• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *
4  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5  *
6  */
7 
8 #include <linux/blkdev.h>
9 #include <linux/buffer_head.h>
10 #include <linux/fs.h>
11 #include <linux/kernel.h>
12 
13 #include "debug.h"
14 #include "ntfs.h"
15 #include "ntfs_fs.h"
16 
17 static const struct INDEX_NAMES {
18 	const __le16 *name;
19 	u8 name_len;
20 } s_index_names[INDEX_MUTEX_TOTAL] = {
21 	{ I30_NAME, ARRAY_SIZE(I30_NAME) }, { SII_NAME, ARRAY_SIZE(SII_NAME) },
22 	{ SDH_NAME, ARRAY_SIZE(SDH_NAME) }, { SO_NAME, ARRAY_SIZE(SO_NAME) },
23 	{ SQ_NAME, ARRAY_SIZE(SQ_NAME) },   { SR_NAME, ARRAY_SIZE(SR_NAME) },
24 };
25 
26 /*
27  * cmp_fnames - Compare two names in index.
28  *
29  * if l1 != 0
30  *   Both names are little endian on-disk ATTR_FILE_NAME structs.
31  * else
32  *   key1 - cpu_str, key2 - ATTR_FILE_NAME
33  */
cmp_fnames(const void * key1,size_t l1,const void * key2,size_t l2,const void * data)34 static int cmp_fnames(const void *key1, size_t l1, const void *key2, size_t l2,
35 		      const void *data)
36 {
37 	const struct ATTR_FILE_NAME *f2 = key2;
38 	const struct ntfs_sb_info *sbi = data;
39 	const struct ATTR_FILE_NAME *f1;
40 	u16 fsize2;
41 	bool both_case;
42 
43 	if (l2 <= offsetof(struct ATTR_FILE_NAME, name))
44 		return -1;
45 
46 	fsize2 = fname_full_size(f2);
47 	if (l2 < fsize2)
48 		return -1;
49 
50 	both_case = f2->type != FILE_NAME_DOS /*&& !sbi->options.nocase*/;
51 	if (!l1) {
52 		const struct le_str *s2 = (struct le_str *)&f2->name_len;
53 
54 		/*
55 		 * If names are equal (case insensitive)
56 		 * try to compare it case sensitive.
57 		 */
58 		return ntfs_cmp_names_cpu(key1, s2, sbi->upcase, both_case);
59 	}
60 
61 	f1 = key1;
62 	return ntfs_cmp_names(f1->name, f1->name_len, f2->name, f2->name_len,
63 			      sbi->upcase, both_case);
64 }
65 
66 /*
67  * cmp_uint - $SII of $Secure and $Q of Quota
68  */
cmp_uint(const void * key1,size_t l1,const void * key2,size_t l2,const void * data)69 static int cmp_uint(const void *key1, size_t l1, const void *key2, size_t l2,
70 		    const void *data)
71 {
72 	const u32 *k1 = key1;
73 	const u32 *k2 = key2;
74 
75 	if (l2 < sizeof(u32))
76 		return -1;
77 
78 	if (*k1 < *k2)
79 		return -1;
80 	if (*k1 > *k2)
81 		return 1;
82 	return 0;
83 }
84 
85 /*
86  * cmp_sdh - $SDH of $Secure
87  */
cmp_sdh(const void * key1,size_t l1,const void * key2,size_t l2,const void * data)88 static int cmp_sdh(const void *key1, size_t l1, const void *key2, size_t l2,
89 		   const void *data)
90 {
91 	const struct SECURITY_KEY *k1 = key1;
92 	const struct SECURITY_KEY *k2 = key2;
93 	u32 t1, t2;
94 
95 	if (l2 < sizeof(struct SECURITY_KEY))
96 		return -1;
97 
98 	t1 = le32_to_cpu(k1->hash);
99 	t2 = le32_to_cpu(k2->hash);
100 
101 	/* First value is a hash value itself. */
102 	if (t1 < t2)
103 		return -1;
104 	if (t1 > t2)
105 		return 1;
106 
107 	/* Second value is security Id. */
108 	if (data) {
109 		t1 = le32_to_cpu(k1->sec_id);
110 		t2 = le32_to_cpu(k2->sec_id);
111 		if (t1 < t2)
112 			return -1;
113 		if (t1 > t2)
114 			return 1;
115 	}
116 
117 	return 0;
118 }
119 
120 /*
121  * cmp_uints - $O of ObjId and "$R" for Reparse.
122  */
cmp_uints(const void * key1,size_t l1,const void * key2,size_t l2,const void * data)123 static int cmp_uints(const void *key1, size_t l1, const void *key2, size_t l2,
124 		     const void *data)
125 {
126 	const __le32 *k1 = key1;
127 	const __le32 *k2 = key2;
128 	size_t count;
129 
130 	if ((size_t)data == 1) {
131 		/*
132 		 * ni_delete_all -> ntfs_remove_reparse ->
133 		 * delete all with this reference.
134 		 * k1, k2 - pointers to REPARSE_KEY
135 		 */
136 
137 		k1 += 1; // Skip REPARSE_KEY.ReparseTag
138 		k2 += 1; // Skip REPARSE_KEY.ReparseTag
139 		if (l2 <= sizeof(int))
140 			return -1;
141 		l2 -= sizeof(int);
142 		if (l1 <= sizeof(int))
143 			return 1;
144 		l1 -= sizeof(int);
145 	}
146 
147 	if (l2 < sizeof(int))
148 		return -1;
149 
150 	for (count = min(l1, l2) >> 2; count > 0; --count, ++k1, ++k2) {
151 		u32 t1 = le32_to_cpu(*k1);
152 		u32 t2 = le32_to_cpu(*k2);
153 
154 		if (t1 > t2)
155 			return 1;
156 		if (t1 < t2)
157 			return -1;
158 	}
159 
160 	if (l1 > l2)
161 		return 1;
162 	if (l1 < l2)
163 		return -1;
164 
165 	return 0;
166 }
167 
get_cmp_func(const struct INDEX_ROOT * root)168 static inline NTFS_CMP_FUNC get_cmp_func(const struct INDEX_ROOT *root)
169 {
170 	switch (root->type) {
171 	case ATTR_NAME:
172 		if (root->rule == NTFS_COLLATION_TYPE_FILENAME)
173 			return &cmp_fnames;
174 		break;
175 	case ATTR_ZERO:
176 		switch (root->rule) {
177 		case NTFS_COLLATION_TYPE_UINT:
178 			return &cmp_uint;
179 		case NTFS_COLLATION_TYPE_SECURITY_HASH:
180 			return &cmp_sdh;
181 		case NTFS_COLLATION_TYPE_UINTS:
182 			return &cmp_uints;
183 		default:
184 			break;
185 		}
186 		break;
187 	default:
188 		break;
189 	}
190 
191 	return NULL;
192 }
193 
194 struct bmp_buf {
195 	struct ATTRIB *b;
196 	struct mft_inode *mi;
197 	struct buffer_head *bh;
198 	ulong *buf;
199 	size_t bit;
200 	u32 nbits;
201 	u64 new_valid;
202 };
203 
bmp_buf_get(struct ntfs_index * indx,struct ntfs_inode * ni,size_t bit,struct bmp_buf * bbuf)204 static int bmp_buf_get(struct ntfs_index *indx, struct ntfs_inode *ni,
205 		       size_t bit, struct bmp_buf *bbuf)
206 {
207 	struct ATTRIB *b;
208 	size_t data_size, valid_size, vbo, off = bit >> 3;
209 	struct ntfs_sb_info *sbi = ni->mi.sbi;
210 	CLST vcn = off >> sbi->cluster_bits;
211 	struct ATTR_LIST_ENTRY *le = NULL;
212 	struct buffer_head *bh;
213 	struct super_block *sb;
214 	u32 blocksize;
215 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
216 
217 	bbuf->bh = NULL;
218 
219 	b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
220 			 &vcn, &bbuf->mi);
221 	bbuf->b = b;
222 	if (!b)
223 		return -EINVAL;
224 
225 	if (!b->non_res) {
226 		data_size = le32_to_cpu(b->res.data_size);
227 
228 		if (off >= data_size)
229 			return -EINVAL;
230 
231 		bbuf->buf = (ulong *)resident_data(b);
232 		bbuf->bit = 0;
233 		bbuf->nbits = data_size * 8;
234 
235 		return 0;
236 	}
237 
238 	data_size = le64_to_cpu(b->nres.data_size);
239 	if (WARN_ON(off >= data_size)) {
240 		/* Looks like filesystem error. */
241 		return -EINVAL;
242 	}
243 
244 	valid_size = le64_to_cpu(b->nres.valid_size);
245 
246 	bh = ntfs_bread_run(sbi, &indx->bitmap_run, off);
247 	if (!bh)
248 		return -EIO;
249 
250 	if (IS_ERR(bh))
251 		return PTR_ERR(bh);
252 
253 	bbuf->bh = bh;
254 
255 	if (buffer_locked(bh))
256 		__wait_on_buffer(bh);
257 
258 	lock_buffer(bh);
259 
260 	sb = sbi->sb;
261 	blocksize = sb->s_blocksize;
262 
263 	vbo = off & ~(size_t)sbi->block_mask;
264 
265 	bbuf->new_valid = vbo + blocksize;
266 	if (bbuf->new_valid <= valid_size)
267 		bbuf->new_valid = 0;
268 	else if (bbuf->new_valid > data_size)
269 		bbuf->new_valid = data_size;
270 
271 	if (vbo >= valid_size) {
272 		memset(bh->b_data, 0, blocksize);
273 	} else if (vbo + blocksize > valid_size) {
274 		u32 voff = valid_size & sbi->block_mask;
275 
276 		memset(bh->b_data + voff, 0, blocksize - voff);
277 	}
278 
279 	bbuf->buf = (ulong *)bh->b_data;
280 	bbuf->bit = 8 * (off & ~(size_t)sbi->block_mask);
281 	bbuf->nbits = 8 * blocksize;
282 
283 	return 0;
284 }
285 
bmp_buf_put(struct bmp_buf * bbuf,bool dirty)286 static void bmp_buf_put(struct bmp_buf *bbuf, bool dirty)
287 {
288 	struct buffer_head *bh = bbuf->bh;
289 	struct ATTRIB *b = bbuf->b;
290 
291 	if (!bh) {
292 		if (b && !b->non_res && dirty)
293 			bbuf->mi->dirty = true;
294 		return;
295 	}
296 
297 	if (!dirty)
298 		goto out;
299 
300 	if (bbuf->new_valid) {
301 		b->nres.valid_size = cpu_to_le64(bbuf->new_valid);
302 		bbuf->mi->dirty = true;
303 	}
304 
305 	set_buffer_uptodate(bh);
306 	mark_buffer_dirty(bh);
307 
308 out:
309 	unlock_buffer(bh);
310 	put_bh(bh);
311 }
312 
313 /*
314  * indx_mark_used - Mark the bit @bit as used.
315  */
indx_mark_used(struct ntfs_index * indx,struct ntfs_inode * ni,size_t bit)316 static int indx_mark_used(struct ntfs_index *indx, struct ntfs_inode *ni,
317 			  size_t bit)
318 {
319 	int err;
320 	struct bmp_buf bbuf;
321 
322 	err = bmp_buf_get(indx, ni, bit, &bbuf);
323 	if (err)
324 		return err;
325 
326 	__set_bit(bit - bbuf.bit, bbuf.buf);
327 
328 	bmp_buf_put(&bbuf, true);
329 
330 	return 0;
331 }
332 
333 /*
334  * indx_mark_free - Mark the bit @bit as free.
335  */
indx_mark_free(struct ntfs_index * indx,struct ntfs_inode * ni,size_t bit)336 static int indx_mark_free(struct ntfs_index *indx, struct ntfs_inode *ni,
337 			  size_t bit)
338 {
339 	int err;
340 	struct bmp_buf bbuf;
341 
342 	err = bmp_buf_get(indx, ni, bit, &bbuf);
343 	if (err)
344 		return err;
345 
346 	__clear_bit(bit - bbuf.bit, bbuf.buf);
347 
348 	bmp_buf_put(&bbuf, true);
349 
350 	return 0;
351 }
352 
353 /*
354  * scan_nres_bitmap
355  *
356  * If ntfs_readdir calls this function (indx_used_bit -> scan_nres_bitmap),
357  * inode is shared locked and no ni_lock.
358  * Use rw_semaphore for read/write access to bitmap_run.
359  */
scan_nres_bitmap(struct ntfs_inode * ni,struct ATTRIB * bitmap,struct ntfs_index * indx,size_t from,bool (* fn)(const ulong * buf,u32 bit,u32 bits,size_t * ret),size_t * ret)360 static int scan_nres_bitmap(struct ntfs_inode *ni, struct ATTRIB *bitmap,
361 			    struct ntfs_index *indx, size_t from,
362 			    bool (*fn)(const ulong *buf, u32 bit, u32 bits,
363 				       size_t *ret),
364 			    size_t *ret)
365 {
366 	struct ntfs_sb_info *sbi = ni->mi.sbi;
367 	struct super_block *sb = sbi->sb;
368 	struct runs_tree *run = &indx->bitmap_run;
369 	struct rw_semaphore *lock = &indx->run_lock;
370 	u32 nbits = sb->s_blocksize * 8;
371 	u32 blocksize = sb->s_blocksize;
372 	u64 valid_size = le64_to_cpu(bitmap->nres.valid_size);
373 	u64 data_size = le64_to_cpu(bitmap->nres.data_size);
374 	sector_t eblock = bytes_to_block(sb, data_size);
375 	size_t vbo = from >> 3;
376 	sector_t blk = (vbo & sbi->cluster_mask) >> sb->s_blocksize_bits;
377 	sector_t vblock = vbo >> sb->s_blocksize_bits;
378 	sector_t blen, block;
379 	CLST lcn, clen, vcn, vcn_next;
380 	size_t idx;
381 	struct buffer_head *bh;
382 	bool ok;
383 
384 	*ret = MINUS_ONE_T;
385 
386 	if (vblock >= eblock)
387 		return 0;
388 
389 	from &= nbits - 1;
390 	vcn = vbo >> sbi->cluster_bits;
391 
392 	down_read(lock);
393 	ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
394 	up_read(lock);
395 
396 next_run:
397 	if (!ok) {
398 		int err;
399 		const struct INDEX_NAMES *name = &s_index_names[indx->type];
400 
401 		down_write(lock);
402 		err = attr_load_runs_vcn(ni, ATTR_BITMAP, name->name,
403 					 name->name_len, run, vcn);
404 		up_write(lock);
405 		if (err)
406 			return err;
407 		down_read(lock);
408 		ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
409 		up_read(lock);
410 		if (!ok)
411 			return -EINVAL;
412 	}
413 
414 	blen = (sector_t)clen * sbi->blocks_per_cluster;
415 	block = (sector_t)lcn * sbi->blocks_per_cluster;
416 
417 	for (; blk < blen; blk++, from = 0) {
418 		bh = ntfs_bread(sb, block + blk);
419 		if (!bh)
420 			return -EIO;
421 
422 		vbo = (u64)vblock << sb->s_blocksize_bits;
423 		if (vbo >= valid_size) {
424 			memset(bh->b_data, 0, blocksize);
425 		} else if (vbo + blocksize > valid_size) {
426 			u32 voff = valid_size & sbi->block_mask;
427 
428 			memset(bh->b_data + voff, 0, blocksize - voff);
429 		}
430 
431 		if (vbo + blocksize > data_size)
432 			nbits = 8 * (data_size - vbo);
433 
434 		ok = nbits > from ? (*fn)((ulong *)bh->b_data, from, nbits, ret)
435 				  : false;
436 		put_bh(bh);
437 
438 		if (ok) {
439 			*ret += 8 * vbo;
440 			return 0;
441 		}
442 
443 		if (++vblock >= eblock) {
444 			*ret = MINUS_ONE_T;
445 			return 0;
446 		}
447 	}
448 	blk = 0;
449 	vcn_next = vcn + clen;
450 	down_read(lock);
451 	ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && vcn == vcn_next;
452 	if (!ok)
453 		vcn = vcn_next;
454 	up_read(lock);
455 	goto next_run;
456 }
457 
scan_for_free(const ulong * buf,u32 bit,u32 bits,size_t * ret)458 static bool scan_for_free(const ulong *buf, u32 bit, u32 bits, size_t *ret)
459 {
460 	size_t pos = find_next_zero_bit(buf, bits, bit);
461 
462 	if (pos >= bits)
463 		return false;
464 	*ret = pos;
465 	return true;
466 }
467 
468 /*
469  * indx_find_free - Look for free bit.
470  *
471  * Return: -1 if no free bits.
472  */
indx_find_free(struct ntfs_index * indx,struct ntfs_inode * ni,size_t * bit,struct ATTRIB ** bitmap)473 static int indx_find_free(struct ntfs_index *indx, struct ntfs_inode *ni,
474 			  size_t *bit, struct ATTRIB **bitmap)
475 {
476 	struct ATTRIB *b;
477 	struct ATTR_LIST_ENTRY *le = NULL;
478 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
479 	int err;
480 
481 	b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
482 			 NULL, NULL);
483 
484 	if (!b)
485 		return -ENOENT;
486 
487 	*bitmap = b;
488 	*bit = MINUS_ONE_T;
489 
490 	if (!b->non_res) {
491 		u32 nbits = 8 * le32_to_cpu(b->res.data_size);
492 		size_t pos = find_next_zero_bit(resident_data(b), nbits, 0);
493 
494 		if (pos < nbits)
495 			*bit = pos;
496 	} else {
497 		err = scan_nres_bitmap(ni, b, indx, 0, &scan_for_free, bit);
498 
499 		if (err)
500 			return err;
501 	}
502 
503 	return 0;
504 }
505 
scan_for_used(const ulong * buf,u32 bit,u32 bits,size_t * ret)506 static bool scan_for_used(const ulong *buf, u32 bit, u32 bits, size_t *ret)
507 {
508 	size_t pos = find_next_bit(buf, bits, bit);
509 
510 	if (pos >= bits)
511 		return false;
512 	*ret = pos;
513 	return true;
514 }
515 
516 /*
517  * indx_used_bit - Look for used bit.
518  *
519  * Return: MINUS_ONE_T if no used bits.
520  */
indx_used_bit(struct ntfs_index * indx,struct ntfs_inode * ni,size_t * bit)521 int indx_used_bit(struct ntfs_index *indx, struct ntfs_inode *ni, size_t *bit)
522 {
523 	struct ATTRIB *b;
524 	struct ATTR_LIST_ENTRY *le = NULL;
525 	size_t from = *bit;
526 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
527 	int err;
528 
529 	b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
530 			 NULL, NULL);
531 
532 	if (!b)
533 		return -ENOENT;
534 
535 	*bit = MINUS_ONE_T;
536 
537 	if (!b->non_res) {
538 		u32 nbits = le32_to_cpu(b->res.data_size) * 8;
539 		size_t pos = find_next_bit(resident_data(b), nbits, from);
540 
541 		if (pos < nbits)
542 			*bit = pos;
543 	} else {
544 		err = scan_nres_bitmap(ni, b, indx, from, &scan_for_used, bit);
545 		if (err)
546 			return err;
547 	}
548 
549 	return 0;
550 }
551 
552 /*
553  * hdr_find_split
554  *
555  * Find a point at which the index allocation buffer would like to be split.
556  * NOTE: This function should never return 'END' entry NULL returns on error.
557  */
hdr_find_split(const struct INDEX_HDR * hdr)558 static const struct NTFS_DE *hdr_find_split(const struct INDEX_HDR *hdr)
559 {
560 	size_t o;
561 	const struct NTFS_DE *e = hdr_first_de(hdr);
562 	u32 used_2 = le32_to_cpu(hdr->used) >> 1;
563 	u16 esize;
564 
565 	if (!e || de_is_last(e))
566 		return NULL;
567 
568 	esize = le16_to_cpu(e->size);
569 	for (o = le32_to_cpu(hdr->de_off) + esize; o < used_2; o += esize) {
570 		const struct NTFS_DE *p = e;
571 
572 		e = Add2Ptr(hdr, o);
573 
574 		/* We must not return END entry. */
575 		if (de_is_last(e))
576 			return p;
577 
578 		esize = le16_to_cpu(e->size);
579 	}
580 
581 	return e;
582 }
583 
584 /*
585  * hdr_insert_head - Insert some entries at the beginning of the buffer.
586  *
587  * It is used to insert entries into a newly-created buffer.
588  */
hdr_insert_head(struct INDEX_HDR * hdr,const void * ins,u32 ins_bytes)589 static const struct NTFS_DE *hdr_insert_head(struct INDEX_HDR *hdr,
590 					     const void *ins, u32 ins_bytes)
591 {
592 	u32 to_move;
593 	struct NTFS_DE *e = hdr_first_de(hdr);
594 	u32 used = le32_to_cpu(hdr->used);
595 
596 	if (!e)
597 		return NULL;
598 
599 	/* Now we just make room for the inserted entries and jam it in. */
600 	to_move = used - le32_to_cpu(hdr->de_off);
601 	memmove(Add2Ptr(e, ins_bytes), e, to_move);
602 	memcpy(e, ins, ins_bytes);
603 	hdr->used = cpu_to_le32(used + ins_bytes);
604 
605 	return e;
606 }
607 
608 /*
609  * index_hdr_check
610  *
611  * return true if INDEX_HDR is valid
612  */
index_hdr_check(const struct INDEX_HDR * hdr,u32 bytes)613 static bool index_hdr_check(const struct INDEX_HDR *hdr, u32 bytes)
614 {
615 	u32 end = le32_to_cpu(hdr->used);
616 	u32 tot = le32_to_cpu(hdr->total);
617 	u32 off = le32_to_cpu(hdr->de_off);
618 
619 	if (!IS_ALIGNED(off, 8) || tot > bytes || end > tot ||
620 	    off + sizeof(struct NTFS_DE) > end) {
621 		/* incorrect index buffer. */
622 		return false;
623 	}
624 
625 	return true;
626 }
627 
628 /*
629  * index_buf_check
630  *
631  * return true if INDEX_BUFFER seems is valid
632  */
index_buf_check(const struct INDEX_BUFFER * ib,u32 bytes,const CLST * vbn)633 static bool index_buf_check(const struct INDEX_BUFFER *ib, u32 bytes,
634 			    const CLST *vbn)
635 {
636 	const struct NTFS_RECORD_HEADER *rhdr = &ib->rhdr;
637 	u16 fo = le16_to_cpu(rhdr->fix_off);
638 	u16 fn = le16_to_cpu(rhdr->fix_num);
639 
640 	if (bytes <= offsetof(struct INDEX_BUFFER, ihdr) ||
641 	    rhdr->sign != NTFS_INDX_SIGNATURE ||
642 	    fo < sizeof(struct INDEX_BUFFER)
643 	    /* Check index buffer vbn. */
644 	    || (vbn && *vbn != le64_to_cpu(ib->vbn)) || (fo % sizeof(short)) ||
645 	    fo + fn * sizeof(short) >= bytes ||
646 	    fn != ((bytes >> SECTOR_SHIFT) + 1)) {
647 		/* incorrect index buffer. */
648 		return false;
649 	}
650 
651 	return index_hdr_check(&ib->ihdr,
652 			       bytes - offsetof(struct INDEX_BUFFER, ihdr));
653 }
654 
fnd_clear(struct ntfs_fnd * fnd)655 void fnd_clear(struct ntfs_fnd *fnd)
656 {
657 	int i;
658 
659 	for (i = fnd->level - 1; i >= 0; i--) {
660 		struct indx_node *n = fnd->nodes[i];
661 
662 		if (!n)
663 			continue;
664 
665 		put_indx_node(n);
666 		fnd->nodes[i] = NULL;
667 	}
668 	fnd->level = 0;
669 	fnd->root_de = NULL;
670 }
671 
fnd_push(struct ntfs_fnd * fnd,struct indx_node * n,struct NTFS_DE * e)672 static int fnd_push(struct ntfs_fnd *fnd, struct indx_node *n,
673 		    struct NTFS_DE *e)
674 {
675 	int i;
676 
677 	i = fnd->level;
678 	if (i < 0 || i >= ARRAY_SIZE(fnd->nodes))
679 		return -EINVAL;
680 	fnd->nodes[i] = n;
681 	fnd->de[i] = e;
682 	fnd->level += 1;
683 	return 0;
684 }
685 
fnd_pop(struct ntfs_fnd * fnd)686 static struct indx_node *fnd_pop(struct ntfs_fnd *fnd)
687 {
688 	struct indx_node *n;
689 	int i = fnd->level;
690 
691 	i -= 1;
692 	n = fnd->nodes[i];
693 	fnd->nodes[i] = NULL;
694 	fnd->level = i;
695 
696 	return n;
697 }
698 
fnd_is_empty(struct ntfs_fnd * fnd)699 static bool fnd_is_empty(struct ntfs_fnd *fnd)
700 {
701 	if (!fnd->level)
702 		return !fnd->root_de;
703 
704 	return !fnd->de[fnd->level - 1];
705 }
706 
707 /*
708  * hdr_find_e - Locate an entry the index buffer.
709  *
710  * If no matching entry is found, it returns the first entry which is greater
711  * than the desired entry If the search key is greater than all the entries the
712  * buffer, it returns the 'end' entry. This function does a binary search of the
713  * current index buffer, for the first entry that is <= to the search value.
714  *
715  * Return: NULL if error.
716  */
hdr_find_e(const struct ntfs_index * indx,const struct INDEX_HDR * hdr,const void * key,size_t key_len,const void * ctx,int * diff)717 static struct NTFS_DE *hdr_find_e(const struct ntfs_index *indx,
718 				  const struct INDEX_HDR *hdr, const void *key,
719 				  size_t key_len, const void *ctx, int *diff)
720 {
721 	struct NTFS_DE *e, *found = NULL;
722 	NTFS_CMP_FUNC cmp = indx->cmp;
723 	int min_idx = 0, mid_idx, max_idx = 0;
724 	int diff2;
725 	int table_size = 8;
726 	u32 e_size, e_key_len;
727 	u32 end = le32_to_cpu(hdr->used);
728 	u32 off = le32_to_cpu(hdr->de_off);
729 	u32 total = le32_to_cpu(hdr->total);
730 	u16 offs[128];
731 
732 	if (unlikely(!cmp))
733 		return NULL;
734 
735 fill_table:
736 	if (end > total)
737 		return NULL;
738 
739 	if (off + sizeof(struct NTFS_DE) > end)
740 		return NULL;
741 
742 	e = Add2Ptr(hdr, off);
743 	e_size = le16_to_cpu(e->size);
744 
745 	if (e_size < sizeof(struct NTFS_DE) || off + e_size > end)
746 		return NULL;
747 
748 	if (!de_is_last(e)) {
749 		offs[max_idx] = off;
750 		off += e_size;
751 
752 		max_idx++;
753 		if (max_idx < table_size)
754 			goto fill_table;
755 
756 		max_idx--;
757 	}
758 
759 binary_search:
760 	e_key_len = le16_to_cpu(e->key_size);
761 
762 	diff2 = (*cmp)(key, key_len, e + 1, e_key_len, ctx);
763 	if (diff2 > 0) {
764 		if (found) {
765 			min_idx = mid_idx + 1;
766 		} else {
767 			if (de_is_last(e))
768 				return NULL;
769 
770 			max_idx = 0;
771 			table_size = min(table_size * 2,
772 					 (int)ARRAY_SIZE(offs));
773 			goto fill_table;
774 		}
775 	} else if (diff2 < 0) {
776 		if (found)
777 			max_idx = mid_idx - 1;
778 		else
779 			max_idx--;
780 
781 		found = e;
782 	} else {
783 		*diff = 0;
784 		return e;
785 	}
786 
787 	if (min_idx > max_idx) {
788 		*diff = -1;
789 		return found;
790 	}
791 
792 	mid_idx = (min_idx + max_idx) >> 1;
793 	e = Add2Ptr(hdr, offs[mid_idx]);
794 
795 	goto binary_search;
796 }
797 
798 /*
799  * hdr_insert_de - Insert an index entry into the buffer.
800  *
801  * 'before' should be a pointer previously returned from hdr_find_e.
802  */
hdr_insert_de(const struct ntfs_index * indx,struct INDEX_HDR * hdr,const struct NTFS_DE * de,struct NTFS_DE * before,const void * ctx)803 static struct NTFS_DE *hdr_insert_de(const struct ntfs_index *indx,
804 				     struct INDEX_HDR *hdr,
805 				     const struct NTFS_DE *de,
806 				     struct NTFS_DE *before, const void *ctx)
807 {
808 	int diff;
809 	size_t off = PtrOffset(hdr, before);
810 	u32 used = le32_to_cpu(hdr->used);
811 	u32 total = le32_to_cpu(hdr->total);
812 	u16 de_size = le16_to_cpu(de->size);
813 
814 	/* First, check to see if there's enough room. */
815 	if (used + de_size > total)
816 		return NULL;
817 
818 	/* We know there's enough space, so we know we'll succeed. */
819 	if (before) {
820 		/* Check that before is inside Index. */
821 		if (off >= used || off < le32_to_cpu(hdr->de_off) ||
822 		    off + le16_to_cpu(before->size) > total) {
823 			return NULL;
824 		}
825 		goto ok;
826 	}
827 	/* No insert point is applied. Get it manually. */
828 	before = hdr_find_e(indx, hdr, de + 1, le16_to_cpu(de->key_size), ctx,
829 			    &diff);
830 	if (!before)
831 		return NULL;
832 	off = PtrOffset(hdr, before);
833 
834 ok:
835 	/* Now we just make room for the entry and jam it in. */
836 	memmove(Add2Ptr(before, de_size), before, used - off);
837 
838 	hdr->used = cpu_to_le32(used + de_size);
839 	memcpy(before, de, de_size);
840 
841 	return before;
842 }
843 
844 /*
845  * hdr_delete_de - Remove an entry from the index buffer.
846  */
hdr_delete_de(struct INDEX_HDR * hdr,struct NTFS_DE * re)847 static inline struct NTFS_DE *hdr_delete_de(struct INDEX_HDR *hdr,
848 					    struct NTFS_DE *re)
849 {
850 	u32 used = le32_to_cpu(hdr->used);
851 	u16 esize = le16_to_cpu(re->size);
852 	u32 off = PtrOffset(hdr, re);
853 	int bytes = used - (off + esize);
854 
855 	/* check INDEX_HDR valid before using INDEX_HDR */
856 	if (!check_index_header(hdr, le32_to_cpu(hdr->total)))
857 		return NULL;
858 
859 	if (off >= used || esize < sizeof(struct NTFS_DE) ||
860 	    bytes < sizeof(struct NTFS_DE))
861 		return NULL;
862 
863 	hdr->used = cpu_to_le32(used - esize);
864 	memmove(re, Add2Ptr(re, esize), bytes);
865 
866 	return re;
867 }
868 
indx_clear(struct ntfs_index * indx)869 void indx_clear(struct ntfs_index *indx)
870 {
871 	run_close(&indx->alloc_run);
872 	run_close(&indx->bitmap_run);
873 }
874 
indx_init(struct ntfs_index * indx,struct ntfs_sb_info * sbi,const struct ATTRIB * attr,enum index_mutex_classed type)875 int indx_init(struct ntfs_index *indx, struct ntfs_sb_info *sbi,
876 	      const struct ATTRIB *attr, enum index_mutex_classed type)
877 {
878 	u32 t32;
879 	const struct INDEX_ROOT *root = resident_data(attr);
880 
881 	t32 = le32_to_cpu(attr->res.data_size);
882 	if (t32 <= offsetof(struct INDEX_ROOT, ihdr) ||
883 	    !index_hdr_check(&root->ihdr,
884 			     t32 - offsetof(struct INDEX_ROOT, ihdr))) {
885 		goto out;
886 	}
887 
888 	/* Check root fields. */
889 	if (!root->index_block_clst)
890 		goto out;
891 
892 	indx->type = type;
893 	indx->idx2vbn_bits = __ffs(root->index_block_clst);
894 
895 	t32 = le32_to_cpu(root->index_block_size);
896 	indx->index_bits = blksize_bits(t32);
897 
898 	/* Check index record size. */
899 	if (t32 < sbi->cluster_size) {
900 		/* Index record is smaller than a cluster, use 512 blocks. */
901 		if (t32 != root->index_block_clst * SECTOR_SIZE)
902 			goto out;
903 
904 		/* Check alignment to a cluster. */
905 		if ((sbi->cluster_size >> SECTOR_SHIFT) &
906 		    (root->index_block_clst - 1)) {
907 			goto out;
908 		}
909 
910 		indx->vbn2vbo_bits = SECTOR_SHIFT;
911 	} else {
912 		/* Index record must be a multiple of cluster size. */
913 		if (t32 != root->index_block_clst << sbi->cluster_bits)
914 			goto out;
915 
916 		indx->vbn2vbo_bits = sbi->cluster_bits;
917 	}
918 
919 	init_rwsem(&indx->run_lock);
920 
921 	indx->cmp = get_cmp_func(root);
922 	if (!indx->cmp)
923 		goto out;
924 
925 	return 0;
926 
927 out:
928 	ntfs_set_state(sbi, NTFS_DIRTY_DIRTY);
929 	return -EINVAL;
930 }
931 
indx_new(struct ntfs_index * indx,struct ntfs_inode * ni,CLST vbn,const __le64 * sub_vbn)932 static struct indx_node *indx_new(struct ntfs_index *indx,
933 				  struct ntfs_inode *ni, CLST vbn,
934 				  const __le64 *sub_vbn)
935 {
936 	int err;
937 	struct NTFS_DE *e;
938 	struct indx_node *r;
939 	struct INDEX_HDR *hdr;
940 	struct INDEX_BUFFER *index;
941 	u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
942 	u32 bytes = 1u << indx->index_bits;
943 	u16 fn;
944 	u32 eo;
945 
946 	r = kzalloc(sizeof(struct indx_node), GFP_NOFS);
947 	if (!r)
948 		return ERR_PTR(-ENOMEM);
949 
950 	index = kzalloc(bytes, GFP_NOFS);
951 	if (!index) {
952 		kfree(r);
953 		return ERR_PTR(-ENOMEM);
954 	}
955 
956 	err = ntfs_get_bh(ni->mi.sbi, &indx->alloc_run, vbo, bytes, &r->nb);
957 
958 	if (err) {
959 		kfree(index);
960 		kfree(r);
961 		return ERR_PTR(err);
962 	}
963 
964 	/* Create header. */
965 	index->rhdr.sign = NTFS_INDX_SIGNATURE;
966 	index->rhdr.fix_off = cpu_to_le16(sizeof(struct INDEX_BUFFER)); // 0x28
967 	fn = (bytes >> SECTOR_SHIFT) + 1; // 9
968 	index->rhdr.fix_num = cpu_to_le16(fn);
969 	index->vbn = cpu_to_le64(vbn);
970 	hdr = &index->ihdr;
971 	eo = ALIGN(sizeof(struct INDEX_BUFFER) + fn * sizeof(short), 8);
972 	hdr->de_off = cpu_to_le32(eo);
973 
974 	e = Add2Ptr(hdr, eo);
975 
976 	if (sub_vbn) {
977 		e->flags = NTFS_IE_LAST | NTFS_IE_HAS_SUBNODES;
978 		e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
979 		hdr->used =
980 			cpu_to_le32(eo + sizeof(struct NTFS_DE) + sizeof(u64));
981 		de_set_vbn_le(e, *sub_vbn);
982 		hdr->flags = 1;
983 	} else {
984 		e->size = cpu_to_le16(sizeof(struct NTFS_DE));
985 		hdr->used = cpu_to_le32(eo + sizeof(struct NTFS_DE));
986 		e->flags = NTFS_IE_LAST;
987 	}
988 
989 	hdr->total = cpu_to_le32(bytes - offsetof(struct INDEX_BUFFER, ihdr));
990 
991 	r->index = index;
992 	return r;
993 }
994 
indx_get_root(struct ntfs_index * indx,struct ntfs_inode * ni,struct ATTRIB ** attr,struct mft_inode ** mi)995 struct INDEX_ROOT *indx_get_root(struct ntfs_index *indx, struct ntfs_inode *ni,
996 				 struct ATTRIB **attr, struct mft_inode **mi)
997 {
998 	struct ATTR_LIST_ENTRY *le = NULL;
999 	struct ATTRIB *a;
1000 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
1001 	struct INDEX_ROOT *root = NULL;
1002 
1003 	a = ni_find_attr(ni, NULL, &le, ATTR_ROOT, in->name, in->name_len, NULL,
1004 			 mi);
1005 	if (!a)
1006 		return NULL;
1007 
1008 	if (attr)
1009 		*attr = a;
1010 
1011 	root = resident_data_ex(a, sizeof(struct INDEX_ROOT));
1012 
1013 	/* length check */
1014 	if (root && offsetof(struct INDEX_ROOT, ihdr) + le32_to_cpu(root->ihdr.used) >
1015 			le32_to_cpu(a->res.data_size)) {
1016 		return NULL;
1017 	}
1018 
1019 	return root;
1020 }
1021 
indx_write(struct ntfs_index * indx,struct ntfs_inode * ni,struct indx_node * node,int sync)1022 static int indx_write(struct ntfs_index *indx, struct ntfs_inode *ni,
1023 		      struct indx_node *node, int sync)
1024 {
1025 	struct INDEX_BUFFER *ib = node->index;
1026 
1027 	return ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &node->nb, sync);
1028 }
1029 
1030 /*
1031  * indx_read
1032  *
1033  * If ntfs_readdir calls this function
1034  * inode is shared locked and no ni_lock.
1035  * Use rw_semaphore for read/write access to alloc_run.
1036  */
indx_read(struct ntfs_index * indx,struct ntfs_inode * ni,CLST vbn,struct indx_node ** node)1037 int indx_read(struct ntfs_index *indx, struct ntfs_inode *ni, CLST vbn,
1038 	      struct indx_node **node)
1039 {
1040 	int err;
1041 	struct INDEX_BUFFER *ib;
1042 	struct runs_tree *run = &indx->alloc_run;
1043 	struct rw_semaphore *lock = &indx->run_lock;
1044 	u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
1045 	u32 bytes = 1u << indx->index_bits;
1046 	struct indx_node *in = *node;
1047 	const struct INDEX_NAMES *name;
1048 
1049 	if (!in) {
1050 		in = kzalloc(sizeof(struct indx_node), GFP_NOFS);
1051 		if (!in)
1052 			return -ENOMEM;
1053 	} else {
1054 		nb_put(&in->nb);
1055 	}
1056 
1057 	ib = in->index;
1058 	if (!ib) {
1059 		ib = kmalloc(bytes, GFP_NOFS);
1060 		if (!ib) {
1061 			err = -ENOMEM;
1062 			goto out;
1063 		}
1064 	}
1065 
1066 	down_read(lock);
1067 	err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
1068 	up_read(lock);
1069 	if (!err)
1070 		goto ok;
1071 
1072 	if (err == -E_NTFS_FIXUP)
1073 		goto ok;
1074 
1075 	if (err != -ENOENT)
1076 		goto out;
1077 
1078 	name = &s_index_names[indx->type];
1079 	down_write(lock);
1080 	err = attr_load_runs_range(ni, ATTR_ALLOC, name->name, name->name_len,
1081 				   run, vbo, vbo + bytes);
1082 	up_write(lock);
1083 	if (err)
1084 		goto out;
1085 
1086 	down_read(lock);
1087 	err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
1088 	up_read(lock);
1089 	if (err == -E_NTFS_FIXUP)
1090 		goto ok;
1091 
1092 	if (err)
1093 		goto out;
1094 
1095 ok:
1096 	if (!index_buf_check(ib, bytes, &vbn)) {
1097 		ntfs_inode_err(&ni->vfs_inode, "directory corrupted");
1098 		ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
1099 		err = -EINVAL;
1100 		goto out;
1101 	}
1102 
1103 	if (err == -E_NTFS_FIXUP) {
1104 		ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &in->nb, 0);
1105 		err = 0;
1106 	}
1107 
1108 	/* check for index header length */
1109 	if (offsetof(struct INDEX_BUFFER, ihdr) + le32_to_cpu(ib->ihdr.used) >
1110 	    bytes) {
1111 		err = -EINVAL;
1112 		goto out;
1113 	}
1114 
1115 	in->index = ib;
1116 	*node = in;
1117 
1118 out:
1119 	if (err == -E_NTFS_CORRUPT) {
1120 		ntfs_inode_err(&ni->vfs_inode, "directory corrupted");
1121 		ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
1122 		err = -EINVAL;
1123 	}
1124 
1125 	if (ib != in->index)
1126 		kfree(ib);
1127 
1128 	if (*node != in) {
1129 		nb_put(&in->nb);
1130 		kfree(in);
1131 	}
1132 
1133 	return err;
1134 }
1135 
1136 /*
1137  * indx_find - Scan NTFS directory for given entry.
1138  */
indx_find(struct ntfs_index * indx,struct ntfs_inode * ni,const struct INDEX_ROOT * root,const void * key,size_t key_len,const void * ctx,int * diff,struct NTFS_DE ** entry,struct ntfs_fnd * fnd)1139 int indx_find(struct ntfs_index *indx, struct ntfs_inode *ni,
1140 	      const struct INDEX_ROOT *root, const void *key, size_t key_len,
1141 	      const void *ctx, int *diff, struct NTFS_DE **entry,
1142 	      struct ntfs_fnd *fnd)
1143 {
1144 	int err;
1145 	struct NTFS_DE *e;
1146 	const struct INDEX_HDR *hdr;
1147 	struct indx_node *node;
1148 
1149 	if (!root)
1150 		root = indx_get_root(&ni->dir, ni, NULL, NULL);
1151 
1152 	if (!root) {
1153 		err = -EINVAL;
1154 		goto out;
1155 	}
1156 
1157 	hdr = &root->ihdr;
1158 
1159 	/* Check cache. */
1160 	e = fnd->level ? fnd->de[fnd->level - 1] : fnd->root_de;
1161 	if (e && !de_is_last(e) &&
1162 	    !(*indx->cmp)(key, key_len, e + 1, le16_to_cpu(e->key_size), ctx)) {
1163 		*entry = e;
1164 		*diff = 0;
1165 		return 0;
1166 	}
1167 
1168 	/* Soft finder reset. */
1169 	fnd_clear(fnd);
1170 
1171 	/* Lookup entry that is <= to the search value. */
1172 	e = hdr_find_e(indx, hdr, key, key_len, ctx, diff);
1173 	if (!e)
1174 		return -EINVAL;
1175 
1176 	fnd->root_de = e;
1177 	err = 0;
1178 
1179 	for (;;) {
1180 		node = NULL;
1181 		if (*diff >= 0 || !de_has_vcn_ex(e)) {
1182 			*entry = e;
1183 			goto out;
1184 		}
1185 
1186 		/* Read next level. */
1187 		err = indx_read(indx, ni, de_get_vbn(e), &node);
1188 		if (err)
1189 			goto out;
1190 
1191 		/* Lookup entry that is <= to the search value. */
1192 		e = hdr_find_e(indx, &node->index->ihdr, key, key_len, ctx,
1193 			       diff);
1194 		if (!e) {
1195 			err = -EINVAL;
1196 			put_indx_node(node);
1197 			goto out;
1198 		}
1199 
1200 		fnd_push(fnd, node, e);
1201 	}
1202 
1203 out:
1204 	return err;
1205 }
1206 
indx_find_sort(struct ntfs_index * indx,struct ntfs_inode * ni,const struct INDEX_ROOT * root,struct NTFS_DE ** entry,struct ntfs_fnd * fnd)1207 int indx_find_sort(struct ntfs_index *indx, struct ntfs_inode *ni,
1208 		   const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1209 		   struct ntfs_fnd *fnd)
1210 {
1211 	int err;
1212 	struct indx_node *n = NULL;
1213 	struct NTFS_DE *e;
1214 	size_t iter = 0;
1215 	int level = fnd->level;
1216 
1217 	if (!*entry) {
1218 		/* Start find. */
1219 		e = hdr_first_de(&root->ihdr);
1220 		if (!e)
1221 			return 0;
1222 		fnd_clear(fnd);
1223 		fnd->root_de = e;
1224 	} else if (!level) {
1225 		if (de_is_last(fnd->root_de)) {
1226 			*entry = NULL;
1227 			return 0;
1228 		}
1229 
1230 		e = hdr_next_de(&root->ihdr, fnd->root_de);
1231 		if (!e)
1232 			return -EINVAL;
1233 		fnd->root_de = e;
1234 	} else {
1235 		n = fnd->nodes[level - 1];
1236 		e = fnd->de[level - 1];
1237 
1238 		if (de_is_last(e))
1239 			goto pop_level;
1240 
1241 		e = hdr_next_de(&n->index->ihdr, e);
1242 		if (!e)
1243 			return -EINVAL;
1244 
1245 		fnd->de[level - 1] = e;
1246 	}
1247 
1248 	/* Just to avoid tree cycle. */
1249 next_iter:
1250 	if (iter++ >= 1000)
1251 		return -EINVAL;
1252 
1253 	while (de_has_vcn_ex(e)) {
1254 		if (le16_to_cpu(e->size) <
1255 		    sizeof(struct NTFS_DE) + sizeof(u64)) {
1256 			if (n) {
1257 				fnd_pop(fnd);
1258 				kfree(n);
1259 			}
1260 			return -EINVAL;
1261 		}
1262 
1263 		/* Read next level. */
1264 		err = indx_read(indx, ni, de_get_vbn(e), &n);
1265 		if (err)
1266 			return err;
1267 
1268 		/* Try next level. */
1269 		e = hdr_first_de(&n->index->ihdr);
1270 		if (!e) {
1271 			kfree(n);
1272 			return -EINVAL;
1273 		}
1274 
1275 		fnd_push(fnd, n, e);
1276 	}
1277 
1278 	if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1279 		*entry = e;
1280 		return 0;
1281 	}
1282 
1283 pop_level:
1284 	for (;;) {
1285 		if (!de_is_last(e))
1286 			goto next_iter;
1287 
1288 		/* Pop one level. */
1289 		if (n) {
1290 			fnd_pop(fnd);
1291 			kfree(n);
1292 		}
1293 
1294 		level = fnd->level;
1295 
1296 		if (level) {
1297 			n = fnd->nodes[level - 1];
1298 			e = fnd->de[level - 1];
1299 		} else if (fnd->root_de) {
1300 			n = NULL;
1301 			e = fnd->root_de;
1302 			fnd->root_de = NULL;
1303 		} else {
1304 			*entry = NULL;
1305 			return 0;
1306 		}
1307 
1308 		if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1309 			*entry = e;
1310 			if (!fnd->root_de)
1311 				fnd->root_de = e;
1312 			return 0;
1313 		}
1314 	}
1315 }
1316 
indx_find_raw(struct ntfs_index * indx,struct ntfs_inode * ni,const struct INDEX_ROOT * root,struct NTFS_DE ** entry,size_t * off,struct ntfs_fnd * fnd)1317 int indx_find_raw(struct ntfs_index *indx, struct ntfs_inode *ni,
1318 		  const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1319 		  size_t *off, struct ntfs_fnd *fnd)
1320 {
1321 	int err;
1322 	struct indx_node *n = NULL;
1323 	struct NTFS_DE *e = NULL;
1324 	struct NTFS_DE *e2;
1325 	size_t bit;
1326 	CLST next_used_vbn;
1327 	CLST next_vbn;
1328 	u32 record_size = ni->mi.sbi->record_size;
1329 
1330 	/* Use non sorted algorithm. */
1331 	if (!*entry) {
1332 		/* This is the first call. */
1333 		e = hdr_first_de(&root->ihdr);
1334 		if (!e)
1335 			return 0;
1336 		fnd_clear(fnd);
1337 		fnd->root_de = e;
1338 
1339 		/* The first call with setup of initial element. */
1340 		if (*off >= record_size) {
1341 			next_vbn = (((*off - record_size) >> indx->index_bits))
1342 				   << indx->idx2vbn_bits;
1343 			/* Jump inside cycle 'for'. */
1344 			goto next;
1345 		}
1346 
1347 		/* Start enumeration from root. */
1348 		*off = 0;
1349 	} else if (!fnd->root_de)
1350 		return -EINVAL;
1351 
1352 	for (;;) {
1353 		/* Check if current entry can be used. */
1354 		if (e && le16_to_cpu(e->size) > sizeof(struct NTFS_DE))
1355 			goto ok;
1356 
1357 		if (!fnd->level) {
1358 			/* Continue to enumerate root. */
1359 			if (!de_is_last(fnd->root_de)) {
1360 				e = hdr_next_de(&root->ihdr, fnd->root_de);
1361 				if (!e)
1362 					return -EINVAL;
1363 				fnd->root_de = e;
1364 				continue;
1365 			}
1366 
1367 			/* Start to enumerate indexes from 0. */
1368 			next_vbn = 0;
1369 		} else {
1370 			/* Continue to enumerate indexes. */
1371 			e2 = fnd->de[fnd->level - 1];
1372 
1373 			n = fnd->nodes[fnd->level - 1];
1374 
1375 			if (!de_is_last(e2)) {
1376 				e = hdr_next_de(&n->index->ihdr, e2);
1377 				if (!e)
1378 					return -EINVAL;
1379 				fnd->de[fnd->level - 1] = e;
1380 				continue;
1381 			}
1382 
1383 			/* Continue with next index. */
1384 			next_vbn = le64_to_cpu(n->index->vbn) +
1385 				   root->index_block_clst;
1386 		}
1387 
1388 next:
1389 		/* Release current index. */
1390 		if (n) {
1391 			fnd_pop(fnd);
1392 			put_indx_node(n);
1393 			n = NULL;
1394 		}
1395 
1396 		/* Skip all free indexes. */
1397 		bit = next_vbn >> indx->idx2vbn_bits;
1398 		err = indx_used_bit(indx, ni, &bit);
1399 		if (err == -ENOENT || bit == MINUS_ONE_T) {
1400 			/* No used indexes. */
1401 			*entry = NULL;
1402 			return 0;
1403 		}
1404 
1405 		next_used_vbn = bit << indx->idx2vbn_bits;
1406 
1407 		/* Read buffer into memory. */
1408 		err = indx_read(indx, ni, next_used_vbn, &n);
1409 		if (err)
1410 			return err;
1411 
1412 		e = hdr_first_de(&n->index->ihdr);
1413 		fnd_push(fnd, n, e);
1414 		if (!e)
1415 			return -EINVAL;
1416 	}
1417 
1418 ok:
1419 	/* Return offset to restore enumerator if necessary. */
1420 	if (!n) {
1421 		/* 'e' points in root, */
1422 		*off = PtrOffset(&root->ihdr, e);
1423 	} else {
1424 		/* 'e' points in index, */
1425 		*off = (le64_to_cpu(n->index->vbn) << indx->vbn2vbo_bits) +
1426 		       record_size + PtrOffset(&n->index->ihdr, e);
1427 	}
1428 
1429 	*entry = e;
1430 	return 0;
1431 }
1432 
1433 /*
1434  * indx_create_allocate - Create "Allocation + Bitmap" attributes.
1435  */
indx_create_allocate(struct ntfs_index * indx,struct ntfs_inode * ni,CLST * vbn)1436 static int indx_create_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1437 				CLST *vbn)
1438 {
1439 	int err;
1440 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1441 	struct ATTRIB *bitmap;
1442 	struct ATTRIB *alloc;
1443 	u32 data_size = 1u << indx->index_bits;
1444 	u32 alloc_size = ntfs_up_cluster(sbi, data_size);
1445 	CLST len = alloc_size >> sbi->cluster_bits;
1446 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
1447 	CLST alen;
1448 	struct runs_tree run;
1449 
1450 	run_init(&run);
1451 
1452 	err = attr_allocate_clusters(sbi, &run, 0, 0, len, NULL, 0, &alen, 0,
1453 				     NULL);
1454 	if (err)
1455 		goto out;
1456 
1457 	err = ni_insert_nonresident(ni, ATTR_ALLOC, in->name, in->name_len,
1458 				    &run, 0, len, 0, &alloc, NULL);
1459 	if (err)
1460 		goto out1;
1461 
1462 	alloc->nres.valid_size = alloc->nres.data_size = cpu_to_le64(data_size);
1463 
1464 	err = ni_insert_resident(ni, bitmap_size(1), ATTR_BITMAP, in->name,
1465 				 in->name_len, &bitmap, NULL, NULL);
1466 	if (err)
1467 		goto out2;
1468 
1469 	if (in->name == I30_NAME) {
1470 		ni->vfs_inode.i_size = data_size;
1471 		inode_set_bytes(&ni->vfs_inode, alloc_size);
1472 	}
1473 
1474 	memcpy(&indx->alloc_run, &run, sizeof(run));
1475 
1476 	*vbn = 0;
1477 
1478 	return 0;
1479 
1480 out2:
1481 	mi_remove_attr(NULL, &ni->mi, alloc);
1482 
1483 out1:
1484 	run_deallocate(sbi, &run, false);
1485 
1486 out:
1487 	return err;
1488 }
1489 
1490 /*
1491  * indx_add_allocate - Add clusters to index.
1492  */
indx_add_allocate(struct ntfs_index * indx,struct ntfs_inode * ni,CLST * vbn)1493 static int indx_add_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1494 			     CLST *vbn)
1495 {
1496 	int err;
1497 	size_t bit;
1498 	u64 data_size;
1499 	u64 bmp_size, bmp_size_v;
1500 	struct ATTRIB *bmp, *alloc;
1501 	struct mft_inode *mi;
1502 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
1503 
1504 	err = indx_find_free(indx, ni, &bit, &bmp);
1505 	if (err)
1506 		goto out1;
1507 
1508 	if (bit != MINUS_ONE_T) {
1509 		bmp = NULL;
1510 	} else {
1511 		if (bmp->non_res) {
1512 			bmp_size = le64_to_cpu(bmp->nres.data_size);
1513 			bmp_size_v = le64_to_cpu(bmp->nres.valid_size);
1514 		} else {
1515 			bmp_size = bmp_size_v = le32_to_cpu(bmp->res.data_size);
1516 		}
1517 
1518 		bit = bmp_size << 3;
1519 	}
1520 
1521 	data_size = (u64)(bit + 1) << indx->index_bits;
1522 
1523 	if (bmp) {
1524 		/* Increase bitmap. */
1525 		err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1526 				    &indx->bitmap_run, bitmap_size(bit + 1),
1527 				    NULL, true, NULL);
1528 		if (err)
1529 			goto out1;
1530 	}
1531 
1532 	alloc = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, in->name, in->name_len,
1533 			     NULL, &mi);
1534 	if (!alloc) {
1535 		err = -EINVAL;
1536 		if (bmp)
1537 			goto out2;
1538 		goto out1;
1539 	}
1540 
1541 	/* Increase allocation. */
1542 	err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
1543 			    &indx->alloc_run, data_size, &data_size, true,
1544 			    NULL);
1545 	if (err) {
1546 		if (bmp)
1547 			goto out2;
1548 		goto out1;
1549 	}
1550 
1551 	*vbn = bit << indx->idx2vbn_bits;
1552 
1553 	return 0;
1554 
1555 out2:
1556 	/* Ops. No space? */
1557 	attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1558 		      &indx->bitmap_run, bmp_size, &bmp_size_v, false, NULL);
1559 
1560 out1:
1561 	return err;
1562 }
1563 
1564 /*
1565  * indx_insert_into_root - Attempt to insert an entry into the index root.
1566  *
1567  * @undo - True if we undoing previous remove.
1568  * If necessary, it will twiddle the index b-tree.
1569  */
indx_insert_into_root(struct ntfs_index * indx,struct ntfs_inode * ni,const struct NTFS_DE * new_de,struct NTFS_DE * root_de,const void * ctx,struct ntfs_fnd * fnd,bool undo)1570 static int indx_insert_into_root(struct ntfs_index *indx, struct ntfs_inode *ni,
1571 				 const struct NTFS_DE *new_de,
1572 				 struct NTFS_DE *root_de, const void *ctx,
1573 				 struct ntfs_fnd *fnd, bool undo)
1574 {
1575 	int err = 0;
1576 	struct NTFS_DE *e, *e0, *re;
1577 	struct mft_inode *mi;
1578 	struct ATTRIB *attr;
1579 	struct INDEX_HDR *hdr;
1580 	struct indx_node *n;
1581 	CLST new_vbn;
1582 	__le64 *sub_vbn, t_vbn;
1583 	u16 new_de_size;
1584 	u32 hdr_used, hdr_total, asize, to_move;
1585 	u32 root_size, new_root_size;
1586 	struct ntfs_sb_info *sbi;
1587 	int ds_root;
1588 	struct INDEX_ROOT *root, *a_root;
1589 
1590 	/* Get the record this root placed in. */
1591 	root = indx_get_root(indx, ni, &attr, &mi);
1592 	if (!root)
1593 		return -EINVAL;
1594 
1595 	/*
1596 	 * Try easy case:
1597 	 * hdr_insert_de will succeed if there's
1598 	 * room the root for the new entry.
1599 	 */
1600 	hdr = &root->ihdr;
1601 	sbi = ni->mi.sbi;
1602 	new_de_size = le16_to_cpu(new_de->size);
1603 	hdr_used = le32_to_cpu(hdr->used);
1604 	hdr_total = le32_to_cpu(hdr->total);
1605 	asize = le32_to_cpu(attr->size);
1606 	root_size = le32_to_cpu(attr->res.data_size);
1607 
1608 	ds_root = new_de_size + hdr_used - hdr_total;
1609 
1610 	/* If 'undo' is set then reduce requirements. */
1611 	if ((undo || asize + ds_root < sbi->max_bytes_per_attr) &&
1612 	    mi_resize_attr(mi, attr, ds_root)) {
1613 		hdr->total = cpu_to_le32(hdr_total + ds_root);
1614 		e = hdr_insert_de(indx, hdr, new_de, root_de, ctx);
1615 		WARN_ON(!e);
1616 		fnd_clear(fnd);
1617 		fnd->root_de = e;
1618 
1619 		return 0;
1620 	}
1621 
1622 	/* Make a copy of root attribute to restore if error. */
1623 	a_root = kmemdup(attr, asize, GFP_NOFS);
1624 	if (!a_root)
1625 		return -ENOMEM;
1626 
1627 	/*
1628 	 * Copy all the non-end entries from
1629 	 * the index root to the new buffer.
1630 	 */
1631 	to_move = 0;
1632 	e0 = hdr_first_de(hdr);
1633 
1634 	/* Calculate the size to copy. */
1635 	for (e = e0;; e = hdr_next_de(hdr, e)) {
1636 		if (!e) {
1637 			err = -EINVAL;
1638 			goto out_free_root;
1639 		}
1640 
1641 		if (de_is_last(e))
1642 			break;
1643 		to_move += le16_to_cpu(e->size);
1644 	}
1645 
1646 	if (!to_move) {
1647 		re = NULL;
1648 	} else {
1649 		re = kmemdup(e0, to_move, GFP_NOFS);
1650 		if (!re) {
1651 			err = -ENOMEM;
1652 			goto out_free_root;
1653 		}
1654 	}
1655 
1656 	sub_vbn = NULL;
1657 	if (de_has_vcn(e)) {
1658 		t_vbn = de_get_vbn_le(e);
1659 		sub_vbn = &t_vbn;
1660 	}
1661 
1662 	new_root_size = sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE) +
1663 			sizeof(u64);
1664 	ds_root = new_root_size - root_size;
1665 
1666 	if (ds_root > 0 && asize + ds_root > sbi->max_bytes_per_attr) {
1667 		/* Make root external. */
1668 		err = -EOPNOTSUPP;
1669 		goto out_free_re;
1670 	}
1671 
1672 	if (ds_root)
1673 		mi_resize_attr(mi, attr, ds_root);
1674 
1675 	/* Fill first entry (vcn will be set later). */
1676 	e = (struct NTFS_DE *)(root + 1);
1677 	memset(e, 0, sizeof(struct NTFS_DE));
1678 	e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
1679 	e->flags = NTFS_IE_HAS_SUBNODES | NTFS_IE_LAST;
1680 
1681 	hdr->flags = 1;
1682 	hdr->used = hdr->total =
1683 		cpu_to_le32(new_root_size - offsetof(struct INDEX_ROOT, ihdr));
1684 
1685 	fnd->root_de = hdr_first_de(hdr);
1686 	mi->dirty = true;
1687 
1688 	/* Create alloc and bitmap attributes (if not). */
1689 	err = run_is_empty(&indx->alloc_run)
1690 		      ? indx_create_allocate(indx, ni, &new_vbn)
1691 		      : indx_add_allocate(indx, ni, &new_vbn);
1692 
1693 	/* Layout of record may be changed, so rescan root. */
1694 	root = indx_get_root(indx, ni, &attr, &mi);
1695 	if (!root) {
1696 		/* Bug? */
1697 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1698 		err = -EINVAL;
1699 		goto out_free_re;
1700 	}
1701 
1702 	if (err) {
1703 		/* Restore root. */
1704 		if (mi_resize_attr(mi, attr, -ds_root)) {
1705 			memcpy(attr, a_root, asize);
1706 		} else {
1707 			/* Bug? */
1708 			ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1709 		}
1710 		goto out_free_re;
1711 	}
1712 
1713 	e = (struct NTFS_DE *)(root + 1);
1714 	*(__le64 *)(e + 1) = cpu_to_le64(new_vbn);
1715 	mi->dirty = true;
1716 
1717 	/* Now we can create/format the new buffer and copy the entries into. */
1718 	n = indx_new(indx, ni, new_vbn, sub_vbn);
1719 	if (IS_ERR(n)) {
1720 		err = PTR_ERR(n);
1721 		goto out_free_re;
1722 	}
1723 
1724 	hdr = &n->index->ihdr;
1725 	hdr_used = le32_to_cpu(hdr->used);
1726 	hdr_total = le32_to_cpu(hdr->total);
1727 
1728 	/* Copy root entries into new buffer. */
1729 	hdr_insert_head(hdr, re, to_move);
1730 
1731 	/* Update bitmap attribute. */
1732 	indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1733 
1734 	/* Check if we can insert new entry new index buffer. */
1735 	if (hdr_used + new_de_size > hdr_total) {
1736 		/*
1737 		 * This occurs if MFT record is the same or bigger than index
1738 		 * buffer. Move all root new index and have no space to add
1739 		 * new entry classic case when MFT record is 1K and index
1740 		 * buffer 4K the problem should not occurs.
1741 		 */
1742 		kfree(re);
1743 		indx_write(indx, ni, n, 0);
1744 
1745 		put_indx_node(n);
1746 		fnd_clear(fnd);
1747 		err = indx_insert_entry(indx, ni, new_de, ctx, fnd, undo);
1748 		goto out_free_root;
1749 	}
1750 
1751 	/*
1752 	 * Now root is a parent for new index buffer.
1753 	 * Insert NewEntry a new buffer.
1754 	 */
1755 	e = hdr_insert_de(indx, hdr, new_de, NULL, ctx);
1756 	if (!e) {
1757 		err = -EINVAL;
1758 		goto out_put_n;
1759 	}
1760 	fnd_push(fnd, n, e);
1761 
1762 	/* Just write updates index into disk. */
1763 	indx_write(indx, ni, n, 0);
1764 
1765 	n = NULL;
1766 
1767 out_put_n:
1768 	put_indx_node(n);
1769 out_free_re:
1770 	kfree(re);
1771 out_free_root:
1772 	kfree(a_root);
1773 	return err;
1774 }
1775 
1776 /*
1777  * indx_insert_into_buffer
1778  *
1779  * Attempt to insert an entry into an Index Allocation Buffer.
1780  * If necessary, it will split the buffer.
1781  */
1782 static int
indx_insert_into_buffer(struct ntfs_index * indx,struct ntfs_inode * ni,struct INDEX_ROOT * root,const struct NTFS_DE * new_de,const void * ctx,int level,struct ntfs_fnd * fnd)1783 indx_insert_into_buffer(struct ntfs_index *indx, struct ntfs_inode *ni,
1784 			struct INDEX_ROOT *root, const struct NTFS_DE *new_de,
1785 			const void *ctx, int level, struct ntfs_fnd *fnd)
1786 {
1787 	int err;
1788 	const struct NTFS_DE *sp;
1789 	struct NTFS_DE *e, *de_t, *up_e = NULL;
1790 	struct indx_node *n2 = NULL;
1791 	struct indx_node *n1 = fnd->nodes[level];
1792 	struct INDEX_HDR *hdr1 = &n1->index->ihdr;
1793 	struct INDEX_HDR *hdr2;
1794 	u32 to_copy, used;
1795 	CLST new_vbn;
1796 	__le64 t_vbn, *sub_vbn;
1797 	u16 sp_size;
1798 
1799 	/* Try the most easy case. */
1800 	e = fnd->level - 1 == level ? fnd->de[level] : NULL;
1801 	e = hdr_insert_de(indx, hdr1, new_de, e, ctx);
1802 	fnd->de[level] = e;
1803 	if (e) {
1804 		/* Just write updated index into disk. */
1805 		indx_write(indx, ni, n1, 0);
1806 		return 0;
1807 	}
1808 
1809 	/*
1810 	 * No space to insert into buffer. Split it.
1811 	 * To split we:
1812 	 *  - Save split point ('cause index buffers will be changed)
1813 	 * - Allocate NewBuffer and copy all entries <= sp into new buffer
1814 	 * - Remove all entries (sp including) from TargetBuffer
1815 	 * - Insert NewEntry into left or right buffer (depending on sp <=>
1816 	 *     NewEntry)
1817 	 * - Insert sp into parent buffer (or root)
1818 	 * - Make sp a parent for new buffer
1819 	 */
1820 	sp = hdr_find_split(hdr1);
1821 	if (!sp)
1822 		return -EINVAL;
1823 
1824 	sp_size = le16_to_cpu(sp->size);
1825 	up_e = kmalloc(sp_size + sizeof(u64), GFP_NOFS);
1826 	if (!up_e)
1827 		return -ENOMEM;
1828 	memcpy(up_e, sp, sp_size);
1829 
1830 	if (!hdr1->flags) {
1831 		up_e->flags |= NTFS_IE_HAS_SUBNODES;
1832 		up_e->size = cpu_to_le16(sp_size + sizeof(u64));
1833 		sub_vbn = NULL;
1834 	} else {
1835 		t_vbn = de_get_vbn_le(up_e);
1836 		sub_vbn = &t_vbn;
1837 	}
1838 
1839 	/* Allocate on disk a new index allocation buffer. */
1840 	err = indx_add_allocate(indx, ni, &new_vbn);
1841 	if (err)
1842 		goto out;
1843 
1844 	/* Allocate and format memory a new index buffer. */
1845 	n2 = indx_new(indx, ni, new_vbn, sub_vbn);
1846 	if (IS_ERR(n2)) {
1847 		err = PTR_ERR(n2);
1848 		goto out;
1849 	}
1850 
1851 	hdr2 = &n2->index->ihdr;
1852 
1853 	/* Make sp a parent for new buffer. */
1854 	de_set_vbn(up_e, new_vbn);
1855 
1856 	/* Copy all the entries <= sp into the new buffer. */
1857 	de_t = hdr_first_de(hdr1);
1858 	to_copy = PtrOffset(de_t, sp);
1859 	hdr_insert_head(hdr2, de_t, to_copy);
1860 
1861 	/* Remove all entries (sp including) from hdr1. */
1862 	used = le32_to_cpu(hdr1->used) - to_copy - sp_size;
1863 	memmove(de_t, Add2Ptr(sp, sp_size), used - le32_to_cpu(hdr1->de_off));
1864 	hdr1->used = cpu_to_le32(used);
1865 
1866 	/*
1867 	 * Insert new entry into left or right buffer
1868 	 * (depending on sp <=> new_de).
1869 	 */
1870 	hdr_insert_de(indx,
1871 		      (*indx->cmp)(new_de + 1, le16_to_cpu(new_de->key_size),
1872 				   up_e + 1, le16_to_cpu(up_e->key_size),
1873 				   ctx) < 0
1874 			      ? hdr2
1875 			      : hdr1,
1876 		      new_de, NULL, ctx);
1877 
1878 	indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1879 
1880 	indx_write(indx, ni, n1, 0);
1881 	indx_write(indx, ni, n2, 0);
1882 
1883 	put_indx_node(n2);
1884 
1885 	/*
1886 	 * We've finished splitting everybody, so we are ready to
1887 	 * insert the promoted entry into the parent.
1888 	 */
1889 	if (!level) {
1890 		/* Insert in root. */
1891 		err = indx_insert_into_root(indx, ni, up_e, NULL, ctx, fnd, 0);
1892 		if (err)
1893 			goto out;
1894 	} else {
1895 		/*
1896 		 * The target buffer's parent is another index buffer.
1897 		 * TODO: Remove recursion.
1898 		 */
1899 		err = indx_insert_into_buffer(indx, ni, root, up_e, ctx,
1900 					      level - 1, fnd);
1901 		if (err)
1902 			goto out;
1903 	}
1904 
1905 out:
1906 	kfree(up_e);
1907 
1908 	return err;
1909 }
1910 
1911 /*
1912  * indx_insert_entry - Insert new entry into index.
1913  *
1914  * @undo - True if we undoing previous remove.
1915  */
indx_insert_entry(struct ntfs_index * indx,struct ntfs_inode * ni,const struct NTFS_DE * new_de,const void * ctx,struct ntfs_fnd * fnd,bool undo)1916 int indx_insert_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
1917 		      const struct NTFS_DE *new_de, const void *ctx,
1918 		      struct ntfs_fnd *fnd, bool undo)
1919 {
1920 	int err;
1921 	int diff;
1922 	struct NTFS_DE *e;
1923 	struct ntfs_fnd *fnd_a = NULL;
1924 	struct INDEX_ROOT *root;
1925 
1926 	if (!fnd) {
1927 		fnd_a = fnd_get();
1928 		if (!fnd_a) {
1929 			err = -ENOMEM;
1930 			goto out1;
1931 		}
1932 		fnd = fnd_a;
1933 	}
1934 
1935 	root = indx_get_root(indx, ni, NULL, NULL);
1936 	if (!root) {
1937 		err = -EINVAL;
1938 		goto out;
1939 	}
1940 
1941 	if (fnd_is_empty(fnd)) {
1942 		/*
1943 		 * Find the spot the tree where we want to
1944 		 * insert the new entry.
1945 		 */
1946 		err = indx_find(indx, ni, root, new_de + 1,
1947 				le16_to_cpu(new_de->key_size), ctx, &diff, &e,
1948 				fnd);
1949 		if (err)
1950 			goto out;
1951 
1952 		if (!diff) {
1953 			err = -EEXIST;
1954 			goto out;
1955 		}
1956 	}
1957 
1958 	if (!fnd->level) {
1959 		/*
1960 		 * The root is also a leaf, so we'll insert the
1961 		 * new entry into it.
1962 		 */
1963 		err = indx_insert_into_root(indx, ni, new_de, fnd->root_de, ctx,
1964 					    fnd, undo);
1965 		if (err)
1966 			goto out;
1967 	} else {
1968 		/*
1969 		 * Found a leaf buffer, so we'll insert the new entry into it.
1970 		 */
1971 		err = indx_insert_into_buffer(indx, ni, root, new_de, ctx,
1972 					      fnd->level - 1, fnd);
1973 		if (err)
1974 			goto out;
1975 	}
1976 
1977 out:
1978 	fnd_put(fnd_a);
1979 out1:
1980 	return err;
1981 }
1982 
1983 /*
1984  * indx_find_buffer - Locate a buffer from the tree.
1985  */
indx_find_buffer(struct ntfs_index * indx,struct ntfs_inode * ni,const struct INDEX_ROOT * root,__le64 vbn,struct indx_node * n)1986 static struct indx_node *indx_find_buffer(struct ntfs_index *indx,
1987 					  struct ntfs_inode *ni,
1988 					  const struct INDEX_ROOT *root,
1989 					  __le64 vbn, struct indx_node *n)
1990 {
1991 	int err;
1992 	const struct NTFS_DE *e;
1993 	struct indx_node *r;
1994 	const struct INDEX_HDR *hdr = n ? &n->index->ihdr : &root->ihdr;
1995 
1996 	/* Step 1: Scan one level. */
1997 	for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
1998 		if (!e)
1999 			return ERR_PTR(-EINVAL);
2000 
2001 		if (de_has_vcn(e) && vbn == de_get_vbn_le(e))
2002 			return n;
2003 
2004 		if (de_is_last(e))
2005 			break;
2006 	}
2007 
2008 	/* Step2: Do recursion. */
2009 	e = Add2Ptr(hdr, le32_to_cpu(hdr->de_off));
2010 	for (;;) {
2011 		if (de_has_vcn_ex(e)) {
2012 			err = indx_read(indx, ni, de_get_vbn(e), &n);
2013 			if (err)
2014 				return ERR_PTR(err);
2015 
2016 			r = indx_find_buffer(indx, ni, root, vbn, n);
2017 			if (r)
2018 				return r;
2019 		}
2020 
2021 		if (de_is_last(e))
2022 			break;
2023 
2024 		e = Add2Ptr(e, le16_to_cpu(e->size));
2025 	}
2026 
2027 	return NULL;
2028 }
2029 
2030 /*
2031  * indx_shrink - Deallocate unused tail indexes.
2032  */
indx_shrink(struct ntfs_index * indx,struct ntfs_inode * ni,size_t bit)2033 static int indx_shrink(struct ntfs_index *indx, struct ntfs_inode *ni,
2034 		       size_t bit)
2035 {
2036 	int err = 0;
2037 	u64 bpb, new_data;
2038 	size_t nbits;
2039 	struct ATTRIB *b;
2040 	struct ATTR_LIST_ENTRY *le = NULL;
2041 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
2042 
2043 	b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
2044 			 NULL, NULL);
2045 
2046 	if (!b)
2047 		return -ENOENT;
2048 
2049 	if (!b->non_res) {
2050 		unsigned long pos;
2051 		const unsigned long *bm = resident_data(b);
2052 
2053 		nbits = (size_t)le32_to_cpu(b->res.data_size) * 8;
2054 
2055 		if (bit >= nbits)
2056 			return 0;
2057 
2058 		pos = find_next_bit(bm, nbits, bit);
2059 		if (pos < nbits)
2060 			return 0;
2061 	} else {
2062 		size_t used = MINUS_ONE_T;
2063 
2064 		nbits = le64_to_cpu(b->nres.data_size) * 8;
2065 
2066 		if (bit >= nbits)
2067 			return 0;
2068 
2069 		err = scan_nres_bitmap(ni, b, indx, bit, &scan_for_used, &used);
2070 		if (err)
2071 			return err;
2072 
2073 		if (used != MINUS_ONE_T)
2074 			return 0;
2075 	}
2076 
2077 	new_data = (u64)bit << indx->index_bits;
2078 
2079 	err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
2080 			    &indx->alloc_run, new_data, &new_data, false, NULL);
2081 	if (err)
2082 		return err;
2083 
2084 	bpb = bitmap_size(bit);
2085 	if (bpb * 8 == nbits)
2086 		return 0;
2087 
2088 	err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
2089 			    &indx->bitmap_run, bpb, &bpb, false, NULL);
2090 
2091 	return err;
2092 }
2093 
indx_free_children(struct ntfs_index * indx,struct ntfs_inode * ni,const struct NTFS_DE * e,bool trim)2094 static int indx_free_children(struct ntfs_index *indx, struct ntfs_inode *ni,
2095 			      const struct NTFS_DE *e, bool trim)
2096 {
2097 	int err;
2098 	struct indx_node *n = NULL;
2099 	struct INDEX_HDR *hdr;
2100 	CLST vbn = de_get_vbn(e);
2101 	size_t i;
2102 
2103 	err = indx_read(indx, ni, vbn, &n);
2104 	if (err)
2105 		return err;
2106 
2107 	hdr = &n->index->ihdr;
2108 	/* First, recurse into the children, if any. */
2109 	if (hdr_has_subnode(hdr)) {
2110 		for (e = hdr_first_de(hdr); e; e = hdr_next_de(hdr, e)) {
2111 			indx_free_children(indx, ni, e, false);
2112 			if (de_is_last(e))
2113 				break;
2114 		}
2115 	}
2116 
2117 	put_indx_node(n);
2118 
2119 	i = vbn >> indx->idx2vbn_bits;
2120 	/*
2121 	 * We've gotten rid of the children; add this buffer to the free list.
2122 	 */
2123 	indx_mark_free(indx, ni, i);
2124 
2125 	if (!trim)
2126 		return 0;
2127 
2128 	/*
2129 	 * If there are no used indexes after current free index
2130 	 * then we can truncate allocation and bitmap.
2131 	 * Use bitmap to estimate the case.
2132 	 */
2133 	indx_shrink(indx, ni, i + 1);
2134 	return 0;
2135 }
2136 
2137 /*
2138  * indx_get_entry_to_replace
2139  *
2140  * Find a replacement entry for a deleted entry.
2141  * Always returns a node entry:
2142  * NTFS_IE_HAS_SUBNODES is set the flags and the size includes the sub_vcn.
2143  */
indx_get_entry_to_replace(struct ntfs_index * indx,struct ntfs_inode * ni,const struct NTFS_DE * de_next,struct NTFS_DE ** de_to_replace,struct ntfs_fnd * fnd)2144 static int indx_get_entry_to_replace(struct ntfs_index *indx,
2145 				     struct ntfs_inode *ni,
2146 				     const struct NTFS_DE *de_next,
2147 				     struct NTFS_DE **de_to_replace,
2148 				     struct ntfs_fnd *fnd)
2149 {
2150 	int err;
2151 	int level = -1;
2152 	CLST vbn;
2153 	struct NTFS_DE *e, *te, *re;
2154 	struct indx_node *n;
2155 	struct INDEX_BUFFER *ib;
2156 
2157 	*de_to_replace = NULL;
2158 
2159 	/* Find first leaf entry down from de_next. */
2160 	vbn = de_get_vbn(de_next);
2161 	for (;;) {
2162 		n = NULL;
2163 		err = indx_read(indx, ni, vbn, &n);
2164 		if (err)
2165 			goto out;
2166 
2167 		e = hdr_first_de(&n->index->ihdr);
2168 		fnd_push(fnd, n, e);
2169 
2170 		if (!de_is_last(e)) {
2171 			/*
2172 			 * This buffer is non-empty, so its first entry
2173 			 * could be used as the replacement entry.
2174 			 */
2175 			level = fnd->level - 1;
2176 		}
2177 
2178 		if (!de_has_vcn(e))
2179 			break;
2180 
2181 		/* This buffer is a node. Continue to go down. */
2182 		vbn = de_get_vbn(e);
2183 	}
2184 
2185 	if (level == -1)
2186 		goto out;
2187 
2188 	n = fnd->nodes[level];
2189 	te = hdr_first_de(&n->index->ihdr);
2190 	/* Copy the candidate entry into the replacement entry buffer. */
2191 	re = kmalloc(le16_to_cpu(te->size) + sizeof(u64), GFP_NOFS);
2192 	if (!re) {
2193 		err = -ENOMEM;
2194 		goto out;
2195 	}
2196 
2197 	*de_to_replace = re;
2198 	memcpy(re, te, le16_to_cpu(te->size));
2199 
2200 	if (!de_has_vcn(re)) {
2201 		/*
2202 		 * The replacement entry we found doesn't have a sub_vcn.
2203 		 * increase its size to hold one.
2204 		 */
2205 		le16_add_cpu(&re->size, sizeof(u64));
2206 		re->flags |= NTFS_IE_HAS_SUBNODES;
2207 	} else {
2208 		/*
2209 		 * The replacement entry we found was a node entry, which
2210 		 * means that all its child buffers are empty. Return them
2211 		 * to the free pool.
2212 		 */
2213 		indx_free_children(indx, ni, te, true);
2214 	}
2215 
2216 	/*
2217 	 * Expunge the replacement entry from its former location,
2218 	 * and then write that buffer.
2219 	 */
2220 	ib = n->index;
2221 	e = hdr_delete_de(&ib->ihdr, te);
2222 
2223 	fnd->de[level] = e;
2224 	indx_write(indx, ni, n, 0);
2225 
2226 	/* Check to see if this action created an empty leaf. */
2227 	if (ib_is_leaf(ib) && ib_is_empty(ib))
2228 		return 0;
2229 
2230 out:
2231 	fnd_clear(fnd);
2232 	return err;
2233 }
2234 
2235 /*
2236  * indx_delete_entry - Delete an entry from the index.
2237  */
indx_delete_entry(struct ntfs_index * indx,struct ntfs_inode * ni,const void * key,u32 key_len,const void * ctx)2238 int indx_delete_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
2239 		      const void *key, u32 key_len, const void *ctx)
2240 {
2241 	int err, diff;
2242 	struct INDEX_ROOT *root;
2243 	struct INDEX_HDR *hdr;
2244 	struct ntfs_fnd *fnd, *fnd2;
2245 	struct INDEX_BUFFER *ib;
2246 	struct NTFS_DE *e, *re, *next, *prev, *me;
2247 	struct indx_node *n, *n2d = NULL;
2248 	__le64 sub_vbn;
2249 	int level, level2;
2250 	struct ATTRIB *attr;
2251 	struct mft_inode *mi;
2252 	u32 e_size, root_size, new_root_size;
2253 	size_t trim_bit;
2254 	const struct INDEX_NAMES *in;
2255 
2256 	fnd = fnd_get();
2257 	if (!fnd) {
2258 		err = -ENOMEM;
2259 		goto out2;
2260 	}
2261 
2262 	fnd2 = fnd_get();
2263 	if (!fnd2) {
2264 		err = -ENOMEM;
2265 		goto out1;
2266 	}
2267 
2268 	root = indx_get_root(indx, ni, &attr, &mi);
2269 	if (!root) {
2270 		err = -EINVAL;
2271 		goto out;
2272 	}
2273 
2274 	/* Locate the entry to remove. */
2275 	err = indx_find(indx, ni, root, key, key_len, ctx, &diff, &e, fnd);
2276 	if (err)
2277 		goto out;
2278 
2279 	if (!e || diff) {
2280 		err = -ENOENT;
2281 		goto out;
2282 	}
2283 
2284 	level = fnd->level;
2285 
2286 	if (level) {
2287 		n = fnd->nodes[level - 1];
2288 		e = fnd->de[level - 1];
2289 		ib = n->index;
2290 		hdr = &ib->ihdr;
2291 	} else {
2292 		hdr = &root->ihdr;
2293 		e = fnd->root_de;
2294 		n = NULL;
2295 	}
2296 
2297 	e_size = le16_to_cpu(e->size);
2298 
2299 	if (!de_has_vcn_ex(e)) {
2300 		/* The entry to delete is a leaf, so we can just rip it out. */
2301 		hdr_delete_de(hdr, e);
2302 
2303 		if (!level) {
2304 			hdr->total = hdr->used;
2305 
2306 			/* Shrink resident root attribute. */
2307 			mi_resize_attr(mi, attr, 0 - e_size);
2308 			goto out;
2309 		}
2310 
2311 		indx_write(indx, ni, n, 0);
2312 
2313 		/*
2314 		 * Check to see if removing that entry made
2315 		 * the leaf empty.
2316 		 */
2317 		if (ib_is_leaf(ib) && ib_is_empty(ib)) {
2318 			fnd_pop(fnd);
2319 			fnd_push(fnd2, n, e);
2320 		}
2321 	} else {
2322 		/*
2323 		 * The entry we wish to delete is a node buffer, so we
2324 		 * have to find a replacement for it.
2325 		 */
2326 		next = de_get_next(e);
2327 
2328 		err = indx_get_entry_to_replace(indx, ni, next, &re, fnd2);
2329 		if (err)
2330 			goto out;
2331 
2332 		if (re) {
2333 			de_set_vbn_le(re, de_get_vbn_le(e));
2334 			hdr_delete_de(hdr, e);
2335 
2336 			err = level ? indx_insert_into_buffer(indx, ni, root,
2337 							      re, ctx,
2338 							      fnd->level - 1,
2339 							      fnd)
2340 				    : indx_insert_into_root(indx, ni, re, e,
2341 							    ctx, fnd, 0);
2342 			kfree(re);
2343 
2344 			if (err)
2345 				goto out;
2346 		} else {
2347 			/*
2348 			 * There is no replacement for the current entry.
2349 			 * This means that the subtree rooted at its node
2350 			 * is empty, and can be deleted, which turn means
2351 			 * that the node can just inherit the deleted
2352 			 * entry sub_vcn.
2353 			 */
2354 			indx_free_children(indx, ni, next, true);
2355 
2356 			de_set_vbn_le(next, de_get_vbn_le(e));
2357 			hdr_delete_de(hdr, e);
2358 			if (level) {
2359 				indx_write(indx, ni, n, 0);
2360 			} else {
2361 				hdr->total = hdr->used;
2362 
2363 				/* Shrink resident root attribute. */
2364 				mi_resize_attr(mi, attr, 0 - e_size);
2365 			}
2366 		}
2367 	}
2368 
2369 	/* Delete a branch of tree. */
2370 	if (!fnd2 || !fnd2->level)
2371 		goto out;
2372 
2373 	/* Reinit root 'cause it can be changed. */
2374 	root = indx_get_root(indx, ni, &attr, &mi);
2375 	if (!root) {
2376 		err = -EINVAL;
2377 		goto out;
2378 	}
2379 
2380 	n2d = NULL;
2381 	sub_vbn = fnd2->nodes[0]->index->vbn;
2382 	level2 = 0;
2383 	level = fnd->level;
2384 
2385 	hdr = level ? &fnd->nodes[level - 1]->index->ihdr : &root->ihdr;
2386 
2387 	/* Scan current level. */
2388 	for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
2389 		if (!e) {
2390 			err = -EINVAL;
2391 			goto out;
2392 		}
2393 
2394 		if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2395 			break;
2396 
2397 		if (de_is_last(e)) {
2398 			e = NULL;
2399 			break;
2400 		}
2401 	}
2402 
2403 	if (!e) {
2404 		/* Do slow search from root. */
2405 		struct indx_node *in;
2406 
2407 		fnd_clear(fnd);
2408 
2409 		in = indx_find_buffer(indx, ni, root, sub_vbn, NULL);
2410 		if (IS_ERR(in)) {
2411 			err = PTR_ERR(in);
2412 			goto out;
2413 		}
2414 
2415 		if (in)
2416 			fnd_push(fnd, in, NULL);
2417 	}
2418 
2419 	/* Merge fnd2 -> fnd. */
2420 	for (level = 0; level < fnd2->level; level++) {
2421 		fnd_push(fnd, fnd2->nodes[level], fnd2->de[level]);
2422 		fnd2->nodes[level] = NULL;
2423 	}
2424 	fnd2->level = 0;
2425 
2426 	hdr = NULL;
2427 	for (level = fnd->level; level; level--) {
2428 		struct indx_node *in = fnd->nodes[level - 1];
2429 
2430 		ib = in->index;
2431 		if (ib_is_empty(ib)) {
2432 			sub_vbn = ib->vbn;
2433 		} else {
2434 			hdr = &ib->ihdr;
2435 			n2d = in;
2436 			level2 = level;
2437 			break;
2438 		}
2439 	}
2440 
2441 	if (!hdr)
2442 		hdr = &root->ihdr;
2443 
2444 	e = hdr_first_de(hdr);
2445 	if (!e) {
2446 		err = -EINVAL;
2447 		goto out;
2448 	}
2449 
2450 	if (hdr != &root->ihdr || !de_is_last(e)) {
2451 		prev = NULL;
2452 		while (!de_is_last(e)) {
2453 			if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2454 				break;
2455 			prev = e;
2456 			e = hdr_next_de(hdr, e);
2457 			if (!e) {
2458 				err = -EINVAL;
2459 				goto out;
2460 			}
2461 		}
2462 
2463 		if (sub_vbn != de_get_vbn_le(e)) {
2464 			/*
2465 			 * Didn't find the parent entry, although this buffer
2466 			 * is the parent trail. Something is corrupt.
2467 			 */
2468 			err = -EINVAL;
2469 			goto out;
2470 		}
2471 
2472 		if (de_is_last(e)) {
2473 			/*
2474 			 * Since we can't remove the end entry, we'll remove
2475 			 * its predecessor instead. This means we have to
2476 			 * transfer the predecessor's sub_vcn to the end entry.
2477 			 * Note: This index block is not empty, so the
2478 			 * predecessor must exist.
2479 			 */
2480 			if (!prev) {
2481 				err = -EINVAL;
2482 				goto out;
2483 			}
2484 
2485 			if (de_has_vcn(prev)) {
2486 				de_set_vbn_le(e, de_get_vbn_le(prev));
2487 			} else if (de_has_vcn(e)) {
2488 				le16_sub_cpu(&e->size, sizeof(u64));
2489 				e->flags &= ~NTFS_IE_HAS_SUBNODES;
2490 				le32_sub_cpu(&hdr->used, sizeof(u64));
2491 			}
2492 			e = prev;
2493 		}
2494 
2495 		/*
2496 		 * Copy the current entry into a temporary buffer (stripping
2497 		 * off its down-pointer, if any) and delete it from the current
2498 		 * buffer or root, as appropriate.
2499 		 */
2500 		e_size = le16_to_cpu(e->size);
2501 		me = kmemdup(e, e_size, GFP_NOFS);
2502 		if (!me) {
2503 			err = -ENOMEM;
2504 			goto out;
2505 		}
2506 
2507 		if (de_has_vcn(me)) {
2508 			me->flags &= ~NTFS_IE_HAS_SUBNODES;
2509 			le16_sub_cpu(&me->size, sizeof(u64));
2510 		}
2511 
2512 		hdr_delete_de(hdr, e);
2513 
2514 		if (hdr == &root->ihdr) {
2515 			level = 0;
2516 			hdr->total = hdr->used;
2517 
2518 			/* Shrink resident root attribute. */
2519 			mi_resize_attr(mi, attr, 0 - e_size);
2520 		} else {
2521 			indx_write(indx, ni, n2d, 0);
2522 			level = level2;
2523 		}
2524 
2525 		/* Mark unused buffers as free. */
2526 		trim_bit = -1;
2527 		for (; level < fnd->level; level++) {
2528 			ib = fnd->nodes[level]->index;
2529 			if (ib_is_empty(ib)) {
2530 				size_t k = le64_to_cpu(ib->vbn) >>
2531 					   indx->idx2vbn_bits;
2532 
2533 				indx_mark_free(indx, ni, k);
2534 				if (k < trim_bit)
2535 					trim_bit = k;
2536 			}
2537 		}
2538 
2539 		fnd_clear(fnd);
2540 		/*fnd->root_de = NULL;*/
2541 
2542 		/*
2543 		 * Re-insert the entry into the tree.
2544 		 * Find the spot the tree where we want to insert the new entry.
2545 		 */
2546 		err = indx_insert_entry(indx, ni, me, ctx, fnd, 0);
2547 		kfree(me);
2548 		if (err)
2549 			goto out;
2550 
2551 		if (trim_bit != -1)
2552 			indx_shrink(indx, ni, trim_bit);
2553 	} else {
2554 		/*
2555 		 * This tree needs to be collapsed down to an empty root.
2556 		 * Recreate the index root as an empty leaf and free all
2557 		 * the bits the index allocation bitmap.
2558 		 */
2559 		fnd_clear(fnd);
2560 		fnd_clear(fnd2);
2561 
2562 		in = &s_index_names[indx->type];
2563 
2564 		err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
2565 				    &indx->alloc_run, 0, NULL, false, NULL);
2566 		err = ni_remove_attr(ni, ATTR_ALLOC, in->name, in->name_len,
2567 				     false, NULL);
2568 		run_close(&indx->alloc_run);
2569 
2570 		err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
2571 				    &indx->bitmap_run, 0, NULL, false, NULL);
2572 		err = ni_remove_attr(ni, ATTR_BITMAP, in->name, in->name_len,
2573 				     false, NULL);
2574 		run_close(&indx->bitmap_run);
2575 
2576 		root = indx_get_root(indx, ni, &attr, &mi);
2577 		if (!root) {
2578 			err = -EINVAL;
2579 			goto out;
2580 		}
2581 
2582 		root_size = le32_to_cpu(attr->res.data_size);
2583 		new_root_size =
2584 			sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE);
2585 
2586 		if (new_root_size != root_size &&
2587 		    !mi_resize_attr(mi, attr, new_root_size - root_size)) {
2588 			err = -EINVAL;
2589 			goto out;
2590 		}
2591 
2592 		/* Fill first entry. */
2593 		e = (struct NTFS_DE *)(root + 1);
2594 		e->ref.low = 0;
2595 		e->ref.high = 0;
2596 		e->ref.seq = 0;
2597 		e->size = cpu_to_le16(sizeof(struct NTFS_DE));
2598 		e->flags = NTFS_IE_LAST; // 0x02
2599 		e->key_size = 0;
2600 		e->res = 0;
2601 
2602 		hdr = &root->ihdr;
2603 		hdr->flags = 0;
2604 		hdr->used = hdr->total = cpu_to_le32(
2605 			new_root_size - offsetof(struct INDEX_ROOT, ihdr));
2606 		mi->dirty = true;
2607 	}
2608 
2609 out:
2610 	fnd_put(fnd2);
2611 out1:
2612 	fnd_put(fnd);
2613 out2:
2614 	return err;
2615 }
2616 
2617 /*
2618  * Update duplicated information in directory entry
2619  * 'dup' - info from MFT record
2620  */
indx_update_dup(struct ntfs_inode * ni,struct ntfs_sb_info * sbi,const struct ATTR_FILE_NAME * fname,const struct NTFS_DUP_INFO * dup,int sync)2621 int indx_update_dup(struct ntfs_inode *ni, struct ntfs_sb_info *sbi,
2622 		    const struct ATTR_FILE_NAME *fname,
2623 		    const struct NTFS_DUP_INFO *dup, int sync)
2624 {
2625 	int err, diff;
2626 	struct NTFS_DE *e = NULL;
2627 	struct ATTR_FILE_NAME *e_fname;
2628 	struct ntfs_fnd *fnd;
2629 	struct INDEX_ROOT *root;
2630 	struct mft_inode *mi;
2631 	struct ntfs_index *indx = &ni->dir;
2632 
2633 	fnd = fnd_get();
2634 	if (!fnd)
2635 		return -ENOMEM;
2636 
2637 	root = indx_get_root(indx, ni, NULL, &mi);
2638 	if (!root) {
2639 		err = -EINVAL;
2640 		goto out;
2641 	}
2642 
2643 	/* Find entry in directory. */
2644 	err = indx_find(indx, ni, root, fname, fname_full_size(fname), sbi,
2645 			&diff, &e, fnd);
2646 	if (err)
2647 		goto out;
2648 
2649 	if (!e) {
2650 		err = -EINVAL;
2651 		goto out;
2652 	}
2653 
2654 	if (diff) {
2655 		err = -EINVAL;
2656 		goto out;
2657 	}
2658 
2659 	e_fname = (struct ATTR_FILE_NAME *)(e + 1);
2660 
2661 	if (!memcmp(&e_fname->dup, dup, sizeof(*dup))) {
2662 		/*
2663 		 * Nothing to update in index! Try to avoid this call.
2664 		 */
2665 		goto out;
2666 	}
2667 
2668 	memcpy(&e_fname->dup, dup, sizeof(*dup));
2669 
2670 	if (fnd->level) {
2671 		/* Directory entry in index. */
2672 		err = indx_write(indx, ni, fnd->nodes[fnd->level - 1], sync);
2673 	} else {
2674 		/* Directory entry in directory MFT record. */
2675 		mi->dirty = true;
2676 		if (sync)
2677 			err = mi_write(mi, 1);
2678 		else
2679 			mark_inode_dirty(&ni->vfs_inode);
2680 	}
2681 
2682 out:
2683 	fnd_put(fnd);
2684 	return err;
2685 }
2686