• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/mmu.c
4  *
5  * Copyright (C) 1995-2005 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/cache.h>
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/kexec.h>
16 #include <linux/libfdt.h>
17 #include <linux/mman.h>
18 #include <linux/nodemask.h>
19 #include <linux/memblock.h>
20 #include <linux/memory.h>
21 #include <linux/fs.h>
22 #include <linux/io.h>
23 #include <linux/mm.h>
24 #include <linux/vmalloc.h>
25 #include <linux/set_memory.h>
26 
27 #include <asm/barrier.h>
28 #include <asm/cputype.h>
29 #include <asm/fixmap.h>
30 #include <asm/kasan.h>
31 #include <asm/kernel-pgtable.h>
32 #include <asm/sections.h>
33 #include <asm/setup.h>
34 #include <linux/sizes.h>
35 #include <asm/tlb.h>
36 #include <asm/mmu_context.h>
37 #include <asm/ptdump.h>
38 #include <asm/tlbflush.h>
39 #include <asm/pgalloc.h>
40 
41 #define NO_BLOCK_MAPPINGS	BIT(0)
42 #define NO_CONT_MAPPINGS	BIT(1)
43 #define NO_EXEC_MAPPINGS	BIT(2)	/* assumes FEAT_HPDS is not used */
44 
45 u64 idmap_t0sz = TCR_T0SZ(VA_BITS_MIN);
46 u64 idmap_ptrs_per_pgd = PTRS_PER_PGD;
47 
48 u64 __section(".mmuoff.data.write") vabits_actual;
49 EXPORT_SYMBOL(vabits_actual);
50 
51 u64 kimage_voffset __ro_after_init;
52 EXPORT_SYMBOL(kimage_voffset);
53 
54 /*
55  * Empty_zero_page is a special page that is used for zero-initialized data
56  * and COW.
57  */
58 unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] __page_aligned_bss;
59 EXPORT_SYMBOL(empty_zero_page);
60 
61 static pte_t bm_pte[PTRS_PER_PTE] __page_aligned_bss;
62 static pmd_t bm_pmd[PTRS_PER_PMD] __page_aligned_bss __maybe_unused;
63 static pud_t bm_pud[PTRS_PER_PUD] __page_aligned_bss __maybe_unused;
64 
65 static DEFINE_SPINLOCK(swapper_pgdir_lock);
66 static DEFINE_MUTEX(fixmap_lock);
67 
set_swapper_pgd(pgd_t * pgdp,pgd_t pgd)68 void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd)
69 {
70 	pgd_t *fixmap_pgdp;
71 
72 	spin_lock(&swapper_pgdir_lock);
73 	fixmap_pgdp = pgd_set_fixmap(__pa_symbol(pgdp));
74 	WRITE_ONCE(*fixmap_pgdp, pgd);
75 	/*
76 	 * We need dsb(ishst) here to ensure the page-table-walker sees
77 	 * our new entry before set_p?d() returns. The fixmap's
78 	 * flush_tlb_kernel_range() via clear_fixmap() does this for us.
79 	 */
80 	pgd_clear_fixmap();
81 	spin_unlock(&swapper_pgdir_lock);
82 }
83 
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)84 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
85 			      unsigned long size, pgprot_t vma_prot)
86 {
87 	if (!pfn_is_map_memory(pfn))
88 		return pgprot_noncached(vma_prot);
89 	else if (file->f_flags & O_SYNC)
90 		return pgprot_writecombine(vma_prot);
91 	return vma_prot;
92 }
93 EXPORT_SYMBOL(phys_mem_access_prot);
94 
early_pgtable_alloc(int shift)95 static phys_addr_t __init early_pgtable_alloc(int shift)
96 {
97 	phys_addr_t phys;
98 	void *ptr;
99 
100 	phys = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0,
101 					 MEMBLOCK_ALLOC_NOLEAKTRACE);
102 	if (!phys)
103 		panic("Failed to allocate page table page\n");
104 
105 	/*
106 	 * The FIX_{PGD,PUD,PMD} slots may be in active use, but the FIX_PTE
107 	 * slot will be free, so we can (ab)use the FIX_PTE slot to initialise
108 	 * any level of table.
109 	 */
110 	ptr = pte_set_fixmap(phys);
111 
112 	memset(ptr, 0, PAGE_SIZE);
113 
114 	/*
115 	 * Implicit barriers also ensure the zeroed page is visible to the page
116 	 * table walker
117 	 */
118 	pte_clear_fixmap();
119 
120 	return phys;
121 }
122 
pgattr_change_is_safe(u64 old,u64 new)123 static bool pgattr_change_is_safe(u64 old, u64 new)
124 {
125 	/*
126 	 * The following mapping attributes may be updated in live
127 	 * kernel mappings without the need for break-before-make.
128 	 */
129 	pteval_t mask = PTE_PXN | PTE_RDONLY | PTE_WRITE | PTE_NG;
130 
131 	/* creating or taking down mappings is always safe */
132 	if (old == 0 || new == 0)
133 		return true;
134 
135 	/* live contiguous mappings may not be manipulated at all */
136 	if ((old | new) & PTE_CONT)
137 		return false;
138 
139 	/* Transitioning from Non-Global to Global is unsafe */
140 	if (old & ~new & PTE_NG)
141 		return false;
142 
143 	/*
144 	 * Changing the memory type between Normal and Normal-Tagged is safe
145 	 * since Tagged is considered a permission attribute from the
146 	 * mismatched attribute aliases perspective.
147 	 */
148 	if (((old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
149 	     (old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)) &&
150 	    ((new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
151 	     (new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)))
152 		mask |= PTE_ATTRINDX_MASK;
153 
154 	return ((old ^ new) & ~mask) == 0;
155 }
156 
init_pte(pmd_t * pmdp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot)157 static void init_pte(pmd_t *pmdp, unsigned long addr, unsigned long end,
158 		     phys_addr_t phys, pgprot_t prot)
159 {
160 	pte_t *ptep;
161 
162 	ptep = pte_set_fixmap_offset(pmdp, addr);
163 	do {
164 		pte_t old_pte = READ_ONCE(*ptep);
165 
166 		set_pte(ptep, pfn_pte(__phys_to_pfn(phys), prot));
167 
168 		/*
169 		 * After the PTE entry has been populated once, we
170 		 * only allow updates to the permission attributes.
171 		 */
172 		BUG_ON(!pgattr_change_is_safe(pte_val(old_pte),
173 					      READ_ONCE(pte_val(*ptep))));
174 
175 		phys += PAGE_SIZE;
176 	} while (ptep++, addr += PAGE_SIZE, addr != end);
177 
178 	pte_clear_fixmap();
179 }
180 
alloc_init_cont_pte(pmd_t * pmdp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot,phys_addr_t (* pgtable_alloc)(int),int flags)181 static void alloc_init_cont_pte(pmd_t *pmdp, unsigned long addr,
182 				unsigned long end, phys_addr_t phys,
183 				pgprot_t prot,
184 				phys_addr_t (*pgtable_alloc)(int),
185 				int flags)
186 {
187 	unsigned long next;
188 	pmd_t pmd = READ_ONCE(*pmdp);
189 
190 	BUG_ON(pmd_sect(pmd));
191 	if (pmd_none(pmd)) {
192 		pmdval_t pmdval = PMD_TYPE_TABLE | PMD_TABLE_UXN;
193 		phys_addr_t pte_phys;
194 
195 		if (flags & NO_EXEC_MAPPINGS)
196 			pmdval |= PMD_TABLE_PXN;
197 		BUG_ON(!pgtable_alloc);
198 		pte_phys = pgtable_alloc(PAGE_SHIFT);
199 		__pmd_populate(pmdp, pte_phys, pmdval);
200 		pmd = READ_ONCE(*pmdp);
201 	}
202 	BUG_ON(pmd_bad(pmd));
203 
204 	do {
205 		pgprot_t __prot = prot;
206 
207 		next = pte_cont_addr_end(addr, end);
208 
209 		/* use a contiguous mapping if the range is suitably aligned */
210 		if ((((addr | next | phys) & ~CONT_PTE_MASK) == 0) &&
211 		    (flags & NO_CONT_MAPPINGS) == 0)
212 			__prot = __pgprot(pgprot_val(prot) | PTE_CONT);
213 
214 		init_pte(pmdp, addr, next, phys, __prot);
215 
216 		phys += next - addr;
217 	} while (addr = next, addr != end);
218 }
219 
init_pmd(pud_t * pudp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot,phys_addr_t (* pgtable_alloc)(int),int flags)220 static void init_pmd(pud_t *pudp, unsigned long addr, unsigned long end,
221 		     phys_addr_t phys, pgprot_t prot,
222 		     phys_addr_t (*pgtable_alloc)(int), int flags)
223 {
224 	unsigned long next;
225 	pmd_t *pmdp;
226 
227 	pmdp = pmd_set_fixmap_offset(pudp, addr);
228 	do {
229 		pmd_t old_pmd = READ_ONCE(*pmdp);
230 
231 		next = pmd_addr_end(addr, end);
232 
233 		/* try section mapping first */
234 		if (((addr | next | phys) & ~PMD_MASK) == 0 &&
235 		    (flags & NO_BLOCK_MAPPINGS) == 0) {
236 			pmd_set_huge(pmdp, phys, prot);
237 
238 			/*
239 			 * After the PMD entry has been populated once, we
240 			 * only allow updates to the permission attributes.
241 			 */
242 			BUG_ON(!pgattr_change_is_safe(pmd_val(old_pmd),
243 						      READ_ONCE(pmd_val(*pmdp))));
244 		} else {
245 			alloc_init_cont_pte(pmdp, addr, next, phys, prot,
246 					    pgtable_alloc, flags);
247 
248 			BUG_ON(pmd_val(old_pmd) != 0 &&
249 			       pmd_val(old_pmd) != READ_ONCE(pmd_val(*pmdp)));
250 		}
251 		phys += next - addr;
252 	} while (pmdp++, addr = next, addr != end);
253 
254 	pmd_clear_fixmap();
255 }
256 
alloc_init_cont_pmd(pud_t * pudp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot,phys_addr_t (* pgtable_alloc)(int),int flags)257 static void alloc_init_cont_pmd(pud_t *pudp, unsigned long addr,
258 				unsigned long end, phys_addr_t phys,
259 				pgprot_t prot,
260 				phys_addr_t (*pgtable_alloc)(int), int flags)
261 {
262 	unsigned long next;
263 	pud_t pud = READ_ONCE(*pudp);
264 
265 	/*
266 	 * Check for initial section mappings in the pgd/pud.
267 	 */
268 	BUG_ON(pud_sect(pud));
269 	if (pud_none(pud)) {
270 		pudval_t pudval = PUD_TYPE_TABLE | PUD_TABLE_UXN;
271 		phys_addr_t pmd_phys;
272 
273 		if (flags & NO_EXEC_MAPPINGS)
274 			pudval |= PUD_TABLE_PXN;
275 		BUG_ON(!pgtable_alloc);
276 		pmd_phys = pgtable_alloc(PMD_SHIFT);
277 		__pud_populate(pudp, pmd_phys, pudval);
278 		pud = READ_ONCE(*pudp);
279 	}
280 	BUG_ON(pud_bad(pud));
281 
282 	do {
283 		pgprot_t __prot = prot;
284 
285 		next = pmd_cont_addr_end(addr, end);
286 
287 		/* use a contiguous mapping if the range is suitably aligned */
288 		if ((((addr | next | phys) & ~CONT_PMD_MASK) == 0) &&
289 		    (flags & NO_CONT_MAPPINGS) == 0)
290 			__prot = __pgprot(pgprot_val(prot) | PTE_CONT);
291 
292 		init_pmd(pudp, addr, next, phys, __prot, pgtable_alloc, flags);
293 
294 		phys += next - addr;
295 	} while (addr = next, addr != end);
296 }
297 
use_1G_block(unsigned long addr,unsigned long next,unsigned long phys)298 static inline bool use_1G_block(unsigned long addr, unsigned long next,
299 			unsigned long phys)
300 {
301 	if (PAGE_SHIFT != 12)
302 		return false;
303 
304 	if (((addr | next | phys) & ~PUD_MASK) != 0)
305 		return false;
306 
307 	return true;
308 }
309 
alloc_init_pud(pgd_t * pgdp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot,phys_addr_t (* pgtable_alloc)(int),int flags)310 static void alloc_init_pud(pgd_t *pgdp, unsigned long addr, unsigned long end,
311 			   phys_addr_t phys, pgprot_t prot,
312 			   phys_addr_t (*pgtable_alloc)(int),
313 			   int flags)
314 {
315 	unsigned long next;
316 	pud_t *pudp;
317 	p4d_t *p4dp = p4d_offset(pgdp, addr);
318 	p4d_t p4d = READ_ONCE(*p4dp);
319 
320 	if (p4d_none(p4d)) {
321 		p4dval_t p4dval = P4D_TYPE_TABLE | P4D_TABLE_UXN;
322 		phys_addr_t pud_phys;
323 
324 		if (flags & NO_EXEC_MAPPINGS)
325 			p4dval |= P4D_TABLE_PXN;
326 		BUG_ON(!pgtable_alloc);
327 		pud_phys = pgtable_alloc(PUD_SHIFT);
328 		__p4d_populate(p4dp, pud_phys, p4dval);
329 		p4d = READ_ONCE(*p4dp);
330 	}
331 	BUG_ON(p4d_bad(p4d));
332 
333 	/*
334 	 * No need for locking during early boot. And it doesn't work as
335 	 * expected with KASLR enabled.
336 	 */
337 	if (system_state != SYSTEM_BOOTING)
338 		mutex_lock(&fixmap_lock);
339 	pudp = pud_set_fixmap_offset(p4dp, addr);
340 	do {
341 		pud_t old_pud = READ_ONCE(*pudp);
342 
343 		next = pud_addr_end(addr, end);
344 
345 		/*
346 		 * For 4K granule only, attempt to put down a 1GB block
347 		 */
348 		if (use_1G_block(addr, next, phys) &&
349 		    (flags & NO_BLOCK_MAPPINGS) == 0) {
350 			pud_set_huge(pudp, phys, prot);
351 
352 			/*
353 			 * After the PUD entry has been populated once, we
354 			 * only allow updates to the permission attributes.
355 			 */
356 			BUG_ON(!pgattr_change_is_safe(pud_val(old_pud),
357 						      READ_ONCE(pud_val(*pudp))));
358 		} else {
359 			alloc_init_cont_pmd(pudp, addr, next, phys, prot,
360 					    pgtable_alloc, flags);
361 
362 			BUG_ON(pud_val(old_pud) != 0 &&
363 			       pud_val(old_pud) != READ_ONCE(pud_val(*pudp)));
364 		}
365 		phys += next - addr;
366 	} while (pudp++, addr = next, addr != end);
367 
368 	pud_clear_fixmap();
369 	if (system_state != SYSTEM_BOOTING)
370 		mutex_unlock(&fixmap_lock);
371 }
372 
__create_pgd_mapping(pgd_t * pgdir,phys_addr_t phys,unsigned long virt,phys_addr_t size,pgprot_t prot,phys_addr_t (* pgtable_alloc)(int),int flags)373 static void __create_pgd_mapping(pgd_t *pgdir, phys_addr_t phys,
374 				 unsigned long virt, phys_addr_t size,
375 				 pgprot_t prot,
376 				 phys_addr_t (*pgtable_alloc)(int),
377 				 int flags)
378 {
379 	unsigned long addr, end, next;
380 	pgd_t *pgdp = pgd_offset_pgd(pgdir, virt);
381 
382 	/*
383 	 * If the virtual and physical address don't have the same offset
384 	 * within a page, we cannot map the region as the caller expects.
385 	 */
386 	if (WARN_ON((phys ^ virt) & ~PAGE_MASK))
387 		return;
388 
389 	phys &= PAGE_MASK;
390 	addr = virt & PAGE_MASK;
391 	end = PAGE_ALIGN(virt + size);
392 
393 	do {
394 		next = pgd_addr_end(addr, end);
395 		alloc_init_pud(pgdp, addr, next, phys, prot, pgtable_alloc,
396 			       flags);
397 		phys += next - addr;
398 	} while (pgdp++, addr = next, addr != end);
399 }
400 
__pgd_pgtable_alloc(int shift)401 static phys_addr_t __pgd_pgtable_alloc(int shift)
402 {
403 	void *ptr = (void *)__get_free_page(GFP_PGTABLE_KERNEL);
404 	BUG_ON(!ptr);
405 
406 	/* Ensure the zeroed page is visible to the page table walker */
407 	dsb(ishst);
408 	return __pa(ptr);
409 }
410 
pgd_pgtable_alloc(int shift)411 static phys_addr_t pgd_pgtable_alloc(int shift)
412 {
413 	phys_addr_t pa = __pgd_pgtable_alloc(shift);
414 
415 	/*
416 	 * Call proper page table ctor in case later we need to
417 	 * call core mm functions like apply_to_page_range() on
418 	 * this pre-allocated page table.
419 	 *
420 	 * We don't select ARCH_ENABLE_SPLIT_PMD_PTLOCK if pmd is
421 	 * folded, and if so pgtable_pmd_page_ctor() becomes nop.
422 	 */
423 	if (shift == PAGE_SHIFT)
424 		BUG_ON(!pgtable_pte_page_ctor(phys_to_page(pa)));
425 	else if (shift == PMD_SHIFT)
426 		BUG_ON(!pgtable_pmd_page_ctor(phys_to_page(pa)));
427 
428 	return pa;
429 }
430 
431 /*
432  * This function can only be used to modify existing table entries,
433  * without allocating new levels of table. Note that this permits the
434  * creation of new section or page entries.
435  */
create_mapping_noalloc(phys_addr_t phys,unsigned long virt,phys_addr_t size,pgprot_t prot)436 static void __init create_mapping_noalloc(phys_addr_t phys, unsigned long virt,
437 				  phys_addr_t size, pgprot_t prot)
438 {
439 	if ((virt >= PAGE_END) && (virt < VMALLOC_START)) {
440 		pr_warn("BUG: not creating mapping for %pa at 0x%016lx - outside kernel range\n",
441 			&phys, virt);
442 		return;
443 	}
444 	__create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
445 			     NO_CONT_MAPPINGS);
446 }
447 
create_pgd_mapping(struct mm_struct * mm,phys_addr_t phys,unsigned long virt,phys_addr_t size,pgprot_t prot,bool page_mappings_only)448 void __init create_pgd_mapping(struct mm_struct *mm, phys_addr_t phys,
449 			       unsigned long virt, phys_addr_t size,
450 			       pgprot_t prot, bool page_mappings_only)
451 {
452 	int flags = 0;
453 
454 	BUG_ON(mm == &init_mm);
455 
456 	if (page_mappings_only)
457 		flags = NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
458 
459 	__create_pgd_mapping(mm->pgd, phys, virt, size, prot,
460 			     pgd_pgtable_alloc, flags);
461 }
462 
update_mapping_prot(phys_addr_t phys,unsigned long virt,phys_addr_t size,pgprot_t prot)463 static void update_mapping_prot(phys_addr_t phys, unsigned long virt,
464 				phys_addr_t size, pgprot_t prot)
465 {
466 	if ((virt >= PAGE_END) && (virt < VMALLOC_START)) {
467 		pr_warn("BUG: not updating mapping for %pa at 0x%016lx - outside kernel range\n",
468 			&phys, virt);
469 		return;
470 	}
471 
472 	__create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
473 			     NO_CONT_MAPPINGS);
474 
475 	/* flush the TLBs after updating live kernel mappings */
476 	flush_tlb_kernel_range(virt, virt + size);
477 }
478 
__map_memblock(pgd_t * pgdp,phys_addr_t start,phys_addr_t end,pgprot_t prot,int flags)479 static void __init __map_memblock(pgd_t *pgdp, phys_addr_t start,
480 				  phys_addr_t end, pgprot_t prot, int flags)
481 {
482 	__create_pgd_mapping(pgdp, start, __phys_to_virt(start), end - start,
483 			     prot, early_pgtable_alloc, flags);
484 }
485 
mark_linear_text_alias_ro(void)486 void __init mark_linear_text_alias_ro(void)
487 {
488 	/*
489 	 * Remove the write permissions from the linear alias of .text/.rodata
490 	 */
491 	update_mapping_prot(__pa_symbol(_stext), (unsigned long)lm_alias(_stext),
492 			    (unsigned long)__init_begin - (unsigned long)_stext,
493 			    PAGE_KERNEL_RO);
494 }
495 
496 static bool crash_mem_map __initdata;
497 
enable_crash_mem_map(char * arg)498 static int __init enable_crash_mem_map(char *arg)
499 {
500 	/*
501 	 * Proper parameter parsing is done by reserve_crashkernel(). We only
502 	 * need to know if the linear map has to avoid block mappings so that
503 	 * the crashkernel reservations can be unmapped later.
504 	 */
505 	crash_mem_map = true;
506 
507 	return 0;
508 }
509 early_param("crashkernel", enable_crash_mem_map);
510 
map_mem(pgd_t * pgdp)511 static void __init map_mem(pgd_t *pgdp)
512 {
513 	static const u64 direct_map_end = _PAGE_END(VA_BITS_MIN);
514 	phys_addr_t kernel_start = __pa_symbol(_stext);
515 	phys_addr_t kernel_end = __pa_symbol(__init_begin);
516 	phys_addr_t start, end;
517 	int flags = NO_EXEC_MAPPINGS;
518 	u64 i;
519 
520 	/*
521 	 * Setting hierarchical PXNTable attributes on table entries covering
522 	 * the linear region is only possible if it is guaranteed that no table
523 	 * entries at any level are being shared between the linear region and
524 	 * the vmalloc region. Check whether this is true for the PGD level, in
525 	 * which case it is guaranteed to be true for all other levels as well.
526 	 */
527 	BUILD_BUG_ON(pgd_index(direct_map_end - 1) == pgd_index(direct_map_end));
528 
529 	if (can_set_direct_map() || IS_ENABLED(CONFIG_KFENCE))
530 		flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
531 
532 	/*
533 	 * Take care not to create a writable alias for the
534 	 * read-only text and rodata sections of the kernel image.
535 	 * So temporarily mark them as NOMAP to skip mappings in
536 	 * the following for-loop
537 	 */
538 	memblock_mark_nomap(kernel_start, kernel_end - kernel_start);
539 
540 #ifdef CONFIG_KEXEC_CORE
541 	if (crash_mem_map) {
542 		if (IS_ENABLED(CONFIG_ZONE_DMA) ||
543 		    IS_ENABLED(CONFIG_ZONE_DMA32))
544 			flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
545 		else if (crashk_res.end)
546 			memblock_mark_nomap(crashk_res.start,
547 			    resource_size(&crashk_res));
548 	}
549 #endif
550 
551 	/* map all the memory banks */
552 	for_each_mem_range(i, &start, &end) {
553 		if (start >= end)
554 			break;
555 		/*
556 		 * The linear map must allow allocation tags reading/writing
557 		 * if MTE is present. Otherwise, it has the same attributes as
558 		 * PAGE_KERNEL.
559 		 */
560 		__map_memblock(pgdp, start, end, pgprot_tagged(PAGE_KERNEL),
561 			       flags);
562 	}
563 
564 	/*
565 	 * Map the linear alias of the [_stext, __init_begin) interval
566 	 * as non-executable now, and remove the write permission in
567 	 * mark_linear_text_alias_ro() below (which will be called after
568 	 * alternative patching has completed). This makes the contents
569 	 * of the region accessible to subsystems such as hibernate,
570 	 * but protects it from inadvertent modification or execution.
571 	 * Note that contiguous mappings cannot be remapped in this way,
572 	 * so we should avoid them here.
573 	 */
574 	__map_memblock(pgdp, kernel_start, kernel_end,
575 		       PAGE_KERNEL, NO_CONT_MAPPINGS);
576 	memblock_clear_nomap(kernel_start, kernel_end - kernel_start);
577 
578 	/*
579 	 * Use page-level mappings here so that we can shrink the region
580 	 * in page granularity and put back unused memory to buddy system
581 	 * through /sys/kernel/kexec_crash_size interface.
582 	 */
583 #ifdef CONFIG_KEXEC_CORE
584 	if (crash_mem_map &&
585 	    !IS_ENABLED(CONFIG_ZONE_DMA) && !IS_ENABLED(CONFIG_ZONE_DMA32)) {
586 		if (crashk_res.end) {
587 			__map_memblock(pgdp, crashk_res.start,
588 				       crashk_res.end + 1,
589 				       PAGE_KERNEL,
590 				       NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS);
591 			memblock_clear_nomap(crashk_res.start,
592 					     resource_size(&crashk_res));
593 		}
594 	}
595 #endif
596 }
597 
mark_rodata_ro(void)598 void mark_rodata_ro(void)
599 {
600 	unsigned long section_size;
601 
602 	/*
603 	 * mark .rodata as read only. Use __init_begin rather than __end_rodata
604 	 * to cover NOTES and EXCEPTION_TABLE.
605 	 */
606 	section_size = (unsigned long)__init_begin - (unsigned long)__start_rodata;
607 	update_mapping_prot(__pa_symbol(__start_rodata), (unsigned long)__start_rodata,
608 			    section_size, PAGE_KERNEL_RO);
609 
610 	debug_checkwx();
611 }
612 
map_kernel_segment(pgd_t * pgdp,void * va_start,void * va_end,pgprot_t prot,struct vm_struct * vma,int flags,unsigned long vm_flags)613 static void __init map_kernel_segment(pgd_t *pgdp, void *va_start, void *va_end,
614 				      pgprot_t prot, struct vm_struct *vma,
615 				      int flags, unsigned long vm_flags)
616 {
617 	phys_addr_t pa_start = __pa_symbol(va_start);
618 	unsigned long size = va_end - va_start;
619 
620 	BUG_ON(!PAGE_ALIGNED(pa_start));
621 	BUG_ON(!PAGE_ALIGNED(size));
622 
623 	__create_pgd_mapping(pgdp, pa_start, (unsigned long)va_start, size, prot,
624 			     early_pgtable_alloc, flags);
625 
626 	if (!(vm_flags & VM_NO_GUARD))
627 		size += PAGE_SIZE;
628 
629 	vma->addr	= va_start;
630 	vma->phys_addr	= pa_start;
631 	vma->size	= size;
632 	vma->flags	= VM_MAP | vm_flags;
633 	vma->caller	= __builtin_return_address(0);
634 
635 	vm_area_add_early(vma);
636 }
637 
parse_rodata(char * arg)638 static int __init parse_rodata(char *arg)
639 {
640 	int ret = strtobool(arg, &rodata_enabled);
641 	if (!ret) {
642 		rodata_full = false;
643 		return 0;
644 	}
645 
646 	/* permit 'full' in addition to boolean options */
647 	if (strcmp(arg, "full"))
648 		return -EINVAL;
649 
650 	rodata_enabled = true;
651 	rodata_full = true;
652 	return 0;
653 }
654 early_param("rodata", parse_rodata);
655 
656 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
map_entry_trampoline(void)657 static int __init map_entry_trampoline(void)
658 {
659 	int i;
660 
661 	pgprot_t prot = rodata_enabled ? PAGE_KERNEL_ROX : PAGE_KERNEL_EXEC;
662 	phys_addr_t pa_start = __pa_symbol(__entry_tramp_text_start);
663 
664 	/* The trampoline is always mapped and can therefore be global */
665 	pgprot_val(prot) &= ~PTE_NG;
666 
667 	/* Map only the text into the trampoline page table */
668 	memset(tramp_pg_dir, 0, PGD_SIZE);
669 	__create_pgd_mapping(tramp_pg_dir, pa_start, TRAMP_VALIAS,
670 			     entry_tramp_text_size(), prot,
671 			     __pgd_pgtable_alloc, NO_BLOCK_MAPPINGS);
672 
673 	/* Map both the text and data into the kernel page table */
674 	for (i = 0; i < DIV_ROUND_UP(entry_tramp_text_size(), PAGE_SIZE); i++)
675 		__set_fixmap(FIX_ENTRY_TRAMP_TEXT1 - i,
676 			     pa_start + i * PAGE_SIZE, prot);
677 
678 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
679 		extern char __entry_tramp_data_start[];
680 
681 		__set_fixmap(FIX_ENTRY_TRAMP_DATA,
682 			     __pa_symbol(__entry_tramp_data_start),
683 			     PAGE_KERNEL_RO);
684 	}
685 
686 	return 0;
687 }
688 core_initcall(map_entry_trampoline);
689 #endif
690 
691 /*
692  * Open coded check for BTI, only for use to determine configuration
693  * for early mappings for before the cpufeature code has run.
694  */
arm64_early_this_cpu_has_bti(void)695 static bool arm64_early_this_cpu_has_bti(void)
696 {
697 	u64 pfr1;
698 
699 	if (!IS_ENABLED(CONFIG_ARM64_BTI_KERNEL))
700 		return false;
701 
702 	pfr1 = __read_sysreg_by_encoding(SYS_ID_AA64PFR1_EL1);
703 	return cpuid_feature_extract_unsigned_field(pfr1,
704 						    ID_AA64PFR1_BT_SHIFT);
705 }
706 
707 /*
708  * Create fine-grained mappings for the kernel.
709  */
map_kernel(pgd_t * pgdp)710 static void __init map_kernel(pgd_t *pgdp)
711 {
712 	static struct vm_struct vmlinux_text, vmlinux_rodata, vmlinux_inittext,
713 				vmlinux_initdata, vmlinux_data;
714 
715 	/*
716 	 * External debuggers may need to write directly to the text
717 	 * mapping to install SW breakpoints. Allow this (only) when
718 	 * explicitly requested with rodata=off.
719 	 */
720 	pgprot_t text_prot = rodata_enabled ? PAGE_KERNEL_ROX : PAGE_KERNEL_EXEC;
721 
722 	/*
723 	 * If we have a CPU that supports BTI and a kernel built for
724 	 * BTI then mark the kernel executable text as guarded pages
725 	 * now so we don't have to rewrite the page tables later.
726 	 */
727 	if (arm64_early_this_cpu_has_bti())
728 		text_prot = __pgprot_modify(text_prot, PTE_GP, PTE_GP);
729 
730 	/*
731 	 * Only rodata will be remapped with different permissions later on,
732 	 * all other segments are allowed to use contiguous mappings.
733 	 */
734 	map_kernel_segment(pgdp, _stext, _etext, text_prot, &vmlinux_text, 0,
735 			   VM_NO_GUARD);
736 	map_kernel_segment(pgdp, __start_rodata, __inittext_begin, PAGE_KERNEL,
737 			   &vmlinux_rodata, NO_CONT_MAPPINGS, VM_NO_GUARD);
738 	map_kernel_segment(pgdp, __inittext_begin, __inittext_end, text_prot,
739 			   &vmlinux_inittext, 0, VM_NO_GUARD);
740 	map_kernel_segment(pgdp, __initdata_begin, __initdata_end, PAGE_KERNEL,
741 			   &vmlinux_initdata, 0, VM_NO_GUARD);
742 	map_kernel_segment(pgdp, _data, _end, PAGE_KERNEL, &vmlinux_data, 0, 0);
743 
744 	if (!READ_ONCE(pgd_val(*pgd_offset_pgd(pgdp, FIXADDR_START)))) {
745 		/*
746 		 * The fixmap falls in a separate pgd to the kernel, and doesn't
747 		 * live in the carveout for the swapper_pg_dir. We can simply
748 		 * re-use the existing dir for the fixmap.
749 		 */
750 		set_pgd(pgd_offset_pgd(pgdp, FIXADDR_START),
751 			READ_ONCE(*pgd_offset_k(FIXADDR_START)));
752 	} else if (CONFIG_PGTABLE_LEVELS > 3) {
753 		pgd_t *bm_pgdp;
754 		p4d_t *bm_p4dp;
755 		pud_t *bm_pudp;
756 		/*
757 		 * The fixmap shares its top level pgd entry with the kernel
758 		 * mapping. This can really only occur when we are running
759 		 * with 16k/4 levels, so we can simply reuse the pud level
760 		 * entry instead.
761 		 */
762 		BUG_ON(!IS_ENABLED(CONFIG_ARM64_16K_PAGES));
763 		bm_pgdp = pgd_offset_pgd(pgdp, FIXADDR_START);
764 		bm_p4dp = p4d_offset(bm_pgdp, FIXADDR_START);
765 		bm_pudp = pud_set_fixmap_offset(bm_p4dp, FIXADDR_START);
766 		pud_populate(&init_mm, bm_pudp, lm_alias(bm_pmd));
767 		pud_clear_fixmap();
768 	} else {
769 		BUG();
770 	}
771 
772 	kasan_copy_shadow(pgdp);
773 }
774 
paging_init(void)775 void __init paging_init(void)
776 {
777 	pgd_t *pgdp = pgd_set_fixmap(__pa_symbol(swapper_pg_dir));
778 
779 	map_kernel(pgdp);
780 	map_mem(pgdp);
781 
782 	pgd_clear_fixmap();
783 
784 	cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
785 	init_mm.pgd = swapper_pg_dir;
786 
787 	memblock_free(__pa_symbol(init_pg_dir),
788 		      __pa_symbol(init_pg_end) - __pa_symbol(init_pg_dir));
789 
790 	memblock_allow_resize();
791 }
792 
793 /*
794  * Check whether a kernel address is valid (derived from arch/x86/).
795  */
kern_addr_valid(unsigned long addr)796 int kern_addr_valid(unsigned long addr)
797 {
798 	pgd_t *pgdp;
799 	p4d_t *p4dp;
800 	pud_t *pudp, pud;
801 	pmd_t *pmdp, pmd;
802 	pte_t *ptep, pte;
803 
804 	addr = arch_kasan_reset_tag(addr);
805 	if ((((long)addr) >> VA_BITS) != -1UL)
806 		return 0;
807 
808 	pgdp = pgd_offset_k(addr);
809 	if (pgd_none(READ_ONCE(*pgdp)))
810 		return 0;
811 
812 	p4dp = p4d_offset(pgdp, addr);
813 	if (p4d_none(READ_ONCE(*p4dp)))
814 		return 0;
815 
816 	pudp = pud_offset(p4dp, addr);
817 	pud = READ_ONCE(*pudp);
818 	if (pud_none(pud))
819 		return 0;
820 
821 	if (pud_sect(pud))
822 		return pfn_valid(pud_pfn(pud));
823 
824 	pmdp = pmd_offset(pudp, addr);
825 	pmd = READ_ONCE(*pmdp);
826 	if (pmd_none(pmd))
827 		return 0;
828 
829 	if (pmd_sect(pmd))
830 		return pfn_valid(pmd_pfn(pmd));
831 
832 	ptep = pte_offset_kernel(pmdp, addr);
833 	pte = READ_ONCE(*ptep);
834 	if (pte_none(pte))
835 		return 0;
836 
837 	return pfn_valid(pte_pfn(pte));
838 }
839 
840 #ifdef CONFIG_MEMORY_HOTPLUG
free_hotplug_page_range(struct page * page,size_t size,struct vmem_altmap * altmap)841 static void free_hotplug_page_range(struct page *page, size_t size,
842 				    struct vmem_altmap *altmap)
843 {
844 	if (altmap) {
845 		vmem_altmap_free(altmap, size >> PAGE_SHIFT);
846 	} else {
847 		WARN_ON(PageReserved(page));
848 		free_pages((unsigned long)page_address(page), get_order(size));
849 	}
850 }
851 
free_hotplug_pgtable_page(struct page * page)852 static void free_hotplug_pgtable_page(struct page *page)
853 {
854 	free_hotplug_page_range(page, PAGE_SIZE, NULL);
855 }
856 
pgtable_range_aligned(unsigned long start,unsigned long end,unsigned long floor,unsigned long ceiling,unsigned long mask)857 static bool pgtable_range_aligned(unsigned long start, unsigned long end,
858 				  unsigned long floor, unsigned long ceiling,
859 				  unsigned long mask)
860 {
861 	start &= mask;
862 	if (start < floor)
863 		return false;
864 
865 	if (ceiling) {
866 		ceiling &= mask;
867 		if (!ceiling)
868 			return false;
869 	}
870 
871 	if (end - 1 > ceiling - 1)
872 		return false;
873 	return true;
874 }
875 
unmap_hotplug_pte_range(pmd_t * pmdp,unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)876 static void unmap_hotplug_pte_range(pmd_t *pmdp, unsigned long addr,
877 				    unsigned long end, bool free_mapped,
878 				    struct vmem_altmap *altmap)
879 {
880 	pte_t *ptep, pte;
881 
882 	do {
883 		ptep = pte_offset_kernel(pmdp, addr);
884 		pte = READ_ONCE(*ptep);
885 		if (pte_none(pte))
886 			continue;
887 
888 		WARN_ON(!pte_present(pte));
889 		pte_clear(&init_mm, addr, ptep);
890 		flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
891 		if (free_mapped)
892 			free_hotplug_page_range(pte_page(pte),
893 						PAGE_SIZE, altmap);
894 	} while (addr += PAGE_SIZE, addr < end);
895 }
896 
unmap_hotplug_pmd_range(pud_t * pudp,unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)897 static void unmap_hotplug_pmd_range(pud_t *pudp, unsigned long addr,
898 				    unsigned long end, bool free_mapped,
899 				    struct vmem_altmap *altmap)
900 {
901 	unsigned long next;
902 	pmd_t *pmdp, pmd;
903 
904 	do {
905 		next = pmd_addr_end(addr, end);
906 		pmdp = pmd_offset(pudp, addr);
907 		pmd = READ_ONCE(*pmdp);
908 		if (pmd_none(pmd))
909 			continue;
910 
911 		WARN_ON(!pmd_present(pmd));
912 		if (pmd_sect(pmd)) {
913 			pmd_clear(pmdp);
914 
915 			/*
916 			 * One TLBI should be sufficient here as the PMD_SIZE
917 			 * range is mapped with a single block entry.
918 			 */
919 			flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
920 			if (free_mapped)
921 				free_hotplug_page_range(pmd_page(pmd),
922 							PMD_SIZE, altmap);
923 			continue;
924 		}
925 		WARN_ON(!pmd_table(pmd));
926 		unmap_hotplug_pte_range(pmdp, addr, next, free_mapped, altmap);
927 	} while (addr = next, addr < end);
928 }
929 
unmap_hotplug_pud_range(p4d_t * p4dp,unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)930 static void unmap_hotplug_pud_range(p4d_t *p4dp, unsigned long addr,
931 				    unsigned long end, bool free_mapped,
932 				    struct vmem_altmap *altmap)
933 {
934 	unsigned long next;
935 	pud_t *pudp, pud;
936 
937 	do {
938 		next = pud_addr_end(addr, end);
939 		pudp = pud_offset(p4dp, addr);
940 		pud = READ_ONCE(*pudp);
941 		if (pud_none(pud))
942 			continue;
943 
944 		WARN_ON(!pud_present(pud));
945 		if (pud_sect(pud)) {
946 			pud_clear(pudp);
947 
948 			/*
949 			 * One TLBI should be sufficient here as the PUD_SIZE
950 			 * range is mapped with a single block entry.
951 			 */
952 			flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
953 			if (free_mapped)
954 				free_hotplug_page_range(pud_page(pud),
955 							PUD_SIZE, altmap);
956 			continue;
957 		}
958 		WARN_ON(!pud_table(pud));
959 		unmap_hotplug_pmd_range(pudp, addr, next, free_mapped, altmap);
960 	} while (addr = next, addr < end);
961 }
962 
unmap_hotplug_p4d_range(pgd_t * pgdp,unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)963 static void unmap_hotplug_p4d_range(pgd_t *pgdp, unsigned long addr,
964 				    unsigned long end, bool free_mapped,
965 				    struct vmem_altmap *altmap)
966 {
967 	unsigned long next;
968 	p4d_t *p4dp, p4d;
969 
970 	do {
971 		next = p4d_addr_end(addr, end);
972 		p4dp = p4d_offset(pgdp, addr);
973 		p4d = READ_ONCE(*p4dp);
974 		if (p4d_none(p4d))
975 			continue;
976 
977 		WARN_ON(!p4d_present(p4d));
978 		unmap_hotplug_pud_range(p4dp, addr, next, free_mapped, altmap);
979 	} while (addr = next, addr < end);
980 }
981 
unmap_hotplug_range(unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)982 static void unmap_hotplug_range(unsigned long addr, unsigned long end,
983 				bool free_mapped, struct vmem_altmap *altmap)
984 {
985 	unsigned long next;
986 	pgd_t *pgdp, pgd;
987 
988 	/*
989 	 * altmap can only be used as vmemmap mapping backing memory.
990 	 * In case the backing memory itself is not being freed, then
991 	 * altmap is irrelevant. Warn about this inconsistency when
992 	 * encountered.
993 	 */
994 	WARN_ON(!free_mapped && altmap);
995 
996 	do {
997 		next = pgd_addr_end(addr, end);
998 		pgdp = pgd_offset_k(addr);
999 		pgd = READ_ONCE(*pgdp);
1000 		if (pgd_none(pgd))
1001 			continue;
1002 
1003 		WARN_ON(!pgd_present(pgd));
1004 		unmap_hotplug_p4d_range(pgdp, addr, next, free_mapped, altmap);
1005 	} while (addr = next, addr < end);
1006 }
1007 
free_empty_pte_table(pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)1008 static void free_empty_pte_table(pmd_t *pmdp, unsigned long addr,
1009 				 unsigned long end, unsigned long floor,
1010 				 unsigned long ceiling)
1011 {
1012 	pte_t *ptep, pte;
1013 	unsigned long i, start = addr;
1014 
1015 	do {
1016 		ptep = pte_offset_kernel(pmdp, addr);
1017 		pte = READ_ONCE(*ptep);
1018 
1019 		/*
1020 		 * This is just a sanity check here which verifies that
1021 		 * pte clearing has been done by earlier unmap loops.
1022 		 */
1023 		WARN_ON(!pte_none(pte));
1024 	} while (addr += PAGE_SIZE, addr < end);
1025 
1026 	if (!pgtable_range_aligned(start, end, floor, ceiling, PMD_MASK))
1027 		return;
1028 
1029 	/*
1030 	 * Check whether we can free the pte page if the rest of the
1031 	 * entries are empty. Overlap with other regions have been
1032 	 * handled by the floor/ceiling check.
1033 	 */
1034 	ptep = pte_offset_kernel(pmdp, 0UL);
1035 	for (i = 0; i < PTRS_PER_PTE; i++) {
1036 		if (!pte_none(READ_ONCE(ptep[i])))
1037 			return;
1038 	}
1039 
1040 	pmd_clear(pmdp);
1041 	__flush_tlb_kernel_pgtable(start);
1042 	free_hotplug_pgtable_page(virt_to_page(ptep));
1043 }
1044 
free_empty_pmd_table(pud_t * pudp,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)1045 static void free_empty_pmd_table(pud_t *pudp, unsigned long addr,
1046 				 unsigned long end, unsigned long floor,
1047 				 unsigned long ceiling)
1048 {
1049 	pmd_t *pmdp, pmd;
1050 	unsigned long i, next, start = addr;
1051 
1052 	do {
1053 		next = pmd_addr_end(addr, end);
1054 		pmdp = pmd_offset(pudp, addr);
1055 		pmd = READ_ONCE(*pmdp);
1056 		if (pmd_none(pmd))
1057 			continue;
1058 
1059 		WARN_ON(!pmd_present(pmd) || !pmd_table(pmd) || pmd_sect(pmd));
1060 		free_empty_pte_table(pmdp, addr, next, floor, ceiling);
1061 	} while (addr = next, addr < end);
1062 
1063 	if (CONFIG_PGTABLE_LEVELS <= 2)
1064 		return;
1065 
1066 	if (!pgtable_range_aligned(start, end, floor, ceiling, PUD_MASK))
1067 		return;
1068 
1069 	/*
1070 	 * Check whether we can free the pmd page if the rest of the
1071 	 * entries are empty. Overlap with other regions have been
1072 	 * handled by the floor/ceiling check.
1073 	 */
1074 	pmdp = pmd_offset(pudp, 0UL);
1075 	for (i = 0; i < PTRS_PER_PMD; i++) {
1076 		if (!pmd_none(READ_ONCE(pmdp[i])))
1077 			return;
1078 	}
1079 
1080 	pud_clear(pudp);
1081 	__flush_tlb_kernel_pgtable(start);
1082 	free_hotplug_pgtable_page(virt_to_page(pmdp));
1083 }
1084 
free_empty_pud_table(p4d_t * p4dp,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)1085 static void free_empty_pud_table(p4d_t *p4dp, unsigned long addr,
1086 				 unsigned long end, unsigned long floor,
1087 				 unsigned long ceiling)
1088 {
1089 	pud_t *pudp, pud;
1090 	unsigned long i, next, start = addr;
1091 
1092 	do {
1093 		next = pud_addr_end(addr, end);
1094 		pudp = pud_offset(p4dp, addr);
1095 		pud = READ_ONCE(*pudp);
1096 		if (pud_none(pud))
1097 			continue;
1098 
1099 		WARN_ON(!pud_present(pud) || !pud_table(pud) || pud_sect(pud));
1100 		free_empty_pmd_table(pudp, addr, next, floor, ceiling);
1101 	} while (addr = next, addr < end);
1102 
1103 	if (CONFIG_PGTABLE_LEVELS <= 3)
1104 		return;
1105 
1106 	if (!pgtable_range_aligned(start, end, floor, ceiling, PGDIR_MASK))
1107 		return;
1108 
1109 	/*
1110 	 * Check whether we can free the pud page if the rest of the
1111 	 * entries are empty. Overlap with other regions have been
1112 	 * handled by the floor/ceiling check.
1113 	 */
1114 	pudp = pud_offset(p4dp, 0UL);
1115 	for (i = 0; i < PTRS_PER_PUD; i++) {
1116 		if (!pud_none(READ_ONCE(pudp[i])))
1117 			return;
1118 	}
1119 
1120 	p4d_clear(p4dp);
1121 	__flush_tlb_kernel_pgtable(start);
1122 	free_hotplug_pgtable_page(virt_to_page(pudp));
1123 }
1124 
free_empty_p4d_table(pgd_t * pgdp,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)1125 static void free_empty_p4d_table(pgd_t *pgdp, unsigned long addr,
1126 				 unsigned long end, unsigned long floor,
1127 				 unsigned long ceiling)
1128 {
1129 	unsigned long next;
1130 	p4d_t *p4dp, p4d;
1131 
1132 	do {
1133 		next = p4d_addr_end(addr, end);
1134 		p4dp = p4d_offset(pgdp, addr);
1135 		p4d = READ_ONCE(*p4dp);
1136 		if (p4d_none(p4d))
1137 			continue;
1138 
1139 		WARN_ON(!p4d_present(p4d));
1140 		free_empty_pud_table(p4dp, addr, next, floor, ceiling);
1141 	} while (addr = next, addr < end);
1142 }
1143 
free_empty_tables(unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)1144 static void free_empty_tables(unsigned long addr, unsigned long end,
1145 			      unsigned long floor, unsigned long ceiling)
1146 {
1147 	unsigned long next;
1148 	pgd_t *pgdp, pgd;
1149 
1150 	do {
1151 		next = pgd_addr_end(addr, end);
1152 		pgdp = pgd_offset_k(addr);
1153 		pgd = READ_ONCE(*pgdp);
1154 		if (pgd_none(pgd))
1155 			continue;
1156 
1157 		WARN_ON(!pgd_present(pgd));
1158 		free_empty_p4d_table(pgdp, addr, next, floor, ceiling);
1159 	} while (addr = next, addr < end);
1160 }
1161 #endif
1162 
1163 #if !ARM64_KERNEL_USES_PMD_MAPS
vmemmap_populate(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap)1164 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1165 		struct vmem_altmap *altmap)
1166 {
1167 	WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1168 	return vmemmap_populate_basepages(start, end, node, altmap);
1169 }
1170 #else	/* !ARM64_KERNEL_USES_PMD_MAPS */
vmemmap_populate(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap)1171 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1172 		struct vmem_altmap *altmap)
1173 {
1174 	unsigned long addr = start;
1175 	unsigned long next;
1176 	pgd_t *pgdp;
1177 	p4d_t *p4dp;
1178 	pud_t *pudp;
1179 	pmd_t *pmdp;
1180 
1181 	WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1182 	do {
1183 		next = pmd_addr_end(addr, end);
1184 
1185 		pgdp = vmemmap_pgd_populate(addr, node);
1186 		if (!pgdp)
1187 			return -ENOMEM;
1188 
1189 		p4dp = vmemmap_p4d_populate(pgdp, addr, node);
1190 		if (!p4dp)
1191 			return -ENOMEM;
1192 
1193 		pudp = vmemmap_pud_populate(p4dp, addr, node);
1194 		if (!pudp)
1195 			return -ENOMEM;
1196 
1197 		pmdp = pmd_offset(pudp, addr);
1198 		if (pmd_none(READ_ONCE(*pmdp))) {
1199 			void *p = NULL;
1200 
1201 			p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
1202 			if (!p) {
1203 				if (vmemmap_populate_basepages(addr, next, node, altmap))
1204 					return -ENOMEM;
1205 				continue;
1206 			}
1207 
1208 			pmd_set_huge(pmdp, __pa(p), __pgprot(PROT_SECT_NORMAL));
1209 		} else
1210 			vmemmap_verify((pte_t *)pmdp, node, addr, next);
1211 	} while (addr = next, addr != end);
1212 
1213 	return 0;
1214 }
1215 #endif	/* !ARM64_KERNEL_USES_PMD_MAPS */
1216 
1217 #ifdef CONFIG_MEMORY_HOTPLUG
vmemmap_free(unsigned long start,unsigned long end,struct vmem_altmap * altmap)1218 void vmemmap_free(unsigned long start, unsigned long end,
1219 		struct vmem_altmap *altmap)
1220 {
1221 	WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1222 
1223 	unmap_hotplug_range(start, end, true, altmap);
1224 	free_empty_tables(start, end, VMEMMAP_START, VMEMMAP_END);
1225 }
1226 #endif /* CONFIG_MEMORY_HOTPLUG */
1227 
fixmap_pud(unsigned long addr)1228 static inline pud_t *fixmap_pud(unsigned long addr)
1229 {
1230 	pgd_t *pgdp = pgd_offset_k(addr);
1231 	p4d_t *p4dp = p4d_offset(pgdp, addr);
1232 	p4d_t p4d = READ_ONCE(*p4dp);
1233 
1234 	BUG_ON(p4d_none(p4d) || p4d_bad(p4d));
1235 
1236 	return pud_offset_kimg(p4dp, addr);
1237 }
1238 
fixmap_pmd(unsigned long addr)1239 static inline pmd_t *fixmap_pmd(unsigned long addr)
1240 {
1241 	pud_t *pudp = fixmap_pud(addr);
1242 	pud_t pud = READ_ONCE(*pudp);
1243 
1244 	BUG_ON(pud_none(pud) || pud_bad(pud));
1245 
1246 	return pmd_offset_kimg(pudp, addr);
1247 }
1248 
fixmap_pte(unsigned long addr)1249 static inline pte_t *fixmap_pte(unsigned long addr)
1250 {
1251 	return &bm_pte[pte_index(addr)];
1252 }
1253 
1254 /*
1255  * The p*d_populate functions call virt_to_phys implicitly so they can't be used
1256  * directly on kernel symbols (bm_p*d). This function is called too early to use
1257  * lm_alias so __p*d_populate functions must be used to populate with the
1258  * physical address from __pa_symbol.
1259  */
early_fixmap_init(void)1260 void __init early_fixmap_init(void)
1261 {
1262 	pgd_t *pgdp;
1263 	p4d_t *p4dp, p4d;
1264 	pud_t *pudp;
1265 	pmd_t *pmdp;
1266 	unsigned long addr = FIXADDR_START;
1267 
1268 	pgdp = pgd_offset_k(addr);
1269 	p4dp = p4d_offset(pgdp, addr);
1270 	p4d = READ_ONCE(*p4dp);
1271 	if (CONFIG_PGTABLE_LEVELS > 3 &&
1272 	    !(p4d_none(p4d) || p4d_page_paddr(p4d) == __pa_symbol(bm_pud))) {
1273 		/*
1274 		 * We only end up here if the kernel mapping and the fixmap
1275 		 * share the top level pgd entry, which should only happen on
1276 		 * 16k/4 levels configurations.
1277 		 */
1278 		BUG_ON(!IS_ENABLED(CONFIG_ARM64_16K_PAGES));
1279 		pudp = pud_offset_kimg(p4dp, addr);
1280 	} else {
1281 		if (p4d_none(p4d))
1282 			__p4d_populate(p4dp, __pa_symbol(bm_pud), P4D_TYPE_TABLE);
1283 		pudp = fixmap_pud(addr);
1284 	}
1285 	if (pud_none(READ_ONCE(*pudp)))
1286 		__pud_populate(pudp, __pa_symbol(bm_pmd), PUD_TYPE_TABLE);
1287 	pmdp = fixmap_pmd(addr);
1288 	__pmd_populate(pmdp, __pa_symbol(bm_pte), PMD_TYPE_TABLE);
1289 
1290 	/*
1291 	 * The boot-ioremap range spans multiple pmds, for which
1292 	 * we are not prepared:
1293 	 */
1294 	BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
1295 		     != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
1296 
1297 	if ((pmdp != fixmap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)))
1298 	     || pmdp != fixmap_pmd(fix_to_virt(FIX_BTMAP_END))) {
1299 		WARN_ON(1);
1300 		pr_warn("pmdp %p != %p, %p\n",
1301 			pmdp, fixmap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)),
1302 			fixmap_pmd(fix_to_virt(FIX_BTMAP_END)));
1303 		pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
1304 			fix_to_virt(FIX_BTMAP_BEGIN));
1305 		pr_warn("fix_to_virt(FIX_BTMAP_END):   %08lx\n",
1306 			fix_to_virt(FIX_BTMAP_END));
1307 
1308 		pr_warn("FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
1309 		pr_warn("FIX_BTMAP_BEGIN:     %d\n", FIX_BTMAP_BEGIN);
1310 	}
1311 }
1312 
1313 /*
1314  * Unusually, this is also called in IRQ context (ghes_iounmap_irq) so if we
1315  * ever need to use IPIs for TLB broadcasting, then we're in trouble here.
1316  */
__set_fixmap(enum fixed_addresses idx,phys_addr_t phys,pgprot_t flags)1317 void __set_fixmap(enum fixed_addresses idx,
1318 			       phys_addr_t phys, pgprot_t flags)
1319 {
1320 	unsigned long addr = __fix_to_virt(idx);
1321 	pte_t *ptep;
1322 
1323 	BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses);
1324 
1325 	ptep = fixmap_pte(addr);
1326 
1327 	if (pgprot_val(flags)) {
1328 		set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, flags));
1329 	} else {
1330 		pte_clear(&init_mm, addr, ptep);
1331 		flush_tlb_kernel_range(addr, addr+PAGE_SIZE);
1332 	}
1333 }
1334 
__get_fixmap_pte(enum fixed_addresses idx)1335 pte_t *__get_fixmap_pte(enum fixed_addresses idx)
1336 {
1337 	unsigned long addr = __fix_to_virt(idx);
1338 	pte_t *ptep;
1339 
1340 	BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses);
1341 
1342 	ptep = fixmap_pte(addr);
1343 
1344 	if (!pte_valid(*ptep))
1345 		return NULL;
1346 
1347 	return ptep;
1348 }
1349 
fixmap_remap_fdt(phys_addr_t dt_phys,int * size,pgprot_t prot)1350 void *__init fixmap_remap_fdt(phys_addr_t dt_phys, int *size, pgprot_t prot)
1351 {
1352 	const u64 dt_virt_base = __fix_to_virt(FIX_FDT);
1353 	int offset;
1354 	void *dt_virt;
1355 
1356 	/*
1357 	 * Check whether the physical FDT address is set and meets the minimum
1358 	 * alignment requirement. Since we are relying on MIN_FDT_ALIGN to be
1359 	 * at least 8 bytes so that we can always access the magic and size
1360 	 * fields of the FDT header after mapping the first chunk, double check
1361 	 * here if that is indeed the case.
1362 	 */
1363 	BUILD_BUG_ON(MIN_FDT_ALIGN < 8);
1364 	if (!dt_phys || dt_phys % MIN_FDT_ALIGN)
1365 		return NULL;
1366 
1367 	/*
1368 	 * Make sure that the FDT region can be mapped without the need to
1369 	 * allocate additional translation table pages, so that it is safe
1370 	 * to call create_mapping_noalloc() this early.
1371 	 *
1372 	 * On 64k pages, the FDT will be mapped using PTEs, so we need to
1373 	 * be in the same PMD as the rest of the fixmap.
1374 	 * On 4k pages, we'll use section mappings for the FDT so we only
1375 	 * have to be in the same PUD.
1376 	 */
1377 	BUILD_BUG_ON(dt_virt_base % SZ_2M);
1378 
1379 	BUILD_BUG_ON(__fix_to_virt(FIX_FDT_END) >> SWAPPER_TABLE_SHIFT !=
1380 		     __fix_to_virt(FIX_BTMAP_BEGIN) >> SWAPPER_TABLE_SHIFT);
1381 
1382 	offset = dt_phys % SWAPPER_BLOCK_SIZE;
1383 	dt_virt = (void *)dt_virt_base + offset;
1384 
1385 	/* map the first chunk so we can read the size from the header */
1386 	create_mapping_noalloc(round_down(dt_phys, SWAPPER_BLOCK_SIZE),
1387 			dt_virt_base, SWAPPER_BLOCK_SIZE, prot);
1388 
1389 	if (fdt_magic(dt_virt) != FDT_MAGIC)
1390 		return NULL;
1391 
1392 	*size = fdt_totalsize(dt_virt);
1393 	if (*size > MAX_FDT_SIZE)
1394 		return NULL;
1395 
1396 	if (offset + *size > SWAPPER_BLOCK_SIZE)
1397 		create_mapping_noalloc(round_down(dt_phys, SWAPPER_BLOCK_SIZE), dt_virt_base,
1398 			       round_up(offset + *size, SWAPPER_BLOCK_SIZE), prot);
1399 
1400 	return dt_virt;
1401 }
1402 
pud_set_huge(pud_t * pudp,phys_addr_t phys,pgprot_t prot)1403 int pud_set_huge(pud_t *pudp, phys_addr_t phys, pgprot_t prot)
1404 {
1405 	pud_t new_pud = pfn_pud(__phys_to_pfn(phys), mk_pud_sect_prot(prot));
1406 
1407 	/* Only allow permission changes for now */
1408 	if (!pgattr_change_is_safe(READ_ONCE(pud_val(*pudp)),
1409 				   pud_val(new_pud)))
1410 		return 0;
1411 
1412 	VM_BUG_ON(phys & ~PUD_MASK);
1413 	set_pud(pudp, new_pud);
1414 	return 1;
1415 }
1416 
pmd_set_huge(pmd_t * pmdp,phys_addr_t phys,pgprot_t prot)1417 int pmd_set_huge(pmd_t *pmdp, phys_addr_t phys, pgprot_t prot)
1418 {
1419 	pmd_t new_pmd = pfn_pmd(__phys_to_pfn(phys), mk_pmd_sect_prot(prot));
1420 
1421 	/* Only allow permission changes for now */
1422 	if (!pgattr_change_is_safe(READ_ONCE(pmd_val(*pmdp)),
1423 				   pmd_val(new_pmd)))
1424 		return 0;
1425 
1426 	VM_BUG_ON(phys & ~PMD_MASK);
1427 	set_pmd(pmdp, new_pmd);
1428 	return 1;
1429 }
1430 
pud_clear_huge(pud_t * pudp)1431 int pud_clear_huge(pud_t *pudp)
1432 {
1433 	if (!pud_sect(READ_ONCE(*pudp)))
1434 		return 0;
1435 	pud_clear(pudp);
1436 	return 1;
1437 }
1438 
pmd_clear_huge(pmd_t * pmdp)1439 int pmd_clear_huge(pmd_t *pmdp)
1440 {
1441 	if (!pmd_sect(READ_ONCE(*pmdp)))
1442 		return 0;
1443 	pmd_clear(pmdp);
1444 	return 1;
1445 }
1446 
pmd_free_pte_page(pmd_t * pmdp,unsigned long addr)1447 int pmd_free_pte_page(pmd_t *pmdp, unsigned long addr)
1448 {
1449 	pte_t *table;
1450 	pmd_t pmd;
1451 
1452 	pmd = READ_ONCE(*pmdp);
1453 
1454 	if (!pmd_table(pmd)) {
1455 		VM_WARN_ON(1);
1456 		return 1;
1457 	}
1458 
1459 	table = pte_offset_kernel(pmdp, addr);
1460 	pmd_clear(pmdp);
1461 	__flush_tlb_kernel_pgtable(addr);
1462 	pte_free_kernel(NULL, table);
1463 	return 1;
1464 }
1465 
pud_free_pmd_page(pud_t * pudp,unsigned long addr)1466 int pud_free_pmd_page(pud_t *pudp, unsigned long addr)
1467 {
1468 	pmd_t *table;
1469 	pmd_t *pmdp;
1470 	pud_t pud;
1471 	unsigned long next, end;
1472 
1473 	pud = READ_ONCE(*pudp);
1474 
1475 	if (!pud_table(pud)) {
1476 		VM_WARN_ON(1);
1477 		return 1;
1478 	}
1479 
1480 	table = pmd_offset(pudp, addr);
1481 	pmdp = table;
1482 	next = addr;
1483 	end = addr + PUD_SIZE;
1484 	do {
1485 		pmd_free_pte_page(pmdp, next);
1486 	} while (pmdp++, next += PMD_SIZE, next != end);
1487 
1488 	pud_clear(pudp);
1489 	__flush_tlb_kernel_pgtable(addr);
1490 	pmd_free(NULL, table);
1491 	return 1;
1492 }
1493 
1494 #ifdef CONFIG_MEMORY_HOTPLUG
__remove_pgd_mapping(pgd_t * pgdir,unsigned long start,u64 size)1495 static void __remove_pgd_mapping(pgd_t *pgdir, unsigned long start, u64 size)
1496 {
1497 	unsigned long end = start + size;
1498 
1499 	WARN_ON(pgdir != init_mm.pgd);
1500 	WARN_ON((start < PAGE_OFFSET) || (end > PAGE_END));
1501 
1502 	unmap_hotplug_range(start, end, false, NULL);
1503 	free_empty_tables(start, end, PAGE_OFFSET, PAGE_END);
1504 }
1505 
arch_get_mappable_range(void)1506 struct range arch_get_mappable_range(void)
1507 {
1508 	struct range mhp_range;
1509 	u64 start_linear_pa = __pa(_PAGE_OFFSET(vabits_actual));
1510 	u64 end_linear_pa = __pa(PAGE_END - 1);
1511 
1512 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
1513 		/*
1514 		 * Check for a wrap, it is possible because of randomized linear
1515 		 * mapping the start physical address is actually bigger than
1516 		 * the end physical address. In this case set start to zero
1517 		 * because [0, end_linear_pa] range must still be able to cover
1518 		 * all addressable physical addresses.
1519 		 */
1520 		if (start_linear_pa > end_linear_pa)
1521 			start_linear_pa = 0;
1522 	}
1523 
1524 	WARN_ON(start_linear_pa > end_linear_pa);
1525 
1526 	/*
1527 	 * Linear mapping region is the range [PAGE_OFFSET..(PAGE_END - 1)]
1528 	 * accommodating both its ends but excluding PAGE_END. Max physical
1529 	 * range which can be mapped inside this linear mapping range, must
1530 	 * also be derived from its end points.
1531 	 */
1532 	mhp_range.start = start_linear_pa;
1533 	mhp_range.end =  end_linear_pa;
1534 
1535 	return mhp_range;
1536 }
1537 
arch_add_memory(int nid,u64 start,u64 size,struct mhp_params * params)1538 int arch_add_memory(int nid, u64 start, u64 size,
1539 		    struct mhp_params *params)
1540 {
1541 	int ret, flags = NO_EXEC_MAPPINGS;
1542 
1543 	VM_BUG_ON(!mhp_range_allowed(start, size, true));
1544 
1545 	/*
1546 	 * KFENCE requires linear map to be mapped at page granularity, so that
1547 	 * it is possible to protect/unprotect single pages in the KFENCE pool.
1548 	 */
1549 	if (can_set_direct_map() || IS_ENABLED(CONFIG_KFENCE))
1550 		flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
1551 
1552 	__create_pgd_mapping(swapper_pg_dir, start, __phys_to_virt(start),
1553 			     size, params->pgprot, __pgd_pgtable_alloc,
1554 			     flags);
1555 
1556 	memblock_clear_nomap(start, size);
1557 
1558 	ret = __add_pages(nid, start >> PAGE_SHIFT, size >> PAGE_SHIFT,
1559 			   params);
1560 	if (ret)
1561 		__remove_pgd_mapping(swapper_pg_dir,
1562 				     __phys_to_virt(start), size);
1563 	else {
1564 		max_pfn = PFN_UP(start + size);
1565 		max_low_pfn = max_pfn;
1566 	}
1567 
1568 	return ret;
1569 }
1570 
arch_remove_memory(u64 start,u64 size,struct vmem_altmap * altmap)1571 void arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
1572 {
1573 	unsigned long start_pfn = start >> PAGE_SHIFT;
1574 	unsigned long nr_pages = size >> PAGE_SHIFT;
1575 
1576 	__remove_pages(start_pfn, nr_pages, altmap);
1577 	__remove_pgd_mapping(swapper_pg_dir, __phys_to_virt(start), size);
1578 }
1579 
1580 /*
1581  * This memory hotplug notifier helps prevent boot memory from being
1582  * inadvertently removed as it blocks pfn range offlining process in
1583  * __offline_pages(). Hence this prevents both offlining as well as
1584  * removal process for boot memory which is initially always online.
1585  * In future if and when boot memory could be removed, this notifier
1586  * should be dropped and free_hotplug_page_range() should handle any
1587  * reserved pages allocated during boot.
1588  */
prevent_bootmem_remove_notifier(struct notifier_block * nb,unsigned long action,void * data)1589 static int prevent_bootmem_remove_notifier(struct notifier_block *nb,
1590 					   unsigned long action, void *data)
1591 {
1592 	struct mem_section *ms;
1593 	struct memory_notify *arg = data;
1594 	unsigned long end_pfn = arg->start_pfn + arg->nr_pages;
1595 	unsigned long pfn = arg->start_pfn;
1596 
1597 	if ((action != MEM_GOING_OFFLINE) && (action != MEM_OFFLINE))
1598 		return NOTIFY_OK;
1599 
1600 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1601 		unsigned long start = PFN_PHYS(pfn);
1602 		unsigned long end = start + (1UL << PA_SECTION_SHIFT);
1603 
1604 		ms = __pfn_to_section(pfn);
1605 		if (!early_section(ms))
1606 			continue;
1607 
1608 		if (action == MEM_GOING_OFFLINE) {
1609 			/*
1610 			 * Boot memory removal is not supported. Prevent
1611 			 * it via blocking any attempted offline request
1612 			 * for the boot memory and just report it.
1613 			 */
1614 			pr_warn("Boot memory [%lx %lx] offlining attempted\n", start, end);
1615 			return NOTIFY_BAD;
1616 		} else if (action == MEM_OFFLINE) {
1617 			/*
1618 			 * This should have never happened. Boot memory
1619 			 * offlining should have been prevented by this
1620 			 * very notifier. Probably some memory removal
1621 			 * procedure might have changed which would then
1622 			 * require further debug.
1623 			 */
1624 			pr_err("Boot memory [%lx %lx] offlined\n", start, end);
1625 
1626 			/*
1627 			 * Core memory hotplug does not process a return
1628 			 * code from the notifier for MEM_OFFLINE events.
1629 			 * The error condition has been reported. Return
1630 			 * from here as if ignored.
1631 			 */
1632 			return NOTIFY_DONE;
1633 		}
1634 	}
1635 	return NOTIFY_OK;
1636 }
1637 
1638 static struct notifier_block prevent_bootmem_remove_nb = {
1639 	.notifier_call = prevent_bootmem_remove_notifier,
1640 };
1641 
1642 /*
1643  * This ensures that boot memory sections on the platform are online
1644  * from early boot. Memory sections could not be prevented from being
1645  * offlined, unless for some reason they are not online to begin with.
1646  * This helps validate the basic assumption on which the above memory
1647  * event notifier works to prevent boot memory section offlining and
1648  * its possible removal.
1649  */
validate_bootmem_online(void)1650 static void validate_bootmem_online(void)
1651 {
1652 	phys_addr_t start, end, addr;
1653 	struct mem_section *ms;
1654 	u64 i;
1655 
1656 	/*
1657 	 * Scanning across all memblock might be expensive
1658 	 * on some big memory systems. Hence enable this
1659 	 * validation only with DEBUG_VM.
1660 	 */
1661 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
1662 		return;
1663 
1664 	for_each_mem_range(i, &start, &end) {
1665 		for (addr = start; addr < end; addr += (1UL << PA_SECTION_SHIFT)) {
1666 			ms = __pfn_to_section(PHYS_PFN(addr));
1667 
1668 			/*
1669 			 * All memory ranges in the system at this point
1670 			 * should have been marked as early sections.
1671 			 */
1672 			WARN_ON(!early_section(ms));
1673 
1674 			/*
1675 			 * Memory notifier mechanism here to prevent boot
1676 			 * memory offlining depends on the fact that each
1677 			 * early section memory on the system is initially
1678 			 * online. Otherwise a given memory section which
1679 			 * is already offline will be overlooked and can
1680 			 * be removed completely. Call out such sections.
1681 			 */
1682 			if (!online_section(ms))
1683 				pr_err("Boot memory [%llx %llx] is offline, can be removed\n",
1684 					addr, addr + (1UL << PA_SECTION_SHIFT));
1685 		}
1686 	}
1687 }
1688 
prevent_bootmem_remove_init(void)1689 static int __init prevent_bootmem_remove_init(void)
1690 {
1691 	int ret = 0;
1692 
1693 	if (!IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
1694 		return ret;
1695 
1696 	validate_bootmem_online();
1697 	ret = register_memory_notifier(&prevent_bootmem_remove_nb);
1698 	if (ret)
1699 		pr_err("%s: Notifier registration failed %d\n", __func__, ret);
1700 
1701 	return ret;
1702 }
1703 early_initcall(prevent_bootmem_remove_init);
1704 #endif
1705