1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <generated/utsrelease.h>
9 #include <linux/crash_dump.h>
10 #include "ice.h"
11 #include "ice_base.h"
12 #include "ice_lib.h"
13 #include "ice_fltr.h"
14 #include "ice_dcb_lib.h"
15 #include "ice_dcb_nl.h"
16 #include "ice_devlink.h"
17 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
18 * ice tracepoint functions. This must be done exactly once across the
19 * ice driver.
20 */
21 #define CREATE_TRACE_POINTS
22 #include "ice_trace.h"
23
24 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver"
25 static const char ice_driver_string[] = DRV_SUMMARY;
26 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
27
28 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
29 #define ICE_DDP_PKG_PATH "intel/ice/ddp/"
30 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg"
31
32 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
33 MODULE_DESCRIPTION(DRV_SUMMARY);
34 MODULE_LICENSE("GPL v2");
35 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
36
37 static int debug = -1;
38 module_param(debug, int, 0644);
39 #ifndef CONFIG_DYNAMIC_DEBUG
40 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
41 #else
42 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
43 #endif /* !CONFIG_DYNAMIC_DEBUG */
44
45 static DEFINE_IDA(ice_aux_ida);
46
47 static struct workqueue_struct *ice_wq;
48 static const struct net_device_ops ice_netdev_safe_mode_ops;
49 static const struct net_device_ops ice_netdev_ops;
50 static int ice_vsi_open(struct ice_vsi *vsi);
51
52 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
53
54 static void ice_vsi_release_all(struct ice_pf *pf);
55
netif_is_ice(struct net_device * dev)56 bool netif_is_ice(struct net_device *dev)
57 {
58 return dev && (dev->netdev_ops == &ice_netdev_ops);
59 }
60
61 /**
62 * ice_get_tx_pending - returns number of Tx descriptors not processed
63 * @ring: the ring of descriptors
64 */
ice_get_tx_pending(struct ice_ring * ring)65 static u16 ice_get_tx_pending(struct ice_ring *ring)
66 {
67 u16 head, tail;
68
69 head = ring->next_to_clean;
70 tail = ring->next_to_use;
71
72 if (head != tail)
73 return (head < tail) ?
74 tail - head : (tail + ring->count - head);
75 return 0;
76 }
77
78 /**
79 * ice_check_for_hang_subtask - check for and recover hung queues
80 * @pf: pointer to PF struct
81 */
ice_check_for_hang_subtask(struct ice_pf * pf)82 static void ice_check_for_hang_subtask(struct ice_pf *pf)
83 {
84 struct ice_vsi *vsi = NULL;
85 struct ice_hw *hw;
86 unsigned int i;
87 int packets;
88 u32 v;
89
90 ice_for_each_vsi(pf, v)
91 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
92 vsi = pf->vsi[v];
93 break;
94 }
95
96 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
97 return;
98
99 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
100 return;
101
102 hw = &vsi->back->hw;
103
104 for (i = 0; i < vsi->num_txq; i++) {
105 struct ice_ring *tx_ring = vsi->tx_rings[i];
106
107 if (tx_ring && tx_ring->desc) {
108 /* If packet counter has not changed the queue is
109 * likely stalled, so force an interrupt for this
110 * queue.
111 *
112 * prev_pkt would be negative if there was no
113 * pending work.
114 */
115 packets = tx_ring->stats.pkts & INT_MAX;
116 if (tx_ring->tx_stats.prev_pkt == packets) {
117 /* Trigger sw interrupt to revive the queue */
118 ice_trigger_sw_intr(hw, tx_ring->q_vector);
119 continue;
120 }
121
122 /* Memory barrier between read of packet count and call
123 * to ice_get_tx_pending()
124 */
125 smp_rmb();
126 tx_ring->tx_stats.prev_pkt =
127 ice_get_tx_pending(tx_ring) ? packets : -1;
128 }
129 }
130 }
131
132 /**
133 * ice_init_mac_fltr - Set initial MAC filters
134 * @pf: board private structure
135 *
136 * Set initial set of MAC filters for PF VSI; configure filters for permanent
137 * address and broadcast address. If an error is encountered, netdevice will be
138 * unregistered.
139 */
ice_init_mac_fltr(struct ice_pf * pf)140 static int ice_init_mac_fltr(struct ice_pf *pf)
141 {
142 enum ice_status status;
143 struct ice_vsi *vsi;
144 u8 *perm_addr;
145
146 vsi = ice_get_main_vsi(pf);
147 if (!vsi)
148 return -EINVAL;
149
150 perm_addr = vsi->port_info->mac.perm_addr;
151 status = ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
152 if (status)
153 return -EIO;
154
155 return 0;
156 }
157
158 /**
159 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
160 * @netdev: the net device on which the sync is happening
161 * @addr: MAC address to sync
162 *
163 * This is a callback function which is called by the in kernel device sync
164 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
165 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
166 * MAC filters from the hardware.
167 */
ice_add_mac_to_sync_list(struct net_device * netdev,const u8 * addr)168 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
169 {
170 struct ice_netdev_priv *np = netdev_priv(netdev);
171 struct ice_vsi *vsi = np->vsi;
172
173 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
174 ICE_FWD_TO_VSI))
175 return -EINVAL;
176
177 return 0;
178 }
179
180 /**
181 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
182 * @netdev: the net device on which the unsync is happening
183 * @addr: MAC address to unsync
184 *
185 * This is a callback function which is called by the in kernel device unsync
186 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
187 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
188 * delete the MAC filters from the hardware.
189 */
ice_add_mac_to_unsync_list(struct net_device * netdev,const u8 * addr)190 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
191 {
192 struct ice_netdev_priv *np = netdev_priv(netdev);
193 struct ice_vsi *vsi = np->vsi;
194
195 /* Under some circumstances, we might receive a request to delete our
196 * own device address from our uc list. Because we store the device
197 * address in the VSI's MAC filter list, we need to ignore such
198 * requests and not delete our device address from this list.
199 */
200 if (ether_addr_equal(addr, netdev->dev_addr))
201 return 0;
202
203 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
204 ICE_FWD_TO_VSI))
205 return -EINVAL;
206
207 return 0;
208 }
209
210 /**
211 * ice_vsi_fltr_changed - check if filter state changed
212 * @vsi: VSI to be checked
213 *
214 * returns true if filter state has changed, false otherwise.
215 */
ice_vsi_fltr_changed(struct ice_vsi * vsi)216 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
217 {
218 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
219 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state) ||
220 test_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
221 }
222
223 /**
224 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF
225 * @vsi: the VSI being configured
226 * @promisc_m: mask of promiscuous config bits
227 * @set_promisc: enable or disable promisc flag request
228 *
229 */
ice_cfg_promisc(struct ice_vsi * vsi,u8 promisc_m,bool set_promisc)230 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc)
231 {
232 struct ice_hw *hw = &vsi->back->hw;
233 enum ice_status status = 0;
234
235 if (vsi->type != ICE_VSI_PF)
236 return 0;
237
238 if (vsi->num_vlan > 1) {
239 status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
240 set_promisc);
241 } else {
242 if (set_promisc)
243 status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
244 0);
245 else
246 status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
247 0);
248 }
249
250 if (status)
251 return -EIO;
252
253 return 0;
254 }
255
256 /**
257 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
258 * @vsi: ptr to the VSI
259 *
260 * Push any outstanding VSI filter changes through the AdminQ.
261 */
ice_vsi_sync_fltr(struct ice_vsi * vsi)262 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
263 {
264 struct device *dev = ice_pf_to_dev(vsi->back);
265 struct net_device *netdev = vsi->netdev;
266 bool promisc_forced_on = false;
267 struct ice_pf *pf = vsi->back;
268 struct ice_hw *hw = &pf->hw;
269 enum ice_status status = 0;
270 u32 changed_flags = 0;
271 u8 promisc_m;
272 int err = 0;
273
274 if (!vsi->netdev)
275 return -EINVAL;
276
277 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
278 usleep_range(1000, 2000);
279
280 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
281 vsi->current_netdev_flags = vsi->netdev->flags;
282
283 INIT_LIST_HEAD(&vsi->tmp_sync_list);
284 INIT_LIST_HEAD(&vsi->tmp_unsync_list);
285
286 if (ice_vsi_fltr_changed(vsi)) {
287 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
288 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
289 clear_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
290
291 /* grab the netdev's addr_list_lock */
292 netif_addr_lock_bh(netdev);
293 __dev_uc_sync(netdev, ice_add_mac_to_sync_list,
294 ice_add_mac_to_unsync_list);
295 __dev_mc_sync(netdev, ice_add_mac_to_sync_list,
296 ice_add_mac_to_unsync_list);
297 /* our temp lists are populated. release lock */
298 netif_addr_unlock_bh(netdev);
299 }
300
301 /* Remove MAC addresses in the unsync list */
302 status = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
303 ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
304 if (status) {
305 netdev_err(netdev, "Failed to delete MAC filters\n");
306 /* if we failed because of alloc failures, just bail */
307 if (status == ICE_ERR_NO_MEMORY) {
308 err = -ENOMEM;
309 goto out;
310 }
311 }
312
313 /* Add MAC addresses in the sync list */
314 status = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
315 ice_fltr_free_list(dev, &vsi->tmp_sync_list);
316 /* If filter is added successfully or already exists, do not go into
317 * 'if' condition and report it as error. Instead continue processing
318 * rest of the function.
319 */
320 if (status && status != ICE_ERR_ALREADY_EXISTS) {
321 netdev_err(netdev, "Failed to add MAC filters\n");
322 /* If there is no more space for new umac filters, VSI
323 * should go into promiscuous mode. There should be some
324 * space reserved for promiscuous filters.
325 */
326 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
327 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
328 vsi->state)) {
329 promisc_forced_on = true;
330 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
331 vsi->vsi_num);
332 } else {
333 err = -EIO;
334 goto out;
335 }
336 }
337 /* check for changes in promiscuous modes */
338 if (changed_flags & IFF_ALLMULTI) {
339 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
340 if (vsi->num_vlan > 1)
341 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
342 else
343 promisc_m = ICE_MCAST_PROMISC_BITS;
344
345 err = ice_cfg_promisc(vsi, promisc_m, true);
346 if (err) {
347 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n",
348 vsi->vsi_num);
349 vsi->current_netdev_flags &= ~IFF_ALLMULTI;
350 goto out_promisc;
351 }
352 } else {
353 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
354 if (vsi->num_vlan > 1)
355 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
356 else
357 promisc_m = ICE_MCAST_PROMISC_BITS;
358
359 err = ice_cfg_promisc(vsi, promisc_m, false);
360 if (err) {
361 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n",
362 vsi->vsi_num);
363 vsi->current_netdev_flags |= IFF_ALLMULTI;
364 goto out_promisc;
365 }
366 }
367 }
368
369 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
370 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
371 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
372 if (vsi->current_netdev_flags & IFF_PROMISC) {
373 /* Apply Rx filter rule to get traffic from wire */
374 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) {
375 err = ice_set_dflt_vsi(pf->first_sw, vsi);
376 if (err && err != -EEXIST) {
377 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
378 err, vsi->vsi_num);
379 vsi->current_netdev_flags &=
380 ~IFF_PROMISC;
381 goto out_promisc;
382 }
383 ice_cfg_vlan_pruning(vsi, false, false);
384 }
385 } else {
386 /* Clear Rx filter to remove traffic from wire */
387 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) {
388 err = ice_clear_dflt_vsi(pf->first_sw);
389 if (err) {
390 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
391 err, vsi->vsi_num);
392 vsi->current_netdev_flags |=
393 IFF_PROMISC;
394 goto out_promisc;
395 }
396 if (vsi->num_vlan > 1)
397 ice_cfg_vlan_pruning(vsi, true, false);
398 }
399 }
400 }
401 goto exit;
402
403 out_promisc:
404 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
405 goto exit;
406 out:
407 /* if something went wrong then set the changed flag so we try again */
408 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
409 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
410 exit:
411 clear_bit(ICE_CFG_BUSY, vsi->state);
412 return err;
413 }
414
415 /**
416 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
417 * @pf: board private structure
418 */
ice_sync_fltr_subtask(struct ice_pf * pf)419 static void ice_sync_fltr_subtask(struct ice_pf *pf)
420 {
421 int v;
422
423 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
424 return;
425
426 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
427
428 ice_for_each_vsi(pf, v)
429 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
430 ice_vsi_sync_fltr(pf->vsi[v])) {
431 /* come back and try again later */
432 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
433 break;
434 }
435 }
436
437 /**
438 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
439 * @pf: the PF
440 * @locked: is the rtnl_lock already held
441 */
ice_pf_dis_all_vsi(struct ice_pf * pf,bool locked)442 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
443 {
444 int node;
445 int v;
446
447 ice_for_each_vsi(pf, v)
448 if (pf->vsi[v])
449 ice_dis_vsi(pf->vsi[v], locked);
450
451 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
452 pf->pf_agg_node[node].num_vsis = 0;
453
454 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
455 pf->vf_agg_node[node].num_vsis = 0;
456 }
457
458 /**
459 * ice_prepare_for_reset - prep for the core to reset
460 * @pf: board private structure
461 *
462 * Inform or close all dependent features in prep for reset.
463 */
464 static void
ice_prepare_for_reset(struct ice_pf * pf)465 ice_prepare_for_reset(struct ice_pf *pf)
466 {
467 struct ice_hw *hw = &pf->hw;
468 unsigned int i;
469
470 /* already prepared for reset */
471 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
472 return;
473
474 ice_unplug_aux_dev(pf);
475
476 /* Notify VFs of impending reset */
477 if (ice_check_sq_alive(hw, &hw->mailboxq))
478 ice_vc_notify_reset(pf);
479
480 /* Disable VFs until reset is completed */
481 ice_for_each_vf(pf, i)
482 ice_set_vf_state_qs_dis(&pf->vf[i]);
483
484 /* clear SW filtering DB */
485 ice_clear_hw_tbls(hw);
486 /* disable the VSIs and their queues that are not already DOWN */
487 ice_pf_dis_all_vsi(pf, false);
488
489 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
490 ice_ptp_release(pf);
491
492 if (hw->port_info)
493 ice_sched_clear_port(hw->port_info);
494
495 ice_shutdown_all_ctrlq(hw);
496
497 set_bit(ICE_PREPARED_FOR_RESET, pf->state);
498 }
499
500 /**
501 * ice_do_reset - Initiate one of many types of resets
502 * @pf: board private structure
503 * @reset_type: reset type requested
504 * before this function was called.
505 */
ice_do_reset(struct ice_pf * pf,enum ice_reset_req reset_type)506 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
507 {
508 struct device *dev = ice_pf_to_dev(pf);
509 struct ice_hw *hw = &pf->hw;
510
511 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
512
513 ice_prepare_for_reset(pf);
514
515 /* trigger the reset */
516 if (ice_reset(hw, reset_type)) {
517 dev_err(dev, "reset %d failed\n", reset_type);
518 set_bit(ICE_RESET_FAILED, pf->state);
519 clear_bit(ICE_RESET_OICR_RECV, pf->state);
520 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
521 clear_bit(ICE_PFR_REQ, pf->state);
522 clear_bit(ICE_CORER_REQ, pf->state);
523 clear_bit(ICE_GLOBR_REQ, pf->state);
524 wake_up(&pf->reset_wait_queue);
525 return;
526 }
527
528 /* PFR is a bit of a special case because it doesn't result in an OICR
529 * interrupt. So for PFR, rebuild after the reset and clear the reset-
530 * associated state bits.
531 */
532 if (reset_type == ICE_RESET_PFR) {
533 pf->pfr_count++;
534 ice_rebuild(pf, reset_type);
535 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
536 clear_bit(ICE_PFR_REQ, pf->state);
537 wake_up(&pf->reset_wait_queue);
538 ice_reset_all_vfs(pf, true);
539 }
540 }
541
542 /**
543 * ice_reset_subtask - Set up for resetting the device and driver
544 * @pf: board private structure
545 */
ice_reset_subtask(struct ice_pf * pf)546 static void ice_reset_subtask(struct ice_pf *pf)
547 {
548 enum ice_reset_req reset_type = ICE_RESET_INVAL;
549
550 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
551 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
552 * of reset is pending and sets bits in pf->state indicating the reset
553 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
554 * prepare for pending reset if not already (for PF software-initiated
555 * global resets the software should already be prepared for it as
556 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
557 * by firmware or software on other PFs, that bit is not set so prepare
558 * for the reset now), poll for reset done, rebuild and return.
559 */
560 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
561 /* Perform the largest reset requested */
562 if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
563 reset_type = ICE_RESET_CORER;
564 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
565 reset_type = ICE_RESET_GLOBR;
566 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
567 reset_type = ICE_RESET_EMPR;
568 /* return if no valid reset type requested */
569 if (reset_type == ICE_RESET_INVAL)
570 return;
571 ice_prepare_for_reset(pf);
572
573 /* make sure we are ready to rebuild */
574 if (ice_check_reset(&pf->hw)) {
575 set_bit(ICE_RESET_FAILED, pf->state);
576 } else {
577 /* done with reset. start rebuild */
578 pf->hw.reset_ongoing = false;
579 ice_rebuild(pf, reset_type);
580 /* clear bit to resume normal operations, but
581 * ICE_NEEDS_RESTART bit is set in case rebuild failed
582 */
583 clear_bit(ICE_RESET_OICR_RECV, pf->state);
584 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
585 clear_bit(ICE_PFR_REQ, pf->state);
586 clear_bit(ICE_CORER_REQ, pf->state);
587 clear_bit(ICE_GLOBR_REQ, pf->state);
588 wake_up(&pf->reset_wait_queue);
589 ice_reset_all_vfs(pf, true);
590 }
591
592 return;
593 }
594
595 /* No pending resets to finish processing. Check for new resets */
596 if (test_bit(ICE_PFR_REQ, pf->state))
597 reset_type = ICE_RESET_PFR;
598 if (test_bit(ICE_CORER_REQ, pf->state))
599 reset_type = ICE_RESET_CORER;
600 if (test_bit(ICE_GLOBR_REQ, pf->state))
601 reset_type = ICE_RESET_GLOBR;
602 /* If no valid reset type requested just return */
603 if (reset_type == ICE_RESET_INVAL)
604 return;
605
606 /* reset if not already down or busy */
607 if (!test_bit(ICE_DOWN, pf->state) &&
608 !test_bit(ICE_CFG_BUSY, pf->state)) {
609 ice_do_reset(pf, reset_type);
610 }
611 }
612
613 /**
614 * ice_print_topo_conflict - print topology conflict message
615 * @vsi: the VSI whose topology status is being checked
616 */
ice_print_topo_conflict(struct ice_vsi * vsi)617 static void ice_print_topo_conflict(struct ice_vsi *vsi)
618 {
619 switch (vsi->port_info->phy.link_info.topo_media_conflict) {
620 case ICE_AQ_LINK_TOPO_CONFLICT:
621 case ICE_AQ_LINK_MEDIA_CONFLICT:
622 case ICE_AQ_LINK_TOPO_UNREACH_PRT:
623 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
624 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
625 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
626 break;
627 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
628 netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
629 break;
630 default:
631 break;
632 }
633 }
634
635 /**
636 * ice_print_link_msg - print link up or down message
637 * @vsi: the VSI whose link status is being queried
638 * @isup: boolean for if the link is now up or down
639 */
ice_print_link_msg(struct ice_vsi * vsi,bool isup)640 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
641 {
642 struct ice_aqc_get_phy_caps_data *caps;
643 const char *an_advertised;
644 enum ice_status status;
645 const char *fec_req;
646 const char *speed;
647 const char *fec;
648 const char *fc;
649 const char *an;
650
651 if (!vsi)
652 return;
653
654 if (vsi->current_isup == isup)
655 return;
656
657 vsi->current_isup = isup;
658
659 if (!isup) {
660 netdev_info(vsi->netdev, "NIC Link is Down\n");
661 return;
662 }
663
664 switch (vsi->port_info->phy.link_info.link_speed) {
665 case ICE_AQ_LINK_SPEED_100GB:
666 speed = "100 G";
667 break;
668 case ICE_AQ_LINK_SPEED_50GB:
669 speed = "50 G";
670 break;
671 case ICE_AQ_LINK_SPEED_40GB:
672 speed = "40 G";
673 break;
674 case ICE_AQ_LINK_SPEED_25GB:
675 speed = "25 G";
676 break;
677 case ICE_AQ_LINK_SPEED_20GB:
678 speed = "20 G";
679 break;
680 case ICE_AQ_LINK_SPEED_10GB:
681 speed = "10 G";
682 break;
683 case ICE_AQ_LINK_SPEED_5GB:
684 speed = "5 G";
685 break;
686 case ICE_AQ_LINK_SPEED_2500MB:
687 speed = "2.5 G";
688 break;
689 case ICE_AQ_LINK_SPEED_1000MB:
690 speed = "1 G";
691 break;
692 case ICE_AQ_LINK_SPEED_100MB:
693 speed = "100 M";
694 break;
695 default:
696 speed = "Unknown ";
697 break;
698 }
699
700 switch (vsi->port_info->fc.current_mode) {
701 case ICE_FC_FULL:
702 fc = "Rx/Tx";
703 break;
704 case ICE_FC_TX_PAUSE:
705 fc = "Tx";
706 break;
707 case ICE_FC_RX_PAUSE:
708 fc = "Rx";
709 break;
710 case ICE_FC_NONE:
711 fc = "None";
712 break;
713 default:
714 fc = "Unknown";
715 break;
716 }
717
718 /* Get FEC mode based on negotiated link info */
719 switch (vsi->port_info->phy.link_info.fec_info) {
720 case ICE_AQ_LINK_25G_RS_528_FEC_EN:
721 case ICE_AQ_LINK_25G_RS_544_FEC_EN:
722 fec = "RS-FEC";
723 break;
724 case ICE_AQ_LINK_25G_KR_FEC_EN:
725 fec = "FC-FEC/BASE-R";
726 break;
727 default:
728 fec = "NONE";
729 break;
730 }
731
732 /* check if autoneg completed, might be false due to not supported */
733 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
734 an = "True";
735 else
736 an = "False";
737
738 /* Get FEC mode requested based on PHY caps last SW configuration */
739 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
740 if (!caps) {
741 fec_req = "Unknown";
742 an_advertised = "Unknown";
743 goto done;
744 }
745
746 status = ice_aq_get_phy_caps(vsi->port_info, false,
747 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
748 if (status)
749 netdev_info(vsi->netdev, "Get phy capability failed.\n");
750
751 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
752
753 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
754 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
755 fec_req = "RS-FEC";
756 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
757 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
758 fec_req = "FC-FEC/BASE-R";
759 else
760 fec_req = "NONE";
761
762 kfree(caps);
763
764 done:
765 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
766 speed, fec_req, fec, an_advertised, an, fc);
767 ice_print_topo_conflict(vsi);
768 }
769
770 /**
771 * ice_vsi_link_event - update the VSI's netdev
772 * @vsi: the VSI on which the link event occurred
773 * @link_up: whether or not the VSI needs to be set up or down
774 */
ice_vsi_link_event(struct ice_vsi * vsi,bool link_up)775 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
776 {
777 if (!vsi)
778 return;
779
780 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
781 return;
782
783 if (vsi->type == ICE_VSI_PF) {
784 if (link_up == netif_carrier_ok(vsi->netdev))
785 return;
786
787 if (link_up) {
788 netif_carrier_on(vsi->netdev);
789 netif_tx_wake_all_queues(vsi->netdev);
790 } else {
791 netif_carrier_off(vsi->netdev);
792 netif_tx_stop_all_queues(vsi->netdev);
793 }
794 }
795 }
796
797 /**
798 * ice_set_dflt_mib - send a default config MIB to the FW
799 * @pf: private PF struct
800 *
801 * This function sends a default configuration MIB to the FW.
802 *
803 * If this function errors out at any point, the driver is still able to
804 * function. The main impact is that LFC may not operate as expected.
805 * Therefore an error state in this function should be treated with a DBG
806 * message and continue on with driver rebuild/reenable.
807 */
ice_set_dflt_mib(struct ice_pf * pf)808 static void ice_set_dflt_mib(struct ice_pf *pf)
809 {
810 struct device *dev = ice_pf_to_dev(pf);
811 u8 mib_type, *buf, *lldpmib = NULL;
812 u16 len, typelen, offset = 0;
813 struct ice_lldp_org_tlv *tlv;
814 struct ice_hw *hw = &pf->hw;
815 u32 ouisubtype;
816
817 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
818 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
819 if (!lldpmib) {
820 dev_dbg(dev, "%s Failed to allocate MIB memory\n",
821 __func__);
822 return;
823 }
824
825 /* Add ETS CFG TLV */
826 tlv = (struct ice_lldp_org_tlv *)lldpmib;
827 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
828 ICE_IEEE_ETS_TLV_LEN);
829 tlv->typelen = htons(typelen);
830 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
831 ICE_IEEE_SUBTYPE_ETS_CFG);
832 tlv->ouisubtype = htonl(ouisubtype);
833
834 buf = tlv->tlvinfo;
835 buf[0] = 0;
836
837 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
838 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
839 * Octets 13 - 20 are TSA values - leave as zeros
840 */
841 buf[5] = 0x64;
842 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
843 offset += len + 2;
844 tlv = (struct ice_lldp_org_tlv *)
845 ((char *)tlv + sizeof(tlv->typelen) + len);
846
847 /* Add ETS REC TLV */
848 buf = tlv->tlvinfo;
849 tlv->typelen = htons(typelen);
850
851 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
852 ICE_IEEE_SUBTYPE_ETS_REC);
853 tlv->ouisubtype = htonl(ouisubtype);
854
855 /* First octet of buf is reserved
856 * Octets 1 - 4 map UP to TC - all UPs map to zero
857 * Octets 5 - 12 are BW values - set TC 0 to 100%.
858 * Octets 13 - 20 are TSA value - leave as zeros
859 */
860 buf[5] = 0x64;
861 offset += len + 2;
862 tlv = (struct ice_lldp_org_tlv *)
863 ((char *)tlv + sizeof(tlv->typelen) + len);
864
865 /* Add PFC CFG TLV */
866 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
867 ICE_IEEE_PFC_TLV_LEN);
868 tlv->typelen = htons(typelen);
869
870 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
871 ICE_IEEE_SUBTYPE_PFC_CFG);
872 tlv->ouisubtype = htonl(ouisubtype);
873
874 /* Octet 1 left as all zeros - PFC disabled */
875 buf[0] = 0x08;
876 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
877 offset += len + 2;
878
879 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
880 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
881
882 kfree(lldpmib);
883 }
884
885 /**
886 * ice_check_module_power
887 * @pf: pointer to PF struct
888 * @link_cfg_err: bitmap from the link info structure
889 *
890 * check module power level returned by a previous call to aq_get_link_info
891 * and print error messages if module power level is not supported
892 */
ice_check_module_power(struct ice_pf * pf,u8 link_cfg_err)893 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
894 {
895 /* if module power level is supported, clear the flag */
896 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
897 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
898 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
899 return;
900 }
901
902 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
903 * above block didn't clear this bit, there's nothing to do
904 */
905 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
906 return;
907
908 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
909 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
910 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
911 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
912 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
913 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
914 }
915 }
916
917 /**
918 * ice_link_event - process the link event
919 * @pf: PF that the link event is associated with
920 * @pi: port_info for the port that the link event is associated with
921 * @link_up: true if the physical link is up and false if it is down
922 * @link_speed: current link speed received from the link event
923 *
924 * Returns 0 on success and negative on failure
925 */
926 static int
ice_link_event(struct ice_pf * pf,struct ice_port_info * pi,bool link_up,u16 link_speed)927 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
928 u16 link_speed)
929 {
930 struct device *dev = ice_pf_to_dev(pf);
931 struct ice_phy_info *phy_info;
932 enum ice_status status;
933 struct ice_vsi *vsi;
934 u16 old_link_speed;
935 bool old_link;
936
937 phy_info = &pi->phy;
938 phy_info->link_info_old = phy_info->link_info;
939
940 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
941 old_link_speed = phy_info->link_info_old.link_speed;
942
943 /* update the link info structures and re-enable link events,
944 * don't bail on failure due to other book keeping needed
945 */
946 status = ice_update_link_info(pi);
947 if (status)
948 dev_dbg(dev, "Failed to update link status on port %d, err %s aq_err %s\n",
949 pi->lport, ice_stat_str(status),
950 ice_aq_str(pi->hw->adminq.sq_last_status));
951
952 ice_check_module_power(pf, pi->phy.link_info.link_cfg_err);
953
954 /* Check if the link state is up after updating link info, and treat
955 * this event as an UP event since the link is actually UP now.
956 */
957 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
958 link_up = true;
959
960 vsi = ice_get_main_vsi(pf);
961 if (!vsi || !vsi->port_info)
962 return -EINVAL;
963
964 /* turn off PHY if media was removed */
965 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
966 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
967 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
968 ice_set_link(vsi, false);
969 }
970
971 /* if the old link up/down and speed is the same as the new */
972 if (link_up == old_link && link_speed == old_link_speed)
973 return 0;
974
975 if (ice_is_dcb_active(pf)) {
976 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
977 ice_dcb_rebuild(pf);
978 } else {
979 if (link_up)
980 ice_set_dflt_mib(pf);
981 }
982 ice_vsi_link_event(vsi, link_up);
983 ice_print_link_msg(vsi, link_up);
984
985 ice_vc_notify_link_state(pf);
986
987 return 0;
988 }
989
990 /**
991 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
992 * @pf: board private structure
993 */
ice_watchdog_subtask(struct ice_pf * pf)994 static void ice_watchdog_subtask(struct ice_pf *pf)
995 {
996 int i;
997
998 /* if interface is down do nothing */
999 if (test_bit(ICE_DOWN, pf->state) ||
1000 test_bit(ICE_CFG_BUSY, pf->state))
1001 return;
1002
1003 /* make sure we don't do these things too often */
1004 if (time_before(jiffies,
1005 pf->serv_tmr_prev + pf->serv_tmr_period))
1006 return;
1007
1008 pf->serv_tmr_prev = jiffies;
1009
1010 /* Update the stats for active netdevs so the network stack
1011 * can look at updated numbers whenever it cares to
1012 */
1013 ice_update_pf_stats(pf);
1014 ice_for_each_vsi(pf, i)
1015 if (pf->vsi[i] && pf->vsi[i]->netdev)
1016 ice_update_vsi_stats(pf->vsi[i]);
1017 }
1018
1019 /**
1020 * ice_init_link_events - enable/initialize link events
1021 * @pi: pointer to the port_info instance
1022 *
1023 * Returns -EIO on failure, 0 on success
1024 */
ice_init_link_events(struct ice_port_info * pi)1025 static int ice_init_link_events(struct ice_port_info *pi)
1026 {
1027 u16 mask;
1028
1029 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1030 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
1031
1032 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1033 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1034 pi->lport);
1035 return -EIO;
1036 }
1037
1038 if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1039 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1040 pi->lport);
1041 return -EIO;
1042 }
1043
1044 return 0;
1045 }
1046
1047 /**
1048 * ice_handle_link_event - handle link event via ARQ
1049 * @pf: PF that the link event is associated with
1050 * @event: event structure containing link status info
1051 */
1052 static int
ice_handle_link_event(struct ice_pf * pf,struct ice_rq_event_info * event)1053 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1054 {
1055 struct ice_aqc_get_link_status_data *link_data;
1056 struct ice_port_info *port_info;
1057 int status;
1058
1059 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1060 port_info = pf->hw.port_info;
1061 if (!port_info)
1062 return -EINVAL;
1063
1064 status = ice_link_event(pf, port_info,
1065 !!(link_data->link_info & ICE_AQ_LINK_UP),
1066 le16_to_cpu(link_data->link_speed));
1067 if (status)
1068 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1069 status);
1070
1071 return status;
1072 }
1073
1074 enum ice_aq_task_state {
1075 ICE_AQ_TASK_WAITING = 0,
1076 ICE_AQ_TASK_COMPLETE,
1077 ICE_AQ_TASK_CANCELED,
1078 };
1079
1080 struct ice_aq_task {
1081 struct hlist_node entry;
1082
1083 u16 opcode;
1084 struct ice_rq_event_info *event;
1085 enum ice_aq_task_state state;
1086 };
1087
1088 /**
1089 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1090 * @pf: pointer to the PF private structure
1091 * @opcode: the opcode to wait for
1092 * @timeout: how long to wait, in jiffies
1093 * @event: storage for the event info
1094 *
1095 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1096 * current thread will be put to sleep until the specified event occurs or
1097 * until the given timeout is reached.
1098 *
1099 * To obtain only the descriptor contents, pass an event without an allocated
1100 * msg_buf. If the complete data buffer is desired, allocate the
1101 * event->msg_buf with enough space ahead of time.
1102 *
1103 * Returns: zero on success, or a negative error code on failure.
1104 */
ice_aq_wait_for_event(struct ice_pf * pf,u16 opcode,unsigned long timeout,struct ice_rq_event_info * event)1105 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout,
1106 struct ice_rq_event_info *event)
1107 {
1108 struct device *dev = ice_pf_to_dev(pf);
1109 struct ice_aq_task *task;
1110 unsigned long start;
1111 long ret;
1112 int err;
1113
1114 task = kzalloc(sizeof(*task), GFP_KERNEL);
1115 if (!task)
1116 return -ENOMEM;
1117
1118 INIT_HLIST_NODE(&task->entry);
1119 task->opcode = opcode;
1120 task->event = event;
1121 task->state = ICE_AQ_TASK_WAITING;
1122
1123 spin_lock_bh(&pf->aq_wait_lock);
1124 hlist_add_head(&task->entry, &pf->aq_wait_list);
1125 spin_unlock_bh(&pf->aq_wait_lock);
1126
1127 start = jiffies;
1128
1129 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state,
1130 timeout);
1131 switch (task->state) {
1132 case ICE_AQ_TASK_WAITING:
1133 err = ret < 0 ? ret : -ETIMEDOUT;
1134 break;
1135 case ICE_AQ_TASK_CANCELED:
1136 err = ret < 0 ? ret : -ECANCELED;
1137 break;
1138 case ICE_AQ_TASK_COMPLETE:
1139 err = ret < 0 ? ret : 0;
1140 break;
1141 default:
1142 WARN(1, "Unexpected AdminQ wait task state %u", task->state);
1143 err = -EINVAL;
1144 break;
1145 }
1146
1147 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1148 jiffies_to_msecs(jiffies - start),
1149 jiffies_to_msecs(timeout),
1150 opcode);
1151
1152 spin_lock_bh(&pf->aq_wait_lock);
1153 hlist_del(&task->entry);
1154 spin_unlock_bh(&pf->aq_wait_lock);
1155 kfree(task);
1156
1157 return err;
1158 }
1159
1160 /**
1161 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1162 * @pf: pointer to the PF private structure
1163 * @opcode: the opcode of the event
1164 * @event: the event to check
1165 *
1166 * Loops over the current list of pending threads waiting for an AdminQ event.
1167 * For each matching task, copy the contents of the event into the task
1168 * structure and wake up the thread.
1169 *
1170 * If multiple threads wait for the same opcode, they will all be woken up.
1171 *
1172 * Note that event->msg_buf will only be duplicated if the event has a buffer
1173 * with enough space already allocated. Otherwise, only the descriptor and
1174 * message length will be copied.
1175 *
1176 * Returns: true if an event was found, false otherwise
1177 */
ice_aq_check_events(struct ice_pf * pf,u16 opcode,struct ice_rq_event_info * event)1178 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1179 struct ice_rq_event_info *event)
1180 {
1181 struct ice_rq_event_info *task_ev;
1182 struct ice_aq_task *task;
1183 bool found = false;
1184
1185 spin_lock_bh(&pf->aq_wait_lock);
1186 hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1187 if (task->state || task->opcode != opcode)
1188 continue;
1189
1190 task_ev = task->event;
1191 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc));
1192 task_ev->msg_len = event->msg_len;
1193
1194 /* Only copy the data buffer if a destination was set */
1195 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) {
1196 memcpy(task_ev->msg_buf, event->msg_buf,
1197 event->buf_len);
1198 task_ev->buf_len = event->buf_len;
1199 }
1200
1201 task->state = ICE_AQ_TASK_COMPLETE;
1202 found = true;
1203 }
1204 spin_unlock_bh(&pf->aq_wait_lock);
1205
1206 if (found)
1207 wake_up(&pf->aq_wait_queue);
1208 }
1209
1210 /**
1211 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1212 * @pf: the PF private structure
1213 *
1214 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1215 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1216 */
ice_aq_cancel_waiting_tasks(struct ice_pf * pf)1217 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1218 {
1219 struct ice_aq_task *task;
1220
1221 spin_lock_bh(&pf->aq_wait_lock);
1222 hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1223 task->state = ICE_AQ_TASK_CANCELED;
1224 spin_unlock_bh(&pf->aq_wait_lock);
1225
1226 wake_up(&pf->aq_wait_queue);
1227 }
1228
1229 /**
1230 * __ice_clean_ctrlq - helper function to clean controlq rings
1231 * @pf: ptr to struct ice_pf
1232 * @q_type: specific Control queue type
1233 */
__ice_clean_ctrlq(struct ice_pf * pf,enum ice_ctl_q q_type)1234 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1235 {
1236 struct device *dev = ice_pf_to_dev(pf);
1237 struct ice_rq_event_info event;
1238 struct ice_hw *hw = &pf->hw;
1239 struct ice_ctl_q_info *cq;
1240 u16 pending, i = 0;
1241 const char *qtype;
1242 u32 oldval, val;
1243
1244 /* Do not clean control queue if/when PF reset fails */
1245 if (test_bit(ICE_RESET_FAILED, pf->state))
1246 return 0;
1247
1248 switch (q_type) {
1249 case ICE_CTL_Q_ADMIN:
1250 cq = &hw->adminq;
1251 qtype = "Admin";
1252 break;
1253 case ICE_CTL_Q_SB:
1254 cq = &hw->sbq;
1255 qtype = "Sideband";
1256 break;
1257 case ICE_CTL_Q_MAILBOX:
1258 cq = &hw->mailboxq;
1259 qtype = "Mailbox";
1260 /* we are going to try to detect a malicious VF, so set the
1261 * state to begin detection
1262 */
1263 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1264 break;
1265 default:
1266 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1267 return 0;
1268 }
1269
1270 /* check for error indications - PF_xx_AxQLEN register layout for
1271 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1272 */
1273 val = rd32(hw, cq->rq.len);
1274 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1275 PF_FW_ARQLEN_ARQCRIT_M)) {
1276 oldval = val;
1277 if (val & PF_FW_ARQLEN_ARQVFE_M)
1278 dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1279 qtype);
1280 if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1281 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1282 qtype);
1283 }
1284 if (val & PF_FW_ARQLEN_ARQCRIT_M)
1285 dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1286 qtype);
1287 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1288 PF_FW_ARQLEN_ARQCRIT_M);
1289 if (oldval != val)
1290 wr32(hw, cq->rq.len, val);
1291 }
1292
1293 val = rd32(hw, cq->sq.len);
1294 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1295 PF_FW_ATQLEN_ATQCRIT_M)) {
1296 oldval = val;
1297 if (val & PF_FW_ATQLEN_ATQVFE_M)
1298 dev_dbg(dev, "%s Send Queue VF Error detected\n",
1299 qtype);
1300 if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1301 dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1302 qtype);
1303 }
1304 if (val & PF_FW_ATQLEN_ATQCRIT_M)
1305 dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1306 qtype);
1307 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1308 PF_FW_ATQLEN_ATQCRIT_M);
1309 if (oldval != val)
1310 wr32(hw, cq->sq.len, val);
1311 }
1312
1313 event.buf_len = cq->rq_buf_size;
1314 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1315 if (!event.msg_buf)
1316 return 0;
1317
1318 do {
1319 enum ice_status ret;
1320 u16 opcode;
1321
1322 ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1323 if (ret == ICE_ERR_AQ_NO_WORK)
1324 break;
1325 if (ret) {
1326 dev_err(dev, "%s Receive Queue event error %s\n", qtype,
1327 ice_stat_str(ret));
1328 break;
1329 }
1330
1331 opcode = le16_to_cpu(event.desc.opcode);
1332
1333 /* Notify any thread that might be waiting for this event */
1334 ice_aq_check_events(pf, opcode, &event);
1335
1336 switch (opcode) {
1337 case ice_aqc_opc_get_link_status:
1338 if (ice_handle_link_event(pf, &event))
1339 dev_err(dev, "Could not handle link event\n");
1340 break;
1341 case ice_aqc_opc_event_lan_overflow:
1342 ice_vf_lan_overflow_event(pf, &event);
1343 break;
1344 case ice_mbx_opc_send_msg_to_pf:
1345 if (!ice_is_malicious_vf(pf, &event, i, pending))
1346 ice_vc_process_vf_msg(pf, &event);
1347 break;
1348 case ice_aqc_opc_fw_logging:
1349 ice_output_fw_log(hw, &event.desc, event.msg_buf);
1350 break;
1351 case ice_aqc_opc_lldp_set_mib_change:
1352 ice_dcb_process_lldp_set_mib_change(pf, &event);
1353 break;
1354 default:
1355 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1356 qtype, opcode);
1357 break;
1358 }
1359 } while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1360
1361 kfree(event.msg_buf);
1362
1363 return pending && (i == ICE_DFLT_IRQ_WORK);
1364 }
1365
1366 /**
1367 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1368 * @hw: pointer to hardware info
1369 * @cq: control queue information
1370 *
1371 * returns true if there are pending messages in a queue, false if there aren't
1372 */
ice_ctrlq_pending(struct ice_hw * hw,struct ice_ctl_q_info * cq)1373 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1374 {
1375 u16 ntu;
1376
1377 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1378 return cq->rq.next_to_clean != ntu;
1379 }
1380
1381 /**
1382 * ice_clean_adminq_subtask - clean the AdminQ rings
1383 * @pf: board private structure
1384 */
ice_clean_adminq_subtask(struct ice_pf * pf)1385 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1386 {
1387 struct ice_hw *hw = &pf->hw;
1388
1389 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1390 return;
1391
1392 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1393 return;
1394
1395 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1396
1397 /* There might be a situation where new messages arrive to a control
1398 * queue between processing the last message and clearing the
1399 * EVENT_PENDING bit. So before exiting, check queue head again (using
1400 * ice_ctrlq_pending) and process new messages if any.
1401 */
1402 if (ice_ctrlq_pending(hw, &hw->adminq))
1403 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1404
1405 ice_flush(hw);
1406 }
1407
1408 /**
1409 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1410 * @pf: board private structure
1411 */
ice_clean_mailboxq_subtask(struct ice_pf * pf)1412 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1413 {
1414 struct ice_hw *hw = &pf->hw;
1415
1416 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1417 return;
1418
1419 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1420 return;
1421
1422 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1423
1424 if (ice_ctrlq_pending(hw, &hw->mailboxq))
1425 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1426
1427 ice_flush(hw);
1428 }
1429
1430 /**
1431 * ice_clean_sbq_subtask - clean the Sideband Queue rings
1432 * @pf: board private structure
1433 */
ice_clean_sbq_subtask(struct ice_pf * pf)1434 static void ice_clean_sbq_subtask(struct ice_pf *pf)
1435 {
1436 struct ice_hw *hw = &pf->hw;
1437
1438 /* Nothing to do here if sideband queue is not supported */
1439 if (!ice_is_sbq_supported(hw)) {
1440 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1441 return;
1442 }
1443
1444 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1445 return;
1446
1447 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1448 return;
1449
1450 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1451
1452 if (ice_ctrlq_pending(hw, &hw->sbq))
1453 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1454
1455 ice_flush(hw);
1456 }
1457
1458 /**
1459 * ice_service_task_schedule - schedule the service task to wake up
1460 * @pf: board private structure
1461 *
1462 * If not already scheduled, this puts the task into the work queue.
1463 */
ice_service_task_schedule(struct ice_pf * pf)1464 void ice_service_task_schedule(struct ice_pf *pf)
1465 {
1466 if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1467 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1468 !test_bit(ICE_NEEDS_RESTART, pf->state))
1469 queue_work(ice_wq, &pf->serv_task);
1470 }
1471
1472 /**
1473 * ice_service_task_complete - finish up the service task
1474 * @pf: board private structure
1475 */
ice_service_task_complete(struct ice_pf * pf)1476 static void ice_service_task_complete(struct ice_pf *pf)
1477 {
1478 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1479
1480 /* force memory (pf->state) to sync before next service task */
1481 smp_mb__before_atomic();
1482 clear_bit(ICE_SERVICE_SCHED, pf->state);
1483 }
1484
1485 /**
1486 * ice_service_task_stop - stop service task and cancel works
1487 * @pf: board private structure
1488 *
1489 * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1490 * 1 otherwise.
1491 */
ice_service_task_stop(struct ice_pf * pf)1492 static int ice_service_task_stop(struct ice_pf *pf)
1493 {
1494 int ret;
1495
1496 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1497
1498 if (pf->serv_tmr.function)
1499 del_timer_sync(&pf->serv_tmr);
1500 if (pf->serv_task.func)
1501 cancel_work_sync(&pf->serv_task);
1502
1503 clear_bit(ICE_SERVICE_SCHED, pf->state);
1504 return ret;
1505 }
1506
1507 /**
1508 * ice_service_task_restart - restart service task and schedule works
1509 * @pf: board private structure
1510 *
1511 * This function is needed for suspend and resume works (e.g WoL scenario)
1512 */
ice_service_task_restart(struct ice_pf * pf)1513 static void ice_service_task_restart(struct ice_pf *pf)
1514 {
1515 clear_bit(ICE_SERVICE_DIS, pf->state);
1516 ice_service_task_schedule(pf);
1517 }
1518
1519 /**
1520 * ice_service_timer - timer callback to schedule service task
1521 * @t: pointer to timer_list
1522 */
ice_service_timer(struct timer_list * t)1523 static void ice_service_timer(struct timer_list *t)
1524 {
1525 struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1526
1527 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1528 ice_service_task_schedule(pf);
1529 }
1530
1531 /**
1532 * ice_handle_mdd_event - handle malicious driver detect event
1533 * @pf: pointer to the PF structure
1534 *
1535 * Called from service task. OICR interrupt handler indicates MDD event.
1536 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1537 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1538 * disable the queue, the PF can be configured to reset the VF using ethtool
1539 * private flag mdd-auto-reset-vf.
1540 */
ice_handle_mdd_event(struct ice_pf * pf)1541 static void ice_handle_mdd_event(struct ice_pf *pf)
1542 {
1543 struct device *dev = ice_pf_to_dev(pf);
1544 struct ice_hw *hw = &pf->hw;
1545 unsigned int i;
1546 u32 reg;
1547
1548 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1549 /* Since the VF MDD event logging is rate limited, check if
1550 * there are pending MDD events.
1551 */
1552 ice_print_vfs_mdd_events(pf);
1553 return;
1554 }
1555
1556 /* find what triggered an MDD event */
1557 reg = rd32(hw, GL_MDET_TX_PQM);
1558 if (reg & GL_MDET_TX_PQM_VALID_M) {
1559 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1560 GL_MDET_TX_PQM_PF_NUM_S;
1561 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1562 GL_MDET_TX_PQM_VF_NUM_S;
1563 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1564 GL_MDET_TX_PQM_MAL_TYPE_S;
1565 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1566 GL_MDET_TX_PQM_QNUM_S);
1567
1568 if (netif_msg_tx_err(pf))
1569 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1570 event, queue, pf_num, vf_num);
1571 wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1572 }
1573
1574 reg = rd32(hw, GL_MDET_TX_TCLAN);
1575 if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1576 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1577 GL_MDET_TX_TCLAN_PF_NUM_S;
1578 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1579 GL_MDET_TX_TCLAN_VF_NUM_S;
1580 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1581 GL_MDET_TX_TCLAN_MAL_TYPE_S;
1582 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1583 GL_MDET_TX_TCLAN_QNUM_S);
1584
1585 if (netif_msg_tx_err(pf))
1586 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1587 event, queue, pf_num, vf_num);
1588 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1589 }
1590
1591 reg = rd32(hw, GL_MDET_RX);
1592 if (reg & GL_MDET_RX_VALID_M) {
1593 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1594 GL_MDET_RX_PF_NUM_S;
1595 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1596 GL_MDET_RX_VF_NUM_S;
1597 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1598 GL_MDET_RX_MAL_TYPE_S;
1599 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1600 GL_MDET_RX_QNUM_S);
1601
1602 if (netif_msg_rx_err(pf))
1603 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1604 event, queue, pf_num, vf_num);
1605 wr32(hw, GL_MDET_RX, 0xffffffff);
1606 }
1607
1608 /* check to see if this PF caused an MDD event */
1609 reg = rd32(hw, PF_MDET_TX_PQM);
1610 if (reg & PF_MDET_TX_PQM_VALID_M) {
1611 wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1612 if (netif_msg_tx_err(pf))
1613 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1614 }
1615
1616 reg = rd32(hw, PF_MDET_TX_TCLAN);
1617 if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1618 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1619 if (netif_msg_tx_err(pf))
1620 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1621 }
1622
1623 reg = rd32(hw, PF_MDET_RX);
1624 if (reg & PF_MDET_RX_VALID_M) {
1625 wr32(hw, PF_MDET_RX, 0xFFFF);
1626 if (netif_msg_rx_err(pf))
1627 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1628 }
1629
1630 /* Check to see if one of the VFs caused an MDD event, and then
1631 * increment counters and set print pending
1632 */
1633 ice_for_each_vf(pf, i) {
1634 struct ice_vf *vf = &pf->vf[i];
1635
1636 reg = rd32(hw, VP_MDET_TX_PQM(i));
1637 if (reg & VP_MDET_TX_PQM_VALID_M) {
1638 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF);
1639 vf->mdd_tx_events.count++;
1640 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1641 if (netif_msg_tx_err(pf))
1642 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1643 i);
1644 }
1645
1646 reg = rd32(hw, VP_MDET_TX_TCLAN(i));
1647 if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1648 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF);
1649 vf->mdd_tx_events.count++;
1650 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1651 if (netif_msg_tx_err(pf))
1652 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1653 i);
1654 }
1655
1656 reg = rd32(hw, VP_MDET_TX_TDPU(i));
1657 if (reg & VP_MDET_TX_TDPU_VALID_M) {
1658 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF);
1659 vf->mdd_tx_events.count++;
1660 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1661 if (netif_msg_tx_err(pf))
1662 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1663 i);
1664 }
1665
1666 reg = rd32(hw, VP_MDET_RX(i));
1667 if (reg & VP_MDET_RX_VALID_M) {
1668 wr32(hw, VP_MDET_RX(i), 0xFFFF);
1669 vf->mdd_rx_events.count++;
1670 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1671 if (netif_msg_rx_err(pf))
1672 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1673 i);
1674
1675 /* Since the queue is disabled on VF Rx MDD events, the
1676 * PF can be configured to reset the VF through ethtool
1677 * private flag mdd-auto-reset-vf.
1678 */
1679 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1680 /* VF MDD event counters will be cleared by
1681 * reset, so print the event prior to reset.
1682 */
1683 ice_print_vf_rx_mdd_event(vf);
1684 mutex_lock(&pf->vf[i].cfg_lock);
1685 ice_reset_vf(&pf->vf[i], false);
1686 mutex_unlock(&pf->vf[i].cfg_lock);
1687 }
1688 }
1689 }
1690
1691 ice_print_vfs_mdd_events(pf);
1692 }
1693
1694 /**
1695 * ice_force_phys_link_state - Force the physical link state
1696 * @vsi: VSI to force the physical link state to up/down
1697 * @link_up: true/false indicates to set the physical link to up/down
1698 *
1699 * Force the physical link state by getting the current PHY capabilities from
1700 * hardware and setting the PHY config based on the determined capabilities. If
1701 * link changes a link event will be triggered because both the Enable Automatic
1702 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1703 *
1704 * Returns 0 on success, negative on failure
1705 */
ice_force_phys_link_state(struct ice_vsi * vsi,bool link_up)1706 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1707 {
1708 struct ice_aqc_get_phy_caps_data *pcaps;
1709 struct ice_aqc_set_phy_cfg_data *cfg;
1710 struct ice_port_info *pi;
1711 struct device *dev;
1712 int retcode;
1713
1714 if (!vsi || !vsi->port_info || !vsi->back)
1715 return -EINVAL;
1716 if (vsi->type != ICE_VSI_PF)
1717 return 0;
1718
1719 dev = ice_pf_to_dev(vsi->back);
1720
1721 pi = vsi->port_info;
1722
1723 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1724 if (!pcaps)
1725 return -ENOMEM;
1726
1727 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1728 NULL);
1729 if (retcode) {
1730 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1731 vsi->vsi_num, retcode);
1732 retcode = -EIO;
1733 goto out;
1734 }
1735
1736 /* No change in link */
1737 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1738 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1739 goto out;
1740
1741 /* Use the current user PHY configuration. The current user PHY
1742 * configuration is initialized during probe from PHY capabilities
1743 * software mode, and updated on set PHY configuration.
1744 */
1745 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1746 if (!cfg) {
1747 retcode = -ENOMEM;
1748 goto out;
1749 }
1750
1751 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1752 if (link_up)
1753 cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1754 else
1755 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1756
1757 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1758 if (retcode) {
1759 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1760 vsi->vsi_num, retcode);
1761 retcode = -EIO;
1762 }
1763
1764 kfree(cfg);
1765 out:
1766 kfree(pcaps);
1767 return retcode;
1768 }
1769
1770 /**
1771 * ice_init_nvm_phy_type - Initialize the NVM PHY type
1772 * @pi: port info structure
1773 *
1774 * Initialize nvm_phy_type_[low|high] for link lenient mode support
1775 */
ice_init_nvm_phy_type(struct ice_port_info * pi)1776 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1777 {
1778 struct ice_aqc_get_phy_caps_data *pcaps;
1779 struct ice_pf *pf = pi->hw->back;
1780 enum ice_status status;
1781 int err = 0;
1782
1783 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1784 if (!pcaps)
1785 return -ENOMEM;
1786
1787 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, pcaps,
1788 NULL);
1789
1790 if (status) {
1791 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1792 err = -EIO;
1793 goto out;
1794 }
1795
1796 pf->nvm_phy_type_hi = pcaps->phy_type_high;
1797 pf->nvm_phy_type_lo = pcaps->phy_type_low;
1798
1799 out:
1800 kfree(pcaps);
1801 return err;
1802 }
1803
1804 /**
1805 * ice_init_link_dflt_override - Initialize link default override
1806 * @pi: port info structure
1807 *
1808 * Initialize link default override and PHY total port shutdown during probe
1809 */
ice_init_link_dflt_override(struct ice_port_info * pi)1810 static void ice_init_link_dflt_override(struct ice_port_info *pi)
1811 {
1812 struct ice_link_default_override_tlv *ldo;
1813 struct ice_pf *pf = pi->hw->back;
1814
1815 ldo = &pf->link_dflt_override;
1816 if (ice_get_link_default_override(ldo, pi))
1817 return;
1818
1819 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1820 return;
1821
1822 /* Enable Total Port Shutdown (override/replace link-down-on-close
1823 * ethtool private flag) for ports with Port Disable bit set.
1824 */
1825 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1826 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1827 }
1828
1829 /**
1830 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
1831 * @pi: port info structure
1832 *
1833 * If default override is enabled, initialize the user PHY cfg speed and FEC
1834 * settings using the default override mask from the NVM.
1835 *
1836 * The PHY should only be configured with the default override settings the
1837 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
1838 * is used to indicate that the user PHY cfg default override is initialized
1839 * and the PHY has not been configured with the default override settings. The
1840 * state is set here, and cleared in ice_configure_phy the first time the PHY is
1841 * configured.
1842 *
1843 * This function should be called only if the FW doesn't support default
1844 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
1845 */
ice_init_phy_cfg_dflt_override(struct ice_port_info * pi)1846 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
1847 {
1848 struct ice_link_default_override_tlv *ldo;
1849 struct ice_aqc_set_phy_cfg_data *cfg;
1850 struct ice_phy_info *phy = &pi->phy;
1851 struct ice_pf *pf = pi->hw->back;
1852
1853 ldo = &pf->link_dflt_override;
1854
1855 /* If link default override is enabled, use to mask NVM PHY capabilities
1856 * for speed and FEC default configuration.
1857 */
1858 cfg = &phy->curr_user_phy_cfg;
1859
1860 if (ldo->phy_type_low || ldo->phy_type_high) {
1861 cfg->phy_type_low = pf->nvm_phy_type_lo &
1862 cpu_to_le64(ldo->phy_type_low);
1863 cfg->phy_type_high = pf->nvm_phy_type_hi &
1864 cpu_to_le64(ldo->phy_type_high);
1865 }
1866 cfg->link_fec_opt = ldo->fec_options;
1867 phy->curr_user_fec_req = ICE_FEC_AUTO;
1868
1869 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
1870 }
1871
1872 /**
1873 * ice_init_phy_user_cfg - Initialize the PHY user configuration
1874 * @pi: port info structure
1875 *
1876 * Initialize the current user PHY configuration, speed, FEC, and FC requested
1877 * mode to default. The PHY defaults are from get PHY capabilities topology
1878 * with media so call when media is first available. An error is returned if
1879 * called when media is not available. The PHY initialization completed state is
1880 * set here.
1881 *
1882 * These configurations are used when setting PHY
1883 * configuration. The user PHY configuration is updated on set PHY
1884 * configuration. Returns 0 on success, negative on failure
1885 */
ice_init_phy_user_cfg(struct ice_port_info * pi)1886 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
1887 {
1888 struct ice_aqc_get_phy_caps_data *pcaps;
1889 struct ice_phy_info *phy = &pi->phy;
1890 struct ice_pf *pf = pi->hw->back;
1891 enum ice_status status;
1892 int err = 0;
1893
1894 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1895 return -EIO;
1896
1897 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1898 if (!pcaps)
1899 return -ENOMEM;
1900
1901 if (ice_fw_supports_report_dflt_cfg(pi->hw))
1902 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
1903 pcaps, NULL);
1904 else
1905 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
1906 pcaps, NULL);
1907 if (status) {
1908 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1909 err = -EIO;
1910 goto err_out;
1911 }
1912
1913 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
1914
1915 /* check if lenient mode is supported and enabled */
1916 if (ice_fw_supports_link_override(pi->hw) &&
1917 !(pcaps->module_compliance_enforcement &
1918 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
1919 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
1920
1921 /* if the FW supports default PHY configuration mode, then the driver
1922 * does not have to apply link override settings. If not,
1923 * initialize user PHY configuration with link override values
1924 */
1925 if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
1926 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
1927 ice_init_phy_cfg_dflt_override(pi);
1928 goto out;
1929 }
1930 }
1931
1932 /* if link default override is not enabled, set user flow control and
1933 * FEC settings based on what get_phy_caps returned
1934 */
1935 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
1936 pcaps->link_fec_options);
1937 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
1938
1939 out:
1940 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
1941 set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
1942 err_out:
1943 kfree(pcaps);
1944 return err;
1945 }
1946
1947 /**
1948 * ice_configure_phy - configure PHY
1949 * @vsi: VSI of PHY
1950 *
1951 * Set the PHY configuration. If the current PHY configuration is the same as
1952 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
1953 * configure the based get PHY capabilities for topology with media.
1954 */
ice_configure_phy(struct ice_vsi * vsi)1955 static int ice_configure_phy(struct ice_vsi *vsi)
1956 {
1957 struct device *dev = ice_pf_to_dev(vsi->back);
1958 struct ice_port_info *pi = vsi->port_info;
1959 struct ice_aqc_get_phy_caps_data *pcaps;
1960 struct ice_aqc_set_phy_cfg_data *cfg;
1961 struct ice_phy_info *phy = &pi->phy;
1962 struct ice_pf *pf = vsi->back;
1963 enum ice_status status;
1964 int err = 0;
1965
1966 /* Ensure we have media as we cannot configure a medialess port */
1967 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1968 return -EPERM;
1969
1970 ice_print_topo_conflict(vsi);
1971
1972 if (phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
1973 return -EPERM;
1974
1975 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
1976 return ice_force_phys_link_state(vsi, true);
1977
1978 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1979 if (!pcaps)
1980 return -ENOMEM;
1981
1982 /* Get current PHY config */
1983 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1984 NULL);
1985 if (status) {
1986 dev_err(dev, "Failed to get PHY configuration, VSI %d error %s\n",
1987 vsi->vsi_num, ice_stat_str(status));
1988 err = -EIO;
1989 goto done;
1990 }
1991
1992 /* If PHY enable link is configured and configuration has not changed,
1993 * there's nothing to do
1994 */
1995 if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
1996 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
1997 goto done;
1998
1999 /* Use PHY topology as baseline for configuration */
2000 memset(pcaps, 0, sizeof(*pcaps));
2001 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2002 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2003 pcaps, NULL);
2004 else
2005 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2006 pcaps, NULL);
2007 if (status) {
2008 dev_err(dev, "Failed to get PHY caps, VSI %d error %s\n",
2009 vsi->vsi_num, ice_stat_str(status));
2010 err = -EIO;
2011 goto done;
2012 }
2013
2014 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2015 if (!cfg) {
2016 err = -ENOMEM;
2017 goto done;
2018 }
2019
2020 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2021
2022 /* Speed - If default override pending, use curr_user_phy_cfg set in
2023 * ice_init_phy_user_cfg_ldo.
2024 */
2025 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2026 vsi->back->state)) {
2027 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2028 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2029 } else {
2030 u64 phy_low = 0, phy_high = 0;
2031
2032 ice_update_phy_type(&phy_low, &phy_high,
2033 pi->phy.curr_user_speed_req);
2034 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2035 cfg->phy_type_high = pcaps->phy_type_high &
2036 cpu_to_le64(phy_high);
2037 }
2038
2039 /* Can't provide what was requested; use PHY capabilities */
2040 if (!cfg->phy_type_low && !cfg->phy_type_high) {
2041 cfg->phy_type_low = pcaps->phy_type_low;
2042 cfg->phy_type_high = pcaps->phy_type_high;
2043 }
2044
2045 /* FEC */
2046 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2047
2048 /* Can't provide what was requested; use PHY capabilities */
2049 if (cfg->link_fec_opt !=
2050 (cfg->link_fec_opt & pcaps->link_fec_options)) {
2051 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2052 cfg->link_fec_opt = pcaps->link_fec_options;
2053 }
2054
2055 /* Flow Control - always supported; no need to check against
2056 * capabilities
2057 */
2058 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2059
2060 /* Enable link and link update */
2061 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2062
2063 status = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2064 if (status) {
2065 dev_err(dev, "Failed to set phy config, VSI %d error %s\n",
2066 vsi->vsi_num, ice_stat_str(status));
2067 err = -EIO;
2068 }
2069
2070 kfree(cfg);
2071 done:
2072 kfree(pcaps);
2073 return err;
2074 }
2075
2076 /**
2077 * ice_check_media_subtask - Check for media
2078 * @pf: pointer to PF struct
2079 *
2080 * If media is available, then initialize PHY user configuration if it is not
2081 * been, and configure the PHY if the interface is up.
2082 */
ice_check_media_subtask(struct ice_pf * pf)2083 static void ice_check_media_subtask(struct ice_pf *pf)
2084 {
2085 struct ice_port_info *pi;
2086 struct ice_vsi *vsi;
2087 int err;
2088
2089 /* No need to check for media if it's already present */
2090 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2091 return;
2092
2093 vsi = ice_get_main_vsi(pf);
2094 if (!vsi)
2095 return;
2096
2097 /* Refresh link info and check if media is present */
2098 pi = vsi->port_info;
2099 err = ice_update_link_info(pi);
2100 if (err)
2101 return;
2102
2103 ice_check_module_power(pf, pi->phy.link_info.link_cfg_err);
2104
2105 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2106 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2107 ice_init_phy_user_cfg(pi);
2108
2109 /* PHY settings are reset on media insertion, reconfigure
2110 * PHY to preserve settings.
2111 */
2112 if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2113 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2114 return;
2115
2116 err = ice_configure_phy(vsi);
2117 if (!err)
2118 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2119
2120 /* A Link Status Event will be generated; the event handler
2121 * will complete bringing the interface up
2122 */
2123 }
2124 }
2125
2126 /**
2127 * ice_service_task - manage and run subtasks
2128 * @work: pointer to work_struct contained by the PF struct
2129 */
ice_service_task(struct work_struct * work)2130 static void ice_service_task(struct work_struct *work)
2131 {
2132 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2133 unsigned long start_time = jiffies;
2134
2135 /* subtasks */
2136
2137 /* process reset requests first */
2138 ice_reset_subtask(pf);
2139
2140 /* bail if a reset/recovery cycle is pending or rebuild failed */
2141 if (ice_is_reset_in_progress(pf->state) ||
2142 test_bit(ICE_SUSPENDED, pf->state) ||
2143 test_bit(ICE_NEEDS_RESTART, pf->state)) {
2144 ice_service_task_complete(pf);
2145 return;
2146 }
2147
2148 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2149 struct iidc_event *event;
2150
2151 event = kzalloc(sizeof(*event), GFP_KERNEL);
2152 if (event) {
2153 set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2154 /* report the entire OICR value to AUX driver */
2155 swap(event->reg, pf->oicr_err_reg);
2156 ice_send_event_to_aux(pf, event);
2157 kfree(event);
2158 }
2159 }
2160
2161 /* unplug aux dev per request, if an unplug request came in
2162 * while processing a plug request, this will handle it
2163 */
2164 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags))
2165 ice_unplug_aux_dev(pf);
2166
2167 /* Plug aux device per request */
2168 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2169 ice_plug_aux_dev(pf);
2170
2171 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2172 struct iidc_event *event;
2173
2174 event = kzalloc(sizeof(*event), GFP_KERNEL);
2175 if (event) {
2176 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
2177 ice_send_event_to_aux(pf, event);
2178 kfree(event);
2179 }
2180 }
2181
2182 ice_clean_adminq_subtask(pf);
2183 ice_check_media_subtask(pf);
2184 ice_check_for_hang_subtask(pf);
2185 ice_sync_fltr_subtask(pf);
2186 ice_handle_mdd_event(pf);
2187 ice_watchdog_subtask(pf);
2188
2189 if (ice_is_safe_mode(pf)) {
2190 ice_service_task_complete(pf);
2191 return;
2192 }
2193
2194 ice_process_vflr_event(pf);
2195 ice_clean_mailboxq_subtask(pf);
2196 ice_clean_sbq_subtask(pf);
2197 ice_sync_arfs_fltrs(pf);
2198 ice_flush_fdir_ctx(pf);
2199
2200 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2201 ice_service_task_complete(pf);
2202
2203 /* If the tasks have taken longer than one service timer period
2204 * or there is more work to be done, reset the service timer to
2205 * schedule the service task now.
2206 */
2207 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2208 test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2209 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2210 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2211 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2212 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2213 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2214 mod_timer(&pf->serv_tmr, jiffies);
2215 }
2216
2217 /**
2218 * ice_set_ctrlq_len - helper function to set controlq length
2219 * @hw: pointer to the HW instance
2220 */
ice_set_ctrlq_len(struct ice_hw * hw)2221 static void ice_set_ctrlq_len(struct ice_hw *hw)
2222 {
2223 hw->adminq.num_rq_entries = ICE_AQ_LEN;
2224 hw->adminq.num_sq_entries = ICE_AQ_LEN;
2225 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2226 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2227 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2228 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2229 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2230 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2231 hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2232 hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2233 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2234 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2235 }
2236
2237 /**
2238 * ice_schedule_reset - schedule a reset
2239 * @pf: board private structure
2240 * @reset: reset being requested
2241 */
ice_schedule_reset(struct ice_pf * pf,enum ice_reset_req reset)2242 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2243 {
2244 struct device *dev = ice_pf_to_dev(pf);
2245
2246 /* bail out if earlier reset has failed */
2247 if (test_bit(ICE_RESET_FAILED, pf->state)) {
2248 dev_dbg(dev, "earlier reset has failed\n");
2249 return -EIO;
2250 }
2251 /* bail if reset/recovery already in progress */
2252 if (ice_is_reset_in_progress(pf->state)) {
2253 dev_dbg(dev, "Reset already in progress\n");
2254 return -EBUSY;
2255 }
2256
2257 switch (reset) {
2258 case ICE_RESET_PFR:
2259 set_bit(ICE_PFR_REQ, pf->state);
2260 break;
2261 case ICE_RESET_CORER:
2262 set_bit(ICE_CORER_REQ, pf->state);
2263 break;
2264 case ICE_RESET_GLOBR:
2265 set_bit(ICE_GLOBR_REQ, pf->state);
2266 break;
2267 default:
2268 return -EINVAL;
2269 }
2270
2271 ice_service_task_schedule(pf);
2272 return 0;
2273 }
2274
2275 /**
2276 * ice_irq_affinity_notify - Callback for affinity changes
2277 * @notify: context as to what irq was changed
2278 * @mask: the new affinity mask
2279 *
2280 * This is a callback function used by the irq_set_affinity_notifier function
2281 * so that we may register to receive changes to the irq affinity masks.
2282 */
2283 static void
ice_irq_affinity_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)2284 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2285 const cpumask_t *mask)
2286 {
2287 struct ice_q_vector *q_vector =
2288 container_of(notify, struct ice_q_vector, affinity_notify);
2289
2290 cpumask_copy(&q_vector->affinity_mask, mask);
2291 }
2292
2293 /**
2294 * ice_irq_affinity_release - Callback for affinity notifier release
2295 * @ref: internal core kernel usage
2296 *
2297 * This is a callback function used by the irq_set_affinity_notifier function
2298 * to inform the current notification subscriber that they will no longer
2299 * receive notifications.
2300 */
ice_irq_affinity_release(struct kref __always_unused * ref)2301 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2302
2303 /**
2304 * ice_vsi_ena_irq - Enable IRQ for the given VSI
2305 * @vsi: the VSI being configured
2306 */
ice_vsi_ena_irq(struct ice_vsi * vsi)2307 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2308 {
2309 struct ice_hw *hw = &vsi->back->hw;
2310 int i;
2311
2312 ice_for_each_q_vector(vsi, i)
2313 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2314
2315 ice_flush(hw);
2316 return 0;
2317 }
2318
2319 /**
2320 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2321 * @vsi: the VSI being configured
2322 * @basename: name for the vector
2323 */
ice_vsi_req_irq_msix(struct ice_vsi * vsi,char * basename)2324 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2325 {
2326 int q_vectors = vsi->num_q_vectors;
2327 struct ice_pf *pf = vsi->back;
2328 int base = vsi->base_vector;
2329 struct device *dev;
2330 int rx_int_idx = 0;
2331 int tx_int_idx = 0;
2332 int vector, err;
2333 int irq_num;
2334
2335 dev = ice_pf_to_dev(pf);
2336 for (vector = 0; vector < q_vectors; vector++) {
2337 struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2338
2339 irq_num = pf->msix_entries[base + vector].vector;
2340
2341 if (q_vector->tx.ring && q_vector->rx.ring) {
2342 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2343 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2344 tx_int_idx++;
2345 } else if (q_vector->rx.ring) {
2346 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2347 "%s-%s-%d", basename, "rx", rx_int_idx++);
2348 } else if (q_vector->tx.ring) {
2349 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2350 "%s-%s-%d", basename, "tx", tx_int_idx++);
2351 } else {
2352 /* skip this unused q_vector */
2353 continue;
2354 }
2355 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID)
2356 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2357 IRQF_SHARED, q_vector->name,
2358 q_vector);
2359 else
2360 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2361 0, q_vector->name, q_vector);
2362 if (err) {
2363 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2364 err);
2365 goto free_q_irqs;
2366 }
2367
2368 /* register for affinity change notifications */
2369 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2370 struct irq_affinity_notify *affinity_notify;
2371
2372 affinity_notify = &q_vector->affinity_notify;
2373 affinity_notify->notify = ice_irq_affinity_notify;
2374 affinity_notify->release = ice_irq_affinity_release;
2375 irq_set_affinity_notifier(irq_num, affinity_notify);
2376 }
2377
2378 /* assign the mask for this irq */
2379 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2380 }
2381
2382 vsi->irqs_ready = true;
2383 return 0;
2384
2385 free_q_irqs:
2386 while (vector) {
2387 vector--;
2388 irq_num = pf->msix_entries[base + vector].vector;
2389 if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2390 irq_set_affinity_notifier(irq_num, NULL);
2391 irq_set_affinity_hint(irq_num, NULL);
2392 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2393 }
2394 return err;
2395 }
2396
2397 /**
2398 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2399 * @vsi: VSI to setup Tx rings used by XDP
2400 *
2401 * Return 0 on success and negative value on error
2402 */
ice_xdp_alloc_setup_rings(struct ice_vsi * vsi)2403 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2404 {
2405 struct device *dev = ice_pf_to_dev(vsi->back);
2406 int i;
2407
2408 for (i = 0; i < vsi->num_xdp_txq; i++) {
2409 u16 xdp_q_idx = vsi->alloc_txq + i;
2410 struct ice_ring *xdp_ring;
2411
2412 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2413
2414 if (!xdp_ring)
2415 goto free_xdp_rings;
2416
2417 xdp_ring->q_index = xdp_q_idx;
2418 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2419 xdp_ring->ring_active = false;
2420 xdp_ring->vsi = vsi;
2421 xdp_ring->netdev = NULL;
2422 xdp_ring->dev = dev;
2423 xdp_ring->count = vsi->num_tx_desc;
2424 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2425 if (ice_setup_tx_ring(xdp_ring))
2426 goto free_xdp_rings;
2427 ice_set_ring_xdp(xdp_ring);
2428 xdp_ring->xsk_pool = ice_xsk_pool(xdp_ring);
2429 }
2430
2431 return 0;
2432
2433 free_xdp_rings:
2434 for (; i >= 0; i--)
2435 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
2436 ice_free_tx_ring(vsi->xdp_rings[i]);
2437 return -ENOMEM;
2438 }
2439
2440 /**
2441 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2442 * @vsi: VSI to set the bpf prog on
2443 * @prog: the bpf prog pointer
2444 */
ice_vsi_assign_bpf_prog(struct ice_vsi * vsi,struct bpf_prog * prog)2445 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2446 {
2447 struct bpf_prog *old_prog;
2448 int i;
2449
2450 old_prog = xchg(&vsi->xdp_prog, prog);
2451 if (old_prog)
2452 bpf_prog_put(old_prog);
2453
2454 ice_for_each_rxq(vsi, i)
2455 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2456 }
2457
2458 /**
2459 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2460 * @vsi: VSI to bring up Tx rings used by XDP
2461 * @prog: bpf program that will be assigned to VSI
2462 *
2463 * Return 0 on success and negative value on error
2464 */
ice_prepare_xdp_rings(struct ice_vsi * vsi,struct bpf_prog * prog)2465 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2466 {
2467 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2468 int xdp_rings_rem = vsi->num_xdp_txq;
2469 struct ice_pf *pf = vsi->back;
2470 struct ice_qs_cfg xdp_qs_cfg = {
2471 .qs_mutex = &pf->avail_q_mutex,
2472 .pf_map = pf->avail_txqs,
2473 .pf_map_size = pf->max_pf_txqs,
2474 .q_count = vsi->num_xdp_txq,
2475 .scatter_count = ICE_MAX_SCATTER_TXQS,
2476 .vsi_map = vsi->txq_map,
2477 .vsi_map_offset = vsi->alloc_txq,
2478 .mapping_mode = ICE_VSI_MAP_CONTIG
2479 };
2480 enum ice_status status;
2481 struct device *dev;
2482 int i, v_idx;
2483
2484 dev = ice_pf_to_dev(pf);
2485 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2486 sizeof(*vsi->xdp_rings), GFP_KERNEL);
2487 if (!vsi->xdp_rings)
2488 return -ENOMEM;
2489
2490 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2491 if (__ice_vsi_get_qs(&xdp_qs_cfg))
2492 goto err_map_xdp;
2493
2494 if (ice_xdp_alloc_setup_rings(vsi))
2495 goto clear_xdp_rings;
2496
2497 /* follow the logic from ice_vsi_map_rings_to_vectors */
2498 ice_for_each_q_vector(vsi, v_idx) {
2499 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2500 int xdp_rings_per_v, q_id, q_base;
2501
2502 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2503 vsi->num_q_vectors - v_idx);
2504 q_base = vsi->num_xdp_txq - xdp_rings_rem;
2505
2506 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2507 struct ice_ring *xdp_ring = vsi->xdp_rings[q_id];
2508
2509 xdp_ring->q_vector = q_vector;
2510 xdp_ring->next = q_vector->tx.ring;
2511 q_vector->tx.ring = xdp_ring;
2512 }
2513 xdp_rings_rem -= xdp_rings_per_v;
2514 }
2515
2516 /* omit the scheduler update if in reset path; XDP queues will be
2517 * taken into account at the end of ice_vsi_rebuild, where
2518 * ice_cfg_vsi_lan is being called
2519 */
2520 if (ice_is_reset_in_progress(pf->state))
2521 return 0;
2522
2523 /* tell the Tx scheduler that right now we have
2524 * additional queues
2525 */
2526 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2527 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2528
2529 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2530 max_txqs);
2531 if (status) {
2532 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %s\n",
2533 ice_stat_str(status));
2534 goto clear_xdp_rings;
2535 }
2536
2537 /* assign the prog only when it's not already present on VSI;
2538 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2539 * VSI rebuild that happens under ethtool -L can expose us to
2540 * the bpf_prog refcount issues as we would be swapping same
2541 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2542 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2543 * this is not harmful as dev_xdp_install bumps the refcount
2544 * before calling the op exposed by the driver;
2545 */
2546 if (!ice_is_xdp_ena_vsi(vsi))
2547 ice_vsi_assign_bpf_prog(vsi, prog);
2548
2549 return 0;
2550 clear_xdp_rings:
2551 for (i = 0; i < vsi->num_xdp_txq; i++)
2552 if (vsi->xdp_rings[i]) {
2553 kfree_rcu(vsi->xdp_rings[i], rcu);
2554 vsi->xdp_rings[i] = NULL;
2555 }
2556
2557 err_map_xdp:
2558 mutex_lock(&pf->avail_q_mutex);
2559 for (i = 0; i < vsi->num_xdp_txq; i++) {
2560 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2561 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2562 }
2563 mutex_unlock(&pf->avail_q_mutex);
2564
2565 devm_kfree(dev, vsi->xdp_rings);
2566 return -ENOMEM;
2567 }
2568
2569 /**
2570 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2571 * @vsi: VSI to remove XDP rings
2572 *
2573 * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2574 * resources
2575 */
ice_destroy_xdp_rings(struct ice_vsi * vsi)2576 int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2577 {
2578 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2579 struct ice_pf *pf = vsi->back;
2580 int i, v_idx;
2581
2582 /* q_vectors are freed in reset path so there's no point in detaching
2583 * rings; in case of rebuild being triggered not from reset bits
2584 * in pf->state won't be set, so additionally check first q_vector
2585 * against NULL
2586 */
2587 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2588 goto free_qmap;
2589
2590 ice_for_each_q_vector(vsi, v_idx) {
2591 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2592 struct ice_ring *ring;
2593
2594 ice_for_each_ring(ring, q_vector->tx)
2595 if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2596 break;
2597
2598 /* restore the value of last node prior to XDP setup */
2599 q_vector->tx.ring = ring;
2600 }
2601
2602 free_qmap:
2603 mutex_lock(&pf->avail_q_mutex);
2604 for (i = 0; i < vsi->num_xdp_txq; i++) {
2605 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2606 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2607 }
2608 mutex_unlock(&pf->avail_q_mutex);
2609
2610 for (i = 0; i < vsi->num_xdp_txq; i++)
2611 if (vsi->xdp_rings[i]) {
2612 if (vsi->xdp_rings[i]->desc) {
2613 synchronize_rcu();
2614 ice_free_tx_ring(vsi->xdp_rings[i]);
2615 }
2616 kfree_rcu(vsi->xdp_rings[i], rcu);
2617 vsi->xdp_rings[i] = NULL;
2618 }
2619
2620 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2621 vsi->xdp_rings = NULL;
2622
2623 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2624 return 0;
2625
2626 ice_vsi_assign_bpf_prog(vsi, NULL);
2627
2628 /* notify Tx scheduler that we destroyed XDP queues and bring
2629 * back the old number of child nodes
2630 */
2631 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2632 max_txqs[i] = vsi->num_txq;
2633
2634 /* change number of XDP Tx queues to 0 */
2635 vsi->num_xdp_txq = 0;
2636
2637 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2638 max_txqs);
2639 }
2640
2641 /**
2642 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2643 * @vsi: VSI to schedule napi on
2644 */
ice_vsi_rx_napi_schedule(struct ice_vsi * vsi)2645 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2646 {
2647 int i;
2648
2649 ice_for_each_rxq(vsi, i) {
2650 struct ice_ring *rx_ring = vsi->rx_rings[i];
2651
2652 if (rx_ring->xsk_pool)
2653 napi_schedule(&rx_ring->q_vector->napi);
2654 }
2655 }
2656
2657 /**
2658 * ice_xdp_setup_prog - Add or remove XDP eBPF program
2659 * @vsi: VSI to setup XDP for
2660 * @prog: XDP program
2661 * @extack: netlink extended ack
2662 */
2663 static int
ice_xdp_setup_prog(struct ice_vsi * vsi,struct bpf_prog * prog,struct netlink_ext_ack * extack)2664 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2665 struct netlink_ext_ack *extack)
2666 {
2667 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2668 bool if_running = netif_running(vsi->netdev);
2669 int ret = 0, xdp_ring_err = 0;
2670
2671 if (frame_size > vsi->rx_buf_len) {
2672 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
2673 return -EOPNOTSUPP;
2674 }
2675
2676 /* need to stop netdev while setting up the program for Rx rings */
2677 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
2678 ret = ice_down(vsi);
2679 if (ret) {
2680 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2681 return ret;
2682 }
2683 }
2684
2685 if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2686 vsi->num_xdp_txq = vsi->alloc_rxq;
2687 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2688 if (xdp_ring_err)
2689 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2690 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2691 xdp_ring_err = ice_destroy_xdp_rings(vsi);
2692 if (xdp_ring_err)
2693 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2694 } else {
2695 /* safe to call even when prog == vsi->xdp_prog as
2696 * dev_xdp_install in net/core/dev.c incremented prog's
2697 * refcount so corresponding bpf_prog_put won't cause
2698 * underflow
2699 */
2700 ice_vsi_assign_bpf_prog(vsi, prog);
2701 }
2702
2703 if (if_running)
2704 ret = ice_up(vsi);
2705
2706 if (!ret && prog)
2707 ice_vsi_rx_napi_schedule(vsi);
2708
2709 return (ret || xdp_ring_err) ? -ENOMEM : 0;
2710 }
2711
2712 /**
2713 * ice_xdp_safe_mode - XDP handler for safe mode
2714 * @dev: netdevice
2715 * @xdp: XDP command
2716 */
ice_xdp_safe_mode(struct net_device __always_unused * dev,struct netdev_bpf * xdp)2717 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
2718 struct netdev_bpf *xdp)
2719 {
2720 NL_SET_ERR_MSG_MOD(xdp->extack,
2721 "Please provide working DDP firmware package in order to use XDP\n"
2722 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
2723 return -EOPNOTSUPP;
2724 }
2725
2726 /**
2727 * ice_xdp - implements XDP handler
2728 * @dev: netdevice
2729 * @xdp: XDP command
2730 */
ice_xdp(struct net_device * dev,struct netdev_bpf * xdp)2731 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2732 {
2733 struct ice_netdev_priv *np = netdev_priv(dev);
2734 struct ice_vsi *vsi = np->vsi;
2735
2736 if (vsi->type != ICE_VSI_PF) {
2737 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
2738 return -EINVAL;
2739 }
2740
2741 switch (xdp->command) {
2742 case XDP_SETUP_PROG:
2743 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
2744 case XDP_SETUP_XSK_POOL:
2745 return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
2746 xdp->xsk.queue_id);
2747 default:
2748 return -EINVAL;
2749 }
2750 }
2751
2752 /**
2753 * ice_ena_misc_vector - enable the non-queue interrupts
2754 * @pf: board private structure
2755 */
ice_ena_misc_vector(struct ice_pf * pf)2756 static void ice_ena_misc_vector(struct ice_pf *pf)
2757 {
2758 struct ice_hw *hw = &pf->hw;
2759 u32 val;
2760
2761 /* Disable anti-spoof detection interrupt to prevent spurious event
2762 * interrupts during a function reset. Anti-spoof functionally is
2763 * still supported.
2764 */
2765 val = rd32(hw, GL_MDCK_TX_TDPU);
2766 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
2767 wr32(hw, GL_MDCK_TX_TDPU, val);
2768
2769 /* clear things first */
2770 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */
2771 rd32(hw, PFINT_OICR); /* read to clear */
2772
2773 val = (PFINT_OICR_ECC_ERR_M |
2774 PFINT_OICR_MAL_DETECT_M |
2775 PFINT_OICR_GRST_M |
2776 PFINT_OICR_PCI_EXCEPTION_M |
2777 PFINT_OICR_VFLR_M |
2778 PFINT_OICR_HMC_ERR_M |
2779 PFINT_OICR_PE_PUSH_M |
2780 PFINT_OICR_PE_CRITERR_M);
2781
2782 wr32(hw, PFINT_OICR_ENA, val);
2783
2784 /* SW_ITR_IDX = 0, but don't change INTENA */
2785 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
2786 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
2787 }
2788
2789 /**
2790 * ice_misc_intr - misc interrupt handler
2791 * @irq: interrupt number
2792 * @data: pointer to a q_vector
2793 */
ice_misc_intr(int __always_unused irq,void * data)2794 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
2795 {
2796 struct ice_pf *pf = (struct ice_pf *)data;
2797 struct ice_hw *hw = &pf->hw;
2798 irqreturn_t ret = IRQ_NONE;
2799 struct device *dev;
2800 u32 oicr, ena_mask;
2801
2802 dev = ice_pf_to_dev(pf);
2803 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
2804 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
2805 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
2806
2807 oicr = rd32(hw, PFINT_OICR);
2808 ena_mask = rd32(hw, PFINT_OICR_ENA);
2809
2810 if (oicr & PFINT_OICR_SWINT_M) {
2811 ena_mask &= ~PFINT_OICR_SWINT_M;
2812 pf->sw_int_count++;
2813 }
2814
2815 if (oicr & PFINT_OICR_MAL_DETECT_M) {
2816 ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
2817 set_bit(ICE_MDD_EVENT_PENDING, pf->state);
2818 }
2819 if (oicr & PFINT_OICR_VFLR_M) {
2820 /* disable any further VFLR event notifications */
2821 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
2822 u32 reg = rd32(hw, PFINT_OICR_ENA);
2823
2824 reg &= ~PFINT_OICR_VFLR_M;
2825 wr32(hw, PFINT_OICR_ENA, reg);
2826 } else {
2827 ena_mask &= ~PFINT_OICR_VFLR_M;
2828 set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
2829 }
2830 }
2831
2832 if (oicr & PFINT_OICR_GRST_M) {
2833 u32 reset;
2834
2835 /* we have a reset warning */
2836 ena_mask &= ~PFINT_OICR_GRST_M;
2837 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
2838 GLGEN_RSTAT_RESET_TYPE_S;
2839
2840 if (reset == ICE_RESET_CORER)
2841 pf->corer_count++;
2842 else if (reset == ICE_RESET_GLOBR)
2843 pf->globr_count++;
2844 else if (reset == ICE_RESET_EMPR)
2845 pf->empr_count++;
2846 else
2847 dev_dbg(dev, "Invalid reset type %d\n", reset);
2848
2849 /* If a reset cycle isn't already in progress, we set a bit in
2850 * pf->state so that the service task can start a reset/rebuild.
2851 */
2852 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
2853 if (reset == ICE_RESET_CORER)
2854 set_bit(ICE_CORER_RECV, pf->state);
2855 else if (reset == ICE_RESET_GLOBR)
2856 set_bit(ICE_GLOBR_RECV, pf->state);
2857 else
2858 set_bit(ICE_EMPR_RECV, pf->state);
2859
2860 /* There are couple of different bits at play here.
2861 * hw->reset_ongoing indicates whether the hardware is
2862 * in reset. This is set to true when a reset interrupt
2863 * is received and set back to false after the driver
2864 * has determined that the hardware is out of reset.
2865 *
2866 * ICE_RESET_OICR_RECV in pf->state indicates
2867 * that a post reset rebuild is required before the
2868 * driver is operational again. This is set above.
2869 *
2870 * As this is the start of the reset/rebuild cycle, set
2871 * both to indicate that.
2872 */
2873 hw->reset_ongoing = true;
2874 }
2875 }
2876
2877 if (oicr & PFINT_OICR_TSYN_TX_M) {
2878 ena_mask &= ~PFINT_OICR_TSYN_TX_M;
2879 ice_ptp_process_ts(pf);
2880 }
2881
2882 if (oicr & PFINT_OICR_TSYN_EVNT_M) {
2883 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
2884 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
2885
2886 /* Save EVENTs from GTSYN register */
2887 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M |
2888 GLTSYN_STAT_EVENT1_M |
2889 GLTSYN_STAT_EVENT2_M);
2890 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
2891 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work);
2892 }
2893
2894 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
2895 if (oicr & ICE_AUX_CRIT_ERR) {
2896 pf->oicr_err_reg |= oicr;
2897 set_bit(ICE_AUX_ERR_PENDING, pf->state);
2898 ena_mask &= ~ICE_AUX_CRIT_ERR;
2899 }
2900
2901 /* Report any remaining unexpected interrupts */
2902 oicr &= ena_mask;
2903 if (oicr) {
2904 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
2905 /* If a critical error is pending there is no choice but to
2906 * reset the device.
2907 */
2908 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
2909 PFINT_OICR_ECC_ERR_M)) {
2910 set_bit(ICE_PFR_REQ, pf->state);
2911 ice_service_task_schedule(pf);
2912 }
2913 }
2914 ret = IRQ_HANDLED;
2915
2916 ice_service_task_schedule(pf);
2917 ice_irq_dynamic_ena(hw, NULL, NULL);
2918
2919 return ret;
2920 }
2921
2922 /**
2923 * ice_dis_ctrlq_interrupts - disable control queue interrupts
2924 * @hw: pointer to HW structure
2925 */
ice_dis_ctrlq_interrupts(struct ice_hw * hw)2926 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
2927 {
2928 /* disable Admin queue Interrupt causes */
2929 wr32(hw, PFINT_FW_CTL,
2930 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
2931
2932 /* disable Mailbox queue Interrupt causes */
2933 wr32(hw, PFINT_MBX_CTL,
2934 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
2935
2936 wr32(hw, PFINT_SB_CTL,
2937 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
2938
2939 /* disable Control queue Interrupt causes */
2940 wr32(hw, PFINT_OICR_CTL,
2941 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
2942
2943 ice_flush(hw);
2944 }
2945
2946 /**
2947 * ice_free_irq_msix_misc - Unroll misc vector setup
2948 * @pf: board private structure
2949 */
ice_free_irq_msix_misc(struct ice_pf * pf)2950 static void ice_free_irq_msix_misc(struct ice_pf *pf)
2951 {
2952 struct ice_hw *hw = &pf->hw;
2953
2954 ice_dis_ctrlq_interrupts(hw);
2955
2956 /* disable OICR interrupt */
2957 wr32(hw, PFINT_OICR_ENA, 0);
2958 ice_flush(hw);
2959
2960 if (pf->msix_entries) {
2961 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
2962 devm_free_irq(ice_pf_to_dev(pf),
2963 pf->msix_entries[pf->oicr_idx].vector, pf);
2964 }
2965
2966 pf->num_avail_sw_msix += 1;
2967 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
2968 }
2969
2970 /**
2971 * ice_ena_ctrlq_interrupts - enable control queue interrupts
2972 * @hw: pointer to HW structure
2973 * @reg_idx: HW vector index to associate the control queue interrupts with
2974 */
ice_ena_ctrlq_interrupts(struct ice_hw * hw,u16 reg_idx)2975 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
2976 {
2977 u32 val;
2978
2979 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
2980 PFINT_OICR_CTL_CAUSE_ENA_M);
2981 wr32(hw, PFINT_OICR_CTL, val);
2982
2983 /* enable Admin queue Interrupt causes */
2984 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
2985 PFINT_FW_CTL_CAUSE_ENA_M);
2986 wr32(hw, PFINT_FW_CTL, val);
2987
2988 /* enable Mailbox queue Interrupt causes */
2989 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
2990 PFINT_MBX_CTL_CAUSE_ENA_M);
2991 wr32(hw, PFINT_MBX_CTL, val);
2992
2993 /* This enables Sideband queue Interrupt causes */
2994 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
2995 PFINT_SB_CTL_CAUSE_ENA_M);
2996 wr32(hw, PFINT_SB_CTL, val);
2997
2998 ice_flush(hw);
2999 }
3000
3001 /**
3002 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3003 * @pf: board private structure
3004 *
3005 * This sets up the handler for MSIX 0, which is used to manage the
3006 * non-queue interrupts, e.g. AdminQ and errors. This is not used
3007 * when in MSI or Legacy interrupt mode.
3008 */
ice_req_irq_msix_misc(struct ice_pf * pf)3009 static int ice_req_irq_msix_misc(struct ice_pf *pf)
3010 {
3011 struct device *dev = ice_pf_to_dev(pf);
3012 struct ice_hw *hw = &pf->hw;
3013 int oicr_idx, err = 0;
3014
3015 if (!pf->int_name[0])
3016 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3017 dev_driver_string(dev), dev_name(dev));
3018
3019 /* Do not request IRQ but do enable OICR interrupt since settings are
3020 * lost during reset. Note that this function is called only during
3021 * rebuild path and not while reset is in progress.
3022 */
3023 if (ice_is_reset_in_progress(pf->state))
3024 goto skip_req_irq;
3025
3026 /* reserve one vector in irq_tracker for misc interrupts */
3027 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
3028 if (oicr_idx < 0)
3029 return oicr_idx;
3030
3031 pf->num_avail_sw_msix -= 1;
3032 pf->oicr_idx = (u16)oicr_idx;
3033
3034 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector,
3035 ice_misc_intr, 0, pf->int_name, pf);
3036 if (err) {
3037 dev_err(dev, "devm_request_irq for %s failed: %d\n",
3038 pf->int_name, err);
3039 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
3040 pf->num_avail_sw_msix += 1;
3041 return err;
3042 }
3043
3044 skip_req_irq:
3045 ice_ena_misc_vector(pf);
3046
3047 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
3048 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
3049 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3050
3051 ice_flush(hw);
3052 ice_irq_dynamic_ena(hw, NULL, NULL);
3053
3054 return 0;
3055 }
3056
3057 /**
3058 * ice_napi_add - register NAPI handler for the VSI
3059 * @vsi: VSI for which NAPI handler is to be registered
3060 *
3061 * This function is only called in the driver's load path. Registering the NAPI
3062 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
3063 * reset/rebuild, etc.)
3064 */
ice_napi_add(struct ice_vsi * vsi)3065 static void ice_napi_add(struct ice_vsi *vsi)
3066 {
3067 int v_idx;
3068
3069 if (!vsi->netdev)
3070 return;
3071
3072 ice_for_each_q_vector(vsi, v_idx)
3073 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
3074 ice_napi_poll, NAPI_POLL_WEIGHT);
3075 }
3076
3077 /**
3078 * ice_set_ops - set netdev and ethtools ops for the given netdev
3079 * @netdev: netdev instance
3080 */
ice_set_ops(struct net_device * netdev)3081 static void ice_set_ops(struct net_device *netdev)
3082 {
3083 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3084
3085 if (ice_is_safe_mode(pf)) {
3086 netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3087 ice_set_ethtool_safe_mode_ops(netdev);
3088 return;
3089 }
3090
3091 netdev->netdev_ops = &ice_netdev_ops;
3092 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3093 ice_set_ethtool_ops(netdev);
3094 }
3095
3096 /**
3097 * ice_set_netdev_features - set features for the given netdev
3098 * @netdev: netdev instance
3099 */
ice_set_netdev_features(struct net_device * netdev)3100 static void ice_set_netdev_features(struct net_device *netdev)
3101 {
3102 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3103 netdev_features_t csumo_features;
3104 netdev_features_t vlano_features;
3105 netdev_features_t dflt_features;
3106 netdev_features_t tso_features;
3107
3108 if (ice_is_safe_mode(pf)) {
3109 /* safe mode */
3110 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3111 netdev->hw_features = netdev->features;
3112 return;
3113 }
3114
3115 dflt_features = NETIF_F_SG |
3116 NETIF_F_HIGHDMA |
3117 NETIF_F_NTUPLE |
3118 NETIF_F_RXHASH;
3119
3120 csumo_features = NETIF_F_RXCSUM |
3121 NETIF_F_IP_CSUM |
3122 NETIF_F_SCTP_CRC |
3123 NETIF_F_IPV6_CSUM;
3124
3125 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3126 NETIF_F_HW_VLAN_CTAG_TX |
3127 NETIF_F_HW_VLAN_CTAG_RX;
3128
3129 tso_features = NETIF_F_TSO |
3130 NETIF_F_TSO_ECN |
3131 NETIF_F_TSO6 |
3132 NETIF_F_GSO_GRE |
3133 NETIF_F_GSO_UDP_TUNNEL |
3134 NETIF_F_GSO_GRE_CSUM |
3135 NETIF_F_GSO_UDP_TUNNEL_CSUM |
3136 NETIF_F_GSO_PARTIAL |
3137 NETIF_F_GSO_IPXIP4 |
3138 NETIF_F_GSO_IPXIP6 |
3139 NETIF_F_GSO_UDP_L4;
3140
3141 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3142 NETIF_F_GSO_GRE_CSUM;
3143 /* set features that user can change */
3144 netdev->hw_features = dflt_features | csumo_features |
3145 vlano_features | tso_features;
3146
3147 /* add support for HW_CSUM on packets with MPLS header */
3148 netdev->mpls_features = NETIF_F_HW_CSUM;
3149
3150 /* enable features */
3151 netdev->features |= netdev->hw_features;
3152 /* encap and VLAN devices inherit default, csumo and tso features */
3153 netdev->hw_enc_features |= dflt_features | csumo_features |
3154 tso_features;
3155 netdev->vlan_features |= dflt_features | csumo_features |
3156 tso_features;
3157 }
3158
3159 /**
3160 * ice_cfg_netdev - Allocate, configure and register a netdev
3161 * @vsi: the VSI associated with the new netdev
3162 *
3163 * Returns 0 on success, negative value on failure
3164 */
ice_cfg_netdev(struct ice_vsi * vsi)3165 static int ice_cfg_netdev(struct ice_vsi *vsi)
3166 {
3167 struct ice_netdev_priv *np;
3168 struct net_device *netdev;
3169 u8 mac_addr[ETH_ALEN];
3170
3171 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
3172 vsi->alloc_rxq);
3173 if (!netdev)
3174 return -ENOMEM;
3175
3176 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3177 vsi->netdev = netdev;
3178 np = netdev_priv(netdev);
3179 np->vsi = vsi;
3180
3181 ice_set_netdev_features(netdev);
3182
3183 ice_set_ops(netdev);
3184
3185 if (vsi->type == ICE_VSI_PF) {
3186 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
3187 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
3188 eth_hw_addr_set(netdev, mac_addr);
3189 ether_addr_copy(netdev->perm_addr, mac_addr);
3190 }
3191
3192 netdev->priv_flags |= IFF_UNICAST_FLT;
3193
3194 /* Setup netdev TC information */
3195 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
3196
3197 /* setup watchdog timeout value to be 5 second */
3198 netdev->watchdog_timeo = 5 * HZ;
3199
3200 netdev->min_mtu = ETH_MIN_MTU;
3201 netdev->max_mtu = ICE_MAX_MTU;
3202
3203 return 0;
3204 }
3205
3206 /**
3207 * ice_fill_rss_lut - Fill the RSS lookup table with default values
3208 * @lut: Lookup table
3209 * @rss_table_size: Lookup table size
3210 * @rss_size: Range of queue number for hashing
3211 */
ice_fill_rss_lut(u8 * lut,u16 rss_table_size,u16 rss_size)3212 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3213 {
3214 u16 i;
3215
3216 for (i = 0; i < rss_table_size; i++)
3217 lut[i] = i % rss_size;
3218 }
3219
3220 /**
3221 * ice_pf_vsi_setup - Set up a PF VSI
3222 * @pf: board private structure
3223 * @pi: pointer to the port_info instance
3224 *
3225 * Returns pointer to the successfully allocated VSI software struct
3226 * on success, otherwise returns NULL on failure.
3227 */
3228 static struct ice_vsi *
ice_pf_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3229 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3230 {
3231 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID);
3232 }
3233
3234 /**
3235 * ice_ctrl_vsi_setup - Set up a control VSI
3236 * @pf: board private structure
3237 * @pi: pointer to the port_info instance
3238 *
3239 * Returns pointer to the successfully allocated VSI software struct
3240 * on success, otherwise returns NULL on failure.
3241 */
3242 static struct ice_vsi *
ice_ctrl_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3243 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3244 {
3245 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID);
3246 }
3247
3248 /**
3249 * ice_lb_vsi_setup - Set up a loopback VSI
3250 * @pf: board private structure
3251 * @pi: pointer to the port_info instance
3252 *
3253 * Returns pointer to the successfully allocated VSI software struct
3254 * on success, otherwise returns NULL on failure.
3255 */
3256 struct ice_vsi *
ice_lb_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3257 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3258 {
3259 return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID);
3260 }
3261
3262 /**
3263 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3264 * @netdev: network interface to be adjusted
3265 * @proto: unused protocol
3266 * @vid: VLAN ID to be added
3267 *
3268 * net_device_ops implementation for adding VLAN IDs
3269 */
3270 static int
ice_vlan_rx_add_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)3271 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto,
3272 u16 vid)
3273 {
3274 struct ice_netdev_priv *np = netdev_priv(netdev);
3275 struct ice_vsi *vsi = np->vsi;
3276 int ret;
3277
3278 /* VLAN 0 is added by default during load/reset */
3279 if (!vid)
3280 return 0;
3281
3282 /* Enable VLAN pruning when a VLAN other than 0 is added */
3283 if (!ice_vsi_is_vlan_pruning_ena(vsi)) {
3284 ret = ice_cfg_vlan_pruning(vsi, true, false);
3285 if (ret)
3286 return ret;
3287 }
3288
3289 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3290 * packets aren't pruned by the device's internal switch on Rx
3291 */
3292 ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI);
3293 if (!ret)
3294 set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
3295
3296 return ret;
3297 }
3298
3299 /**
3300 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3301 * @netdev: network interface to be adjusted
3302 * @proto: unused protocol
3303 * @vid: VLAN ID to be removed
3304 *
3305 * net_device_ops implementation for removing VLAN IDs
3306 */
3307 static int
ice_vlan_rx_kill_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)3308 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto,
3309 u16 vid)
3310 {
3311 struct ice_netdev_priv *np = netdev_priv(netdev);
3312 struct ice_vsi *vsi = np->vsi;
3313 int ret;
3314
3315 /* don't allow removal of VLAN 0 */
3316 if (!vid)
3317 return 0;
3318
3319 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN
3320 * information
3321 */
3322 ret = ice_vsi_kill_vlan(vsi, vid);
3323 if (ret)
3324 return ret;
3325
3326 /* Disable pruning when VLAN 0 is the only VLAN rule */
3327 if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi))
3328 ret = ice_cfg_vlan_pruning(vsi, false, false);
3329
3330 set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
3331 return ret;
3332 }
3333
3334 /**
3335 * ice_setup_pf_sw - Setup the HW switch on startup or after reset
3336 * @pf: board private structure
3337 *
3338 * Returns 0 on success, negative value on failure
3339 */
ice_setup_pf_sw(struct ice_pf * pf)3340 static int ice_setup_pf_sw(struct ice_pf *pf)
3341 {
3342 struct ice_vsi *vsi;
3343 int status = 0;
3344
3345 if (ice_is_reset_in_progress(pf->state))
3346 return -EBUSY;
3347
3348 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
3349 if (!vsi)
3350 return -ENOMEM;
3351
3352 status = ice_cfg_netdev(vsi);
3353 if (status) {
3354 status = -ENODEV;
3355 goto unroll_vsi_setup;
3356 }
3357 /* netdev has to be configured before setting frame size */
3358 ice_vsi_cfg_frame_size(vsi);
3359
3360 /* Setup DCB netlink interface */
3361 ice_dcbnl_setup(vsi);
3362
3363 /* registering the NAPI handler requires both the queues and
3364 * netdev to be created, which are done in ice_pf_vsi_setup()
3365 * and ice_cfg_netdev() respectively
3366 */
3367 ice_napi_add(vsi);
3368
3369 status = ice_set_cpu_rx_rmap(vsi);
3370 if (status) {
3371 dev_err(ice_pf_to_dev(pf), "Failed to set CPU Rx map VSI %d error %d\n",
3372 vsi->vsi_num, status);
3373 status = -EINVAL;
3374 goto unroll_napi_add;
3375 }
3376 status = ice_init_mac_fltr(pf);
3377 if (status)
3378 goto free_cpu_rx_map;
3379
3380 return status;
3381
3382 free_cpu_rx_map:
3383 ice_free_cpu_rx_rmap(vsi);
3384
3385 unroll_napi_add:
3386 if (vsi) {
3387 ice_napi_del(vsi);
3388 if (vsi->netdev) {
3389 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3390 free_netdev(vsi->netdev);
3391 vsi->netdev = NULL;
3392 }
3393 }
3394
3395 unroll_vsi_setup:
3396 ice_vsi_release(vsi);
3397 return status;
3398 }
3399
3400 /**
3401 * ice_get_avail_q_count - Get count of queues in use
3402 * @pf_qmap: bitmap to get queue use count from
3403 * @lock: pointer to a mutex that protects access to pf_qmap
3404 * @size: size of the bitmap
3405 */
3406 static u16
ice_get_avail_q_count(unsigned long * pf_qmap,struct mutex * lock,u16 size)3407 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3408 {
3409 unsigned long bit;
3410 u16 count = 0;
3411
3412 mutex_lock(lock);
3413 for_each_clear_bit(bit, pf_qmap, size)
3414 count++;
3415 mutex_unlock(lock);
3416
3417 return count;
3418 }
3419
3420 /**
3421 * ice_get_avail_txq_count - Get count of Tx queues in use
3422 * @pf: pointer to an ice_pf instance
3423 */
ice_get_avail_txq_count(struct ice_pf * pf)3424 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3425 {
3426 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3427 pf->max_pf_txqs);
3428 }
3429
3430 /**
3431 * ice_get_avail_rxq_count - Get count of Rx queues in use
3432 * @pf: pointer to an ice_pf instance
3433 */
ice_get_avail_rxq_count(struct ice_pf * pf)3434 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3435 {
3436 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3437 pf->max_pf_rxqs);
3438 }
3439
3440 /**
3441 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3442 * @pf: board private structure to initialize
3443 */
ice_deinit_pf(struct ice_pf * pf)3444 static void ice_deinit_pf(struct ice_pf *pf)
3445 {
3446 ice_service_task_stop(pf);
3447 mutex_destroy(&pf->adev_mutex);
3448 mutex_destroy(&pf->sw_mutex);
3449 mutex_destroy(&pf->tc_mutex);
3450 mutex_destroy(&pf->avail_q_mutex);
3451
3452 if (pf->avail_txqs) {
3453 bitmap_free(pf->avail_txqs);
3454 pf->avail_txqs = NULL;
3455 }
3456
3457 if (pf->avail_rxqs) {
3458 bitmap_free(pf->avail_rxqs);
3459 pf->avail_rxqs = NULL;
3460 }
3461
3462 if (pf->ptp.clock)
3463 ptp_clock_unregister(pf->ptp.clock);
3464 }
3465
3466 /**
3467 * ice_set_pf_caps - set PFs capability flags
3468 * @pf: pointer to the PF instance
3469 */
ice_set_pf_caps(struct ice_pf * pf)3470 static void ice_set_pf_caps(struct ice_pf *pf)
3471 {
3472 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3473
3474 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3475 clear_bit(ICE_FLAG_AUX_ENA, pf->flags);
3476 if (func_caps->common_cap.rdma) {
3477 set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3478 set_bit(ICE_FLAG_AUX_ENA, pf->flags);
3479 }
3480 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3481 if (func_caps->common_cap.dcb)
3482 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3483 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3484 if (func_caps->common_cap.sr_iov_1_1) {
3485 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3486 pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs,
3487 ICE_MAX_VF_COUNT);
3488 }
3489 clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3490 if (func_caps->common_cap.rss_table_size)
3491 set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3492
3493 clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3494 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3495 u16 unused;
3496
3497 /* ctrl_vsi_idx will be set to a valid value when flow director
3498 * is setup by ice_init_fdir
3499 */
3500 pf->ctrl_vsi_idx = ICE_NO_VSI;
3501 set_bit(ICE_FLAG_FD_ENA, pf->flags);
3502 /* force guaranteed filter pool for PF */
3503 ice_alloc_fd_guar_item(&pf->hw, &unused,
3504 func_caps->fd_fltr_guar);
3505 /* force shared filter pool for PF */
3506 ice_alloc_fd_shrd_item(&pf->hw, &unused,
3507 func_caps->fd_fltr_best_effort);
3508 }
3509
3510 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3511 if (func_caps->common_cap.ieee_1588)
3512 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3513
3514 pf->max_pf_txqs = func_caps->common_cap.num_txq;
3515 pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3516 }
3517
3518 /**
3519 * ice_init_pf - Initialize general software structures (struct ice_pf)
3520 * @pf: board private structure to initialize
3521 */
ice_init_pf(struct ice_pf * pf)3522 static int ice_init_pf(struct ice_pf *pf)
3523 {
3524 ice_set_pf_caps(pf);
3525
3526 mutex_init(&pf->sw_mutex);
3527 mutex_init(&pf->tc_mutex);
3528 mutex_init(&pf->adev_mutex);
3529
3530 INIT_HLIST_HEAD(&pf->aq_wait_list);
3531 spin_lock_init(&pf->aq_wait_lock);
3532 init_waitqueue_head(&pf->aq_wait_queue);
3533
3534 init_waitqueue_head(&pf->reset_wait_queue);
3535
3536 /* setup service timer and periodic service task */
3537 timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3538 pf->serv_tmr_period = HZ;
3539 INIT_WORK(&pf->serv_task, ice_service_task);
3540 clear_bit(ICE_SERVICE_SCHED, pf->state);
3541
3542 mutex_init(&pf->avail_q_mutex);
3543 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3544 if (!pf->avail_txqs)
3545 return -ENOMEM;
3546
3547 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3548 if (!pf->avail_rxqs) {
3549 bitmap_free(pf->avail_txqs);
3550 pf->avail_txqs = NULL;
3551 return -ENOMEM;
3552 }
3553
3554 return 0;
3555 }
3556
3557 /**
3558 * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3559 * @pf: board private structure
3560 *
3561 * compute the number of MSIX vectors required (v_budget) and request from
3562 * the OS. Return the number of vectors reserved or negative on failure
3563 */
ice_ena_msix_range(struct ice_pf * pf)3564 static int ice_ena_msix_range(struct ice_pf *pf)
3565 {
3566 int num_cpus, v_left, v_actual, v_other, v_budget = 0;
3567 struct device *dev = ice_pf_to_dev(pf);
3568 int needed, err, i;
3569
3570 v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
3571 num_cpus = num_online_cpus();
3572
3573 /* reserve for LAN miscellaneous handler */
3574 needed = ICE_MIN_LAN_OICR_MSIX;
3575 if (v_left < needed)
3576 goto no_hw_vecs_left_err;
3577 v_budget += needed;
3578 v_left -= needed;
3579
3580 /* reserve for flow director */
3581 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
3582 needed = ICE_FDIR_MSIX;
3583 if (v_left < needed)
3584 goto no_hw_vecs_left_err;
3585 v_budget += needed;
3586 v_left -= needed;
3587 }
3588
3589 /* total used for non-traffic vectors */
3590 v_other = v_budget;
3591
3592 /* reserve vectors for LAN traffic */
3593 needed = num_cpus;
3594 if (v_left < needed)
3595 goto no_hw_vecs_left_err;
3596 pf->num_lan_msix = needed;
3597 v_budget += needed;
3598 v_left -= needed;
3599
3600 /* reserve vectors for RDMA auxiliary driver */
3601 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) {
3602 needed = num_cpus + ICE_RDMA_NUM_AEQ_MSIX;
3603 if (v_left < needed)
3604 goto no_hw_vecs_left_err;
3605 pf->num_rdma_msix = needed;
3606 v_budget += needed;
3607 v_left -= needed;
3608 }
3609
3610 pf->msix_entries = devm_kcalloc(dev, v_budget,
3611 sizeof(*pf->msix_entries), GFP_KERNEL);
3612 if (!pf->msix_entries) {
3613 err = -ENOMEM;
3614 goto exit_err;
3615 }
3616
3617 for (i = 0; i < v_budget; i++)
3618 pf->msix_entries[i].entry = i;
3619
3620 /* actually reserve the vectors */
3621 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
3622 ICE_MIN_MSIX, v_budget);
3623 if (v_actual < 0) {
3624 dev_err(dev, "unable to reserve MSI-X vectors\n");
3625 err = v_actual;
3626 goto msix_err;
3627 }
3628
3629 if (v_actual < v_budget) {
3630 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
3631 v_budget, v_actual);
3632
3633 if (v_actual < ICE_MIN_MSIX) {
3634 /* error if we can't get minimum vectors */
3635 pci_disable_msix(pf->pdev);
3636 err = -ERANGE;
3637 goto msix_err;
3638 } else {
3639 int v_remain = v_actual - v_other;
3640 int v_rdma = 0, v_min_rdma = 0;
3641
3642 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) {
3643 /* Need at least 1 interrupt in addition to
3644 * AEQ MSIX
3645 */
3646 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1;
3647 v_min_rdma = ICE_MIN_RDMA_MSIX;
3648 }
3649
3650 if (v_actual == ICE_MIN_MSIX ||
3651 v_remain < ICE_MIN_LAN_TXRX_MSIX + v_min_rdma) {
3652 dev_warn(dev, "Not enough MSI-X vectors to support RDMA.\n");
3653 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3654
3655 pf->num_rdma_msix = 0;
3656 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX;
3657 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) ||
3658 (v_remain - v_rdma < v_rdma)) {
3659 /* Support minimum RDMA and give remaining
3660 * vectors to LAN MSIX
3661 */
3662 pf->num_rdma_msix = v_min_rdma;
3663 pf->num_lan_msix = v_remain - v_min_rdma;
3664 } else {
3665 /* Split remaining MSIX with RDMA after
3666 * accounting for AEQ MSIX
3667 */
3668 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 +
3669 ICE_RDMA_NUM_AEQ_MSIX;
3670 pf->num_lan_msix = v_remain - pf->num_rdma_msix;
3671 }
3672
3673 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n",
3674 pf->num_lan_msix);
3675
3676 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
3677 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n",
3678 pf->num_rdma_msix);
3679 }
3680 }
3681
3682 return v_actual;
3683
3684 msix_err:
3685 devm_kfree(dev, pf->msix_entries);
3686 goto exit_err;
3687
3688 no_hw_vecs_left_err:
3689 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n",
3690 needed, v_left);
3691 err = -ERANGE;
3692 exit_err:
3693 pf->num_rdma_msix = 0;
3694 pf->num_lan_msix = 0;
3695 return err;
3696 }
3697
3698 /**
3699 * ice_dis_msix - Disable MSI-X interrupt setup in OS
3700 * @pf: board private structure
3701 */
ice_dis_msix(struct ice_pf * pf)3702 static void ice_dis_msix(struct ice_pf *pf)
3703 {
3704 pci_disable_msix(pf->pdev);
3705 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
3706 pf->msix_entries = NULL;
3707 }
3708
3709 /**
3710 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
3711 * @pf: board private structure
3712 */
ice_clear_interrupt_scheme(struct ice_pf * pf)3713 static void ice_clear_interrupt_scheme(struct ice_pf *pf)
3714 {
3715 ice_dis_msix(pf);
3716
3717 if (pf->irq_tracker) {
3718 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
3719 pf->irq_tracker = NULL;
3720 }
3721 }
3722
3723 /**
3724 * ice_init_interrupt_scheme - Determine proper interrupt scheme
3725 * @pf: board private structure to initialize
3726 */
ice_init_interrupt_scheme(struct ice_pf * pf)3727 static int ice_init_interrupt_scheme(struct ice_pf *pf)
3728 {
3729 int vectors;
3730
3731 vectors = ice_ena_msix_range(pf);
3732
3733 if (vectors < 0)
3734 return vectors;
3735
3736 /* set up vector assignment tracking */
3737 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf),
3738 struct_size(pf->irq_tracker, list, vectors),
3739 GFP_KERNEL);
3740 if (!pf->irq_tracker) {
3741 ice_dis_msix(pf);
3742 return -ENOMEM;
3743 }
3744
3745 /* populate SW interrupts pool with number of OS granted IRQs. */
3746 pf->num_avail_sw_msix = (u16)vectors;
3747 pf->irq_tracker->num_entries = (u16)vectors;
3748 pf->irq_tracker->end = pf->irq_tracker->num_entries;
3749
3750 return 0;
3751 }
3752
3753 /**
3754 * ice_is_wol_supported - check if WoL is supported
3755 * @hw: pointer to hardware info
3756 *
3757 * Check if WoL is supported based on the HW configuration.
3758 * Returns true if NVM supports and enables WoL for this port, false otherwise
3759 */
ice_is_wol_supported(struct ice_hw * hw)3760 bool ice_is_wol_supported(struct ice_hw *hw)
3761 {
3762 u16 wol_ctrl;
3763
3764 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
3765 * word) indicates WoL is not supported on the corresponding PF ID.
3766 */
3767 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
3768 return false;
3769
3770 return !(BIT(hw->port_info->lport) & wol_ctrl);
3771 }
3772
3773 /**
3774 * ice_vsi_recfg_qs - Change the number of queues on a VSI
3775 * @vsi: VSI being changed
3776 * @new_rx: new number of Rx queues
3777 * @new_tx: new number of Tx queues
3778 * @locked: is adev device_lock held
3779 *
3780 * Only change the number of queues if new_tx, or new_rx is non-0.
3781 *
3782 * Returns 0 on success.
3783 */
ice_vsi_recfg_qs(struct ice_vsi * vsi,int new_rx,int new_tx,bool locked)3784 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked)
3785 {
3786 struct ice_pf *pf = vsi->back;
3787 int err = 0, timeout = 50;
3788
3789 if (!new_rx && !new_tx)
3790 return -EINVAL;
3791
3792 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
3793 timeout--;
3794 if (!timeout)
3795 return -EBUSY;
3796 usleep_range(1000, 2000);
3797 }
3798
3799 if (new_tx)
3800 vsi->req_txq = (u16)new_tx;
3801 if (new_rx)
3802 vsi->req_rxq = (u16)new_rx;
3803
3804 /* set for the next time the netdev is started */
3805 if (!netif_running(vsi->netdev)) {
3806 ice_vsi_rebuild(vsi, false);
3807 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
3808 goto done;
3809 }
3810
3811 ice_vsi_close(vsi);
3812 ice_vsi_rebuild(vsi, false);
3813 ice_pf_dcb_recfg(pf, locked);
3814 ice_vsi_open(vsi);
3815 done:
3816 clear_bit(ICE_CFG_BUSY, pf->state);
3817 return err;
3818 }
3819
3820 /**
3821 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
3822 * @pf: PF to configure
3823 *
3824 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
3825 * VSI can still Tx/Rx VLAN tagged packets.
3826 */
ice_set_safe_mode_vlan_cfg(struct ice_pf * pf)3827 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
3828 {
3829 struct ice_vsi *vsi = ice_get_main_vsi(pf);
3830 struct ice_vsi_ctx *ctxt;
3831 enum ice_status status;
3832 struct ice_hw *hw;
3833
3834 if (!vsi)
3835 return;
3836
3837 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
3838 if (!ctxt)
3839 return;
3840
3841 hw = &pf->hw;
3842 ctxt->info = vsi->info;
3843
3844 ctxt->info.valid_sections =
3845 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
3846 ICE_AQ_VSI_PROP_SECURITY_VALID |
3847 ICE_AQ_VSI_PROP_SW_VALID);
3848
3849 /* disable VLAN anti-spoof */
3850 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3851 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3852
3853 /* disable VLAN pruning and keep all other settings */
3854 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
3855
3856 /* allow all VLANs on Tx and don't strip on Rx */
3857 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL |
3858 ICE_AQ_VSI_VLAN_EMOD_NOTHING;
3859
3860 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
3861 if (status) {
3862 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %s aq_err %s\n",
3863 ice_stat_str(status),
3864 ice_aq_str(hw->adminq.sq_last_status));
3865 } else {
3866 vsi->info.sec_flags = ctxt->info.sec_flags;
3867 vsi->info.sw_flags2 = ctxt->info.sw_flags2;
3868 vsi->info.vlan_flags = ctxt->info.vlan_flags;
3869 }
3870
3871 kfree(ctxt);
3872 }
3873
3874 /**
3875 * ice_log_pkg_init - log result of DDP package load
3876 * @hw: pointer to hardware info
3877 * @status: status of package load
3878 */
3879 static void
ice_log_pkg_init(struct ice_hw * hw,enum ice_status * status)3880 ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status)
3881 {
3882 struct ice_pf *pf = (struct ice_pf *)hw->back;
3883 struct device *dev = ice_pf_to_dev(pf);
3884
3885 switch (*status) {
3886 case ICE_SUCCESS:
3887 /* The package download AdminQ command returned success because
3888 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is
3889 * already a package loaded on the device.
3890 */
3891 if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
3892 hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
3893 hw->pkg_ver.update == hw->active_pkg_ver.update &&
3894 hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
3895 !memcmp(hw->pkg_name, hw->active_pkg_name,
3896 sizeof(hw->pkg_name))) {
3897 if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST)
3898 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
3899 hw->active_pkg_name,
3900 hw->active_pkg_ver.major,
3901 hw->active_pkg_ver.minor,
3902 hw->active_pkg_ver.update,
3903 hw->active_pkg_ver.draft);
3904 else
3905 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
3906 hw->active_pkg_name,
3907 hw->active_pkg_ver.major,
3908 hw->active_pkg_ver.minor,
3909 hw->active_pkg_ver.update,
3910 hw->active_pkg_ver.draft);
3911 } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
3912 hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
3913 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
3914 hw->active_pkg_name,
3915 hw->active_pkg_ver.major,
3916 hw->active_pkg_ver.minor,
3917 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3918 *status = ICE_ERR_NOT_SUPPORTED;
3919 } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3920 hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
3921 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
3922 hw->active_pkg_name,
3923 hw->active_pkg_ver.major,
3924 hw->active_pkg_ver.minor,
3925 hw->active_pkg_ver.update,
3926 hw->active_pkg_ver.draft,
3927 hw->pkg_name,
3928 hw->pkg_ver.major,
3929 hw->pkg_ver.minor,
3930 hw->pkg_ver.update,
3931 hw->pkg_ver.draft);
3932 } else {
3933 dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system. If the problem persists, update the NVM. Entering Safe Mode.\n");
3934 *status = ICE_ERR_NOT_SUPPORTED;
3935 }
3936 break;
3937 case ICE_ERR_FW_DDP_MISMATCH:
3938 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n");
3939 break;
3940 case ICE_ERR_BUF_TOO_SHORT:
3941 case ICE_ERR_CFG:
3942 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
3943 break;
3944 case ICE_ERR_NOT_SUPPORTED:
3945 /* Package File version not supported */
3946 if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ ||
3947 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3948 hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR))
3949 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n");
3950 else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ ||
3951 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3952 hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR))
3953 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n",
3954 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3955 break;
3956 case ICE_ERR_AQ_ERROR:
3957 switch (hw->pkg_dwnld_status) {
3958 case ICE_AQ_RC_ENOSEC:
3959 case ICE_AQ_RC_EBADSIG:
3960 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n");
3961 return;
3962 case ICE_AQ_RC_ESVN:
3963 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n");
3964 return;
3965 case ICE_AQ_RC_EBADMAN:
3966 case ICE_AQ_RC_EBADBUF:
3967 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n");
3968 /* poll for reset to complete */
3969 if (ice_check_reset(hw))
3970 dev_err(dev, "Error resetting device. Please reload the driver\n");
3971 return;
3972 default:
3973 break;
3974 }
3975 fallthrough;
3976 default:
3977 dev_err(dev, "An unknown error (%d) occurred when loading the DDP package. Entering Safe Mode.\n",
3978 *status);
3979 break;
3980 }
3981 }
3982
3983 /**
3984 * ice_load_pkg - load/reload the DDP Package file
3985 * @firmware: firmware structure when firmware requested or NULL for reload
3986 * @pf: pointer to the PF instance
3987 *
3988 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
3989 * initialize HW tables.
3990 */
3991 static void
ice_load_pkg(const struct firmware * firmware,struct ice_pf * pf)3992 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
3993 {
3994 enum ice_status status = ICE_ERR_PARAM;
3995 struct device *dev = ice_pf_to_dev(pf);
3996 struct ice_hw *hw = &pf->hw;
3997
3998 /* Load DDP Package */
3999 if (firmware && !hw->pkg_copy) {
4000 status = ice_copy_and_init_pkg(hw, firmware->data,
4001 firmware->size);
4002 ice_log_pkg_init(hw, &status);
4003 } else if (!firmware && hw->pkg_copy) {
4004 /* Reload package during rebuild after CORER/GLOBR reset */
4005 status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4006 ice_log_pkg_init(hw, &status);
4007 } else {
4008 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4009 }
4010
4011 if (status) {
4012 /* Safe Mode */
4013 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4014 return;
4015 }
4016
4017 /* Successful download package is the precondition for advanced
4018 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4019 */
4020 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4021 }
4022
4023 /**
4024 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4025 * @pf: pointer to the PF structure
4026 *
4027 * There is no error returned here because the driver should be able to handle
4028 * 128 Byte cache lines, so we only print a warning in case issues are seen,
4029 * specifically with Tx.
4030 */
ice_verify_cacheline_size(struct ice_pf * pf)4031 static void ice_verify_cacheline_size(struct ice_pf *pf)
4032 {
4033 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4034 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4035 ICE_CACHE_LINE_BYTES);
4036 }
4037
4038 /**
4039 * ice_send_version - update firmware with driver version
4040 * @pf: PF struct
4041 *
4042 * Returns ICE_SUCCESS on success, else error code
4043 */
ice_send_version(struct ice_pf * pf)4044 static enum ice_status ice_send_version(struct ice_pf *pf)
4045 {
4046 struct ice_driver_ver dv;
4047
4048 dv.major_ver = 0xff;
4049 dv.minor_ver = 0xff;
4050 dv.build_ver = 0xff;
4051 dv.subbuild_ver = 0;
4052 strscpy((char *)dv.driver_string, UTS_RELEASE,
4053 sizeof(dv.driver_string));
4054 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4055 }
4056
4057 /**
4058 * ice_init_fdir - Initialize flow director VSI and configuration
4059 * @pf: pointer to the PF instance
4060 *
4061 * returns 0 on success, negative on error
4062 */
ice_init_fdir(struct ice_pf * pf)4063 static int ice_init_fdir(struct ice_pf *pf)
4064 {
4065 struct device *dev = ice_pf_to_dev(pf);
4066 struct ice_vsi *ctrl_vsi;
4067 int err;
4068
4069 /* Side Band Flow Director needs to have a control VSI.
4070 * Allocate it and store it in the PF.
4071 */
4072 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4073 if (!ctrl_vsi) {
4074 dev_dbg(dev, "could not create control VSI\n");
4075 return -ENOMEM;
4076 }
4077
4078 err = ice_vsi_open_ctrl(ctrl_vsi);
4079 if (err) {
4080 dev_dbg(dev, "could not open control VSI\n");
4081 goto err_vsi_open;
4082 }
4083
4084 mutex_init(&pf->hw.fdir_fltr_lock);
4085
4086 err = ice_fdir_create_dflt_rules(pf);
4087 if (err)
4088 goto err_fdir_rule;
4089
4090 return 0;
4091
4092 err_fdir_rule:
4093 ice_fdir_release_flows(&pf->hw);
4094 ice_vsi_close(ctrl_vsi);
4095 err_vsi_open:
4096 ice_vsi_release(ctrl_vsi);
4097 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4098 pf->vsi[pf->ctrl_vsi_idx] = NULL;
4099 pf->ctrl_vsi_idx = ICE_NO_VSI;
4100 }
4101 return err;
4102 }
4103
4104 /**
4105 * ice_get_opt_fw_name - return optional firmware file name or NULL
4106 * @pf: pointer to the PF instance
4107 */
ice_get_opt_fw_name(struct ice_pf * pf)4108 static char *ice_get_opt_fw_name(struct ice_pf *pf)
4109 {
4110 /* Optional firmware name same as default with additional dash
4111 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4112 */
4113 struct pci_dev *pdev = pf->pdev;
4114 char *opt_fw_filename;
4115 u64 dsn;
4116
4117 /* Determine the name of the optional file using the DSN (two
4118 * dwords following the start of the DSN Capability).
4119 */
4120 dsn = pci_get_dsn(pdev);
4121 if (!dsn)
4122 return NULL;
4123
4124 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4125 if (!opt_fw_filename)
4126 return NULL;
4127
4128 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4129 ICE_DDP_PKG_PATH, dsn);
4130
4131 return opt_fw_filename;
4132 }
4133
4134 /**
4135 * ice_request_fw - Device initialization routine
4136 * @pf: pointer to the PF instance
4137 */
ice_request_fw(struct ice_pf * pf)4138 static void ice_request_fw(struct ice_pf *pf)
4139 {
4140 char *opt_fw_filename = ice_get_opt_fw_name(pf);
4141 const struct firmware *firmware = NULL;
4142 struct device *dev = ice_pf_to_dev(pf);
4143 int err = 0;
4144
4145 /* optional device-specific DDP (if present) overrides the default DDP
4146 * package file. kernel logs a debug message if the file doesn't exist,
4147 * and warning messages for other errors.
4148 */
4149 if (opt_fw_filename) {
4150 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
4151 if (err) {
4152 kfree(opt_fw_filename);
4153 goto dflt_pkg_load;
4154 }
4155
4156 /* request for firmware was successful. Download to device */
4157 ice_load_pkg(firmware, pf);
4158 kfree(opt_fw_filename);
4159 release_firmware(firmware);
4160 return;
4161 }
4162
4163 dflt_pkg_load:
4164 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
4165 if (err) {
4166 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4167 return;
4168 }
4169
4170 /* request for firmware was successful. Download to device */
4171 ice_load_pkg(firmware, pf);
4172 release_firmware(firmware);
4173 }
4174
4175 /**
4176 * ice_print_wake_reason - show the wake up cause in the log
4177 * @pf: pointer to the PF struct
4178 */
ice_print_wake_reason(struct ice_pf * pf)4179 static void ice_print_wake_reason(struct ice_pf *pf)
4180 {
4181 u32 wus = pf->wakeup_reason;
4182 const char *wake_str;
4183
4184 /* if no wake event, nothing to print */
4185 if (!wus)
4186 return;
4187
4188 if (wus & PFPM_WUS_LNKC_M)
4189 wake_str = "Link\n";
4190 else if (wus & PFPM_WUS_MAG_M)
4191 wake_str = "Magic Packet\n";
4192 else if (wus & PFPM_WUS_MNG_M)
4193 wake_str = "Management\n";
4194 else if (wus & PFPM_WUS_FW_RST_WK_M)
4195 wake_str = "Firmware Reset\n";
4196 else
4197 wake_str = "Unknown\n";
4198
4199 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4200 }
4201
4202 /**
4203 * ice_register_netdev - register netdev and devlink port
4204 * @pf: pointer to the PF struct
4205 */
ice_register_netdev(struct ice_pf * pf)4206 static int ice_register_netdev(struct ice_pf *pf)
4207 {
4208 struct ice_vsi *vsi;
4209 int err = 0;
4210
4211 vsi = ice_get_main_vsi(pf);
4212 if (!vsi || !vsi->netdev)
4213 return -EIO;
4214
4215 err = register_netdev(vsi->netdev);
4216 if (err)
4217 goto err_register_netdev;
4218
4219 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4220 netif_carrier_off(vsi->netdev);
4221 netif_tx_stop_all_queues(vsi->netdev);
4222 err = ice_devlink_create_pf_port(pf);
4223 if (err)
4224 goto err_devlink_create;
4225
4226 devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev);
4227
4228 return 0;
4229 err_devlink_create:
4230 unregister_netdev(vsi->netdev);
4231 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4232 err_register_netdev:
4233 free_netdev(vsi->netdev);
4234 vsi->netdev = NULL;
4235 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4236 return err;
4237 }
4238
4239 /**
4240 * ice_probe - Device initialization routine
4241 * @pdev: PCI device information struct
4242 * @ent: entry in ice_pci_tbl
4243 *
4244 * Returns 0 on success, negative on failure
4245 */
4246 static int
ice_probe(struct pci_dev * pdev,const struct pci_device_id __always_unused * ent)4247 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
4248 {
4249 struct device *dev = &pdev->dev;
4250 struct ice_pf *pf;
4251 struct ice_hw *hw;
4252 int i, err;
4253
4254 if (pdev->is_virtfn) {
4255 dev_err(dev, "can't probe a virtual function\n");
4256 return -EINVAL;
4257 }
4258
4259 /* when under a kdump kernel initiate a reset before enabling the
4260 * device in order to clear out any pending DMA transactions. These
4261 * transactions can cause some systems to machine check when doing
4262 * the pcim_enable_device() below.
4263 */
4264 if (is_kdump_kernel()) {
4265 pci_save_state(pdev);
4266 pci_clear_master(pdev);
4267 err = pcie_flr(pdev);
4268 if (err)
4269 return err;
4270 pci_restore_state(pdev);
4271 }
4272
4273 /* this driver uses devres, see
4274 * Documentation/driver-api/driver-model/devres.rst
4275 */
4276 err = pcim_enable_device(pdev);
4277 if (err)
4278 return err;
4279
4280 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
4281 if (err) {
4282 dev_err(dev, "BAR0 I/O map error %d\n", err);
4283 return err;
4284 }
4285
4286 pf = ice_allocate_pf(dev);
4287 if (!pf)
4288 return -ENOMEM;
4289
4290 /* initialize Auxiliary index to invalid value */
4291 pf->aux_idx = -1;
4292
4293 /* set up for high or low DMA */
4294 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
4295 if (err)
4296 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
4297 if (err) {
4298 dev_err(dev, "DMA configuration failed: 0x%x\n", err);
4299 return err;
4300 }
4301
4302 pci_enable_pcie_error_reporting(pdev);
4303 pci_set_master(pdev);
4304
4305 pf->pdev = pdev;
4306 pci_set_drvdata(pdev, pf);
4307 set_bit(ICE_DOWN, pf->state);
4308 /* Disable service task until DOWN bit is cleared */
4309 set_bit(ICE_SERVICE_DIS, pf->state);
4310
4311 hw = &pf->hw;
4312 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
4313 pci_save_state(pdev);
4314
4315 hw->back = pf;
4316 hw->vendor_id = pdev->vendor;
4317 hw->device_id = pdev->device;
4318 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4319 hw->subsystem_vendor_id = pdev->subsystem_vendor;
4320 hw->subsystem_device_id = pdev->subsystem_device;
4321 hw->bus.device = PCI_SLOT(pdev->devfn);
4322 hw->bus.func = PCI_FUNC(pdev->devfn);
4323 ice_set_ctrlq_len(hw);
4324
4325 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
4326
4327 err = ice_devlink_register(pf);
4328 if (err) {
4329 dev_err(dev, "ice_devlink_register failed: %d\n", err);
4330 goto err_exit_unroll;
4331 }
4332
4333 #ifndef CONFIG_DYNAMIC_DEBUG
4334 if (debug < -1)
4335 hw->debug_mask = debug;
4336 #endif
4337
4338 err = ice_init_hw(hw);
4339 if (err) {
4340 dev_err(dev, "ice_init_hw failed: %d\n", err);
4341 err = -EIO;
4342 goto err_exit_unroll;
4343 }
4344
4345 ice_request_fw(pf);
4346
4347 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4348 * set in pf->state, which will cause ice_is_safe_mode to return
4349 * true
4350 */
4351 if (ice_is_safe_mode(pf)) {
4352 dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n");
4353 /* we already got function/device capabilities but these don't
4354 * reflect what the driver needs to do in safe mode. Instead of
4355 * adding conditional logic everywhere to ignore these
4356 * device/function capabilities, override them.
4357 */
4358 ice_set_safe_mode_caps(hw);
4359 }
4360
4361 err = ice_init_pf(pf);
4362 if (err) {
4363 dev_err(dev, "ice_init_pf failed: %d\n", err);
4364 goto err_init_pf_unroll;
4365 }
4366
4367 ice_devlink_init_regions(pf);
4368
4369 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4370 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4371 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4372 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4373 i = 0;
4374 if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4375 pf->hw.udp_tunnel_nic.tables[i].n_entries =
4376 pf->hw.tnl.valid_count[TNL_VXLAN];
4377 pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4378 UDP_TUNNEL_TYPE_VXLAN;
4379 i++;
4380 }
4381 if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4382 pf->hw.udp_tunnel_nic.tables[i].n_entries =
4383 pf->hw.tnl.valid_count[TNL_GENEVE];
4384 pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4385 UDP_TUNNEL_TYPE_GENEVE;
4386 i++;
4387 }
4388
4389 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
4390 if (!pf->num_alloc_vsi) {
4391 err = -EIO;
4392 goto err_init_pf_unroll;
4393 }
4394 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4395 dev_warn(&pf->pdev->dev,
4396 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4397 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4398 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4399 }
4400
4401 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4402 GFP_KERNEL);
4403 if (!pf->vsi) {
4404 err = -ENOMEM;
4405 goto err_init_pf_unroll;
4406 }
4407
4408 err = ice_init_interrupt_scheme(pf);
4409 if (err) {
4410 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4411 err = -EIO;
4412 goto err_init_vsi_unroll;
4413 }
4414
4415 /* In case of MSIX we are going to setup the misc vector right here
4416 * to handle admin queue events etc. In case of legacy and MSI
4417 * the misc functionality and queue processing is combined in
4418 * the same vector and that gets setup at open.
4419 */
4420 err = ice_req_irq_msix_misc(pf);
4421 if (err) {
4422 dev_err(dev, "setup of misc vector failed: %d\n", err);
4423 goto err_init_interrupt_unroll;
4424 }
4425
4426 /* create switch struct for the switch element created by FW on boot */
4427 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
4428 if (!pf->first_sw) {
4429 err = -ENOMEM;
4430 goto err_msix_misc_unroll;
4431 }
4432
4433 if (hw->evb_veb)
4434 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4435 else
4436 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4437
4438 pf->first_sw->pf = pf;
4439
4440 /* record the sw_id available for later use */
4441 pf->first_sw->sw_id = hw->port_info->sw_id;
4442
4443 err = ice_setup_pf_sw(pf);
4444 if (err) {
4445 dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
4446 goto err_alloc_sw_unroll;
4447 }
4448
4449 clear_bit(ICE_SERVICE_DIS, pf->state);
4450
4451 /* tell the firmware we are up */
4452 err = ice_send_version(pf);
4453 if (err) {
4454 dev_err(dev, "probe failed sending driver version %s. error: %d\n",
4455 UTS_RELEASE, err);
4456 goto err_send_version_unroll;
4457 }
4458
4459 /* since everything is good, start the service timer */
4460 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4461
4462 err = ice_init_link_events(pf->hw.port_info);
4463 if (err) {
4464 dev_err(dev, "ice_init_link_events failed: %d\n", err);
4465 goto err_send_version_unroll;
4466 }
4467
4468 /* not a fatal error if this fails */
4469 err = ice_init_nvm_phy_type(pf->hw.port_info);
4470 if (err)
4471 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4472
4473 /* not a fatal error if this fails */
4474 err = ice_update_link_info(pf->hw.port_info);
4475 if (err)
4476 dev_err(dev, "ice_update_link_info failed: %d\n", err);
4477
4478 ice_init_link_dflt_override(pf->hw.port_info);
4479
4480 ice_check_module_power(pf, pf->hw.port_info->phy.link_info.link_cfg_err);
4481
4482 /* if media available, initialize PHY settings */
4483 if (pf->hw.port_info->phy.link_info.link_info &
4484 ICE_AQ_MEDIA_AVAILABLE) {
4485 /* not a fatal error if this fails */
4486 err = ice_init_phy_user_cfg(pf->hw.port_info);
4487 if (err)
4488 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4489
4490 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4491 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4492
4493 if (vsi)
4494 ice_configure_phy(vsi);
4495 }
4496 } else {
4497 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4498 }
4499
4500 ice_verify_cacheline_size(pf);
4501
4502 /* Save wakeup reason register for later use */
4503 pf->wakeup_reason = rd32(hw, PFPM_WUS);
4504
4505 /* check for a power management event */
4506 ice_print_wake_reason(pf);
4507
4508 /* clear wake status, all bits */
4509 wr32(hw, PFPM_WUS, U32_MAX);
4510
4511 /* Disable WoL at init, wait for user to enable */
4512 device_set_wakeup_enable(dev, false);
4513
4514 if (ice_is_safe_mode(pf)) {
4515 ice_set_safe_mode_vlan_cfg(pf);
4516 goto probe_done;
4517 }
4518
4519 /* initialize DDP driven features */
4520 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4521 ice_ptp_init(pf);
4522
4523 /* Note: Flow director init failure is non-fatal to load */
4524 if (ice_init_fdir(pf))
4525 dev_err(dev, "could not initialize flow director\n");
4526
4527 /* Note: DCB init failure is non-fatal to load */
4528 if (ice_init_pf_dcb(pf, false)) {
4529 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4530 clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4531 } else {
4532 ice_cfg_lldp_mib_change(&pf->hw, true);
4533 }
4534
4535 if (ice_init_lag(pf))
4536 dev_warn(dev, "Failed to init link aggregation support\n");
4537
4538 /* print PCI link speed and width */
4539 pcie_print_link_status(pf->pdev);
4540
4541 probe_done:
4542 err = ice_register_netdev(pf);
4543 if (err)
4544 goto err_netdev_reg;
4545
4546 /* ready to go, so clear down state bit */
4547 clear_bit(ICE_DOWN, pf->state);
4548 if (ice_is_aux_ena(pf)) {
4549 pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL);
4550 if (pf->aux_idx < 0) {
4551 dev_err(dev, "Failed to allocate device ID for AUX driver\n");
4552 err = -ENOMEM;
4553 goto err_netdev_reg;
4554 }
4555
4556 err = ice_init_rdma(pf);
4557 if (err) {
4558 dev_err(dev, "Failed to initialize RDMA: %d\n", err);
4559 err = -EIO;
4560 goto err_init_aux_unroll;
4561 }
4562 } else {
4563 dev_warn(dev, "RDMA is not supported on this device\n");
4564 }
4565
4566 return 0;
4567
4568 err_init_aux_unroll:
4569 pf->adev = NULL;
4570 ida_free(&ice_aux_ida, pf->aux_idx);
4571 err_netdev_reg:
4572 err_send_version_unroll:
4573 ice_vsi_release_all(pf);
4574 err_alloc_sw_unroll:
4575 set_bit(ICE_SERVICE_DIS, pf->state);
4576 set_bit(ICE_DOWN, pf->state);
4577 devm_kfree(dev, pf->first_sw);
4578 err_msix_misc_unroll:
4579 ice_free_irq_msix_misc(pf);
4580 err_init_interrupt_unroll:
4581 ice_clear_interrupt_scheme(pf);
4582 err_init_vsi_unroll:
4583 devm_kfree(dev, pf->vsi);
4584 err_init_pf_unroll:
4585 ice_deinit_pf(pf);
4586 ice_devlink_destroy_regions(pf);
4587 ice_deinit_hw(hw);
4588 err_exit_unroll:
4589 ice_devlink_unregister(pf);
4590 pci_disable_pcie_error_reporting(pdev);
4591 pci_disable_device(pdev);
4592 return err;
4593 }
4594
4595 /**
4596 * ice_set_wake - enable or disable Wake on LAN
4597 * @pf: pointer to the PF struct
4598 *
4599 * Simple helper for WoL control
4600 */
ice_set_wake(struct ice_pf * pf)4601 static void ice_set_wake(struct ice_pf *pf)
4602 {
4603 struct ice_hw *hw = &pf->hw;
4604 bool wol = pf->wol_ena;
4605
4606 /* clear wake state, otherwise new wake events won't fire */
4607 wr32(hw, PFPM_WUS, U32_MAX);
4608
4609 /* enable / disable APM wake up, no RMW needed */
4610 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
4611
4612 /* set magic packet filter enabled */
4613 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
4614 }
4615
4616 /**
4617 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
4618 * @pf: pointer to the PF struct
4619 *
4620 * Issue firmware command to enable multicast magic wake, making
4621 * sure that any locally administered address (LAA) is used for
4622 * wake, and that PF reset doesn't undo the LAA.
4623 */
ice_setup_mc_magic_wake(struct ice_pf * pf)4624 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
4625 {
4626 struct device *dev = ice_pf_to_dev(pf);
4627 struct ice_hw *hw = &pf->hw;
4628 enum ice_status status;
4629 u8 mac_addr[ETH_ALEN];
4630 struct ice_vsi *vsi;
4631 u8 flags;
4632
4633 if (!pf->wol_ena)
4634 return;
4635
4636 vsi = ice_get_main_vsi(pf);
4637 if (!vsi)
4638 return;
4639
4640 /* Get current MAC address in case it's an LAA */
4641 if (vsi->netdev)
4642 ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
4643 else
4644 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4645
4646 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
4647 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
4648 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
4649
4650 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
4651 if (status)
4652 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %s aq_err %s\n",
4653 ice_stat_str(status),
4654 ice_aq_str(hw->adminq.sq_last_status));
4655 }
4656
4657 /**
4658 * ice_remove - Device removal routine
4659 * @pdev: PCI device information struct
4660 */
ice_remove(struct pci_dev * pdev)4661 static void ice_remove(struct pci_dev *pdev)
4662 {
4663 struct ice_pf *pf = pci_get_drvdata(pdev);
4664 int i;
4665
4666 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
4667 if (!ice_is_reset_in_progress(pf->state))
4668 break;
4669 msleep(100);
4670 }
4671
4672 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
4673 set_bit(ICE_VF_RESETS_DISABLED, pf->state);
4674 ice_free_vfs(pf);
4675 }
4676
4677 ice_service_task_stop(pf);
4678
4679 ice_aq_cancel_waiting_tasks(pf);
4680 ice_unplug_aux_dev(pf);
4681 if (pf->aux_idx >= 0)
4682 ida_free(&ice_aux_ida, pf->aux_idx);
4683 set_bit(ICE_DOWN, pf->state);
4684
4685 mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4686 ice_deinit_lag(pf);
4687 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4688 ice_ptp_release(pf);
4689 if (!ice_is_safe_mode(pf))
4690 ice_remove_arfs(pf);
4691 ice_setup_mc_magic_wake(pf);
4692 ice_vsi_release_all(pf);
4693 ice_set_wake(pf);
4694 ice_free_irq_msix_misc(pf);
4695 ice_for_each_vsi(pf, i) {
4696 if (!pf->vsi[i])
4697 continue;
4698 ice_vsi_free_q_vectors(pf->vsi[i]);
4699 }
4700 ice_deinit_pf(pf);
4701 ice_devlink_destroy_regions(pf);
4702 ice_deinit_hw(&pf->hw);
4703 ice_devlink_unregister(pf);
4704
4705 /* Issue a PFR as part of the prescribed driver unload flow. Do not
4706 * do it via ice_schedule_reset() since there is no need to rebuild
4707 * and the service task is already stopped.
4708 */
4709 ice_reset(&pf->hw, ICE_RESET_PFR);
4710 pci_wait_for_pending_transaction(pdev);
4711 ice_clear_interrupt_scheme(pf);
4712 pci_disable_pcie_error_reporting(pdev);
4713 pci_disable_device(pdev);
4714 }
4715
4716 /**
4717 * ice_shutdown - PCI callback for shutting down device
4718 * @pdev: PCI device information struct
4719 */
ice_shutdown(struct pci_dev * pdev)4720 static void ice_shutdown(struct pci_dev *pdev)
4721 {
4722 struct ice_pf *pf = pci_get_drvdata(pdev);
4723
4724 ice_remove(pdev);
4725
4726 if (system_state == SYSTEM_POWER_OFF) {
4727 pci_wake_from_d3(pdev, pf->wol_ena);
4728 pci_set_power_state(pdev, PCI_D3hot);
4729 }
4730 }
4731
4732 #ifdef CONFIG_PM
4733 /**
4734 * ice_prepare_for_shutdown - prep for PCI shutdown
4735 * @pf: board private structure
4736 *
4737 * Inform or close all dependent features in prep for PCI device shutdown
4738 */
ice_prepare_for_shutdown(struct ice_pf * pf)4739 static void ice_prepare_for_shutdown(struct ice_pf *pf)
4740 {
4741 struct ice_hw *hw = &pf->hw;
4742 u32 v;
4743
4744 /* Notify VFs of impending reset */
4745 if (ice_check_sq_alive(hw, &hw->mailboxq))
4746 ice_vc_notify_reset(pf);
4747
4748 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
4749
4750 /* disable the VSIs and their queues that are not already DOWN */
4751 ice_pf_dis_all_vsi(pf, false);
4752
4753 ice_for_each_vsi(pf, v)
4754 if (pf->vsi[v])
4755 pf->vsi[v]->vsi_num = 0;
4756
4757 ice_shutdown_all_ctrlq(hw);
4758 }
4759
4760 /**
4761 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
4762 * @pf: board private structure to reinitialize
4763 *
4764 * This routine reinitialize interrupt scheme that was cleared during
4765 * power management suspend callback.
4766 *
4767 * This should be called during resume routine to re-allocate the q_vectors
4768 * and reacquire interrupts.
4769 */
ice_reinit_interrupt_scheme(struct ice_pf * pf)4770 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
4771 {
4772 struct device *dev = ice_pf_to_dev(pf);
4773 int ret, v;
4774
4775 /* Since we clear MSIX flag during suspend, we need to
4776 * set it back during resume...
4777 */
4778
4779 ret = ice_init_interrupt_scheme(pf);
4780 if (ret) {
4781 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
4782 return ret;
4783 }
4784
4785 /* Remap vectors and rings, after successful re-init interrupts */
4786 ice_for_each_vsi(pf, v) {
4787 if (!pf->vsi[v])
4788 continue;
4789
4790 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
4791 if (ret)
4792 goto err_reinit;
4793 ice_vsi_map_rings_to_vectors(pf->vsi[v]);
4794 }
4795
4796 ret = ice_req_irq_msix_misc(pf);
4797 if (ret) {
4798 dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
4799 ret);
4800 goto err_reinit;
4801 }
4802
4803 return 0;
4804
4805 err_reinit:
4806 while (v--)
4807 if (pf->vsi[v])
4808 ice_vsi_free_q_vectors(pf->vsi[v]);
4809
4810 return ret;
4811 }
4812
4813 /**
4814 * ice_suspend
4815 * @dev: generic device information structure
4816 *
4817 * Power Management callback to quiesce the device and prepare
4818 * for D3 transition.
4819 */
ice_suspend(struct device * dev)4820 static int __maybe_unused ice_suspend(struct device *dev)
4821 {
4822 struct pci_dev *pdev = to_pci_dev(dev);
4823 struct ice_pf *pf;
4824 int disabled, v;
4825
4826 pf = pci_get_drvdata(pdev);
4827
4828 if (!ice_pf_state_is_nominal(pf)) {
4829 dev_err(dev, "Device is not ready, no need to suspend it\n");
4830 return -EBUSY;
4831 }
4832
4833 /* Stop watchdog tasks until resume completion.
4834 * Even though it is most likely that the service task is
4835 * disabled if the device is suspended or down, the service task's
4836 * state is controlled by a different state bit, and we should
4837 * store and honor whatever state that bit is in at this point.
4838 */
4839 disabled = ice_service_task_stop(pf);
4840
4841 ice_unplug_aux_dev(pf);
4842
4843 /* Already suspended?, then there is nothing to do */
4844 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
4845 if (!disabled)
4846 ice_service_task_restart(pf);
4847 return 0;
4848 }
4849
4850 if (test_bit(ICE_DOWN, pf->state) ||
4851 ice_is_reset_in_progress(pf->state)) {
4852 dev_err(dev, "can't suspend device in reset or already down\n");
4853 if (!disabled)
4854 ice_service_task_restart(pf);
4855 return 0;
4856 }
4857
4858 ice_setup_mc_magic_wake(pf);
4859
4860 ice_prepare_for_shutdown(pf);
4861
4862 ice_set_wake(pf);
4863
4864 /* Free vectors, clear the interrupt scheme and release IRQs
4865 * for proper hibernation, especially with large number of CPUs.
4866 * Otherwise hibernation might fail when mapping all the vectors back
4867 * to CPU0.
4868 */
4869 ice_free_irq_msix_misc(pf);
4870 ice_for_each_vsi(pf, v) {
4871 if (!pf->vsi[v])
4872 continue;
4873 ice_vsi_free_q_vectors(pf->vsi[v]);
4874 }
4875 ice_free_cpu_rx_rmap(ice_get_main_vsi(pf));
4876 ice_clear_interrupt_scheme(pf);
4877
4878 pci_save_state(pdev);
4879 pci_wake_from_d3(pdev, pf->wol_ena);
4880 pci_set_power_state(pdev, PCI_D3hot);
4881 return 0;
4882 }
4883
4884 /**
4885 * ice_resume - PM callback for waking up from D3
4886 * @dev: generic device information structure
4887 */
ice_resume(struct device * dev)4888 static int __maybe_unused ice_resume(struct device *dev)
4889 {
4890 struct pci_dev *pdev = to_pci_dev(dev);
4891 enum ice_reset_req reset_type;
4892 struct ice_pf *pf;
4893 struct ice_hw *hw;
4894 int ret;
4895
4896 pci_set_power_state(pdev, PCI_D0);
4897 pci_restore_state(pdev);
4898 pci_save_state(pdev);
4899
4900 if (!pci_device_is_present(pdev))
4901 return -ENODEV;
4902
4903 ret = pci_enable_device_mem(pdev);
4904 if (ret) {
4905 dev_err(dev, "Cannot enable device after suspend\n");
4906 return ret;
4907 }
4908
4909 pf = pci_get_drvdata(pdev);
4910 hw = &pf->hw;
4911
4912 pf->wakeup_reason = rd32(hw, PFPM_WUS);
4913 ice_print_wake_reason(pf);
4914
4915 /* We cleared the interrupt scheme when we suspended, so we need to
4916 * restore it now to resume device functionality.
4917 */
4918 ret = ice_reinit_interrupt_scheme(pf);
4919 if (ret)
4920 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
4921
4922 clear_bit(ICE_DOWN, pf->state);
4923 /* Now perform PF reset and rebuild */
4924 reset_type = ICE_RESET_PFR;
4925 /* re-enable service task for reset, but allow reset to schedule it */
4926 clear_bit(ICE_SERVICE_DIS, pf->state);
4927
4928 if (ice_schedule_reset(pf, reset_type))
4929 dev_err(dev, "Reset during resume failed.\n");
4930
4931 clear_bit(ICE_SUSPENDED, pf->state);
4932 ice_service_task_restart(pf);
4933
4934 /* Restart the service task */
4935 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4936
4937 return 0;
4938 }
4939 #endif /* CONFIG_PM */
4940
4941 /**
4942 * ice_pci_err_detected - warning that PCI error has been detected
4943 * @pdev: PCI device information struct
4944 * @err: the type of PCI error
4945 *
4946 * Called to warn that something happened on the PCI bus and the error handling
4947 * is in progress. Allows the driver to gracefully prepare/handle PCI errors.
4948 */
4949 static pci_ers_result_t
ice_pci_err_detected(struct pci_dev * pdev,pci_channel_state_t err)4950 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
4951 {
4952 struct ice_pf *pf = pci_get_drvdata(pdev);
4953
4954 if (!pf) {
4955 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
4956 __func__, err);
4957 return PCI_ERS_RESULT_DISCONNECT;
4958 }
4959
4960 if (!test_bit(ICE_SUSPENDED, pf->state)) {
4961 ice_service_task_stop(pf);
4962
4963 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
4964 set_bit(ICE_PFR_REQ, pf->state);
4965 ice_prepare_for_reset(pf);
4966 }
4967 }
4968
4969 return PCI_ERS_RESULT_NEED_RESET;
4970 }
4971
4972 /**
4973 * ice_pci_err_slot_reset - a PCI slot reset has just happened
4974 * @pdev: PCI device information struct
4975 *
4976 * Called to determine if the driver can recover from the PCI slot reset by
4977 * using a register read to determine if the device is recoverable.
4978 */
ice_pci_err_slot_reset(struct pci_dev * pdev)4979 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
4980 {
4981 struct ice_pf *pf = pci_get_drvdata(pdev);
4982 pci_ers_result_t result;
4983 int err;
4984 u32 reg;
4985
4986 err = pci_enable_device_mem(pdev);
4987 if (err) {
4988 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
4989 err);
4990 result = PCI_ERS_RESULT_DISCONNECT;
4991 } else {
4992 pci_set_master(pdev);
4993 pci_restore_state(pdev);
4994 pci_save_state(pdev);
4995 pci_wake_from_d3(pdev, false);
4996
4997 /* Check for life */
4998 reg = rd32(&pf->hw, GLGEN_RTRIG);
4999 if (!reg)
5000 result = PCI_ERS_RESULT_RECOVERED;
5001 else
5002 result = PCI_ERS_RESULT_DISCONNECT;
5003 }
5004
5005 err = pci_aer_clear_nonfatal_status(pdev);
5006 if (err)
5007 dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n",
5008 err);
5009 /* non-fatal, continue */
5010
5011 return result;
5012 }
5013
5014 /**
5015 * ice_pci_err_resume - restart operations after PCI error recovery
5016 * @pdev: PCI device information struct
5017 *
5018 * Called to allow the driver to bring things back up after PCI error and/or
5019 * reset recovery have finished
5020 */
ice_pci_err_resume(struct pci_dev * pdev)5021 static void ice_pci_err_resume(struct pci_dev *pdev)
5022 {
5023 struct ice_pf *pf = pci_get_drvdata(pdev);
5024
5025 if (!pf) {
5026 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5027 __func__);
5028 return;
5029 }
5030
5031 if (test_bit(ICE_SUSPENDED, pf->state)) {
5032 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5033 __func__);
5034 return;
5035 }
5036
5037 ice_restore_all_vfs_msi_state(pdev);
5038
5039 ice_do_reset(pf, ICE_RESET_PFR);
5040 ice_service_task_restart(pf);
5041 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5042 }
5043
5044 /**
5045 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5046 * @pdev: PCI device information struct
5047 */
ice_pci_err_reset_prepare(struct pci_dev * pdev)5048 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5049 {
5050 struct ice_pf *pf = pci_get_drvdata(pdev);
5051
5052 if (!test_bit(ICE_SUSPENDED, pf->state)) {
5053 ice_service_task_stop(pf);
5054
5055 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5056 set_bit(ICE_PFR_REQ, pf->state);
5057 ice_prepare_for_reset(pf);
5058 }
5059 }
5060 }
5061
5062 /**
5063 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5064 * @pdev: PCI device information struct
5065 */
ice_pci_err_reset_done(struct pci_dev * pdev)5066 static void ice_pci_err_reset_done(struct pci_dev *pdev)
5067 {
5068 ice_pci_err_resume(pdev);
5069 }
5070
5071 /* ice_pci_tbl - PCI Device ID Table
5072 *
5073 * Wildcard entries (PCI_ANY_ID) should come last
5074 * Last entry must be all 0s
5075 *
5076 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5077 * Class, Class Mask, private data (not used) }
5078 */
5079 static const struct pci_device_id ice_pci_tbl[] = {
5080 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
5081 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
5082 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
5083 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 },
5084 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 },
5085 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
5086 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
5087 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
5088 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
5089 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
5090 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
5091 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
5092 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
5093 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
5094 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
5095 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
5096 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
5097 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
5098 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
5099 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
5100 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
5101 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
5102 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
5103 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
5104 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
5105 /* required last entry */
5106 { 0, }
5107 };
5108 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5109
5110 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5111
5112 static const struct pci_error_handlers ice_pci_err_handler = {
5113 .error_detected = ice_pci_err_detected,
5114 .slot_reset = ice_pci_err_slot_reset,
5115 .reset_prepare = ice_pci_err_reset_prepare,
5116 .reset_done = ice_pci_err_reset_done,
5117 .resume = ice_pci_err_resume
5118 };
5119
5120 static struct pci_driver ice_driver = {
5121 .name = KBUILD_MODNAME,
5122 .id_table = ice_pci_tbl,
5123 .probe = ice_probe,
5124 .remove = ice_remove,
5125 #ifdef CONFIG_PM
5126 .driver.pm = &ice_pm_ops,
5127 #endif /* CONFIG_PM */
5128 .shutdown = ice_shutdown,
5129 .sriov_configure = ice_sriov_configure,
5130 .err_handler = &ice_pci_err_handler
5131 };
5132
5133 /**
5134 * ice_module_init - Driver registration routine
5135 *
5136 * ice_module_init is the first routine called when the driver is
5137 * loaded. All it does is register with the PCI subsystem.
5138 */
ice_module_init(void)5139 static int __init ice_module_init(void)
5140 {
5141 int status;
5142
5143 pr_info("%s\n", ice_driver_string);
5144 pr_info("%s\n", ice_copyright);
5145
5146 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME);
5147 if (!ice_wq) {
5148 pr_err("Failed to create workqueue\n");
5149 return -ENOMEM;
5150 }
5151
5152 status = pci_register_driver(&ice_driver);
5153 if (status) {
5154 pr_err("failed to register PCI driver, err %d\n", status);
5155 destroy_workqueue(ice_wq);
5156 }
5157
5158 return status;
5159 }
5160 module_init(ice_module_init);
5161
5162 /**
5163 * ice_module_exit - Driver exit cleanup routine
5164 *
5165 * ice_module_exit is called just before the driver is removed
5166 * from memory.
5167 */
ice_module_exit(void)5168 static void __exit ice_module_exit(void)
5169 {
5170 pci_unregister_driver(&ice_driver);
5171 destroy_workqueue(ice_wq);
5172 pr_info("module unloaded\n");
5173 }
5174 module_exit(ice_module_exit);
5175
5176 /**
5177 * ice_set_mac_address - NDO callback to set MAC address
5178 * @netdev: network interface device structure
5179 * @pi: pointer to an address structure
5180 *
5181 * Returns 0 on success, negative on failure
5182 */
ice_set_mac_address(struct net_device * netdev,void * pi)5183 static int ice_set_mac_address(struct net_device *netdev, void *pi)
5184 {
5185 struct ice_netdev_priv *np = netdev_priv(netdev);
5186 struct ice_vsi *vsi = np->vsi;
5187 struct ice_pf *pf = vsi->back;
5188 struct ice_hw *hw = &pf->hw;
5189 struct sockaddr *addr = pi;
5190 enum ice_status status;
5191 u8 old_mac[ETH_ALEN];
5192 u8 flags = 0;
5193 int err = 0;
5194 u8 *mac;
5195
5196 mac = (u8 *)addr->sa_data;
5197
5198 if (!is_valid_ether_addr(mac))
5199 return -EADDRNOTAVAIL;
5200
5201 if (ether_addr_equal(netdev->dev_addr, mac)) {
5202 netdev_dbg(netdev, "already using mac %pM\n", mac);
5203 return 0;
5204 }
5205
5206 if (test_bit(ICE_DOWN, pf->state) ||
5207 ice_is_reset_in_progress(pf->state)) {
5208 netdev_err(netdev, "can't set mac %pM. device not ready\n",
5209 mac);
5210 return -EBUSY;
5211 }
5212
5213 netif_addr_lock_bh(netdev);
5214 ether_addr_copy(old_mac, netdev->dev_addr);
5215 /* change the netdev's MAC address */
5216 memcpy(netdev->dev_addr, mac, netdev->addr_len);
5217 netif_addr_unlock_bh(netdev);
5218
5219 /* Clean up old MAC filter. Not an error if old filter doesn't exist */
5220 status = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
5221 if (status && status != ICE_ERR_DOES_NOT_EXIST) {
5222 err = -EADDRNOTAVAIL;
5223 goto err_update_filters;
5224 }
5225
5226 /* Add filter for new MAC. If filter exists, return success */
5227 status = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
5228 if (status == ICE_ERR_ALREADY_EXISTS)
5229 /* Although this MAC filter is already present in hardware it's
5230 * possible in some cases (e.g. bonding) that dev_addr was
5231 * modified outside of the driver and needs to be restored back
5232 * to this value.
5233 */
5234 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
5235 else if (status)
5236 /* error if the new filter addition failed */
5237 err = -EADDRNOTAVAIL;
5238
5239 err_update_filters:
5240 if (err) {
5241 netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
5242 mac);
5243 netif_addr_lock_bh(netdev);
5244 eth_hw_addr_set(netdev, old_mac);
5245 netif_addr_unlock_bh(netdev);
5246 return err;
5247 }
5248
5249 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
5250 netdev->dev_addr);
5251
5252 /* write new MAC address to the firmware */
5253 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
5254 status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
5255 if (status) {
5256 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %s\n",
5257 mac, ice_stat_str(status));
5258 }
5259 return 0;
5260 }
5261
5262 /**
5263 * ice_set_rx_mode - NDO callback to set the netdev filters
5264 * @netdev: network interface device structure
5265 */
ice_set_rx_mode(struct net_device * netdev)5266 static void ice_set_rx_mode(struct net_device *netdev)
5267 {
5268 struct ice_netdev_priv *np = netdev_priv(netdev);
5269 struct ice_vsi *vsi = np->vsi;
5270
5271 if (!vsi)
5272 return;
5273
5274 /* Set the flags to synchronize filters
5275 * ndo_set_rx_mode may be triggered even without a change in netdev
5276 * flags
5277 */
5278 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
5279 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
5280 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
5281
5282 /* schedule our worker thread which will take care of
5283 * applying the new filter changes
5284 */
5285 ice_service_task_schedule(vsi->back);
5286 }
5287
5288 /**
5289 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5290 * @netdev: network interface device structure
5291 * @queue_index: Queue ID
5292 * @maxrate: maximum bandwidth in Mbps
5293 */
5294 static int
ice_set_tx_maxrate(struct net_device * netdev,int queue_index,u32 maxrate)5295 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5296 {
5297 struct ice_netdev_priv *np = netdev_priv(netdev);
5298 struct ice_vsi *vsi = np->vsi;
5299 enum ice_status status;
5300 u16 q_handle;
5301 u8 tc;
5302
5303 /* Validate maxrate requested is within permitted range */
5304 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5305 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5306 maxrate, queue_index);
5307 return -EINVAL;
5308 }
5309
5310 q_handle = vsi->tx_rings[queue_index]->q_handle;
5311 tc = ice_dcb_get_tc(vsi, queue_index);
5312
5313 /* Set BW back to default, when user set maxrate to 0 */
5314 if (!maxrate)
5315 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
5316 q_handle, ICE_MAX_BW);
5317 else
5318 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
5319 q_handle, ICE_MAX_BW, maxrate * 1000);
5320 if (status) {
5321 netdev_err(netdev, "Unable to set Tx max rate, error %s\n",
5322 ice_stat_str(status));
5323 return -EIO;
5324 }
5325
5326 return 0;
5327 }
5328
5329 /**
5330 * ice_fdb_add - add an entry to the hardware database
5331 * @ndm: the input from the stack
5332 * @tb: pointer to array of nladdr (unused)
5333 * @dev: the net device pointer
5334 * @addr: the MAC address entry being added
5335 * @vid: VLAN ID
5336 * @flags: instructions from stack about fdb operation
5337 * @extack: netlink extended ack
5338 */
5339 static int
ice_fdb_add(struct ndmsg * ndm,struct nlattr __always_unused * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,struct netlink_ext_ack __always_unused * extack)5340 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5341 struct net_device *dev, const unsigned char *addr, u16 vid,
5342 u16 flags, struct netlink_ext_ack __always_unused *extack)
5343 {
5344 int err;
5345
5346 if (vid) {
5347 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5348 return -EINVAL;
5349 }
5350 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5351 netdev_err(dev, "FDB only supports static addresses\n");
5352 return -EINVAL;
5353 }
5354
5355 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5356 err = dev_uc_add_excl(dev, addr);
5357 else if (is_multicast_ether_addr(addr))
5358 err = dev_mc_add_excl(dev, addr);
5359 else
5360 err = -EINVAL;
5361
5362 /* Only return duplicate errors if NLM_F_EXCL is set */
5363 if (err == -EEXIST && !(flags & NLM_F_EXCL))
5364 err = 0;
5365
5366 return err;
5367 }
5368
5369 /**
5370 * ice_fdb_del - delete an entry from the hardware database
5371 * @ndm: the input from the stack
5372 * @tb: pointer to array of nladdr (unused)
5373 * @dev: the net device pointer
5374 * @addr: the MAC address entry being added
5375 * @vid: VLAN ID
5376 */
5377 static int
ice_fdb_del(struct ndmsg * ndm,__always_unused struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,__always_unused u16 vid)5378 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5379 struct net_device *dev, const unsigned char *addr,
5380 __always_unused u16 vid)
5381 {
5382 int err;
5383
5384 if (ndm->ndm_state & NUD_PERMANENT) {
5385 netdev_err(dev, "FDB only supports static addresses\n");
5386 return -EINVAL;
5387 }
5388
5389 if (is_unicast_ether_addr(addr))
5390 err = dev_uc_del(dev, addr);
5391 else if (is_multicast_ether_addr(addr))
5392 err = dev_mc_del(dev, addr);
5393 else
5394 err = -EINVAL;
5395
5396 return err;
5397 }
5398
5399 /**
5400 * ice_set_features - set the netdev feature flags
5401 * @netdev: ptr to the netdev being adjusted
5402 * @features: the feature set that the stack is suggesting
5403 */
5404 static int
ice_set_features(struct net_device * netdev,netdev_features_t features)5405 ice_set_features(struct net_device *netdev, netdev_features_t features)
5406 {
5407 struct ice_netdev_priv *np = netdev_priv(netdev);
5408 struct ice_vsi *vsi = np->vsi;
5409 struct ice_pf *pf = vsi->back;
5410 int ret = 0;
5411
5412 /* Don't set any netdev advanced features with device in Safe Mode */
5413 if (ice_is_safe_mode(vsi->back)) {
5414 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n");
5415 return ret;
5416 }
5417
5418 /* Do not change setting during reset */
5419 if (ice_is_reset_in_progress(pf->state)) {
5420 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
5421 return -EBUSY;
5422 }
5423
5424 /* Multiple features can be changed in one call so keep features in
5425 * separate if/else statements to guarantee each feature is checked
5426 */
5427 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
5428 ice_vsi_manage_rss_lut(vsi, true);
5429 else if (!(features & NETIF_F_RXHASH) &&
5430 netdev->features & NETIF_F_RXHASH)
5431 ice_vsi_manage_rss_lut(vsi, false);
5432
5433 if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
5434 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5435 ret = ice_vsi_manage_vlan_stripping(vsi, true);
5436 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
5437 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5438 ret = ice_vsi_manage_vlan_stripping(vsi, false);
5439
5440 if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
5441 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5442 ret = ice_vsi_manage_vlan_insertion(vsi);
5443 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
5444 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5445 ret = ice_vsi_manage_vlan_insertion(vsi);
5446
5447 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5448 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5449 ret = ice_cfg_vlan_pruning(vsi, true, false);
5450 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5451 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5452 ret = ice_cfg_vlan_pruning(vsi, false, false);
5453
5454 if ((features & NETIF_F_NTUPLE) &&
5455 !(netdev->features & NETIF_F_NTUPLE)) {
5456 ice_vsi_manage_fdir(vsi, true);
5457 ice_init_arfs(vsi);
5458 } else if (!(features & NETIF_F_NTUPLE) &&
5459 (netdev->features & NETIF_F_NTUPLE)) {
5460 ice_vsi_manage_fdir(vsi, false);
5461 ice_clear_arfs(vsi);
5462 }
5463
5464 return ret;
5465 }
5466
5467 /**
5468 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI
5469 * @vsi: VSI to setup VLAN properties for
5470 */
ice_vsi_vlan_setup(struct ice_vsi * vsi)5471 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
5472 {
5473 int ret = 0;
5474
5475 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
5476 ret = ice_vsi_manage_vlan_stripping(vsi, true);
5477 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
5478 ret = ice_vsi_manage_vlan_insertion(vsi);
5479
5480 return ret;
5481 }
5482
5483 /**
5484 * ice_vsi_cfg - Setup the VSI
5485 * @vsi: the VSI being configured
5486 *
5487 * Return 0 on success and negative value on error
5488 */
ice_vsi_cfg(struct ice_vsi * vsi)5489 int ice_vsi_cfg(struct ice_vsi *vsi)
5490 {
5491 int err;
5492
5493 if (vsi->netdev && vsi->type == ICE_VSI_PF) {
5494 ice_set_rx_mode(vsi->netdev);
5495
5496 err = ice_vsi_vlan_setup(vsi);
5497 if (err)
5498 return err;
5499 }
5500 ice_vsi_cfg_dcb_rings(vsi);
5501
5502 err = ice_vsi_cfg_lan_txqs(vsi);
5503 if (!err && ice_is_xdp_ena_vsi(vsi))
5504 err = ice_vsi_cfg_xdp_txqs(vsi);
5505 if (!err)
5506 err = ice_vsi_cfg_rxqs(vsi);
5507
5508 return err;
5509 }
5510
5511 /* THEORY OF MODERATION:
5512 * The below code creates custom DIM profiles for use by this driver, because
5513 * the ice driver hardware works differently than the hardware that DIMLIB was
5514 * originally made for. ice hardware doesn't have packet count limits that
5515 * can trigger an interrupt, but it *does* have interrupt rate limit support,
5516 * and this code adds that capability to be used by the driver when it's using
5517 * DIMLIB. The DIMLIB code was always designed to be a suggestion to the driver
5518 * for how to "respond" to traffic and interrupts, so this driver uses a
5519 * slightly different set of moderation parameters to get best performance.
5520 */
5521 struct ice_dim {
5522 /* the throttle rate for interrupts, basically worst case delay before
5523 * an initial interrupt fires, value is stored in microseconds.
5524 */
5525 u16 itr;
5526 /* the rate limit for interrupts, which can cap a delay from a small
5527 * ITR at a certain amount of interrupts per second. f.e. a 2us ITR
5528 * could yield as much as 500,000 interrupts per second, but with a
5529 * 10us rate limit, it limits to 100,000 interrupts per second. Value
5530 * is stored in microseconds.
5531 */
5532 u16 intrl;
5533 };
5534
5535 /* Make a different profile for Rx that doesn't allow quite so aggressive
5536 * moderation at the high end (it maxes out at 128us or about 8k interrupts a
5537 * second. The INTRL/rate parameters here are only useful to cap small ITR
5538 * values, which is why for larger ITR's - like 128, which can only generate
5539 * 8k interrupts per second, there is no point to rate limit and the values
5540 * are set to zero. The rate limit values do affect latency, and so must
5541 * be reasonably small so to not impact latency sensitive tests.
5542 */
5543 static const struct ice_dim rx_profile[] = {
5544 {2, 10},
5545 {8, 16},
5546 {32, 0},
5547 {96, 0},
5548 {128, 0}
5549 };
5550
5551 /* The transmit profile, which has the same sorts of values
5552 * as the previous struct
5553 */
5554 static const struct ice_dim tx_profile[] = {
5555 {2, 10},
5556 {8, 16},
5557 {64, 0},
5558 {128, 0},
5559 {256, 0}
5560 };
5561
ice_tx_dim_work(struct work_struct * work)5562 static void ice_tx_dim_work(struct work_struct *work)
5563 {
5564 struct ice_ring_container *rc;
5565 struct ice_q_vector *q_vector;
5566 struct dim *dim;
5567 u16 itr, intrl;
5568
5569 dim = container_of(work, struct dim, work);
5570 rc = container_of(dim, struct ice_ring_container, dim);
5571 q_vector = container_of(rc, struct ice_q_vector, tx);
5572
5573 if (dim->profile_ix >= ARRAY_SIZE(tx_profile))
5574 dim->profile_ix = ARRAY_SIZE(tx_profile) - 1;
5575
5576 /* look up the values in our local table */
5577 itr = tx_profile[dim->profile_ix].itr;
5578 intrl = tx_profile[dim->profile_ix].intrl;
5579
5580 ice_trace(tx_dim_work, q_vector, dim);
5581 ice_write_itr(rc, itr);
5582 ice_write_intrl(q_vector, intrl);
5583
5584 dim->state = DIM_START_MEASURE;
5585 }
5586
ice_rx_dim_work(struct work_struct * work)5587 static void ice_rx_dim_work(struct work_struct *work)
5588 {
5589 struct ice_ring_container *rc;
5590 struct ice_q_vector *q_vector;
5591 struct dim *dim;
5592 u16 itr, intrl;
5593
5594 dim = container_of(work, struct dim, work);
5595 rc = container_of(dim, struct ice_ring_container, dim);
5596 q_vector = container_of(rc, struct ice_q_vector, rx);
5597
5598 if (dim->profile_ix >= ARRAY_SIZE(rx_profile))
5599 dim->profile_ix = ARRAY_SIZE(rx_profile) - 1;
5600
5601 /* look up the values in our local table */
5602 itr = rx_profile[dim->profile_ix].itr;
5603 intrl = rx_profile[dim->profile_ix].intrl;
5604
5605 ice_trace(rx_dim_work, q_vector, dim);
5606 ice_write_itr(rc, itr);
5607 ice_write_intrl(q_vector, intrl);
5608
5609 dim->state = DIM_START_MEASURE;
5610 }
5611
5612 /**
5613 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
5614 * @vsi: the VSI being configured
5615 */
ice_napi_enable_all(struct ice_vsi * vsi)5616 static void ice_napi_enable_all(struct ice_vsi *vsi)
5617 {
5618 int q_idx;
5619
5620 if (!vsi->netdev)
5621 return;
5622
5623 ice_for_each_q_vector(vsi, q_idx) {
5624 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5625
5626 INIT_WORK(&q_vector->tx.dim.work, ice_tx_dim_work);
5627 q_vector->tx.dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
5628
5629 INIT_WORK(&q_vector->rx.dim.work, ice_rx_dim_work);
5630 q_vector->rx.dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
5631
5632 if (q_vector->rx.ring || q_vector->tx.ring)
5633 napi_enable(&q_vector->napi);
5634 }
5635 }
5636
5637 /**
5638 * ice_up_complete - Finish the last steps of bringing up a connection
5639 * @vsi: The VSI being configured
5640 *
5641 * Return 0 on success and negative value on error
5642 */
ice_up_complete(struct ice_vsi * vsi)5643 static int ice_up_complete(struct ice_vsi *vsi)
5644 {
5645 struct ice_pf *pf = vsi->back;
5646 int err;
5647
5648 ice_vsi_cfg_msix(vsi);
5649
5650 /* Enable only Rx rings, Tx rings were enabled by the FW when the
5651 * Tx queue group list was configured and the context bits were
5652 * programmed using ice_vsi_cfg_txqs
5653 */
5654 err = ice_vsi_start_all_rx_rings(vsi);
5655 if (err)
5656 return err;
5657
5658 clear_bit(ICE_VSI_DOWN, vsi->state);
5659 ice_napi_enable_all(vsi);
5660 ice_vsi_ena_irq(vsi);
5661
5662 if (vsi->port_info &&
5663 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
5664 vsi->netdev && vsi->type == ICE_VSI_PF) {
5665 ice_print_link_msg(vsi, true);
5666 netif_tx_start_all_queues(vsi->netdev);
5667 netif_carrier_on(vsi->netdev);
5668 }
5669
5670 /* Perform an initial read of the statistics registers now to
5671 * set the baseline so counters are ready when interface is up
5672 */
5673 ice_update_eth_stats(vsi);
5674
5675 if (vsi->type == ICE_VSI_PF)
5676 ice_service_task_schedule(pf);
5677
5678 return 0;
5679 }
5680
5681 /**
5682 * ice_up - Bring the connection back up after being down
5683 * @vsi: VSI being configured
5684 */
ice_up(struct ice_vsi * vsi)5685 int ice_up(struct ice_vsi *vsi)
5686 {
5687 int err;
5688
5689 err = ice_vsi_cfg(vsi);
5690 if (!err)
5691 err = ice_up_complete(vsi);
5692
5693 return err;
5694 }
5695
5696 /**
5697 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
5698 * @ring: Tx or Rx ring to read stats from
5699 * @pkts: packets stats counter
5700 * @bytes: bytes stats counter
5701 *
5702 * This function fetches stats from the ring considering the atomic operations
5703 * that needs to be performed to read u64 values in 32 bit machine.
5704 */
5705 static void
ice_fetch_u64_stats_per_ring(struct ice_ring * ring,u64 * pkts,u64 * bytes)5706 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes)
5707 {
5708 unsigned int start;
5709 *pkts = 0;
5710 *bytes = 0;
5711
5712 if (!ring)
5713 return;
5714 do {
5715 start = u64_stats_fetch_begin_irq(&ring->syncp);
5716 *pkts = ring->stats.pkts;
5717 *bytes = ring->stats.bytes;
5718 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
5719 }
5720
5721 /**
5722 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
5723 * @vsi: the VSI to be updated
5724 * @rings: rings to work on
5725 * @count: number of rings
5726 */
5727 static void
ice_update_vsi_tx_ring_stats(struct ice_vsi * vsi,struct ice_ring ** rings,u16 count)5728 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct ice_ring **rings,
5729 u16 count)
5730 {
5731 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5732 u16 i;
5733
5734 for (i = 0; i < count; i++) {
5735 struct ice_ring *ring;
5736 u64 pkts, bytes;
5737
5738 ring = READ_ONCE(rings[i]);
5739 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5740 vsi_stats->tx_packets += pkts;
5741 vsi_stats->tx_bytes += bytes;
5742 vsi->tx_restart += ring->tx_stats.restart_q;
5743 vsi->tx_busy += ring->tx_stats.tx_busy;
5744 vsi->tx_linearize += ring->tx_stats.tx_linearize;
5745 }
5746 }
5747
5748 /**
5749 * ice_update_vsi_ring_stats - Update VSI stats counters
5750 * @vsi: the VSI to be updated
5751 */
ice_update_vsi_ring_stats(struct ice_vsi * vsi)5752 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
5753 {
5754 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5755 u64 pkts, bytes;
5756 int i;
5757
5758 /* reset netdev stats */
5759 vsi_stats->tx_packets = 0;
5760 vsi_stats->tx_bytes = 0;
5761 vsi_stats->rx_packets = 0;
5762 vsi_stats->rx_bytes = 0;
5763
5764 /* reset non-netdev (extended) stats */
5765 vsi->tx_restart = 0;
5766 vsi->tx_busy = 0;
5767 vsi->tx_linearize = 0;
5768 vsi->rx_buf_failed = 0;
5769 vsi->rx_page_failed = 0;
5770
5771 rcu_read_lock();
5772
5773 /* update Tx rings counters */
5774 ice_update_vsi_tx_ring_stats(vsi, vsi->tx_rings, vsi->num_txq);
5775
5776 /* update Rx rings counters */
5777 ice_for_each_rxq(vsi, i) {
5778 struct ice_ring *ring = READ_ONCE(vsi->rx_rings[i]);
5779
5780 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5781 vsi_stats->rx_packets += pkts;
5782 vsi_stats->rx_bytes += bytes;
5783 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
5784 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
5785 }
5786
5787 /* update XDP Tx rings counters */
5788 if (ice_is_xdp_ena_vsi(vsi))
5789 ice_update_vsi_tx_ring_stats(vsi, vsi->xdp_rings,
5790 vsi->num_xdp_txq);
5791
5792 rcu_read_unlock();
5793 }
5794
5795 /**
5796 * ice_update_vsi_stats - Update VSI stats counters
5797 * @vsi: the VSI to be updated
5798 */
ice_update_vsi_stats(struct ice_vsi * vsi)5799 void ice_update_vsi_stats(struct ice_vsi *vsi)
5800 {
5801 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
5802 struct ice_eth_stats *cur_es = &vsi->eth_stats;
5803 struct ice_pf *pf = vsi->back;
5804
5805 if (test_bit(ICE_VSI_DOWN, vsi->state) ||
5806 test_bit(ICE_CFG_BUSY, pf->state))
5807 return;
5808
5809 /* get stats as recorded by Tx/Rx rings */
5810 ice_update_vsi_ring_stats(vsi);
5811
5812 /* get VSI stats as recorded by the hardware */
5813 ice_update_eth_stats(vsi);
5814
5815 cur_ns->tx_errors = cur_es->tx_errors;
5816 cur_ns->rx_dropped = cur_es->rx_discards;
5817 cur_ns->tx_dropped = cur_es->tx_discards;
5818 cur_ns->multicast = cur_es->rx_multicast;
5819
5820 /* update some more netdev stats if this is main VSI */
5821 if (vsi->type == ICE_VSI_PF) {
5822 cur_ns->rx_crc_errors = pf->stats.crc_errors;
5823 cur_ns->rx_errors = pf->stats.crc_errors +
5824 pf->stats.illegal_bytes +
5825 pf->stats.rx_len_errors +
5826 pf->stats.rx_undersize +
5827 pf->hw_csum_rx_error +
5828 pf->stats.rx_jabber +
5829 pf->stats.rx_fragments +
5830 pf->stats.rx_oversize;
5831 cur_ns->rx_length_errors = pf->stats.rx_len_errors;
5832 /* record drops from the port level */
5833 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
5834 }
5835 }
5836
5837 /**
5838 * ice_update_pf_stats - Update PF port stats counters
5839 * @pf: PF whose stats needs to be updated
5840 */
ice_update_pf_stats(struct ice_pf * pf)5841 void ice_update_pf_stats(struct ice_pf *pf)
5842 {
5843 struct ice_hw_port_stats *prev_ps, *cur_ps;
5844 struct ice_hw *hw = &pf->hw;
5845 u16 fd_ctr_base;
5846 u8 port;
5847
5848 port = hw->port_info->lport;
5849 prev_ps = &pf->stats_prev;
5850 cur_ps = &pf->stats;
5851
5852 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
5853 &prev_ps->eth.rx_bytes,
5854 &cur_ps->eth.rx_bytes);
5855
5856 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
5857 &prev_ps->eth.rx_unicast,
5858 &cur_ps->eth.rx_unicast);
5859
5860 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
5861 &prev_ps->eth.rx_multicast,
5862 &cur_ps->eth.rx_multicast);
5863
5864 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
5865 &prev_ps->eth.rx_broadcast,
5866 &cur_ps->eth.rx_broadcast);
5867
5868 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
5869 &prev_ps->eth.rx_discards,
5870 &cur_ps->eth.rx_discards);
5871
5872 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
5873 &prev_ps->eth.tx_bytes,
5874 &cur_ps->eth.tx_bytes);
5875
5876 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
5877 &prev_ps->eth.tx_unicast,
5878 &cur_ps->eth.tx_unicast);
5879
5880 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
5881 &prev_ps->eth.tx_multicast,
5882 &cur_ps->eth.tx_multicast);
5883
5884 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
5885 &prev_ps->eth.tx_broadcast,
5886 &cur_ps->eth.tx_broadcast);
5887
5888 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
5889 &prev_ps->tx_dropped_link_down,
5890 &cur_ps->tx_dropped_link_down);
5891
5892 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
5893 &prev_ps->rx_size_64, &cur_ps->rx_size_64);
5894
5895 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
5896 &prev_ps->rx_size_127, &cur_ps->rx_size_127);
5897
5898 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
5899 &prev_ps->rx_size_255, &cur_ps->rx_size_255);
5900
5901 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
5902 &prev_ps->rx_size_511, &cur_ps->rx_size_511);
5903
5904 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
5905 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
5906
5907 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
5908 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
5909
5910 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
5911 &prev_ps->rx_size_big, &cur_ps->rx_size_big);
5912
5913 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
5914 &prev_ps->tx_size_64, &cur_ps->tx_size_64);
5915
5916 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
5917 &prev_ps->tx_size_127, &cur_ps->tx_size_127);
5918
5919 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
5920 &prev_ps->tx_size_255, &cur_ps->tx_size_255);
5921
5922 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
5923 &prev_ps->tx_size_511, &cur_ps->tx_size_511);
5924
5925 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
5926 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
5927
5928 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
5929 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
5930
5931 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
5932 &prev_ps->tx_size_big, &cur_ps->tx_size_big);
5933
5934 fd_ctr_base = hw->fd_ctr_base;
5935
5936 ice_stat_update40(hw,
5937 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
5938 pf->stat_prev_loaded, &prev_ps->fd_sb_match,
5939 &cur_ps->fd_sb_match);
5940 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
5941 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
5942
5943 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
5944 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
5945
5946 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
5947 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
5948
5949 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
5950 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
5951
5952 ice_update_dcb_stats(pf);
5953
5954 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
5955 &prev_ps->crc_errors, &cur_ps->crc_errors);
5956
5957 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
5958 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
5959
5960 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
5961 &prev_ps->mac_local_faults,
5962 &cur_ps->mac_local_faults);
5963
5964 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
5965 &prev_ps->mac_remote_faults,
5966 &cur_ps->mac_remote_faults);
5967
5968 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
5969 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
5970
5971 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
5972 &prev_ps->rx_undersize, &cur_ps->rx_undersize);
5973
5974 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
5975 &prev_ps->rx_fragments, &cur_ps->rx_fragments);
5976
5977 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
5978 &prev_ps->rx_oversize, &cur_ps->rx_oversize);
5979
5980 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
5981 &prev_ps->rx_jabber, &cur_ps->rx_jabber);
5982
5983 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
5984
5985 pf->stat_prev_loaded = true;
5986 }
5987
5988 /**
5989 * ice_get_stats64 - get statistics for network device structure
5990 * @netdev: network interface device structure
5991 * @stats: main device statistics structure
5992 */
5993 static
ice_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)5994 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
5995 {
5996 struct ice_netdev_priv *np = netdev_priv(netdev);
5997 struct rtnl_link_stats64 *vsi_stats;
5998 struct ice_vsi *vsi = np->vsi;
5999
6000 vsi_stats = &vsi->net_stats;
6001
6002 if (!vsi->num_txq || !vsi->num_rxq)
6003 return;
6004
6005 /* netdev packet/byte stats come from ring counter. These are obtained
6006 * by summing up ring counters (done by ice_update_vsi_ring_stats).
6007 * But, only call the update routine and read the registers if VSI is
6008 * not down.
6009 */
6010 if (!test_bit(ICE_VSI_DOWN, vsi->state))
6011 ice_update_vsi_ring_stats(vsi);
6012 stats->tx_packets = vsi_stats->tx_packets;
6013 stats->tx_bytes = vsi_stats->tx_bytes;
6014 stats->rx_packets = vsi_stats->rx_packets;
6015 stats->rx_bytes = vsi_stats->rx_bytes;
6016
6017 /* The rest of the stats can be read from the hardware but instead we
6018 * just return values that the watchdog task has already obtained from
6019 * the hardware.
6020 */
6021 stats->multicast = vsi_stats->multicast;
6022 stats->tx_errors = vsi_stats->tx_errors;
6023 stats->tx_dropped = vsi_stats->tx_dropped;
6024 stats->rx_errors = vsi_stats->rx_errors;
6025 stats->rx_dropped = vsi_stats->rx_dropped;
6026 stats->rx_crc_errors = vsi_stats->rx_crc_errors;
6027 stats->rx_length_errors = vsi_stats->rx_length_errors;
6028 }
6029
6030 /**
6031 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
6032 * @vsi: VSI having NAPI disabled
6033 */
ice_napi_disable_all(struct ice_vsi * vsi)6034 static void ice_napi_disable_all(struct ice_vsi *vsi)
6035 {
6036 int q_idx;
6037
6038 if (!vsi->netdev)
6039 return;
6040
6041 ice_for_each_q_vector(vsi, q_idx) {
6042 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6043
6044 if (q_vector->rx.ring || q_vector->tx.ring)
6045 napi_disable(&q_vector->napi);
6046
6047 cancel_work_sync(&q_vector->tx.dim.work);
6048 cancel_work_sync(&q_vector->rx.dim.work);
6049 }
6050 }
6051
6052 /**
6053 * ice_down - Shutdown the connection
6054 * @vsi: The VSI being stopped
6055 */
ice_down(struct ice_vsi * vsi)6056 int ice_down(struct ice_vsi *vsi)
6057 {
6058 int i, tx_err, rx_err, link_err = 0;
6059
6060 /* Caller of this function is expected to set the
6061 * vsi->state ICE_DOWN bit
6062 */
6063 if (vsi->netdev) {
6064 netif_carrier_off(vsi->netdev);
6065 netif_tx_disable(vsi->netdev);
6066 }
6067
6068 ice_vsi_dis_irq(vsi);
6069
6070 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
6071 if (tx_err)
6072 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
6073 vsi->vsi_num, tx_err);
6074 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
6075 tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
6076 if (tx_err)
6077 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
6078 vsi->vsi_num, tx_err);
6079 }
6080
6081 rx_err = ice_vsi_stop_all_rx_rings(vsi);
6082 if (rx_err)
6083 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
6084 vsi->vsi_num, rx_err);
6085
6086 ice_napi_disable_all(vsi);
6087
6088 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
6089 link_err = ice_force_phys_link_state(vsi, false);
6090 if (link_err)
6091 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
6092 vsi->vsi_num, link_err);
6093 }
6094
6095 ice_for_each_txq(vsi, i)
6096 ice_clean_tx_ring(vsi->tx_rings[i]);
6097
6098 ice_for_each_rxq(vsi, i)
6099 ice_clean_rx_ring(vsi->rx_rings[i]);
6100
6101 if (tx_err || rx_err || link_err) {
6102 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
6103 vsi->vsi_num, vsi->vsw->sw_id);
6104 return -EIO;
6105 }
6106
6107 return 0;
6108 }
6109
6110 /**
6111 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
6112 * @vsi: VSI having resources allocated
6113 *
6114 * Return 0 on success, negative on failure
6115 */
ice_vsi_setup_tx_rings(struct ice_vsi * vsi)6116 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
6117 {
6118 int i, err = 0;
6119
6120 if (!vsi->num_txq) {
6121 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
6122 vsi->vsi_num);
6123 return -EINVAL;
6124 }
6125
6126 ice_for_each_txq(vsi, i) {
6127 struct ice_ring *ring = vsi->tx_rings[i];
6128
6129 if (!ring)
6130 return -EINVAL;
6131
6132 ring->netdev = vsi->netdev;
6133 err = ice_setup_tx_ring(ring);
6134 if (err)
6135 break;
6136 }
6137
6138 return err;
6139 }
6140
6141 /**
6142 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
6143 * @vsi: VSI having resources allocated
6144 *
6145 * Return 0 on success, negative on failure
6146 */
ice_vsi_setup_rx_rings(struct ice_vsi * vsi)6147 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
6148 {
6149 int i, err = 0;
6150
6151 if (!vsi->num_rxq) {
6152 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
6153 vsi->vsi_num);
6154 return -EINVAL;
6155 }
6156
6157 ice_for_each_rxq(vsi, i) {
6158 struct ice_ring *ring = vsi->rx_rings[i];
6159
6160 if (!ring)
6161 return -EINVAL;
6162
6163 ring->netdev = vsi->netdev;
6164 err = ice_setup_rx_ring(ring);
6165 if (err)
6166 break;
6167 }
6168
6169 return err;
6170 }
6171
6172 /**
6173 * ice_vsi_open_ctrl - open control VSI for use
6174 * @vsi: the VSI to open
6175 *
6176 * Initialization of the Control VSI
6177 *
6178 * Returns 0 on success, negative value on error
6179 */
ice_vsi_open_ctrl(struct ice_vsi * vsi)6180 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
6181 {
6182 char int_name[ICE_INT_NAME_STR_LEN];
6183 struct ice_pf *pf = vsi->back;
6184 struct device *dev;
6185 int err;
6186
6187 dev = ice_pf_to_dev(pf);
6188 /* allocate descriptors */
6189 err = ice_vsi_setup_tx_rings(vsi);
6190 if (err)
6191 goto err_setup_tx;
6192
6193 err = ice_vsi_setup_rx_rings(vsi);
6194 if (err)
6195 goto err_setup_rx;
6196
6197 err = ice_vsi_cfg(vsi);
6198 if (err)
6199 goto err_setup_rx;
6200
6201 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
6202 dev_driver_string(dev), dev_name(dev));
6203 err = ice_vsi_req_irq_msix(vsi, int_name);
6204 if (err)
6205 goto err_setup_rx;
6206
6207 ice_vsi_cfg_msix(vsi);
6208
6209 err = ice_vsi_start_all_rx_rings(vsi);
6210 if (err)
6211 goto err_up_complete;
6212
6213 clear_bit(ICE_VSI_DOWN, vsi->state);
6214 ice_vsi_ena_irq(vsi);
6215
6216 return 0;
6217
6218 err_up_complete:
6219 ice_down(vsi);
6220 err_setup_rx:
6221 ice_vsi_free_rx_rings(vsi);
6222 err_setup_tx:
6223 ice_vsi_free_tx_rings(vsi);
6224
6225 return err;
6226 }
6227
6228 /**
6229 * ice_vsi_open - Called when a network interface is made active
6230 * @vsi: the VSI to open
6231 *
6232 * Initialization of the VSI
6233 *
6234 * Returns 0 on success, negative value on error
6235 */
ice_vsi_open(struct ice_vsi * vsi)6236 static int ice_vsi_open(struct ice_vsi *vsi)
6237 {
6238 char int_name[ICE_INT_NAME_STR_LEN];
6239 struct ice_pf *pf = vsi->back;
6240 int err;
6241
6242 /* allocate descriptors */
6243 err = ice_vsi_setup_tx_rings(vsi);
6244 if (err)
6245 goto err_setup_tx;
6246
6247 err = ice_vsi_setup_rx_rings(vsi);
6248 if (err)
6249 goto err_setup_rx;
6250
6251 err = ice_vsi_cfg(vsi);
6252 if (err)
6253 goto err_setup_rx;
6254
6255 snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
6256 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
6257 err = ice_vsi_req_irq_msix(vsi, int_name);
6258 if (err)
6259 goto err_setup_rx;
6260
6261 /* Notify the stack of the actual queue counts. */
6262 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
6263 if (err)
6264 goto err_set_qs;
6265
6266 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
6267 if (err)
6268 goto err_set_qs;
6269
6270 err = ice_up_complete(vsi);
6271 if (err)
6272 goto err_up_complete;
6273
6274 return 0;
6275
6276 err_up_complete:
6277 ice_down(vsi);
6278 err_set_qs:
6279 ice_vsi_free_irq(vsi);
6280 err_setup_rx:
6281 ice_vsi_free_rx_rings(vsi);
6282 err_setup_tx:
6283 ice_vsi_free_tx_rings(vsi);
6284
6285 return err;
6286 }
6287
6288 /**
6289 * ice_vsi_release_all - Delete all VSIs
6290 * @pf: PF from which all VSIs are being removed
6291 */
ice_vsi_release_all(struct ice_pf * pf)6292 static void ice_vsi_release_all(struct ice_pf *pf)
6293 {
6294 int err, i;
6295
6296 if (!pf->vsi)
6297 return;
6298
6299 ice_for_each_vsi(pf, i) {
6300 if (!pf->vsi[i])
6301 continue;
6302
6303 err = ice_vsi_release(pf->vsi[i]);
6304 if (err)
6305 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
6306 i, err, pf->vsi[i]->vsi_num);
6307 }
6308 }
6309
6310 /**
6311 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
6312 * @pf: pointer to the PF instance
6313 * @type: VSI type to rebuild
6314 *
6315 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
6316 */
ice_vsi_rebuild_by_type(struct ice_pf * pf,enum ice_vsi_type type)6317 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
6318 {
6319 struct device *dev = ice_pf_to_dev(pf);
6320 enum ice_status status;
6321 int i, err;
6322
6323 ice_for_each_vsi(pf, i) {
6324 struct ice_vsi *vsi = pf->vsi[i];
6325
6326 if (!vsi || vsi->type != type)
6327 continue;
6328
6329 /* rebuild the VSI */
6330 err = ice_vsi_rebuild(vsi, true);
6331 if (err) {
6332 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
6333 err, vsi->idx, ice_vsi_type_str(type));
6334 return err;
6335 }
6336
6337 /* replay filters for the VSI */
6338 status = ice_replay_vsi(&pf->hw, vsi->idx);
6339 if (status) {
6340 dev_err(dev, "replay VSI failed, status %s, VSI index %d, type %s\n",
6341 ice_stat_str(status), vsi->idx,
6342 ice_vsi_type_str(type));
6343 return -EIO;
6344 }
6345
6346 /* Re-map HW VSI number, using VSI handle that has been
6347 * previously validated in ice_replay_vsi() call above
6348 */
6349 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
6350
6351 /* enable the VSI */
6352 err = ice_ena_vsi(vsi, false);
6353 if (err) {
6354 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
6355 err, vsi->idx, ice_vsi_type_str(type));
6356 return err;
6357 }
6358
6359 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
6360 ice_vsi_type_str(type));
6361 }
6362
6363 return 0;
6364 }
6365
6366 /**
6367 * ice_update_pf_netdev_link - Update PF netdev link status
6368 * @pf: pointer to the PF instance
6369 */
ice_update_pf_netdev_link(struct ice_pf * pf)6370 static void ice_update_pf_netdev_link(struct ice_pf *pf)
6371 {
6372 bool link_up;
6373 int i;
6374
6375 ice_for_each_vsi(pf, i) {
6376 struct ice_vsi *vsi = pf->vsi[i];
6377
6378 if (!vsi || vsi->type != ICE_VSI_PF)
6379 return;
6380
6381 ice_get_link_status(pf->vsi[i]->port_info, &link_up);
6382 if (link_up) {
6383 netif_carrier_on(pf->vsi[i]->netdev);
6384 netif_tx_wake_all_queues(pf->vsi[i]->netdev);
6385 } else {
6386 netif_carrier_off(pf->vsi[i]->netdev);
6387 netif_tx_stop_all_queues(pf->vsi[i]->netdev);
6388 }
6389 }
6390 }
6391
6392 /**
6393 * ice_rebuild - rebuild after reset
6394 * @pf: PF to rebuild
6395 * @reset_type: type of reset
6396 *
6397 * Do not rebuild VF VSI in this flow because that is already handled via
6398 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
6399 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
6400 * to reset/rebuild all the VF VSI twice.
6401 */
ice_rebuild(struct ice_pf * pf,enum ice_reset_req reset_type)6402 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
6403 {
6404 struct device *dev = ice_pf_to_dev(pf);
6405 struct ice_hw *hw = &pf->hw;
6406 enum ice_status ret;
6407 int err;
6408
6409 if (test_bit(ICE_DOWN, pf->state))
6410 goto clear_recovery;
6411
6412 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
6413
6414 ret = ice_init_all_ctrlq(hw);
6415 if (ret) {
6416 dev_err(dev, "control queues init failed %s\n",
6417 ice_stat_str(ret));
6418 goto err_init_ctrlq;
6419 }
6420
6421 /* if DDP was previously loaded successfully */
6422 if (!ice_is_safe_mode(pf)) {
6423 /* reload the SW DB of filter tables */
6424 if (reset_type == ICE_RESET_PFR)
6425 ice_fill_blk_tbls(hw);
6426 else
6427 /* Reload DDP Package after CORER/GLOBR reset */
6428 ice_load_pkg(NULL, pf);
6429 }
6430
6431 ret = ice_clear_pf_cfg(hw);
6432 if (ret) {
6433 dev_err(dev, "clear PF configuration failed %s\n",
6434 ice_stat_str(ret));
6435 goto err_init_ctrlq;
6436 }
6437
6438 if (pf->first_sw->dflt_vsi_ena)
6439 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n");
6440 /* clear the default VSI configuration if it exists */
6441 pf->first_sw->dflt_vsi = NULL;
6442 pf->first_sw->dflt_vsi_ena = false;
6443
6444 ice_clear_pxe_mode(hw);
6445
6446 ret = ice_init_nvm(hw);
6447 if (ret) {
6448 dev_err(dev, "ice_init_nvm failed %s\n", ice_stat_str(ret));
6449 goto err_init_ctrlq;
6450 }
6451
6452 ret = ice_get_caps(hw);
6453 if (ret) {
6454 dev_err(dev, "ice_get_caps failed %s\n", ice_stat_str(ret));
6455 goto err_init_ctrlq;
6456 }
6457
6458 ret = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
6459 if (ret) {
6460 dev_err(dev, "set_mac_cfg failed %s\n", ice_stat_str(ret));
6461 goto err_init_ctrlq;
6462 }
6463
6464 err = ice_sched_init_port(hw->port_info);
6465 if (err)
6466 goto err_sched_init_port;
6467
6468 /* start misc vector */
6469 err = ice_req_irq_msix_misc(pf);
6470 if (err) {
6471 dev_err(dev, "misc vector setup failed: %d\n", err);
6472 goto err_sched_init_port;
6473 }
6474
6475 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6476 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
6477 if (!rd32(hw, PFQF_FD_SIZE)) {
6478 u16 unused, guar, b_effort;
6479
6480 guar = hw->func_caps.fd_fltr_guar;
6481 b_effort = hw->func_caps.fd_fltr_best_effort;
6482
6483 /* force guaranteed filter pool for PF */
6484 ice_alloc_fd_guar_item(hw, &unused, guar);
6485 /* force shared filter pool for PF */
6486 ice_alloc_fd_shrd_item(hw, &unused, b_effort);
6487 }
6488 }
6489
6490 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
6491 ice_dcb_rebuild(pf);
6492
6493 /* If the PF previously had enabled PTP, PTP init needs to happen before
6494 * the VSI rebuild. If not, this causes the PTP link status events to
6495 * fail.
6496 */
6497 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
6498 ice_ptp_init(pf);
6499
6500 /* rebuild PF VSI */
6501 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
6502 if (err) {
6503 dev_err(dev, "PF VSI rebuild failed: %d\n", err);
6504 goto err_vsi_rebuild;
6505 }
6506
6507 /* If Flow Director is active */
6508 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6509 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
6510 if (err) {
6511 dev_err(dev, "control VSI rebuild failed: %d\n", err);
6512 goto err_vsi_rebuild;
6513 }
6514
6515 /* replay HW Flow Director recipes */
6516 if (hw->fdir_prof)
6517 ice_fdir_replay_flows(hw);
6518
6519 /* replay Flow Director filters */
6520 ice_fdir_replay_fltrs(pf);
6521
6522 ice_rebuild_arfs(pf);
6523 }
6524
6525 ice_update_pf_netdev_link(pf);
6526
6527 /* tell the firmware we are up */
6528 ret = ice_send_version(pf);
6529 if (ret) {
6530 dev_err(dev, "Rebuild failed due to error sending driver version: %s\n",
6531 ice_stat_str(ret));
6532 goto err_vsi_rebuild;
6533 }
6534
6535 ice_replay_post(hw);
6536
6537 /* if we get here, reset flow is successful */
6538 clear_bit(ICE_RESET_FAILED, pf->state);
6539
6540 ice_plug_aux_dev(pf);
6541 return;
6542
6543 err_vsi_rebuild:
6544 err_sched_init_port:
6545 ice_sched_cleanup_all(hw);
6546 err_init_ctrlq:
6547 ice_shutdown_all_ctrlq(hw);
6548 set_bit(ICE_RESET_FAILED, pf->state);
6549 clear_recovery:
6550 /* set this bit in PF state to control service task scheduling */
6551 set_bit(ICE_NEEDS_RESTART, pf->state);
6552 dev_err(dev, "Rebuild failed, unload and reload driver\n");
6553 }
6554
6555 /**
6556 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
6557 * @vsi: Pointer to VSI structure
6558 */
ice_max_xdp_frame_size(struct ice_vsi * vsi)6559 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
6560 {
6561 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
6562 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
6563 else
6564 return ICE_RXBUF_3072;
6565 }
6566
6567 /**
6568 * ice_change_mtu - NDO callback to change the MTU
6569 * @netdev: network interface device structure
6570 * @new_mtu: new value for maximum frame size
6571 *
6572 * Returns 0 on success, negative on failure
6573 */
ice_change_mtu(struct net_device * netdev,int new_mtu)6574 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
6575 {
6576 struct ice_netdev_priv *np = netdev_priv(netdev);
6577 struct ice_vsi *vsi = np->vsi;
6578 struct ice_pf *pf = vsi->back;
6579 u8 count = 0;
6580 int err = 0;
6581
6582 if (new_mtu == (int)netdev->mtu) {
6583 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
6584 return 0;
6585 }
6586
6587 if (ice_is_xdp_ena_vsi(vsi)) {
6588 int frame_size = ice_max_xdp_frame_size(vsi);
6589
6590 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
6591 netdev_err(netdev, "max MTU for XDP usage is %d\n",
6592 frame_size - ICE_ETH_PKT_HDR_PAD);
6593 return -EINVAL;
6594 }
6595 }
6596
6597 /* if a reset is in progress, wait for some time for it to complete */
6598 do {
6599 if (ice_is_reset_in_progress(pf->state)) {
6600 count++;
6601 usleep_range(1000, 2000);
6602 } else {
6603 break;
6604 }
6605
6606 } while (count < 100);
6607
6608 if (count == 100) {
6609 netdev_err(netdev, "can't change MTU. Device is busy\n");
6610 return -EBUSY;
6611 }
6612
6613 netdev->mtu = (unsigned int)new_mtu;
6614
6615 /* if VSI is up, bring it down and then back up */
6616 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6617 err = ice_down(vsi);
6618 if (err) {
6619 netdev_err(netdev, "change MTU if_down err %d\n", err);
6620 return err;
6621 }
6622
6623 err = ice_up(vsi);
6624 if (err) {
6625 netdev_err(netdev, "change MTU if_up err %d\n", err);
6626 return err;
6627 }
6628 }
6629
6630 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
6631 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
6632
6633 return err;
6634 }
6635
6636 /**
6637 * ice_eth_ioctl - Access the hwtstamp interface
6638 * @netdev: network interface device structure
6639 * @ifr: interface request data
6640 * @cmd: ioctl command
6641 */
ice_eth_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)6642 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6643 {
6644 struct ice_netdev_priv *np = netdev_priv(netdev);
6645 struct ice_pf *pf = np->vsi->back;
6646
6647 switch (cmd) {
6648 case SIOCGHWTSTAMP:
6649 return ice_ptp_get_ts_config(pf, ifr);
6650 case SIOCSHWTSTAMP:
6651 return ice_ptp_set_ts_config(pf, ifr);
6652 default:
6653 return -EOPNOTSUPP;
6654 }
6655 }
6656
6657 /**
6658 * ice_aq_str - convert AQ err code to a string
6659 * @aq_err: the AQ error code to convert
6660 */
ice_aq_str(enum ice_aq_err aq_err)6661 const char *ice_aq_str(enum ice_aq_err aq_err)
6662 {
6663 switch (aq_err) {
6664 case ICE_AQ_RC_OK:
6665 return "OK";
6666 case ICE_AQ_RC_EPERM:
6667 return "ICE_AQ_RC_EPERM";
6668 case ICE_AQ_RC_ENOENT:
6669 return "ICE_AQ_RC_ENOENT";
6670 case ICE_AQ_RC_ENOMEM:
6671 return "ICE_AQ_RC_ENOMEM";
6672 case ICE_AQ_RC_EBUSY:
6673 return "ICE_AQ_RC_EBUSY";
6674 case ICE_AQ_RC_EEXIST:
6675 return "ICE_AQ_RC_EEXIST";
6676 case ICE_AQ_RC_EINVAL:
6677 return "ICE_AQ_RC_EINVAL";
6678 case ICE_AQ_RC_ENOSPC:
6679 return "ICE_AQ_RC_ENOSPC";
6680 case ICE_AQ_RC_ENOSYS:
6681 return "ICE_AQ_RC_ENOSYS";
6682 case ICE_AQ_RC_EMODE:
6683 return "ICE_AQ_RC_EMODE";
6684 case ICE_AQ_RC_ENOSEC:
6685 return "ICE_AQ_RC_ENOSEC";
6686 case ICE_AQ_RC_EBADSIG:
6687 return "ICE_AQ_RC_EBADSIG";
6688 case ICE_AQ_RC_ESVN:
6689 return "ICE_AQ_RC_ESVN";
6690 case ICE_AQ_RC_EBADMAN:
6691 return "ICE_AQ_RC_EBADMAN";
6692 case ICE_AQ_RC_EBADBUF:
6693 return "ICE_AQ_RC_EBADBUF";
6694 }
6695
6696 return "ICE_AQ_RC_UNKNOWN";
6697 }
6698
6699 /**
6700 * ice_stat_str - convert status err code to a string
6701 * @stat_err: the status error code to convert
6702 */
ice_stat_str(enum ice_status stat_err)6703 const char *ice_stat_str(enum ice_status stat_err)
6704 {
6705 switch (stat_err) {
6706 case ICE_SUCCESS:
6707 return "OK";
6708 case ICE_ERR_PARAM:
6709 return "ICE_ERR_PARAM";
6710 case ICE_ERR_NOT_IMPL:
6711 return "ICE_ERR_NOT_IMPL";
6712 case ICE_ERR_NOT_READY:
6713 return "ICE_ERR_NOT_READY";
6714 case ICE_ERR_NOT_SUPPORTED:
6715 return "ICE_ERR_NOT_SUPPORTED";
6716 case ICE_ERR_BAD_PTR:
6717 return "ICE_ERR_BAD_PTR";
6718 case ICE_ERR_INVAL_SIZE:
6719 return "ICE_ERR_INVAL_SIZE";
6720 case ICE_ERR_DEVICE_NOT_SUPPORTED:
6721 return "ICE_ERR_DEVICE_NOT_SUPPORTED";
6722 case ICE_ERR_RESET_FAILED:
6723 return "ICE_ERR_RESET_FAILED";
6724 case ICE_ERR_FW_API_VER:
6725 return "ICE_ERR_FW_API_VER";
6726 case ICE_ERR_NO_MEMORY:
6727 return "ICE_ERR_NO_MEMORY";
6728 case ICE_ERR_CFG:
6729 return "ICE_ERR_CFG";
6730 case ICE_ERR_OUT_OF_RANGE:
6731 return "ICE_ERR_OUT_OF_RANGE";
6732 case ICE_ERR_ALREADY_EXISTS:
6733 return "ICE_ERR_ALREADY_EXISTS";
6734 case ICE_ERR_NVM:
6735 return "ICE_ERR_NVM";
6736 case ICE_ERR_NVM_CHECKSUM:
6737 return "ICE_ERR_NVM_CHECKSUM";
6738 case ICE_ERR_BUF_TOO_SHORT:
6739 return "ICE_ERR_BUF_TOO_SHORT";
6740 case ICE_ERR_NVM_BLANK_MODE:
6741 return "ICE_ERR_NVM_BLANK_MODE";
6742 case ICE_ERR_IN_USE:
6743 return "ICE_ERR_IN_USE";
6744 case ICE_ERR_MAX_LIMIT:
6745 return "ICE_ERR_MAX_LIMIT";
6746 case ICE_ERR_RESET_ONGOING:
6747 return "ICE_ERR_RESET_ONGOING";
6748 case ICE_ERR_HW_TABLE:
6749 return "ICE_ERR_HW_TABLE";
6750 case ICE_ERR_DOES_NOT_EXIST:
6751 return "ICE_ERR_DOES_NOT_EXIST";
6752 case ICE_ERR_FW_DDP_MISMATCH:
6753 return "ICE_ERR_FW_DDP_MISMATCH";
6754 case ICE_ERR_AQ_ERROR:
6755 return "ICE_ERR_AQ_ERROR";
6756 case ICE_ERR_AQ_TIMEOUT:
6757 return "ICE_ERR_AQ_TIMEOUT";
6758 case ICE_ERR_AQ_FULL:
6759 return "ICE_ERR_AQ_FULL";
6760 case ICE_ERR_AQ_NO_WORK:
6761 return "ICE_ERR_AQ_NO_WORK";
6762 case ICE_ERR_AQ_EMPTY:
6763 return "ICE_ERR_AQ_EMPTY";
6764 case ICE_ERR_AQ_FW_CRITICAL:
6765 return "ICE_ERR_AQ_FW_CRITICAL";
6766 }
6767
6768 return "ICE_ERR_UNKNOWN";
6769 }
6770
6771 /**
6772 * ice_set_rss_lut - Set RSS LUT
6773 * @vsi: Pointer to VSI structure
6774 * @lut: Lookup table
6775 * @lut_size: Lookup table size
6776 *
6777 * Returns 0 on success, negative on failure
6778 */
ice_set_rss_lut(struct ice_vsi * vsi,u8 * lut,u16 lut_size)6779 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
6780 {
6781 struct ice_aq_get_set_rss_lut_params params = {};
6782 struct ice_hw *hw = &vsi->back->hw;
6783 enum ice_status status;
6784
6785 if (!lut)
6786 return -EINVAL;
6787
6788 params.vsi_handle = vsi->idx;
6789 params.lut_size = lut_size;
6790 params.lut_type = vsi->rss_lut_type;
6791 params.lut = lut;
6792
6793 status = ice_aq_set_rss_lut(hw, ¶ms);
6794 if (status) {
6795 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %s aq_err %s\n",
6796 ice_stat_str(status),
6797 ice_aq_str(hw->adminq.sq_last_status));
6798 return -EIO;
6799 }
6800
6801 return 0;
6802 }
6803
6804 /**
6805 * ice_set_rss_key - Set RSS key
6806 * @vsi: Pointer to the VSI structure
6807 * @seed: RSS hash seed
6808 *
6809 * Returns 0 on success, negative on failure
6810 */
ice_set_rss_key(struct ice_vsi * vsi,u8 * seed)6811 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
6812 {
6813 struct ice_hw *hw = &vsi->back->hw;
6814 enum ice_status status;
6815
6816 if (!seed)
6817 return -EINVAL;
6818
6819 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
6820 if (status) {
6821 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %s aq_err %s\n",
6822 ice_stat_str(status),
6823 ice_aq_str(hw->adminq.sq_last_status));
6824 return -EIO;
6825 }
6826
6827 return 0;
6828 }
6829
6830 /**
6831 * ice_get_rss_lut - Get RSS LUT
6832 * @vsi: Pointer to VSI structure
6833 * @lut: Buffer to store the lookup table entries
6834 * @lut_size: Size of buffer to store the lookup table entries
6835 *
6836 * Returns 0 on success, negative on failure
6837 */
ice_get_rss_lut(struct ice_vsi * vsi,u8 * lut,u16 lut_size)6838 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
6839 {
6840 struct ice_aq_get_set_rss_lut_params params = {};
6841 struct ice_hw *hw = &vsi->back->hw;
6842 enum ice_status status;
6843
6844 if (!lut)
6845 return -EINVAL;
6846
6847 params.vsi_handle = vsi->idx;
6848 params.lut_size = lut_size;
6849 params.lut_type = vsi->rss_lut_type;
6850 params.lut = lut;
6851
6852 status = ice_aq_get_rss_lut(hw, ¶ms);
6853 if (status) {
6854 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %s aq_err %s\n",
6855 ice_stat_str(status),
6856 ice_aq_str(hw->adminq.sq_last_status));
6857 return -EIO;
6858 }
6859
6860 return 0;
6861 }
6862
6863 /**
6864 * ice_get_rss_key - Get RSS key
6865 * @vsi: Pointer to VSI structure
6866 * @seed: Buffer to store the key in
6867 *
6868 * Returns 0 on success, negative on failure
6869 */
ice_get_rss_key(struct ice_vsi * vsi,u8 * seed)6870 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
6871 {
6872 struct ice_hw *hw = &vsi->back->hw;
6873 enum ice_status status;
6874
6875 if (!seed)
6876 return -EINVAL;
6877
6878 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
6879 if (status) {
6880 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %s aq_err %s\n",
6881 ice_stat_str(status),
6882 ice_aq_str(hw->adminq.sq_last_status));
6883 return -EIO;
6884 }
6885
6886 return 0;
6887 }
6888
6889 /**
6890 * ice_bridge_getlink - Get the hardware bridge mode
6891 * @skb: skb buff
6892 * @pid: process ID
6893 * @seq: RTNL message seq
6894 * @dev: the netdev being configured
6895 * @filter_mask: filter mask passed in
6896 * @nlflags: netlink flags passed in
6897 *
6898 * Return the bridge mode (VEB/VEPA)
6899 */
6900 static int
ice_bridge_getlink(struct sk_buff * skb,u32 pid,u32 seq,struct net_device * dev,u32 filter_mask,int nlflags)6901 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
6902 struct net_device *dev, u32 filter_mask, int nlflags)
6903 {
6904 struct ice_netdev_priv *np = netdev_priv(dev);
6905 struct ice_vsi *vsi = np->vsi;
6906 struct ice_pf *pf = vsi->back;
6907 u16 bmode;
6908
6909 bmode = pf->first_sw->bridge_mode;
6910
6911 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
6912 filter_mask, NULL);
6913 }
6914
6915 /**
6916 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
6917 * @vsi: Pointer to VSI structure
6918 * @bmode: Hardware bridge mode (VEB/VEPA)
6919 *
6920 * Returns 0 on success, negative on failure
6921 */
ice_vsi_update_bridge_mode(struct ice_vsi * vsi,u16 bmode)6922 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
6923 {
6924 struct ice_aqc_vsi_props *vsi_props;
6925 struct ice_hw *hw = &vsi->back->hw;
6926 struct ice_vsi_ctx *ctxt;
6927 enum ice_status status;
6928 int ret = 0;
6929
6930 vsi_props = &vsi->info;
6931
6932 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
6933 if (!ctxt)
6934 return -ENOMEM;
6935
6936 ctxt->info = vsi->info;
6937
6938 if (bmode == BRIDGE_MODE_VEB)
6939 /* change from VEPA to VEB mode */
6940 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6941 else
6942 /* change from VEB to VEPA mode */
6943 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6944 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
6945
6946 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
6947 if (status) {
6948 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %s aq_err %s\n",
6949 bmode, ice_stat_str(status),
6950 ice_aq_str(hw->adminq.sq_last_status));
6951 ret = -EIO;
6952 goto out;
6953 }
6954 /* Update sw flags for book keeping */
6955 vsi_props->sw_flags = ctxt->info.sw_flags;
6956
6957 out:
6958 kfree(ctxt);
6959 return ret;
6960 }
6961
6962 /**
6963 * ice_bridge_setlink - Set the hardware bridge mode
6964 * @dev: the netdev being configured
6965 * @nlh: RTNL message
6966 * @flags: bridge setlink flags
6967 * @extack: netlink extended ack
6968 *
6969 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
6970 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
6971 * not already set for all VSIs connected to this switch. And also update the
6972 * unicast switch filter rules for the corresponding switch of the netdev.
6973 */
6974 static int
ice_bridge_setlink(struct net_device * dev,struct nlmsghdr * nlh,u16 __always_unused flags,struct netlink_ext_ack __always_unused * extack)6975 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
6976 u16 __always_unused flags,
6977 struct netlink_ext_ack __always_unused *extack)
6978 {
6979 struct ice_netdev_priv *np = netdev_priv(dev);
6980 struct ice_pf *pf = np->vsi->back;
6981 struct nlattr *attr, *br_spec;
6982 struct ice_hw *hw = &pf->hw;
6983 enum ice_status status;
6984 struct ice_sw *pf_sw;
6985 int rem, v, err = 0;
6986
6987 pf_sw = pf->first_sw;
6988 /* find the attribute in the netlink message */
6989 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
6990
6991 nla_for_each_nested(attr, br_spec, rem) {
6992 __u16 mode;
6993
6994 if (nla_type(attr) != IFLA_BRIDGE_MODE)
6995 continue;
6996 mode = nla_get_u16(attr);
6997 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
6998 return -EINVAL;
6999 /* Continue if bridge mode is not being flipped */
7000 if (mode == pf_sw->bridge_mode)
7001 continue;
7002 /* Iterates through the PF VSI list and update the loopback
7003 * mode of the VSI
7004 */
7005 ice_for_each_vsi(pf, v) {
7006 if (!pf->vsi[v])
7007 continue;
7008 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
7009 if (err)
7010 return err;
7011 }
7012
7013 hw->evb_veb = (mode == BRIDGE_MODE_VEB);
7014 /* Update the unicast switch filter rules for the corresponding
7015 * switch of the netdev
7016 */
7017 status = ice_update_sw_rule_bridge_mode(hw);
7018 if (status) {
7019 netdev_err(dev, "switch rule update failed, mode = %d err %s aq_err %s\n",
7020 mode, ice_stat_str(status),
7021 ice_aq_str(hw->adminq.sq_last_status));
7022 /* revert hw->evb_veb */
7023 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
7024 return -EIO;
7025 }
7026
7027 pf_sw->bridge_mode = mode;
7028 }
7029
7030 return 0;
7031 }
7032
7033 /**
7034 * ice_tx_timeout - Respond to a Tx Hang
7035 * @netdev: network interface device structure
7036 * @txqueue: Tx queue
7037 */
ice_tx_timeout(struct net_device * netdev,unsigned int txqueue)7038 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
7039 {
7040 struct ice_netdev_priv *np = netdev_priv(netdev);
7041 struct ice_ring *tx_ring = NULL;
7042 struct ice_vsi *vsi = np->vsi;
7043 struct ice_pf *pf = vsi->back;
7044 u32 i;
7045
7046 pf->tx_timeout_count++;
7047
7048 /* Check if PFC is enabled for the TC to which the queue belongs
7049 * to. If yes then Tx timeout is not caused by a hung queue, no
7050 * need to reset and rebuild
7051 */
7052 if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
7053 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
7054 txqueue);
7055 return;
7056 }
7057
7058 /* now that we have an index, find the tx_ring struct */
7059 for (i = 0; i < vsi->num_txq; i++)
7060 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
7061 if (txqueue == vsi->tx_rings[i]->q_index) {
7062 tx_ring = vsi->tx_rings[i];
7063 break;
7064 }
7065
7066 /* Reset recovery level if enough time has elapsed after last timeout.
7067 * Also ensure no new reset action happens before next timeout period.
7068 */
7069 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
7070 pf->tx_timeout_recovery_level = 1;
7071 else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
7072 netdev->watchdog_timeo)))
7073 return;
7074
7075 if (tx_ring) {
7076 struct ice_hw *hw = &pf->hw;
7077 u32 head, val = 0;
7078
7079 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
7080 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
7081 /* Read interrupt register */
7082 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
7083
7084 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
7085 vsi->vsi_num, txqueue, tx_ring->next_to_clean,
7086 head, tx_ring->next_to_use, val);
7087 }
7088
7089 pf->tx_timeout_last_recovery = jiffies;
7090 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
7091 pf->tx_timeout_recovery_level, txqueue);
7092
7093 switch (pf->tx_timeout_recovery_level) {
7094 case 1:
7095 set_bit(ICE_PFR_REQ, pf->state);
7096 break;
7097 case 2:
7098 set_bit(ICE_CORER_REQ, pf->state);
7099 break;
7100 case 3:
7101 set_bit(ICE_GLOBR_REQ, pf->state);
7102 break;
7103 default:
7104 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
7105 set_bit(ICE_DOWN, pf->state);
7106 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
7107 set_bit(ICE_SERVICE_DIS, pf->state);
7108 break;
7109 }
7110
7111 ice_service_task_schedule(pf);
7112 pf->tx_timeout_recovery_level++;
7113 }
7114
7115 /**
7116 * ice_open - Called when a network interface becomes active
7117 * @netdev: network interface device structure
7118 *
7119 * The open entry point is called when a network interface is made
7120 * active by the system (IFF_UP). At this point all resources needed
7121 * for transmit and receive operations are allocated, the interrupt
7122 * handler is registered with the OS, the netdev watchdog is enabled,
7123 * and the stack is notified that the interface is ready.
7124 *
7125 * Returns 0 on success, negative value on failure
7126 */
ice_open(struct net_device * netdev)7127 int ice_open(struct net_device *netdev)
7128 {
7129 struct ice_netdev_priv *np = netdev_priv(netdev);
7130 struct ice_pf *pf = np->vsi->back;
7131
7132 if (ice_is_reset_in_progress(pf->state)) {
7133 netdev_err(netdev, "can't open net device while reset is in progress");
7134 return -EBUSY;
7135 }
7136
7137 return ice_open_internal(netdev);
7138 }
7139
7140 /**
7141 * ice_open_internal - Called when a network interface becomes active
7142 * @netdev: network interface device structure
7143 *
7144 * Internal ice_open implementation. Should not be used directly except for ice_open and reset
7145 * handling routine
7146 *
7147 * Returns 0 on success, negative value on failure
7148 */
ice_open_internal(struct net_device * netdev)7149 int ice_open_internal(struct net_device *netdev)
7150 {
7151 struct ice_netdev_priv *np = netdev_priv(netdev);
7152 struct ice_vsi *vsi = np->vsi;
7153 struct ice_pf *pf = vsi->back;
7154 struct ice_port_info *pi;
7155 enum ice_status status;
7156 int err;
7157
7158 if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
7159 netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
7160 return -EIO;
7161 }
7162
7163 netif_carrier_off(netdev);
7164
7165 pi = vsi->port_info;
7166 status = ice_update_link_info(pi);
7167 if (status) {
7168 netdev_err(netdev, "Failed to get link info, error %s\n",
7169 ice_stat_str(status));
7170 return -EIO;
7171 }
7172
7173 ice_check_module_power(pf, pi->phy.link_info.link_cfg_err);
7174
7175 /* Set PHY if there is media, otherwise, turn off PHY */
7176 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
7177 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
7178 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
7179 err = ice_init_phy_user_cfg(pi);
7180 if (err) {
7181 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
7182 err);
7183 return err;
7184 }
7185 }
7186
7187 err = ice_configure_phy(vsi);
7188 if (err) {
7189 netdev_err(netdev, "Failed to set physical link up, error %d\n",
7190 err);
7191 return err;
7192 }
7193 } else {
7194 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
7195 ice_set_link(vsi, false);
7196 }
7197
7198 err = ice_vsi_open(vsi);
7199 if (err)
7200 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
7201 vsi->vsi_num, vsi->vsw->sw_id);
7202
7203 /* Update existing tunnels information */
7204 udp_tunnel_get_rx_info(netdev);
7205
7206 return err;
7207 }
7208
7209 /**
7210 * ice_stop - Disables a network interface
7211 * @netdev: network interface device structure
7212 *
7213 * The stop entry point is called when an interface is de-activated by the OS,
7214 * and the netdevice enters the DOWN state. The hardware is still under the
7215 * driver's control, but the netdev interface is disabled.
7216 *
7217 * Returns success only - not allowed to fail
7218 */
ice_stop(struct net_device * netdev)7219 int ice_stop(struct net_device *netdev)
7220 {
7221 struct ice_netdev_priv *np = netdev_priv(netdev);
7222 struct ice_vsi *vsi = np->vsi;
7223 struct ice_pf *pf = vsi->back;
7224
7225 if (ice_is_reset_in_progress(pf->state)) {
7226 netdev_err(netdev, "can't stop net device while reset is in progress");
7227 return -EBUSY;
7228 }
7229
7230 ice_vsi_close(vsi);
7231
7232 return 0;
7233 }
7234
7235 /**
7236 * ice_features_check - Validate encapsulated packet conforms to limits
7237 * @skb: skb buffer
7238 * @netdev: This port's netdev
7239 * @features: Offload features that the stack believes apply
7240 */
7241 static netdev_features_t
ice_features_check(struct sk_buff * skb,struct net_device __always_unused * netdev,netdev_features_t features)7242 ice_features_check(struct sk_buff *skb,
7243 struct net_device __always_unused *netdev,
7244 netdev_features_t features)
7245 {
7246 bool gso = skb_is_gso(skb);
7247 size_t len;
7248
7249 /* No point in doing any of this if neither checksum nor GSO are
7250 * being requested for this frame. We can rule out both by just
7251 * checking for CHECKSUM_PARTIAL
7252 */
7253 if (skb->ip_summed != CHECKSUM_PARTIAL)
7254 return features;
7255
7256 /* We cannot support GSO if the MSS is going to be less than
7257 * 64 bytes. If it is then we need to drop support for GSO.
7258 */
7259 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
7260 features &= ~NETIF_F_GSO_MASK;
7261
7262 len = skb_network_offset(skb);
7263 if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
7264 goto out_rm_features;
7265
7266 len = skb_network_header_len(skb);
7267 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
7268 goto out_rm_features;
7269
7270 if (skb->encapsulation) {
7271 /* this must work for VXLAN frames AND IPIP/SIT frames, and in
7272 * the case of IPIP frames, the transport header pointer is
7273 * after the inner header! So check to make sure that this
7274 * is a GRE or UDP_TUNNEL frame before doing that math.
7275 */
7276 if (gso && (skb_shinfo(skb)->gso_type &
7277 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
7278 len = skb_inner_network_header(skb) -
7279 skb_transport_header(skb);
7280 if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
7281 goto out_rm_features;
7282 }
7283
7284 len = skb_inner_network_header_len(skb);
7285 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
7286 goto out_rm_features;
7287 }
7288
7289 return features;
7290 out_rm_features:
7291 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
7292 }
7293
7294 static const struct net_device_ops ice_netdev_safe_mode_ops = {
7295 .ndo_open = ice_open,
7296 .ndo_stop = ice_stop,
7297 .ndo_start_xmit = ice_start_xmit,
7298 .ndo_set_mac_address = ice_set_mac_address,
7299 .ndo_validate_addr = eth_validate_addr,
7300 .ndo_change_mtu = ice_change_mtu,
7301 .ndo_get_stats64 = ice_get_stats64,
7302 .ndo_tx_timeout = ice_tx_timeout,
7303 .ndo_bpf = ice_xdp_safe_mode,
7304 };
7305
7306 static const struct net_device_ops ice_netdev_ops = {
7307 .ndo_open = ice_open,
7308 .ndo_stop = ice_stop,
7309 .ndo_start_xmit = ice_start_xmit,
7310 .ndo_features_check = ice_features_check,
7311 .ndo_set_rx_mode = ice_set_rx_mode,
7312 .ndo_set_mac_address = ice_set_mac_address,
7313 .ndo_validate_addr = eth_validate_addr,
7314 .ndo_change_mtu = ice_change_mtu,
7315 .ndo_get_stats64 = ice_get_stats64,
7316 .ndo_set_tx_maxrate = ice_set_tx_maxrate,
7317 .ndo_eth_ioctl = ice_eth_ioctl,
7318 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
7319 .ndo_set_vf_mac = ice_set_vf_mac,
7320 .ndo_get_vf_config = ice_get_vf_cfg,
7321 .ndo_set_vf_trust = ice_set_vf_trust,
7322 .ndo_set_vf_vlan = ice_set_vf_port_vlan,
7323 .ndo_set_vf_link_state = ice_set_vf_link_state,
7324 .ndo_get_vf_stats = ice_get_vf_stats,
7325 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
7326 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
7327 .ndo_set_features = ice_set_features,
7328 .ndo_bridge_getlink = ice_bridge_getlink,
7329 .ndo_bridge_setlink = ice_bridge_setlink,
7330 .ndo_fdb_add = ice_fdb_add,
7331 .ndo_fdb_del = ice_fdb_del,
7332 #ifdef CONFIG_RFS_ACCEL
7333 .ndo_rx_flow_steer = ice_rx_flow_steer,
7334 #endif
7335 .ndo_tx_timeout = ice_tx_timeout,
7336 .ndo_bpf = ice_xdp,
7337 .ndo_xdp_xmit = ice_xdp_xmit,
7338 .ndo_xsk_wakeup = ice_xsk_wakeup,
7339 };
7340