1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
48
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
52 #include <rdma/rw.h>
53 #include <rdma/lag.h>
54
55 #include "core_priv.h"
56 #include <trace/events/rdma_core.h>
57
58 static int ib_resolve_eth_dmac(struct ib_device *device,
59 struct rdma_ah_attr *ah_attr);
60
61 static const char * const ib_events[] = {
62 [IB_EVENT_CQ_ERR] = "CQ error",
63 [IB_EVENT_QP_FATAL] = "QP fatal error",
64 [IB_EVENT_QP_REQ_ERR] = "QP request error",
65 [IB_EVENT_QP_ACCESS_ERR] = "QP access error",
66 [IB_EVENT_COMM_EST] = "communication established",
67 [IB_EVENT_SQ_DRAINED] = "send queue drained",
68 [IB_EVENT_PATH_MIG] = "path migration successful",
69 [IB_EVENT_PATH_MIG_ERR] = "path migration error",
70 [IB_EVENT_DEVICE_FATAL] = "device fatal error",
71 [IB_EVENT_PORT_ACTIVE] = "port active",
72 [IB_EVENT_PORT_ERR] = "port error",
73 [IB_EVENT_LID_CHANGE] = "LID change",
74 [IB_EVENT_PKEY_CHANGE] = "P_key change",
75 [IB_EVENT_SM_CHANGE] = "SM change",
76 [IB_EVENT_SRQ_ERR] = "SRQ error",
77 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
78 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
79 [IB_EVENT_CLIENT_REREGISTER] = "client reregister",
80 [IB_EVENT_GID_CHANGE] = "GID changed",
81 };
82
ib_event_msg(enum ib_event_type event)83 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
84 {
85 size_t index = event;
86
87 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
88 ib_events[index] : "unrecognized event";
89 }
90 EXPORT_SYMBOL(ib_event_msg);
91
92 static const char * const wc_statuses[] = {
93 [IB_WC_SUCCESS] = "success",
94 [IB_WC_LOC_LEN_ERR] = "local length error",
95 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
96 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
97 [IB_WC_LOC_PROT_ERR] = "local protection error",
98 [IB_WC_WR_FLUSH_ERR] = "WR flushed",
99 [IB_WC_MW_BIND_ERR] = "memory bind operation error",
100 [IB_WC_BAD_RESP_ERR] = "bad response error",
101 [IB_WC_LOC_ACCESS_ERR] = "local access error",
102 [IB_WC_REM_INV_REQ_ERR] = "remote invalid request error",
103 [IB_WC_REM_ACCESS_ERR] = "remote access error",
104 [IB_WC_REM_OP_ERR] = "remote operation error",
105 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
106 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
107 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
108 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
109 [IB_WC_REM_ABORT_ERR] = "operation aborted",
110 [IB_WC_INV_EECN_ERR] = "invalid EE context number",
111 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
112 [IB_WC_FATAL_ERR] = "fatal error",
113 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
114 [IB_WC_GENERAL_ERR] = "general error",
115 };
116
ib_wc_status_msg(enum ib_wc_status status)117 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
118 {
119 size_t index = status;
120
121 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
122 wc_statuses[index] : "unrecognized status";
123 }
124 EXPORT_SYMBOL(ib_wc_status_msg);
125
ib_rate_to_mult(enum ib_rate rate)126 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
127 {
128 switch (rate) {
129 case IB_RATE_2_5_GBPS: return 1;
130 case IB_RATE_5_GBPS: return 2;
131 case IB_RATE_10_GBPS: return 4;
132 case IB_RATE_20_GBPS: return 8;
133 case IB_RATE_30_GBPS: return 12;
134 case IB_RATE_40_GBPS: return 16;
135 case IB_RATE_60_GBPS: return 24;
136 case IB_RATE_80_GBPS: return 32;
137 case IB_RATE_120_GBPS: return 48;
138 case IB_RATE_14_GBPS: return 6;
139 case IB_RATE_56_GBPS: return 22;
140 case IB_RATE_112_GBPS: return 45;
141 case IB_RATE_168_GBPS: return 67;
142 case IB_RATE_25_GBPS: return 10;
143 case IB_RATE_100_GBPS: return 40;
144 case IB_RATE_200_GBPS: return 80;
145 case IB_RATE_300_GBPS: return 120;
146 case IB_RATE_28_GBPS: return 11;
147 case IB_RATE_50_GBPS: return 20;
148 case IB_RATE_400_GBPS: return 160;
149 case IB_RATE_600_GBPS: return 240;
150 default: return -1;
151 }
152 }
153 EXPORT_SYMBOL(ib_rate_to_mult);
154
mult_to_ib_rate(int mult)155 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
156 {
157 switch (mult) {
158 case 1: return IB_RATE_2_5_GBPS;
159 case 2: return IB_RATE_5_GBPS;
160 case 4: return IB_RATE_10_GBPS;
161 case 8: return IB_RATE_20_GBPS;
162 case 12: return IB_RATE_30_GBPS;
163 case 16: return IB_RATE_40_GBPS;
164 case 24: return IB_RATE_60_GBPS;
165 case 32: return IB_RATE_80_GBPS;
166 case 48: return IB_RATE_120_GBPS;
167 case 6: return IB_RATE_14_GBPS;
168 case 22: return IB_RATE_56_GBPS;
169 case 45: return IB_RATE_112_GBPS;
170 case 67: return IB_RATE_168_GBPS;
171 case 10: return IB_RATE_25_GBPS;
172 case 40: return IB_RATE_100_GBPS;
173 case 80: return IB_RATE_200_GBPS;
174 case 120: return IB_RATE_300_GBPS;
175 case 11: return IB_RATE_28_GBPS;
176 case 20: return IB_RATE_50_GBPS;
177 case 160: return IB_RATE_400_GBPS;
178 case 240: return IB_RATE_600_GBPS;
179 default: return IB_RATE_PORT_CURRENT;
180 }
181 }
182 EXPORT_SYMBOL(mult_to_ib_rate);
183
ib_rate_to_mbps(enum ib_rate rate)184 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
185 {
186 switch (rate) {
187 case IB_RATE_2_5_GBPS: return 2500;
188 case IB_RATE_5_GBPS: return 5000;
189 case IB_RATE_10_GBPS: return 10000;
190 case IB_RATE_20_GBPS: return 20000;
191 case IB_RATE_30_GBPS: return 30000;
192 case IB_RATE_40_GBPS: return 40000;
193 case IB_RATE_60_GBPS: return 60000;
194 case IB_RATE_80_GBPS: return 80000;
195 case IB_RATE_120_GBPS: return 120000;
196 case IB_RATE_14_GBPS: return 14062;
197 case IB_RATE_56_GBPS: return 56250;
198 case IB_RATE_112_GBPS: return 112500;
199 case IB_RATE_168_GBPS: return 168750;
200 case IB_RATE_25_GBPS: return 25781;
201 case IB_RATE_100_GBPS: return 103125;
202 case IB_RATE_200_GBPS: return 206250;
203 case IB_RATE_300_GBPS: return 309375;
204 case IB_RATE_28_GBPS: return 28125;
205 case IB_RATE_50_GBPS: return 53125;
206 case IB_RATE_400_GBPS: return 425000;
207 case IB_RATE_600_GBPS: return 637500;
208 default: return -1;
209 }
210 }
211 EXPORT_SYMBOL(ib_rate_to_mbps);
212
213 __attribute_const__ enum rdma_transport_type
rdma_node_get_transport(unsigned int node_type)214 rdma_node_get_transport(unsigned int node_type)
215 {
216
217 if (node_type == RDMA_NODE_USNIC)
218 return RDMA_TRANSPORT_USNIC;
219 if (node_type == RDMA_NODE_USNIC_UDP)
220 return RDMA_TRANSPORT_USNIC_UDP;
221 if (node_type == RDMA_NODE_RNIC)
222 return RDMA_TRANSPORT_IWARP;
223 if (node_type == RDMA_NODE_UNSPECIFIED)
224 return RDMA_TRANSPORT_UNSPECIFIED;
225
226 return RDMA_TRANSPORT_IB;
227 }
228 EXPORT_SYMBOL(rdma_node_get_transport);
229
rdma_port_get_link_layer(struct ib_device * device,u32 port_num)230 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
231 u32 port_num)
232 {
233 enum rdma_transport_type lt;
234 if (device->ops.get_link_layer)
235 return device->ops.get_link_layer(device, port_num);
236
237 lt = rdma_node_get_transport(device->node_type);
238 if (lt == RDMA_TRANSPORT_IB)
239 return IB_LINK_LAYER_INFINIBAND;
240
241 return IB_LINK_LAYER_ETHERNET;
242 }
243 EXPORT_SYMBOL(rdma_port_get_link_layer);
244
245 /* Protection domains */
246
247 /**
248 * __ib_alloc_pd - Allocates an unused protection domain.
249 * @device: The device on which to allocate the protection domain.
250 * @flags: protection domain flags
251 * @caller: caller's build-time module name
252 *
253 * A protection domain object provides an association between QPs, shared
254 * receive queues, address handles, memory regions, and memory windows.
255 *
256 * Every PD has a local_dma_lkey which can be used as the lkey value for local
257 * memory operations.
258 */
__ib_alloc_pd(struct ib_device * device,unsigned int flags,const char * caller)259 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
260 const char *caller)
261 {
262 struct ib_pd *pd;
263 int mr_access_flags = 0;
264 int ret;
265
266 pd = rdma_zalloc_drv_obj(device, ib_pd);
267 if (!pd)
268 return ERR_PTR(-ENOMEM);
269
270 pd->device = device;
271 pd->uobject = NULL;
272 pd->__internal_mr = NULL;
273 atomic_set(&pd->usecnt, 0);
274 pd->flags = flags;
275
276 rdma_restrack_new(&pd->res, RDMA_RESTRACK_PD);
277 rdma_restrack_set_name(&pd->res, caller);
278
279 ret = device->ops.alloc_pd(pd, NULL);
280 if (ret) {
281 rdma_restrack_put(&pd->res);
282 kfree(pd);
283 return ERR_PTR(ret);
284 }
285 rdma_restrack_add(&pd->res);
286
287 if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
288 pd->local_dma_lkey = device->local_dma_lkey;
289 else
290 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
291
292 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
293 pr_warn("%s: enabling unsafe global rkey\n", caller);
294 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
295 }
296
297 if (mr_access_flags) {
298 struct ib_mr *mr;
299
300 mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
301 if (IS_ERR(mr)) {
302 ib_dealloc_pd(pd);
303 return ERR_CAST(mr);
304 }
305
306 mr->device = pd->device;
307 mr->pd = pd;
308 mr->type = IB_MR_TYPE_DMA;
309 mr->uobject = NULL;
310 mr->need_inval = false;
311
312 pd->__internal_mr = mr;
313
314 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
315 pd->local_dma_lkey = pd->__internal_mr->lkey;
316
317 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
318 pd->unsafe_global_rkey = pd->__internal_mr->rkey;
319 }
320
321 return pd;
322 }
323 EXPORT_SYMBOL(__ib_alloc_pd);
324
325 /**
326 * ib_dealloc_pd_user - Deallocates a protection domain.
327 * @pd: The protection domain to deallocate.
328 * @udata: Valid user data or NULL for kernel object
329 *
330 * It is an error to call this function while any resources in the pd still
331 * exist. The caller is responsible to synchronously destroy them and
332 * guarantee no new allocations will happen.
333 */
ib_dealloc_pd_user(struct ib_pd * pd,struct ib_udata * udata)334 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
335 {
336 int ret;
337
338 if (pd->__internal_mr) {
339 ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
340 WARN_ON(ret);
341 pd->__internal_mr = NULL;
342 }
343
344 /* uverbs manipulates usecnt with proper locking, while the kabi
345 * requires the caller to guarantee we can't race here.
346 */
347 WARN_ON(atomic_read(&pd->usecnt));
348
349 ret = pd->device->ops.dealloc_pd(pd, udata);
350 if (ret)
351 return ret;
352
353 rdma_restrack_del(&pd->res);
354 kfree(pd);
355 return ret;
356 }
357 EXPORT_SYMBOL(ib_dealloc_pd_user);
358
359 /* Address handles */
360
361 /**
362 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
363 * @dest: Pointer to destination ah_attr. Contents of the destination
364 * pointer is assumed to be invalid and attribute are overwritten.
365 * @src: Pointer to source ah_attr.
366 */
rdma_copy_ah_attr(struct rdma_ah_attr * dest,const struct rdma_ah_attr * src)367 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
368 const struct rdma_ah_attr *src)
369 {
370 *dest = *src;
371 if (dest->grh.sgid_attr)
372 rdma_hold_gid_attr(dest->grh.sgid_attr);
373 }
374 EXPORT_SYMBOL(rdma_copy_ah_attr);
375
376 /**
377 * rdma_replace_ah_attr - Replace valid ah_attr with new new one.
378 * @old: Pointer to existing ah_attr which needs to be replaced.
379 * old is assumed to be valid or zero'd
380 * @new: Pointer to the new ah_attr.
381 *
382 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
383 * old the ah_attr is valid; after that it copies the new attribute and holds
384 * the reference to the replaced ah_attr.
385 */
rdma_replace_ah_attr(struct rdma_ah_attr * old,const struct rdma_ah_attr * new)386 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
387 const struct rdma_ah_attr *new)
388 {
389 rdma_destroy_ah_attr(old);
390 *old = *new;
391 if (old->grh.sgid_attr)
392 rdma_hold_gid_attr(old->grh.sgid_attr);
393 }
394 EXPORT_SYMBOL(rdma_replace_ah_attr);
395
396 /**
397 * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
398 * @dest: Pointer to destination ah_attr to copy to.
399 * dest is assumed to be valid or zero'd
400 * @src: Pointer to the new ah_attr.
401 *
402 * rdma_move_ah_attr() first releases any reference in the destination ah_attr
403 * if it is valid. This also transfers ownership of internal references from
404 * src to dest, making src invalid in the process. No new reference of the src
405 * ah_attr is taken.
406 */
rdma_move_ah_attr(struct rdma_ah_attr * dest,struct rdma_ah_attr * src)407 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
408 {
409 rdma_destroy_ah_attr(dest);
410 *dest = *src;
411 src->grh.sgid_attr = NULL;
412 }
413 EXPORT_SYMBOL(rdma_move_ah_attr);
414
415 /*
416 * Validate that the rdma_ah_attr is valid for the device before passing it
417 * off to the driver.
418 */
rdma_check_ah_attr(struct ib_device * device,struct rdma_ah_attr * ah_attr)419 static int rdma_check_ah_attr(struct ib_device *device,
420 struct rdma_ah_attr *ah_attr)
421 {
422 if (!rdma_is_port_valid(device, ah_attr->port_num))
423 return -EINVAL;
424
425 if ((rdma_is_grh_required(device, ah_attr->port_num) ||
426 ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
427 !(ah_attr->ah_flags & IB_AH_GRH))
428 return -EINVAL;
429
430 if (ah_attr->grh.sgid_attr) {
431 /*
432 * Make sure the passed sgid_attr is consistent with the
433 * parameters
434 */
435 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
436 ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
437 return -EINVAL;
438 }
439 return 0;
440 }
441
442 /*
443 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
444 * On success the caller is responsible to call rdma_unfill_sgid_attr().
445 */
rdma_fill_sgid_attr(struct ib_device * device,struct rdma_ah_attr * ah_attr,const struct ib_gid_attr ** old_sgid_attr)446 static int rdma_fill_sgid_attr(struct ib_device *device,
447 struct rdma_ah_attr *ah_attr,
448 const struct ib_gid_attr **old_sgid_attr)
449 {
450 const struct ib_gid_attr *sgid_attr;
451 struct ib_global_route *grh;
452 int ret;
453
454 *old_sgid_attr = ah_attr->grh.sgid_attr;
455
456 ret = rdma_check_ah_attr(device, ah_attr);
457 if (ret)
458 return ret;
459
460 if (!(ah_attr->ah_flags & IB_AH_GRH))
461 return 0;
462
463 grh = rdma_ah_retrieve_grh(ah_attr);
464 if (grh->sgid_attr)
465 return 0;
466
467 sgid_attr =
468 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
469 if (IS_ERR(sgid_attr))
470 return PTR_ERR(sgid_attr);
471
472 /* Move ownerhip of the kref into the ah_attr */
473 grh->sgid_attr = sgid_attr;
474 return 0;
475 }
476
rdma_unfill_sgid_attr(struct rdma_ah_attr * ah_attr,const struct ib_gid_attr * old_sgid_attr)477 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
478 const struct ib_gid_attr *old_sgid_attr)
479 {
480 /*
481 * Fill didn't change anything, the caller retains ownership of
482 * whatever it passed
483 */
484 if (ah_attr->grh.sgid_attr == old_sgid_attr)
485 return;
486
487 /*
488 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
489 * doesn't see any change in the rdma_ah_attr. If we get here
490 * old_sgid_attr is NULL.
491 */
492 rdma_destroy_ah_attr(ah_attr);
493 }
494
495 static const struct ib_gid_attr *
rdma_update_sgid_attr(struct rdma_ah_attr * ah_attr,const struct ib_gid_attr * old_attr)496 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
497 const struct ib_gid_attr *old_attr)
498 {
499 if (old_attr)
500 rdma_put_gid_attr(old_attr);
501 if (ah_attr->ah_flags & IB_AH_GRH) {
502 rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
503 return ah_attr->grh.sgid_attr;
504 }
505 return NULL;
506 }
507
_rdma_create_ah(struct ib_pd * pd,struct rdma_ah_attr * ah_attr,u32 flags,struct ib_udata * udata,struct net_device * xmit_slave)508 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
509 struct rdma_ah_attr *ah_attr,
510 u32 flags,
511 struct ib_udata *udata,
512 struct net_device *xmit_slave)
513 {
514 struct rdma_ah_init_attr init_attr = {};
515 struct ib_device *device = pd->device;
516 struct ib_ah *ah;
517 int ret;
518
519 might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
520
521 if (!udata && !device->ops.create_ah)
522 return ERR_PTR(-EOPNOTSUPP);
523
524 ah = rdma_zalloc_drv_obj_gfp(
525 device, ib_ah,
526 (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
527 if (!ah)
528 return ERR_PTR(-ENOMEM);
529
530 ah->device = device;
531 ah->pd = pd;
532 ah->type = ah_attr->type;
533 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
534 init_attr.ah_attr = ah_attr;
535 init_attr.flags = flags;
536 init_attr.xmit_slave = xmit_slave;
537
538 if (udata)
539 ret = device->ops.create_user_ah(ah, &init_attr, udata);
540 else
541 ret = device->ops.create_ah(ah, &init_attr, NULL);
542 if (ret) {
543 if (ah->sgid_attr)
544 rdma_put_gid_attr(ah->sgid_attr);
545 kfree(ah);
546 return ERR_PTR(ret);
547 }
548
549 atomic_inc(&pd->usecnt);
550 return ah;
551 }
552
553 /**
554 * rdma_create_ah - Creates an address handle for the
555 * given address vector.
556 * @pd: The protection domain associated with the address handle.
557 * @ah_attr: The attributes of the address vector.
558 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
559 *
560 * It returns 0 on success and returns appropriate error code on error.
561 * The address handle is used to reference a local or global destination
562 * in all UD QP post sends.
563 */
rdma_create_ah(struct ib_pd * pd,struct rdma_ah_attr * ah_attr,u32 flags)564 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
565 u32 flags)
566 {
567 const struct ib_gid_attr *old_sgid_attr;
568 struct net_device *slave;
569 struct ib_ah *ah;
570 int ret;
571
572 ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
573 if (ret)
574 return ERR_PTR(ret);
575 slave = rdma_lag_get_ah_roce_slave(pd->device, ah_attr,
576 (flags & RDMA_CREATE_AH_SLEEPABLE) ?
577 GFP_KERNEL : GFP_ATOMIC);
578 if (IS_ERR(slave)) {
579 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
580 return (void *)slave;
581 }
582 ah = _rdma_create_ah(pd, ah_attr, flags, NULL, slave);
583 rdma_lag_put_ah_roce_slave(slave);
584 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
585 return ah;
586 }
587 EXPORT_SYMBOL(rdma_create_ah);
588
589 /**
590 * rdma_create_user_ah - Creates an address handle for the
591 * given address vector.
592 * It resolves destination mac address for ah attribute of RoCE type.
593 * @pd: The protection domain associated with the address handle.
594 * @ah_attr: The attributes of the address vector.
595 * @udata: pointer to user's input output buffer information need by
596 * provider driver.
597 *
598 * It returns 0 on success and returns appropriate error code on error.
599 * The address handle is used to reference a local or global destination
600 * in all UD QP post sends.
601 */
rdma_create_user_ah(struct ib_pd * pd,struct rdma_ah_attr * ah_attr,struct ib_udata * udata)602 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
603 struct rdma_ah_attr *ah_attr,
604 struct ib_udata *udata)
605 {
606 const struct ib_gid_attr *old_sgid_attr;
607 struct ib_ah *ah;
608 int err;
609
610 err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
611 if (err)
612 return ERR_PTR(err);
613
614 if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
615 err = ib_resolve_eth_dmac(pd->device, ah_attr);
616 if (err) {
617 ah = ERR_PTR(err);
618 goto out;
619 }
620 }
621
622 ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE,
623 udata, NULL);
624
625 out:
626 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
627 return ah;
628 }
629 EXPORT_SYMBOL(rdma_create_user_ah);
630
ib_get_rdma_header_version(const union rdma_network_hdr * hdr)631 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
632 {
633 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
634 struct iphdr ip4h_checked;
635 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
636
637 /* If it's IPv6, the version must be 6, otherwise, the first
638 * 20 bytes (before the IPv4 header) are garbled.
639 */
640 if (ip6h->version != 6)
641 return (ip4h->version == 4) ? 4 : 0;
642 /* version may be 6 or 4 because the first 20 bytes could be garbled */
643
644 /* RoCE v2 requires no options, thus header length
645 * must be 5 words
646 */
647 if (ip4h->ihl != 5)
648 return 6;
649
650 /* Verify checksum.
651 * We can't write on scattered buffers so we need to copy to
652 * temp buffer.
653 */
654 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
655 ip4h_checked.check = 0;
656 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
657 /* if IPv4 header checksum is OK, believe it */
658 if (ip4h->check == ip4h_checked.check)
659 return 4;
660 return 6;
661 }
662 EXPORT_SYMBOL(ib_get_rdma_header_version);
663
ib_get_net_type_by_grh(struct ib_device * device,u32 port_num,const struct ib_grh * grh)664 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
665 u32 port_num,
666 const struct ib_grh *grh)
667 {
668 int grh_version;
669
670 if (rdma_protocol_ib(device, port_num))
671 return RDMA_NETWORK_IB;
672
673 grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
674
675 if (grh_version == 4)
676 return RDMA_NETWORK_IPV4;
677
678 if (grh->next_hdr == IPPROTO_UDP)
679 return RDMA_NETWORK_IPV6;
680
681 return RDMA_NETWORK_ROCE_V1;
682 }
683
684 struct find_gid_index_context {
685 u16 vlan_id;
686 enum ib_gid_type gid_type;
687 };
688
find_gid_index(const union ib_gid * gid,const struct ib_gid_attr * gid_attr,void * context)689 static bool find_gid_index(const union ib_gid *gid,
690 const struct ib_gid_attr *gid_attr,
691 void *context)
692 {
693 struct find_gid_index_context *ctx = context;
694 u16 vlan_id = 0xffff;
695 int ret;
696
697 if (ctx->gid_type != gid_attr->gid_type)
698 return false;
699
700 ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL);
701 if (ret)
702 return false;
703
704 return ctx->vlan_id == vlan_id;
705 }
706
707 static const struct ib_gid_attr *
get_sgid_attr_from_eth(struct ib_device * device,u32 port_num,u16 vlan_id,const union ib_gid * sgid,enum ib_gid_type gid_type)708 get_sgid_attr_from_eth(struct ib_device *device, u32 port_num,
709 u16 vlan_id, const union ib_gid *sgid,
710 enum ib_gid_type gid_type)
711 {
712 struct find_gid_index_context context = {.vlan_id = vlan_id,
713 .gid_type = gid_type};
714
715 return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
716 &context);
717 }
718
ib_get_gids_from_rdma_hdr(const union rdma_network_hdr * hdr,enum rdma_network_type net_type,union ib_gid * sgid,union ib_gid * dgid)719 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
720 enum rdma_network_type net_type,
721 union ib_gid *sgid, union ib_gid *dgid)
722 {
723 struct sockaddr_in src_in;
724 struct sockaddr_in dst_in;
725 __be32 src_saddr, dst_saddr;
726
727 if (!sgid || !dgid)
728 return -EINVAL;
729
730 if (net_type == RDMA_NETWORK_IPV4) {
731 memcpy(&src_in.sin_addr.s_addr,
732 &hdr->roce4grh.saddr, 4);
733 memcpy(&dst_in.sin_addr.s_addr,
734 &hdr->roce4grh.daddr, 4);
735 src_saddr = src_in.sin_addr.s_addr;
736 dst_saddr = dst_in.sin_addr.s_addr;
737 ipv6_addr_set_v4mapped(src_saddr,
738 (struct in6_addr *)sgid);
739 ipv6_addr_set_v4mapped(dst_saddr,
740 (struct in6_addr *)dgid);
741 return 0;
742 } else if (net_type == RDMA_NETWORK_IPV6 ||
743 net_type == RDMA_NETWORK_IB || RDMA_NETWORK_ROCE_V1) {
744 *dgid = hdr->ibgrh.dgid;
745 *sgid = hdr->ibgrh.sgid;
746 return 0;
747 } else {
748 return -EINVAL;
749 }
750 }
751 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
752
753 /* Resolve destination mac address and hop limit for unicast destination
754 * GID entry, considering the source GID entry as well.
755 * ah_attribute must have have valid port_num, sgid_index.
756 */
ib_resolve_unicast_gid_dmac(struct ib_device * device,struct rdma_ah_attr * ah_attr)757 static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
758 struct rdma_ah_attr *ah_attr)
759 {
760 struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
761 const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
762 int hop_limit = 0xff;
763 int ret = 0;
764
765 /* If destination is link local and source GID is RoCEv1,
766 * IP stack is not used.
767 */
768 if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
769 sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
770 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
771 ah_attr->roce.dmac);
772 return ret;
773 }
774
775 ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
776 ah_attr->roce.dmac,
777 sgid_attr, &hop_limit);
778
779 grh->hop_limit = hop_limit;
780 return ret;
781 }
782
783 /*
784 * This function initializes address handle attributes from the incoming packet.
785 * Incoming packet has dgid of the receiver node on which this code is
786 * getting executed and, sgid contains the GID of the sender.
787 *
788 * When resolving mac address of destination, the arrived dgid is used
789 * as sgid and, sgid is used as dgid because sgid contains destinations
790 * GID whom to respond to.
791 *
792 * On success the caller is responsible to call rdma_destroy_ah_attr on the
793 * attr.
794 */
ib_init_ah_attr_from_wc(struct ib_device * device,u32 port_num,const struct ib_wc * wc,const struct ib_grh * grh,struct rdma_ah_attr * ah_attr)795 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
796 const struct ib_wc *wc, const struct ib_grh *grh,
797 struct rdma_ah_attr *ah_attr)
798 {
799 u32 flow_class;
800 int ret;
801 enum rdma_network_type net_type = RDMA_NETWORK_IB;
802 enum ib_gid_type gid_type = IB_GID_TYPE_IB;
803 const struct ib_gid_attr *sgid_attr;
804 int hoplimit = 0xff;
805 union ib_gid dgid;
806 union ib_gid sgid;
807
808 might_sleep();
809
810 memset(ah_attr, 0, sizeof *ah_attr);
811 ah_attr->type = rdma_ah_find_type(device, port_num);
812 if (rdma_cap_eth_ah(device, port_num)) {
813 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
814 net_type = wc->network_hdr_type;
815 else
816 net_type = ib_get_net_type_by_grh(device, port_num, grh);
817 gid_type = ib_network_to_gid_type(net_type);
818 }
819 ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
820 &sgid, &dgid);
821 if (ret)
822 return ret;
823
824 rdma_ah_set_sl(ah_attr, wc->sl);
825 rdma_ah_set_port_num(ah_attr, port_num);
826
827 if (rdma_protocol_roce(device, port_num)) {
828 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
829 wc->vlan_id : 0xffff;
830
831 if (!(wc->wc_flags & IB_WC_GRH))
832 return -EPROTOTYPE;
833
834 sgid_attr = get_sgid_attr_from_eth(device, port_num,
835 vlan_id, &dgid,
836 gid_type);
837 if (IS_ERR(sgid_attr))
838 return PTR_ERR(sgid_attr);
839
840 flow_class = be32_to_cpu(grh->version_tclass_flow);
841 rdma_move_grh_sgid_attr(ah_attr,
842 &sgid,
843 flow_class & 0xFFFFF,
844 hoplimit,
845 (flow_class >> 20) & 0xFF,
846 sgid_attr);
847
848 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
849 if (ret)
850 rdma_destroy_ah_attr(ah_attr);
851
852 return ret;
853 } else {
854 rdma_ah_set_dlid(ah_attr, wc->slid);
855 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
856
857 if ((wc->wc_flags & IB_WC_GRH) == 0)
858 return 0;
859
860 if (dgid.global.interface_id !=
861 cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
862 sgid_attr = rdma_find_gid_by_port(
863 device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
864 } else
865 sgid_attr = rdma_get_gid_attr(device, port_num, 0);
866
867 if (IS_ERR(sgid_attr))
868 return PTR_ERR(sgid_attr);
869 flow_class = be32_to_cpu(grh->version_tclass_flow);
870 rdma_move_grh_sgid_attr(ah_attr,
871 &sgid,
872 flow_class & 0xFFFFF,
873 hoplimit,
874 (flow_class >> 20) & 0xFF,
875 sgid_attr);
876
877 return 0;
878 }
879 }
880 EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
881
882 /**
883 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
884 * of the reference
885 *
886 * @attr: Pointer to AH attribute structure
887 * @dgid: Destination GID
888 * @flow_label: Flow label
889 * @hop_limit: Hop limit
890 * @traffic_class: traffic class
891 * @sgid_attr: Pointer to SGID attribute
892 *
893 * This takes ownership of the sgid_attr reference. The caller must ensure
894 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
895 * calling this function.
896 */
rdma_move_grh_sgid_attr(struct rdma_ah_attr * attr,union ib_gid * dgid,u32 flow_label,u8 hop_limit,u8 traffic_class,const struct ib_gid_attr * sgid_attr)897 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
898 u32 flow_label, u8 hop_limit, u8 traffic_class,
899 const struct ib_gid_attr *sgid_attr)
900 {
901 rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
902 traffic_class);
903 attr->grh.sgid_attr = sgid_attr;
904 }
905 EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
906
907 /**
908 * rdma_destroy_ah_attr - Release reference to SGID attribute of
909 * ah attribute.
910 * @ah_attr: Pointer to ah attribute
911 *
912 * Release reference to the SGID attribute of the ah attribute if it is
913 * non NULL. It is safe to call this multiple times, and safe to call it on
914 * a zero initialized ah_attr.
915 */
rdma_destroy_ah_attr(struct rdma_ah_attr * ah_attr)916 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
917 {
918 if (ah_attr->grh.sgid_attr) {
919 rdma_put_gid_attr(ah_attr->grh.sgid_attr);
920 ah_attr->grh.sgid_attr = NULL;
921 }
922 }
923 EXPORT_SYMBOL(rdma_destroy_ah_attr);
924
ib_create_ah_from_wc(struct ib_pd * pd,const struct ib_wc * wc,const struct ib_grh * grh,u32 port_num)925 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
926 const struct ib_grh *grh, u32 port_num)
927 {
928 struct rdma_ah_attr ah_attr;
929 struct ib_ah *ah;
930 int ret;
931
932 ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
933 if (ret)
934 return ERR_PTR(ret);
935
936 ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
937
938 rdma_destroy_ah_attr(&ah_attr);
939 return ah;
940 }
941 EXPORT_SYMBOL(ib_create_ah_from_wc);
942
rdma_modify_ah(struct ib_ah * ah,struct rdma_ah_attr * ah_attr)943 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
944 {
945 const struct ib_gid_attr *old_sgid_attr;
946 int ret;
947
948 if (ah->type != ah_attr->type)
949 return -EINVAL;
950
951 ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
952 if (ret)
953 return ret;
954
955 ret = ah->device->ops.modify_ah ?
956 ah->device->ops.modify_ah(ah, ah_attr) :
957 -EOPNOTSUPP;
958
959 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
960 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
961 return ret;
962 }
963 EXPORT_SYMBOL(rdma_modify_ah);
964
rdma_query_ah(struct ib_ah * ah,struct rdma_ah_attr * ah_attr)965 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
966 {
967 ah_attr->grh.sgid_attr = NULL;
968
969 return ah->device->ops.query_ah ?
970 ah->device->ops.query_ah(ah, ah_attr) :
971 -EOPNOTSUPP;
972 }
973 EXPORT_SYMBOL(rdma_query_ah);
974
rdma_destroy_ah_user(struct ib_ah * ah,u32 flags,struct ib_udata * udata)975 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
976 {
977 const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
978 struct ib_pd *pd;
979 int ret;
980
981 might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
982
983 pd = ah->pd;
984
985 ret = ah->device->ops.destroy_ah(ah, flags);
986 if (ret)
987 return ret;
988
989 atomic_dec(&pd->usecnt);
990 if (sgid_attr)
991 rdma_put_gid_attr(sgid_attr);
992
993 kfree(ah);
994 return ret;
995 }
996 EXPORT_SYMBOL(rdma_destroy_ah_user);
997
998 /* Shared receive queues */
999
1000 /**
1001 * ib_create_srq_user - Creates a SRQ associated with the specified protection
1002 * domain.
1003 * @pd: The protection domain associated with the SRQ.
1004 * @srq_init_attr: A list of initial attributes required to create the
1005 * SRQ. If SRQ creation succeeds, then the attributes are updated to
1006 * the actual capabilities of the created SRQ.
1007 * @uobject: uobject pointer if this is not a kernel SRQ
1008 * @udata: udata pointer if this is not a kernel SRQ
1009 *
1010 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1011 * requested size of the SRQ, and set to the actual values allocated
1012 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
1013 * will always be at least as large as the requested values.
1014 */
ib_create_srq_user(struct ib_pd * pd,struct ib_srq_init_attr * srq_init_attr,struct ib_usrq_object * uobject,struct ib_udata * udata)1015 struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
1016 struct ib_srq_init_attr *srq_init_attr,
1017 struct ib_usrq_object *uobject,
1018 struct ib_udata *udata)
1019 {
1020 struct ib_srq *srq;
1021 int ret;
1022
1023 srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
1024 if (!srq)
1025 return ERR_PTR(-ENOMEM);
1026
1027 srq->device = pd->device;
1028 srq->pd = pd;
1029 srq->event_handler = srq_init_attr->event_handler;
1030 srq->srq_context = srq_init_attr->srq_context;
1031 srq->srq_type = srq_init_attr->srq_type;
1032 srq->uobject = uobject;
1033
1034 if (ib_srq_has_cq(srq->srq_type)) {
1035 srq->ext.cq = srq_init_attr->ext.cq;
1036 atomic_inc(&srq->ext.cq->usecnt);
1037 }
1038 if (srq->srq_type == IB_SRQT_XRC) {
1039 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
1040 if (srq->ext.xrc.xrcd)
1041 atomic_inc(&srq->ext.xrc.xrcd->usecnt);
1042 }
1043 atomic_inc(&pd->usecnt);
1044
1045 rdma_restrack_new(&srq->res, RDMA_RESTRACK_SRQ);
1046 rdma_restrack_parent_name(&srq->res, &pd->res);
1047
1048 ret = pd->device->ops.create_srq(srq, srq_init_attr, udata);
1049 if (ret) {
1050 rdma_restrack_put(&srq->res);
1051 atomic_dec(&srq->pd->usecnt);
1052 if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
1053 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1054 if (ib_srq_has_cq(srq->srq_type))
1055 atomic_dec(&srq->ext.cq->usecnt);
1056 kfree(srq);
1057 return ERR_PTR(ret);
1058 }
1059
1060 rdma_restrack_add(&srq->res);
1061
1062 return srq;
1063 }
1064 EXPORT_SYMBOL(ib_create_srq_user);
1065
ib_modify_srq(struct ib_srq * srq,struct ib_srq_attr * srq_attr,enum ib_srq_attr_mask srq_attr_mask)1066 int ib_modify_srq(struct ib_srq *srq,
1067 struct ib_srq_attr *srq_attr,
1068 enum ib_srq_attr_mask srq_attr_mask)
1069 {
1070 return srq->device->ops.modify_srq ?
1071 srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
1072 NULL) : -EOPNOTSUPP;
1073 }
1074 EXPORT_SYMBOL(ib_modify_srq);
1075
ib_query_srq(struct ib_srq * srq,struct ib_srq_attr * srq_attr)1076 int ib_query_srq(struct ib_srq *srq,
1077 struct ib_srq_attr *srq_attr)
1078 {
1079 return srq->device->ops.query_srq ?
1080 srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
1081 }
1082 EXPORT_SYMBOL(ib_query_srq);
1083
ib_destroy_srq_user(struct ib_srq * srq,struct ib_udata * udata)1084 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
1085 {
1086 int ret;
1087
1088 if (atomic_read(&srq->usecnt))
1089 return -EBUSY;
1090
1091 ret = srq->device->ops.destroy_srq(srq, udata);
1092 if (ret)
1093 return ret;
1094
1095 atomic_dec(&srq->pd->usecnt);
1096 if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
1097 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1098 if (ib_srq_has_cq(srq->srq_type))
1099 atomic_dec(&srq->ext.cq->usecnt);
1100 rdma_restrack_del(&srq->res);
1101 kfree(srq);
1102
1103 return ret;
1104 }
1105 EXPORT_SYMBOL(ib_destroy_srq_user);
1106
1107 /* Queue pairs */
1108
__ib_shared_qp_event_handler(struct ib_event * event,void * context)1109 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1110 {
1111 struct ib_qp *qp = context;
1112 unsigned long flags;
1113
1114 spin_lock_irqsave(&qp->device->qp_open_list_lock, flags);
1115 list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1116 if (event->element.qp->event_handler)
1117 event->element.qp->event_handler(event, event->element.qp->qp_context);
1118 spin_unlock_irqrestore(&qp->device->qp_open_list_lock, flags);
1119 }
1120
__ib_open_qp(struct ib_qp * real_qp,void (* event_handler)(struct ib_event *,void *),void * qp_context)1121 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1122 void (*event_handler)(struct ib_event *, void *),
1123 void *qp_context)
1124 {
1125 struct ib_qp *qp;
1126 unsigned long flags;
1127 int err;
1128
1129 qp = kzalloc(sizeof *qp, GFP_KERNEL);
1130 if (!qp)
1131 return ERR_PTR(-ENOMEM);
1132
1133 qp->real_qp = real_qp;
1134 err = ib_open_shared_qp_security(qp, real_qp->device);
1135 if (err) {
1136 kfree(qp);
1137 return ERR_PTR(err);
1138 }
1139
1140 qp->real_qp = real_qp;
1141 atomic_inc(&real_qp->usecnt);
1142 qp->device = real_qp->device;
1143 qp->event_handler = event_handler;
1144 qp->qp_context = qp_context;
1145 qp->qp_num = real_qp->qp_num;
1146 qp->qp_type = real_qp->qp_type;
1147
1148 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1149 list_add(&qp->open_list, &real_qp->open_list);
1150 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1151
1152 return qp;
1153 }
1154
ib_open_qp(struct ib_xrcd * xrcd,struct ib_qp_open_attr * qp_open_attr)1155 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1156 struct ib_qp_open_attr *qp_open_attr)
1157 {
1158 struct ib_qp *qp, *real_qp;
1159
1160 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1161 return ERR_PTR(-EINVAL);
1162
1163 down_read(&xrcd->tgt_qps_rwsem);
1164 real_qp = xa_load(&xrcd->tgt_qps, qp_open_attr->qp_num);
1165 if (!real_qp) {
1166 up_read(&xrcd->tgt_qps_rwsem);
1167 return ERR_PTR(-EINVAL);
1168 }
1169 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1170 qp_open_attr->qp_context);
1171 up_read(&xrcd->tgt_qps_rwsem);
1172 return qp;
1173 }
1174 EXPORT_SYMBOL(ib_open_qp);
1175
create_xrc_qp_user(struct ib_qp * qp,struct ib_qp_init_attr * qp_init_attr)1176 static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
1177 struct ib_qp_init_attr *qp_init_attr)
1178 {
1179 struct ib_qp *real_qp = qp;
1180 int err;
1181
1182 qp->event_handler = __ib_shared_qp_event_handler;
1183 qp->qp_context = qp;
1184 qp->pd = NULL;
1185 qp->send_cq = qp->recv_cq = NULL;
1186 qp->srq = NULL;
1187 qp->xrcd = qp_init_attr->xrcd;
1188 atomic_inc(&qp_init_attr->xrcd->usecnt);
1189 INIT_LIST_HEAD(&qp->open_list);
1190
1191 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1192 qp_init_attr->qp_context);
1193 if (IS_ERR(qp))
1194 return qp;
1195
1196 err = xa_err(xa_store(&qp_init_attr->xrcd->tgt_qps, real_qp->qp_num,
1197 real_qp, GFP_KERNEL));
1198 if (err) {
1199 ib_close_qp(qp);
1200 return ERR_PTR(err);
1201 }
1202 return qp;
1203 }
1204
create_qp(struct ib_device * dev,struct ib_pd * pd,struct ib_qp_init_attr * attr,struct ib_udata * udata,struct ib_uqp_object * uobj,const char * caller)1205 static struct ib_qp *create_qp(struct ib_device *dev, struct ib_pd *pd,
1206 struct ib_qp_init_attr *attr,
1207 struct ib_udata *udata,
1208 struct ib_uqp_object *uobj, const char *caller)
1209 {
1210 struct ib_udata dummy = {};
1211 struct ib_qp *qp;
1212 int ret;
1213
1214 if (!dev->ops.create_qp)
1215 return ERR_PTR(-EOPNOTSUPP);
1216
1217 qp = rdma_zalloc_drv_obj_numa(dev, ib_qp);
1218 if (!qp)
1219 return ERR_PTR(-ENOMEM);
1220
1221 qp->device = dev;
1222 qp->pd = pd;
1223 qp->uobject = uobj;
1224 qp->real_qp = qp;
1225
1226 qp->qp_type = attr->qp_type;
1227 qp->rwq_ind_tbl = attr->rwq_ind_tbl;
1228 qp->srq = attr->srq;
1229 qp->event_handler = attr->event_handler;
1230 qp->port = attr->port_num;
1231 qp->qp_context = attr->qp_context;
1232
1233 spin_lock_init(&qp->mr_lock);
1234 INIT_LIST_HEAD(&qp->rdma_mrs);
1235 INIT_LIST_HEAD(&qp->sig_mrs);
1236
1237 qp->send_cq = attr->send_cq;
1238 qp->recv_cq = attr->recv_cq;
1239
1240 rdma_restrack_new(&qp->res, RDMA_RESTRACK_QP);
1241 WARN_ONCE(!udata && !caller, "Missing kernel QP owner");
1242 rdma_restrack_set_name(&qp->res, udata ? NULL : caller);
1243 ret = dev->ops.create_qp(qp, attr, udata);
1244 if (ret)
1245 goto err_create;
1246
1247 /*
1248 * TODO: The mlx4 internally overwrites send_cq and recv_cq.
1249 * Unfortunately, it is not an easy task to fix that driver.
1250 */
1251 qp->send_cq = attr->send_cq;
1252 qp->recv_cq = attr->recv_cq;
1253
1254 ret = ib_create_qp_security(qp, dev);
1255 if (ret)
1256 goto err_security;
1257
1258 rdma_restrack_add(&qp->res);
1259 return qp;
1260
1261 err_security:
1262 qp->device->ops.destroy_qp(qp, udata ? &dummy : NULL);
1263 err_create:
1264 rdma_restrack_put(&qp->res);
1265 kfree(qp);
1266 return ERR_PTR(ret);
1267
1268 }
1269
1270 /**
1271 * ib_create_qp_user - Creates a QP associated with the specified protection
1272 * domain.
1273 * @dev: IB device
1274 * @pd: The protection domain associated with the QP.
1275 * @attr: A list of initial attributes required to create the
1276 * QP. If QP creation succeeds, then the attributes are updated to
1277 * the actual capabilities of the created QP.
1278 * @udata: User data
1279 * @uobj: uverbs obect
1280 * @caller: caller's build-time module name
1281 */
ib_create_qp_user(struct ib_device * dev,struct ib_pd * pd,struct ib_qp_init_attr * attr,struct ib_udata * udata,struct ib_uqp_object * uobj,const char * caller)1282 struct ib_qp *ib_create_qp_user(struct ib_device *dev, struct ib_pd *pd,
1283 struct ib_qp_init_attr *attr,
1284 struct ib_udata *udata,
1285 struct ib_uqp_object *uobj, const char *caller)
1286 {
1287 struct ib_qp *qp, *xrc_qp;
1288
1289 if (attr->qp_type == IB_QPT_XRC_TGT)
1290 qp = create_qp(dev, pd, attr, NULL, NULL, caller);
1291 else
1292 qp = create_qp(dev, pd, attr, udata, uobj, NULL);
1293 if (attr->qp_type != IB_QPT_XRC_TGT || IS_ERR(qp))
1294 return qp;
1295
1296 xrc_qp = create_xrc_qp_user(qp, attr);
1297 if (IS_ERR(xrc_qp)) {
1298 ib_destroy_qp(qp);
1299 return xrc_qp;
1300 }
1301
1302 xrc_qp->uobject = uobj;
1303 return xrc_qp;
1304 }
1305 EXPORT_SYMBOL(ib_create_qp_user);
1306
ib_qp_usecnt_inc(struct ib_qp * qp)1307 void ib_qp_usecnt_inc(struct ib_qp *qp)
1308 {
1309 if (qp->pd)
1310 atomic_inc(&qp->pd->usecnt);
1311 if (qp->send_cq)
1312 atomic_inc(&qp->send_cq->usecnt);
1313 if (qp->recv_cq)
1314 atomic_inc(&qp->recv_cq->usecnt);
1315 if (qp->srq)
1316 atomic_inc(&qp->srq->usecnt);
1317 if (qp->rwq_ind_tbl)
1318 atomic_inc(&qp->rwq_ind_tbl->usecnt);
1319 }
1320 EXPORT_SYMBOL(ib_qp_usecnt_inc);
1321
ib_qp_usecnt_dec(struct ib_qp * qp)1322 void ib_qp_usecnt_dec(struct ib_qp *qp)
1323 {
1324 if (qp->rwq_ind_tbl)
1325 atomic_dec(&qp->rwq_ind_tbl->usecnt);
1326 if (qp->srq)
1327 atomic_dec(&qp->srq->usecnt);
1328 if (qp->recv_cq)
1329 atomic_dec(&qp->recv_cq->usecnt);
1330 if (qp->send_cq)
1331 atomic_dec(&qp->send_cq->usecnt);
1332 if (qp->pd)
1333 atomic_dec(&qp->pd->usecnt);
1334 }
1335 EXPORT_SYMBOL(ib_qp_usecnt_dec);
1336
ib_create_qp_kernel(struct ib_pd * pd,struct ib_qp_init_attr * qp_init_attr,const char * caller)1337 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
1338 struct ib_qp_init_attr *qp_init_attr,
1339 const char *caller)
1340 {
1341 struct ib_device *device = pd->device;
1342 struct ib_qp *qp;
1343 int ret;
1344
1345 /*
1346 * If the callers is using the RDMA API calculate the resources
1347 * needed for the RDMA READ/WRITE operations.
1348 *
1349 * Note that these callers need to pass in a port number.
1350 */
1351 if (qp_init_attr->cap.max_rdma_ctxs)
1352 rdma_rw_init_qp(device, qp_init_attr);
1353
1354 qp = create_qp(device, pd, qp_init_attr, NULL, NULL, caller);
1355 if (IS_ERR(qp))
1356 return qp;
1357
1358 ib_qp_usecnt_inc(qp);
1359
1360 if (qp_init_attr->cap.max_rdma_ctxs) {
1361 ret = rdma_rw_init_mrs(qp, qp_init_attr);
1362 if (ret)
1363 goto err;
1364 }
1365
1366 /*
1367 * Note: all hw drivers guarantee that max_send_sge is lower than
1368 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1369 * max_send_sge <= max_sge_rd.
1370 */
1371 qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1372 qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1373 device->attrs.max_sge_rd);
1374 if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
1375 qp->integrity_en = true;
1376
1377 return qp;
1378
1379 err:
1380 ib_destroy_qp(qp);
1381 return ERR_PTR(ret);
1382
1383 }
1384 EXPORT_SYMBOL(ib_create_qp_kernel);
1385
1386 static const struct {
1387 int valid;
1388 enum ib_qp_attr_mask req_param[IB_QPT_MAX];
1389 enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
1390 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1391 [IB_QPS_RESET] = {
1392 [IB_QPS_RESET] = { .valid = 1 },
1393 [IB_QPS_INIT] = {
1394 .valid = 1,
1395 .req_param = {
1396 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1397 IB_QP_PORT |
1398 IB_QP_QKEY),
1399 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
1400 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
1401 IB_QP_PORT |
1402 IB_QP_ACCESS_FLAGS),
1403 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
1404 IB_QP_PORT |
1405 IB_QP_ACCESS_FLAGS),
1406 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
1407 IB_QP_PORT |
1408 IB_QP_ACCESS_FLAGS),
1409 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
1410 IB_QP_PORT |
1411 IB_QP_ACCESS_FLAGS),
1412 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1413 IB_QP_QKEY),
1414 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1415 IB_QP_QKEY),
1416 }
1417 },
1418 },
1419 [IB_QPS_INIT] = {
1420 [IB_QPS_RESET] = { .valid = 1 },
1421 [IB_QPS_ERR] = { .valid = 1 },
1422 [IB_QPS_INIT] = {
1423 .valid = 1,
1424 .opt_param = {
1425 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1426 IB_QP_PORT |
1427 IB_QP_QKEY),
1428 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
1429 IB_QP_PORT |
1430 IB_QP_ACCESS_FLAGS),
1431 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
1432 IB_QP_PORT |
1433 IB_QP_ACCESS_FLAGS),
1434 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
1435 IB_QP_PORT |
1436 IB_QP_ACCESS_FLAGS),
1437 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
1438 IB_QP_PORT |
1439 IB_QP_ACCESS_FLAGS),
1440 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1441 IB_QP_QKEY),
1442 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1443 IB_QP_QKEY),
1444 }
1445 },
1446 [IB_QPS_RTR] = {
1447 .valid = 1,
1448 .req_param = {
1449 [IB_QPT_UC] = (IB_QP_AV |
1450 IB_QP_PATH_MTU |
1451 IB_QP_DEST_QPN |
1452 IB_QP_RQ_PSN),
1453 [IB_QPT_RC] = (IB_QP_AV |
1454 IB_QP_PATH_MTU |
1455 IB_QP_DEST_QPN |
1456 IB_QP_RQ_PSN |
1457 IB_QP_MAX_DEST_RD_ATOMIC |
1458 IB_QP_MIN_RNR_TIMER),
1459 [IB_QPT_XRC_INI] = (IB_QP_AV |
1460 IB_QP_PATH_MTU |
1461 IB_QP_DEST_QPN |
1462 IB_QP_RQ_PSN),
1463 [IB_QPT_XRC_TGT] = (IB_QP_AV |
1464 IB_QP_PATH_MTU |
1465 IB_QP_DEST_QPN |
1466 IB_QP_RQ_PSN |
1467 IB_QP_MAX_DEST_RD_ATOMIC |
1468 IB_QP_MIN_RNR_TIMER),
1469 },
1470 .opt_param = {
1471 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1472 IB_QP_QKEY),
1473 [IB_QPT_UC] = (IB_QP_ALT_PATH |
1474 IB_QP_ACCESS_FLAGS |
1475 IB_QP_PKEY_INDEX),
1476 [IB_QPT_RC] = (IB_QP_ALT_PATH |
1477 IB_QP_ACCESS_FLAGS |
1478 IB_QP_PKEY_INDEX),
1479 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
1480 IB_QP_ACCESS_FLAGS |
1481 IB_QP_PKEY_INDEX),
1482 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
1483 IB_QP_ACCESS_FLAGS |
1484 IB_QP_PKEY_INDEX),
1485 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1486 IB_QP_QKEY),
1487 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1488 IB_QP_QKEY),
1489 },
1490 },
1491 },
1492 [IB_QPS_RTR] = {
1493 [IB_QPS_RESET] = { .valid = 1 },
1494 [IB_QPS_ERR] = { .valid = 1 },
1495 [IB_QPS_RTS] = {
1496 .valid = 1,
1497 .req_param = {
1498 [IB_QPT_UD] = IB_QP_SQ_PSN,
1499 [IB_QPT_UC] = IB_QP_SQ_PSN,
1500 [IB_QPT_RC] = (IB_QP_TIMEOUT |
1501 IB_QP_RETRY_CNT |
1502 IB_QP_RNR_RETRY |
1503 IB_QP_SQ_PSN |
1504 IB_QP_MAX_QP_RD_ATOMIC),
1505 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
1506 IB_QP_RETRY_CNT |
1507 IB_QP_RNR_RETRY |
1508 IB_QP_SQ_PSN |
1509 IB_QP_MAX_QP_RD_ATOMIC),
1510 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
1511 IB_QP_SQ_PSN),
1512 [IB_QPT_SMI] = IB_QP_SQ_PSN,
1513 [IB_QPT_GSI] = IB_QP_SQ_PSN,
1514 },
1515 .opt_param = {
1516 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1517 IB_QP_QKEY),
1518 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1519 IB_QP_ALT_PATH |
1520 IB_QP_ACCESS_FLAGS |
1521 IB_QP_PATH_MIG_STATE),
1522 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1523 IB_QP_ALT_PATH |
1524 IB_QP_ACCESS_FLAGS |
1525 IB_QP_MIN_RNR_TIMER |
1526 IB_QP_PATH_MIG_STATE),
1527 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1528 IB_QP_ALT_PATH |
1529 IB_QP_ACCESS_FLAGS |
1530 IB_QP_PATH_MIG_STATE),
1531 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1532 IB_QP_ALT_PATH |
1533 IB_QP_ACCESS_FLAGS |
1534 IB_QP_MIN_RNR_TIMER |
1535 IB_QP_PATH_MIG_STATE),
1536 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1537 IB_QP_QKEY),
1538 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1539 IB_QP_QKEY),
1540 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1541 }
1542 }
1543 },
1544 [IB_QPS_RTS] = {
1545 [IB_QPS_RESET] = { .valid = 1 },
1546 [IB_QPS_ERR] = { .valid = 1 },
1547 [IB_QPS_RTS] = {
1548 .valid = 1,
1549 .opt_param = {
1550 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1551 IB_QP_QKEY),
1552 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1553 IB_QP_ACCESS_FLAGS |
1554 IB_QP_ALT_PATH |
1555 IB_QP_PATH_MIG_STATE),
1556 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1557 IB_QP_ACCESS_FLAGS |
1558 IB_QP_ALT_PATH |
1559 IB_QP_PATH_MIG_STATE |
1560 IB_QP_MIN_RNR_TIMER),
1561 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1562 IB_QP_ACCESS_FLAGS |
1563 IB_QP_ALT_PATH |
1564 IB_QP_PATH_MIG_STATE),
1565 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1566 IB_QP_ACCESS_FLAGS |
1567 IB_QP_ALT_PATH |
1568 IB_QP_PATH_MIG_STATE |
1569 IB_QP_MIN_RNR_TIMER),
1570 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1571 IB_QP_QKEY),
1572 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1573 IB_QP_QKEY),
1574 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1575 }
1576 },
1577 [IB_QPS_SQD] = {
1578 .valid = 1,
1579 .opt_param = {
1580 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1581 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1582 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1583 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1584 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1585 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1586 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1587 }
1588 },
1589 },
1590 [IB_QPS_SQD] = {
1591 [IB_QPS_RESET] = { .valid = 1 },
1592 [IB_QPS_ERR] = { .valid = 1 },
1593 [IB_QPS_RTS] = {
1594 .valid = 1,
1595 .opt_param = {
1596 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1597 IB_QP_QKEY),
1598 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1599 IB_QP_ALT_PATH |
1600 IB_QP_ACCESS_FLAGS |
1601 IB_QP_PATH_MIG_STATE),
1602 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1603 IB_QP_ALT_PATH |
1604 IB_QP_ACCESS_FLAGS |
1605 IB_QP_MIN_RNR_TIMER |
1606 IB_QP_PATH_MIG_STATE),
1607 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1608 IB_QP_ALT_PATH |
1609 IB_QP_ACCESS_FLAGS |
1610 IB_QP_PATH_MIG_STATE),
1611 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1612 IB_QP_ALT_PATH |
1613 IB_QP_ACCESS_FLAGS |
1614 IB_QP_MIN_RNR_TIMER |
1615 IB_QP_PATH_MIG_STATE),
1616 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1617 IB_QP_QKEY),
1618 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1619 IB_QP_QKEY),
1620 }
1621 },
1622 [IB_QPS_SQD] = {
1623 .valid = 1,
1624 .opt_param = {
1625 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1626 IB_QP_QKEY),
1627 [IB_QPT_UC] = (IB_QP_AV |
1628 IB_QP_ALT_PATH |
1629 IB_QP_ACCESS_FLAGS |
1630 IB_QP_PKEY_INDEX |
1631 IB_QP_PATH_MIG_STATE),
1632 [IB_QPT_RC] = (IB_QP_PORT |
1633 IB_QP_AV |
1634 IB_QP_TIMEOUT |
1635 IB_QP_RETRY_CNT |
1636 IB_QP_RNR_RETRY |
1637 IB_QP_MAX_QP_RD_ATOMIC |
1638 IB_QP_MAX_DEST_RD_ATOMIC |
1639 IB_QP_ALT_PATH |
1640 IB_QP_ACCESS_FLAGS |
1641 IB_QP_PKEY_INDEX |
1642 IB_QP_MIN_RNR_TIMER |
1643 IB_QP_PATH_MIG_STATE),
1644 [IB_QPT_XRC_INI] = (IB_QP_PORT |
1645 IB_QP_AV |
1646 IB_QP_TIMEOUT |
1647 IB_QP_RETRY_CNT |
1648 IB_QP_RNR_RETRY |
1649 IB_QP_MAX_QP_RD_ATOMIC |
1650 IB_QP_ALT_PATH |
1651 IB_QP_ACCESS_FLAGS |
1652 IB_QP_PKEY_INDEX |
1653 IB_QP_PATH_MIG_STATE),
1654 [IB_QPT_XRC_TGT] = (IB_QP_PORT |
1655 IB_QP_AV |
1656 IB_QP_TIMEOUT |
1657 IB_QP_MAX_DEST_RD_ATOMIC |
1658 IB_QP_ALT_PATH |
1659 IB_QP_ACCESS_FLAGS |
1660 IB_QP_PKEY_INDEX |
1661 IB_QP_MIN_RNR_TIMER |
1662 IB_QP_PATH_MIG_STATE),
1663 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1664 IB_QP_QKEY),
1665 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1666 IB_QP_QKEY),
1667 }
1668 }
1669 },
1670 [IB_QPS_SQE] = {
1671 [IB_QPS_RESET] = { .valid = 1 },
1672 [IB_QPS_ERR] = { .valid = 1 },
1673 [IB_QPS_RTS] = {
1674 .valid = 1,
1675 .opt_param = {
1676 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1677 IB_QP_QKEY),
1678 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1679 IB_QP_ACCESS_FLAGS),
1680 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1681 IB_QP_QKEY),
1682 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1683 IB_QP_QKEY),
1684 }
1685 }
1686 },
1687 [IB_QPS_ERR] = {
1688 [IB_QPS_RESET] = { .valid = 1 },
1689 [IB_QPS_ERR] = { .valid = 1 }
1690 }
1691 };
1692
ib_modify_qp_is_ok(enum ib_qp_state cur_state,enum ib_qp_state next_state,enum ib_qp_type type,enum ib_qp_attr_mask mask)1693 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1694 enum ib_qp_type type, enum ib_qp_attr_mask mask)
1695 {
1696 enum ib_qp_attr_mask req_param, opt_param;
1697
1698 if (mask & IB_QP_CUR_STATE &&
1699 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1700 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1701 return false;
1702
1703 if (!qp_state_table[cur_state][next_state].valid)
1704 return false;
1705
1706 req_param = qp_state_table[cur_state][next_state].req_param[type];
1707 opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1708
1709 if ((mask & req_param) != req_param)
1710 return false;
1711
1712 if (mask & ~(req_param | opt_param | IB_QP_STATE))
1713 return false;
1714
1715 return true;
1716 }
1717 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1718
1719 /**
1720 * ib_resolve_eth_dmac - Resolve destination mac address
1721 * @device: Device to consider
1722 * @ah_attr: address handle attribute which describes the
1723 * source and destination parameters
1724 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1725 * returns 0 on success or appropriate error code. It initializes the
1726 * necessary ah_attr fields when call is successful.
1727 */
ib_resolve_eth_dmac(struct ib_device * device,struct rdma_ah_attr * ah_attr)1728 static int ib_resolve_eth_dmac(struct ib_device *device,
1729 struct rdma_ah_attr *ah_attr)
1730 {
1731 int ret = 0;
1732
1733 if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1734 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1735 __be32 addr = 0;
1736
1737 memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1738 ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1739 } else {
1740 ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1741 (char *)ah_attr->roce.dmac);
1742 }
1743 } else {
1744 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1745 }
1746 return ret;
1747 }
1748
is_qp_type_connected(const struct ib_qp * qp)1749 static bool is_qp_type_connected(const struct ib_qp *qp)
1750 {
1751 return (qp->qp_type == IB_QPT_UC ||
1752 qp->qp_type == IB_QPT_RC ||
1753 qp->qp_type == IB_QPT_XRC_INI ||
1754 qp->qp_type == IB_QPT_XRC_TGT);
1755 }
1756
1757 /*
1758 * IB core internal function to perform QP attributes modification.
1759 */
_ib_modify_qp(struct ib_qp * qp,struct ib_qp_attr * attr,int attr_mask,struct ib_udata * udata)1760 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1761 int attr_mask, struct ib_udata *udata)
1762 {
1763 u32 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1764 const struct ib_gid_attr *old_sgid_attr_av;
1765 const struct ib_gid_attr *old_sgid_attr_alt_av;
1766 int ret;
1767
1768 attr->xmit_slave = NULL;
1769 if (attr_mask & IB_QP_AV) {
1770 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1771 &old_sgid_attr_av);
1772 if (ret)
1773 return ret;
1774
1775 if (attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1776 is_qp_type_connected(qp)) {
1777 struct net_device *slave;
1778
1779 /*
1780 * If the user provided the qp_attr then we have to
1781 * resolve it. Kerne users have to provide already
1782 * resolved rdma_ah_attr's.
1783 */
1784 if (udata) {
1785 ret = ib_resolve_eth_dmac(qp->device,
1786 &attr->ah_attr);
1787 if (ret)
1788 goto out_av;
1789 }
1790 slave = rdma_lag_get_ah_roce_slave(qp->device,
1791 &attr->ah_attr,
1792 GFP_KERNEL);
1793 if (IS_ERR(slave)) {
1794 ret = PTR_ERR(slave);
1795 goto out_av;
1796 }
1797 attr->xmit_slave = slave;
1798 }
1799 }
1800 if (attr_mask & IB_QP_ALT_PATH) {
1801 /*
1802 * FIXME: This does not track the migration state, so if the
1803 * user loads a new alternate path after the HW has migrated
1804 * from primary->alternate we will keep the wrong
1805 * references. This is OK for IB because the reference
1806 * counting does not serve any functional purpose.
1807 */
1808 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1809 &old_sgid_attr_alt_av);
1810 if (ret)
1811 goto out_av;
1812
1813 /*
1814 * Today the core code can only handle alternate paths and APM
1815 * for IB. Ban them in roce mode.
1816 */
1817 if (!(rdma_protocol_ib(qp->device,
1818 attr->alt_ah_attr.port_num) &&
1819 rdma_protocol_ib(qp->device, port))) {
1820 ret = -EINVAL;
1821 goto out;
1822 }
1823 }
1824
1825 if (rdma_ib_or_roce(qp->device, port)) {
1826 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1827 dev_warn(&qp->device->dev,
1828 "%s rq_psn overflow, masking to 24 bits\n",
1829 __func__);
1830 attr->rq_psn &= 0xffffff;
1831 }
1832
1833 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1834 dev_warn(&qp->device->dev,
1835 " %s sq_psn overflow, masking to 24 bits\n",
1836 __func__);
1837 attr->sq_psn &= 0xffffff;
1838 }
1839 }
1840
1841 /*
1842 * Bind this qp to a counter automatically based on the rdma counter
1843 * rules. This only set in RST2INIT with port specified
1844 */
1845 if (!qp->counter && (attr_mask & IB_QP_PORT) &&
1846 ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT))
1847 rdma_counter_bind_qp_auto(qp, attr->port_num);
1848
1849 ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1850 if (ret)
1851 goto out;
1852
1853 if (attr_mask & IB_QP_PORT)
1854 qp->port = attr->port_num;
1855 if (attr_mask & IB_QP_AV)
1856 qp->av_sgid_attr =
1857 rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1858 if (attr_mask & IB_QP_ALT_PATH)
1859 qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1860 &attr->alt_ah_attr, qp->alt_path_sgid_attr);
1861
1862 out:
1863 if (attr_mask & IB_QP_ALT_PATH)
1864 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1865 out_av:
1866 if (attr_mask & IB_QP_AV) {
1867 rdma_lag_put_ah_roce_slave(attr->xmit_slave);
1868 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1869 }
1870 return ret;
1871 }
1872
1873 /**
1874 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1875 * @ib_qp: The QP to modify.
1876 * @attr: On input, specifies the QP attributes to modify. On output,
1877 * the current values of selected QP attributes are returned.
1878 * @attr_mask: A bit-mask used to specify which attributes of the QP
1879 * are being modified.
1880 * @udata: pointer to user's input output buffer information
1881 * are being modified.
1882 * It returns 0 on success and returns appropriate error code on error.
1883 */
ib_modify_qp_with_udata(struct ib_qp * ib_qp,struct ib_qp_attr * attr,int attr_mask,struct ib_udata * udata)1884 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1885 int attr_mask, struct ib_udata *udata)
1886 {
1887 return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1888 }
1889 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1890
ib_get_eth_speed(struct ib_device * dev,u32 port_num,u16 * speed,u8 * width)1891 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, u8 *width)
1892 {
1893 int rc;
1894 u32 netdev_speed;
1895 struct net_device *netdev;
1896 struct ethtool_link_ksettings lksettings;
1897
1898 if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1899 return -EINVAL;
1900
1901 netdev = ib_device_get_netdev(dev, port_num);
1902 if (!netdev)
1903 return -ENODEV;
1904
1905 rtnl_lock();
1906 rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1907 rtnl_unlock();
1908
1909 dev_put(netdev);
1910
1911 if (!rc && lksettings.base.speed != (u32)SPEED_UNKNOWN) {
1912 netdev_speed = lksettings.base.speed;
1913 } else {
1914 netdev_speed = SPEED_1000;
1915 pr_warn("%s speed is unknown, defaulting to %u\n", netdev->name,
1916 netdev_speed);
1917 }
1918
1919 if (netdev_speed <= SPEED_1000) {
1920 *width = IB_WIDTH_1X;
1921 *speed = IB_SPEED_SDR;
1922 } else if (netdev_speed <= SPEED_10000) {
1923 *width = IB_WIDTH_1X;
1924 *speed = IB_SPEED_FDR10;
1925 } else if (netdev_speed <= SPEED_20000) {
1926 *width = IB_WIDTH_4X;
1927 *speed = IB_SPEED_DDR;
1928 } else if (netdev_speed <= SPEED_25000) {
1929 *width = IB_WIDTH_1X;
1930 *speed = IB_SPEED_EDR;
1931 } else if (netdev_speed <= SPEED_40000) {
1932 *width = IB_WIDTH_4X;
1933 *speed = IB_SPEED_FDR10;
1934 } else {
1935 *width = IB_WIDTH_4X;
1936 *speed = IB_SPEED_EDR;
1937 }
1938
1939 return 0;
1940 }
1941 EXPORT_SYMBOL(ib_get_eth_speed);
1942
ib_modify_qp(struct ib_qp * qp,struct ib_qp_attr * qp_attr,int qp_attr_mask)1943 int ib_modify_qp(struct ib_qp *qp,
1944 struct ib_qp_attr *qp_attr,
1945 int qp_attr_mask)
1946 {
1947 return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1948 }
1949 EXPORT_SYMBOL(ib_modify_qp);
1950
ib_query_qp(struct ib_qp * qp,struct ib_qp_attr * qp_attr,int qp_attr_mask,struct ib_qp_init_attr * qp_init_attr)1951 int ib_query_qp(struct ib_qp *qp,
1952 struct ib_qp_attr *qp_attr,
1953 int qp_attr_mask,
1954 struct ib_qp_init_attr *qp_init_attr)
1955 {
1956 qp_attr->ah_attr.grh.sgid_attr = NULL;
1957 qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
1958
1959 return qp->device->ops.query_qp ?
1960 qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
1961 qp_init_attr) : -EOPNOTSUPP;
1962 }
1963 EXPORT_SYMBOL(ib_query_qp);
1964
ib_close_qp(struct ib_qp * qp)1965 int ib_close_qp(struct ib_qp *qp)
1966 {
1967 struct ib_qp *real_qp;
1968 unsigned long flags;
1969
1970 real_qp = qp->real_qp;
1971 if (real_qp == qp)
1972 return -EINVAL;
1973
1974 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1975 list_del(&qp->open_list);
1976 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1977
1978 atomic_dec(&real_qp->usecnt);
1979 if (qp->qp_sec)
1980 ib_close_shared_qp_security(qp->qp_sec);
1981 kfree(qp);
1982
1983 return 0;
1984 }
1985 EXPORT_SYMBOL(ib_close_qp);
1986
__ib_destroy_shared_qp(struct ib_qp * qp)1987 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1988 {
1989 struct ib_xrcd *xrcd;
1990 struct ib_qp *real_qp;
1991 int ret;
1992
1993 real_qp = qp->real_qp;
1994 xrcd = real_qp->xrcd;
1995 down_write(&xrcd->tgt_qps_rwsem);
1996 ib_close_qp(qp);
1997 if (atomic_read(&real_qp->usecnt) == 0)
1998 xa_erase(&xrcd->tgt_qps, real_qp->qp_num);
1999 else
2000 real_qp = NULL;
2001 up_write(&xrcd->tgt_qps_rwsem);
2002
2003 if (real_qp) {
2004 ret = ib_destroy_qp(real_qp);
2005 if (!ret)
2006 atomic_dec(&xrcd->usecnt);
2007 }
2008
2009 return 0;
2010 }
2011
ib_destroy_qp_user(struct ib_qp * qp,struct ib_udata * udata)2012 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
2013 {
2014 const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
2015 const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
2016 struct ib_qp_security *sec;
2017 int ret;
2018
2019 WARN_ON_ONCE(qp->mrs_used > 0);
2020
2021 if (atomic_read(&qp->usecnt))
2022 return -EBUSY;
2023
2024 if (qp->real_qp != qp)
2025 return __ib_destroy_shared_qp(qp);
2026
2027 sec = qp->qp_sec;
2028 if (sec)
2029 ib_destroy_qp_security_begin(sec);
2030
2031 if (!qp->uobject)
2032 rdma_rw_cleanup_mrs(qp);
2033
2034 rdma_counter_unbind_qp(qp, true);
2035 ret = qp->device->ops.destroy_qp(qp, udata);
2036 if (ret) {
2037 if (sec)
2038 ib_destroy_qp_security_abort(sec);
2039 return ret;
2040 }
2041
2042 if (alt_path_sgid_attr)
2043 rdma_put_gid_attr(alt_path_sgid_attr);
2044 if (av_sgid_attr)
2045 rdma_put_gid_attr(av_sgid_attr);
2046
2047 ib_qp_usecnt_dec(qp);
2048 if (sec)
2049 ib_destroy_qp_security_end(sec);
2050
2051 rdma_restrack_del(&qp->res);
2052 kfree(qp);
2053 return ret;
2054 }
2055 EXPORT_SYMBOL(ib_destroy_qp_user);
2056
2057 /* Completion queues */
2058
__ib_create_cq(struct ib_device * device,ib_comp_handler comp_handler,void (* event_handler)(struct ib_event *,void *),void * cq_context,const struct ib_cq_init_attr * cq_attr,const char * caller)2059 struct ib_cq *__ib_create_cq(struct ib_device *device,
2060 ib_comp_handler comp_handler,
2061 void (*event_handler)(struct ib_event *, void *),
2062 void *cq_context,
2063 const struct ib_cq_init_attr *cq_attr,
2064 const char *caller)
2065 {
2066 struct ib_cq *cq;
2067 int ret;
2068
2069 cq = rdma_zalloc_drv_obj(device, ib_cq);
2070 if (!cq)
2071 return ERR_PTR(-ENOMEM);
2072
2073 cq->device = device;
2074 cq->uobject = NULL;
2075 cq->comp_handler = comp_handler;
2076 cq->event_handler = event_handler;
2077 cq->cq_context = cq_context;
2078 atomic_set(&cq->usecnt, 0);
2079
2080 rdma_restrack_new(&cq->res, RDMA_RESTRACK_CQ);
2081 rdma_restrack_set_name(&cq->res, caller);
2082
2083 ret = device->ops.create_cq(cq, cq_attr, NULL);
2084 if (ret) {
2085 rdma_restrack_put(&cq->res);
2086 kfree(cq);
2087 return ERR_PTR(ret);
2088 }
2089
2090 rdma_restrack_add(&cq->res);
2091 return cq;
2092 }
2093 EXPORT_SYMBOL(__ib_create_cq);
2094
rdma_set_cq_moderation(struct ib_cq * cq,u16 cq_count,u16 cq_period)2095 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
2096 {
2097 if (cq->shared)
2098 return -EOPNOTSUPP;
2099
2100 return cq->device->ops.modify_cq ?
2101 cq->device->ops.modify_cq(cq, cq_count,
2102 cq_period) : -EOPNOTSUPP;
2103 }
2104 EXPORT_SYMBOL(rdma_set_cq_moderation);
2105
ib_destroy_cq_user(struct ib_cq * cq,struct ib_udata * udata)2106 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
2107 {
2108 int ret;
2109
2110 if (WARN_ON_ONCE(cq->shared))
2111 return -EOPNOTSUPP;
2112
2113 if (atomic_read(&cq->usecnt))
2114 return -EBUSY;
2115
2116 ret = cq->device->ops.destroy_cq(cq, udata);
2117 if (ret)
2118 return ret;
2119
2120 rdma_restrack_del(&cq->res);
2121 kfree(cq);
2122 return ret;
2123 }
2124 EXPORT_SYMBOL(ib_destroy_cq_user);
2125
ib_resize_cq(struct ib_cq * cq,int cqe)2126 int ib_resize_cq(struct ib_cq *cq, int cqe)
2127 {
2128 if (cq->shared)
2129 return -EOPNOTSUPP;
2130
2131 return cq->device->ops.resize_cq ?
2132 cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
2133 }
2134 EXPORT_SYMBOL(ib_resize_cq);
2135
2136 /* Memory regions */
2137
ib_reg_user_mr(struct ib_pd * pd,u64 start,u64 length,u64 virt_addr,int access_flags)2138 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
2139 u64 virt_addr, int access_flags)
2140 {
2141 struct ib_mr *mr;
2142
2143 if (access_flags & IB_ACCESS_ON_DEMAND) {
2144 if (!(pd->device->attrs.device_cap_flags &
2145 IB_DEVICE_ON_DEMAND_PAGING)) {
2146 pr_debug("ODP support not available\n");
2147 return ERR_PTR(-EINVAL);
2148 }
2149 }
2150
2151 mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr,
2152 access_flags, NULL);
2153
2154 if (IS_ERR(mr))
2155 return mr;
2156
2157 mr->device = pd->device;
2158 mr->type = IB_MR_TYPE_USER;
2159 mr->pd = pd;
2160 mr->dm = NULL;
2161 atomic_inc(&pd->usecnt);
2162 mr->iova = virt_addr;
2163 mr->length = length;
2164
2165 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2166 rdma_restrack_parent_name(&mr->res, &pd->res);
2167 rdma_restrack_add(&mr->res);
2168
2169 return mr;
2170 }
2171 EXPORT_SYMBOL(ib_reg_user_mr);
2172
ib_advise_mr(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 flags,struct ib_sge * sg_list,u32 num_sge)2173 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
2174 u32 flags, struct ib_sge *sg_list, u32 num_sge)
2175 {
2176 if (!pd->device->ops.advise_mr)
2177 return -EOPNOTSUPP;
2178
2179 if (!num_sge)
2180 return 0;
2181
2182 return pd->device->ops.advise_mr(pd, advice, flags, sg_list, num_sge,
2183 NULL);
2184 }
2185 EXPORT_SYMBOL(ib_advise_mr);
2186
ib_dereg_mr_user(struct ib_mr * mr,struct ib_udata * udata)2187 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
2188 {
2189 struct ib_pd *pd = mr->pd;
2190 struct ib_dm *dm = mr->dm;
2191 struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
2192 int ret;
2193
2194 trace_mr_dereg(mr);
2195 rdma_restrack_del(&mr->res);
2196 ret = mr->device->ops.dereg_mr(mr, udata);
2197 if (!ret) {
2198 atomic_dec(&pd->usecnt);
2199 if (dm)
2200 atomic_dec(&dm->usecnt);
2201 kfree(sig_attrs);
2202 }
2203
2204 return ret;
2205 }
2206 EXPORT_SYMBOL(ib_dereg_mr_user);
2207
2208 /**
2209 * ib_alloc_mr() - Allocates a memory region
2210 * @pd: protection domain associated with the region
2211 * @mr_type: memory region type
2212 * @max_num_sg: maximum sg entries available for registration.
2213 *
2214 * Notes:
2215 * Memory registeration page/sg lists must not exceed max_num_sg.
2216 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
2217 * max_num_sg * used_page_size.
2218 *
2219 */
ib_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg)2220 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2221 u32 max_num_sg)
2222 {
2223 struct ib_mr *mr;
2224
2225 if (!pd->device->ops.alloc_mr) {
2226 mr = ERR_PTR(-EOPNOTSUPP);
2227 goto out;
2228 }
2229
2230 if (mr_type == IB_MR_TYPE_INTEGRITY) {
2231 WARN_ON_ONCE(1);
2232 mr = ERR_PTR(-EINVAL);
2233 goto out;
2234 }
2235
2236 mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg);
2237 if (IS_ERR(mr))
2238 goto out;
2239
2240 mr->device = pd->device;
2241 mr->pd = pd;
2242 mr->dm = NULL;
2243 mr->uobject = NULL;
2244 atomic_inc(&pd->usecnt);
2245 mr->need_inval = false;
2246 mr->type = mr_type;
2247 mr->sig_attrs = NULL;
2248
2249 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2250 rdma_restrack_parent_name(&mr->res, &pd->res);
2251 rdma_restrack_add(&mr->res);
2252 out:
2253 trace_mr_alloc(pd, mr_type, max_num_sg, mr);
2254 return mr;
2255 }
2256 EXPORT_SYMBOL(ib_alloc_mr);
2257
2258 /**
2259 * ib_alloc_mr_integrity() - Allocates an integrity memory region
2260 * @pd: protection domain associated with the region
2261 * @max_num_data_sg: maximum data sg entries available for registration
2262 * @max_num_meta_sg: maximum metadata sg entries available for
2263 * registration
2264 *
2265 * Notes:
2266 * Memory registration page/sg lists must not exceed max_num_sg,
2267 * also the integrity page/sg lists must not exceed max_num_meta_sg.
2268 *
2269 */
ib_alloc_mr_integrity(struct ib_pd * pd,u32 max_num_data_sg,u32 max_num_meta_sg)2270 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
2271 u32 max_num_data_sg,
2272 u32 max_num_meta_sg)
2273 {
2274 struct ib_mr *mr;
2275 struct ib_sig_attrs *sig_attrs;
2276
2277 if (!pd->device->ops.alloc_mr_integrity ||
2278 !pd->device->ops.map_mr_sg_pi) {
2279 mr = ERR_PTR(-EOPNOTSUPP);
2280 goto out;
2281 }
2282
2283 if (!max_num_meta_sg) {
2284 mr = ERR_PTR(-EINVAL);
2285 goto out;
2286 }
2287
2288 sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL);
2289 if (!sig_attrs) {
2290 mr = ERR_PTR(-ENOMEM);
2291 goto out;
2292 }
2293
2294 mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg,
2295 max_num_meta_sg);
2296 if (IS_ERR(mr)) {
2297 kfree(sig_attrs);
2298 goto out;
2299 }
2300
2301 mr->device = pd->device;
2302 mr->pd = pd;
2303 mr->dm = NULL;
2304 mr->uobject = NULL;
2305 atomic_inc(&pd->usecnt);
2306 mr->need_inval = false;
2307 mr->type = IB_MR_TYPE_INTEGRITY;
2308 mr->sig_attrs = sig_attrs;
2309
2310 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2311 rdma_restrack_parent_name(&mr->res, &pd->res);
2312 rdma_restrack_add(&mr->res);
2313 out:
2314 trace_mr_integ_alloc(pd, max_num_data_sg, max_num_meta_sg, mr);
2315 return mr;
2316 }
2317 EXPORT_SYMBOL(ib_alloc_mr_integrity);
2318
2319 /* Multicast groups */
2320
is_valid_mcast_lid(struct ib_qp * qp,u16 lid)2321 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2322 {
2323 struct ib_qp_init_attr init_attr = {};
2324 struct ib_qp_attr attr = {};
2325 int num_eth_ports = 0;
2326 unsigned int port;
2327
2328 /* If QP state >= init, it is assigned to a port and we can check this
2329 * port only.
2330 */
2331 if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2332 if (attr.qp_state >= IB_QPS_INIT) {
2333 if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2334 IB_LINK_LAYER_INFINIBAND)
2335 return true;
2336 goto lid_check;
2337 }
2338 }
2339
2340 /* Can't get a quick answer, iterate over all ports */
2341 rdma_for_each_port(qp->device, port)
2342 if (rdma_port_get_link_layer(qp->device, port) !=
2343 IB_LINK_LAYER_INFINIBAND)
2344 num_eth_ports++;
2345
2346 /* If we have at lease one Ethernet port, RoCE annex declares that
2347 * multicast LID should be ignored. We can't tell at this step if the
2348 * QP belongs to an IB or Ethernet port.
2349 */
2350 if (num_eth_ports)
2351 return true;
2352
2353 /* If all the ports are IB, we can check according to IB spec. */
2354 lid_check:
2355 return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2356 lid == be16_to_cpu(IB_LID_PERMISSIVE));
2357 }
2358
ib_attach_mcast(struct ib_qp * qp,union ib_gid * gid,u16 lid)2359 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2360 {
2361 int ret;
2362
2363 if (!qp->device->ops.attach_mcast)
2364 return -EOPNOTSUPP;
2365
2366 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2367 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2368 return -EINVAL;
2369
2370 ret = qp->device->ops.attach_mcast(qp, gid, lid);
2371 if (!ret)
2372 atomic_inc(&qp->usecnt);
2373 return ret;
2374 }
2375 EXPORT_SYMBOL(ib_attach_mcast);
2376
ib_detach_mcast(struct ib_qp * qp,union ib_gid * gid,u16 lid)2377 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2378 {
2379 int ret;
2380
2381 if (!qp->device->ops.detach_mcast)
2382 return -EOPNOTSUPP;
2383
2384 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2385 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2386 return -EINVAL;
2387
2388 ret = qp->device->ops.detach_mcast(qp, gid, lid);
2389 if (!ret)
2390 atomic_dec(&qp->usecnt);
2391 return ret;
2392 }
2393 EXPORT_SYMBOL(ib_detach_mcast);
2394
2395 /**
2396 * ib_alloc_xrcd_user - Allocates an XRC domain.
2397 * @device: The device on which to allocate the XRC domain.
2398 * @inode: inode to connect XRCD
2399 * @udata: Valid user data or NULL for kernel object
2400 */
ib_alloc_xrcd_user(struct ib_device * device,struct inode * inode,struct ib_udata * udata)2401 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
2402 struct inode *inode, struct ib_udata *udata)
2403 {
2404 struct ib_xrcd *xrcd;
2405 int ret;
2406
2407 if (!device->ops.alloc_xrcd)
2408 return ERR_PTR(-EOPNOTSUPP);
2409
2410 xrcd = rdma_zalloc_drv_obj(device, ib_xrcd);
2411 if (!xrcd)
2412 return ERR_PTR(-ENOMEM);
2413
2414 xrcd->device = device;
2415 xrcd->inode = inode;
2416 atomic_set(&xrcd->usecnt, 0);
2417 init_rwsem(&xrcd->tgt_qps_rwsem);
2418 xa_init(&xrcd->tgt_qps);
2419
2420 ret = device->ops.alloc_xrcd(xrcd, udata);
2421 if (ret)
2422 goto err;
2423 return xrcd;
2424 err:
2425 kfree(xrcd);
2426 return ERR_PTR(ret);
2427 }
2428 EXPORT_SYMBOL(ib_alloc_xrcd_user);
2429
2430 /**
2431 * ib_dealloc_xrcd_user - Deallocates an XRC domain.
2432 * @xrcd: The XRC domain to deallocate.
2433 * @udata: Valid user data or NULL for kernel object
2434 */
ib_dealloc_xrcd_user(struct ib_xrcd * xrcd,struct ib_udata * udata)2435 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata)
2436 {
2437 int ret;
2438
2439 if (atomic_read(&xrcd->usecnt))
2440 return -EBUSY;
2441
2442 WARN_ON(!xa_empty(&xrcd->tgt_qps));
2443 ret = xrcd->device->ops.dealloc_xrcd(xrcd, udata);
2444 if (ret)
2445 return ret;
2446 kfree(xrcd);
2447 return ret;
2448 }
2449 EXPORT_SYMBOL(ib_dealloc_xrcd_user);
2450
2451 /**
2452 * ib_create_wq - Creates a WQ associated with the specified protection
2453 * domain.
2454 * @pd: The protection domain associated with the WQ.
2455 * @wq_attr: A list of initial attributes required to create the
2456 * WQ. If WQ creation succeeds, then the attributes are updated to
2457 * the actual capabilities of the created WQ.
2458 *
2459 * wq_attr->max_wr and wq_attr->max_sge determine
2460 * the requested size of the WQ, and set to the actual values allocated
2461 * on return.
2462 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2463 * at least as large as the requested values.
2464 */
ib_create_wq(struct ib_pd * pd,struct ib_wq_init_attr * wq_attr)2465 struct ib_wq *ib_create_wq(struct ib_pd *pd,
2466 struct ib_wq_init_attr *wq_attr)
2467 {
2468 struct ib_wq *wq;
2469
2470 if (!pd->device->ops.create_wq)
2471 return ERR_PTR(-EOPNOTSUPP);
2472
2473 wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2474 if (!IS_ERR(wq)) {
2475 wq->event_handler = wq_attr->event_handler;
2476 wq->wq_context = wq_attr->wq_context;
2477 wq->wq_type = wq_attr->wq_type;
2478 wq->cq = wq_attr->cq;
2479 wq->device = pd->device;
2480 wq->pd = pd;
2481 wq->uobject = NULL;
2482 atomic_inc(&pd->usecnt);
2483 atomic_inc(&wq_attr->cq->usecnt);
2484 atomic_set(&wq->usecnt, 0);
2485 }
2486 return wq;
2487 }
2488 EXPORT_SYMBOL(ib_create_wq);
2489
2490 /**
2491 * ib_destroy_wq_user - Destroys the specified user WQ.
2492 * @wq: The WQ to destroy.
2493 * @udata: Valid user data
2494 */
ib_destroy_wq_user(struct ib_wq * wq,struct ib_udata * udata)2495 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata)
2496 {
2497 struct ib_cq *cq = wq->cq;
2498 struct ib_pd *pd = wq->pd;
2499 int ret;
2500
2501 if (atomic_read(&wq->usecnt))
2502 return -EBUSY;
2503
2504 ret = wq->device->ops.destroy_wq(wq, udata);
2505 if (ret)
2506 return ret;
2507
2508 atomic_dec(&pd->usecnt);
2509 atomic_dec(&cq->usecnt);
2510 return ret;
2511 }
2512 EXPORT_SYMBOL(ib_destroy_wq_user);
2513
ib_check_mr_status(struct ib_mr * mr,u32 check_mask,struct ib_mr_status * mr_status)2514 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2515 struct ib_mr_status *mr_status)
2516 {
2517 if (!mr->device->ops.check_mr_status)
2518 return -EOPNOTSUPP;
2519
2520 return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2521 }
2522 EXPORT_SYMBOL(ib_check_mr_status);
2523
ib_set_vf_link_state(struct ib_device * device,int vf,u32 port,int state)2524 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
2525 int state)
2526 {
2527 if (!device->ops.set_vf_link_state)
2528 return -EOPNOTSUPP;
2529
2530 return device->ops.set_vf_link_state(device, vf, port, state);
2531 }
2532 EXPORT_SYMBOL(ib_set_vf_link_state);
2533
ib_get_vf_config(struct ib_device * device,int vf,u32 port,struct ifla_vf_info * info)2534 int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
2535 struct ifla_vf_info *info)
2536 {
2537 if (!device->ops.get_vf_config)
2538 return -EOPNOTSUPP;
2539
2540 return device->ops.get_vf_config(device, vf, port, info);
2541 }
2542 EXPORT_SYMBOL(ib_get_vf_config);
2543
ib_get_vf_stats(struct ib_device * device,int vf,u32 port,struct ifla_vf_stats * stats)2544 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
2545 struct ifla_vf_stats *stats)
2546 {
2547 if (!device->ops.get_vf_stats)
2548 return -EOPNOTSUPP;
2549
2550 return device->ops.get_vf_stats(device, vf, port, stats);
2551 }
2552 EXPORT_SYMBOL(ib_get_vf_stats);
2553
ib_set_vf_guid(struct ib_device * device,int vf,u32 port,u64 guid,int type)2554 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
2555 int type)
2556 {
2557 if (!device->ops.set_vf_guid)
2558 return -EOPNOTSUPP;
2559
2560 return device->ops.set_vf_guid(device, vf, port, guid, type);
2561 }
2562 EXPORT_SYMBOL(ib_set_vf_guid);
2563
ib_get_vf_guid(struct ib_device * device,int vf,u32 port,struct ifla_vf_guid * node_guid,struct ifla_vf_guid * port_guid)2564 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
2565 struct ifla_vf_guid *node_guid,
2566 struct ifla_vf_guid *port_guid)
2567 {
2568 if (!device->ops.get_vf_guid)
2569 return -EOPNOTSUPP;
2570
2571 return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid);
2572 }
2573 EXPORT_SYMBOL(ib_get_vf_guid);
2574 /**
2575 * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
2576 * information) and set an appropriate memory region for registration.
2577 * @mr: memory region
2578 * @data_sg: dma mapped scatterlist for data
2579 * @data_sg_nents: number of entries in data_sg
2580 * @data_sg_offset: offset in bytes into data_sg
2581 * @meta_sg: dma mapped scatterlist for metadata
2582 * @meta_sg_nents: number of entries in meta_sg
2583 * @meta_sg_offset: offset in bytes into meta_sg
2584 * @page_size: page vector desired page size
2585 *
2586 * Constraints:
2587 * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
2588 *
2589 * Return: 0 on success.
2590 *
2591 * After this completes successfully, the memory region
2592 * is ready for registration.
2593 */
ib_map_mr_sg_pi(struct ib_mr * mr,struct scatterlist * data_sg,int data_sg_nents,unsigned int * data_sg_offset,struct scatterlist * meta_sg,int meta_sg_nents,unsigned int * meta_sg_offset,unsigned int page_size)2594 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
2595 int data_sg_nents, unsigned int *data_sg_offset,
2596 struct scatterlist *meta_sg, int meta_sg_nents,
2597 unsigned int *meta_sg_offset, unsigned int page_size)
2598 {
2599 if (unlikely(!mr->device->ops.map_mr_sg_pi ||
2600 WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY)))
2601 return -EOPNOTSUPP;
2602
2603 mr->page_size = page_size;
2604
2605 return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents,
2606 data_sg_offset, meta_sg,
2607 meta_sg_nents, meta_sg_offset);
2608 }
2609 EXPORT_SYMBOL(ib_map_mr_sg_pi);
2610
2611 /**
2612 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2613 * and set it the memory region.
2614 * @mr: memory region
2615 * @sg: dma mapped scatterlist
2616 * @sg_nents: number of entries in sg
2617 * @sg_offset: offset in bytes into sg
2618 * @page_size: page vector desired page size
2619 *
2620 * Constraints:
2621 *
2622 * - The first sg element is allowed to have an offset.
2623 * - Each sg element must either be aligned to page_size or virtually
2624 * contiguous to the previous element. In case an sg element has a
2625 * non-contiguous offset, the mapping prefix will not include it.
2626 * - The last sg element is allowed to have length less than page_size.
2627 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2628 * then only max_num_sg entries will be mapped.
2629 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2630 * constraints holds and the page_size argument is ignored.
2631 *
2632 * Returns the number of sg elements that were mapped to the memory region.
2633 *
2634 * After this completes successfully, the memory region
2635 * is ready for registration.
2636 */
ib_map_mr_sg(struct ib_mr * mr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset,unsigned int page_size)2637 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2638 unsigned int *sg_offset, unsigned int page_size)
2639 {
2640 if (unlikely(!mr->device->ops.map_mr_sg))
2641 return -EOPNOTSUPP;
2642
2643 mr->page_size = page_size;
2644
2645 return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2646 }
2647 EXPORT_SYMBOL(ib_map_mr_sg);
2648
2649 /**
2650 * ib_sg_to_pages() - Convert the largest prefix of a sg list
2651 * to a page vector
2652 * @mr: memory region
2653 * @sgl: dma mapped scatterlist
2654 * @sg_nents: number of entries in sg
2655 * @sg_offset_p: ==== =======================================================
2656 * IN start offset in bytes into sg
2657 * OUT offset in bytes for element n of the sg of the first
2658 * byte that has not been processed where n is the return
2659 * value of this function.
2660 * ==== =======================================================
2661 * @set_page: driver page assignment function pointer
2662 *
2663 * Core service helper for drivers to convert the largest
2664 * prefix of given sg list to a page vector. The sg list
2665 * prefix converted is the prefix that meet the requirements
2666 * of ib_map_mr_sg.
2667 *
2668 * Returns the number of sg elements that were assigned to
2669 * a page vector.
2670 */
ib_sg_to_pages(struct ib_mr * mr,struct scatterlist * sgl,int sg_nents,unsigned int * sg_offset_p,int (* set_page)(struct ib_mr *,u64))2671 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2672 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2673 {
2674 struct scatterlist *sg;
2675 u64 last_end_dma_addr = 0;
2676 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2677 unsigned int last_page_off = 0;
2678 u64 page_mask = ~((u64)mr->page_size - 1);
2679 int i, ret;
2680
2681 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2682 return -EINVAL;
2683
2684 mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2685 mr->length = 0;
2686
2687 for_each_sg(sgl, sg, sg_nents, i) {
2688 u64 dma_addr = sg_dma_address(sg) + sg_offset;
2689 u64 prev_addr = dma_addr;
2690 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2691 u64 end_dma_addr = dma_addr + dma_len;
2692 u64 page_addr = dma_addr & page_mask;
2693
2694 /*
2695 * For the second and later elements, check whether either the
2696 * end of element i-1 or the start of element i is not aligned
2697 * on a page boundary.
2698 */
2699 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2700 /* Stop mapping if there is a gap. */
2701 if (last_end_dma_addr != dma_addr)
2702 break;
2703
2704 /*
2705 * Coalesce this element with the last. If it is small
2706 * enough just update mr->length. Otherwise start
2707 * mapping from the next page.
2708 */
2709 goto next_page;
2710 }
2711
2712 do {
2713 ret = set_page(mr, page_addr);
2714 if (unlikely(ret < 0)) {
2715 sg_offset = prev_addr - sg_dma_address(sg);
2716 mr->length += prev_addr - dma_addr;
2717 if (sg_offset_p)
2718 *sg_offset_p = sg_offset;
2719 return i || sg_offset ? i : ret;
2720 }
2721 prev_addr = page_addr;
2722 next_page:
2723 page_addr += mr->page_size;
2724 } while (page_addr < end_dma_addr);
2725
2726 mr->length += dma_len;
2727 last_end_dma_addr = end_dma_addr;
2728 last_page_off = end_dma_addr & ~page_mask;
2729
2730 sg_offset = 0;
2731 }
2732
2733 if (sg_offset_p)
2734 *sg_offset_p = 0;
2735 return i;
2736 }
2737 EXPORT_SYMBOL(ib_sg_to_pages);
2738
2739 struct ib_drain_cqe {
2740 struct ib_cqe cqe;
2741 struct completion done;
2742 };
2743
ib_drain_qp_done(struct ib_cq * cq,struct ib_wc * wc)2744 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2745 {
2746 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2747 cqe);
2748
2749 complete(&cqe->done);
2750 }
2751
2752 /*
2753 * Post a WR and block until its completion is reaped for the SQ.
2754 */
__ib_drain_sq(struct ib_qp * qp)2755 static void __ib_drain_sq(struct ib_qp *qp)
2756 {
2757 struct ib_cq *cq = qp->send_cq;
2758 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2759 struct ib_drain_cqe sdrain;
2760 struct ib_rdma_wr swr = {
2761 .wr = {
2762 .next = NULL,
2763 { .wr_cqe = &sdrain.cqe, },
2764 .opcode = IB_WR_RDMA_WRITE,
2765 },
2766 };
2767 int ret;
2768
2769 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2770 if (ret) {
2771 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2772 return;
2773 }
2774
2775 sdrain.cqe.done = ib_drain_qp_done;
2776 init_completion(&sdrain.done);
2777
2778 ret = ib_post_send(qp, &swr.wr, NULL);
2779 if (ret) {
2780 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2781 return;
2782 }
2783
2784 if (cq->poll_ctx == IB_POLL_DIRECT)
2785 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2786 ib_process_cq_direct(cq, -1);
2787 else
2788 wait_for_completion(&sdrain.done);
2789 }
2790
2791 /*
2792 * Post a WR and block until its completion is reaped for the RQ.
2793 */
__ib_drain_rq(struct ib_qp * qp)2794 static void __ib_drain_rq(struct ib_qp *qp)
2795 {
2796 struct ib_cq *cq = qp->recv_cq;
2797 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2798 struct ib_drain_cqe rdrain;
2799 struct ib_recv_wr rwr = {};
2800 int ret;
2801
2802 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2803 if (ret) {
2804 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2805 return;
2806 }
2807
2808 rwr.wr_cqe = &rdrain.cqe;
2809 rdrain.cqe.done = ib_drain_qp_done;
2810 init_completion(&rdrain.done);
2811
2812 ret = ib_post_recv(qp, &rwr, NULL);
2813 if (ret) {
2814 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2815 return;
2816 }
2817
2818 if (cq->poll_ctx == IB_POLL_DIRECT)
2819 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2820 ib_process_cq_direct(cq, -1);
2821 else
2822 wait_for_completion(&rdrain.done);
2823 }
2824
2825 /**
2826 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2827 * application.
2828 * @qp: queue pair to drain
2829 *
2830 * If the device has a provider-specific drain function, then
2831 * call that. Otherwise call the generic drain function
2832 * __ib_drain_sq().
2833 *
2834 * The caller must:
2835 *
2836 * ensure there is room in the CQ and SQ for the drain work request and
2837 * completion.
2838 *
2839 * allocate the CQ using ib_alloc_cq().
2840 *
2841 * ensure that there are no other contexts that are posting WRs concurrently.
2842 * Otherwise the drain is not guaranteed.
2843 */
ib_drain_sq(struct ib_qp * qp)2844 void ib_drain_sq(struct ib_qp *qp)
2845 {
2846 if (qp->device->ops.drain_sq)
2847 qp->device->ops.drain_sq(qp);
2848 else
2849 __ib_drain_sq(qp);
2850 trace_cq_drain_complete(qp->send_cq);
2851 }
2852 EXPORT_SYMBOL(ib_drain_sq);
2853
2854 /**
2855 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2856 * application.
2857 * @qp: queue pair to drain
2858 *
2859 * If the device has a provider-specific drain function, then
2860 * call that. Otherwise call the generic drain function
2861 * __ib_drain_rq().
2862 *
2863 * The caller must:
2864 *
2865 * ensure there is room in the CQ and RQ for the drain work request and
2866 * completion.
2867 *
2868 * allocate the CQ using ib_alloc_cq().
2869 *
2870 * ensure that there are no other contexts that are posting WRs concurrently.
2871 * Otherwise the drain is not guaranteed.
2872 */
ib_drain_rq(struct ib_qp * qp)2873 void ib_drain_rq(struct ib_qp *qp)
2874 {
2875 if (qp->device->ops.drain_rq)
2876 qp->device->ops.drain_rq(qp);
2877 else
2878 __ib_drain_rq(qp);
2879 trace_cq_drain_complete(qp->recv_cq);
2880 }
2881 EXPORT_SYMBOL(ib_drain_rq);
2882
2883 /**
2884 * ib_drain_qp() - Block until all CQEs have been consumed by the
2885 * application on both the RQ and SQ.
2886 * @qp: queue pair to drain
2887 *
2888 * The caller must:
2889 *
2890 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2891 * and completions.
2892 *
2893 * allocate the CQs using ib_alloc_cq().
2894 *
2895 * ensure that there are no other contexts that are posting WRs concurrently.
2896 * Otherwise the drain is not guaranteed.
2897 */
ib_drain_qp(struct ib_qp * qp)2898 void ib_drain_qp(struct ib_qp *qp)
2899 {
2900 ib_drain_sq(qp);
2901 if (!qp->srq)
2902 ib_drain_rq(qp);
2903 }
2904 EXPORT_SYMBOL(ib_drain_qp);
2905
rdma_alloc_netdev(struct ib_device * device,u32 port_num,enum rdma_netdev_t type,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *))2906 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
2907 enum rdma_netdev_t type, const char *name,
2908 unsigned char name_assign_type,
2909 void (*setup)(struct net_device *))
2910 {
2911 struct rdma_netdev_alloc_params params;
2912 struct net_device *netdev;
2913 int rc;
2914
2915 if (!device->ops.rdma_netdev_get_params)
2916 return ERR_PTR(-EOPNOTSUPP);
2917
2918 rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2919 ¶ms);
2920 if (rc)
2921 return ERR_PTR(rc);
2922
2923 netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
2924 setup, params.txqs, params.rxqs);
2925 if (!netdev)
2926 return ERR_PTR(-ENOMEM);
2927
2928 return netdev;
2929 }
2930 EXPORT_SYMBOL(rdma_alloc_netdev);
2931
rdma_init_netdev(struct ib_device * device,u32 port_num,enum rdma_netdev_t type,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),struct net_device * netdev)2932 int rdma_init_netdev(struct ib_device *device, u32 port_num,
2933 enum rdma_netdev_t type, const char *name,
2934 unsigned char name_assign_type,
2935 void (*setup)(struct net_device *),
2936 struct net_device *netdev)
2937 {
2938 struct rdma_netdev_alloc_params params;
2939 int rc;
2940
2941 if (!device->ops.rdma_netdev_get_params)
2942 return -EOPNOTSUPP;
2943
2944 rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2945 ¶ms);
2946 if (rc)
2947 return rc;
2948
2949 return params.initialize_rdma_netdev(device, port_num,
2950 netdev, params.param);
2951 }
2952 EXPORT_SYMBOL(rdma_init_netdev);
2953
__rdma_block_iter_start(struct ib_block_iter * biter,struct scatterlist * sglist,unsigned int nents,unsigned long pgsz)2954 void __rdma_block_iter_start(struct ib_block_iter *biter,
2955 struct scatterlist *sglist, unsigned int nents,
2956 unsigned long pgsz)
2957 {
2958 memset(biter, 0, sizeof(struct ib_block_iter));
2959 biter->__sg = sglist;
2960 biter->__sg_nents = nents;
2961
2962 /* Driver provides best block size to use */
2963 biter->__pg_bit = __fls(pgsz);
2964 }
2965 EXPORT_SYMBOL(__rdma_block_iter_start);
2966
__rdma_block_iter_next(struct ib_block_iter * biter)2967 bool __rdma_block_iter_next(struct ib_block_iter *biter)
2968 {
2969 unsigned int block_offset;
2970 unsigned int sg_delta;
2971
2972 if (!biter->__sg_nents || !biter->__sg)
2973 return false;
2974
2975 biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
2976 block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
2977 sg_delta = BIT_ULL(biter->__pg_bit) - block_offset;
2978
2979 if (sg_dma_len(biter->__sg) - biter->__sg_advance > sg_delta) {
2980 biter->__sg_advance += sg_delta;
2981 } else {
2982 biter->__sg_advance = 0;
2983 biter->__sg = sg_next(biter->__sg);
2984 biter->__sg_nents--;
2985 }
2986
2987 return true;
2988 }
2989 EXPORT_SYMBOL(__rdma_block_iter_next);
2990