\n", table,
949 htab_size_bytes);
950
951 htab_address = __va(table);
952
953 /* htab absolute addr + encoded htabsize */
954 _SDR1 = table + __ilog2(htab_size_bytes) - 18;
955
956 /* Initialize the HPT with no entries */
957 memset((void *)table, 0, htab_size_bytes);
958
959 if (!cpu_has_feature(CPU_FTR_ARCH_300))
960 /* Set SDR1 */
961 mtspr(SPRN_SDR1, _SDR1);
962 else
963 hash_init_partition_table(table, htab_size_bytes);
964 }
965
966 prot = pgprot_val(PAGE_KERNEL);
967
968 #ifdef CONFIG_DEBUG_PAGEALLOC
969 if (debug_pagealloc_enabled()) {
970 linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
971 linear_map_hash_slots = memblock_alloc_try_nid(
972 linear_map_hash_count, 1, MEMBLOCK_LOW_LIMIT,
973 ppc64_rma_size, NUMA_NO_NODE);
974 if (!linear_map_hash_slots)
975 panic("%s: Failed to allocate %lu bytes max_addr=%pa\n",
976 __func__, linear_map_hash_count, &ppc64_rma_size);
977 }
978 #endif /* CONFIG_DEBUG_PAGEALLOC */
979
980 /* create bolted the linear mapping in the hash table */
981 for_each_mem_range(i, &base, &end) {
982 size = end - base;
983 base = (unsigned long)__va(base);
984
985 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
986 base, size, prot);
987
988 if ((base + size) >= H_VMALLOC_START) {
989 pr_warn("Outside the supported range\n");
990 continue;
991 }
992
993 BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
994 prot, mmu_linear_psize, mmu_kernel_ssize));
995 }
996 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
997
998 /*
999 * If we have a memory_limit and we've allocated TCEs then we need to
1000 * explicitly map the TCE area at the top of RAM. We also cope with the
1001 * case that the TCEs start below memory_limit.
1002 * tce_alloc_start/end are 16MB aligned so the mapping should work
1003 * for either 4K or 16MB pages.
1004 */
1005 if (tce_alloc_start) {
1006 tce_alloc_start = (unsigned long)__va(tce_alloc_start);
1007 tce_alloc_end = (unsigned long)__va(tce_alloc_end);
1008
1009 if (base + size >= tce_alloc_start)
1010 tce_alloc_start = base + size + 1;
1011
1012 BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
1013 __pa(tce_alloc_start), prot,
1014 mmu_linear_psize, mmu_kernel_ssize));
1015 }
1016
1017
1018 DBG(" <- htab_initialize()\n");
1019 }
1020 #undef KB
1021 #undef MB
1022
hash__early_init_devtree(void)1023 void __init hash__early_init_devtree(void)
1024 {
1025 /* Initialize segment sizes */
1026 of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
1027
1028 /* Initialize page sizes */
1029 htab_scan_page_sizes();
1030 }
1031
1032 static struct hash_mm_context init_hash_mm_context;
hash__early_init_mmu(void)1033 void __init hash__early_init_mmu(void)
1034 {
1035 #ifndef CONFIG_PPC_64K_PAGES
1036 /*
1037 * We have code in __hash_page_4K() and elsewhere, which assumes it can
1038 * do the following:
1039 * new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX);
1040 *
1041 * Where the slot number is between 0-15, and values of 8-15 indicate
1042 * the secondary bucket. For that code to work H_PAGE_F_SECOND and
1043 * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and
1044 * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here
1045 * with a BUILD_BUG_ON().
1046 */
1047 BUILD_BUG_ON(H_PAGE_F_SECOND != (1ul << (H_PAGE_F_GIX_SHIFT + 3)));
1048 #endif /* CONFIG_PPC_64K_PAGES */
1049
1050 htab_init_page_sizes();
1051
1052 /*
1053 * initialize page table size
1054 */
1055 __pte_frag_nr = H_PTE_FRAG_NR;
1056 __pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
1057 __pmd_frag_nr = H_PMD_FRAG_NR;
1058 __pmd_frag_size_shift = H_PMD_FRAG_SIZE_SHIFT;
1059
1060 __pte_index_size = H_PTE_INDEX_SIZE;
1061 __pmd_index_size = H_PMD_INDEX_SIZE;
1062 __pud_index_size = H_PUD_INDEX_SIZE;
1063 __pgd_index_size = H_PGD_INDEX_SIZE;
1064 __pud_cache_index = H_PUD_CACHE_INDEX;
1065 __pte_table_size = H_PTE_TABLE_SIZE;
1066 __pmd_table_size = H_PMD_TABLE_SIZE;
1067 __pud_table_size = H_PUD_TABLE_SIZE;
1068 __pgd_table_size = H_PGD_TABLE_SIZE;
1069 /*
1070 * 4k use hugepd format, so for hash set then to
1071 * zero
1072 */
1073 __pmd_val_bits = HASH_PMD_VAL_BITS;
1074 __pud_val_bits = HASH_PUD_VAL_BITS;
1075 __pgd_val_bits = HASH_PGD_VAL_BITS;
1076
1077 __kernel_virt_start = H_KERN_VIRT_START;
1078 __vmalloc_start = H_VMALLOC_START;
1079 __vmalloc_end = H_VMALLOC_END;
1080 __kernel_io_start = H_KERN_IO_START;
1081 __kernel_io_end = H_KERN_IO_END;
1082 vmemmap = (struct page *)H_VMEMMAP_START;
1083 ioremap_bot = IOREMAP_BASE;
1084
1085 #ifdef CONFIG_PCI
1086 pci_io_base = ISA_IO_BASE;
1087 #endif
1088
1089 /* Select appropriate backend */
1090 if (firmware_has_feature(FW_FEATURE_PS3_LV1))
1091 ps3_early_mm_init();
1092 else if (firmware_has_feature(FW_FEATURE_LPAR))
1093 hpte_init_pseries();
1094 else if (IS_ENABLED(CONFIG_PPC_NATIVE))
1095 hpte_init_native();
1096
1097 if (!mmu_hash_ops.hpte_insert)
1098 panic("hash__early_init_mmu: No MMU hash ops defined!\n");
1099
1100 /*
1101 * Initialize the MMU Hash table and create the linear mapping
1102 * of memory. Has to be done before SLB initialization as this is
1103 * currently where the page size encoding is obtained.
1104 */
1105 htab_initialize();
1106
1107 init_mm.context.hash_context = &init_hash_mm_context;
1108 mm_ctx_set_slb_addr_limit(&init_mm.context, SLB_ADDR_LIMIT_DEFAULT);
1109
1110 pr_info("Initializing hash mmu with SLB\n");
1111 /* Initialize SLB management */
1112 slb_initialize();
1113
1114 if (cpu_has_feature(CPU_FTR_ARCH_206)
1115 && cpu_has_feature(CPU_FTR_HVMODE))
1116 tlbiel_all();
1117 }
1118
1119 #ifdef CONFIG_SMP
hash__early_init_mmu_secondary(void)1120 void hash__early_init_mmu_secondary(void)
1121 {
1122 /* Initialize hash table for that CPU */
1123 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
1124
1125 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1126 mtspr(SPRN_SDR1, _SDR1);
1127 else
1128 set_ptcr_when_no_uv(__pa(partition_tb) |
1129 (PATB_SIZE_SHIFT - 12));
1130 }
1131 /* Initialize SLB */
1132 slb_initialize();
1133
1134 if (cpu_has_feature(CPU_FTR_ARCH_206)
1135 && cpu_has_feature(CPU_FTR_HVMODE))
1136 tlbiel_all();
1137
1138 #ifdef CONFIG_PPC_MEM_KEYS
1139 if (mmu_has_feature(MMU_FTR_PKEY))
1140 mtspr(SPRN_UAMOR, default_uamor);
1141 #endif
1142 }
1143 #endif /* CONFIG_SMP */
1144
1145 /*
1146 * Called by asm hashtable.S for doing lazy icache flush
1147 */
hash_page_do_lazy_icache(unsigned int pp,pte_t pte,int trap)1148 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
1149 {
1150 struct page *page;
1151
1152 if (!pfn_valid(pte_pfn(pte)))
1153 return pp;
1154
1155 page = pte_page(pte);
1156
1157 /* page is dirty */
1158 if (!test_bit(PG_dcache_clean, &page->flags) && !PageReserved(page)) {
1159 if (trap == INTERRUPT_INST_STORAGE) {
1160 flush_dcache_icache_page(page);
1161 set_bit(PG_dcache_clean, &page->flags);
1162 } else
1163 pp |= HPTE_R_N;
1164 }
1165 return pp;
1166 }
1167
1168 #ifdef CONFIG_PPC_MM_SLICES
get_paca_psize(unsigned long addr)1169 static unsigned int get_paca_psize(unsigned long addr)
1170 {
1171 unsigned char *psizes;
1172 unsigned long index, mask_index;
1173
1174 if (addr < SLICE_LOW_TOP) {
1175 psizes = get_paca()->mm_ctx_low_slices_psize;
1176 index = GET_LOW_SLICE_INDEX(addr);
1177 } else {
1178 psizes = get_paca()->mm_ctx_high_slices_psize;
1179 index = GET_HIGH_SLICE_INDEX(addr);
1180 }
1181 mask_index = index & 0x1;
1182 return (psizes[index >> 1] >> (mask_index * 4)) & 0xF;
1183 }
1184
1185 #else
get_paca_psize(unsigned long addr)1186 unsigned int get_paca_psize(unsigned long addr)
1187 {
1188 return get_paca()->mm_ctx_user_psize;
1189 }
1190 #endif
1191
1192 /*
1193 * Demote a segment to using 4k pages.
1194 * For now this makes the whole process use 4k pages.
1195 */
1196 #ifdef CONFIG_PPC_64K_PAGES
demote_segment_4k(struct mm_struct * mm,unsigned long addr)1197 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
1198 {
1199 if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
1200 return;
1201 slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
1202 copro_flush_all_slbs(mm);
1203 if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
1204
1205 copy_mm_to_paca(mm);
1206 slb_flush_and_restore_bolted();
1207 }
1208 }
1209 #endif /* CONFIG_PPC_64K_PAGES */
1210
1211 #ifdef CONFIG_PPC_SUBPAGE_PROT
1212 /*
1213 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
1214 * Userspace sets the subpage permissions using the subpage_prot system call.
1215 *
1216 * Result is 0: full permissions, _PAGE_RW: read-only,
1217 * _PAGE_RWX: no access.
1218 */
subpage_protection(struct mm_struct * mm,unsigned long ea)1219 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
1220 {
1221 struct subpage_prot_table *spt = mm_ctx_subpage_prot(&mm->context);
1222 u32 spp = 0;
1223 u32 **sbpm, *sbpp;
1224
1225 if (!spt)
1226 return 0;
1227
1228 if (ea >= spt->maxaddr)
1229 return 0;
1230 if (ea < 0x100000000UL) {
1231 /* addresses below 4GB use spt->low_prot */
1232 sbpm = spt->low_prot;
1233 } else {
1234 sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
1235 if (!sbpm)
1236 return 0;
1237 }
1238 sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
1239 if (!sbpp)
1240 return 0;
1241 spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
1242
1243 /* extract 2-bit bitfield for this 4k subpage */
1244 spp >>= 30 - 2 * ((ea >> 12) & 0xf);
1245
1246 /*
1247 * 0 -> full premission
1248 * 1 -> Read only
1249 * 2 -> no access.
1250 * We return the flag that need to be cleared.
1251 */
1252 spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0);
1253 return spp;
1254 }
1255
1256 #else /* CONFIG_PPC_SUBPAGE_PROT */
subpage_protection(struct mm_struct * mm,unsigned long ea)1257 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
1258 {
1259 return 0;
1260 }
1261 #endif
1262
hash_failure_debug(unsigned long ea,unsigned long access,unsigned long vsid,unsigned long trap,int ssize,int psize,int lpsize,unsigned long pte)1263 void hash_failure_debug(unsigned long ea, unsigned long access,
1264 unsigned long vsid, unsigned long trap,
1265 int ssize, int psize, int lpsize, unsigned long pte)
1266 {
1267 if (!printk_ratelimit())
1268 return;
1269 pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
1270 ea, access, current->comm);
1271 pr_info(" trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
1272 trap, vsid, ssize, psize, lpsize, pte);
1273 }
1274
check_paca_psize(unsigned long ea,struct mm_struct * mm,int psize,bool user_region)1275 static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
1276 int psize, bool user_region)
1277 {
1278 if (user_region) {
1279 if (psize != get_paca_psize(ea)) {
1280 copy_mm_to_paca(mm);
1281 slb_flush_and_restore_bolted();
1282 }
1283 } else if (get_paca()->vmalloc_sllp !=
1284 mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1285 get_paca()->vmalloc_sllp =
1286 mmu_psize_defs[mmu_vmalloc_psize].sllp;
1287 slb_vmalloc_update();
1288 }
1289 }
1290
1291 /*
1292 * Result code is:
1293 * 0 - handled
1294 * 1 - normal page fault
1295 * -1 - critical hash insertion error
1296 * -2 - access not permitted by subpage protection mechanism
1297 */
hash_page_mm(struct mm_struct * mm,unsigned long ea,unsigned long access,unsigned long trap,unsigned long flags)1298 int hash_page_mm(struct mm_struct *mm, unsigned long ea,
1299 unsigned long access, unsigned long trap,
1300 unsigned long flags)
1301 {
1302 bool is_thp;
1303 pgd_t *pgdir;
1304 unsigned long vsid;
1305 pte_t *ptep;
1306 unsigned hugeshift;
1307 int rc, user_region = 0;
1308 int psize, ssize;
1309
1310 DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1311 ea, access, trap);
1312 trace_hash_fault(ea, access, trap);
1313
1314 /* Get region & vsid */
1315 switch (get_region_id(ea)) {
1316 case USER_REGION_ID:
1317 user_region = 1;
1318 if (! mm) {
1319 DBG_LOW(" user region with no mm !\n");
1320 rc = 1;
1321 goto bail;
1322 }
1323 psize = get_slice_psize(mm, ea);
1324 ssize = user_segment_size(ea);
1325 vsid = get_user_vsid(&mm->context, ea, ssize);
1326 break;
1327 case VMALLOC_REGION_ID:
1328 vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1329 psize = mmu_vmalloc_psize;
1330 ssize = mmu_kernel_ssize;
1331 flags |= HPTE_USE_KERNEL_KEY;
1332 break;
1333
1334 case IO_REGION_ID:
1335 vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1336 psize = mmu_io_psize;
1337 ssize = mmu_kernel_ssize;
1338 flags |= HPTE_USE_KERNEL_KEY;
1339 break;
1340 default:
1341 /*
1342 * Not a valid range
1343 * Send the problem up to do_page_fault()
1344 */
1345 rc = 1;
1346 goto bail;
1347 }
1348 DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1349
1350 /* Bad address. */
1351 if (!vsid) {
1352 DBG_LOW("Bad address!\n");
1353 rc = 1;
1354 goto bail;
1355 }
1356 /* Get pgdir */
1357 pgdir = mm->pgd;
1358 if (pgdir == NULL) {
1359 rc = 1;
1360 goto bail;
1361 }
1362
1363 /* Check CPU locality */
1364 if (user_region && mm_is_thread_local(mm))
1365 flags |= HPTE_LOCAL_UPDATE;
1366
1367 #ifndef CONFIG_PPC_64K_PAGES
1368 /*
1369 * If we use 4K pages and our psize is not 4K, then we might
1370 * be hitting a special driver mapping, and need to align the
1371 * address before we fetch the PTE.
1372 *
1373 * It could also be a hugepage mapping, in which case this is
1374 * not necessary, but it's not harmful, either.
1375 */
1376 if (psize != MMU_PAGE_4K)
1377 ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1378 #endif /* CONFIG_PPC_64K_PAGES */
1379
1380 /* Get PTE and page size from page tables */
1381 ptep = find_linux_pte(pgdir, ea, &is_thp, &hugeshift);
1382 if (ptep == NULL || !pte_present(*ptep)) {
1383 DBG_LOW(" no PTE !\n");
1384 rc = 1;
1385 goto bail;
1386 }
1387
1388 /*
1389 * Add _PAGE_PRESENT to the required access perm. If there are parallel
1390 * updates to the pte that can possibly clear _PAGE_PTE, catch that too.
1391 *
1392 * We can safely use the return pte address in rest of the function
1393 * because we do set H_PAGE_BUSY which prevents further updates to pte
1394 * from generic code.
1395 */
1396 access |= _PAGE_PRESENT | _PAGE_PTE;
1397
1398 /*
1399 * Pre-check access permissions (will be re-checked atomically
1400 * in __hash_page_XX but this pre-check is a fast path
1401 */
1402 if (!check_pte_access(access, pte_val(*ptep))) {
1403 DBG_LOW(" no access !\n");
1404 rc = 1;
1405 goto bail;
1406 }
1407
1408 if (hugeshift) {
1409 if (is_thp)
1410 rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1411 trap, flags, ssize, psize);
1412 #ifdef CONFIG_HUGETLB_PAGE
1413 else
1414 rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1415 flags, ssize, hugeshift, psize);
1416 #else
1417 else {
1418 /*
1419 * if we have hugeshift, and is not transhuge with
1420 * hugetlb disabled, something is really wrong.
1421 */
1422 rc = 1;
1423 WARN_ON(1);
1424 }
1425 #endif
1426 if (current->mm == mm)
1427 check_paca_psize(ea, mm, psize, user_region);
1428
1429 goto bail;
1430 }
1431
1432 #ifndef CONFIG_PPC_64K_PAGES
1433 DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1434 #else
1435 DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1436 pte_val(*(ptep + PTRS_PER_PTE)));
1437 #endif
1438 /* Do actual hashing */
1439 #ifdef CONFIG_PPC_64K_PAGES
1440 /* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
1441 if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1442 demote_segment_4k(mm, ea);
1443 psize = MMU_PAGE_4K;
1444 }
1445
1446 /*
1447 * If this PTE is non-cacheable and we have restrictions on
1448 * using non cacheable large pages, then we switch to 4k
1449 */
1450 if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) {
1451 if (user_region) {
1452 demote_segment_4k(mm, ea);
1453 psize = MMU_PAGE_4K;
1454 } else if (ea < VMALLOC_END) {
1455 /*
1456 * some driver did a non-cacheable mapping
1457 * in vmalloc space, so switch vmalloc
1458 * to 4k pages
1459 */
1460 printk(KERN_ALERT "Reducing vmalloc segment "
1461 "to 4kB pages because of "
1462 "non-cacheable mapping\n");
1463 psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1464 copro_flush_all_slbs(mm);
1465 }
1466 }
1467
1468 #endif /* CONFIG_PPC_64K_PAGES */
1469
1470 if (current->mm == mm)
1471 check_paca_psize(ea, mm, psize, user_region);
1472
1473 #ifdef CONFIG_PPC_64K_PAGES
1474 if (psize == MMU_PAGE_64K)
1475 rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1476 flags, ssize);
1477 else
1478 #endif /* CONFIG_PPC_64K_PAGES */
1479 {
1480 int spp = subpage_protection(mm, ea);
1481 if (access & spp)
1482 rc = -2;
1483 else
1484 rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1485 flags, ssize, spp);
1486 }
1487
1488 /*
1489 * Dump some info in case of hash insertion failure, they should
1490 * never happen so it is really useful to know if/when they do
1491 */
1492 if (rc == -1)
1493 hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1494 psize, pte_val(*ptep));
1495 #ifndef CONFIG_PPC_64K_PAGES
1496 DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1497 #else
1498 DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1499 pte_val(*(ptep + PTRS_PER_PTE)));
1500 #endif
1501 DBG_LOW(" -> rc=%d\n", rc);
1502
1503 bail:
1504 return rc;
1505 }
1506 EXPORT_SYMBOL_GPL(hash_page_mm);
1507
hash_page(unsigned long ea,unsigned long access,unsigned long trap,unsigned long dsisr)1508 int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
1509 unsigned long dsisr)
1510 {
1511 unsigned long flags = 0;
1512 struct mm_struct *mm = current->mm;
1513
1514 if ((get_region_id(ea) == VMALLOC_REGION_ID) ||
1515 (get_region_id(ea) == IO_REGION_ID))
1516 mm = &init_mm;
1517
1518 if (dsisr & DSISR_NOHPTE)
1519 flags |= HPTE_NOHPTE_UPDATE;
1520
1521 return hash_page_mm(mm, ea, access, trap, flags);
1522 }
1523 EXPORT_SYMBOL_GPL(hash_page);
1524
DEFINE_INTERRUPT_HANDLER(do_hash_fault)1525 DEFINE_INTERRUPT_HANDLER(do_hash_fault)
1526 {
1527 unsigned long ea = regs->dar;
1528 unsigned long dsisr = regs->dsisr;
1529 unsigned long access = _PAGE_PRESENT | _PAGE_READ;
1530 unsigned long flags = 0;
1531 struct mm_struct *mm;
1532 unsigned int region_id;
1533 long err;
1534
1535 if (unlikely(dsisr & (DSISR_BAD_FAULT_64S | DSISR_KEYFAULT))) {
1536 hash__do_page_fault(regs);
1537 return;
1538 }
1539
1540 region_id = get_region_id(ea);
1541 if ((region_id == VMALLOC_REGION_ID) || (region_id == IO_REGION_ID))
1542 mm = &init_mm;
1543 else
1544 mm = current->mm;
1545
1546 if (dsisr & DSISR_NOHPTE)
1547 flags |= HPTE_NOHPTE_UPDATE;
1548
1549 if (dsisr & DSISR_ISSTORE)
1550 access |= _PAGE_WRITE;
1551 /*
1552 * We set _PAGE_PRIVILEGED only when
1553 * kernel mode access kernel space.
1554 *
1555 * _PAGE_PRIVILEGED is NOT set
1556 * 1) when kernel mode access user space
1557 * 2) user space access kernel space.
1558 */
1559 access |= _PAGE_PRIVILEGED;
1560 if (user_mode(regs) || (region_id == USER_REGION_ID))
1561 access &= ~_PAGE_PRIVILEGED;
1562
1563 if (TRAP(regs) == INTERRUPT_INST_STORAGE)
1564 access |= _PAGE_EXEC;
1565
1566 err = hash_page_mm(mm, ea, access, TRAP(regs), flags);
1567 if (unlikely(err < 0)) {
1568 // failed to instert a hash PTE due to an hypervisor error
1569 if (user_mode(regs)) {
1570 if (IS_ENABLED(CONFIG_PPC_SUBPAGE_PROT) && err == -2)
1571 _exception(SIGSEGV, regs, SEGV_ACCERR, ea);
1572 else
1573 _exception(SIGBUS, regs, BUS_ADRERR, ea);
1574 } else {
1575 bad_page_fault(regs, SIGBUS);
1576 }
1577 err = 0;
1578
1579 } else if (err) {
1580 hash__do_page_fault(regs);
1581 }
1582 }
1583
1584 #ifdef CONFIG_PPC_MM_SLICES
should_hash_preload(struct mm_struct * mm,unsigned long ea)1585 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1586 {
1587 int psize = get_slice_psize(mm, ea);
1588
1589 /* We only prefault standard pages for now */
1590 if (unlikely(psize != mm_ctx_user_psize(&mm->context)))
1591 return false;
1592
1593 /*
1594 * Don't prefault if subpage protection is enabled for the EA.
1595 */
1596 if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea)))
1597 return false;
1598
1599 return true;
1600 }
1601 #else
should_hash_preload(struct mm_struct * mm,unsigned long ea)1602 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1603 {
1604 return true;
1605 }
1606 #endif
1607
hash_preload(struct mm_struct * mm,pte_t * ptep,unsigned long ea,bool is_exec,unsigned long trap)1608 static void hash_preload(struct mm_struct *mm, pte_t *ptep, unsigned long ea,
1609 bool is_exec, unsigned long trap)
1610 {
1611 unsigned long vsid;
1612 pgd_t *pgdir;
1613 int rc, ssize, update_flags = 0;
1614 unsigned long access = _PAGE_PRESENT | _PAGE_READ | (is_exec ? _PAGE_EXEC : 0);
1615 unsigned long flags;
1616
1617 BUG_ON(get_region_id(ea) != USER_REGION_ID);
1618
1619 if (!should_hash_preload(mm, ea))
1620 return;
1621
1622 DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1623 " trap=%lx\n", mm, mm->pgd, ea, access, trap);
1624
1625 /* Get Linux PTE if available */
1626 pgdir = mm->pgd;
1627 if (pgdir == NULL)
1628 return;
1629
1630 /* Get VSID */
1631 ssize = user_segment_size(ea);
1632 vsid = get_user_vsid(&mm->context, ea, ssize);
1633 if (!vsid)
1634 return;
1635
1636 #ifdef CONFIG_PPC_64K_PAGES
1637 /* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
1638 * a 64K kernel), then we don't preload, hash_page() will take
1639 * care of it once we actually try to access the page.
1640 * That way we don't have to duplicate all of the logic for segment
1641 * page size demotion here
1642 * Called with PTL held, hence can be sure the value won't change in
1643 * between.
1644 */
1645 if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep))
1646 return;
1647 #endif /* CONFIG_PPC_64K_PAGES */
1648
1649 /*
1650 * __hash_page_* must run with interrupts off, including PMI interrupts
1651 * off, as it sets the H_PAGE_BUSY bit.
1652 *
1653 * It's otherwise possible for perf interrupts to hit at any time and
1654 * may take a hash fault reading the user stack, which could take a
1655 * hash miss and deadlock on the same H_PAGE_BUSY bit.
1656 *
1657 * Interrupts must also be off for the duration of the
1658 * mm_is_thread_local test and update, to prevent preempt running the
1659 * mm on another CPU (XXX: this may be racy vs kthread_use_mm).
1660 */
1661 powerpc_local_irq_pmu_save(flags);
1662
1663 /* Is that local to this CPU ? */
1664 if (mm_is_thread_local(mm))
1665 update_flags |= HPTE_LOCAL_UPDATE;
1666
1667 /* Hash it in */
1668 #ifdef CONFIG_PPC_64K_PAGES
1669 if (mm_ctx_user_psize(&mm->context) == MMU_PAGE_64K)
1670 rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1671 update_flags, ssize);
1672 else
1673 #endif /* CONFIG_PPC_64K_PAGES */
1674 rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
1675 ssize, subpage_protection(mm, ea));
1676
1677 /* Dump some info in case of hash insertion failure, they should
1678 * never happen so it is really useful to know if/when they do
1679 */
1680 if (rc == -1)
1681 hash_failure_debug(ea, access, vsid, trap, ssize,
1682 mm_ctx_user_psize(&mm->context),
1683 mm_ctx_user_psize(&mm->context),
1684 pte_val(*ptep));
1685
1686 powerpc_local_irq_pmu_restore(flags);
1687 }
1688
1689 /*
1690 * This is called at the end of handling a user page fault, when the
1691 * fault has been handled by updating a PTE in the linux page tables.
1692 * We use it to preload an HPTE into the hash table corresponding to
1693 * the updated linux PTE.
1694 *
1695 * This must always be called with the pte lock held.
1696 */
update_mmu_cache(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1697 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
1698 pte_t *ptep)
1699 {
1700 /*
1701 * We don't need to worry about _PAGE_PRESENT here because we are
1702 * called with either mm->page_table_lock held or ptl lock held
1703 */
1704 unsigned long trap;
1705 bool is_exec;
1706
1707 if (radix_enabled())
1708 return;
1709
1710 /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
1711 if (!pte_young(*ptep) || address >= TASK_SIZE)
1712 return;
1713
1714 /*
1715 * We try to figure out if we are coming from an instruction
1716 * access fault and pass that down to __hash_page so we avoid
1717 * double-faulting on execution of fresh text. We have to test
1718 * for regs NULL since init will get here first thing at boot.
1719 *
1720 * We also avoid filling the hash if not coming from a fault.
1721 */
1722
1723 trap = current->thread.regs ? TRAP(current->thread.regs) : 0UL;
1724 switch (trap) {
1725 case 0x300:
1726 is_exec = false;
1727 break;
1728 case 0x400:
1729 is_exec = true;
1730 break;
1731 default:
1732 return;
1733 }
1734
1735 hash_preload(vma->vm_mm, ptep, address, is_exec, trap);
1736 }
1737
1738 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
tm_flush_hash_page(int local)1739 static inline void tm_flush_hash_page(int local)
1740 {
1741 /*
1742 * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a
1743 * page back to a block device w/PIO could pick up transactional data
1744 * (bad!) so we force an abort here. Before the sync the page will be
1745 * made read-only, which will flush_hash_page. BIG ISSUE here: if the
1746 * kernel uses a page from userspace without unmapping it first, it may
1747 * see the speculated version.
1748 */
1749 if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
1750 MSR_TM_ACTIVE(current->thread.regs->msr)) {
1751 tm_enable();
1752 tm_abort(TM_CAUSE_TLBI);
1753 }
1754 }
1755 #else
tm_flush_hash_page(int local)1756 static inline void tm_flush_hash_page(int local)
1757 {
1758 }
1759 #endif
1760
1761 /*
1762 * Return the global hash slot, corresponding to the given PTE, which contains
1763 * the HPTE.
1764 */
pte_get_hash_gslot(unsigned long vpn,unsigned long shift,int ssize,real_pte_t rpte,unsigned int subpg_index)1765 unsigned long pte_get_hash_gslot(unsigned long vpn, unsigned long shift,
1766 int ssize, real_pte_t rpte, unsigned int subpg_index)
1767 {
1768 unsigned long hash, gslot, hidx;
1769
1770 hash = hpt_hash(vpn, shift, ssize);
1771 hidx = __rpte_to_hidx(rpte, subpg_index);
1772 if (hidx & _PTEIDX_SECONDARY)
1773 hash = ~hash;
1774 gslot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1775 gslot += hidx & _PTEIDX_GROUP_IX;
1776 return gslot;
1777 }
1778
flush_hash_page(unsigned long vpn,real_pte_t pte,int psize,int ssize,unsigned long flags)1779 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1780 unsigned long flags)
1781 {
1782 unsigned long index, shift, gslot;
1783 int local = flags & HPTE_LOCAL_UPDATE;
1784
1785 DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1786 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1787 gslot = pte_get_hash_gslot(vpn, shift, ssize, pte, index);
1788 DBG_LOW(" sub %ld: gslot=%lx\n", index, gslot);
1789 /*
1790 * We use same base page size and actual psize, because we don't
1791 * use these functions for hugepage
1792 */
1793 mmu_hash_ops.hpte_invalidate(gslot, vpn, psize, psize,
1794 ssize, local);
1795 } pte_iterate_hashed_end();
1796
1797 tm_flush_hash_page(local);
1798 }
1799
1800 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
flush_hash_hugepage(unsigned long vsid,unsigned long addr,pmd_t * pmdp,unsigned int psize,int ssize,unsigned long flags)1801 void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
1802 pmd_t *pmdp, unsigned int psize, int ssize,
1803 unsigned long flags)
1804 {
1805 int i, max_hpte_count, valid;
1806 unsigned long s_addr;
1807 unsigned char *hpte_slot_array;
1808 unsigned long hidx, shift, vpn, hash, slot;
1809 int local = flags & HPTE_LOCAL_UPDATE;
1810
1811 s_addr = addr & HPAGE_PMD_MASK;
1812 hpte_slot_array = get_hpte_slot_array(pmdp);
1813 /*
1814 * IF we try to do a HUGE PTE update after a withdraw is done.
1815 * we will find the below NULL. This happens when we do
1816 * split_huge_pmd
1817 */
1818 if (!hpte_slot_array)
1819 return;
1820
1821 if (mmu_hash_ops.hugepage_invalidate) {
1822 mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
1823 psize, ssize, local);
1824 goto tm_abort;
1825 }
1826 /*
1827 * No bluk hpte removal support, invalidate each entry
1828 */
1829 shift = mmu_psize_defs[psize].shift;
1830 max_hpte_count = HPAGE_PMD_SIZE >> shift;
1831 for (i = 0; i < max_hpte_count; i++) {
1832 /*
1833 * 8 bits per each hpte entries
1834 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1835 */
1836 valid = hpte_valid(hpte_slot_array, i);
1837 if (!valid)
1838 continue;
1839 hidx = hpte_hash_index(hpte_slot_array, i);
1840
1841 /* get the vpn */
1842 addr = s_addr + (i * (1ul << shift));
1843 vpn = hpt_vpn(addr, vsid, ssize);
1844 hash = hpt_hash(vpn, shift, ssize);
1845 if (hidx & _PTEIDX_SECONDARY)
1846 hash = ~hash;
1847
1848 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1849 slot += hidx & _PTEIDX_GROUP_IX;
1850 mmu_hash_ops.hpte_invalidate(slot, vpn, psize,
1851 MMU_PAGE_16M, ssize, local);
1852 }
1853 tm_abort:
1854 tm_flush_hash_page(local);
1855 }
1856 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1857
flush_hash_range(unsigned long number,int local)1858 void flush_hash_range(unsigned long number, int local)
1859 {
1860 if (mmu_hash_ops.flush_hash_range)
1861 mmu_hash_ops.flush_hash_range(number, local);
1862 else {
1863 int i;
1864 struct ppc64_tlb_batch *batch =
1865 this_cpu_ptr(&ppc64_tlb_batch);
1866
1867 for (i = 0; i < number; i++)
1868 flush_hash_page(batch->vpn[i], batch->pte[i],
1869 batch->psize, batch->ssize, local);
1870 }
1871 }
1872
hpte_insert_repeating(unsigned long hash,unsigned long vpn,unsigned long pa,unsigned long rflags,unsigned long vflags,int psize,int ssize)1873 long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
1874 unsigned long pa, unsigned long rflags,
1875 unsigned long vflags, int psize, int ssize)
1876 {
1877 unsigned long hpte_group;
1878 long slot;
1879
1880 repeat:
1881 hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1882
1883 /* Insert into the hash table, primary slot */
1884 slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
1885 psize, psize, ssize);
1886
1887 /* Primary is full, try the secondary */
1888 if (unlikely(slot == -1)) {
1889 hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
1890 slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags,
1891 vflags | HPTE_V_SECONDARY,
1892 psize, psize, ssize);
1893 if (slot == -1) {
1894 if (mftb() & 0x1)
1895 hpte_group = (hash & htab_hash_mask) *
1896 HPTES_PER_GROUP;
1897
1898 mmu_hash_ops.hpte_remove(hpte_group);
1899 goto repeat;
1900 }
1901 }
1902
1903 return slot;
1904 }
1905
1906 #ifdef CONFIG_DEBUG_PAGEALLOC
kernel_map_linear_page(unsigned long vaddr,unsigned long lmi)1907 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1908 {
1909 unsigned long hash;
1910 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1911 unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1912 unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL), HPTE_USE_KERNEL_KEY);
1913 long ret;
1914
1915 hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1916
1917 /* Don't create HPTE entries for bad address */
1918 if (!vsid)
1919 return;
1920
1921 ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
1922 HPTE_V_BOLTED,
1923 mmu_linear_psize, mmu_kernel_ssize);
1924
1925 BUG_ON (ret < 0);
1926 spin_lock(&linear_map_hash_lock);
1927 BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1928 linear_map_hash_slots[lmi] = ret | 0x80;
1929 spin_unlock(&linear_map_hash_lock);
1930 }
1931
kernel_unmap_linear_page(unsigned long vaddr,unsigned long lmi)1932 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1933 {
1934 unsigned long hash, hidx, slot;
1935 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1936 unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1937
1938 hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1939 spin_lock(&linear_map_hash_lock);
1940 BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1941 hidx = linear_map_hash_slots[lmi] & 0x7f;
1942 linear_map_hash_slots[lmi] = 0;
1943 spin_unlock(&linear_map_hash_lock);
1944 if (hidx & _PTEIDX_SECONDARY)
1945 hash = ~hash;
1946 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1947 slot += hidx & _PTEIDX_GROUP_IX;
1948 mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize,
1949 mmu_linear_psize,
1950 mmu_kernel_ssize, 0);
1951 }
1952
__kernel_map_pages(struct page * page,int numpages,int enable)1953 void __kernel_map_pages(struct page *page, int numpages, int enable)
1954 {
1955 unsigned long flags, vaddr, lmi;
1956 int i;
1957
1958 local_irq_save(flags);
1959 for (i = 0; i < numpages; i++, page++) {
1960 vaddr = (unsigned long)page_address(page);
1961 lmi = __pa(vaddr) >> PAGE_SHIFT;
1962 if (lmi >= linear_map_hash_count)
1963 continue;
1964 if (enable)
1965 kernel_map_linear_page(vaddr, lmi);
1966 else
1967 kernel_unmap_linear_page(vaddr, lmi);
1968 }
1969 local_irq_restore(flags);
1970 }
1971 #endif /* CONFIG_DEBUG_PAGEALLOC */
1972
hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,phys_addr_t first_memblock_size)1973 void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,
1974 phys_addr_t first_memblock_size)
1975 {
1976 /*
1977 * We don't currently support the first MEMBLOCK not mapping 0
1978 * physical on those processors
1979 */
1980 BUG_ON(first_memblock_base != 0);
1981
1982 /*
1983 * On virtualized systems the first entry is our RMA region aka VRMA,
1984 * non-virtualized 64-bit hash MMU systems don't have a limitation
1985 * on real mode access.
1986 *
1987 * For guests on platforms before POWER9, we clamp the it limit to 1G
1988 * to avoid some funky things such as RTAS bugs etc...
1989 *
1990 * On POWER9 we limit to 1TB in case the host erroneously told us that
1991 * the RMA was >1TB. Effective address bits 0:23 are treated as zero
1992 * (meaning the access is aliased to zero i.e. addr = addr % 1TB)
1993 * for virtual real mode addressing and so it doesn't make sense to
1994 * have an area larger than 1TB as it can't be addressed.
1995 */
1996 if (!early_cpu_has_feature(CPU_FTR_HVMODE)) {
1997 ppc64_rma_size = first_memblock_size;
1998 if (!early_cpu_has_feature(CPU_FTR_ARCH_300))
1999 ppc64_rma_size = min_t(u64, ppc64_rma_size, 0x40000000);
2000 else
2001 ppc64_rma_size = min_t(u64, ppc64_rma_size,
2002 1UL << SID_SHIFT_1T);
2003
2004 /* Finally limit subsequent allocations */
2005 memblock_set_current_limit(ppc64_rma_size);
2006 } else {
2007 ppc64_rma_size = ULONG_MAX;
2008 }
2009 }
2010
2011 #ifdef CONFIG_DEBUG_FS
2012
hpt_order_get(void * data,u64 * val)2013 static int hpt_order_get(void *data, u64 *val)
2014 {
2015 *val = ppc64_pft_size;
2016 return 0;
2017 }
2018
hpt_order_set(void * data,u64 val)2019 static int hpt_order_set(void *data, u64 val)
2020 {
2021 int ret;
2022
2023 if (!mmu_hash_ops.resize_hpt)
2024 return -ENODEV;
2025
2026 cpus_read_lock();
2027 ret = mmu_hash_ops.resize_hpt(val);
2028 cpus_read_unlock();
2029
2030 return ret;
2031 }
2032
2033 DEFINE_DEBUGFS_ATTRIBUTE(fops_hpt_order, hpt_order_get, hpt_order_set, "%llu\n");
2034
hash64_debugfs(void)2035 static int __init hash64_debugfs(void)
2036 {
2037 debugfs_create_file("hpt_order", 0600, arch_debugfs_dir, NULL,
2038 &fops_hpt_order);
2039 return 0;
2040 }
2041 machine_device_initcall(pseries, hash64_debugfs);
2042 #endif /* CONFIG_DEBUG_FS */
2043
print_system_hash_info(void)2044 void __init print_system_hash_info(void)
2045 {
2046 pr_info("ppc64_pft_size = 0x%llx\n", ppc64_pft_size);
2047
2048 if (htab_hash_mask)
2049 pr_info("htab_hash_mask = 0x%lx\n", htab_hash_mask);
2050 }
2051