1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 #include "ice_common.h"
5 #include "ice_lib.h"
6 #include "ice_sched.h"
7 #include "ice_adminq_cmd.h"
8 #include "ice_flow.h"
9
10 #define ICE_PF_RESET_WAIT_COUNT 300
11
12 /**
13 * ice_set_mac_type - Sets MAC type
14 * @hw: pointer to the HW structure
15 *
16 * This function sets the MAC type of the adapter based on the
17 * vendor ID and device ID stored in the HW structure.
18 */
ice_set_mac_type(struct ice_hw * hw)19 static enum ice_status ice_set_mac_type(struct ice_hw *hw)
20 {
21 if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
22 return ICE_ERR_DEVICE_NOT_SUPPORTED;
23
24 switch (hw->device_id) {
25 case ICE_DEV_ID_E810C_BACKPLANE:
26 case ICE_DEV_ID_E810C_QSFP:
27 case ICE_DEV_ID_E810C_SFP:
28 case ICE_DEV_ID_E810_XXV_BACKPLANE:
29 case ICE_DEV_ID_E810_XXV_QSFP:
30 case ICE_DEV_ID_E810_XXV_SFP:
31 hw->mac_type = ICE_MAC_E810;
32 break;
33 case ICE_DEV_ID_E823C_10G_BASE_T:
34 case ICE_DEV_ID_E823C_BACKPLANE:
35 case ICE_DEV_ID_E823C_QSFP:
36 case ICE_DEV_ID_E823C_SFP:
37 case ICE_DEV_ID_E823C_SGMII:
38 case ICE_DEV_ID_E822C_10G_BASE_T:
39 case ICE_DEV_ID_E822C_BACKPLANE:
40 case ICE_DEV_ID_E822C_QSFP:
41 case ICE_DEV_ID_E822C_SFP:
42 case ICE_DEV_ID_E822C_SGMII:
43 case ICE_DEV_ID_E822L_10G_BASE_T:
44 case ICE_DEV_ID_E822L_BACKPLANE:
45 case ICE_DEV_ID_E822L_SFP:
46 case ICE_DEV_ID_E822L_SGMII:
47 case ICE_DEV_ID_E823L_10G_BASE_T:
48 case ICE_DEV_ID_E823L_1GBE:
49 case ICE_DEV_ID_E823L_BACKPLANE:
50 case ICE_DEV_ID_E823L_QSFP:
51 case ICE_DEV_ID_E823L_SFP:
52 hw->mac_type = ICE_MAC_GENERIC;
53 break;
54 default:
55 hw->mac_type = ICE_MAC_UNKNOWN;
56 break;
57 }
58
59 ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
60 return 0;
61 }
62
63 /**
64 * ice_is_e810
65 * @hw: pointer to the hardware structure
66 *
67 * returns true if the device is E810 based, false if not.
68 */
ice_is_e810(struct ice_hw * hw)69 bool ice_is_e810(struct ice_hw *hw)
70 {
71 return hw->mac_type == ICE_MAC_E810;
72 }
73
74 /**
75 * ice_clear_pf_cfg - Clear PF configuration
76 * @hw: pointer to the hardware structure
77 *
78 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
79 * configuration, flow director filters, etc.).
80 */
ice_clear_pf_cfg(struct ice_hw * hw)81 enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
82 {
83 struct ice_aq_desc desc;
84
85 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
86
87 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
88 }
89
90 /**
91 * ice_aq_manage_mac_read - manage MAC address read command
92 * @hw: pointer to the HW struct
93 * @buf: a virtual buffer to hold the manage MAC read response
94 * @buf_size: Size of the virtual buffer
95 * @cd: pointer to command details structure or NULL
96 *
97 * This function is used to return per PF station MAC address (0x0107).
98 * NOTE: Upon successful completion of this command, MAC address information
99 * is returned in user specified buffer. Please interpret user specified
100 * buffer as "manage_mac_read" response.
101 * Response such as various MAC addresses are stored in HW struct (port.mac)
102 * ice_discover_dev_caps is expected to be called before this function is
103 * called.
104 */
105 static enum ice_status
ice_aq_manage_mac_read(struct ice_hw * hw,void * buf,u16 buf_size,struct ice_sq_cd * cd)106 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
107 struct ice_sq_cd *cd)
108 {
109 struct ice_aqc_manage_mac_read_resp *resp;
110 struct ice_aqc_manage_mac_read *cmd;
111 struct ice_aq_desc desc;
112 enum ice_status status;
113 u16 flags;
114 u8 i;
115
116 cmd = &desc.params.mac_read;
117
118 if (buf_size < sizeof(*resp))
119 return ICE_ERR_BUF_TOO_SHORT;
120
121 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
122
123 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
124 if (status)
125 return status;
126
127 resp = buf;
128 flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
129
130 if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
131 ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
132 return ICE_ERR_CFG;
133 }
134
135 /* A single port can report up to two (LAN and WoL) addresses */
136 for (i = 0; i < cmd->num_addr; i++)
137 if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
138 ether_addr_copy(hw->port_info->mac.lan_addr,
139 resp[i].mac_addr);
140 ether_addr_copy(hw->port_info->mac.perm_addr,
141 resp[i].mac_addr);
142 break;
143 }
144
145 return 0;
146 }
147
148 /**
149 * ice_aq_get_phy_caps - returns PHY capabilities
150 * @pi: port information structure
151 * @qual_mods: report qualified modules
152 * @report_mode: report mode capabilities
153 * @pcaps: structure for PHY capabilities to be filled
154 * @cd: pointer to command details structure or NULL
155 *
156 * Returns the various PHY capabilities supported on the Port (0x0600)
157 */
158 enum ice_status
ice_aq_get_phy_caps(struct ice_port_info * pi,bool qual_mods,u8 report_mode,struct ice_aqc_get_phy_caps_data * pcaps,struct ice_sq_cd * cd)159 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
160 struct ice_aqc_get_phy_caps_data *pcaps,
161 struct ice_sq_cd *cd)
162 {
163 struct ice_aqc_get_phy_caps *cmd;
164 u16 pcaps_size = sizeof(*pcaps);
165 struct ice_aq_desc desc;
166 enum ice_status status;
167 struct ice_hw *hw;
168
169 cmd = &desc.params.get_phy;
170
171 if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
172 return ICE_ERR_PARAM;
173 hw = pi->hw;
174
175 if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
176 !ice_fw_supports_report_dflt_cfg(hw))
177 return ICE_ERR_PARAM;
178
179 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
180
181 if (qual_mods)
182 cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
183
184 cmd->param0 |= cpu_to_le16(report_mode);
185 status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
186
187 ice_debug(hw, ICE_DBG_LINK, "get phy caps - report_mode = 0x%x\n",
188 report_mode);
189 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
190 (unsigned long long)le64_to_cpu(pcaps->phy_type_low));
191 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
192 (unsigned long long)le64_to_cpu(pcaps->phy_type_high));
193 ice_debug(hw, ICE_DBG_LINK, " caps = 0x%x\n", pcaps->caps);
194 ice_debug(hw, ICE_DBG_LINK, " low_power_ctrl_an = 0x%x\n",
195 pcaps->low_power_ctrl_an);
196 ice_debug(hw, ICE_DBG_LINK, " eee_cap = 0x%x\n", pcaps->eee_cap);
197 ice_debug(hw, ICE_DBG_LINK, " eeer_value = 0x%x\n",
198 pcaps->eeer_value);
199 ice_debug(hw, ICE_DBG_LINK, " link_fec_options = 0x%x\n",
200 pcaps->link_fec_options);
201 ice_debug(hw, ICE_DBG_LINK, " module_compliance_enforcement = 0x%x\n",
202 pcaps->module_compliance_enforcement);
203 ice_debug(hw, ICE_DBG_LINK, " extended_compliance_code = 0x%x\n",
204 pcaps->extended_compliance_code);
205 ice_debug(hw, ICE_DBG_LINK, " module_type[0] = 0x%x\n",
206 pcaps->module_type[0]);
207 ice_debug(hw, ICE_DBG_LINK, " module_type[1] = 0x%x\n",
208 pcaps->module_type[1]);
209 ice_debug(hw, ICE_DBG_LINK, " module_type[2] = 0x%x\n",
210 pcaps->module_type[2]);
211
212 if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
213 pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
214 pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
215 memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
216 sizeof(pi->phy.link_info.module_type));
217 }
218
219 return status;
220 }
221
222 /**
223 * ice_aq_get_link_topo_handle - get link topology node return status
224 * @pi: port information structure
225 * @node_type: requested node type
226 * @cd: pointer to command details structure or NULL
227 *
228 * Get link topology node return status for specified node type (0x06E0)
229 *
230 * Node type cage can be used to determine if cage is present. If AQC
231 * returns error (ENOENT), then no cage present. If no cage present, then
232 * connection type is backplane or BASE-T.
233 */
234 static enum ice_status
ice_aq_get_link_topo_handle(struct ice_port_info * pi,u8 node_type,struct ice_sq_cd * cd)235 ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
236 struct ice_sq_cd *cd)
237 {
238 struct ice_aqc_get_link_topo *cmd;
239 struct ice_aq_desc desc;
240
241 cmd = &desc.params.get_link_topo;
242
243 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
244
245 cmd->addr.node_type_ctx = (ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
246 ICE_AQC_LINK_TOPO_NODE_CTX_S);
247
248 /* set node type */
249 cmd->addr.node_type_ctx |= (ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
250
251 return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
252 }
253
254 /**
255 * ice_is_media_cage_present
256 * @pi: port information structure
257 *
258 * Returns true if media cage is present, else false. If no cage, then
259 * media type is backplane or BASE-T.
260 */
ice_is_media_cage_present(struct ice_port_info * pi)261 static bool ice_is_media_cage_present(struct ice_port_info *pi)
262 {
263 /* Node type cage can be used to determine if cage is present. If AQC
264 * returns error (ENOENT), then no cage present. If no cage present then
265 * connection type is backplane or BASE-T.
266 */
267 return !ice_aq_get_link_topo_handle(pi,
268 ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
269 NULL);
270 }
271
272 /**
273 * ice_get_media_type - Gets media type
274 * @pi: port information structure
275 */
ice_get_media_type(struct ice_port_info * pi)276 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
277 {
278 struct ice_link_status *hw_link_info;
279
280 if (!pi)
281 return ICE_MEDIA_UNKNOWN;
282
283 hw_link_info = &pi->phy.link_info;
284 if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
285 /* If more than one media type is selected, report unknown */
286 return ICE_MEDIA_UNKNOWN;
287
288 if (hw_link_info->phy_type_low) {
289 /* 1G SGMII is a special case where some DA cable PHYs
290 * may show this as an option when it really shouldn't
291 * be since SGMII is meant to be between a MAC and a PHY
292 * in a backplane. Try to detect this case and handle it
293 */
294 if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
295 (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
296 ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
297 hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
298 ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
299 return ICE_MEDIA_DA;
300
301 switch (hw_link_info->phy_type_low) {
302 case ICE_PHY_TYPE_LOW_1000BASE_SX:
303 case ICE_PHY_TYPE_LOW_1000BASE_LX:
304 case ICE_PHY_TYPE_LOW_10GBASE_SR:
305 case ICE_PHY_TYPE_LOW_10GBASE_LR:
306 case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
307 case ICE_PHY_TYPE_LOW_25GBASE_SR:
308 case ICE_PHY_TYPE_LOW_25GBASE_LR:
309 case ICE_PHY_TYPE_LOW_40GBASE_SR4:
310 case ICE_PHY_TYPE_LOW_40GBASE_LR4:
311 case ICE_PHY_TYPE_LOW_50GBASE_SR2:
312 case ICE_PHY_TYPE_LOW_50GBASE_LR2:
313 case ICE_PHY_TYPE_LOW_50GBASE_SR:
314 case ICE_PHY_TYPE_LOW_50GBASE_FR:
315 case ICE_PHY_TYPE_LOW_50GBASE_LR:
316 case ICE_PHY_TYPE_LOW_100GBASE_SR4:
317 case ICE_PHY_TYPE_LOW_100GBASE_LR4:
318 case ICE_PHY_TYPE_LOW_100GBASE_SR2:
319 case ICE_PHY_TYPE_LOW_100GBASE_DR:
320 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
321 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
322 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
323 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
324 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
325 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
326 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
327 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
328 return ICE_MEDIA_FIBER;
329 case ICE_PHY_TYPE_LOW_100BASE_TX:
330 case ICE_PHY_TYPE_LOW_1000BASE_T:
331 case ICE_PHY_TYPE_LOW_2500BASE_T:
332 case ICE_PHY_TYPE_LOW_5GBASE_T:
333 case ICE_PHY_TYPE_LOW_10GBASE_T:
334 case ICE_PHY_TYPE_LOW_25GBASE_T:
335 return ICE_MEDIA_BASET;
336 case ICE_PHY_TYPE_LOW_10G_SFI_DA:
337 case ICE_PHY_TYPE_LOW_25GBASE_CR:
338 case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
339 case ICE_PHY_TYPE_LOW_25GBASE_CR1:
340 case ICE_PHY_TYPE_LOW_40GBASE_CR4:
341 case ICE_PHY_TYPE_LOW_50GBASE_CR2:
342 case ICE_PHY_TYPE_LOW_50GBASE_CP:
343 case ICE_PHY_TYPE_LOW_100GBASE_CR4:
344 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
345 case ICE_PHY_TYPE_LOW_100GBASE_CP2:
346 return ICE_MEDIA_DA;
347 case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
348 case ICE_PHY_TYPE_LOW_40G_XLAUI:
349 case ICE_PHY_TYPE_LOW_50G_LAUI2:
350 case ICE_PHY_TYPE_LOW_50G_AUI2:
351 case ICE_PHY_TYPE_LOW_50G_AUI1:
352 case ICE_PHY_TYPE_LOW_100G_AUI4:
353 case ICE_PHY_TYPE_LOW_100G_CAUI4:
354 if (ice_is_media_cage_present(pi))
355 return ICE_MEDIA_DA;
356 fallthrough;
357 case ICE_PHY_TYPE_LOW_1000BASE_KX:
358 case ICE_PHY_TYPE_LOW_2500BASE_KX:
359 case ICE_PHY_TYPE_LOW_2500BASE_X:
360 case ICE_PHY_TYPE_LOW_5GBASE_KR:
361 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
362 case ICE_PHY_TYPE_LOW_25GBASE_KR:
363 case ICE_PHY_TYPE_LOW_25GBASE_KR1:
364 case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
365 case ICE_PHY_TYPE_LOW_40GBASE_KR4:
366 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
367 case ICE_PHY_TYPE_LOW_50GBASE_KR2:
368 case ICE_PHY_TYPE_LOW_100GBASE_KR4:
369 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
370 return ICE_MEDIA_BACKPLANE;
371 }
372 } else {
373 switch (hw_link_info->phy_type_high) {
374 case ICE_PHY_TYPE_HIGH_100G_AUI2:
375 case ICE_PHY_TYPE_HIGH_100G_CAUI2:
376 if (ice_is_media_cage_present(pi))
377 return ICE_MEDIA_DA;
378 fallthrough;
379 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
380 return ICE_MEDIA_BACKPLANE;
381 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
382 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
383 return ICE_MEDIA_FIBER;
384 }
385 }
386 return ICE_MEDIA_UNKNOWN;
387 }
388
389 /**
390 * ice_aq_get_link_info
391 * @pi: port information structure
392 * @ena_lse: enable/disable LinkStatusEvent reporting
393 * @link: pointer to link status structure - optional
394 * @cd: pointer to command details structure or NULL
395 *
396 * Get Link Status (0x607). Returns the link status of the adapter.
397 */
398 enum ice_status
ice_aq_get_link_info(struct ice_port_info * pi,bool ena_lse,struct ice_link_status * link,struct ice_sq_cd * cd)399 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
400 struct ice_link_status *link, struct ice_sq_cd *cd)
401 {
402 struct ice_aqc_get_link_status_data link_data = { 0 };
403 struct ice_aqc_get_link_status *resp;
404 struct ice_link_status *li_old, *li;
405 enum ice_media_type *hw_media_type;
406 struct ice_fc_info *hw_fc_info;
407 bool tx_pause, rx_pause;
408 struct ice_aq_desc desc;
409 enum ice_status status;
410 struct ice_hw *hw;
411 u16 cmd_flags;
412
413 if (!pi)
414 return ICE_ERR_PARAM;
415 hw = pi->hw;
416 li_old = &pi->phy.link_info_old;
417 hw_media_type = &pi->phy.media_type;
418 li = &pi->phy.link_info;
419 hw_fc_info = &pi->fc;
420
421 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
422 cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
423 resp = &desc.params.get_link_status;
424 resp->cmd_flags = cpu_to_le16(cmd_flags);
425 resp->lport_num = pi->lport;
426
427 status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd);
428
429 if (status)
430 return status;
431
432 /* save off old link status information */
433 *li_old = *li;
434
435 /* update current link status information */
436 li->link_speed = le16_to_cpu(link_data.link_speed);
437 li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
438 li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
439 *hw_media_type = ice_get_media_type(pi);
440 li->link_info = link_data.link_info;
441 li->link_cfg_err = link_data.link_cfg_err;
442 li->an_info = link_data.an_info;
443 li->ext_info = link_data.ext_info;
444 li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
445 li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
446 li->topo_media_conflict = link_data.topo_media_conflict;
447 li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
448 ICE_AQ_CFG_PACING_TYPE_M);
449
450 /* update fc info */
451 tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
452 rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
453 if (tx_pause && rx_pause)
454 hw_fc_info->current_mode = ICE_FC_FULL;
455 else if (tx_pause)
456 hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
457 else if (rx_pause)
458 hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
459 else
460 hw_fc_info->current_mode = ICE_FC_NONE;
461
462 li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
463
464 ice_debug(hw, ICE_DBG_LINK, "get link info\n");
465 ice_debug(hw, ICE_DBG_LINK, " link_speed = 0x%x\n", li->link_speed);
466 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
467 (unsigned long long)li->phy_type_low);
468 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
469 (unsigned long long)li->phy_type_high);
470 ice_debug(hw, ICE_DBG_LINK, " media_type = 0x%x\n", *hw_media_type);
471 ice_debug(hw, ICE_DBG_LINK, " link_info = 0x%x\n", li->link_info);
472 ice_debug(hw, ICE_DBG_LINK, " link_cfg_err = 0x%x\n", li->link_cfg_err);
473 ice_debug(hw, ICE_DBG_LINK, " an_info = 0x%x\n", li->an_info);
474 ice_debug(hw, ICE_DBG_LINK, " ext_info = 0x%x\n", li->ext_info);
475 ice_debug(hw, ICE_DBG_LINK, " fec_info = 0x%x\n", li->fec_info);
476 ice_debug(hw, ICE_DBG_LINK, " lse_ena = 0x%x\n", li->lse_ena);
477 ice_debug(hw, ICE_DBG_LINK, " max_frame = 0x%x\n",
478 li->max_frame_size);
479 ice_debug(hw, ICE_DBG_LINK, " pacing = 0x%x\n", li->pacing);
480
481 /* save link status information */
482 if (link)
483 *link = *li;
484
485 /* flag cleared so calling functions don't call AQ again */
486 pi->phy.get_link_info = false;
487
488 return 0;
489 }
490
491 /**
492 * ice_fill_tx_timer_and_fc_thresh
493 * @hw: pointer to the HW struct
494 * @cmd: pointer to MAC cfg structure
495 *
496 * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
497 * descriptor
498 */
499 static void
ice_fill_tx_timer_and_fc_thresh(struct ice_hw * hw,struct ice_aqc_set_mac_cfg * cmd)500 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
501 struct ice_aqc_set_mac_cfg *cmd)
502 {
503 u16 fc_thres_val, tx_timer_val;
504 u32 val;
505
506 /* We read back the transmit timer and FC threshold value of
507 * LFC. Thus, we will use index =
508 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
509 *
510 * Also, because we are operating on transmit timer and FC
511 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
512 */
513 #define IDX_OF_LFC PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX
514
515 /* Retrieve the transmit timer */
516 val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(IDX_OF_LFC));
517 tx_timer_val = val &
518 PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_M;
519 cmd->tx_tmr_value = cpu_to_le16(tx_timer_val);
520
521 /* Retrieve the FC threshold */
522 val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(IDX_OF_LFC));
523 fc_thres_val = val & PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER_M;
524
525 cmd->fc_refresh_threshold = cpu_to_le16(fc_thres_val);
526 }
527
528 /**
529 * ice_aq_set_mac_cfg
530 * @hw: pointer to the HW struct
531 * @max_frame_size: Maximum Frame Size to be supported
532 * @cd: pointer to command details structure or NULL
533 *
534 * Set MAC configuration (0x0603)
535 */
536 enum ice_status
ice_aq_set_mac_cfg(struct ice_hw * hw,u16 max_frame_size,struct ice_sq_cd * cd)537 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
538 {
539 struct ice_aqc_set_mac_cfg *cmd;
540 struct ice_aq_desc desc;
541
542 cmd = &desc.params.set_mac_cfg;
543
544 if (max_frame_size == 0)
545 return ICE_ERR_PARAM;
546
547 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
548
549 cmd->max_frame_size = cpu_to_le16(max_frame_size);
550
551 ice_fill_tx_timer_and_fc_thresh(hw, cmd);
552
553 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
554 }
555
556 /**
557 * ice_init_fltr_mgmt_struct - initializes filter management list and locks
558 * @hw: pointer to the HW struct
559 */
ice_init_fltr_mgmt_struct(struct ice_hw * hw)560 static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
561 {
562 struct ice_switch_info *sw;
563 enum ice_status status;
564
565 hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
566 sizeof(*hw->switch_info), GFP_KERNEL);
567 sw = hw->switch_info;
568
569 if (!sw)
570 return ICE_ERR_NO_MEMORY;
571
572 INIT_LIST_HEAD(&sw->vsi_list_map_head);
573
574 status = ice_init_def_sw_recp(hw);
575 if (status) {
576 devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
577 return status;
578 }
579 return 0;
580 }
581
582 /**
583 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
584 * @hw: pointer to the HW struct
585 */
ice_cleanup_fltr_mgmt_struct(struct ice_hw * hw)586 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
587 {
588 struct ice_switch_info *sw = hw->switch_info;
589 struct ice_vsi_list_map_info *v_pos_map;
590 struct ice_vsi_list_map_info *v_tmp_map;
591 struct ice_sw_recipe *recps;
592 u8 i;
593
594 list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
595 list_entry) {
596 list_del(&v_pos_map->list_entry);
597 devm_kfree(ice_hw_to_dev(hw), v_pos_map);
598 }
599 recps = hw->switch_info->recp_list;
600 for (i = 0; i < ICE_SW_LKUP_LAST; i++) {
601 struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
602
603 recps[i].root_rid = i;
604 mutex_destroy(&recps[i].filt_rule_lock);
605 list_for_each_entry_safe(lst_itr, tmp_entry,
606 &recps[i].filt_rules, list_entry) {
607 list_del(&lst_itr->list_entry);
608 devm_kfree(ice_hw_to_dev(hw), lst_itr);
609 }
610 }
611 ice_rm_all_sw_replay_rule_info(hw);
612 devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
613 devm_kfree(ice_hw_to_dev(hw), sw);
614 }
615
616 /**
617 * ice_get_fw_log_cfg - get FW logging configuration
618 * @hw: pointer to the HW struct
619 */
ice_get_fw_log_cfg(struct ice_hw * hw)620 static enum ice_status ice_get_fw_log_cfg(struct ice_hw *hw)
621 {
622 struct ice_aq_desc desc;
623 enum ice_status status;
624 __le16 *config;
625 u16 size;
626
627 size = sizeof(*config) * ICE_AQC_FW_LOG_ID_MAX;
628 config = devm_kzalloc(ice_hw_to_dev(hw), size, GFP_KERNEL);
629 if (!config)
630 return ICE_ERR_NO_MEMORY;
631
632 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging_info);
633
634 status = ice_aq_send_cmd(hw, &desc, config, size, NULL);
635 if (!status) {
636 u16 i;
637
638 /* Save FW logging information into the HW structure */
639 for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
640 u16 v, m, flgs;
641
642 v = le16_to_cpu(config[i]);
643 m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
644 flgs = (v & ICE_AQC_FW_LOG_EN_M) >> ICE_AQC_FW_LOG_EN_S;
645
646 if (m < ICE_AQC_FW_LOG_ID_MAX)
647 hw->fw_log.evnts[m].cur = flgs;
648 }
649 }
650
651 devm_kfree(ice_hw_to_dev(hw), config);
652
653 return status;
654 }
655
656 /**
657 * ice_cfg_fw_log - configure FW logging
658 * @hw: pointer to the HW struct
659 * @enable: enable certain FW logging events if true, disable all if false
660 *
661 * This function enables/disables the FW logging via Rx CQ events and a UART
662 * port based on predetermined configurations. FW logging via the Rx CQ can be
663 * enabled/disabled for individual PF's. However, FW logging via the UART can
664 * only be enabled/disabled for all PFs on the same device.
665 *
666 * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in
667 * hw->fw_log need to be set accordingly, e.g. based on user-provided input,
668 * before initializing the device.
669 *
670 * When re/configuring FW logging, callers need to update the "cfg" elements of
671 * the hw->fw_log.evnts array with the desired logging event configurations for
672 * modules of interest. When disabling FW logging completely, the callers can
673 * just pass false in the "enable" parameter. On completion, the function will
674 * update the "cur" element of the hw->fw_log.evnts array with the resulting
675 * logging event configurations of the modules that are being re/configured. FW
676 * logging modules that are not part of a reconfiguration operation retain their
677 * previous states.
678 *
679 * Before resetting the device, it is recommended that the driver disables FW
680 * logging before shutting down the control queue. When disabling FW logging
681 * ("enable" = false), the latest configurations of FW logging events stored in
682 * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after
683 * a device reset.
684 *
685 * When enabling FW logging to emit log messages via the Rx CQ during the
686 * device's initialization phase, a mechanism alternative to interrupt handlers
687 * needs to be used to extract FW log messages from the Rx CQ periodically and
688 * to prevent the Rx CQ from being full and stalling other types of control
689 * messages from FW to SW. Interrupts are typically disabled during the device's
690 * initialization phase.
691 */
ice_cfg_fw_log(struct ice_hw * hw,bool enable)692 static enum ice_status ice_cfg_fw_log(struct ice_hw *hw, bool enable)
693 {
694 struct ice_aqc_fw_logging *cmd;
695 enum ice_status status = 0;
696 u16 i, chgs = 0, len = 0;
697 struct ice_aq_desc desc;
698 __le16 *data = NULL;
699 u8 actv_evnts = 0;
700 void *buf = NULL;
701
702 if (!hw->fw_log.cq_en && !hw->fw_log.uart_en)
703 return 0;
704
705 /* Disable FW logging only when the control queue is still responsive */
706 if (!enable &&
707 (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq)))
708 return 0;
709
710 /* Get current FW log settings */
711 status = ice_get_fw_log_cfg(hw);
712 if (status)
713 return status;
714
715 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging);
716 cmd = &desc.params.fw_logging;
717
718 /* Indicate which controls are valid */
719 if (hw->fw_log.cq_en)
720 cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID;
721
722 if (hw->fw_log.uart_en)
723 cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID;
724
725 if (enable) {
726 /* Fill in an array of entries with FW logging modules and
727 * logging events being reconfigured.
728 */
729 for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
730 u16 val;
731
732 /* Keep track of enabled event types */
733 actv_evnts |= hw->fw_log.evnts[i].cfg;
734
735 if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur)
736 continue;
737
738 if (!data) {
739 data = devm_kcalloc(ice_hw_to_dev(hw),
740 ICE_AQC_FW_LOG_ID_MAX,
741 sizeof(*data),
742 GFP_KERNEL);
743 if (!data)
744 return ICE_ERR_NO_MEMORY;
745 }
746
747 val = i << ICE_AQC_FW_LOG_ID_S;
748 val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S;
749 data[chgs++] = cpu_to_le16(val);
750 }
751
752 /* Only enable FW logging if at least one module is specified.
753 * If FW logging is currently enabled but all modules are not
754 * enabled to emit log messages, disable FW logging altogether.
755 */
756 if (actv_evnts) {
757 /* Leave if there is effectively no change */
758 if (!chgs)
759 goto out;
760
761 if (hw->fw_log.cq_en)
762 cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN;
763
764 if (hw->fw_log.uart_en)
765 cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN;
766
767 buf = data;
768 len = sizeof(*data) * chgs;
769 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
770 }
771 }
772
773 status = ice_aq_send_cmd(hw, &desc, buf, len, NULL);
774 if (!status) {
775 /* Update the current configuration to reflect events enabled.
776 * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW
777 * logging mode is enabled for the device. They do not reflect
778 * actual modules being enabled to emit log messages. So, their
779 * values remain unchanged even when all modules are disabled.
780 */
781 u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX;
782
783 hw->fw_log.actv_evnts = actv_evnts;
784 for (i = 0; i < cnt; i++) {
785 u16 v, m;
786
787 if (!enable) {
788 /* When disabling all FW logging events as part
789 * of device's de-initialization, the original
790 * configurations are retained, and can be used
791 * to reconfigure FW logging later if the device
792 * is re-initialized.
793 */
794 hw->fw_log.evnts[i].cur = 0;
795 continue;
796 }
797
798 v = le16_to_cpu(data[i]);
799 m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
800 hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg;
801 }
802 }
803
804 out:
805 if (data)
806 devm_kfree(ice_hw_to_dev(hw), data);
807
808 return status;
809 }
810
811 /**
812 * ice_output_fw_log
813 * @hw: pointer to the HW struct
814 * @desc: pointer to the AQ message descriptor
815 * @buf: pointer to the buffer accompanying the AQ message
816 *
817 * Formats a FW Log message and outputs it via the standard driver logs.
818 */
ice_output_fw_log(struct ice_hw * hw,struct ice_aq_desc * desc,void * buf)819 void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
820 {
821 ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg Start ]\n");
822 ice_debug_array(hw, ICE_DBG_FW_LOG, 16, 1, (u8 *)buf,
823 le16_to_cpu(desc->datalen));
824 ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg End ]\n");
825 }
826
827 /**
828 * ice_get_itr_intrl_gran
829 * @hw: pointer to the HW struct
830 *
831 * Determines the ITR/INTRL granularities based on the maximum aggregate
832 * bandwidth according to the device's configuration during power-on.
833 */
ice_get_itr_intrl_gran(struct ice_hw * hw)834 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
835 {
836 u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
837 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
838 GL_PWR_MODE_CTL_CAR_MAX_BW_S;
839
840 switch (max_agg_bw) {
841 case ICE_MAX_AGG_BW_200G:
842 case ICE_MAX_AGG_BW_100G:
843 case ICE_MAX_AGG_BW_50G:
844 hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
845 hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
846 break;
847 case ICE_MAX_AGG_BW_25G:
848 hw->itr_gran = ICE_ITR_GRAN_MAX_25;
849 hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
850 break;
851 }
852 }
853
854 /**
855 * ice_init_hw - main hardware initialization routine
856 * @hw: pointer to the hardware structure
857 */
ice_init_hw(struct ice_hw * hw)858 enum ice_status ice_init_hw(struct ice_hw *hw)
859 {
860 struct ice_aqc_get_phy_caps_data *pcaps;
861 enum ice_status status;
862 u16 mac_buf_len;
863 void *mac_buf;
864
865 /* Set MAC type based on DeviceID */
866 status = ice_set_mac_type(hw);
867 if (status)
868 return status;
869
870 hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
871 PF_FUNC_RID_FUNC_NUM_M) >>
872 PF_FUNC_RID_FUNC_NUM_S;
873
874 status = ice_reset(hw, ICE_RESET_PFR);
875 if (status)
876 return status;
877
878 ice_get_itr_intrl_gran(hw);
879
880 status = ice_create_all_ctrlq(hw);
881 if (status)
882 goto err_unroll_cqinit;
883
884 /* Enable FW logging. Not fatal if this fails. */
885 status = ice_cfg_fw_log(hw, true);
886 if (status)
887 ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n");
888
889 status = ice_clear_pf_cfg(hw);
890 if (status)
891 goto err_unroll_cqinit;
892
893 /* Set bit to enable Flow Director filters */
894 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
895 INIT_LIST_HEAD(&hw->fdir_list_head);
896
897 ice_clear_pxe_mode(hw);
898
899 status = ice_init_nvm(hw);
900 if (status)
901 goto err_unroll_cqinit;
902
903 status = ice_get_caps(hw);
904 if (status)
905 goto err_unroll_cqinit;
906
907 hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
908 sizeof(*hw->port_info), GFP_KERNEL);
909 if (!hw->port_info) {
910 status = ICE_ERR_NO_MEMORY;
911 goto err_unroll_cqinit;
912 }
913
914 /* set the back pointer to HW */
915 hw->port_info->hw = hw;
916
917 /* Initialize port_info struct with switch configuration data */
918 status = ice_get_initial_sw_cfg(hw);
919 if (status)
920 goto err_unroll_alloc;
921
922 hw->evb_veb = true;
923
924 /* Query the allocated resources for Tx scheduler */
925 status = ice_sched_query_res_alloc(hw);
926 if (status) {
927 ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
928 goto err_unroll_alloc;
929 }
930 ice_sched_get_psm_clk_freq(hw);
931
932 /* Initialize port_info struct with scheduler data */
933 status = ice_sched_init_port(hw->port_info);
934 if (status)
935 goto err_unroll_sched;
936
937 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
938 if (!pcaps) {
939 status = ICE_ERR_NO_MEMORY;
940 goto err_unroll_sched;
941 }
942
943 /* Initialize port_info struct with PHY capabilities */
944 status = ice_aq_get_phy_caps(hw->port_info, false,
945 ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
946 NULL);
947 devm_kfree(ice_hw_to_dev(hw), pcaps);
948 if (status)
949 dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
950 status);
951
952 /* Initialize port_info struct with link information */
953 status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
954 if (status)
955 goto err_unroll_sched;
956
957 /* need a valid SW entry point to build a Tx tree */
958 if (!hw->sw_entry_point_layer) {
959 ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
960 status = ICE_ERR_CFG;
961 goto err_unroll_sched;
962 }
963 INIT_LIST_HEAD(&hw->agg_list);
964 /* Initialize max burst size */
965 if (!hw->max_burst_size)
966 ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
967
968 status = ice_init_fltr_mgmt_struct(hw);
969 if (status)
970 goto err_unroll_sched;
971
972 /* Get MAC information */
973 /* A single port can report up to two (LAN and WoL) addresses */
974 mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
975 sizeof(struct ice_aqc_manage_mac_read_resp),
976 GFP_KERNEL);
977 mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
978
979 if (!mac_buf) {
980 status = ICE_ERR_NO_MEMORY;
981 goto err_unroll_fltr_mgmt_struct;
982 }
983
984 status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
985 devm_kfree(ice_hw_to_dev(hw), mac_buf);
986
987 if (status)
988 goto err_unroll_fltr_mgmt_struct;
989 /* enable jumbo frame support at MAC level */
990 status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
991 if (status)
992 goto err_unroll_fltr_mgmt_struct;
993 /* Obtain counter base index which would be used by flow director */
994 status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
995 if (status)
996 goto err_unroll_fltr_mgmt_struct;
997 status = ice_init_hw_tbls(hw);
998 if (status)
999 goto err_unroll_fltr_mgmt_struct;
1000 mutex_init(&hw->tnl_lock);
1001 return 0;
1002
1003 err_unroll_fltr_mgmt_struct:
1004 ice_cleanup_fltr_mgmt_struct(hw);
1005 err_unroll_sched:
1006 ice_sched_cleanup_all(hw);
1007 err_unroll_alloc:
1008 devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1009 err_unroll_cqinit:
1010 ice_destroy_all_ctrlq(hw);
1011 return status;
1012 }
1013
1014 /**
1015 * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1016 * @hw: pointer to the hardware structure
1017 *
1018 * This should be called only during nominal operation, not as a result of
1019 * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1020 * applicable initializations if it fails for any reason.
1021 */
ice_deinit_hw(struct ice_hw * hw)1022 void ice_deinit_hw(struct ice_hw *hw)
1023 {
1024 ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1025 ice_cleanup_fltr_mgmt_struct(hw);
1026
1027 ice_sched_cleanup_all(hw);
1028 ice_sched_clear_agg(hw);
1029 ice_free_seg(hw);
1030 ice_free_hw_tbls(hw);
1031 mutex_destroy(&hw->tnl_lock);
1032
1033 if (hw->port_info) {
1034 devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1035 hw->port_info = NULL;
1036 }
1037
1038 /* Attempt to disable FW logging before shutting down control queues */
1039 ice_cfg_fw_log(hw, false);
1040 ice_destroy_all_ctrlq(hw);
1041
1042 /* Clear VSI contexts if not already cleared */
1043 ice_clear_all_vsi_ctx(hw);
1044 }
1045
1046 /**
1047 * ice_check_reset - Check to see if a global reset is complete
1048 * @hw: pointer to the hardware structure
1049 */
ice_check_reset(struct ice_hw * hw)1050 enum ice_status ice_check_reset(struct ice_hw *hw)
1051 {
1052 u32 cnt, reg = 0, grst_timeout, uld_mask;
1053
1054 /* Poll for Device Active state in case a recent CORER, GLOBR,
1055 * or EMPR has occurred. The grst delay value is in 100ms units.
1056 * Add 1sec for outstanding AQ commands that can take a long time.
1057 */
1058 grst_timeout = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
1059 GLGEN_RSTCTL_GRSTDEL_S) + 10;
1060
1061 for (cnt = 0; cnt < grst_timeout; cnt++) {
1062 mdelay(100);
1063 reg = rd32(hw, GLGEN_RSTAT);
1064 if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1065 break;
1066 }
1067
1068 if (cnt == grst_timeout) {
1069 ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1070 return ICE_ERR_RESET_FAILED;
1071 }
1072
1073 #define ICE_RESET_DONE_MASK (GLNVM_ULD_PCIER_DONE_M |\
1074 GLNVM_ULD_PCIER_DONE_1_M |\
1075 GLNVM_ULD_CORER_DONE_M |\
1076 GLNVM_ULD_GLOBR_DONE_M |\
1077 GLNVM_ULD_POR_DONE_M |\
1078 GLNVM_ULD_POR_DONE_1_M |\
1079 GLNVM_ULD_PCIER_DONE_2_M)
1080
1081 uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1082 GLNVM_ULD_PE_DONE_M : 0);
1083
1084 /* Device is Active; check Global Reset processes are done */
1085 for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1086 reg = rd32(hw, GLNVM_ULD) & uld_mask;
1087 if (reg == uld_mask) {
1088 ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1089 break;
1090 }
1091 mdelay(10);
1092 }
1093
1094 if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1095 ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1096 reg);
1097 return ICE_ERR_RESET_FAILED;
1098 }
1099
1100 return 0;
1101 }
1102
1103 /**
1104 * ice_pf_reset - Reset the PF
1105 * @hw: pointer to the hardware structure
1106 *
1107 * If a global reset has been triggered, this function checks
1108 * for its completion and then issues the PF reset
1109 */
ice_pf_reset(struct ice_hw * hw)1110 static enum ice_status ice_pf_reset(struct ice_hw *hw)
1111 {
1112 u32 cnt, reg;
1113
1114 /* If at function entry a global reset was already in progress, i.e.
1115 * state is not 'device active' or any of the reset done bits are not
1116 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1117 * global reset is done.
1118 */
1119 if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1120 (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1121 /* poll on global reset currently in progress until done */
1122 if (ice_check_reset(hw))
1123 return ICE_ERR_RESET_FAILED;
1124
1125 return 0;
1126 }
1127
1128 /* Reset the PF */
1129 reg = rd32(hw, PFGEN_CTRL);
1130
1131 wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1132
1133 /* Wait for the PFR to complete. The wait time is the global config lock
1134 * timeout plus the PFR timeout which will account for a possible reset
1135 * that is occurring during a download package operation.
1136 */
1137 for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1138 ICE_PF_RESET_WAIT_COUNT; cnt++) {
1139 reg = rd32(hw, PFGEN_CTRL);
1140 if (!(reg & PFGEN_CTRL_PFSWR_M))
1141 break;
1142
1143 mdelay(1);
1144 }
1145
1146 if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1147 ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1148 return ICE_ERR_RESET_FAILED;
1149 }
1150
1151 return 0;
1152 }
1153
1154 /**
1155 * ice_reset - Perform different types of reset
1156 * @hw: pointer to the hardware structure
1157 * @req: reset request
1158 *
1159 * This function triggers a reset as specified by the req parameter.
1160 *
1161 * Note:
1162 * If anything other than a PF reset is triggered, PXE mode is restored.
1163 * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1164 * interface has been restored in the rebuild flow.
1165 */
ice_reset(struct ice_hw * hw,enum ice_reset_req req)1166 enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1167 {
1168 u32 val = 0;
1169
1170 switch (req) {
1171 case ICE_RESET_PFR:
1172 return ice_pf_reset(hw);
1173 case ICE_RESET_CORER:
1174 ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1175 val = GLGEN_RTRIG_CORER_M;
1176 break;
1177 case ICE_RESET_GLOBR:
1178 ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1179 val = GLGEN_RTRIG_GLOBR_M;
1180 break;
1181 default:
1182 return ICE_ERR_PARAM;
1183 }
1184
1185 val |= rd32(hw, GLGEN_RTRIG);
1186 wr32(hw, GLGEN_RTRIG, val);
1187 ice_flush(hw);
1188
1189 /* wait for the FW to be ready */
1190 return ice_check_reset(hw);
1191 }
1192
1193 /**
1194 * ice_copy_rxq_ctx_to_hw
1195 * @hw: pointer to the hardware structure
1196 * @ice_rxq_ctx: pointer to the rxq context
1197 * @rxq_index: the index of the Rx queue
1198 *
1199 * Copies rxq context from dense structure to HW register space
1200 */
1201 static enum ice_status
ice_copy_rxq_ctx_to_hw(struct ice_hw * hw,u8 * ice_rxq_ctx,u32 rxq_index)1202 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1203 {
1204 u8 i;
1205
1206 if (!ice_rxq_ctx)
1207 return ICE_ERR_BAD_PTR;
1208
1209 if (rxq_index > QRX_CTRL_MAX_INDEX)
1210 return ICE_ERR_PARAM;
1211
1212 /* Copy each dword separately to HW */
1213 for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1214 wr32(hw, QRX_CONTEXT(i, rxq_index),
1215 *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1216
1217 ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1218 *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1219 }
1220
1221 return 0;
1222 }
1223
1224 /* LAN Rx Queue Context */
1225 static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1226 /* Field Width LSB */
1227 ICE_CTX_STORE(ice_rlan_ctx, head, 13, 0),
1228 ICE_CTX_STORE(ice_rlan_ctx, cpuid, 8, 13),
1229 ICE_CTX_STORE(ice_rlan_ctx, base, 57, 32),
1230 ICE_CTX_STORE(ice_rlan_ctx, qlen, 13, 89),
1231 ICE_CTX_STORE(ice_rlan_ctx, dbuf, 7, 102),
1232 ICE_CTX_STORE(ice_rlan_ctx, hbuf, 5, 109),
1233 ICE_CTX_STORE(ice_rlan_ctx, dtype, 2, 114),
1234 ICE_CTX_STORE(ice_rlan_ctx, dsize, 1, 116),
1235 ICE_CTX_STORE(ice_rlan_ctx, crcstrip, 1, 117),
1236 ICE_CTX_STORE(ice_rlan_ctx, l2tsel, 1, 119),
1237 ICE_CTX_STORE(ice_rlan_ctx, hsplit_0, 4, 120),
1238 ICE_CTX_STORE(ice_rlan_ctx, hsplit_1, 2, 124),
1239 ICE_CTX_STORE(ice_rlan_ctx, showiv, 1, 127),
1240 ICE_CTX_STORE(ice_rlan_ctx, rxmax, 14, 174),
1241 ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena, 1, 193),
1242 ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena, 1, 194),
1243 ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena, 1, 195),
1244 ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena, 1, 196),
1245 ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh, 3, 198),
1246 ICE_CTX_STORE(ice_rlan_ctx, prefena, 1, 201),
1247 { 0 }
1248 };
1249
1250 /**
1251 * ice_write_rxq_ctx
1252 * @hw: pointer to the hardware structure
1253 * @rlan_ctx: pointer to the rxq context
1254 * @rxq_index: the index of the Rx queue
1255 *
1256 * Converts rxq context from sparse to dense structure and then writes
1257 * it to HW register space and enables the hardware to prefetch descriptors
1258 * instead of only fetching them on demand
1259 */
1260 enum ice_status
ice_write_rxq_ctx(struct ice_hw * hw,struct ice_rlan_ctx * rlan_ctx,u32 rxq_index)1261 ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1262 u32 rxq_index)
1263 {
1264 u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1265
1266 if (!rlan_ctx)
1267 return ICE_ERR_BAD_PTR;
1268
1269 rlan_ctx->prefena = 1;
1270
1271 ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1272 return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1273 }
1274
1275 /* LAN Tx Queue Context */
1276 const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1277 /* Field Width LSB */
1278 ICE_CTX_STORE(ice_tlan_ctx, base, 57, 0),
1279 ICE_CTX_STORE(ice_tlan_ctx, port_num, 3, 57),
1280 ICE_CTX_STORE(ice_tlan_ctx, cgd_num, 5, 60),
1281 ICE_CTX_STORE(ice_tlan_ctx, pf_num, 3, 65),
1282 ICE_CTX_STORE(ice_tlan_ctx, vmvf_num, 10, 68),
1283 ICE_CTX_STORE(ice_tlan_ctx, vmvf_type, 2, 78),
1284 ICE_CTX_STORE(ice_tlan_ctx, src_vsi, 10, 80),
1285 ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena, 1, 90),
1286 ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag, 1, 91),
1287 ICE_CTX_STORE(ice_tlan_ctx, alt_vlan, 1, 92),
1288 ICE_CTX_STORE(ice_tlan_ctx, cpuid, 8, 93),
1289 ICE_CTX_STORE(ice_tlan_ctx, wb_mode, 1, 101),
1290 ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc, 1, 102),
1291 ICE_CTX_STORE(ice_tlan_ctx, tphrd, 1, 103),
1292 ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc, 1, 104),
1293 ICE_CTX_STORE(ice_tlan_ctx, cmpq_id, 9, 105),
1294 ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func, 14, 114),
1295 ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode, 1, 128),
1296 ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id, 6, 129),
1297 ICE_CTX_STORE(ice_tlan_ctx, qlen, 13, 135),
1298 ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx, 4, 148),
1299 ICE_CTX_STORE(ice_tlan_ctx, tso_ena, 1, 152),
1300 ICE_CTX_STORE(ice_tlan_ctx, tso_qnum, 11, 153),
1301 ICE_CTX_STORE(ice_tlan_ctx, legacy_int, 1, 164),
1302 ICE_CTX_STORE(ice_tlan_ctx, drop_ena, 1, 165),
1303 ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx, 2, 166),
1304 ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx, 3, 168),
1305 ICE_CTX_STORE(ice_tlan_ctx, int_q_state, 122, 171),
1306 { 0 }
1307 };
1308
1309 /* Sideband Queue command wrappers */
1310
1311 /**
1312 * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1313 * @hw: pointer to the HW struct
1314 * @desc: descriptor describing the command
1315 * @buf: buffer to use for indirect commands (NULL for direct commands)
1316 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1317 * @cd: pointer to command details structure
1318 */
1319 static int
ice_sbq_send_cmd(struct ice_hw * hw,struct ice_sbq_cmd_desc * desc,void * buf,u16 buf_size,struct ice_sq_cd * cd)1320 ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1321 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1322 {
1323 return ice_status_to_errno(ice_sq_send_cmd(hw, ice_get_sbq(hw),
1324 (struct ice_aq_desc *)desc,
1325 buf, buf_size, cd));
1326 }
1327
1328 /**
1329 * ice_sbq_rw_reg - Fill Sideband Queue command
1330 * @hw: pointer to the HW struct
1331 * @in: message info to be filled in descriptor
1332 */
ice_sbq_rw_reg(struct ice_hw * hw,struct ice_sbq_msg_input * in)1333 int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in)
1334 {
1335 struct ice_sbq_cmd_desc desc = {0};
1336 struct ice_sbq_msg_req msg = {0};
1337 u16 msg_len;
1338 int status;
1339
1340 msg_len = sizeof(msg);
1341
1342 msg.dest_dev = in->dest_dev;
1343 msg.opcode = in->opcode;
1344 msg.flags = ICE_SBQ_MSG_FLAGS;
1345 msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1346 msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1347 msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1348
1349 if (in->opcode)
1350 msg.data = cpu_to_le32(in->data);
1351 else
1352 /* data read comes back in completion, so shorten the struct by
1353 * sizeof(msg.data)
1354 */
1355 msg_len -= sizeof(msg.data);
1356
1357 desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
1358 desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1359 desc.param0.cmd_len = cpu_to_le16(msg_len);
1360 status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1361 if (!status && !in->opcode)
1362 in->data = le32_to_cpu
1363 (((struct ice_sbq_msg_cmpl *)&msg)->data);
1364 return status;
1365 }
1366
1367 /* FW Admin Queue command wrappers */
1368
1369 /* Software lock/mutex that is meant to be held while the Global Config Lock
1370 * in firmware is acquired by the software to prevent most (but not all) types
1371 * of AQ commands from being sent to FW
1372 */
1373 DEFINE_MUTEX(ice_global_cfg_lock_sw);
1374
1375 /**
1376 * ice_should_retry_sq_send_cmd
1377 * @opcode: AQ opcode
1378 *
1379 * Decide if we should retry the send command routine for the ATQ, depending
1380 * on the opcode.
1381 */
ice_should_retry_sq_send_cmd(u16 opcode)1382 static bool ice_should_retry_sq_send_cmd(u16 opcode)
1383 {
1384 switch (opcode) {
1385 case ice_aqc_opc_get_link_topo:
1386 case ice_aqc_opc_lldp_stop:
1387 case ice_aqc_opc_lldp_start:
1388 case ice_aqc_opc_lldp_filter_ctrl:
1389 return true;
1390 }
1391
1392 return false;
1393 }
1394
1395 /**
1396 * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1397 * @hw: pointer to the HW struct
1398 * @cq: pointer to the specific Control queue
1399 * @desc: prefilled descriptor describing the command
1400 * @buf: buffer to use for indirect commands (or NULL for direct commands)
1401 * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1402 * @cd: pointer to command details structure
1403 *
1404 * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1405 * Queue if the EBUSY AQ error is returned.
1406 */
1407 static enum ice_status
ice_sq_send_cmd_retry(struct ice_hw * hw,struct ice_ctl_q_info * cq,struct ice_aq_desc * desc,void * buf,u16 buf_size,struct ice_sq_cd * cd)1408 ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1409 struct ice_aq_desc *desc, void *buf, u16 buf_size,
1410 struct ice_sq_cd *cd)
1411 {
1412 struct ice_aq_desc desc_cpy;
1413 enum ice_status status;
1414 bool is_cmd_for_retry;
1415 u8 *buf_cpy = NULL;
1416 u8 idx = 0;
1417 u16 opcode;
1418
1419 opcode = le16_to_cpu(desc->opcode);
1420 is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1421 memset(&desc_cpy, 0, sizeof(desc_cpy));
1422
1423 if (is_cmd_for_retry) {
1424 if (buf) {
1425 buf_cpy = kzalloc(buf_size, GFP_KERNEL);
1426 if (!buf_cpy)
1427 return ICE_ERR_NO_MEMORY;
1428 }
1429
1430 memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1431 }
1432
1433 do {
1434 status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1435
1436 if (!is_cmd_for_retry || !status ||
1437 hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1438 break;
1439
1440 if (buf_cpy)
1441 memcpy(buf, buf_cpy, buf_size);
1442
1443 memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1444
1445 mdelay(ICE_SQ_SEND_DELAY_TIME_MS);
1446
1447 } while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1448
1449 kfree(buf_cpy);
1450
1451 return status;
1452 }
1453
1454 /**
1455 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1456 * @hw: pointer to the HW struct
1457 * @desc: descriptor describing the command
1458 * @buf: buffer to use for indirect commands (NULL for direct commands)
1459 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1460 * @cd: pointer to command details structure
1461 *
1462 * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1463 */
1464 enum ice_status
ice_aq_send_cmd(struct ice_hw * hw,struct ice_aq_desc * desc,void * buf,u16 buf_size,struct ice_sq_cd * cd)1465 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1466 u16 buf_size, struct ice_sq_cd *cd)
1467 {
1468 struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1469 bool lock_acquired = false;
1470 enum ice_status status;
1471
1472 /* When a package download is in process (i.e. when the firmware's
1473 * Global Configuration Lock resource is held), only the Download
1474 * Package, Get Version, Get Package Info List and Release Resource
1475 * (with resource ID set to Global Config Lock) AdminQ commands are
1476 * allowed; all others must block until the package download completes
1477 * and the Global Config Lock is released. See also
1478 * ice_acquire_global_cfg_lock().
1479 */
1480 switch (le16_to_cpu(desc->opcode)) {
1481 case ice_aqc_opc_download_pkg:
1482 case ice_aqc_opc_get_pkg_info_list:
1483 case ice_aqc_opc_get_ver:
1484 break;
1485 case ice_aqc_opc_release_res:
1486 if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1487 break;
1488 fallthrough;
1489 default:
1490 mutex_lock(&ice_global_cfg_lock_sw);
1491 lock_acquired = true;
1492 break;
1493 }
1494
1495 status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1496 if (lock_acquired)
1497 mutex_unlock(&ice_global_cfg_lock_sw);
1498
1499 return status;
1500 }
1501
1502 /**
1503 * ice_aq_get_fw_ver
1504 * @hw: pointer to the HW struct
1505 * @cd: pointer to command details structure or NULL
1506 *
1507 * Get the firmware version (0x0001) from the admin queue commands
1508 */
ice_aq_get_fw_ver(struct ice_hw * hw,struct ice_sq_cd * cd)1509 enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1510 {
1511 struct ice_aqc_get_ver *resp;
1512 struct ice_aq_desc desc;
1513 enum ice_status status;
1514
1515 resp = &desc.params.get_ver;
1516
1517 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1518
1519 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1520
1521 if (!status) {
1522 hw->fw_branch = resp->fw_branch;
1523 hw->fw_maj_ver = resp->fw_major;
1524 hw->fw_min_ver = resp->fw_minor;
1525 hw->fw_patch = resp->fw_patch;
1526 hw->fw_build = le32_to_cpu(resp->fw_build);
1527 hw->api_branch = resp->api_branch;
1528 hw->api_maj_ver = resp->api_major;
1529 hw->api_min_ver = resp->api_minor;
1530 hw->api_patch = resp->api_patch;
1531 }
1532
1533 return status;
1534 }
1535
1536 /**
1537 * ice_aq_send_driver_ver
1538 * @hw: pointer to the HW struct
1539 * @dv: driver's major, minor version
1540 * @cd: pointer to command details structure or NULL
1541 *
1542 * Send the driver version (0x0002) to the firmware
1543 */
1544 enum ice_status
ice_aq_send_driver_ver(struct ice_hw * hw,struct ice_driver_ver * dv,struct ice_sq_cd * cd)1545 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1546 struct ice_sq_cd *cd)
1547 {
1548 struct ice_aqc_driver_ver *cmd;
1549 struct ice_aq_desc desc;
1550 u16 len;
1551
1552 cmd = &desc.params.driver_ver;
1553
1554 if (!dv)
1555 return ICE_ERR_PARAM;
1556
1557 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1558
1559 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1560 cmd->major_ver = dv->major_ver;
1561 cmd->minor_ver = dv->minor_ver;
1562 cmd->build_ver = dv->build_ver;
1563 cmd->subbuild_ver = dv->subbuild_ver;
1564
1565 len = 0;
1566 while (len < sizeof(dv->driver_string) &&
1567 isascii(dv->driver_string[len]) && dv->driver_string[len])
1568 len++;
1569
1570 return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1571 }
1572
1573 /**
1574 * ice_aq_q_shutdown
1575 * @hw: pointer to the HW struct
1576 * @unloading: is the driver unloading itself
1577 *
1578 * Tell the Firmware that we're shutting down the AdminQ and whether
1579 * or not the driver is unloading as well (0x0003).
1580 */
ice_aq_q_shutdown(struct ice_hw * hw,bool unloading)1581 enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1582 {
1583 struct ice_aqc_q_shutdown *cmd;
1584 struct ice_aq_desc desc;
1585
1586 cmd = &desc.params.q_shutdown;
1587
1588 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1589
1590 if (unloading)
1591 cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1592
1593 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1594 }
1595
1596 /**
1597 * ice_aq_req_res
1598 * @hw: pointer to the HW struct
1599 * @res: resource ID
1600 * @access: access type
1601 * @sdp_number: resource number
1602 * @timeout: the maximum time in ms that the driver may hold the resource
1603 * @cd: pointer to command details structure or NULL
1604 *
1605 * Requests common resource using the admin queue commands (0x0008).
1606 * When attempting to acquire the Global Config Lock, the driver can
1607 * learn of three states:
1608 * 1) ICE_SUCCESS - acquired lock, and can perform download package
1609 * 2) ICE_ERR_AQ_ERROR - did not get lock, driver should fail to load
1610 * 3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
1611 * successfully downloaded the package; the driver does
1612 * not have to download the package and can continue
1613 * loading
1614 *
1615 * Note that if the caller is in an acquire lock, perform action, release lock
1616 * phase of operation, it is possible that the FW may detect a timeout and issue
1617 * a CORER. In this case, the driver will receive a CORER interrupt and will
1618 * have to determine its cause. The calling thread that is handling this flow
1619 * will likely get an error propagated back to it indicating the Download
1620 * Package, Update Package or the Release Resource AQ commands timed out.
1621 */
1622 static enum ice_status
ice_aq_req_res(struct ice_hw * hw,enum ice_aq_res_ids res,enum ice_aq_res_access_type access,u8 sdp_number,u32 * timeout,struct ice_sq_cd * cd)1623 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1624 enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1625 struct ice_sq_cd *cd)
1626 {
1627 struct ice_aqc_req_res *cmd_resp;
1628 struct ice_aq_desc desc;
1629 enum ice_status status;
1630
1631 cmd_resp = &desc.params.res_owner;
1632
1633 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1634
1635 cmd_resp->res_id = cpu_to_le16(res);
1636 cmd_resp->access_type = cpu_to_le16(access);
1637 cmd_resp->res_number = cpu_to_le32(sdp_number);
1638 cmd_resp->timeout = cpu_to_le32(*timeout);
1639 *timeout = 0;
1640
1641 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1642
1643 /* The completion specifies the maximum time in ms that the driver
1644 * may hold the resource in the Timeout field.
1645 */
1646
1647 /* Global config lock response utilizes an additional status field.
1648 *
1649 * If the Global config lock resource is held by some other driver, the
1650 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1651 * and the timeout field indicates the maximum time the current owner
1652 * of the resource has to free it.
1653 */
1654 if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1655 if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1656 *timeout = le32_to_cpu(cmd_resp->timeout);
1657 return 0;
1658 } else if (le16_to_cpu(cmd_resp->status) ==
1659 ICE_AQ_RES_GLBL_IN_PROG) {
1660 *timeout = le32_to_cpu(cmd_resp->timeout);
1661 return ICE_ERR_AQ_ERROR;
1662 } else if (le16_to_cpu(cmd_resp->status) ==
1663 ICE_AQ_RES_GLBL_DONE) {
1664 return ICE_ERR_AQ_NO_WORK;
1665 }
1666
1667 /* invalid FW response, force a timeout immediately */
1668 *timeout = 0;
1669 return ICE_ERR_AQ_ERROR;
1670 }
1671
1672 /* If the resource is held by some other driver, the command completes
1673 * with a busy return value and the timeout field indicates the maximum
1674 * time the current owner of the resource has to free it.
1675 */
1676 if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1677 *timeout = le32_to_cpu(cmd_resp->timeout);
1678
1679 return status;
1680 }
1681
1682 /**
1683 * ice_aq_release_res
1684 * @hw: pointer to the HW struct
1685 * @res: resource ID
1686 * @sdp_number: resource number
1687 * @cd: pointer to command details structure or NULL
1688 *
1689 * release common resource using the admin queue commands (0x0009)
1690 */
1691 static enum ice_status
ice_aq_release_res(struct ice_hw * hw,enum ice_aq_res_ids res,u8 sdp_number,struct ice_sq_cd * cd)1692 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1693 struct ice_sq_cd *cd)
1694 {
1695 struct ice_aqc_req_res *cmd;
1696 struct ice_aq_desc desc;
1697
1698 cmd = &desc.params.res_owner;
1699
1700 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1701
1702 cmd->res_id = cpu_to_le16(res);
1703 cmd->res_number = cpu_to_le32(sdp_number);
1704
1705 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1706 }
1707
1708 /**
1709 * ice_acquire_res
1710 * @hw: pointer to the HW structure
1711 * @res: resource ID
1712 * @access: access type (read or write)
1713 * @timeout: timeout in milliseconds
1714 *
1715 * This function will attempt to acquire the ownership of a resource.
1716 */
1717 enum ice_status
ice_acquire_res(struct ice_hw * hw,enum ice_aq_res_ids res,enum ice_aq_res_access_type access,u32 timeout)1718 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1719 enum ice_aq_res_access_type access, u32 timeout)
1720 {
1721 #define ICE_RES_POLLING_DELAY_MS 10
1722 u32 delay = ICE_RES_POLLING_DELAY_MS;
1723 u32 time_left = timeout;
1724 enum ice_status status;
1725
1726 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1727
1728 /* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
1729 * previously acquired the resource and performed any necessary updates;
1730 * in this case the caller does not obtain the resource and has no
1731 * further work to do.
1732 */
1733 if (status == ICE_ERR_AQ_NO_WORK)
1734 goto ice_acquire_res_exit;
1735
1736 if (status)
1737 ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
1738
1739 /* If necessary, poll until the current lock owner timeouts */
1740 timeout = time_left;
1741 while (status && timeout && time_left) {
1742 mdelay(delay);
1743 timeout = (timeout > delay) ? timeout - delay : 0;
1744 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1745
1746 if (status == ICE_ERR_AQ_NO_WORK)
1747 /* lock free, but no work to do */
1748 break;
1749
1750 if (!status)
1751 /* lock acquired */
1752 break;
1753 }
1754 if (status && status != ICE_ERR_AQ_NO_WORK)
1755 ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1756
1757 ice_acquire_res_exit:
1758 if (status == ICE_ERR_AQ_NO_WORK) {
1759 if (access == ICE_RES_WRITE)
1760 ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
1761 else
1762 ice_debug(hw, ICE_DBG_RES, "Warning: ICE_ERR_AQ_NO_WORK not expected\n");
1763 }
1764 return status;
1765 }
1766
1767 /**
1768 * ice_release_res
1769 * @hw: pointer to the HW structure
1770 * @res: resource ID
1771 *
1772 * This function will release a resource using the proper Admin Command.
1773 */
ice_release_res(struct ice_hw * hw,enum ice_aq_res_ids res)1774 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1775 {
1776 enum ice_status status;
1777 u32 total_delay = 0;
1778
1779 status = ice_aq_release_res(hw, res, 0, NULL);
1780
1781 /* there are some rare cases when trying to release the resource
1782 * results in an admin queue timeout, so handle them correctly
1783 */
1784 while ((status == ICE_ERR_AQ_TIMEOUT) &&
1785 (total_delay < hw->adminq.sq_cmd_timeout)) {
1786 mdelay(1);
1787 status = ice_aq_release_res(hw, res, 0, NULL);
1788 total_delay++;
1789 }
1790 }
1791
1792 /**
1793 * ice_aq_alloc_free_res - command to allocate/free resources
1794 * @hw: pointer to the HW struct
1795 * @num_entries: number of resource entries in buffer
1796 * @buf: Indirect buffer to hold data parameters and response
1797 * @buf_size: size of buffer for indirect commands
1798 * @opc: pass in the command opcode
1799 * @cd: pointer to command details structure or NULL
1800 *
1801 * Helper function to allocate/free resources using the admin queue commands
1802 */
1803 enum ice_status
ice_aq_alloc_free_res(struct ice_hw * hw,u16 num_entries,struct ice_aqc_alloc_free_res_elem * buf,u16 buf_size,enum ice_adminq_opc opc,struct ice_sq_cd * cd)1804 ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries,
1805 struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
1806 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1807 {
1808 struct ice_aqc_alloc_free_res_cmd *cmd;
1809 struct ice_aq_desc desc;
1810
1811 cmd = &desc.params.sw_res_ctrl;
1812
1813 if (!buf)
1814 return ICE_ERR_PARAM;
1815
1816 if (buf_size < flex_array_size(buf, elem, num_entries))
1817 return ICE_ERR_PARAM;
1818
1819 ice_fill_dflt_direct_cmd_desc(&desc, opc);
1820
1821 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1822
1823 cmd->num_entries = cpu_to_le16(num_entries);
1824
1825 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1826 }
1827
1828 /**
1829 * ice_alloc_hw_res - allocate resource
1830 * @hw: pointer to the HW struct
1831 * @type: type of resource
1832 * @num: number of resources to allocate
1833 * @btm: allocate from bottom
1834 * @res: pointer to array that will receive the resources
1835 */
1836 enum ice_status
ice_alloc_hw_res(struct ice_hw * hw,u16 type,u16 num,bool btm,u16 * res)1837 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
1838 {
1839 struct ice_aqc_alloc_free_res_elem *buf;
1840 enum ice_status status;
1841 u16 buf_len;
1842
1843 buf_len = struct_size(buf, elem, num);
1844 buf = kzalloc(buf_len, GFP_KERNEL);
1845 if (!buf)
1846 return ICE_ERR_NO_MEMORY;
1847
1848 /* Prepare buffer to allocate resource. */
1849 buf->num_elems = cpu_to_le16(num);
1850 buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
1851 ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
1852 if (btm)
1853 buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
1854
1855 status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
1856 ice_aqc_opc_alloc_res, NULL);
1857 if (status)
1858 goto ice_alloc_res_exit;
1859
1860 memcpy(res, buf->elem, sizeof(*buf->elem) * num);
1861
1862 ice_alloc_res_exit:
1863 kfree(buf);
1864 return status;
1865 }
1866
1867 /**
1868 * ice_free_hw_res - free allocated HW resource
1869 * @hw: pointer to the HW struct
1870 * @type: type of resource to free
1871 * @num: number of resources
1872 * @res: pointer to array that contains the resources to free
1873 */
ice_free_hw_res(struct ice_hw * hw,u16 type,u16 num,u16 * res)1874 enum ice_status ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
1875 {
1876 struct ice_aqc_alloc_free_res_elem *buf;
1877 enum ice_status status;
1878 u16 buf_len;
1879
1880 buf_len = struct_size(buf, elem, num);
1881 buf = kzalloc(buf_len, GFP_KERNEL);
1882 if (!buf)
1883 return ICE_ERR_NO_MEMORY;
1884
1885 /* Prepare buffer to free resource. */
1886 buf->num_elems = cpu_to_le16(num);
1887 buf->res_type = cpu_to_le16(type);
1888 memcpy(buf->elem, res, sizeof(*buf->elem) * num);
1889
1890 status = ice_aq_alloc_free_res(hw, num, buf, buf_len,
1891 ice_aqc_opc_free_res, NULL);
1892 if (status)
1893 ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
1894
1895 kfree(buf);
1896 return status;
1897 }
1898
1899 /**
1900 * ice_get_num_per_func - determine number of resources per PF
1901 * @hw: pointer to the HW structure
1902 * @max: value to be evenly split between each PF
1903 *
1904 * Determine the number of valid functions by going through the bitmap returned
1905 * from parsing capabilities and use this to calculate the number of resources
1906 * per PF based on the max value passed in.
1907 */
ice_get_num_per_func(struct ice_hw * hw,u32 max)1908 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
1909 {
1910 u8 funcs;
1911
1912 #define ICE_CAPS_VALID_FUNCS_M 0xFF
1913 funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
1914 ICE_CAPS_VALID_FUNCS_M);
1915
1916 if (!funcs)
1917 return 0;
1918
1919 return max / funcs;
1920 }
1921
1922 /**
1923 * ice_parse_common_caps - parse common device/function capabilities
1924 * @hw: pointer to the HW struct
1925 * @caps: pointer to common capabilities structure
1926 * @elem: the capability element to parse
1927 * @prefix: message prefix for tracing capabilities
1928 *
1929 * Given a capability element, extract relevant details into the common
1930 * capability structure.
1931 *
1932 * Returns: true if the capability matches one of the common capability ids,
1933 * false otherwise.
1934 */
1935 static bool
ice_parse_common_caps(struct ice_hw * hw,struct ice_hw_common_caps * caps,struct ice_aqc_list_caps_elem * elem,const char * prefix)1936 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
1937 struct ice_aqc_list_caps_elem *elem, const char *prefix)
1938 {
1939 u32 logical_id = le32_to_cpu(elem->logical_id);
1940 u32 phys_id = le32_to_cpu(elem->phys_id);
1941 u32 number = le32_to_cpu(elem->number);
1942 u16 cap = le16_to_cpu(elem->cap);
1943 bool found = true;
1944
1945 switch (cap) {
1946 case ICE_AQC_CAPS_VALID_FUNCTIONS:
1947 caps->valid_functions = number;
1948 ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
1949 caps->valid_functions);
1950 break;
1951 case ICE_AQC_CAPS_SRIOV:
1952 caps->sr_iov_1_1 = (number == 1);
1953 ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
1954 caps->sr_iov_1_1);
1955 break;
1956 case ICE_AQC_CAPS_DCB:
1957 caps->dcb = (number == 1);
1958 caps->active_tc_bitmap = logical_id;
1959 caps->maxtc = phys_id;
1960 ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
1961 ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
1962 caps->active_tc_bitmap);
1963 ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
1964 break;
1965 case ICE_AQC_CAPS_RSS:
1966 caps->rss_table_size = number;
1967 caps->rss_table_entry_width = logical_id;
1968 ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
1969 caps->rss_table_size);
1970 ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
1971 caps->rss_table_entry_width);
1972 break;
1973 case ICE_AQC_CAPS_RXQS:
1974 caps->num_rxq = number;
1975 caps->rxq_first_id = phys_id;
1976 ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
1977 caps->num_rxq);
1978 ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
1979 caps->rxq_first_id);
1980 break;
1981 case ICE_AQC_CAPS_TXQS:
1982 caps->num_txq = number;
1983 caps->txq_first_id = phys_id;
1984 ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
1985 caps->num_txq);
1986 ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
1987 caps->txq_first_id);
1988 break;
1989 case ICE_AQC_CAPS_MSIX:
1990 caps->num_msix_vectors = number;
1991 caps->msix_vector_first_id = phys_id;
1992 ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
1993 caps->num_msix_vectors);
1994 ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
1995 caps->msix_vector_first_id);
1996 break;
1997 case ICE_AQC_CAPS_PENDING_NVM_VER:
1998 caps->nvm_update_pending_nvm = true;
1999 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2000 break;
2001 case ICE_AQC_CAPS_PENDING_OROM_VER:
2002 caps->nvm_update_pending_orom = true;
2003 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2004 break;
2005 case ICE_AQC_CAPS_PENDING_NET_VER:
2006 caps->nvm_update_pending_netlist = true;
2007 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2008 break;
2009 case ICE_AQC_CAPS_NVM_MGMT:
2010 caps->nvm_unified_update =
2011 (number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2012 true : false;
2013 ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2014 caps->nvm_unified_update);
2015 break;
2016 case ICE_AQC_CAPS_RDMA:
2017 caps->rdma = (number == 1);
2018 ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2019 break;
2020 case ICE_AQC_CAPS_MAX_MTU:
2021 caps->max_mtu = number;
2022 ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2023 prefix, caps->max_mtu);
2024 break;
2025 default:
2026 /* Not one of the recognized common capabilities */
2027 found = false;
2028 }
2029
2030 return found;
2031 }
2032
2033 /**
2034 * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2035 * @hw: pointer to the HW structure
2036 * @caps: pointer to capabilities structure to fix
2037 *
2038 * Re-calculate the capabilities that are dependent on the number of physical
2039 * ports; i.e. some features are not supported or function differently on
2040 * devices with more than 4 ports.
2041 */
2042 static void
ice_recalc_port_limited_caps(struct ice_hw * hw,struct ice_hw_common_caps * caps)2043 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2044 {
2045 /* This assumes device capabilities are always scanned before function
2046 * capabilities during the initialization flow.
2047 */
2048 if (hw->dev_caps.num_funcs > 4) {
2049 /* Max 4 TCs per port */
2050 caps->maxtc = 4;
2051 ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2052 caps->maxtc);
2053 if (caps->rdma) {
2054 ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2055 caps->rdma = 0;
2056 }
2057
2058 /* print message only when processing device capabilities
2059 * during initialization.
2060 */
2061 if (caps == &hw->dev_caps.common_cap)
2062 dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2063 }
2064 }
2065
2066 /**
2067 * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2068 * @hw: pointer to the HW struct
2069 * @func_p: pointer to function capabilities structure
2070 * @cap: pointer to the capability element to parse
2071 *
2072 * Extract function capabilities for ICE_AQC_CAPS_VF.
2073 */
2074 static void
ice_parse_vf_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,struct ice_aqc_list_caps_elem * cap)2075 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2076 struct ice_aqc_list_caps_elem *cap)
2077 {
2078 u32 logical_id = le32_to_cpu(cap->logical_id);
2079 u32 number = le32_to_cpu(cap->number);
2080
2081 func_p->num_allocd_vfs = number;
2082 func_p->vf_base_id = logical_id;
2083 ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2084 func_p->num_allocd_vfs);
2085 ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2086 func_p->vf_base_id);
2087 }
2088
2089 /**
2090 * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2091 * @hw: pointer to the HW struct
2092 * @func_p: pointer to function capabilities structure
2093 * @cap: pointer to the capability element to parse
2094 *
2095 * Extract function capabilities for ICE_AQC_CAPS_VSI.
2096 */
2097 static void
ice_parse_vsi_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,struct ice_aqc_list_caps_elem * cap)2098 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2099 struct ice_aqc_list_caps_elem *cap)
2100 {
2101 func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2102 ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2103 le32_to_cpu(cap->number));
2104 ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2105 func_p->guar_num_vsi);
2106 }
2107
2108 /**
2109 * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2110 * @hw: pointer to the HW struct
2111 * @func_p: pointer to function capabilities structure
2112 * @cap: pointer to the capability element to parse
2113 *
2114 * Extract function capabilities for ICE_AQC_CAPS_1588.
2115 */
2116 static void
ice_parse_1588_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,struct ice_aqc_list_caps_elem * cap)2117 ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2118 struct ice_aqc_list_caps_elem *cap)
2119 {
2120 struct ice_ts_func_info *info = &func_p->ts_func_info;
2121 u32 number = le32_to_cpu(cap->number);
2122
2123 info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2124 func_p->common_cap.ieee_1588 = info->ena;
2125
2126 info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2127 info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2128 info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2129 info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2130
2131 info->clk_freq = (number & ICE_TS_CLK_FREQ_M) >> ICE_TS_CLK_FREQ_S;
2132 info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2133
2134 ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2135 func_p->common_cap.ieee_1588);
2136 ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2137 info->src_tmr_owned);
2138 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2139 info->tmr_ena);
2140 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2141 info->tmr_index_owned);
2142 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2143 info->tmr_index_assoc);
2144 ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2145 info->clk_freq);
2146 ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2147 info->clk_src);
2148 }
2149
2150 /**
2151 * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2152 * @hw: pointer to the HW struct
2153 * @func_p: pointer to function capabilities structure
2154 *
2155 * Extract function capabilities for ICE_AQC_CAPS_FD.
2156 */
2157 static void
ice_parse_fdir_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p)2158 ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2159 {
2160 u32 reg_val, val;
2161
2162 reg_val = rd32(hw, GLQF_FD_SIZE);
2163 val = (reg_val & GLQF_FD_SIZE_FD_GSIZE_M) >>
2164 GLQF_FD_SIZE_FD_GSIZE_S;
2165 func_p->fd_fltr_guar =
2166 ice_get_num_per_func(hw, val);
2167 val = (reg_val & GLQF_FD_SIZE_FD_BSIZE_M) >>
2168 GLQF_FD_SIZE_FD_BSIZE_S;
2169 func_p->fd_fltr_best_effort = val;
2170
2171 ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2172 func_p->fd_fltr_guar);
2173 ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2174 func_p->fd_fltr_best_effort);
2175 }
2176
2177 /**
2178 * ice_parse_func_caps - Parse function capabilities
2179 * @hw: pointer to the HW struct
2180 * @func_p: pointer to function capabilities structure
2181 * @buf: buffer containing the function capability records
2182 * @cap_count: the number of capabilities
2183 *
2184 * Helper function to parse function (0x000A) capabilities list. For
2185 * capabilities shared between device and function, this relies on
2186 * ice_parse_common_caps.
2187 *
2188 * Loop through the list of provided capabilities and extract the relevant
2189 * data into the function capabilities structured.
2190 */
2191 static void
ice_parse_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,void * buf,u32 cap_count)2192 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2193 void *buf, u32 cap_count)
2194 {
2195 struct ice_aqc_list_caps_elem *cap_resp;
2196 u32 i;
2197
2198 cap_resp = buf;
2199
2200 memset(func_p, 0, sizeof(*func_p));
2201
2202 for (i = 0; i < cap_count; i++) {
2203 u16 cap = le16_to_cpu(cap_resp[i].cap);
2204 bool found;
2205
2206 found = ice_parse_common_caps(hw, &func_p->common_cap,
2207 &cap_resp[i], "func caps");
2208
2209 switch (cap) {
2210 case ICE_AQC_CAPS_VF:
2211 ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2212 break;
2213 case ICE_AQC_CAPS_VSI:
2214 ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2215 break;
2216 case ICE_AQC_CAPS_1588:
2217 ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
2218 break;
2219 case ICE_AQC_CAPS_FD:
2220 ice_parse_fdir_func_caps(hw, func_p);
2221 break;
2222 default:
2223 /* Don't list common capabilities as unknown */
2224 if (!found)
2225 ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2226 i, cap);
2227 break;
2228 }
2229 }
2230
2231 ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2232 }
2233
2234 /**
2235 * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2236 * @hw: pointer to the HW struct
2237 * @dev_p: pointer to device capabilities structure
2238 * @cap: capability element to parse
2239 *
2240 * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2241 */
2242 static void
ice_parse_valid_functions_cap(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct ice_aqc_list_caps_elem * cap)2243 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2244 struct ice_aqc_list_caps_elem *cap)
2245 {
2246 u32 number = le32_to_cpu(cap->number);
2247
2248 dev_p->num_funcs = hweight32(number);
2249 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2250 dev_p->num_funcs);
2251 }
2252
2253 /**
2254 * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2255 * @hw: pointer to the HW struct
2256 * @dev_p: pointer to device capabilities structure
2257 * @cap: capability element to parse
2258 *
2259 * Parse ICE_AQC_CAPS_VF for device capabilities.
2260 */
2261 static void
ice_parse_vf_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct ice_aqc_list_caps_elem * cap)2262 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2263 struct ice_aqc_list_caps_elem *cap)
2264 {
2265 u32 number = le32_to_cpu(cap->number);
2266
2267 dev_p->num_vfs_exposed = number;
2268 ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2269 dev_p->num_vfs_exposed);
2270 }
2271
2272 /**
2273 * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2274 * @hw: pointer to the HW struct
2275 * @dev_p: pointer to device capabilities structure
2276 * @cap: capability element to parse
2277 *
2278 * Parse ICE_AQC_CAPS_VSI for device capabilities.
2279 */
2280 static void
ice_parse_vsi_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct ice_aqc_list_caps_elem * cap)2281 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2282 struct ice_aqc_list_caps_elem *cap)
2283 {
2284 u32 number = le32_to_cpu(cap->number);
2285
2286 dev_p->num_vsi_allocd_to_host = number;
2287 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2288 dev_p->num_vsi_allocd_to_host);
2289 }
2290
2291 /**
2292 * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2293 * @hw: pointer to the HW struct
2294 * @dev_p: pointer to device capabilities structure
2295 * @cap: capability element to parse
2296 *
2297 * Parse ICE_AQC_CAPS_1588 for device capabilities.
2298 */
2299 static void
ice_parse_1588_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct ice_aqc_list_caps_elem * cap)2300 ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2301 struct ice_aqc_list_caps_elem *cap)
2302 {
2303 struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2304 u32 logical_id = le32_to_cpu(cap->logical_id);
2305 u32 phys_id = le32_to_cpu(cap->phys_id);
2306 u32 number = le32_to_cpu(cap->number);
2307
2308 info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2309 dev_p->common_cap.ieee_1588 = info->ena;
2310
2311 info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2312 info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2313 info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2314
2315 info->tmr1_owner = (number & ICE_TS_TMR1_OWNR_M) >> ICE_TS_TMR1_OWNR_S;
2316 info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2317 info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2318
2319 info->ena_ports = logical_id;
2320 info->tmr_own_map = phys_id;
2321
2322 ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2323 dev_p->common_cap.ieee_1588);
2324 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2325 info->tmr0_owner);
2326 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2327 info->tmr0_owned);
2328 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2329 info->tmr0_ena);
2330 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2331 info->tmr1_owner);
2332 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2333 info->tmr1_owned);
2334 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2335 info->tmr1_ena);
2336 ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2337 info->ena_ports);
2338 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2339 info->tmr_own_map);
2340 }
2341
2342 /**
2343 * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2344 * @hw: pointer to the HW struct
2345 * @dev_p: pointer to device capabilities structure
2346 * @cap: capability element to parse
2347 *
2348 * Parse ICE_AQC_CAPS_FD for device capabilities.
2349 */
2350 static void
ice_parse_fdir_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct ice_aqc_list_caps_elem * cap)2351 ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2352 struct ice_aqc_list_caps_elem *cap)
2353 {
2354 u32 number = le32_to_cpu(cap->number);
2355
2356 dev_p->num_flow_director_fltr = number;
2357 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2358 dev_p->num_flow_director_fltr);
2359 }
2360
2361 /**
2362 * ice_parse_dev_caps - Parse device capabilities
2363 * @hw: pointer to the HW struct
2364 * @dev_p: pointer to device capabilities structure
2365 * @buf: buffer containing the device capability records
2366 * @cap_count: the number of capabilities
2367 *
2368 * Helper device to parse device (0x000B) capabilities list. For
2369 * capabilities shared between device and function, this relies on
2370 * ice_parse_common_caps.
2371 *
2372 * Loop through the list of provided capabilities and extract the relevant
2373 * data into the device capabilities structured.
2374 */
2375 static void
ice_parse_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,void * buf,u32 cap_count)2376 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2377 void *buf, u32 cap_count)
2378 {
2379 struct ice_aqc_list_caps_elem *cap_resp;
2380 u32 i;
2381
2382 cap_resp = buf;
2383
2384 memset(dev_p, 0, sizeof(*dev_p));
2385
2386 for (i = 0; i < cap_count; i++) {
2387 u16 cap = le16_to_cpu(cap_resp[i].cap);
2388 bool found;
2389
2390 found = ice_parse_common_caps(hw, &dev_p->common_cap,
2391 &cap_resp[i], "dev caps");
2392
2393 switch (cap) {
2394 case ICE_AQC_CAPS_VALID_FUNCTIONS:
2395 ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2396 break;
2397 case ICE_AQC_CAPS_VF:
2398 ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2399 break;
2400 case ICE_AQC_CAPS_VSI:
2401 ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2402 break;
2403 case ICE_AQC_CAPS_1588:
2404 ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
2405 break;
2406 case ICE_AQC_CAPS_FD:
2407 ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2408 break;
2409 default:
2410 /* Don't list common capabilities as unknown */
2411 if (!found)
2412 ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2413 i, cap);
2414 break;
2415 }
2416 }
2417
2418 ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2419 }
2420
2421 /**
2422 * ice_aq_list_caps - query function/device capabilities
2423 * @hw: pointer to the HW struct
2424 * @buf: a buffer to hold the capabilities
2425 * @buf_size: size of the buffer
2426 * @cap_count: if not NULL, set to the number of capabilities reported
2427 * @opc: capabilities type to discover, device or function
2428 * @cd: pointer to command details structure or NULL
2429 *
2430 * Get the function (0x000A) or device (0x000B) capabilities description from
2431 * firmware and store it in the buffer.
2432 *
2433 * If the cap_count pointer is not NULL, then it is set to the number of
2434 * capabilities firmware will report. Note that if the buffer size is too
2435 * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2436 * cap_count will still be updated in this case. It is recommended that the
2437 * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2438 * firmware could return) to avoid this.
2439 */
2440 enum ice_status
ice_aq_list_caps(struct ice_hw * hw,void * buf,u16 buf_size,u32 * cap_count,enum ice_adminq_opc opc,struct ice_sq_cd * cd)2441 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2442 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2443 {
2444 struct ice_aqc_list_caps *cmd;
2445 struct ice_aq_desc desc;
2446 enum ice_status status;
2447
2448 cmd = &desc.params.get_cap;
2449
2450 if (opc != ice_aqc_opc_list_func_caps &&
2451 opc != ice_aqc_opc_list_dev_caps)
2452 return ICE_ERR_PARAM;
2453
2454 ice_fill_dflt_direct_cmd_desc(&desc, opc);
2455 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2456
2457 if (cap_count)
2458 *cap_count = le32_to_cpu(cmd->count);
2459
2460 return status;
2461 }
2462
2463 /**
2464 * ice_discover_dev_caps - Read and extract device capabilities
2465 * @hw: pointer to the hardware structure
2466 * @dev_caps: pointer to device capabilities structure
2467 *
2468 * Read the device capabilities and extract them into the dev_caps structure
2469 * for later use.
2470 */
2471 enum ice_status
ice_discover_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_caps)2472 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2473 {
2474 enum ice_status status;
2475 u32 cap_count = 0;
2476 void *cbuf;
2477
2478 cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2479 if (!cbuf)
2480 return ICE_ERR_NO_MEMORY;
2481
2482 /* Although the driver doesn't know the number of capabilities the
2483 * device will return, we can simply send a 4KB buffer, the maximum
2484 * possible size that firmware can return.
2485 */
2486 cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2487
2488 status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2489 ice_aqc_opc_list_dev_caps, NULL);
2490 if (!status)
2491 ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2492 kfree(cbuf);
2493
2494 return status;
2495 }
2496
2497 /**
2498 * ice_discover_func_caps - Read and extract function capabilities
2499 * @hw: pointer to the hardware structure
2500 * @func_caps: pointer to function capabilities structure
2501 *
2502 * Read the function capabilities and extract them into the func_caps structure
2503 * for later use.
2504 */
2505 static enum ice_status
ice_discover_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_caps)2506 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2507 {
2508 enum ice_status status;
2509 u32 cap_count = 0;
2510 void *cbuf;
2511
2512 cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2513 if (!cbuf)
2514 return ICE_ERR_NO_MEMORY;
2515
2516 /* Although the driver doesn't know the number of capabilities the
2517 * device will return, we can simply send a 4KB buffer, the maximum
2518 * possible size that firmware can return.
2519 */
2520 cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2521
2522 status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2523 ice_aqc_opc_list_func_caps, NULL);
2524 if (!status)
2525 ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2526 kfree(cbuf);
2527
2528 return status;
2529 }
2530
2531 /**
2532 * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2533 * @hw: pointer to the hardware structure
2534 */
ice_set_safe_mode_caps(struct ice_hw * hw)2535 void ice_set_safe_mode_caps(struct ice_hw *hw)
2536 {
2537 struct ice_hw_func_caps *func_caps = &hw->func_caps;
2538 struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2539 struct ice_hw_common_caps cached_caps;
2540 u32 num_funcs;
2541
2542 /* cache some func_caps values that should be restored after memset */
2543 cached_caps = func_caps->common_cap;
2544
2545 /* unset func capabilities */
2546 memset(func_caps, 0, sizeof(*func_caps));
2547
2548 #define ICE_RESTORE_FUNC_CAP(name) \
2549 func_caps->common_cap.name = cached_caps.name
2550
2551 /* restore cached values */
2552 ICE_RESTORE_FUNC_CAP(valid_functions);
2553 ICE_RESTORE_FUNC_CAP(txq_first_id);
2554 ICE_RESTORE_FUNC_CAP(rxq_first_id);
2555 ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2556 ICE_RESTORE_FUNC_CAP(max_mtu);
2557 ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2558 ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
2559 ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
2560 ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
2561
2562 /* one Tx and one Rx queue in safe mode */
2563 func_caps->common_cap.num_rxq = 1;
2564 func_caps->common_cap.num_txq = 1;
2565
2566 /* two MSIX vectors, one for traffic and one for misc causes */
2567 func_caps->common_cap.num_msix_vectors = 2;
2568 func_caps->guar_num_vsi = 1;
2569
2570 /* cache some dev_caps values that should be restored after memset */
2571 cached_caps = dev_caps->common_cap;
2572 num_funcs = dev_caps->num_funcs;
2573
2574 /* unset dev capabilities */
2575 memset(dev_caps, 0, sizeof(*dev_caps));
2576
2577 #define ICE_RESTORE_DEV_CAP(name) \
2578 dev_caps->common_cap.name = cached_caps.name
2579
2580 /* restore cached values */
2581 ICE_RESTORE_DEV_CAP(valid_functions);
2582 ICE_RESTORE_DEV_CAP(txq_first_id);
2583 ICE_RESTORE_DEV_CAP(rxq_first_id);
2584 ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2585 ICE_RESTORE_DEV_CAP(max_mtu);
2586 ICE_RESTORE_DEV_CAP(nvm_unified_update);
2587 ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
2588 ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
2589 ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
2590 dev_caps->num_funcs = num_funcs;
2591
2592 /* one Tx and one Rx queue per function in safe mode */
2593 dev_caps->common_cap.num_rxq = num_funcs;
2594 dev_caps->common_cap.num_txq = num_funcs;
2595
2596 /* two MSIX vectors per function */
2597 dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2598 }
2599
2600 /**
2601 * ice_get_caps - get info about the HW
2602 * @hw: pointer to the hardware structure
2603 */
ice_get_caps(struct ice_hw * hw)2604 enum ice_status ice_get_caps(struct ice_hw *hw)
2605 {
2606 enum ice_status status;
2607
2608 status = ice_discover_dev_caps(hw, &hw->dev_caps);
2609 if (status)
2610 return status;
2611
2612 return ice_discover_func_caps(hw, &hw->func_caps);
2613 }
2614
2615 /**
2616 * ice_aq_manage_mac_write - manage MAC address write command
2617 * @hw: pointer to the HW struct
2618 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
2619 * @flags: flags to control write behavior
2620 * @cd: pointer to command details structure or NULL
2621 *
2622 * This function is used to write MAC address to the NVM (0x0108).
2623 */
2624 enum ice_status
ice_aq_manage_mac_write(struct ice_hw * hw,const u8 * mac_addr,u8 flags,struct ice_sq_cd * cd)2625 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
2626 struct ice_sq_cd *cd)
2627 {
2628 struct ice_aqc_manage_mac_write *cmd;
2629 struct ice_aq_desc desc;
2630
2631 cmd = &desc.params.mac_write;
2632 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
2633
2634 cmd->flags = flags;
2635 ether_addr_copy(cmd->mac_addr, mac_addr);
2636
2637 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2638 }
2639
2640 /**
2641 * ice_aq_clear_pxe_mode
2642 * @hw: pointer to the HW struct
2643 *
2644 * Tell the firmware that the driver is taking over from PXE (0x0110).
2645 */
ice_aq_clear_pxe_mode(struct ice_hw * hw)2646 static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
2647 {
2648 struct ice_aq_desc desc;
2649
2650 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
2651 desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
2652
2653 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
2654 }
2655
2656 /**
2657 * ice_clear_pxe_mode - clear pxe operations mode
2658 * @hw: pointer to the HW struct
2659 *
2660 * Make sure all PXE mode settings are cleared, including things
2661 * like descriptor fetch/write-back mode.
2662 */
ice_clear_pxe_mode(struct ice_hw * hw)2663 void ice_clear_pxe_mode(struct ice_hw *hw)
2664 {
2665 if (ice_check_sq_alive(hw, &hw->adminq))
2666 ice_aq_clear_pxe_mode(hw);
2667 }
2668
2669 /**
2670 * ice_get_link_speed_based_on_phy_type - returns link speed
2671 * @phy_type_low: lower part of phy_type
2672 * @phy_type_high: higher part of phy_type
2673 *
2674 * This helper function will convert an entry in PHY type structure
2675 * [phy_type_low, phy_type_high] to its corresponding link speed.
2676 * Note: In the structure of [phy_type_low, phy_type_high], there should
2677 * be one bit set, as this function will convert one PHY type to its
2678 * speed.
2679 * If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2680 * If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2681 */
2682 static u16
ice_get_link_speed_based_on_phy_type(u64 phy_type_low,u64 phy_type_high)2683 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
2684 {
2685 u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2686 u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2687
2688 switch (phy_type_low) {
2689 case ICE_PHY_TYPE_LOW_100BASE_TX:
2690 case ICE_PHY_TYPE_LOW_100M_SGMII:
2691 speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
2692 break;
2693 case ICE_PHY_TYPE_LOW_1000BASE_T:
2694 case ICE_PHY_TYPE_LOW_1000BASE_SX:
2695 case ICE_PHY_TYPE_LOW_1000BASE_LX:
2696 case ICE_PHY_TYPE_LOW_1000BASE_KX:
2697 case ICE_PHY_TYPE_LOW_1G_SGMII:
2698 speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
2699 break;
2700 case ICE_PHY_TYPE_LOW_2500BASE_T:
2701 case ICE_PHY_TYPE_LOW_2500BASE_X:
2702 case ICE_PHY_TYPE_LOW_2500BASE_KX:
2703 speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
2704 break;
2705 case ICE_PHY_TYPE_LOW_5GBASE_T:
2706 case ICE_PHY_TYPE_LOW_5GBASE_KR:
2707 speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
2708 break;
2709 case ICE_PHY_TYPE_LOW_10GBASE_T:
2710 case ICE_PHY_TYPE_LOW_10G_SFI_DA:
2711 case ICE_PHY_TYPE_LOW_10GBASE_SR:
2712 case ICE_PHY_TYPE_LOW_10GBASE_LR:
2713 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
2714 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
2715 case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
2716 speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
2717 break;
2718 case ICE_PHY_TYPE_LOW_25GBASE_T:
2719 case ICE_PHY_TYPE_LOW_25GBASE_CR:
2720 case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
2721 case ICE_PHY_TYPE_LOW_25GBASE_CR1:
2722 case ICE_PHY_TYPE_LOW_25GBASE_SR:
2723 case ICE_PHY_TYPE_LOW_25GBASE_LR:
2724 case ICE_PHY_TYPE_LOW_25GBASE_KR:
2725 case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
2726 case ICE_PHY_TYPE_LOW_25GBASE_KR1:
2727 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
2728 case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
2729 speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
2730 break;
2731 case ICE_PHY_TYPE_LOW_40GBASE_CR4:
2732 case ICE_PHY_TYPE_LOW_40GBASE_SR4:
2733 case ICE_PHY_TYPE_LOW_40GBASE_LR4:
2734 case ICE_PHY_TYPE_LOW_40GBASE_KR4:
2735 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
2736 case ICE_PHY_TYPE_LOW_40G_XLAUI:
2737 speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
2738 break;
2739 case ICE_PHY_TYPE_LOW_50GBASE_CR2:
2740 case ICE_PHY_TYPE_LOW_50GBASE_SR2:
2741 case ICE_PHY_TYPE_LOW_50GBASE_LR2:
2742 case ICE_PHY_TYPE_LOW_50GBASE_KR2:
2743 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
2744 case ICE_PHY_TYPE_LOW_50G_LAUI2:
2745 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
2746 case ICE_PHY_TYPE_LOW_50G_AUI2:
2747 case ICE_PHY_TYPE_LOW_50GBASE_CP:
2748 case ICE_PHY_TYPE_LOW_50GBASE_SR:
2749 case ICE_PHY_TYPE_LOW_50GBASE_FR:
2750 case ICE_PHY_TYPE_LOW_50GBASE_LR:
2751 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
2752 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
2753 case ICE_PHY_TYPE_LOW_50G_AUI1:
2754 speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
2755 break;
2756 case ICE_PHY_TYPE_LOW_100GBASE_CR4:
2757 case ICE_PHY_TYPE_LOW_100GBASE_SR4:
2758 case ICE_PHY_TYPE_LOW_100GBASE_LR4:
2759 case ICE_PHY_TYPE_LOW_100GBASE_KR4:
2760 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
2761 case ICE_PHY_TYPE_LOW_100G_CAUI4:
2762 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
2763 case ICE_PHY_TYPE_LOW_100G_AUI4:
2764 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
2765 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
2766 case ICE_PHY_TYPE_LOW_100GBASE_CP2:
2767 case ICE_PHY_TYPE_LOW_100GBASE_SR2:
2768 case ICE_PHY_TYPE_LOW_100GBASE_DR:
2769 speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
2770 break;
2771 default:
2772 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2773 break;
2774 }
2775
2776 switch (phy_type_high) {
2777 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
2778 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
2779 case ICE_PHY_TYPE_HIGH_100G_CAUI2:
2780 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
2781 case ICE_PHY_TYPE_HIGH_100G_AUI2:
2782 speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
2783 break;
2784 default:
2785 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2786 break;
2787 }
2788
2789 if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
2790 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2791 return ICE_AQ_LINK_SPEED_UNKNOWN;
2792 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2793 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
2794 return ICE_AQ_LINK_SPEED_UNKNOWN;
2795 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2796 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2797 return speed_phy_type_low;
2798 else
2799 return speed_phy_type_high;
2800 }
2801
2802 /**
2803 * ice_update_phy_type
2804 * @phy_type_low: pointer to the lower part of phy_type
2805 * @phy_type_high: pointer to the higher part of phy_type
2806 * @link_speeds_bitmap: targeted link speeds bitmap
2807 *
2808 * Note: For the link_speeds_bitmap structure, you can check it at
2809 * [ice_aqc_get_link_status->link_speed]. Caller can pass in
2810 * link_speeds_bitmap include multiple speeds.
2811 *
2812 * Each entry in this [phy_type_low, phy_type_high] structure will
2813 * present a certain link speed. This helper function will turn on bits
2814 * in [phy_type_low, phy_type_high] structure based on the value of
2815 * link_speeds_bitmap input parameter.
2816 */
2817 void
ice_update_phy_type(u64 * phy_type_low,u64 * phy_type_high,u16 link_speeds_bitmap)2818 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
2819 u16 link_speeds_bitmap)
2820 {
2821 u64 pt_high;
2822 u64 pt_low;
2823 int index;
2824 u16 speed;
2825
2826 /* We first check with low part of phy_type */
2827 for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
2828 pt_low = BIT_ULL(index);
2829 speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
2830
2831 if (link_speeds_bitmap & speed)
2832 *phy_type_low |= BIT_ULL(index);
2833 }
2834
2835 /* We then check with high part of phy_type */
2836 for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
2837 pt_high = BIT_ULL(index);
2838 speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
2839
2840 if (link_speeds_bitmap & speed)
2841 *phy_type_high |= BIT_ULL(index);
2842 }
2843 }
2844
2845 /**
2846 * ice_aq_set_phy_cfg
2847 * @hw: pointer to the HW struct
2848 * @pi: port info structure of the interested logical port
2849 * @cfg: structure with PHY configuration data to be set
2850 * @cd: pointer to command details structure or NULL
2851 *
2852 * Set the various PHY configuration parameters supported on the Port.
2853 * One or more of the Set PHY config parameters may be ignored in an MFP
2854 * mode as the PF may not have the privilege to set some of the PHY Config
2855 * parameters. This status will be indicated by the command response (0x0601).
2856 */
2857 enum ice_status
ice_aq_set_phy_cfg(struct ice_hw * hw,struct ice_port_info * pi,struct ice_aqc_set_phy_cfg_data * cfg,struct ice_sq_cd * cd)2858 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
2859 struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
2860 {
2861 struct ice_aq_desc desc;
2862 enum ice_status status;
2863
2864 if (!cfg)
2865 return ICE_ERR_PARAM;
2866
2867 /* Ensure that only valid bits of cfg->caps can be turned on. */
2868 if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
2869 ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
2870 cfg->caps);
2871
2872 cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
2873 }
2874
2875 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
2876 desc.params.set_phy.lport_num = pi->lport;
2877 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2878
2879 ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
2880 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
2881 (unsigned long long)le64_to_cpu(cfg->phy_type_low));
2882 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
2883 (unsigned long long)le64_to_cpu(cfg->phy_type_high));
2884 ice_debug(hw, ICE_DBG_LINK, " caps = 0x%x\n", cfg->caps);
2885 ice_debug(hw, ICE_DBG_LINK, " low_power_ctrl_an = 0x%x\n",
2886 cfg->low_power_ctrl_an);
2887 ice_debug(hw, ICE_DBG_LINK, " eee_cap = 0x%x\n", cfg->eee_cap);
2888 ice_debug(hw, ICE_DBG_LINK, " eeer_value = 0x%x\n", cfg->eeer_value);
2889 ice_debug(hw, ICE_DBG_LINK, " link_fec_opt = 0x%x\n",
2890 cfg->link_fec_opt);
2891
2892 status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
2893 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
2894 status = 0;
2895
2896 if (!status)
2897 pi->phy.curr_user_phy_cfg = *cfg;
2898
2899 return status;
2900 }
2901
2902 /**
2903 * ice_update_link_info - update status of the HW network link
2904 * @pi: port info structure of the interested logical port
2905 */
ice_update_link_info(struct ice_port_info * pi)2906 enum ice_status ice_update_link_info(struct ice_port_info *pi)
2907 {
2908 struct ice_link_status *li;
2909 enum ice_status status;
2910
2911 if (!pi)
2912 return ICE_ERR_PARAM;
2913
2914 li = &pi->phy.link_info;
2915
2916 status = ice_aq_get_link_info(pi, true, NULL, NULL);
2917 if (status)
2918 return status;
2919
2920 if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
2921 struct ice_aqc_get_phy_caps_data *pcaps;
2922 struct ice_hw *hw;
2923
2924 hw = pi->hw;
2925 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps),
2926 GFP_KERNEL);
2927 if (!pcaps)
2928 return ICE_ERR_NO_MEMORY;
2929
2930 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2931 pcaps, NULL);
2932
2933 devm_kfree(ice_hw_to_dev(hw), pcaps);
2934 }
2935
2936 return status;
2937 }
2938
2939 /**
2940 * ice_cache_phy_user_req
2941 * @pi: port information structure
2942 * @cache_data: PHY logging data
2943 * @cache_mode: PHY logging mode
2944 *
2945 * Log the user request on (FC, FEC, SPEED) for later use.
2946 */
2947 static void
ice_cache_phy_user_req(struct ice_port_info * pi,struct ice_phy_cache_mode_data cache_data,enum ice_phy_cache_mode cache_mode)2948 ice_cache_phy_user_req(struct ice_port_info *pi,
2949 struct ice_phy_cache_mode_data cache_data,
2950 enum ice_phy_cache_mode cache_mode)
2951 {
2952 if (!pi)
2953 return;
2954
2955 switch (cache_mode) {
2956 case ICE_FC_MODE:
2957 pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
2958 break;
2959 case ICE_SPEED_MODE:
2960 pi->phy.curr_user_speed_req =
2961 cache_data.data.curr_user_speed_req;
2962 break;
2963 case ICE_FEC_MODE:
2964 pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
2965 break;
2966 default:
2967 break;
2968 }
2969 }
2970
2971 /**
2972 * ice_caps_to_fc_mode
2973 * @caps: PHY capabilities
2974 *
2975 * Convert PHY FC capabilities to ice FC mode
2976 */
ice_caps_to_fc_mode(u8 caps)2977 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
2978 {
2979 if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
2980 caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
2981 return ICE_FC_FULL;
2982
2983 if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
2984 return ICE_FC_TX_PAUSE;
2985
2986 if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
2987 return ICE_FC_RX_PAUSE;
2988
2989 return ICE_FC_NONE;
2990 }
2991
2992 /**
2993 * ice_caps_to_fec_mode
2994 * @caps: PHY capabilities
2995 * @fec_options: Link FEC options
2996 *
2997 * Convert PHY FEC capabilities to ice FEC mode
2998 */
ice_caps_to_fec_mode(u8 caps,u8 fec_options)2999 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3000 {
3001 if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3002 return ICE_FEC_AUTO;
3003
3004 if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3005 ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3006 ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3007 ICE_AQC_PHY_FEC_25G_KR_REQ))
3008 return ICE_FEC_BASER;
3009
3010 if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3011 ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3012 ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3013 return ICE_FEC_RS;
3014
3015 return ICE_FEC_NONE;
3016 }
3017
3018 /**
3019 * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3020 * @pi: port information structure
3021 * @cfg: PHY configuration data to set FC mode
3022 * @req_mode: FC mode to configure
3023 */
3024 enum ice_status
ice_cfg_phy_fc(struct ice_port_info * pi,struct ice_aqc_set_phy_cfg_data * cfg,enum ice_fc_mode req_mode)3025 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3026 enum ice_fc_mode req_mode)
3027 {
3028 struct ice_phy_cache_mode_data cache_data;
3029 u8 pause_mask = 0x0;
3030
3031 if (!pi || !cfg)
3032 return ICE_ERR_BAD_PTR;
3033
3034 switch (req_mode) {
3035 case ICE_FC_FULL:
3036 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3037 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3038 break;
3039 case ICE_FC_RX_PAUSE:
3040 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3041 break;
3042 case ICE_FC_TX_PAUSE:
3043 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3044 break;
3045 default:
3046 break;
3047 }
3048
3049 /* clear the old pause settings */
3050 cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3051 ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3052
3053 /* set the new capabilities */
3054 cfg->caps |= pause_mask;
3055
3056 /* Cache user FC request */
3057 cache_data.data.curr_user_fc_req = req_mode;
3058 ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3059
3060 return 0;
3061 }
3062
3063 /**
3064 * ice_set_fc
3065 * @pi: port information structure
3066 * @aq_failures: pointer to status code, specific to ice_set_fc routine
3067 * @ena_auto_link_update: enable automatic link update
3068 *
3069 * Set the requested flow control mode.
3070 */
3071 enum ice_status
ice_set_fc(struct ice_port_info * pi,u8 * aq_failures,bool ena_auto_link_update)3072 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3073 {
3074 struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3075 struct ice_aqc_get_phy_caps_data *pcaps;
3076 enum ice_status status;
3077 struct ice_hw *hw;
3078
3079 if (!pi || !aq_failures)
3080 return ICE_ERR_BAD_PTR;
3081
3082 *aq_failures = 0;
3083 hw = pi->hw;
3084
3085 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
3086 if (!pcaps)
3087 return ICE_ERR_NO_MEMORY;
3088
3089 /* Get the current PHY config */
3090 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3091 pcaps, NULL);
3092 if (status) {
3093 *aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3094 goto out;
3095 }
3096
3097 ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3098
3099 /* Configure the set PHY data */
3100 status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3101 if (status)
3102 goto out;
3103
3104 /* If the capabilities have changed, then set the new config */
3105 if (cfg.caps != pcaps->caps) {
3106 int retry_count, retry_max = 10;
3107
3108 /* Auto restart link so settings take effect */
3109 if (ena_auto_link_update)
3110 cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3111
3112 status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3113 if (status) {
3114 *aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3115 goto out;
3116 }
3117
3118 /* Update the link info
3119 * It sometimes takes a really long time for link to
3120 * come back from the atomic reset. Thus, we wait a
3121 * little bit.
3122 */
3123 for (retry_count = 0; retry_count < retry_max; retry_count++) {
3124 status = ice_update_link_info(pi);
3125
3126 if (!status)
3127 break;
3128
3129 mdelay(100);
3130 }
3131
3132 if (status)
3133 *aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3134 }
3135
3136 out:
3137 devm_kfree(ice_hw_to_dev(hw), pcaps);
3138 return status;
3139 }
3140
3141 /**
3142 * ice_phy_caps_equals_cfg
3143 * @phy_caps: PHY capabilities
3144 * @phy_cfg: PHY configuration
3145 *
3146 * Helper function to determine if PHY capabilities matches PHY
3147 * configuration
3148 */
3149 bool
ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data * phy_caps,struct ice_aqc_set_phy_cfg_data * phy_cfg)3150 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3151 struct ice_aqc_set_phy_cfg_data *phy_cfg)
3152 {
3153 u8 caps_mask, cfg_mask;
3154
3155 if (!phy_caps || !phy_cfg)
3156 return false;
3157
3158 /* These bits are not common between capabilities and configuration.
3159 * Do not use them to determine equality.
3160 */
3161 caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3162 ICE_AQC_GET_PHY_EN_MOD_QUAL);
3163 cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3164
3165 if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3166 phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3167 ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3168 phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3169 phy_caps->eee_cap != phy_cfg->eee_cap ||
3170 phy_caps->eeer_value != phy_cfg->eeer_value ||
3171 phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3172 return false;
3173
3174 return true;
3175 }
3176
3177 /**
3178 * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3179 * @pi: port information structure
3180 * @caps: PHY ability structure to copy date from
3181 * @cfg: PHY configuration structure to copy data to
3182 *
3183 * Helper function to copy AQC PHY get ability data to PHY set configuration
3184 * data structure
3185 */
3186 void
ice_copy_phy_caps_to_cfg(struct ice_port_info * pi,struct ice_aqc_get_phy_caps_data * caps,struct ice_aqc_set_phy_cfg_data * cfg)3187 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3188 struct ice_aqc_get_phy_caps_data *caps,
3189 struct ice_aqc_set_phy_cfg_data *cfg)
3190 {
3191 if (!pi || !caps || !cfg)
3192 return;
3193
3194 memset(cfg, 0, sizeof(*cfg));
3195 cfg->phy_type_low = caps->phy_type_low;
3196 cfg->phy_type_high = caps->phy_type_high;
3197 cfg->caps = caps->caps;
3198 cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3199 cfg->eee_cap = caps->eee_cap;
3200 cfg->eeer_value = caps->eeer_value;
3201 cfg->link_fec_opt = caps->link_fec_options;
3202 cfg->module_compliance_enforcement =
3203 caps->module_compliance_enforcement;
3204 }
3205
3206 /**
3207 * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3208 * @pi: port information structure
3209 * @cfg: PHY configuration data to set FEC mode
3210 * @fec: FEC mode to configure
3211 */
3212 enum ice_status
ice_cfg_phy_fec(struct ice_port_info * pi,struct ice_aqc_set_phy_cfg_data * cfg,enum ice_fec_mode fec)3213 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3214 enum ice_fec_mode fec)
3215 {
3216 struct ice_aqc_get_phy_caps_data *pcaps;
3217 enum ice_status status;
3218 struct ice_hw *hw;
3219
3220 if (!pi || !cfg)
3221 return ICE_ERR_BAD_PTR;
3222
3223 hw = pi->hw;
3224
3225 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3226 if (!pcaps)
3227 return ICE_ERR_NO_MEMORY;
3228
3229 status = ice_aq_get_phy_caps(pi, false,
3230 (ice_fw_supports_report_dflt_cfg(hw) ?
3231 ICE_AQC_REPORT_DFLT_CFG :
3232 ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3233 if (status)
3234 goto out;
3235
3236 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
3237 cfg->link_fec_opt = pcaps->link_fec_options;
3238
3239 switch (fec) {
3240 case ICE_FEC_BASER:
3241 /* Clear RS bits, and AND BASE-R ability
3242 * bits and OR request bits.
3243 */
3244 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3245 ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3246 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3247 ICE_AQC_PHY_FEC_25G_KR_REQ;
3248 break;
3249 case ICE_FEC_RS:
3250 /* Clear BASE-R bits, and AND RS ability
3251 * bits and OR request bits.
3252 */
3253 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3254 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3255 ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3256 break;
3257 case ICE_FEC_NONE:
3258 /* Clear all FEC option bits. */
3259 cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3260 break;
3261 case ICE_FEC_AUTO:
3262 /* AND auto FEC bit, and all caps bits. */
3263 cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3264 cfg->link_fec_opt |= pcaps->link_fec_options;
3265 break;
3266 default:
3267 status = ICE_ERR_PARAM;
3268 break;
3269 }
3270
3271 if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
3272 !ice_fw_supports_report_dflt_cfg(hw)) {
3273 struct ice_link_default_override_tlv tlv = { 0 };
3274
3275 status = ice_get_link_default_override(&tlv, pi);
3276 if (status)
3277 goto out;
3278
3279 if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3280 (tlv.options & ICE_LINK_OVERRIDE_EN))
3281 cfg->link_fec_opt = tlv.fec_options;
3282 }
3283
3284 out:
3285 kfree(pcaps);
3286
3287 return status;
3288 }
3289
3290 /**
3291 * ice_get_link_status - get status of the HW network link
3292 * @pi: port information structure
3293 * @link_up: pointer to bool (true/false = linkup/linkdown)
3294 *
3295 * Variable link_up is true if link is up, false if link is down.
3296 * The variable link_up is invalid if status is non zero. As a
3297 * result of this call, link status reporting becomes enabled
3298 */
ice_get_link_status(struct ice_port_info * pi,bool * link_up)3299 enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3300 {
3301 struct ice_phy_info *phy_info;
3302 enum ice_status status = 0;
3303
3304 if (!pi || !link_up)
3305 return ICE_ERR_PARAM;
3306
3307 phy_info = &pi->phy;
3308
3309 if (phy_info->get_link_info) {
3310 status = ice_update_link_info(pi);
3311
3312 if (status)
3313 ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3314 status);
3315 }
3316
3317 *link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3318
3319 return status;
3320 }
3321
3322 /**
3323 * ice_aq_set_link_restart_an
3324 * @pi: pointer to the port information structure
3325 * @ena_link: if true: enable link, if false: disable link
3326 * @cd: pointer to command details structure or NULL
3327 *
3328 * Sets up the link and restarts the Auto-Negotiation over the link.
3329 */
3330 enum ice_status
ice_aq_set_link_restart_an(struct ice_port_info * pi,bool ena_link,struct ice_sq_cd * cd)3331 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3332 struct ice_sq_cd *cd)
3333 {
3334 struct ice_aqc_restart_an *cmd;
3335 struct ice_aq_desc desc;
3336
3337 cmd = &desc.params.restart_an;
3338
3339 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3340
3341 cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3342 cmd->lport_num = pi->lport;
3343 if (ena_link)
3344 cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3345 else
3346 cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3347
3348 return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3349 }
3350
3351 /**
3352 * ice_aq_set_event_mask
3353 * @hw: pointer to the HW struct
3354 * @port_num: port number of the physical function
3355 * @mask: event mask to be set
3356 * @cd: pointer to command details structure or NULL
3357 *
3358 * Set event mask (0x0613)
3359 */
3360 enum ice_status
ice_aq_set_event_mask(struct ice_hw * hw,u8 port_num,u16 mask,struct ice_sq_cd * cd)3361 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3362 struct ice_sq_cd *cd)
3363 {
3364 struct ice_aqc_set_event_mask *cmd;
3365 struct ice_aq_desc desc;
3366
3367 cmd = &desc.params.set_event_mask;
3368
3369 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3370
3371 cmd->lport_num = port_num;
3372
3373 cmd->event_mask = cpu_to_le16(mask);
3374 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3375 }
3376
3377 /**
3378 * ice_aq_set_mac_loopback
3379 * @hw: pointer to the HW struct
3380 * @ena_lpbk: Enable or Disable loopback
3381 * @cd: pointer to command details structure or NULL
3382 *
3383 * Enable/disable loopback on a given port
3384 */
3385 enum ice_status
ice_aq_set_mac_loopback(struct ice_hw * hw,bool ena_lpbk,struct ice_sq_cd * cd)3386 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3387 {
3388 struct ice_aqc_set_mac_lb *cmd;
3389 struct ice_aq_desc desc;
3390
3391 cmd = &desc.params.set_mac_lb;
3392
3393 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3394 if (ena_lpbk)
3395 cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3396
3397 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3398 }
3399
3400 /**
3401 * ice_aq_set_port_id_led
3402 * @pi: pointer to the port information
3403 * @is_orig_mode: is this LED set to original mode (by the net-list)
3404 * @cd: pointer to command details structure or NULL
3405 *
3406 * Set LED value for the given port (0x06e9)
3407 */
3408 enum ice_status
ice_aq_set_port_id_led(struct ice_port_info * pi,bool is_orig_mode,struct ice_sq_cd * cd)3409 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3410 struct ice_sq_cd *cd)
3411 {
3412 struct ice_aqc_set_port_id_led *cmd;
3413 struct ice_hw *hw = pi->hw;
3414 struct ice_aq_desc desc;
3415
3416 cmd = &desc.params.set_port_id_led;
3417
3418 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3419
3420 if (is_orig_mode)
3421 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3422 else
3423 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3424
3425 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3426 }
3427
3428 /**
3429 * ice_aq_sff_eeprom
3430 * @hw: pointer to the HW struct
3431 * @lport: bits [7:0] = logical port, bit [8] = logical port valid
3432 * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
3433 * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
3434 * @page: QSFP page
3435 * @set_page: set or ignore the page
3436 * @data: pointer to data buffer to be read/written to the I2C device.
3437 * @length: 1-16 for read, 1 for write.
3438 * @write: 0 read, 1 for write.
3439 * @cd: pointer to command details structure or NULL
3440 *
3441 * Read/Write SFF EEPROM (0x06EE)
3442 */
3443 enum ice_status
ice_aq_sff_eeprom(struct ice_hw * hw,u16 lport,u8 bus_addr,u16 mem_addr,u8 page,u8 set_page,u8 * data,u8 length,bool write,struct ice_sq_cd * cd)3444 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
3445 u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
3446 bool write, struct ice_sq_cd *cd)
3447 {
3448 struct ice_aqc_sff_eeprom *cmd;
3449 struct ice_aq_desc desc;
3450 enum ice_status status;
3451
3452 if (!data || (mem_addr & 0xff00))
3453 return ICE_ERR_PARAM;
3454
3455 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
3456 cmd = &desc.params.read_write_sff_param;
3457 desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
3458 cmd->lport_num = (u8)(lport & 0xff);
3459 cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
3460 cmd->i2c_bus_addr = cpu_to_le16(((bus_addr >> 1) &
3461 ICE_AQC_SFF_I2CBUS_7BIT_M) |
3462 ((set_page <<
3463 ICE_AQC_SFF_SET_EEPROM_PAGE_S) &
3464 ICE_AQC_SFF_SET_EEPROM_PAGE_M));
3465 cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
3466 cmd->eeprom_page = cpu_to_le16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S);
3467 if (write)
3468 cmd->i2c_bus_addr |= cpu_to_le16(ICE_AQC_SFF_IS_WRITE);
3469
3470 status = ice_aq_send_cmd(hw, &desc, data, length, cd);
3471 return status;
3472 }
3473
3474 /**
3475 * __ice_aq_get_set_rss_lut
3476 * @hw: pointer to the hardware structure
3477 * @params: RSS LUT parameters
3478 * @set: set true to set the table, false to get the table
3479 *
3480 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
3481 */
3482 static enum ice_status
__ice_aq_get_set_rss_lut(struct ice_hw * hw,struct ice_aq_get_set_rss_lut_params * params,bool set)3483 __ice_aq_get_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *params, bool set)
3484 {
3485 u16 flags = 0, vsi_id, lut_type, lut_size, glob_lut_idx, vsi_handle;
3486 struct ice_aqc_get_set_rss_lut *cmd_resp;
3487 struct ice_aq_desc desc;
3488 enum ice_status status;
3489 u8 *lut;
3490
3491 if (!params)
3492 return ICE_ERR_PARAM;
3493
3494 vsi_handle = params->vsi_handle;
3495 lut = params->lut;
3496
3497 if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
3498 return ICE_ERR_PARAM;
3499
3500 lut_size = params->lut_size;
3501 lut_type = params->lut_type;
3502 glob_lut_idx = params->global_lut_id;
3503 vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3504
3505 cmd_resp = &desc.params.get_set_rss_lut;
3506
3507 if (set) {
3508 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
3509 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3510 } else {
3511 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
3512 }
3513
3514 cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
3515 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
3516 ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
3517 ICE_AQC_GSET_RSS_LUT_VSI_VALID);
3518
3519 switch (lut_type) {
3520 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
3521 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
3522 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
3523 flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
3524 ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
3525 break;
3526 default:
3527 status = ICE_ERR_PARAM;
3528 goto ice_aq_get_set_rss_lut_exit;
3529 }
3530
3531 if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
3532 flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
3533 ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
3534
3535 if (!set)
3536 goto ice_aq_get_set_rss_lut_send;
3537 } else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3538 if (!set)
3539 goto ice_aq_get_set_rss_lut_send;
3540 } else {
3541 goto ice_aq_get_set_rss_lut_send;
3542 }
3543
3544 /* LUT size is only valid for Global and PF table types */
3545 switch (lut_size) {
3546 case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
3547 break;
3548 case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
3549 flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
3550 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3551 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3552 break;
3553 case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
3554 if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3555 flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
3556 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3557 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3558 break;
3559 }
3560 fallthrough;
3561 default:
3562 status = ICE_ERR_PARAM;
3563 goto ice_aq_get_set_rss_lut_exit;
3564 }
3565
3566 ice_aq_get_set_rss_lut_send:
3567 cmd_resp->flags = cpu_to_le16(flags);
3568 status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
3569
3570 ice_aq_get_set_rss_lut_exit:
3571 return status;
3572 }
3573
3574 /**
3575 * ice_aq_get_rss_lut
3576 * @hw: pointer to the hardware structure
3577 * @get_params: RSS LUT parameters used to specify which RSS LUT to get
3578 *
3579 * get the RSS lookup table, PF or VSI type
3580 */
3581 enum ice_status
ice_aq_get_rss_lut(struct ice_hw * hw,struct ice_aq_get_set_rss_lut_params * get_params)3582 ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
3583 {
3584 return __ice_aq_get_set_rss_lut(hw, get_params, false);
3585 }
3586
3587 /**
3588 * ice_aq_set_rss_lut
3589 * @hw: pointer to the hardware structure
3590 * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
3591 *
3592 * set the RSS lookup table, PF or VSI type
3593 */
3594 enum ice_status
ice_aq_set_rss_lut(struct ice_hw * hw,struct ice_aq_get_set_rss_lut_params * set_params)3595 ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
3596 {
3597 return __ice_aq_get_set_rss_lut(hw, set_params, true);
3598 }
3599
3600 /**
3601 * __ice_aq_get_set_rss_key
3602 * @hw: pointer to the HW struct
3603 * @vsi_id: VSI FW index
3604 * @key: pointer to key info struct
3605 * @set: set true to set the key, false to get the key
3606 *
3607 * get (0x0B04) or set (0x0B02) the RSS key per VSI
3608 */
3609 static enum
__ice_aq_get_set_rss_key(struct ice_hw * hw,u16 vsi_id,struct ice_aqc_get_set_rss_keys * key,bool set)3610 ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
3611 struct ice_aqc_get_set_rss_keys *key,
3612 bool set)
3613 {
3614 struct ice_aqc_get_set_rss_key *cmd_resp;
3615 u16 key_size = sizeof(*key);
3616 struct ice_aq_desc desc;
3617
3618 cmd_resp = &desc.params.get_set_rss_key;
3619
3620 if (set) {
3621 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
3622 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3623 } else {
3624 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
3625 }
3626
3627 cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
3628 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
3629 ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
3630 ICE_AQC_GSET_RSS_KEY_VSI_VALID);
3631
3632 return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
3633 }
3634
3635 /**
3636 * ice_aq_get_rss_key
3637 * @hw: pointer to the HW struct
3638 * @vsi_handle: software VSI handle
3639 * @key: pointer to key info struct
3640 *
3641 * get the RSS key per VSI
3642 */
3643 enum ice_status
ice_aq_get_rss_key(struct ice_hw * hw,u16 vsi_handle,struct ice_aqc_get_set_rss_keys * key)3644 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
3645 struct ice_aqc_get_set_rss_keys *key)
3646 {
3647 if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
3648 return ICE_ERR_PARAM;
3649
3650 return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3651 key, false);
3652 }
3653
3654 /**
3655 * ice_aq_set_rss_key
3656 * @hw: pointer to the HW struct
3657 * @vsi_handle: software VSI handle
3658 * @keys: pointer to key info struct
3659 *
3660 * set the RSS key per VSI
3661 */
3662 enum ice_status
ice_aq_set_rss_key(struct ice_hw * hw,u16 vsi_handle,struct ice_aqc_get_set_rss_keys * keys)3663 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
3664 struct ice_aqc_get_set_rss_keys *keys)
3665 {
3666 if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
3667 return ICE_ERR_PARAM;
3668
3669 return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3670 keys, true);
3671 }
3672
3673 /**
3674 * ice_aq_add_lan_txq
3675 * @hw: pointer to the hardware structure
3676 * @num_qgrps: Number of added queue groups
3677 * @qg_list: list of queue groups to be added
3678 * @buf_size: size of buffer for indirect command
3679 * @cd: pointer to command details structure or NULL
3680 *
3681 * Add Tx LAN queue (0x0C30)
3682 *
3683 * NOTE:
3684 * Prior to calling add Tx LAN queue:
3685 * Initialize the following as part of the Tx queue context:
3686 * Completion queue ID if the queue uses Completion queue, Quanta profile,
3687 * Cache profile and Packet shaper profile.
3688 *
3689 * After add Tx LAN queue AQ command is completed:
3690 * Interrupts should be associated with specific queues,
3691 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
3692 * flow.
3693 */
3694 static enum ice_status
ice_aq_add_lan_txq(struct ice_hw * hw,u8 num_qgrps,struct ice_aqc_add_tx_qgrp * qg_list,u16 buf_size,struct ice_sq_cd * cd)3695 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
3696 struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
3697 struct ice_sq_cd *cd)
3698 {
3699 struct ice_aqc_add_tx_qgrp *list;
3700 struct ice_aqc_add_txqs *cmd;
3701 struct ice_aq_desc desc;
3702 u16 i, sum_size = 0;
3703
3704 cmd = &desc.params.add_txqs;
3705
3706 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
3707
3708 if (!qg_list)
3709 return ICE_ERR_PARAM;
3710
3711 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
3712 return ICE_ERR_PARAM;
3713
3714 for (i = 0, list = qg_list; i < num_qgrps; i++) {
3715 sum_size += struct_size(list, txqs, list->num_txqs);
3716 list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
3717 list->num_txqs);
3718 }
3719
3720 if (buf_size != sum_size)
3721 return ICE_ERR_PARAM;
3722
3723 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3724
3725 cmd->num_qgrps = num_qgrps;
3726
3727 return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
3728 }
3729
3730 /**
3731 * ice_aq_dis_lan_txq
3732 * @hw: pointer to the hardware structure
3733 * @num_qgrps: number of groups in the list
3734 * @qg_list: the list of groups to disable
3735 * @buf_size: the total size of the qg_list buffer in bytes
3736 * @rst_src: if called due to reset, specifies the reset source
3737 * @vmvf_num: the relative VM or VF number that is undergoing the reset
3738 * @cd: pointer to command details structure or NULL
3739 *
3740 * Disable LAN Tx queue (0x0C31)
3741 */
3742 static enum ice_status
ice_aq_dis_lan_txq(struct ice_hw * hw,u8 num_qgrps,struct ice_aqc_dis_txq_item * qg_list,u16 buf_size,enum ice_disq_rst_src rst_src,u16 vmvf_num,struct ice_sq_cd * cd)3743 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
3744 struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
3745 enum ice_disq_rst_src rst_src, u16 vmvf_num,
3746 struct ice_sq_cd *cd)
3747 {
3748 struct ice_aqc_dis_txq_item *item;
3749 struct ice_aqc_dis_txqs *cmd;
3750 struct ice_aq_desc desc;
3751 enum ice_status status;
3752 u16 i, sz = 0;
3753
3754 cmd = &desc.params.dis_txqs;
3755 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
3756
3757 /* qg_list can be NULL only in VM/VF reset flow */
3758 if (!qg_list && !rst_src)
3759 return ICE_ERR_PARAM;
3760
3761 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
3762 return ICE_ERR_PARAM;
3763
3764 cmd->num_entries = num_qgrps;
3765
3766 cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
3767 ICE_AQC_Q_DIS_TIMEOUT_M);
3768
3769 switch (rst_src) {
3770 case ICE_VM_RESET:
3771 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
3772 cmd->vmvf_and_timeout |=
3773 cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
3774 break;
3775 case ICE_VF_RESET:
3776 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
3777 /* In this case, FW expects vmvf_num to be absolute VF ID */
3778 cmd->vmvf_and_timeout |=
3779 cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
3780 ICE_AQC_Q_DIS_VMVF_NUM_M);
3781 break;
3782 case ICE_NO_RESET:
3783 default:
3784 break;
3785 }
3786
3787 /* flush pipe on time out */
3788 cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
3789 /* If no queue group info, we are in a reset flow. Issue the AQ */
3790 if (!qg_list)
3791 goto do_aq;
3792
3793 /* set RD bit to indicate that command buffer is provided by the driver
3794 * and it needs to be read by the firmware
3795 */
3796 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3797
3798 for (i = 0, item = qg_list; i < num_qgrps; i++) {
3799 u16 item_size = struct_size(item, q_id, item->num_qs);
3800
3801 /* If the num of queues is even, add 2 bytes of padding */
3802 if ((item->num_qs % 2) == 0)
3803 item_size += 2;
3804
3805 sz += item_size;
3806
3807 item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
3808 }
3809
3810 if (buf_size != sz)
3811 return ICE_ERR_PARAM;
3812
3813 do_aq:
3814 status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
3815 if (status) {
3816 if (!qg_list)
3817 ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
3818 vmvf_num, hw->adminq.sq_last_status);
3819 else
3820 ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
3821 le16_to_cpu(qg_list[0].q_id[0]),
3822 hw->adminq.sq_last_status);
3823 }
3824 return status;
3825 }
3826
3827 /**
3828 * ice_aq_add_rdma_qsets
3829 * @hw: pointer to the hardware structure
3830 * @num_qset_grps: Number of RDMA Qset groups
3831 * @qset_list: list of Qset groups to be added
3832 * @buf_size: size of buffer for indirect command
3833 * @cd: pointer to command details structure or NULL
3834 *
3835 * Add Tx RDMA Qsets (0x0C33)
3836 */
3837 static int
ice_aq_add_rdma_qsets(struct ice_hw * hw,u8 num_qset_grps,struct ice_aqc_add_rdma_qset_data * qset_list,u16 buf_size,struct ice_sq_cd * cd)3838 ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
3839 struct ice_aqc_add_rdma_qset_data *qset_list,
3840 u16 buf_size, struct ice_sq_cd *cd)
3841 {
3842 struct ice_aqc_add_rdma_qset_data *list;
3843 struct ice_aqc_add_rdma_qset *cmd;
3844 struct ice_aq_desc desc;
3845 u16 i, sum_size = 0;
3846
3847 cmd = &desc.params.add_rdma_qset;
3848
3849 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
3850
3851 if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
3852 return -EINVAL;
3853
3854 for (i = 0, list = qset_list; i < num_qset_grps; i++) {
3855 u16 num_qsets = le16_to_cpu(list->num_qsets);
3856
3857 sum_size += struct_size(list, rdma_qsets, num_qsets);
3858 list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
3859 num_qsets);
3860 }
3861
3862 if (buf_size != sum_size)
3863 return -EINVAL;
3864
3865 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3866
3867 cmd->num_qset_grps = num_qset_grps;
3868
3869 return ice_status_to_errno(ice_aq_send_cmd(hw, &desc, qset_list,
3870 buf_size, cd));
3871 }
3872
3873 /* End of FW Admin Queue command wrappers */
3874
3875 /**
3876 * ice_write_byte - write a byte to a packed context structure
3877 * @src_ctx: the context structure to read from
3878 * @dest_ctx: the context to be written to
3879 * @ce_info: a description of the struct to be filled
3880 */
3881 static void
ice_write_byte(u8 * src_ctx,u8 * dest_ctx,const struct ice_ctx_ele * ce_info)3882 ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3883 {
3884 u8 src_byte, dest_byte, mask;
3885 u8 *from, *dest;
3886 u16 shift_width;
3887
3888 /* copy from the next struct field */
3889 from = src_ctx + ce_info->offset;
3890
3891 /* prepare the bits and mask */
3892 shift_width = ce_info->lsb % 8;
3893 mask = (u8)(BIT(ce_info->width) - 1);
3894
3895 src_byte = *from;
3896 src_byte &= mask;
3897
3898 /* shift to correct alignment */
3899 mask <<= shift_width;
3900 src_byte <<= shift_width;
3901
3902 /* get the current bits from the target bit string */
3903 dest = dest_ctx + (ce_info->lsb / 8);
3904
3905 memcpy(&dest_byte, dest, sizeof(dest_byte));
3906
3907 dest_byte &= ~mask; /* get the bits not changing */
3908 dest_byte |= src_byte; /* add in the new bits */
3909
3910 /* put it all back */
3911 memcpy(dest, &dest_byte, sizeof(dest_byte));
3912 }
3913
3914 /**
3915 * ice_write_word - write a word to a packed context structure
3916 * @src_ctx: the context structure to read from
3917 * @dest_ctx: the context to be written to
3918 * @ce_info: a description of the struct to be filled
3919 */
3920 static void
ice_write_word(u8 * src_ctx,u8 * dest_ctx,const struct ice_ctx_ele * ce_info)3921 ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3922 {
3923 u16 src_word, mask;
3924 __le16 dest_word;
3925 u8 *from, *dest;
3926 u16 shift_width;
3927
3928 /* copy from the next struct field */
3929 from = src_ctx + ce_info->offset;
3930
3931 /* prepare the bits and mask */
3932 shift_width = ce_info->lsb % 8;
3933 mask = BIT(ce_info->width) - 1;
3934
3935 /* don't swizzle the bits until after the mask because the mask bits
3936 * will be in a different bit position on big endian machines
3937 */
3938 src_word = *(u16 *)from;
3939 src_word &= mask;
3940
3941 /* shift to correct alignment */
3942 mask <<= shift_width;
3943 src_word <<= shift_width;
3944
3945 /* get the current bits from the target bit string */
3946 dest = dest_ctx + (ce_info->lsb / 8);
3947
3948 memcpy(&dest_word, dest, sizeof(dest_word));
3949
3950 dest_word &= ~(cpu_to_le16(mask)); /* get the bits not changing */
3951 dest_word |= cpu_to_le16(src_word); /* add in the new bits */
3952
3953 /* put it all back */
3954 memcpy(dest, &dest_word, sizeof(dest_word));
3955 }
3956
3957 /**
3958 * ice_write_dword - write a dword to a packed context structure
3959 * @src_ctx: the context structure to read from
3960 * @dest_ctx: the context to be written to
3961 * @ce_info: a description of the struct to be filled
3962 */
3963 static void
ice_write_dword(u8 * src_ctx,u8 * dest_ctx,const struct ice_ctx_ele * ce_info)3964 ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3965 {
3966 u32 src_dword, mask;
3967 __le32 dest_dword;
3968 u8 *from, *dest;
3969 u16 shift_width;
3970
3971 /* copy from the next struct field */
3972 from = src_ctx + ce_info->offset;
3973
3974 /* prepare the bits and mask */
3975 shift_width = ce_info->lsb % 8;
3976
3977 /* if the field width is exactly 32 on an x86 machine, then the shift
3978 * operation will not work because the SHL instructions count is masked
3979 * to 5 bits so the shift will do nothing
3980 */
3981 if (ce_info->width < 32)
3982 mask = BIT(ce_info->width) - 1;
3983 else
3984 mask = (u32)~0;
3985
3986 /* don't swizzle the bits until after the mask because the mask bits
3987 * will be in a different bit position on big endian machines
3988 */
3989 src_dword = *(u32 *)from;
3990 src_dword &= mask;
3991
3992 /* shift to correct alignment */
3993 mask <<= shift_width;
3994 src_dword <<= shift_width;
3995
3996 /* get the current bits from the target bit string */
3997 dest = dest_ctx + (ce_info->lsb / 8);
3998
3999 memcpy(&dest_dword, dest, sizeof(dest_dword));
4000
4001 dest_dword &= ~(cpu_to_le32(mask)); /* get the bits not changing */
4002 dest_dword |= cpu_to_le32(src_dword); /* add in the new bits */
4003
4004 /* put it all back */
4005 memcpy(dest, &dest_dword, sizeof(dest_dword));
4006 }
4007
4008 /**
4009 * ice_write_qword - write a qword to a packed context structure
4010 * @src_ctx: the context structure to read from
4011 * @dest_ctx: the context to be written to
4012 * @ce_info: a description of the struct to be filled
4013 */
4014 static void
ice_write_qword(u8 * src_ctx,u8 * dest_ctx,const struct ice_ctx_ele * ce_info)4015 ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4016 {
4017 u64 src_qword, mask;
4018 __le64 dest_qword;
4019 u8 *from, *dest;
4020 u16 shift_width;
4021
4022 /* copy from the next struct field */
4023 from = src_ctx + ce_info->offset;
4024
4025 /* prepare the bits and mask */
4026 shift_width = ce_info->lsb % 8;
4027
4028 /* if the field width is exactly 64 on an x86 machine, then the shift
4029 * operation will not work because the SHL instructions count is masked
4030 * to 6 bits so the shift will do nothing
4031 */
4032 if (ce_info->width < 64)
4033 mask = BIT_ULL(ce_info->width) - 1;
4034 else
4035 mask = (u64)~0;
4036
4037 /* don't swizzle the bits until after the mask because the mask bits
4038 * will be in a different bit position on big endian machines
4039 */
4040 src_qword = *(u64 *)from;
4041 src_qword &= mask;
4042
4043 /* shift to correct alignment */
4044 mask <<= shift_width;
4045 src_qword <<= shift_width;
4046
4047 /* get the current bits from the target bit string */
4048 dest = dest_ctx + (ce_info->lsb / 8);
4049
4050 memcpy(&dest_qword, dest, sizeof(dest_qword));
4051
4052 dest_qword &= ~(cpu_to_le64(mask)); /* get the bits not changing */
4053 dest_qword |= cpu_to_le64(src_qword); /* add in the new bits */
4054
4055 /* put it all back */
4056 memcpy(dest, &dest_qword, sizeof(dest_qword));
4057 }
4058
4059 /**
4060 * ice_set_ctx - set context bits in packed structure
4061 * @hw: pointer to the hardware structure
4062 * @src_ctx: pointer to a generic non-packed context structure
4063 * @dest_ctx: pointer to memory for the packed structure
4064 * @ce_info: a description of the structure to be transformed
4065 */
4066 enum ice_status
ice_set_ctx(struct ice_hw * hw,u8 * src_ctx,u8 * dest_ctx,const struct ice_ctx_ele * ce_info)4067 ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
4068 const struct ice_ctx_ele *ce_info)
4069 {
4070 int f;
4071
4072 for (f = 0; ce_info[f].width; f++) {
4073 /* We have to deal with each element of the FW response
4074 * using the correct size so that we are correct regardless
4075 * of the endianness of the machine.
4076 */
4077 if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
4078 ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
4079 f, ce_info[f].width, ce_info[f].size_of);
4080 continue;
4081 }
4082 switch (ce_info[f].size_of) {
4083 case sizeof(u8):
4084 ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
4085 break;
4086 case sizeof(u16):
4087 ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
4088 break;
4089 case sizeof(u32):
4090 ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
4091 break;
4092 case sizeof(u64):
4093 ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
4094 break;
4095 default:
4096 return ICE_ERR_INVAL_SIZE;
4097 }
4098 }
4099
4100 return 0;
4101 }
4102
4103 /**
4104 * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4105 * @hw: pointer to the HW struct
4106 * @vsi_handle: software VSI handle
4107 * @tc: TC number
4108 * @q_handle: software queue handle
4109 */
4110 struct ice_q_ctx *
ice_get_lan_q_ctx(struct ice_hw * hw,u16 vsi_handle,u8 tc,u16 q_handle)4111 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4112 {
4113 struct ice_vsi_ctx *vsi;
4114 struct ice_q_ctx *q_ctx;
4115
4116 vsi = ice_get_vsi_ctx(hw, vsi_handle);
4117 if (!vsi)
4118 return NULL;
4119 if (q_handle >= vsi->num_lan_q_entries[tc])
4120 return NULL;
4121 if (!vsi->lan_q_ctx[tc])
4122 return NULL;
4123 q_ctx = vsi->lan_q_ctx[tc];
4124 return &q_ctx[q_handle];
4125 }
4126
4127 /**
4128 * ice_ena_vsi_txq
4129 * @pi: port information structure
4130 * @vsi_handle: software VSI handle
4131 * @tc: TC number
4132 * @q_handle: software queue handle
4133 * @num_qgrps: Number of added queue groups
4134 * @buf: list of queue groups to be added
4135 * @buf_size: size of buffer for indirect command
4136 * @cd: pointer to command details structure or NULL
4137 *
4138 * This function adds one LAN queue
4139 */
4140 enum ice_status
ice_ena_vsi_txq(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 q_handle,u8 num_qgrps,struct ice_aqc_add_tx_qgrp * buf,u16 buf_size,struct ice_sq_cd * cd)4141 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4142 u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4143 struct ice_sq_cd *cd)
4144 {
4145 struct ice_aqc_txsched_elem_data node = { 0 };
4146 struct ice_sched_node *parent;
4147 struct ice_q_ctx *q_ctx;
4148 enum ice_status status;
4149 struct ice_hw *hw;
4150
4151 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4152 return ICE_ERR_CFG;
4153
4154 if (num_qgrps > 1 || buf->num_txqs > 1)
4155 return ICE_ERR_MAX_LIMIT;
4156
4157 hw = pi->hw;
4158
4159 if (!ice_is_vsi_valid(hw, vsi_handle))
4160 return ICE_ERR_PARAM;
4161
4162 mutex_lock(&pi->sched_lock);
4163
4164 q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4165 if (!q_ctx) {
4166 ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4167 q_handle);
4168 status = ICE_ERR_PARAM;
4169 goto ena_txq_exit;
4170 }
4171
4172 /* find a parent node */
4173 parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4174 ICE_SCHED_NODE_OWNER_LAN);
4175 if (!parent) {
4176 status = ICE_ERR_PARAM;
4177 goto ena_txq_exit;
4178 }
4179
4180 buf->parent_teid = parent->info.node_teid;
4181 node.parent_teid = parent->info.node_teid;
4182 /* Mark that the values in the "generic" section as valid. The default
4183 * value in the "generic" section is zero. This means that :
4184 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4185 * - 0 priority among siblings, indicated by Bit 1-3.
4186 * - WFQ, indicated by Bit 4.
4187 * - 0 Adjustment value is used in PSM credit update flow, indicated by
4188 * Bit 5-6.
4189 * - Bit 7 is reserved.
4190 * Without setting the generic section as valid in valid_sections, the
4191 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4192 */
4193 buf->txqs[0].info.valid_sections =
4194 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4195 ICE_AQC_ELEM_VALID_EIR;
4196 buf->txqs[0].info.generic = 0;
4197 buf->txqs[0].info.cir_bw.bw_profile_idx =
4198 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4199 buf->txqs[0].info.cir_bw.bw_alloc =
4200 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4201 buf->txqs[0].info.eir_bw.bw_profile_idx =
4202 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4203 buf->txqs[0].info.eir_bw.bw_alloc =
4204 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4205
4206 /* add the LAN queue */
4207 status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
4208 if (status) {
4209 ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4210 le16_to_cpu(buf->txqs[0].txq_id),
4211 hw->adminq.sq_last_status);
4212 goto ena_txq_exit;
4213 }
4214
4215 node.node_teid = buf->txqs[0].q_teid;
4216 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4217 q_ctx->q_handle = q_handle;
4218 q_ctx->q_teid = le32_to_cpu(node.node_teid);
4219
4220 /* add a leaf node into scheduler tree queue layer */
4221 status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
4222 if (!status)
4223 status = ice_sched_replay_q_bw(pi, q_ctx);
4224
4225 ena_txq_exit:
4226 mutex_unlock(&pi->sched_lock);
4227 return status;
4228 }
4229
4230 /**
4231 * ice_dis_vsi_txq
4232 * @pi: port information structure
4233 * @vsi_handle: software VSI handle
4234 * @tc: TC number
4235 * @num_queues: number of queues
4236 * @q_handles: pointer to software queue handle array
4237 * @q_ids: pointer to the q_id array
4238 * @q_teids: pointer to queue node teids
4239 * @rst_src: if called due to reset, specifies the reset source
4240 * @vmvf_num: the relative VM or VF number that is undergoing the reset
4241 * @cd: pointer to command details structure or NULL
4242 *
4243 * This function removes queues and their corresponding nodes in SW DB
4244 */
4245 enum ice_status
ice_dis_vsi_txq(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u8 num_queues,u16 * q_handles,u16 * q_ids,u32 * q_teids,enum ice_disq_rst_src rst_src,u16 vmvf_num,struct ice_sq_cd * cd)4246 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4247 u16 *q_handles, u16 *q_ids, u32 *q_teids,
4248 enum ice_disq_rst_src rst_src, u16 vmvf_num,
4249 struct ice_sq_cd *cd)
4250 {
4251 enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
4252 struct ice_aqc_dis_txq_item *qg_list;
4253 struct ice_q_ctx *q_ctx;
4254 struct ice_hw *hw;
4255 u16 i, buf_size;
4256
4257 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4258 return ICE_ERR_CFG;
4259
4260 hw = pi->hw;
4261
4262 if (!num_queues) {
4263 /* if queue is disabled already yet the disable queue command
4264 * has to be sent to complete the VF reset, then call
4265 * ice_aq_dis_lan_txq without any queue information
4266 */
4267 if (rst_src)
4268 return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
4269 vmvf_num, NULL);
4270 return ICE_ERR_CFG;
4271 }
4272
4273 buf_size = struct_size(qg_list, q_id, 1);
4274 qg_list = kzalloc(buf_size, GFP_KERNEL);
4275 if (!qg_list)
4276 return ICE_ERR_NO_MEMORY;
4277
4278 mutex_lock(&pi->sched_lock);
4279
4280 for (i = 0; i < num_queues; i++) {
4281 struct ice_sched_node *node;
4282
4283 node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4284 if (!node)
4285 continue;
4286 q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4287 if (!q_ctx) {
4288 ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4289 q_handles[i]);
4290 continue;
4291 }
4292 if (q_ctx->q_handle != q_handles[i]) {
4293 ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4294 q_ctx->q_handle, q_handles[i]);
4295 continue;
4296 }
4297 qg_list->parent_teid = node->info.parent_teid;
4298 qg_list->num_qs = 1;
4299 qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
4300 status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
4301 vmvf_num, cd);
4302
4303 if (status)
4304 break;
4305 ice_free_sched_node(pi, node);
4306 q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
4307 }
4308 mutex_unlock(&pi->sched_lock);
4309 kfree(qg_list);
4310 return status;
4311 }
4312
4313 /**
4314 * ice_cfg_vsi_qs - configure the new/existing VSI queues
4315 * @pi: port information structure
4316 * @vsi_handle: software VSI handle
4317 * @tc_bitmap: TC bitmap
4318 * @maxqs: max queues array per TC
4319 * @owner: LAN or RDMA
4320 *
4321 * This function adds/updates the VSI queues per TC.
4322 */
4323 static enum ice_status
ice_cfg_vsi_qs(struct ice_port_info * pi,u16 vsi_handle,u8 tc_bitmap,u16 * maxqs,u8 owner)4324 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4325 u16 *maxqs, u8 owner)
4326 {
4327 enum ice_status status = 0;
4328 u8 i;
4329
4330 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4331 return ICE_ERR_CFG;
4332
4333 if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4334 return ICE_ERR_PARAM;
4335
4336 mutex_lock(&pi->sched_lock);
4337
4338 ice_for_each_traffic_class(i) {
4339 /* configuration is possible only if TC node is present */
4340 if (!ice_sched_get_tc_node(pi, i))
4341 continue;
4342
4343 status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
4344 ice_is_tc_ena(tc_bitmap, i));
4345 if (status)
4346 break;
4347 }
4348
4349 mutex_unlock(&pi->sched_lock);
4350 return status;
4351 }
4352
4353 /**
4354 * ice_cfg_vsi_lan - configure VSI LAN queues
4355 * @pi: port information structure
4356 * @vsi_handle: software VSI handle
4357 * @tc_bitmap: TC bitmap
4358 * @max_lanqs: max LAN queues array per TC
4359 *
4360 * This function adds/updates the VSI LAN queues per TC.
4361 */
4362 enum ice_status
ice_cfg_vsi_lan(struct ice_port_info * pi,u16 vsi_handle,u8 tc_bitmap,u16 * max_lanqs)4363 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4364 u16 *max_lanqs)
4365 {
4366 return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
4367 ICE_SCHED_NODE_OWNER_LAN);
4368 }
4369
4370 /**
4371 * ice_cfg_vsi_rdma - configure the VSI RDMA queues
4372 * @pi: port information structure
4373 * @vsi_handle: software VSI handle
4374 * @tc_bitmap: TC bitmap
4375 * @max_rdmaqs: max RDMA queues array per TC
4376 *
4377 * This function adds/updates the VSI RDMA queues per TC.
4378 */
4379 int
ice_cfg_vsi_rdma(struct ice_port_info * pi,u16 vsi_handle,u16 tc_bitmap,u16 * max_rdmaqs)4380 ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
4381 u16 *max_rdmaqs)
4382 {
4383 return ice_status_to_errno(ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap,
4384 max_rdmaqs,
4385 ICE_SCHED_NODE_OWNER_RDMA));
4386 }
4387
4388 /**
4389 * ice_ena_vsi_rdma_qset
4390 * @pi: port information structure
4391 * @vsi_handle: software VSI handle
4392 * @tc: TC number
4393 * @rdma_qset: pointer to RDMA Qset
4394 * @num_qsets: number of RDMA Qsets
4395 * @qset_teid: pointer to Qset node TEIDs
4396 *
4397 * This function adds RDMA Qset
4398 */
4399 int
ice_ena_vsi_rdma_qset(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 * rdma_qset,u16 num_qsets,u32 * qset_teid)4400 ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4401 u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
4402 {
4403 struct ice_aqc_txsched_elem_data node = { 0 };
4404 struct ice_aqc_add_rdma_qset_data *buf;
4405 struct ice_sched_node *parent;
4406 enum ice_status status;
4407 struct ice_hw *hw;
4408 u16 i, buf_size;
4409 int ret;
4410
4411 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4412 return -EIO;
4413 hw = pi->hw;
4414
4415 if (!ice_is_vsi_valid(hw, vsi_handle))
4416 return -EINVAL;
4417
4418 buf_size = struct_size(buf, rdma_qsets, num_qsets);
4419 buf = kzalloc(buf_size, GFP_KERNEL);
4420 if (!buf)
4421 return -ENOMEM;
4422 mutex_lock(&pi->sched_lock);
4423
4424 parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4425 ICE_SCHED_NODE_OWNER_RDMA);
4426 if (!parent) {
4427 ret = -EINVAL;
4428 goto rdma_error_exit;
4429 }
4430 buf->parent_teid = parent->info.node_teid;
4431 node.parent_teid = parent->info.node_teid;
4432
4433 buf->num_qsets = cpu_to_le16(num_qsets);
4434 for (i = 0; i < num_qsets; i++) {
4435 buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
4436 buf->rdma_qsets[i].info.valid_sections =
4437 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4438 ICE_AQC_ELEM_VALID_EIR;
4439 buf->rdma_qsets[i].info.generic = 0;
4440 buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
4441 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4442 buf->rdma_qsets[i].info.cir_bw.bw_alloc =
4443 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4444 buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
4445 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4446 buf->rdma_qsets[i].info.eir_bw.bw_alloc =
4447 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4448 }
4449 ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
4450 if (ret) {
4451 ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
4452 goto rdma_error_exit;
4453 }
4454 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4455 for (i = 0; i < num_qsets; i++) {
4456 node.node_teid = buf->rdma_qsets[i].qset_teid;
4457 status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
4458 &node);
4459 if (status) {
4460 ret = ice_status_to_errno(status);
4461 break;
4462 }
4463 qset_teid[i] = le32_to_cpu(node.node_teid);
4464 }
4465 rdma_error_exit:
4466 mutex_unlock(&pi->sched_lock);
4467 kfree(buf);
4468 return ret;
4469 }
4470
4471 /**
4472 * ice_dis_vsi_rdma_qset - free RDMA resources
4473 * @pi: port_info struct
4474 * @count: number of RDMA Qsets to free
4475 * @qset_teid: TEID of Qset node
4476 * @q_id: list of queue IDs being disabled
4477 */
4478 int
ice_dis_vsi_rdma_qset(struct ice_port_info * pi,u16 count,u32 * qset_teid,u16 * q_id)4479 ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
4480 u16 *q_id)
4481 {
4482 struct ice_aqc_dis_txq_item *qg_list;
4483 enum ice_status status = 0;
4484 struct ice_hw *hw;
4485 u16 qg_size;
4486 int i;
4487
4488 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4489 return -EIO;
4490
4491 hw = pi->hw;
4492
4493 qg_size = struct_size(qg_list, q_id, 1);
4494 qg_list = kzalloc(qg_size, GFP_KERNEL);
4495 if (!qg_list)
4496 return -ENOMEM;
4497
4498 mutex_lock(&pi->sched_lock);
4499
4500 for (i = 0; i < count; i++) {
4501 struct ice_sched_node *node;
4502
4503 node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
4504 if (!node)
4505 continue;
4506
4507 qg_list->parent_teid = node->info.parent_teid;
4508 qg_list->num_qs = 1;
4509 qg_list->q_id[0] =
4510 cpu_to_le16(q_id[i] |
4511 ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
4512
4513 status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
4514 ICE_NO_RESET, 0, NULL);
4515 if (status)
4516 break;
4517
4518 ice_free_sched_node(pi, node);
4519 }
4520
4521 mutex_unlock(&pi->sched_lock);
4522 kfree(qg_list);
4523 return ice_status_to_errno(status);
4524 }
4525
4526 /**
4527 * ice_replay_pre_init - replay pre initialization
4528 * @hw: pointer to the HW struct
4529 *
4530 * Initializes required config data for VSI, FD, ACL, and RSS before replay.
4531 */
ice_replay_pre_init(struct ice_hw * hw)4532 static enum ice_status ice_replay_pre_init(struct ice_hw *hw)
4533 {
4534 struct ice_switch_info *sw = hw->switch_info;
4535 u8 i;
4536
4537 /* Delete old entries from replay filter list head if there is any */
4538 ice_rm_all_sw_replay_rule_info(hw);
4539 /* In start of replay, move entries into replay_rules list, it
4540 * will allow adding rules entries back to filt_rules list,
4541 * which is operational list.
4542 */
4543 for (i = 0; i < ICE_SW_LKUP_LAST; i++)
4544 list_replace_init(&sw->recp_list[i].filt_rules,
4545 &sw->recp_list[i].filt_replay_rules);
4546 ice_sched_replay_agg_vsi_preinit(hw);
4547
4548 return 0;
4549 }
4550
4551 /**
4552 * ice_replay_vsi - replay VSI configuration
4553 * @hw: pointer to the HW struct
4554 * @vsi_handle: driver VSI handle
4555 *
4556 * Restore all VSI configuration after reset. It is required to call this
4557 * function with main VSI first.
4558 */
ice_replay_vsi(struct ice_hw * hw,u16 vsi_handle)4559 enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
4560 {
4561 enum ice_status status;
4562
4563 if (!ice_is_vsi_valid(hw, vsi_handle))
4564 return ICE_ERR_PARAM;
4565
4566 /* Replay pre-initialization if there is any */
4567 if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
4568 status = ice_replay_pre_init(hw);
4569 if (status)
4570 return status;
4571 }
4572 /* Replay per VSI all RSS configurations */
4573 status = ice_replay_rss_cfg(hw, vsi_handle);
4574 if (status)
4575 return status;
4576 /* Replay per VSI all filters */
4577 status = ice_replay_vsi_all_fltr(hw, vsi_handle);
4578 if (!status)
4579 status = ice_replay_vsi_agg(hw, vsi_handle);
4580 return status;
4581 }
4582
4583 /**
4584 * ice_replay_post - post replay configuration cleanup
4585 * @hw: pointer to the HW struct
4586 *
4587 * Post replay cleanup.
4588 */
ice_replay_post(struct ice_hw * hw)4589 void ice_replay_post(struct ice_hw *hw)
4590 {
4591 /* Delete old entries from replay filter list head */
4592 ice_rm_all_sw_replay_rule_info(hw);
4593 ice_sched_replay_agg(hw);
4594 }
4595
4596 /**
4597 * ice_stat_update40 - read 40 bit stat from the chip and update stat values
4598 * @hw: ptr to the hardware info
4599 * @reg: offset of 64 bit HW register to read from
4600 * @prev_stat_loaded: bool to specify if previous stats are loaded
4601 * @prev_stat: ptr to previous loaded stat value
4602 * @cur_stat: ptr to current stat value
4603 */
4604 void
ice_stat_update40(struct ice_hw * hw,u32 reg,bool prev_stat_loaded,u64 * prev_stat,u64 * cur_stat)4605 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4606 u64 *prev_stat, u64 *cur_stat)
4607 {
4608 u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
4609
4610 /* device stats are not reset at PFR, they likely will not be zeroed
4611 * when the driver starts. Thus, save the value from the first read
4612 * without adding to the statistic value so that we report stats which
4613 * count up from zero.
4614 */
4615 if (!prev_stat_loaded) {
4616 *prev_stat = new_data;
4617 return;
4618 }
4619
4620 /* Calculate the difference between the new and old values, and then
4621 * add it to the software stat value.
4622 */
4623 if (new_data >= *prev_stat)
4624 *cur_stat += new_data - *prev_stat;
4625 else
4626 /* to manage the potential roll-over */
4627 *cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
4628
4629 /* Update the previously stored value to prepare for next read */
4630 *prev_stat = new_data;
4631 }
4632
4633 /**
4634 * ice_stat_update32 - read 32 bit stat from the chip and update stat values
4635 * @hw: ptr to the hardware info
4636 * @reg: offset of HW register to read from
4637 * @prev_stat_loaded: bool to specify if previous stats are loaded
4638 * @prev_stat: ptr to previous loaded stat value
4639 * @cur_stat: ptr to current stat value
4640 */
4641 void
ice_stat_update32(struct ice_hw * hw,u32 reg,bool prev_stat_loaded,u64 * prev_stat,u64 * cur_stat)4642 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4643 u64 *prev_stat, u64 *cur_stat)
4644 {
4645 u32 new_data;
4646
4647 new_data = rd32(hw, reg);
4648
4649 /* device stats are not reset at PFR, they likely will not be zeroed
4650 * when the driver starts. Thus, save the value from the first read
4651 * without adding to the statistic value so that we report stats which
4652 * count up from zero.
4653 */
4654 if (!prev_stat_loaded) {
4655 *prev_stat = new_data;
4656 return;
4657 }
4658
4659 /* Calculate the difference between the new and old values, and then
4660 * add it to the software stat value.
4661 */
4662 if (new_data >= *prev_stat)
4663 *cur_stat += new_data - *prev_stat;
4664 else
4665 /* to manage the potential roll-over */
4666 *cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
4667
4668 /* Update the previously stored value to prepare for next read */
4669 *prev_stat = new_data;
4670 }
4671
4672 /**
4673 * ice_sched_query_elem - query element information from HW
4674 * @hw: pointer to the HW struct
4675 * @node_teid: node TEID to be queried
4676 * @buf: buffer to element information
4677 *
4678 * This function queries HW element information
4679 */
4680 enum ice_status
ice_sched_query_elem(struct ice_hw * hw,u32 node_teid,struct ice_aqc_txsched_elem_data * buf)4681 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
4682 struct ice_aqc_txsched_elem_data *buf)
4683 {
4684 u16 buf_size, num_elem_ret = 0;
4685 enum ice_status status;
4686
4687 buf_size = sizeof(*buf);
4688 memset(buf, 0, buf_size);
4689 buf->node_teid = cpu_to_le32(node_teid);
4690 status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
4691 NULL);
4692 if (status || num_elem_ret != 1)
4693 ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
4694 return status;
4695 }
4696
4697 /**
4698 * ice_aq_set_driver_param - Set driver parameter to share via firmware
4699 * @hw: pointer to the HW struct
4700 * @idx: parameter index to set
4701 * @value: the value to set the parameter to
4702 * @cd: pointer to command details structure or NULL
4703 *
4704 * Set the value of one of the software defined parameters. All PFs connected
4705 * to this device can read the value using ice_aq_get_driver_param.
4706 *
4707 * Note that firmware provides no synchronization or locking, and will not
4708 * save the parameter value during a device reset. It is expected that
4709 * a single PF will write the parameter value, while all other PFs will only
4710 * read it.
4711 */
4712 int
ice_aq_set_driver_param(struct ice_hw * hw,enum ice_aqc_driver_params idx,u32 value,struct ice_sq_cd * cd)4713 ice_aq_set_driver_param(struct ice_hw *hw, enum ice_aqc_driver_params idx,
4714 u32 value, struct ice_sq_cd *cd)
4715 {
4716 struct ice_aqc_driver_shared_params *cmd;
4717 struct ice_aq_desc desc;
4718
4719 if (idx >= ICE_AQC_DRIVER_PARAM_MAX)
4720 return -EIO;
4721
4722 cmd = &desc.params.drv_shared_params;
4723
4724 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_shared_params);
4725
4726 cmd->set_or_get_op = ICE_AQC_DRIVER_PARAM_SET;
4727 cmd->param_indx = idx;
4728 cmd->param_val = cpu_to_le32(value);
4729
4730 return ice_status_to_errno(ice_aq_send_cmd(hw, &desc, NULL, 0, cd));
4731 }
4732
4733 /**
4734 * ice_aq_get_driver_param - Get driver parameter shared via firmware
4735 * @hw: pointer to the HW struct
4736 * @idx: parameter index to set
4737 * @value: storage to return the shared parameter
4738 * @cd: pointer to command details structure or NULL
4739 *
4740 * Get the value of one of the software defined parameters.
4741 *
4742 * Note that firmware provides no synchronization or locking. It is expected
4743 * that only a single PF will write a given parameter.
4744 */
4745 int
ice_aq_get_driver_param(struct ice_hw * hw,enum ice_aqc_driver_params idx,u32 * value,struct ice_sq_cd * cd)4746 ice_aq_get_driver_param(struct ice_hw *hw, enum ice_aqc_driver_params idx,
4747 u32 *value, struct ice_sq_cd *cd)
4748 {
4749 struct ice_aqc_driver_shared_params *cmd;
4750 struct ice_aq_desc desc;
4751 enum ice_status status;
4752
4753 if (idx >= ICE_AQC_DRIVER_PARAM_MAX)
4754 return -EIO;
4755
4756 cmd = &desc.params.drv_shared_params;
4757
4758 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_shared_params);
4759
4760 cmd->set_or_get_op = ICE_AQC_DRIVER_PARAM_GET;
4761 cmd->param_indx = idx;
4762
4763 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4764 if (status)
4765 return ice_status_to_errno(status);
4766
4767 *value = le32_to_cpu(cmd->param_val);
4768
4769 return 0;
4770 }
4771
4772 /**
4773 * ice_fw_supports_link_override
4774 * @hw: pointer to the hardware structure
4775 *
4776 * Checks if the firmware supports link override
4777 */
ice_fw_supports_link_override(struct ice_hw * hw)4778 bool ice_fw_supports_link_override(struct ice_hw *hw)
4779 {
4780 if (hw->api_maj_ver == ICE_FW_API_LINK_OVERRIDE_MAJ) {
4781 if (hw->api_min_ver > ICE_FW_API_LINK_OVERRIDE_MIN)
4782 return true;
4783 if (hw->api_min_ver == ICE_FW_API_LINK_OVERRIDE_MIN &&
4784 hw->api_patch >= ICE_FW_API_LINK_OVERRIDE_PATCH)
4785 return true;
4786 } else if (hw->api_maj_ver > ICE_FW_API_LINK_OVERRIDE_MAJ) {
4787 return true;
4788 }
4789
4790 return false;
4791 }
4792
4793 /**
4794 * ice_get_link_default_override
4795 * @ldo: pointer to the link default override struct
4796 * @pi: pointer to the port info struct
4797 *
4798 * Gets the link default override for a port
4799 */
4800 enum ice_status
ice_get_link_default_override(struct ice_link_default_override_tlv * ldo,struct ice_port_info * pi)4801 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
4802 struct ice_port_info *pi)
4803 {
4804 u16 i, tlv, tlv_len, tlv_start, buf, offset;
4805 struct ice_hw *hw = pi->hw;
4806 enum ice_status status;
4807
4808 status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
4809 ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
4810 if (status) {
4811 ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
4812 return status;
4813 }
4814
4815 /* Each port has its own config; calculate for our port */
4816 tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
4817 ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
4818
4819 /* link options first */
4820 status = ice_read_sr_word(hw, tlv_start, &buf);
4821 if (status) {
4822 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
4823 return status;
4824 }
4825 ldo->options = buf & ICE_LINK_OVERRIDE_OPT_M;
4826 ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
4827 ICE_LINK_OVERRIDE_PHY_CFG_S;
4828
4829 /* link PHY config */
4830 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
4831 status = ice_read_sr_word(hw, offset, &buf);
4832 if (status) {
4833 ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
4834 return status;
4835 }
4836 ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
4837
4838 /* PHY types low */
4839 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
4840 for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
4841 status = ice_read_sr_word(hw, (offset + i), &buf);
4842 if (status) {
4843 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
4844 return status;
4845 }
4846 /* shift 16 bits at a time to fill 64 bits */
4847 ldo->phy_type_low |= ((u64)buf << (i * 16));
4848 }
4849
4850 /* PHY types high */
4851 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
4852 ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
4853 for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
4854 status = ice_read_sr_word(hw, (offset + i), &buf);
4855 if (status) {
4856 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
4857 return status;
4858 }
4859 /* shift 16 bits at a time to fill 64 bits */
4860 ldo->phy_type_high |= ((u64)buf << (i * 16));
4861 }
4862
4863 return status;
4864 }
4865
4866 /**
4867 * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
4868 * @caps: get PHY capability data
4869 */
ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data * caps)4870 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
4871 {
4872 if (caps->caps & ICE_AQC_PHY_AN_MODE ||
4873 caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
4874 ICE_AQC_PHY_AN_EN_CLAUSE73 |
4875 ICE_AQC_PHY_AN_EN_CLAUSE37))
4876 return true;
4877
4878 return false;
4879 }
4880
4881 /**
4882 * ice_aq_set_lldp_mib - Set the LLDP MIB
4883 * @hw: pointer to the HW struct
4884 * @mib_type: Local, Remote or both Local and Remote MIBs
4885 * @buf: pointer to the caller-supplied buffer to store the MIB block
4886 * @buf_size: size of the buffer (in bytes)
4887 * @cd: pointer to command details structure or NULL
4888 *
4889 * Set the LLDP MIB. (0x0A08)
4890 */
4891 enum ice_status
ice_aq_set_lldp_mib(struct ice_hw * hw,u8 mib_type,void * buf,u16 buf_size,struct ice_sq_cd * cd)4892 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
4893 struct ice_sq_cd *cd)
4894 {
4895 struct ice_aqc_lldp_set_local_mib *cmd;
4896 struct ice_aq_desc desc;
4897
4898 cmd = &desc.params.lldp_set_mib;
4899
4900 if (buf_size == 0 || !buf)
4901 return ICE_ERR_PARAM;
4902
4903 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
4904
4905 desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
4906 desc.datalen = cpu_to_le16(buf_size);
4907
4908 cmd->type = mib_type;
4909 cmd->length = cpu_to_le16(buf_size);
4910
4911 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4912 }
4913
4914 /**
4915 * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
4916 * @hw: pointer to HW struct
4917 */
ice_fw_supports_lldp_fltr_ctrl(struct ice_hw * hw)4918 bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
4919 {
4920 if (hw->mac_type != ICE_MAC_E810)
4921 return false;
4922
4923 if (hw->api_maj_ver == ICE_FW_API_LLDP_FLTR_MAJ) {
4924 if (hw->api_min_ver > ICE_FW_API_LLDP_FLTR_MIN)
4925 return true;
4926 if (hw->api_min_ver == ICE_FW_API_LLDP_FLTR_MIN &&
4927 hw->api_patch >= ICE_FW_API_LLDP_FLTR_PATCH)
4928 return true;
4929 } else if (hw->api_maj_ver > ICE_FW_API_LLDP_FLTR_MAJ) {
4930 return true;
4931 }
4932 return false;
4933 }
4934
4935 /**
4936 * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
4937 * @hw: pointer to HW struct
4938 * @vsi_num: absolute HW index for VSI
4939 * @add: boolean for if adding or removing a filter
4940 */
4941 enum ice_status
ice_lldp_fltr_add_remove(struct ice_hw * hw,u16 vsi_num,bool add)4942 ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
4943 {
4944 struct ice_aqc_lldp_filter_ctrl *cmd;
4945 struct ice_aq_desc desc;
4946
4947 cmd = &desc.params.lldp_filter_ctrl;
4948
4949 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
4950
4951 if (add)
4952 cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
4953 else
4954 cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
4955
4956 cmd->vsi_num = cpu_to_le16(vsi_num);
4957
4958 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
4959 }
4960
4961 /**
4962 * ice_fw_supports_report_dflt_cfg
4963 * @hw: pointer to the hardware structure
4964 *
4965 * Checks if the firmware supports report default configuration
4966 */
ice_fw_supports_report_dflt_cfg(struct ice_hw * hw)4967 bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
4968 {
4969 if (hw->api_maj_ver == ICE_FW_API_REPORT_DFLT_CFG_MAJ) {
4970 if (hw->api_min_ver > ICE_FW_API_REPORT_DFLT_CFG_MIN)
4971 return true;
4972 if (hw->api_min_ver == ICE_FW_API_REPORT_DFLT_CFG_MIN &&
4973 hw->api_patch >= ICE_FW_API_REPORT_DFLT_CFG_PATCH)
4974 return true;
4975 } else if (hw->api_maj_ver > ICE_FW_API_REPORT_DFLT_CFG_MAJ) {
4976 return true;
4977 }
4978 return false;
4979 }
4980