1 // SPDX-License-Identifier: GPL-2.0-only
2
3 #include <linux/irqchip/arm-gic-v3.h>
4 #include <linux/irq.h>
5 #include <linux/irqdomain.h>
6 #include <linux/kvm.h>
7 #include <linux/kvm_host.h>
8 #include <kvm/arm_vgic.h>
9 #include <asm/kvm_hyp.h>
10 #include <asm/kvm_mmu.h>
11 #include <asm/kvm_asm.h>
12
13 #include "vgic.h"
14
15 static bool group0_trap;
16 static bool group1_trap;
17 static bool common_trap;
18 static bool dir_trap;
19 static bool gicv4_enable;
20
vgic_v3_set_underflow(struct kvm_vcpu * vcpu)21 void vgic_v3_set_underflow(struct kvm_vcpu *vcpu)
22 {
23 struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3;
24
25 cpuif->vgic_hcr |= ICH_HCR_UIE;
26 }
27
lr_signals_eoi_mi(u64 lr_val)28 static bool lr_signals_eoi_mi(u64 lr_val)
29 {
30 return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) &&
31 !(lr_val & ICH_LR_HW);
32 }
33
vgic_v3_fold_lr_state(struct kvm_vcpu * vcpu)34 void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu)
35 {
36 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
37 struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3;
38 u32 model = vcpu->kvm->arch.vgic.vgic_model;
39 int lr;
40
41 DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
42
43 cpuif->vgic_hcr &= ~ICH_HCR_UIE;
44
45 for (lr = 0; lr < cpuif->used_lrs; lr++) {
46 u64 val = cpuif->vgic_lr[lr];
47 u32 intid, cpuid;
48 struct vgic_irq *irq;
49 bool is_v2_sgi = false;
50 bool deactivated;
51
52 cpuid = val & GICH_LR_PHYSID_CPUID;
53 cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT;
54
55 if (model == KVM_DEV_TYPE_ARM_VGIC_V3) {
56 intid = val & ICH_LR_VIRTUAL_ID_MASK;
57 } else {
58 intid = val & GICH_LR_VIRTUALID;
59 is_v2_sgi = vgic_irq_is_sgi(intid);
60 }
61
62 /* Notify fds when the guest EOI'ed a level-triggered IRQ */
63 if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid))
64 kvm_notify_acked_irq(vcpu->kvm, 0,
65 intid - VGIC_NR_PRIVATE_IRQS);
66
67 irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
68 if (!irq) /* An LPI could have been unmapped. */
69 continue;
70
71 raw_spin_lock(&irq->irq_lock);
72
73 /* Always preserve the active bit, note deactivation */
74 deactivated = irq->active && !(val & ICH_LR_ACTIVE_BIT);
75 irq->active = !!(val & ICH_LR_ACTIVE_BIT);
76
77 if (irq->active && is_v2_sgi)
78 irq->active_source = cpuid;
79
80 /* Edge is the only case where we preserve the pending bit */
81 if (irq->config == VGIC_CONFIG_EDGE &&
82 (val & ICH_LR_PENDING_BIT)) {
83 irq->pending_latch = true;
84
85 if (is_v2_sgi)
86 irq->source |= (1 << cpuid);
87 }
88
89 /*
90 * Clear soft pending state when level irqs have been acked.
91 */
92 if (irq->config == VGIC_CONFIG_LEVEL && !(val & ICH_LR_STATE))
93 irq->pending_latch = false;
94
95 /* Handle resampling for mapped interrupts if required */
96 vgic_irq_handle_resampling(irq, deactivated, val & ICH_LR_PENDING_BIT);
97
98 raw_spin_unlock(&irq->irq_lock);
99 vgic_put_irq(vcpu->kvm, irq);
100 }
101
102 cpuif->used_lrs = 0;
103 }
104
105 /* Requires the irq to be locked already */
vgic_v3_populate_lr(struct kvm_vcpu * vcpu,struct vgic_irq * irq,int lr)106 void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
107 {
108 u32 model = vcpu->kvm->arch.vgic.vgic_model;
109 u64 val = irq->intid;
110 bool allow_pending = true, is_v2_sgi;
111
112 is_v2_sgi = (vgic_irq_is_sgi(irq->intid) &&
113 model == KVM_DEV_TYPE_ARM_VGIC_V2);
114
115 if (irq->active) {
116 val |= ICH_LR_ACTIVE_BIT;
117 if (is_v2_sgi)
118 val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT;
119 if (vgic_irq_is_multi_sgi(irq)) {
120 allow_pending = false;
121 val |= ICH_LR_EOI;
122 }
123 }
124
125 if (irq->hw && !vgic_irq_needs_resampling(irq)) {
126 val |= ICH_LR_HW;
127 val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT;
128 /*
129 * Never set pending+active on a HW interrupt, as the
130 * pending state is kept at the physical distributor
131 * level.
132 */
133 if (irq->active)
134 allow_pending = false;
135 } else {
136 if (irq->config == VGIC_CONFIG_LEVEL) {
137 val |= ICH_LR_EOI;
138
139 /*
140 * Software resampling doesn't work very well
141 * if we allow P+A, so let's not do that.
142 */
143 if (irq->active)
144 allow_pending = false;
145 }
146 }
147
148 if (allow_pending && irq_is_pending(irq)) {
149 val |= ICH_LR_PENDING_BIT;
150
151 if (irq->config == VGIC_CONFIG_EDGE)
152 irq->pending_latch = false;
153
154 if (vgic_irq_is_sgi(irq->intid) &&
155 model == KVM_DEV_TYPE_ARM_VGIC_V2) {
156 u32 src = ffs(irq->source);
157
158 if (WARN_RATELIMIT(!src, "No SGI source for INTID %d\n",
159 irq->intid))
160 return;
161
162 val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT;
163 irq->source &= ~(1 << (src - 1));
164 if (irq->source) {
165 irq->pending_latch = true;
166 val |= ICH_LR_EOI;
167 }
168 }
169 }
170
171 /*
172 * Level-triggered mapped IRQs are special because we only observe
173 * rising edges as input to the VGIC. We therefore lower the line
174 * level here, so that we can take new virtual IRQs. See
175 * vgic_v3_fold_lr_state for more info.
176 */
177 if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT))
178 irq->line_level = false;
179
180 if (irq->group)
181 val |= ICH_LR_GROUP;
182
183 val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT;
184
185 vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val;
186 }
187
vgic_v3_clear_lr(struct kvm_vcpu * vcpu,int lr)188 void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr)
189 {
190 vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0;
191 }
192
vgic_v3_set_vmcr(struct kvm_vcpu * vcpu,struct vgic_vmcr * vmcrp)193 void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
194 {
195 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
196 u32 model = vcpu->kvm->arch.vgic.vgic_model;
197 u32 vmcr;
198
199 if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
200 vmcr = (vmcrp->ackctl << ICH_VMCR_ACK_CTL_SHIFT) &
201 ICH_VMCR_ACK_CTL_MASK;
202 vmcr |= (vmcrp->fiqen << ICH_VMCR_FIQ_EN_SHIFT) &
203 ICH_VMCR_FIQ_EN_MASK;
204 } else {
205 /*
206 * When emulating GICv3 on GICv3 with SRE=1 on the
207 * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
208 */
209 vmcr = ICH_VMCR_FIQ_EN_MASK;
210 }
211
212 vmcr |= (vmcrp->cbpr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK;
213 vmcr |= (vmcrp->eoim << ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK;
214 vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK;
215 vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK;
216 vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK;
217 vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK;
218 vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK;
219
220 cpu_if->vgic_vmcr = vmcr;
221 }
222
vgic_v3_get_vmcr(struct kvm_vcpu * vcpu,struct vgic_vmcr * vmcrp)223 void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
224 {
225 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
226 u32 model = vcpu->kvm->arch.vgic.vgic_model;
227 u32 vmcr;
228
229 vmcr = cpu_if->vgic_vmcr;
230
231 if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
232 vmcrp->ackctl = (vmcr & ICH_VMCR_ACK_CTL_MASK) >>
233 ICH_VMCR_ACK_CTL_SHIFT;
234 vmcrp->fiqen = (vmcr & ICH_VMCR_FIQ_EN_MASK) >>
235 ICH_VMCR_FIQ_EN_SHIFT;
236 } else {
237 /*
238 * When emulating GICv3 on GICv3 with SRE=1 on the
239 * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
240 */
241 vmcrp->fiqen = 1;
242 vmcrp->ackctl = 0;
243 }
244
245 vmcrp->cbpr = (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
246 vmcrp->eoim = (vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT;
247 vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
248 vmcrp->bpr = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
249 vmcrp->pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
250 vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT;
251 vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT;
252 }
253
254 #define INITIAL_PENDBASER_VALUE \
255 (GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb) | \
256 GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner) | \
257 GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable))
258
vgic_v3_enable(struct kvm_vcpu * vcpu)259 void vgic_v3_enable(struct kvm_vcpu *vcpu)
260 {
261 struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3;
262
263 /*
264 * By forcing VMCR to zero, the GIC will restore the binary
265 * points to their reset values. Anything else resets to zero
266 * anyway.
267 */
268 vgic_v3->vgic_vmcr = 0;
269
270 /*
271 * If we are emulating a GICv3, we do it in an non-GICv2-compatible
272 * way, so we force SRE to 1 to demonstrate this to the guest.
273 * Also, we don't support any form of IRQ/FIQ bypass.
274 * This goes with the spec allowing the value to be RAO/WI.
275 */
276 if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
277 vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB |
278 ICC_SRE_EL1_DFB |
279 ICC_SRE_EL1_SRE);
280 vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE;
281 } else {
282 vgic_v3->vgic_sre = 0;
283 }
284
285 vcpu->arch.vgic_cpu.num_id_bits = (kvm_vgic_global_state.ich_vtr_el2 &
286 ICH_VTR_ID_BITS_MASK) >>
287 ICH_VTR_ID_BITS_SHIFT;
288 vcpu->arch.vgic_cpu.num_pri_bits = ((kvm_vgic_global_state.ich_vtr_el2 &
289 ICH_VTR_PRI_BITS_MASK) >>
290 ICH_VTR_PRI_BITS_SHIFT) + 1;
291
292 /* Get the show on the road... */
293 vgic_v3->vgic_hcr = ICH_HCR_EN;
294 if (group0_trap)
295 vgic_v3->vgic_hcr |= ICH_HCR_TALL0;
296 if (group1_trap)
297 vgic_v3->vgic_hcr |= ICH_HCR_TALL1;
298 if (common_trap)
299 vgic_v3->vgic_hcr |= ICH_HCR_TC;
300 if (dir_trap)
301 vgic_v3->vgic_hcr |= ICH_HCR_TDIR;
302 }
303
vgic_v3_lpi_sync_pending_status(struct kvm * kvm,struct vgic_irq * irq)304 int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq)
305 {
306 struct kvm_vcpu *vcpu;
307 int byte_offset, bit_nr;
308 gpa_t pendbase, ptr;
309 bool status;
310 u8 val;
311 int ret;
312 unsigned long flags;
313
314 retry:
315 vcpu = irq->target_vcpu;
316 if (!vcpu)
317 return 0;
318
319 pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
320
321 byte_offset = irq->intid / BITS_PER_BYTE;
322 bit_nr = irq->intid % BITS_PER_BYTE;
323 ptr = pendbase + byte_offset;
324
325 ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
326 if (ret)
327 return ret;
328
329 status = val & (1 << bit_nr);
330
331 raw_spin_lock_irqsave(&irq->irq_lock, flags);
332 if (irq->target_vcpu != vcpu) {
333 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
334 goto retry;
335 }
336 irq->pending_latch = status;
337 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
338
339 if (status) {
340 /* clear consumed data */
341 val &= ~(1 << bit_nr);
342 ret = kvm_write_guest_lock(kvm, ptr, &val, 1);
343 if (ret)
344 return ret;
345 }
346 return 0;
347 }
348
349 /*
350 * The deactivation of the doorbell interrupt will trigger the
351 * unmapping of the associated vPE.
352 */
unmap_all_vpes(struct kvm * kvm)353 static void unmap_all_vpes(struct kvm *kvm)
354 {
355 struct vgic_dist *dist = &kvm->arch.vgic;
356 int i;
357
358 for (i = 0; i < dist->its_vm.nr_vpes; i++)
359 free_irq(dist->its_vm.vpes[i]->irq, kvm_get_vcpu(kvm, i));
360 }
361
map_all_vpes(struct kvm * kvm)362 static void map_all_vpes(struct kvm *kvm)
363 {
364 struct vgic_dist *dist = &kvm->arch.vgic;
365 int i;
366
367 for (i = 0; i < dist->its_vm.nr_vpes; i++)
368 WARN_ON(vgic_v4_request_vpe_irq(kvm_get_vcpu(kvm, i),
369 dist->its_vm.vpes[i]->irq));
370 }
371
372 /**
373 * vgic_v3_save_pending_tables - Save the pending tables into guest RAM
374 * kvm lock and all vcpu lock must be held
375 */
vgic_v3_save_pending_tables(struct kvm * kvm)376 int vgic_v3_save_pending_tables(struct kvm *kvm)
377 {
378 struct vgic_dist *dist = &kvm->arch.vgic;
379 struct vgic_irq *irq;
380 gpa_t last_ptr = ~(gpa_t)0;
381 bool vlpi_avail = false;
382 int ret = 0;
383 u8 val;
384
385 if (unlikely(!vgic_initialized(kvm)))
386 return -ENXIO;
387
388 /*
389 * A preparation for getting any VLPI states.
390 * The above vgic initialized check also ensures that the allocation
391 * and enabling of the doorbells have already been done.
392 */
393 if (kvm_vgic_global_state.has_gicv4_1) {
394 unmap_all_vpes(kvm);
395 vlpi_avail = true;
396 }
397
398 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
399 int byte_offset, bit_nr;
400 struct kvm_vcpu *vcpu;
401 gpa_t pendbase, ptr;
402 bool is_pending;
403 bool stored;
404
405 vcpu = irq->target_vcpu;
406 if (!vcpu)
407 continue;
408
409 pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
410
411 byte_offset = irq->intid / BITS_PER_BYTE;
412 bit_nr = irq->intid % BITS_PER_BYTE;
413 ptr = pendbase + byte_offset;
414
415 if (ptr != last_ptr) {
416 ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
417 if (ret)
418 goto out;
419 last_ptr = ptr;
420 }
421
422 stored = val & (1U << bit_nr);
423
424 is_pending = irq->pending_latch;
425
426 if (irq->hw && vlpi_avail)
427 vgic_v4_get_vlpi_state(irq, &is_pending);
428
429 if (stored == is_pending)
430 continue;
431
432 if (is_pending)
433 val |= 1 << bit_nr;
434 else
435 val &= ~(1 << bit_nr);
436
437 ret = kvm_write_guest_lock(kvm, ptr, &val, 1);
438 if (ret)
439 goto out;
440 }
441
442 out:
443 if (vlpi_avail)
444 map_all_vpes(kvm);
445
446 return ret;
447 }
448
449 /**
450 * vgic_v3_rdist_overlap - check if a region overlaps with any
451 * existing redistributor region
452 *
453 * @kvm: kvm handle
454 * @base: base of the region
455 * @size: size of region
456 *
457 * Return: true if there is an overlap
458 */
vgic_v3_rdist_overlap(struct kvm * kvm,gpa_t base,size_t size)459 bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size)
460 {
461 struct vgic_dist *d = &kvm->arch.vgic;
462 struct vgic_redist_region *rdreg;
463
464 list_for_each_entry(rdreg, &d->rd_regions, list) {
465 if ((base + size > rdreg->base) &&
466 (base < rdreg->base + vgic_v3_rd_region_size(kvm, rdreg)))
467 return true;
468 }
469 return false;
470 }
471
472 /*
473 * Check for overlapping regions and for regions crossing the end of memory
474 * for base addresses which have already been set.
475 */
vgic_v3_check_base(struct kvm * kvm)476 bool vgic_v3_check_base(struct kvm *kvm)
477 {
478 struct vgic_dist *d = &kvm->arch.vgic;
479 struct vgic_redist_region *rdreg;
480
481 if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
482 d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base)
483 return false;
484
485 list_for_each_entry(rdreg, &d->rd_regions, list) {
486 size_t sz = vgic_v3_rd_region_size(kvm, rdreg);
487
488 if (vgic_check_iorange(kvm, VGIC_ADDR_UNDEF,
489 rdreg->base, SZ_64K, sz))
490 return false;
491 }
492
493 if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base))
494 return true;
495
496 return !vgic_v3_rdist_overlap(kvm, d->vgic_dist_base,
497 KVM_VGIC_V3_DIST_SIZE);
498 }
499
500 /**
501 * vgic_v3_rdist_free_slot - Look up registered rdist regions and identify one
502 * which has free space to put a new rdist region.
503 *
504 * @rd_regions: redistributor region list head
505 *
506 * A redistributor regions maps n redistributors, n = region size / (2 x 64kB).
507 * Stride between redistributors is 0 and regions are filled in the index order.
508 *
509 * Return: the redist region handle, if any, that has space to map a new rdist
510 * region.
511 */
vgic_v3_rdist_free_slot(struct list_head * rd_regions)512 struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rd_regions)
513 {
514 struct vgic_redist_region *rdreg;
515
516 list_for_each_entry(rdreg, rd_regions, list) {
517 if (!vgic_v3_redist_region_full(rdreg))
518 return rdreg;
519 }
520 return NULL;
521 }
522
vgic_v3_rdist_region_from_index(struct kvm * kvm,u32 index)523 struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm,
524 u32 index)
525 {
526 struct list_head *rd_regions = &kvm->arch.vgic.rd_regions;
527 struct vgic_redist_region *rdreg;
528
529 list_for_each_entry(rdreg, rd_regions, list) {
530 if (rdreg->index == index)
531 return rdreg;
532 }
533 return NULL;
534 }
535
536
vgic_v3_map_resources(struct kvm * kvm)537 int vgic_v3_map_resources(struct kvm *kvm)
538 {
539 struct vgic_dist *dist = &kvm->arch.vgic;
540 struct kvm_vcpu *vcpu;
541 int ret = 0;
542 int c;
543
544 kvm_for_each_vcpu(c, vcpu, kvm) {
545 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
546
547 if (IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) {
548 kvm_debug("vcpu %d redistributor base not set\n", c);
549 return -ENXIO;
550 }
551 }
552
553 if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base)) {
554 kvm_debug("Need to set vgic distributor addresses first\n");
555 return -ENXIO;
556 }
557
558 if (!vgic_v3_check_base(kvm)) {
559 kvm_debug("VGIC redist and dist frames overlap\n");
560 return -EINVAL;
561 }
562
563 /*
564 * For a VGICv3 we require the userland to explicitly initialize
565 * the VGIC before we need to use it.
566 */
567 if (!vgic_initialized(kvm)) {
568 return -EBUSY;
569 }
570
571 ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V3);
572 if (ret) {
573 kvm_err("Unable to register VGICv3 dist MMIO regions\n");
574 return ret;
575 }
576
577 if (kvm_vgic_global_state.has_gicv4_1)
578 vgic_v4_configure_vsgis(kvm);
579
580 return 0;
581 }
582
583 DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap);
584
early_group0_trap_cfg(char * buf)585 static int __init early_group0_trap_cfg(char *buf)
586 {
587 return strtobool(buf, &group0_trap);
588 }
589 early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg);
590
early_group1_trap_cfg(char * buf)591 static int __init early_group1_trap_cfg(char *buf)
592 {
593 return strtobool(buf, &group1_trap);
594 }
595 early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg);
596
early_common_trap_cfg(char * buf)597 static int __init early_common_trap_cfg(char *buf)
598 {
599 return strtobool(buf, &common_trap);
600 }
601 early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg);
602
early_gicv4_enable(char * buf)603 static int __init early_gicv4_enable(char *buf)
604 {
605 return strtobool(buf, &gicv4_enable);
606 }
607 early_param("kvm-arm.vgic_v4_enable", early_gicv4_enable);
608
609 static const struct midr_range broken_seis[] = {
610 MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM),
611 MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM),
612 {},
613 };
614
vgic_v3_broken_seis(void)615 static bool vgic_v3_broken_seis(void)
616 {
617 return ((kvm_vgic_global_state.ich_vtr_el2 & ICH_VTR_SEIS_MASK) &&
618 is_midr_in_range_list(read_cpuid_id(), broken_seis));
619 }
620
621 /**
622 * vgic_v3_probe - probe for a VGICv3 compatible interrupt controller
623 * @info: pointer to the GIC description
624 *
625 * Returns 0 if the VGICv3 has been probed successfully, returns an error code
626 * otherwise
627 */
vgic_v3_probe(const struct gic_kvm_info * info)628 int vgic_v3_probe(const struct gic_kvm_info *info)
629 {
630 u64 ich_vtr_el2 = kvm_call_hyp_ret(__vgic_v3_get_gic_config);
631 bool has_v2;
632 int ret;
633
634 has_v2 = ich_vtr_el2 >> 63;
635 ich_vtr_el2 = (u32)ich_vtr_el2;
636
637 /*
638 * The ListRegs field is 5 bits, but there is an architectural
639 * maximum of 16 list registers. Just ignore bit 4...
640 */
641 kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1;
642 kvm_vgic_global_state.can_emulate_gicv2 = false;
643 kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2;
644
645 /* GICv4 support? */
646 if (info->has_v4) {
647 kvm_vgic_global_state.has_gicv4 = gicv4_enable;
648 kvm_vgic_global_state.has_gicv4_1 = info->has_v4_1 && gicv4_enable;
649 kvm_info("GICv4%s support %sabled\n",
650 kvm_vgic_global_state.has_gicv4_1 ? ".1" : "",
651 gicv4_enable ? "en" : "dis");
652 }
653
654 kvm_vgic_global_state.vcpu_base = 0;
655
656 if (!info->vcpu.start) {
657 kvm_info("GICv3: no GICV resource entry\n");
658 } else if (!has_v2) {
659 pr_warn(FW_BUG "CPU interface incapable of MMIO access\n");
660 } else if (!PAGE_ALIGNED(info->vcpu.start)) {
661 pr_warn("GICV physical address 0x%llx not page aligned\n",
662 (unsigned long long)info->vcpu.start);
663 } else if (kvm_get_mode() != KVM_MODE_PROTECTED) {
664 kvm_vgic_global_state.vcpu_base = info->vcpu.start;
665 kvm_vgic_global_state.can_emulate_gicv2 = true;
666 ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
667 if (ret) {
668 kvm_err("Cannot register GICv2 KVM device.\n");
669 return ret;
670 }
671 kvm_info("vgic-v2@%llx\n", info->vcpu.start);
672 }
673 ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3);
674 if (ret) {
675 kvm_err("Cannot register GICv3 KVM device.\n");
676 kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2);
677 return ret;
678 }
679
680 if (kvm_vgic_global_state.vcpu_base == 0)
681 kvm_info("disabling GICv2 emulation\n");
682
683 if (vgic_v3_broken_seis()) {
684 kvm_info("GICv3 with broken locally generated SEI\n");
685
686 kvm_vgic_global_state.ich_vtr_el2 &= ~ICH_VTR_SEIS_MASK;
687 group0_trap = true;
688 group1_trap = true;
689 if (ich_vtr_el2 & ICH_VTR_TDS_MASK)
690 dir_trap = true;
691 else
692 common_trap = true;
693 }
694
695 if (group0_trap || group1_trap || common_trap | dir_trap) {
696 kvm_info("GICv3 sysreg trapping enabled ([%s%s%s%s], reduced performance)\n",
697 group0_trap ? "G0" : "",
698 group1_trap ? "G1" : "",
699 common_trap ? "C" : "",
700 dir_trap ? "D" : "");
701 static_branch_enable(&vgic_v3_cpuif_trap);
702 }
703
704 kvm_vgic_global_state.vctrl_base = NULL;
705 kvm_vgic_global_state.type = VGIC_V3;
706 kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS;
707
708 return 0;
709 }
710
vgic_v3_load(struct kvm_vcpu * vcpu)711 void vgic_v3_load(struct kvm_vcpu *vcpu)
712 {
713 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
714
715 if (likely(!is_protected_kvm_enabled()))
716 kvm_call_hyp(__vgic_v3_restore_vmcr_aprs, cpu_if);
717
718 if (has_vhe())
719 __vgic_v3_activate_traps(cpu_if);
720
721 WARN_ON(vgic_v4_load(vcpu));
722 }
723
vgic_v3_put(struct kvm_vcpu * vcpu,bool blocking)724 void vgic_v3_put(struct kvm_vcpu *vcpu, bool blocking)
725 {
726 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
727
728 WARN_ON(vgic_v4_put(vcpu, blocking));
729
730 if (likely(!is_protected_kvm_enabled()))
731 kvm_call_hyp(__vgic_v3_save_vmcr_aprs, cpu_if);
732
733 if (has_vhe())
734 __vgic_v3_deactivate_traps(cpu_if);
735 }
736