1 /*
2 * SPDX-License-Identifier: MIT
3 *
4 * Copyright © 2014-2016 Intel Corporation
5 */
6
7 #include <linux/pagevec.h>
8 #include <linux/swap.h>
9
10 #include "gem/i915_gem_region.h"
11 #include "i915_drv.h"
12 #include "i915_gemfs.h"
13 #include "i915_gem_object.h"
14 #include "i915_scatterlist.h"
15 #include "i915_trace.h"
16
17 /*
18 * Move pages to appropriate lru and release the pagevec, decrementing the
19 * ref count of those pages.
20 */
check_release_pagevec(struct pagevec * pvec)21 static void check_release_pagevec(struct pagevec *pvec)
22 {
23 check_move_unevictable_pages(pvec);
24 __pagevec_release(pvec);
25 cond_resched();
26 }
27
shmem_get_pages(struct drm_i915_gem_object * obj)28 static int shmem_get_pages(struct drm_i915_gem_object *obj)
29 {
30 struct drm_i915_private *i915 = to_i915(obj->base.dev);
31 struct intel_memory_region *mem = obj->mm.region;
32 const unsigned long page_count = obj->base.size / PAGE_SIZE;
33 unsigned long i;
34 struct address_space *mapping;
35 struct sg_table *st;
36 struct scatterlist *sg;
37 struct sgt_iter sgt_iter;
38 struct page *page;
39 unsigned long last_pfn = 0; /* suppress gcc warning */
40 unsigned int max_segment = i915_sg_segment_size();
41 unsigned int sg_page_sizes;
42 gfp_t noreclaim;
43 int ret;
44
45 /*
46 * Assert that the object is not currently in any GPU domain. As it
47 * wasn't in the GTT, there shouldn't be any way it could have been in
48 * a GPU cache
49 */
50 GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
51 GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
52
53 /*
54 * If there's no chance of allocating enough pages for the whole
55 * object, bail early.
56 */
57 if (obj->base.size > resource_size(&mem->region))
58 return -ENOMEM;
59
60 st = kmalloc(sizeof(*st), GFP_KERNEL);
61 if (!st)
62 return -ENOMEM;
63
64 rebuild_st:
65 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
66 kfree(st);
67 return -ENOMEM;
68 }
69
70 /*
71 * Get the list of pages out of our struct file. They'll be pinned
72 * at this point until we release them.
73 *
74 * Fail silently without starting the shrinker
75 */
76 mapping = obj->base.filp->f_mapping;
77 mapping_set_unevictable(mapping);
78 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
79 noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
80
81 sg = st->sgl;
82 st->nents = 0;
83 sg_page_sizes = 0;
84 for (i = 0; i < page_count; i++) {
85 const unsigned int shrink[] = {
86 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND,
87 0,
88 }, *s = shrink;
89 gfp_t gfp = noreclaim;
90
91 do {
92 cond_resched();
93 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
94 if (!IS_ERR(page))
95 break;
96
97 if (!*s) {
98 ret = PTR_ERR(page);
99 goto err_sg;
100 }
101
102 i915_gem_shrink(NULL, i915, 2 * page_count, NULL, *s++);
103
104 /*
105 * We've tried hard to allocate the memory by reaping
106 * our own buffer, now let the real VM do its job and
107 * go down in flames if truly OOM.
108 *
109 * However, since graphics tend to be disposable,
110 * defer the oom here by reporting the ENOMEM back
111 * to userspace.
112 */
113 if (!*s) {
114 /* reclaim and warn, but no oom */
115 gfp = mapping_gfp_mask(mapping);
116
117 /*
118 * Our bo are always dirty and so we require
119 * kswapd to reclaim our pages (direct reclaim
120 * does not effectively begin pageout of our
121 * buffers on its own). However, direct reclaim
122 * only waits for kswapd when under allocation
123 * congestion. So as a result __GFP_RECLAIM is
124 * unreliable and fails to actually reclaim our
125 * dirty pages -- unless you try over and over
126 * again with !__GFP_NORETRY. However, we still
127 * want to fail this allocation rather than
128 * trigger the out-of-memory killer and for
129 * this we want __GFP_RETRY_MAYFAIL.
130 */
131 gfp |= __GFP_RETRY_MAYFAIL;
132 }
133 } while (1);
134
135 if (!i ||
136 sg->length >= max_segment ||
137 page_to_pfn(page) != last_pfn + 1) {
138 if (i) {
139 sg_page_sizes |= sg->length;
140 sg = sg_next(sg);
141 }
142 st->nents++;
143 sg_set_page(sg, page, PAGE_SIZE, 0);
144 } else {
145 sg->length += PAGE_SIZE;
146 }
147 last_pfn = page_to_pfn(page);
148
149 /* Check that the i965g/gm workaround works. */
150 GEM_BUG_ON(gfp & __GFP_DMA32 && last_pfn >= 0x00100000UL);
151 }
152 if (sg) { /* loop terminated early; short sg table */
153 sg_page_sizes |= sg->length;
154 sg_mark_end(sg);
155 }
156
157 /* Trim unused sg entries to avoid wasting memory. */
158 i915_sg_trim(st);
159
160 ret = i915_gem_gtt_prepare_pages(obj, st);
161 if (ret) {
162 /*
163 * DMA remapping failed? One possible cause is that
164 * it could not reserve enough large entries, asking
165 * for PAGE_SIZE chunks instead may be helpful.
166 */
167 if (max_segment > PAGE_SIZE) {
168 for_each_sgt_page(page, sgt_iter, st)
169 put_page(page);
170 sg_free_table(st);
171
172 max_segment = PAGE_SIZE;
173 goto rebuild_st;
174 } else {
175 dev_warn(i915->drm.dev,
176 "Failed to DMA remap %lu pages\n",
177 page_count);
178 goto err_pages;
179 }
180 }
181
182 if (i915_gem_object_needs_bit17_swizzle(obj))
183 i915_gem_object_do_bit_17_swizzle(obj, st);
184
185 /*
186 * EHL and JSL add the 'Bypass LLC' MOCS entry, which should make it
187 * possible for userspace to bypass the GTT caching bits set by the
188 * kernel, as per the given object cache_level. This is troublesome
189 * since the heavy flush we apply when first gathering the pages is
190 * skipped if the kernel thinks the object is coherent with the GPU. As
191 * a result it might be possible to bypass the cache and read the
192 * contents of the page directly, which could be stale data. If it's
193 * just a case of userspace shooting themselves in the foot then so be
194 * it, but since i915 takes the stance of always zeroing memory before
195 * handing it to userspace, we need to prevent this.
196 *
197 * By setting cache_dirty here we make the clflush in set_pages
198 * unconditional on such platforms.
199 */
200 if (IS_JSL_EHL(i915) && obj->flags & I915_BO_ALLOC_USER)
201 obj->cache_dirty = true;
202
203 __i915_gem_object_set_pages(obj, st, sg_page_sizes);
204
205 return 0;
206
207 err_sg:
208 sg_mark_end(sg);
209 err_pages:
210 mapping_clear_unevictable(mapping);
211 if (sg != st->sgl) {
212 struct pagevec pvec;
213
214 pagevec_init(&pvec);
215 for_each_sgt_page(page, sgt_iter, st) {
216 if (!pagevec_add(&pvec, page))
217 check_release_pagevec(&pvec);
218 }
219 if (pagevec_count(&pvec))
220 check_release_pagevec(&pvec);
221 }
222 sg_free_table(st);
223 kfree(st);
224
225 /*
226 * shmemfs first checks if there is enough memory to allocate the page
227 * and reports ENOSPC should there be insufficient, along with the usual
228 * ENOMEM for a genuine allocation failure.
229 *
230 * We use ENOSPC in our driver to mean that we have run out of aperture
231 * space and so want to translate the error from shmemfs back to our
232 * usual understanding of ENOMEM.
233 */
234 if (ret == -ENOSPC)
235 ret = -ENOMEM;
236
237 return ret;
238 }
239
240 static void
shmem_truncate(struct drm_i915_gem_object * obj)241 shmem_truncate(struct drm_i915_gem_object *obj)
242 {
243 /*
244 * Our goal here is to return as much of the memory as
245 * is possible back to the system as we are called from OOM.
246 * To do this we must instruct the shmfs to drop all of its
247 * backing pages, *now*.
248 */
249 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
250 obj->mm.madv = __I915_MADV_PURGED;
251 obj->mm.pages = ERR_PTR(-EFAULT);
252 }
253
254 static void
shmem_writeback(struct drm_i915_gem_object * obj)255 shmem_writeback(struct drm_i915_gem_object *obj)
256 {
257 struct address_space *mapping;
258 struct writeback_control wbc = {
259 .sync_mode = WB_SYNC_NONE,
260 .nr_to_write = SWAP_CLUSTER_MAX,
261 .range_start = 0,
262 .range_end = LLONG_MAX,
263 .for_reclaim = 1,
264 };
265 unsigned long i;
266
267 /*
268 * Leave mmapings intact (GTT will have been revoked on unbinding,
269 * leaving only CPU mmapings around) and add those pages to the LRU
270 * instead of invoking writeback so they are aged and paged out
271 * as normal.
272 */
273 mapping = obj->base.filp->f_mapping;
274
275 /* Begin writeback on each dirty page */
276 for (i = 0; i < obj->base.size >> PAGE_SHIFT; i++) {
277 struct page *page;
278
279 page = find_lock_page(mapping, i);
280 if (!page)
281 continue;
282
283 if (!page_mapped(page) && clear_page_dirty_for_io(page)) {
284 int ret;
285
286 SetPageReclaim(page);
287 ret = mapping->a_ops->writepage(page, &wbc);
288 if (!PageWriteback(page))
289 ClearPageReclaim(page);
290 if (!ret)
291 goto put;
292 }
293 unlock_page(page);
294 put:
295 put_page(page);
296 }
297 }
298
299 void
__i915_gem_object_release_shmem(struct drm_i915_gem_object * obj,struct sg_table * pages,bool needs_clflush)300 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
301 struct sg_table *pages,
302 bool needs_clflush)
303 {
304 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
305
306 if (obj->mm.madv == I915_MADV_DONTNEED)
307 obj->mm.dirty = false;
308
309 if (needs_clflush &&
310 (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
311 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
312 drm_clflush_sg(pages);
313
314 __start_cpu_write(obj);
315 }
316
i915_gem_object_put_pages_shmem(struct drm_i915_gem_object * obj,struct sg_table * pages)317 void i915_gem_object_put_pages_shmem(struct drm_i915_gem_object *obj, struct sg_table *pages)
318 {
319 struct sgt_iter sgt_iter;
320 struct pagevec pvec;
321 struct page *page;
322
323 GEM_WARN_ON(IS_DGFX(to_i915(obj->base.dev)));
324 __i915_gem_object_release_shmem(obj, pages, true);
325
326 i915_gem_gtt_finish_pages(obj, pages);
327
328 if (i915_gem_object_needs_bit17_swizzle(obj))
329 i915_gem_object_save_bit_17_swizzle(obj, pages);
330
331 mapping_clear_unevictable(file_inode(obj->base.filp)->i_mapping);
332
333 pagevec_init(&pvec);
334 for_each_sgt_page(page, sgt_iter, pages) {
335 if (obj->mm.dirty)
336 set_page_dirty(page);
337
338 if (obj->mm.madv == I915_MADV_WILLNEED)
339 mark_page_accessed(page);
340
341 if (!pagevec_add(&pvec, page))
342 check_release_pagevec(&pvec);
343 }
344 if (pagevec_count(&pvec))
345 check_release_pagevec(&pvec);
346 obj->mm.dirty = false;
347
348 sg_free_table(pages);
349 kfree(pages);
350 }
351
352 static void
shmem_put_pages(struct drm_i915_gem_object * obj,struct sg_table * pages)353 shmem_put_pages(struct drm_i915_gem_object *obj, struct sg_table *pages)
354 {
355 if (likely(i915_gem_object_has_struct_page(obj)))
356 i915_gem_object_put_pages_shmem(obj, pages);
357 else
358 i915_gem_object_put_pages_phys(obj, pages);
359 }
360
361 static int
shmem_pwrite(struct drm_i915_gem_object * obj,const struct drm_i915_gem_pwrite * arg)362 shmem_pwrite(struct drm_i915_gem_object *obj,
363 const struct drm_i915_gem_pwrite *arg)
364 {
365 struct address_space *mapping = obj->base.filp->f_mapping;
366 char __user *user_data = u64_to_user_ptr(arg->data_ptr);
367 u64 remain, offset;
368 unsigned int pg;
369
370 /* Caller already validated user args */
371 GEM_BUG_ON(!access_ok(user_data, arg->size));
372
373 if (!i915_gem_object_has_struct_page(obj))
374 return i915_gem_object_pwrite_phys(obj, arg);
375
376 /*
377 * Before we instantiate/pin the backing store for our use, we
378 * can prepopulate the shmemfs filp efficiently using a write into
379 * the pagecache. We avoid the penalty of instantiating all the
380 * pages, important if the user is just writing to a few and never
381 * uses the object on the GPU, and using a direct write into shmemfs
382 * allows it to avoid the cost of retrieving a page (either swapin
383 * or clearing-before-use) before it is overwritten.
384 */
385 if (i915_gem_object_has_pages(obj))
386 return -ENODEV;
387
388 if (obj->mm.madv != I915_MADV_WILLNEED)
389 return -EFAULT;
390
391 /*
392 * Before the pages are instantiated the object is treated as being
393 * in the CPU domain. The pages will be clflushed as required before
394 * use, and we can freely write into the pages directly. If userspace
395 * races pwrite with any other operation; corruption will ensue -
396 * that is userspace's prerogative!
397 */
398
399 remain = arg->size;
400 offset = arg->offset;
401 pg = offset_in_page(offset);
402
403 do {
404 unsigned int len, unwritten;
405 struct page *page;
406 void *data, *vaddr;
407 int err;
408 char c;
409
410 len = PAGE_SIZE - pg;
411 if (len > remain)
412 len = remain;
413
414 /* Prefault the user page to reduce potential recursion */
415 err = __get_user(c, user_data);
416 if (err)
417 return err;
418
419 err = __get_user(c, user_data + len - 1);
420 if (err)
421 return err;
422
423 err = pagecache_write_begin(obj->base.filp, mapping,
424 offset, len, 0,
425 &page, &data);
426 if (err < 0)
427 return err;
428
429 vaddr = kmap_atomic(page);
430 unwritten = __copy_from_user_inatomic(vaddr + pg,
431 user_data,
432 len);
433 kunmap_atomic(vaddr);
434
435 err = pagecache_write_end(obj->base.filp, mapping,
436 offset, len, len - unwritten,
437 page, data);
438 if (err < 0)
439 return err;
440
441 /* We don't handle -EFAULT, leave it to the caller to check */
442 if (unwritten)
443 return -ENODEV;
444
445 remain -= len;
446 user_data += len;
447 offset += len;
448 pg = 0;
449 } while (remain);
450
451 return 0;
452 }
453
454 static int
shmem_pread(struct drm_i915_gem_object * obj,const struct drm_i915_gem_pread * arg)455 shmem_pread(struct drm_i915_gem_object *obj,
456 const struct drm_i915_gem_pread *arg)
457 {
458 if (!i915_gem_object_has_struct_page(obj))
459 return i915_gem_object_pread_phys(obj, arg);
460
461 return -ENODEV;
462 }
463
shmem_release(struct drm_i915_gem_object * obj)464 static void shmem_release(struct drm_i915_gem_object *obj)
465 {
466 if (i915_gem_object_has_struct_page(obj))
467 i915_gem_object_release_memory_region(obj);
468
469 fput(obj->base.filp);
470 }
471
472 const struct drm_i915_gem_object_ops i915_gem_shmem_ops = {
473 .name = "i915_gem_object_shmem",
474 .flags = I915_GEM_OBJECT_IS_SHRINKABLE,
475
476 .get_pages = shmem_get_pages,
477 .put_pages = shmem_put_pages,
478 .truncate = shmem_truncate,
479 .writeback = shmem_writeback,
480
481 .pwrite = shmem_pwrite,
482 .pread = shmem_pread,
483
484 .release = shmem_release,
485 };
486
__create_shmem(struct drm_i915_private * i915,struct drm_gem_object * obj,resource_size_t size)487 static int __create_shmem(struct drm_i915_private *i915,
488 struct drm_gem_object *obj,
489 resource_size_t size)
490 {
491 unsigned long flags = VM_NORESERVE;
492 struct file *filp;
493
494 drm_gem_private_object_init(&i915->drm, obj, size);
495
496 if (i915->mm.gemfs)
497 filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
498 flags);
499 else
500 filp = shmem_file_setup("i915", size, flags);
501 if (IS_ERR(filp))
502 return PTR_ERR(filp);
503
504 obj->filp = filp;
505 return 0;
506 }
507
shmem_object_init(struct intel_memory_region * mem,struct drm_i915_gem_object * obj,resource_size_t size,resource_size_t page_size,unsigned int flags)508 static int shmem_object_init(struct intel_memory_region *mem,
509 struct drm_i915_gem_object *obj,
510 resource_size_t size,
511 resource_size_t page_size,
512 unsigned int flags)
513 {
514 static struct lock_class_key lock_class;
515 struct drm_i915_private *i915 = mem->i915;
516 struct address_space *mapping;
517 unsigned int cache_level;
518 gfp_t mask;
519 int ret;
520
521 ret = __create_shmem(i915, &obj->base, size);
522 if (ret)
523 return ret;
524
525 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
526 if (IS_I965GM(i915) || IS_I965G(i915)) {
527 /* 965gm cannot relocate objects above 4GiB. */
528 mask &= ~__GFP_HIGHMEM;
529 mask |= __GFP_DMA32;
530 }
531
532 mapping = obj->base.filp->f_mapping;
533 mapping_set_gfp_mask(mapping, mask);
534 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
535
536 i915_gem_object_init(obj, &i915_gem_shmem_ops, &lock_class, flags);
537 obj->mem_flags |= I915_BO_FLAG_STRUCT_PAGE;
538 obj->write_domain = I915_GEM_DOMAIN_CPU;
539 obj->read_domains = I915_GEM_DOMAIN_CPU;
540
541 if (HAS_LLC(i915))
542 /* On some devices, we can have the GPU use the LLC (the CPU
543 * cache) for about a 10% performance improvement
544 * compared to uncached. Graphics requests other than
545 * display scanout are coherent with the CPU in
546 * accessing this cache. This means in this mode we
547 * don't need to clflush on the CPU side, and on the
548 * GPU side we only need to flush internal caches to
549 * get data visible to the CPU.
550 *
551 * However, we maintain the display planes as UC, and so
552 * need to rebind when first used as such.
553 */
554 cache_level = I915_CACHE_LLC;
555 else
556 cache_level = I915_CACHE_NONE;
557
558 i915_gem_object_set_cache_coherency(obj, cache_level);
559
560 i915_gem_object_init_memory_region(obj, mem);
561
562 return 0;
563 }
564
565 struct drm_i915_gem_object *
i915_gem_object_create_shmem(struct drm_i915_private * i915,resource_size_t size)566 i915_gem_object_create_shmem(struct drm_i915_private *i915,
567 resource_size_t size)
568 {
569 return i915_gem_object_create_region(i915->mm.regions[INTEL_REGION_SMEM],
570 size, 0, 0);
571 }
572
573 /* Allocate a new GEM object and fill it with the supplied data */
574 struct drm_i915_gem_object *
i915_gem_object_create_shmem_from_data(struct drm_i915_private * dev_priv,const void * data,resource_size_t size)575 i915_gem_object_create_shmem_from_data(struct drm_i915_private *dev_priv,
576 const void *data, resource_size_t size)
577 {
578 struct drm_i915_gem_object *obj;
579 struct file *file;
580 resource_size_t offset;
581 int err;
582
583 GEM_WARN_ON(IS_DGFX(dev_priv));
584 obj = i915_gem_object_create_shmem(dev_priv, round_up(size, PAGE_SIZE));
585 if (IS_ERR(obj))
586 return obj;
587
588 GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
589
590 file = obj->base.filp;
591 offset = 0;
592 do {
593 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
594 struct page *page;
595 void *pgdata, *vaddr;
596
597 err = pagecache_write_begin(file, file->f_mapping,
598 offset, len, 0,
599 &page, &pgdata);
600 if (err < 0)
601 goto fail;
602
603 vaddr = kmap(page);
604 memcpy(vaddr, data, len);
605 kunmap(page);
606
607 err = pagecache_write_end(file, file->f_mapping,
608 offset, len, len,
609 page, pgdata);
610 if (err < 0)
611 goto fail;
612
613 size -= len;
614 data += len;
615 offset += len;
616 } while (size);
617
618 return obj;
619
620 fail:
621 i915_gem_object_put(obj);
622 return ERR_PTR(err);
623 }
624
init_shmem(struct intel_memory_region * mem)625 static int init_shmem(struct intel_memory_region *mem)
626 {
627 int err;
628
629 err = i915_gemfs_init(mem->i915);
630 if (err) {
631 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n",
632 err);
633 }
634
635 intel_memory_region_set_name(mem, "system");
636
637 return 0; /* Don't error, we can simply fallback to the kernel mnt */
638 }
639
release_shmem(struct intel_memory_region * mem)640 static void release_shmem(struct intel_memory_region *mem)
641 {
642 i915_gemfs_fini(mem->i915);
643 }
644
645 static const struct intel_memory_region_ops shmem_region_ops = {
646 .init = init_shmem,
647 .release = release_shmem,
648 .init_object = shmem_object_init,
649 };
650
i915_gem_shmem_setup(struct drm_i915_private * i915,u16 type,u16 instance)651 struct intel_memory_region *i915_gem_shmem_setup(struct drm_i915_private *i915,
652 u16 type, u16 instance)
653 {
654 return intel_memory_region_create(i915, 0,
655 totalram_pages() << PAGE_SHIFT,
656 PAGE_SIZE, 0,
657 type, instance,
658 &shmem_region_ops);
659 }
660
i915_gem_object_is_shmem(const struct drm_i915_gem_object * obj)661 bool i915_gem_object_is_shmem(const struct drm_i915_gem_object *obj)
662 {
663 return obj->ops == &i915_gem_shmem_ops;
664 }
665