1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 *
4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5 *
6 */
7
8 #include <linux/blkdev.h>
9 #include <linux/buffer_head.h>
10 #include <linux/fs.h>
11 #include <linux/kernel.h>
12
13 #include "debug.h"
14 #include "ntfs.h"
15 #include "ntfs_fs.h"
16
17 static const struct INDEX_NAMES {
18 const __le16 *name;
19 u8 name_len;
20 } s_index_names[INDEX_MUTEX_TOTAL] = {
21 { I30_NAME, ARRAY_SIZE(I30_NAME) }, { SII_NAME, ARRAY_SIZE(SII_NAME) },
22 { SDH_NAME, ARRAY_SIZE(SDH_NAME) }, { SO_NAME, ARRAY_SIZE(SO_NAME) },
23 { SQ_NAME, ARRAY_SIZE(SQ_NAME) }, { SR_NAME, ARRAY_SIZE(SR_NAME) },
24 };
25
26 /*
27 * cmp_fnames - Compare two names in index.
28 *
29 * if l1 != 0
30 * Both names are little endian on-disk ATTR_FILE_NAME structs.
31 * else
32 * key1 - cpu_str, key2 - ATTR_FILE_NAME
33 */
cmp_fnames(const void * key1,size_t l1,const void * key2,size_t l2,const void * data)34 static int cmp_fnames(const void *key1, size_t l1, const void *key2, size_t l2,
35 const void *data)
36 {
37 const struct ATTR_FILE_NAME *f2 = key2;
38 const struct ntfs_sb_info *sbi = data;
39 const struct ATTR_FILE_NAME *f1;
40 u16 fsize2;
41 bool both_case;
42
43 if (l2 <= offsetof(struct ATTR_FILE_NAME, name))
44 return -1;
45
46 fsize2 = fname_full_size(f2);
47 if (l2 < fsize2)
48 return -1;
49
50 both_case = f2->type != FILE_NAME_DOS /*&& !sbi->options.nocase*/;
51 if (!l1) {
52 const struct le_str *s2 = (struct le_str *)&f2->name_len;
53
54 /*
55 * If names are equal (case insensitive)
56 * try to compare it case sensitive.
57 */
58 return ntfs_cmp_names_cpu(key1, s2, sbi->upcase, both_case);
59 }
60
61 f1 = key1;
62 return ntfs_cmp_names(f1->name, f1->name_len, f2->name, f2->name_len,
63 sbi->upcase, both_case);
64 }
65
66 /*
67 * cmp_uint - $SII of $Secure and $Q of Quota
68 */
cmp_uint(const void * key1,size_t l1,const void * key2,size_t l2,const void * data)69 static int cmp_uint(const void *key1, size_t l1, const void *key2, size_t l2,
70 const void *data)
71 {
72 const u32 *k1 = key1;
73 const u32 *k2 = key2;
74
75 if (l2 < sizeof(u32))
76 return -1;
77
78 if (*k1 < *k2)
79 return -1;
80 if (*k1 > *k2)
81 return 1;
82 return 0;
83 }
84
85 /*
86 * cmp_sdh - $SDH of $Secure
87 */
cmp_sdh(const void * key1,size_t l1,const void * key2,size_t l2,const void * data)88 static int cmp_sdh(const void *key1, size_t l1, const void *key2, size_t l2,
89 const void *data)
90 {
91 const struct SECURITY_KEY *k1 = key1;
92 const struct SECURITY_KEY *k2 = key2;
93 u32 t1, t2;
94
95 if (l2 < sizeof(struct SECURITY_KEY))
96 return -1;
97
98 t1 = le32_to_cpu(k1->hash);
99 t2 = le32_to_cpu(k2->hash);
100
101 /* First value is a hash value itself. */
102 if (t1 < t2)
103 return -1;
104 if (t1 > t2)
105 return 1;
106
107 /* Second value is security Id. */
108 if (data) {
109 t1 = le32_to_cpu(k1->sec_id);
110 t2 = le32_to_cpu(k2->sec_id);
111 if (t1 < t2)
112 return -1;
113 if (t1 > t2)
114 return 1;
115 }
116
117 return 0;
118 }
119
120 /*
121 * cmp_uints - $O of ObjId and "$R" for Reparse.
122 */
cmp_uints(const void * key1,size_t l1,const void * key2,size_t l2,const void * data)123 static int cmp_uints(const void *key1, size_t l1, const void *key2, size_t l2,
124 const void *data)
125 {
126 const __le32 *k1 = key1;
127 const __le32 *k2 = key2;
128 size_t count;
129
130 if ((size_t)data == 1) {
131 /*
132 * ni_delete_all -> ntfs_remove_reparse ->
133 * delete all with this reference.
134 * k1, k2 - pointers to REPARSE_KEY
135 */
136
137 k1 += 1; // Skip REPARSE_KEY.ReparseTag
138 k2 += 1; // Skip REPARSE_KEY.ReparseTag
139 if (l2 <= sizeof(int))
140 return -1;
141 l2 -= sizeof(int);
142 if (l1 <= sizeof(int))
143 return 1;
144 l1 -= sizeof(int);
145 }
146
147 if (l2 < sizeof(int))
148 return -1;
149
150 for (count = min(l1, l2) >> 2; count > 0; --count, ++k1, ++k2) {
151 u32 t1 = le32_to_cpu(*k1);
152 u32 t2 = le32_to_cpu(*k2);
153
154 if (t1 > t2)
155 return 1;
156 if (t1 < t2)
157 return -1;
158 }
159
160 if (l1 > l2)
161 return 1;
162 if (l1 < l2)
163 return -1;
164
165 return 0;
166 }
167
get_cmp_func(const struct INDEX_ROOT * root)168 static inline NTFS_CMP_FUNC get_cmp_func(const struct INDEX_ROOT *root)
169 {
170 switch (root->type) {
171 case ATTR_NAME:
172 if (root->rule == NTFS_COLLATION_TYPE_FILENAME)
173 return &cmp_fnames;
174 break;
175 case ATTR_ZERO:
176 switch (root->rule) {
177 case NTFS_COLLATION_TYPE_UINT:
178 return &cmp_uint;
179 case NTFS_COLLATION_TYPE_SECURITY_HASH:
180 return &cmp_sdh;
181 case NTFS_COLLATION_TYPE_UINTS:
182 return &cmp_uints;
183 default:
184 break;
185 }
186 break;
187 default:
188 break;
189 }
190
191 return NULL;
192 }
193
194 struct bmp_buf {
195 struct ATTRIB *b;
196 struct mft_inode *mi;
197 struct buffer_head *bh;
198 ulong *buf;
199 size_t bit;
200 u32 nbits;
201 u64 new_valid;
202 };
203
bmp_buf_get(struct ntfs_index * indx,struct ntfs_inode * ni,size_t bit,struct bmp_buf * bbuf)204 static int bmp_buf_get(struct ntfs_index *indx, struct ntfs_inode *ni,
205 size_t bit, struct bmp_buf *bbuf)
206 {
207 struct ATTRIB *b;
208 size_t data_size, valid_size, vbo, off = bit >> 3;
209 struct ntfs_sb_info *sbi = ni->mi.sbi;
210 CLST vcn = off >> sbi->cluster_bits;
211 struct ATTR_LIST_ENTRY *le = NULL;
212 struct buffer_head *bh;
213 struct super_block *sb;
214 u32 blocksize;
215 const struct INDEX_NAMES *in = &s_index_names[indx->type];
216
217 bbuf->bh = NULL;
218
219 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
220 &vcn, &bbuf->mi);
221 bbuf->b = b;
222 if (!b)
223 return -EINVAL;
224
225 if (!b->non_res) {
226 data_size = le32_to_cpu(b->res.data_size);
227
228 if (off >= data_size)
229 return -EINVAL;
230
231 bbuf->buf = (ulong *)resident_data(b);
232 bbuf->bit = 0;
233 bbuf->nbits = data_size * 8;
234
235 return 0;
236 }
237
238 data_size = le64_to_cpu(b->nres.data_size);
239 if (WARN_ON(off >= data_size)) {
240 /* Looks like filesystem error. */
241 return -EINVAL;
242 }
243
244 valid_size = le64_to_cpu(b->nres.valid_size);
245
246 bh = ntfs_bread_run(sbi, &indx->bitmap_run, off);
247 if (!bh)
248 return -EIO;
249
250 if (IS_ERR(bh))
251 return PTR_ERR(bh);
252
253 bbuf->bh = bh;
254
255 if (buffer_locked(bh))
256 __wait_on_buffer(bh);
257
258 lock_buffer(bh);
259
260 sb = sbi->sb;
261 blocksize = sb->s_blocksize;
262
263 vbo = off & ~(size_t)sbi->block_mask;
264
265 bbuf->new_valid = vbo + blocksize;
266 if (bbuf->new_valid <= valid_size)
267 bbuf->new_valid = 0;
268 else if (bbuf->new_valid > data_size)
269 bbuf->new_valid = data_size;
270
271 if (vbo >= valid_size) {
272 memset(bh->b_data, 0, blocksize);
273 } else if (vbo + blocksize > valid_size) {
274 u32 voff = valid_size & sbi->block_mask;
275
276 memset(bh->b_data + voff, 0, blocksize - voff);
277 }
278
279 bbuf->buf = (ulong *)bh->b_data;
280 bbuf->bit = 8 * (off & ~(size_t)sbi->block_mask);
281 bbuf->nbits = 8 * blocksize;
282
283 return 0;
284 }
285
bmp_buf_put(struct bmp_buf * bbuf,bool dirty)286 static void bmp_buf_put(struct bmp_buf *bbuf, bool dirty)
287 {
288 struct buffer_head *bh = bbuf->bh;
289 struct ATTRIB *b = bbuf->b;
290
291 if (!bh) {
292 if (b && !b->non_res && dirty)
293 bbuf->mi->dirty = true;
294 return;
295 }
296
297 if (!dirty)
298 goto out;
299
300 if (bbuf->new_valid) {
301 b->nres.valid_size = cpu_to_le64(bbuf->new_valid);
302 bbuf->mi->dirty = true;
303 }
304
305 set_buffer_uptodate(bh);
306 mark_buffer_dirty(bh);
307
308 out:
309 unlock_buffer(bh);
310 put_bh(bh);
311 }
312
313 /*
314 * indx_mark_used - Mark the bit @bit as used.
315 */
indx_mark_used(struct ntfs_index * indx,struct ntfs_inode * ni,size_t bit)316 static int indx_mark_used(struct ntfs_index *indx, struct ntfs_inode *ni,
317 size_t bit)
318 {
319 int err;
320 struct bmp_buf bbuf;
321
322 err = bmp_buf_get(indx, ni, bit, &bbuf);
323 if (err)
324 return err;
325
326 __set_bit(bit - bbuf.bit, bbuf.buf);
327
328 bmp_buf_put(&bbuf, true);
329
330 return 0;
331 }
332
333 /*
334 * indx_mark_free - Mark the bit @bit as free.
335 */
indx_mark_free(struct ntfs_index * indx,struct ntfs_inode * ni,size_t bit)336 static int indx_mark_free(struct ntfs_index *indx, struct ntfs_inode *ni,
337 size_t bit)
338 {
339 int err;
340 struct bmp_buf bbuf;
341
342 err = bmp_buf_get(indx, ni, bit, &bbuf);
343 if (err)
344 return err;
345
346 __clear_bit(bit - bbuf.bit, bbuf.buf);
347
348 bmp_buf_put(&bbuf, true);
349
350 return 0;
351 }
352
353 /*
354 * scan_nres_bitmap
355 *
356 * If ntfs_readdir calls this function (indx_used_bit -> scan_nres_bitmap),
357 * inode is shared locked and no ni_lock.
358 * Use rw_semaphore for read/write access to bitmap_run.
359 */
scan_nres_bitmap(struct ntfs_inode * ni,struct ATTRIB * bitmap,struct ntfs_index * indx,size_t from,bool (* fn)(const ulong * buf,u32 bit,u32 bits,size_t * ret),size_t * ret)360 static int scan_nres_bitmap(struct ntfs_inode *ni, struct ATTRIB *bitmap,
361 struct ntfs_index *indx, size_t from,
362 bool (*fn)(const ulong *buf, u32 bit, u32 bits,
363 size_t *ret),
364 size_t *ret)
365 {
366 struct ntfs_sb_info *sbi = ni->mi.sbi;
367 struct super_block *sb = sbi->sb;
368 struct runs_tree *run = &indx->bitmap_run;
369 struct rw_semaphore *lock = &indx->run_lock;
370 u32 nbits = sb->s_blocksize * 8;
371 u32 blocksize = sb->s_blocksize;
372 u64 valid_size = le64_to_cpu(bitmap->nres.valid_size);
373 u64 data_size = le64_to_cpu(bitmap->nres.data_size);
374 sector_t eblock = bytes_to_block(sb, data_size);
375 size_t vbo = from >> 3;
376 sector_t blk = (vbo & sbi->cluster_mask) >> sb->s_blocksize_bits;
377 sector_t vblock = vbo >> sb->s_blocksize_bits;
378 sector_t blen, block;
379 CLST lcn, clen, vcn, vcn_next;
380 size_t idx;
381 struct buffer_head *bh;
382 bool ok;
383
384 *ret = MINUS_ONE_T;
385
386 if (vblock >= eblock)
387 return 0;
388
389 from &= nbits - 1;
390 vcn = vbo >> sbi->cluster_bits;
391
392 down_read(lock);
393 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
394 up_read(lock);
395
396 next_run:
397 if (!ok) {
398 int err;
399 const struct INDEX_NAMES *name = &s_index_names[indx->type];
400
401 down_write(lock);
402 err = attr_load_runs_vcn(ni, ATTR_BITMAP, name->name,
403 name->name_len, run, vcn);
404 up_write(lock);
405 if (err)
406 return err;
407 down_read(lock);
408 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
409 up_read(lock);
410 if (!ok)
411 return -EINVAL;
412 }
413
414 blen = (sector_t)clen * sbi->blocks_per_cluster;
415 block = (sector_t)lcn * sbi->blocks_per_cluster;
416
417 for (; blk < blen; blk++, from = 0) {
418 bh = ntfs_bread(sb, block + blk);
419 if (!bh)
420 return -EIO;
421
422 vbo = (u64)vblock << sb->s_blocksize_bits;
423 if (vbo >= valid_size) {
424 memset(bh->b_data, 0, blocksize);
425 } else if (vbo + blocksize > valid_size) {
426 u32 voff = valid_size & sbi->block_mask;
427
428 memset(bh->b_data + voff, 0, blocksize - voff);
429 }
430
431 if (vbo + blocksize > data_size)
432 nbits = 8 * (data_size - vbo);
433
434 ok = nbits > from ? (*fn)((ulong *)bh->b_data, from, nbits, ret)
435 : false;
436 put_bh(bh);
437
438 if (ok) {
439 *ret += 8 * vbo;
440 return 0;
441 }
442
443 if (++vblock >= eblock) {
444 *ret = MINUS_ONE_T;
445 return 0;
446 }
447 }
448 blk = 0;
449 vcn_next = vcn + clen;
450 down_read(lock);
451 ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && vcn == vcn_next;
452 if (!ok)
453 vcn = vcn_next;
454 up_read(lock);
455 goto next_run;
456 }
457
scan_for_free(const ulong * buf,u32 bit,u32 bits,size_t * ret)458 static bool scan_for_free(const ulong *buf, u32 bit, u32 bits, size_t *ret)
459 {
460 size_t pos = find_next_zero_bit(buf, bits, bit);
461
462 if (pos >= bits)
463 return false;
464 *ret = pos;
465 return true;
466 }
467
468 /*
469 * indx_find_free - Look for free bit.
470 *
471 * Return: -1 if no free bits.
472 */
indx_find_free(struct ntfs_index * indx,struct ntfs_inode * ni,size_t * bit,struct ATTRIB ** bitmap)473 static int indx_find_free(struct ntfs_index *indx, struct ntfs_inode *ni,
474 size_t *bit, struct ATTRIB **bitmap)
475 {
476 struct ATTRIB *b;
477 struct ATTR_LIST_ENTRY *le = NULL;
478 const struct INDEX_NAMES *in = &s_index_names[indx->type];
479 int err;
480
481 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
482 NULL, NULL);
483
484 if (!b)
485 return -ENOENT;
486
487 *bitmap = b;
488 *bit = MINUS_ONE_T;
489
490 if (!b->non_res) {
491 u32 nbits = 8 * le32_to_cpu(b->res.data_size);
492 size_t pos = find_next_zero_bit(resident_data(b), nbits, 0);
493
494 if (pos < nbits)
495 *bit = pos;
496 } else {
497 err = scan_nres_bitmap(ni, b, indx, 0, &scan_for_free, bit);
498
499 if (err)
500 return err;
501 }
502
503 return 0;
504 }
505
scan_for_used(const ulong * buf,u32 bit,u32 bits,size_t * ret)506 static bool scan_for_used(const ulong *buf, u32 bit, u32 bits, size_t *ret)
507 {
508 size_t pos = find_next_bit(buf, bits, bit);
509
510 if (pos >= bits)
511 return false;
512 *ret = pos;
513 return true;
514 }
515
516 /*
517 * indx_used_bit - Look for used bit.
518 *
519 * Return: MINUS_ONE_T if no used bits.
520 */
indx_used_bit(struct ntfs_index * indx,struct ntfs_inode * ni,size_t * bit)521 int indx_used_bit(struct ntfs_index *indx, struct ntfs_inode *ni, size_t *bit)
522 {
523 struct ATTRIB *b;
524 struct ATTR_LIST_ENTRY *le = NULL;
525 size_t from = *bit;
526 const struct INDEX_NAMES *in = &s_index_names[indx->type];
527 int err;
528
529 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
530 NULL, NULL);
531
532 if (!b)
533 return -ENOENT;
534
535 *bit = MINUS_ONE_T;
536
537 if (!b->non_res) {
538 u32 nbits = le32_to_cpu(b->res.data_size) * 8;
539 size_t pos = find_next_bit(resident_data(b), nbits, from);
540
541 if (pos < nbits)
542 *bit = pos;
543 } else {
544 err = scan_nres_bitmap(ni, b, indx, from, &scan_for_used, bit);
545 if (err)
546 return err;
547 }
548
549 return 0;
550 }
551
552 /*
553 * hdr_find_split
554 *
555 * Find a point at which the index allocation buffer would like to be split.
556 * NOTE: This function should never return 'END' entry NULL returns on error.
557 */
hdr_find_split(const struct INDEX_HDR * hdr)558 static const struct NTFS_DE *hdr_find_split(const struct INDEX_HDR *hdr)
559 {
560 size_t o;
561 const struct NTFS_DE *e = hdr_first_de(hdr);
562 u32 used_2 = le32_to_cpu(hdr->used) >> 1;
563 u16 esize;
564
565 if (!e || de_is_last(e))
566 return NULL;
567
568 esize = le16_to_cpu(e->size);
569 for (o = le32_to_cpu(hdr->de_off) + esize; o < used_2; o += esize) {
570 const struct NTFS_DE *p = e;
571
572 e = Add2Ptr(hdr, o);
573
574 /* We must not return END entry. */
575 if (de_is_last(e))
576 return p;
577
578 esize = le16_to_cpu(e->size);
579 }
580
581 return e;
582 }
583
584 /*
585 * hdr_insert_head - Insert some entries at the beginning of the buffer.
586 *
587 * It is used to insert entries into a newly-created buffer.
588 */
hdr_insert_head(struct INDEX_HDR * hdr,const void * ins,u32 ins_bytes)589 static const struct NTFS_DE *hdr_insert_head(struct INDEX_HDR *hdr,
590 const void *ins, u32 ins_bytes)
591 {
592 u32 to_move;
593 struct NTFS_DE *e = hdr_first_de(hdr);
594 u32 used = le32_to_cpu(hdr->used);
595
596 if (!e)
597 return NULL;
598
599 /* Now we just make room for the inserted entries and jam it in. */
600 to_move = used - le32_to_cpu(hdr->de_off);
601 memmove(Add2Ptr(e, ins_bytes), e, to_move);
602 memcpy(e, ins, ins_bytes);
603 hdr->used = cpu_to_le32(used + ins_bytes);
604
605 return e;
606 }
607
608 /*
609 * index_hdr_check
610 *
611 * return true if INDEX_HDR is valid
612 */
index_hdr_check(const struct INDEX_HDR * hdr,u32 bytes)613 static bool index_hdr_check(const struct INDEX_HDR *hdr, u32 bytes)
614 {
615 u32 end = le32_to_cpu(hdr->used);
616 u32 tot = le32_to_cpu(hdr->total);
617 u32 off = le32_to_cpu(hdr->de_off);
618
619 if (!IS_ALIGNED(off, 8) || tot > bytes || end > tot ||
620 off + sizeof(struct NTFS_DE) > end) {
621 /* incorrect index buffer. */
622 return false;
623 }
624
625 return true;
626 }
627
628 /*
629 * index_buf_check
630 *
631 * return true if INDEX_BUFFER seems is valid
632 */
index_buf_check(const struct INDEX_BUFFER * ib,u32 bytes,const CLST * vbn)633 static bool index_buf_check(const struct INDEX_BUFFER *ib, u32 bytes,
634 const CLST *vbn)
635 {
636 const struct NTFS_RECORD_HEADER *rhdr = &ib->rhdr;
637 u16 fo = le16_to_cpu(rhdr->fix_off);
638 u16 fn = le16_to_cpu(rhdr->fix_num);
639
640 if (bytes <= offsetof(struct INDEX_BUFFER, ihdr) ||
641 rhdr->sign != NTFS_INDX_SIGNATURE ||
642 fo < sizeof(struct INDEX_BUFFER)
643 /* Check index buffer vbn. */
644 || (vbn && *vbn != le64_to_cpu(ib->vbn)) || (fo % sizeof(short)) ||
645 fo + fn * sizeof(short) >= bytes ||
646 fn != ((bytes >> SECTOR_SHIFT) + 1)) {
647 /* incorrect index buffer. */
648 return false;
649 }
650
651 return index_hdr_check(&ib->ihdr,
652 bytes - offsetof(struct INDEX_BUFFER, ihdr));
653 }
654
fnd_clear(struct ntfs_fnd * fnd)655 void fnd_clear(struct ntfs_fnd *fnd)
656 {
657 int i;
658
659 for (i = fnd->level - 1; i >= 0; i--) {
660 struct indx_node *n = fnd->nodes[i];
661
662 if (!n)
663 continue;
664
665 put_indx_node(n);
666 fnd->nodes[i] = NULL;
667 }
668 fnd->level = 0;
669 fnd->root_de = NULL;
670 }
671
fnd_push(struct ntfs_fnd * fnd,struct indx_node * n,struct NTFS_DE * e)672 static int fnd_push(struct ntfs_fnd *fnd, struct indx_node *n,
673 struct NTFS_DE *e)
674 {
675 int i;
676
677 i = fnd->level;
678 if (i < 0 || i >= ARRAY_SIZE(fnd->nodes))
679 return -EINVAL;
680 fnd->nodes[i] = n;
681 fnd->de[i] = e;
682 fnd->level += 1;
683 return 0;
684 }
685
fnd_pop(struct ntfs_fnd * fnd)686 static struct indx_node *fnd_pop(struct ntfs_fnd *fnd)
687 {
688 struct indx_node *n;
689 int i = fnd->level;
690
691 i -= 1;
692 n = fnd->nodes[i];
693 fnd->nodes[i] = NULL;
694 fnd->level = i;
695
696 return n;
697 }
698
fnd_is_empty(struct ntfs_fnd * fnd)699 static bool fnd_is_empty(struct ntfs_fnd *fnd)
700 {
701 if (!fnd->level)
702 return !fnd->root_de;
703
704 return !fnd->de[fnd->level - 1];
705 }
706
707 /*
708 * hdr_find_e - Locate an entry the index buffer.
709 *
710 * If no matching entry is found, it returns the first entry which is greater
711 * than the desired entry If the search key is greater than all the entries the
712 * buffer, it returns the 'end' entry. This function does a binary search of the
713 * current index buffer, for the first entry that is <= to the search value.
714 *
715 * Return: NULL if error.
716 */
hdr_find_e(const struct ntfs_index * indx,const struct INDEX_HDR * hdr,const void * key,size_t key_len,const void * ctx,int * diff)717 static struct NTFS_DE *hdr_find_e(const struct ntfs_index *indx,
718 const struct INDEX_HDR *hdr, const void *key,
719 size_t key_len, const void *ctx, int *diff)
720 {
721 struct NTFS_DE *e, *found = NULL;
722 NTFS_CMP_FUNC cmp = indx->cmp;
723 int min_idx = 0, mid_idx, max_idx = 0;
724 int diff2;
725 int table_size = 8;
726 u32 e_size, e_key_len;
727 u32 end = le32_to_cpu(hdr->used);
728 u32 off = le32_to_cpu(hdr->de_off);
729 u32 total = le32_to_cpu(hdr->total);
730 u16 offs[128];
731
732 if (unlikely(!cmp))
733 return NULL;
734
735 fill_table:
736 if (end > total)
737 return NULL;
738
739 if (off + sizeof(struct NTFS_DE) > end)
740 return NULL;
741
742 e = Add2Ptr(hdr, off);
743 e_size = le16_to_cpu(e->size);
744
745 if (e_size < sizeof(struct NTFS_DE) || off + e_size > end)
746 return NULL;
747
748 if (!de_is_last(e)) {
749 offs[max_idx] = off;
750 off += e_size;
751
752 max_idx++;
753 if (max_idx < table_size)
754 goto fill_table;
755
756 max_idx--;
757 }
758
759 binary_search:
760 e_key_len = le16_to_cpu(e->key_size);
761
762 diff2 = (*cmp)(key, key_len, e + 1, e_key_len, ctx);
763 if (diff2 > 0) {
764 if (found) {
765 min_idx = mid_idx + 1;
766 } else {
767 if (de_is_last(e))
768 return NULL;
769
770 max_idx = 0;
771 table_size = min(table_size * 2,
772 (int)ARRAY_SIZE(offs));
773 goto fill_table;
774 }
775 } else if (diff2 < 0) {
776 if (found)
777 max_idx = mid_idx - 1;
778 else
779 max_idx--;
780
781 found = e;
782 } else {
783 *diff = 0;
784 return e;
785 }
786
787 if (min_idx > max_idx) {
788 *diff = -1;
789 return found;
790 }
791
792 mid_idx = (min_idx + max_idx) >> 1;
793 e = Add2Ptr(hdr, offs[mid_idx]);
794
795 goto binary_search;
796 }
797
798 /*
799 * hdr_insert_de - Insert an index entry into the buffer.
800 *
801 * 'before' should be a pointer previously returned from hdr_find_e.
802 */
hdr_insert_de(const struct ntfs_index * indx,struct INDEX_HDR * hdr,const struct NTFS_DE * de,struct NTFS_DE * before,const void * ctx)803 static struct NTFS_DE *hdr_insert_de(const struct ntfs_index *indx,
804 struct INDEX_HDR *hdr,
805 const struct NTFS_DE *de,
806 struct NTFS_DE *before, const void *ctx)
807 {
808 int diff;
809 size_t off = PtrOffset(hdr, before);
810 u32 used = le32_to_cpu(hdr->used);
811 u32 total = le32_to_cpu(hdr->total);
812 u16 de_size = le16_to_cpu(de->size);
813
814 /* First, check to see if there's enough room. */
815 if (used + de_size > total)
816 return NULL;
817
818 /* We know there's enough space, so we know we'll succeed. */
819 if (before) {
820 /* Check that before is inside Index. */
821 if (off >= used || off < le32_to_cpu(hdr->de_off) ||
822 off + le16_to_cpu(before->size) > total) {
823 return NULL;
824 }
825 goto ok;
826 }
827 /* No insert point is applied. Get it manually. */
828 before = hdr_find_e(indx, hdr, de + 1, le16_to_cpu(de->key_size), ctx,
829 &diff);
830 if (!before)
831 return NULL;
832 off = PtrOffset(hdr, before);
833
834 ok:
835 /* Now we just make room for the entry and jam it in. */
836 memmove(Add2Ptr(before, de_size), before, used - off);
837
838 hdr->used = cpu_to_le32(used + de_size);
839 memcpy(before, de, de_size);
840
841 return before;
842 }
843
844 /*
845 * hdr_delete_de - Remove an entry from the index buffer.
846 */
hdr_delete_de(struct INDEX_HDR * hdr,struct NTFS_DE * re)847 static inline struct NTFS_DE *hdr_delete_de(struct INDEX_HDR *hdr,
848 struct NTFS_DE *re)
849 {
850 u32 used = le32_to_cpu(hdr->used);
851 u16 esize = le16_to_cpu(re->size);
852 u32 off = PtrOffset(hdr, re);
853 int bytes = used - (off + esize);
854
855 /* check INDEX_HDR valid before using INDEX_HDR */
856 if (!check_index_header(hdr, le32_to_cpu(hdr->total)))
857 return NULL;
858
859 if (off >= used || esize < sizeof(struct NTFS_DE) ||
860 bytes < sizeof(struct NTFS_DE))
861 return NULL;
862
863 hdr->used = cpu_to_le32(used - esize);
864 memmove(re, Add2Ptr(re, esize), bytes);
865
866 return re;
867 }
868
indx_clear(struct ntfs_index * indx)869 void indx_clear(struct ntfs_index *indx)
870 {
871 run_close(&indx->alloc_run);
872 run_close(&indx->bitmap_run);
873 }
874
indx_init(struct ntfs_index * indx,struct ntfs_sb_info * sbi,const struct ATTRIB * attr,enum index_mutex_classed type)875 int indx_init(struct ntfs_index *indx, struct ntfs_sb_info *sbi,
876 const struct ATTRIB *attr, enum index_mutex_classed type)
877 {
878 u32 t32;
879 const struct INDEX_ROOT *root = resident_data(attr);
880
881 t32 = le32_to_cpu(attr->res.data_size);
882 if (t32 <= offsetof(struct INDEX_ROOT, ihdr) ||
883 !index_hdr_check(&root->ihdr,
884 t32 - offsetof(struct INDEX_ROOT, ihdr))) {
885 goto out;
886 }
887
888 /* Check root fields. */
889 if (!root->index_block_clst)
890 goto out;
891
892 indx->type = type;
893 indx->idx2vbn_bits = __ffs(root->index_block_clst);
894
895 t32 = le32_to_cpu(root->index_block_size);
896 indx->index_bits = blksize_bits(t32);
897
898 /* Check index record size. */
899 if (t32 < sbi->cluster_size) {
900 /* Index record is smaller than a cluster, use 512 blocks. */
901 if (t32 != root->index_block_clst * SECTOR_SIZE)
902 goto out;
903
904 /* Check alignment to a cluster. */
905 if ((sbi->cluster_size >> SECTOR_SHIFT) &
906 (root->index_block_clst - 1)) {
907 goto out;
908 }
909
910 indx->vbn2vbo_bits = SECTOR_SHIFT;
911 } else {
912 /* Index record must be a multiple of cluster size. */
913 if (t32 != root->index_block_clst << sbi->cluster_bits)
914 goto out;
915
916 indx->vbn2vbo_bits = sbi->cluster_bits;
917 }
918
919 init_rwsem(&indx->run_lock);
920
921 indx->cmp = get_cmp_func(root);
922 if (!indx->cmp)
923 goto out;
924
925 return 0;
926
927 out:
928 ntfs_set_state(sbi, NTFS_DIRTY_DIRTY);
929 return -EINVAL;
930 }
931
indx_new(struct ntfs_index * indx,struct ntfs_inode * ni,CLST vbn,const __le64 * sub_vbn)932 static struct indx_node *indx_new(struct ntfs_index *indx,
933 struct ntfs_inode *ni, CLST vbn,
934 const __le64 *sub_vbn)
935 {
936 int err;
937 struct NTFS_DE *e;
938 struct indx_node *r;
939 struct INDEX_HDR *hdr;
940 struct INDEX_BUFFER *index;
941 u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
942 u32 bytes = 1u << indx->index_bits;
943 u16 fn;
944 u32 eo;
945
946 r = kzalloc(sizeof(struct indx_node), GFP_NOFS);
947 if (!r)
948 return ERR_PTR(-ENOMEM);
949
950 index = kzalloc(bytes, GFP_NOFS);
951 if (!index) {
952 kfree(r);
953 return ERR_PTR(-ENOMEM);
954 }
955
956 err = ntfs_get_bh(ni->mi.sbi, &indx->alloc_run, vbo, bytes, &r->nb);
957
958 if (err) {
959 kfree(index);
960 kfree(r);
961 return ERR_PTR(err);
962 }
963
964 /* Create header. */
965 index->rhdr.sign = NTFS_INDX_SIGNATURE;
966 index->rhdr.fix_off = cpu_to_le16(sizeof(struct INDEX_BUFFER)); // 0x28
967 fn = (bytes >> SECTOR_SHIFT) + 1; // 9
968 index->rhdr.fix_num = cpu_to_le16(fn);
969 index->vbn = cpu_to_le64(vbn);
970 hdr = &index->ihdr;
971 eo = ALIGN(sizeof(struct INDEX_BUFFER) + fn * sizeof(short), 8);
972 hdr->de_off = cpu_to_le32(eo);
973
974 e = Add2Ptr(hdr, eo);
975
976 if (sub_vbn) {
977 e->flags = NTFS_IE_LAST | NTFS_IE_HAS_SUBNODES;
978 e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
979 hdr->used =
980 cpu_to_le32(eo + sizeof(struct NTFS_DE) + sizeof(u64));
981 de_set_vbn_le(e, *sub_vbn);
982 hdr->flags = 1;
983 } else {
984 e->size = cpu_to_le16(sizeof(struct NTFS_DE));
985 hdr->used = cpu_to_le32(eo + sizeof(struct NTFS_DE));
986 e->flags = NTFS_IE_LAST;
987 }
988
989 hdr->total = cpu_to_le32(bytes - offsetof(struct INDEX_BUFFER, ihdr));
990
991 r->index = index;
992 return r;
993 }
994
indx_get_root(struct ntfs_index * indx,struct ntfs_inode * ni,struct ATTRIB ** attr,struct mft_inode ** mi)995 struct INDEX_ROOT *indx_get_root(struct ntfs_index *indx, struct ntfs_inode *ni,
996 struct ATTRIB **attr, struct mft_inode **mi)
997 {
998 struct ATTR_LIST_ENTRY *le = NULL;
999 struct ATTRIB *a;
1000 const struct INDEX_NAMES *in = &s_index_names[indx->type];
1001 struct INDEX_ROOT *root = NULL;
1002
1003 a = ni_find_attr(ni, NULL, &le, ATTR_ROOT, in->name, in->name_len, NULL,
1004 mi);
1005 if (!a)
1006 return NULL;
1007
1008 if (attr)
1009 *attr = a;
1010
1011 root = resident_data_ex(a, sizeof(struct INDEX_ROOT));
1012
1013 /* length check */
1014 if (root && offsetof(struct INDEX_ROOT, ihdr) + le32_to_cpu(root->ihdr.used) >
1015 le32_to_cpu(a->res.data_size)) {
1016 return NULL;
1017 }
1018
1019 return root;
1020 }
1021
indx_write(struct ntfs_index * indx,struct ntfs_inode * ni,struct indx_node * node,int sync)1022 static int indx_write(struct ntfs_index *indx, struct ntfs_inode *ni,
1023 struct indx_node *node, int sync)
1024 {
1025 struct INDEX_BUFFER *ib = node->index;
1026
1027 return ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &node->nb, sync);
1028 }
1029
1030 /*
1031 * indx_read
1032 *
1033 * If ntfs_readdir calls this function
1034 * inode is shared locked and no ni_lock.
1035 * Use rw_semaphore for read/write access to alloc_run.
1036 */
indx_read(struct ntfs_index * indx,struct ntfs_inode * ni,CLST vbn,struct indx_node ** node)1037 int indx_read(struct ntfs_index *indx, struct ntfs_inode *ni, CLST vbn,
1038 struct indx_node **node)
1039 {
1040 int err;
1041 struct INDEX_BUFFER *ib;
1042 struct runs_tree *run = &indx->alloc_run;
1043 struct rw_semaphore *lock = &indx->run_lock;
1044 u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
1045 u32 bytes = 1u << indx->index_bits;
1046 struct indx_node *in = *node;
1047 const struct INDEX_NAMES *name;
1048
1049 if (!in) {
1050 in = kzalloc(sizeof(struct indx_node), GFP_NOFS);
1051 if (!in)
1052 return -ENOMEM;
1053 } else {
1054 nb_put(&in->nb);
1055 }
1056
1057 ib = in->index;
1058 if (!ib) {
1059 ib = kmalloc(bytes, GFP_NOFS);
1060 if (!ib) {
1061 err = -ENOMEM;
1062 goto out;
1063 }
1064 }
1065
1066 down_read(lock);
1067 err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
1068 up_read(lock);
1069 if (!err)
1070 goto ok;
1071
1072 if (err == -E_NTFS_FIXUP)
1073 goto ok;
1074
1075 if (err != -ENOENT)
1076 goto out;
1077
1078 name = &s_index_names[indx->type];
1079 down_write(lock);
1080 err = attr_load_runs_range(ni, ATTR_ALLOC, name->name, name->name_len,
1081 run, vbo, vbo + bytes);
1082 up_write(lock);
1083 if (err)
1084 goto out;
1085
1086 down_read(lock);
1087 err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
1088 up_read(lock);
1089 if (err == -E_NTFS_FIXUP)
1090 goto ok;
1091
1092 if (err)
1093 goto out;
1094
1095 ok:
1096 if (!index_buf_check(ib, bytes, &vbn)) {
1097 ntfs_inode_err(&ni->vfs_inode, "directory corrupted");
1098 ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
1099 err = -EINVAL;
1100 goto out;
1101 }
1102
1103 if (err == -E_NTFS_FIXUP) {
1104 ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &in->nb, 0);
1105 err = 0;
1106 }
1107
1108 /* check for index header length */
1109 if (offsetof(struct INDEX_BUFFER, ihdr) + le32_to_cpu(ib->ihdr.used) >
1110 bytes) {
1111 err = -EINVAL;
1112 goto out;
1113 }
1114
1115 in->index = ib;
1116 *node = in;
1117
1118 out:
1119 if (err == -E_NTFS_CORRUPT) {
1120 ntfs_inode_err(&ni->vfs_inode, "directory corrupted");
1121 ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
1122 err = -EINVAL;
1123 }
1124
1125 if (ib != in->index)
1126 kfree(ib);
1127
1128 if (*node != in) {
1129 nb_put(&in->nb);
1130 kfree(in);
1131 }
1132
1133 return err;
1134 }
1135
1136 /*
1137 * indx_find - Scan NTFS directory for given entry.
1138 */
indx_find(struct ntfs_index * indx,struct ntfs_inode * ni,const struct INDEX_ROOT * root,const void * key,size_t key_len,const void * ctx,int * diff,struct NTFS_DE ** entry,struct ntfs_fnd * fnd)1139 int indx_find(struct ntfs_index *indx, struct ntfs_inode *ni,
1140 const struct INDEX_ROOT *root, const void *key, size_t key_len,
1141 const void *ctx, int *diff, struct NTFS_DE **entry,
1142 struct ntfs_fnd *fnd)
1143 {
1144 int err;
1145 struct NTFS_DE *e;
1146 const struct INDEX_HDR *hdr;
1147 struct indx_node *node;
1148
1149 if (!root)
1150 root = indx_get_root(&ni->dir, ni, NULL, NULL);
1151
1152 if (!root) {
1153 err = -EINVAL;
1154 goto out;
1155 }
1156
1157 hdr = &root->ihdr;
1158
1159 /* Check cache. */
1160 e = fnd->level ? fnd->de[fnd->level - 1] : fnd->root_de;
1161 if (e && !de_is_last(e) &&
1162 !(*indx->cmp)(key, key_len, e + 1, le16_to_cpu(e->key_size), ctx)) {
1163 *entry = e;
1164 *diff = 0;
1165 return 0;
1166 }
1167
1168 /* Soft finder reset. */
1169 fnd_clear(fnd);
1170
1171 /* Lookup entry that is <= to the search value. */
1172 e = hdr_find_e(indx, hdr, key, key_len, ctx, diff);
1173 if (!e)
1174 return -EINVAL;
1175
1176 fnd->root_de = e;
1177 err = 0;
1178
1179 for (;;) {
1180 node = NULL;
1181 if (*diff >= 0 || !de_has_vcn_ex(e)) {
1182 *entry = e;
1183 goto out;
1184 }
1185
1186 /* Read next level. */
1187 err = indx_read(indx, ni, de_get_vbn(e), &node);
1188 if (err)
1189 goto out;
1190
1191 /* Lookup entry that is <= to the search value. */
1192 e = hdr_find_e(indx, &node->index->ihdr, key, key_len, ctx,
1193 diff);
1194 if (!e) {
1195 err = -EINVAL;
1196 put_indx_node(node);
1197 goto out;
1198 }
1199
1200 fnd_push(fnd, node, e);
1201 }
1202
1203 out:
1204 return err;
1205 }
1206
indx_find_sort(struct ntfs_index * indx,struct ntfs_inode * ni,const struct INDEX_ROOT * root,struct NTFS_DE ** entry,struct ntfs_fnd * fnd)1207 int indx_find_sort(struct ntfs_index *indx, struct ntfs_inode *ni,
1208 const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1209 struct ntfs_fnd *fnd)
1210 {
1211 int err;
1212 struct indx_node *n = NULL;
1213 struct NTFS_DE *e;
1214 size_t iter = 0;
1215 int level = fnd->level;
1216
1217 if (!*entry) {
1218 /* Start find. */
1219 e = hdr_first_de(&root->ihdr);
1220 if (!e)
1221 return 0;
1222 fnd_clear(fnd);
1223 fnd->root_de = e;
1224 } else if (!level) {
1225 if (de_is_last(fnd->root_de)) {
1226 *entry = NULL;
1227 return 0;
1228 }
1229
1230 e = hdr_next_de(&root->ihdr, fnd->root_de);
1231 if (!e)
1232 return -EINVAL;
1233 fnd->root_de = e;
1234 } else {
1235 n = fnd->nodes[level - 1];
1236 e = fnd->de[level - 1];
1237
1238 if (de_is_last(e))
1239 goto pop_level;
1240
1241 e = hdr_next_de(&n->index->ihdr, e);
1242 if (!e)
1243 return -EINVAL;
1244
1245 fnd->de[level - 1] = e;
1246 }
1247
1248 /* Just to avoid tree cycle. */
1249 next_iter:
1250 if (iter++ >= 1000)
1251 return -EINVAL;
1252
1253 while (de_has_vcn_ex(e)) {
1254 if (le16_to_cpu(e->size) <
1255 sizeof(struct NTFS_DE) + sizeof(u64)) {
1256 if (n) {
1257 fnd_pop(fnd);
1258 kfree(n);
1259 }
1260 return -EINVAL;
1261 }
1262
1263 /* Read next level. */
1264 err = indx_read(indx, ni, de_get_vbn(e), &n);
1265 if (err)
1266 return err;
1267
1268 /* Try next level. */
1269 e = hdr_first_de(&n->index->ihdr);
1270 if (!e) {
1271 kfree(n);
1272 return -EINVAL;
1273 }
1274
1275 fnd_push(fnd, n, e);
1276 }
1277
1278 if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1279 *entry = e;
1280 return 0;
1281 }
1282
1283 pop_level:
1284 for (;;) {
1285 if (!de_is_last(e))
1286 goto next_iter;
1287
1288 /* Pop one level. */
1289 if (n) {
1290 fnd_pop(fnd);
1291 kfree(n);
1292 }
1293
1294 level = fnd->level;
1295
1296 if (level) {
1297 n = fnd->nodes[level - 1];
1298 e = fnd->de[level - 1];
1299 } else if (fnd->root_de) {
1300 n = NULL;
1301 e = fnd->root_de;
1302 fnd->root_de = NULL;
1303 } else {
1304 *entry = NULL;
1305 return 0;
1306 }
1307
1308 if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1309 *entry = e;
1310 if (!fnd->root_de)
1311 fnd->root_de = e;
1312 return 0;
1313 }
1314 }
1315 }
1316
indx_find_raw(struct ntfs_index * indx,struct ntfs_inode * ni,const struct INDEX_ROOT * root,struct NTFS_DE ** entry,size_t * off,struct ntfs_fnd * fnd)1317 int indx_find_raw(struct ntfs_index *indx, struct ntfs_inode *ni,
1318 const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1319 size_t *off, struct ntfs_fnd *fnd)
1320 {
1321 int err;
1322 struct indx_node *n = NULL;
1323 struct NTFS_DE *e = NULL;
1324 struct NTFS_DE *e2;
1325 size_t bit;
1326 CLST next_used_vbn;
1327 CLST next_vbn;
1328 u32 record_size = ni->mi.sbi->record_size;
1329
1330 /* Use non sorted algorithm. */
1331 if (!*entry) {
1332 /* This is the first call. */
1333 e = hdr_first_de(&root->ihdr);
1334 if (!e)
1335 return 0;
1336 fnd_clear(fnd);
1337 fnd->root_de = e;
1338
1339 /* The first call with setup of initial element. */
1340 if (*off >= record_size) {
1341 next_vbn = (((*off - record_size) >> indx->index_bits))
1342 << indx->idx2vbn_bits;
1343 /* Jump inside cycle 'for'. */
1344 goto next;
1345 }
1346
1347 /* Start enumeration from root. */
1348 *off = 0;
1349 } else if (!fnd->root_de)
1350 return -EINVAL;
1351
1352 for (;;) {
1353 /* Check if current entry can be used. */
1354 if (e && le16_to_cpu(e->size) > sizeof(struct NTFS_DE))
1355 goto ok;
1356
1357 if (!fnd->level) {
1358 /* Continue to enumerate root. */
1359 if (!de_is_last(fnd->root_de)) {
1360 e = hdr_next_de(&root->ihdr, fnd->root_de);
1361 if (!e)
1362 return -EINVAL;
1363 fnd->root_de = e;
1364 continue;
1365 }
1366
1367 /* Start to enumerate indexes from 0. */
1368 next_vbn = 0;
1369 } else {
1370 /* Continue to enumerate indexes. */
1371 e2 = fnd->de[fnd->level - 1];
1372
1373 n = fnd->nodes[fnd->level - 1];
1374
1375 if (!de_is_last(e2)) {
1376 e = hdr_next_de(&n->index->ihdr, e2);
1377 if (!e)
1378 return -EINVAL;
1379 fnd->de[fnd->level - 1] = e;
1380 continue;
1381 }
1382
1383 /* Continue with next index. */
1384 next_vbn = le64_to_cpu(n->index->vbn) +
1385 root->index_block_clst;
1386 }
1387
1388 next:
1389 /* Release current index. */
1390 if (n) {
1391 fnd_pop(fnd);
1392 put_indx_node(n);
1393 n = NULL;
1394 }
1395
1396 /* Skip all free indexes. */
1397 bit = next_vbn >> indx->idx2vbn_bits;
1398 err = indx_used_bit(indx, ni, &bit);
1399 if (err == -ENOENT || bit == MINUS_ONE_T) {
1400 /* No used indexes. */
1401 *entry = NULL;
1402 return 0;
1403 }
1404
1405 next_used_vbn = bit << indx->idx2vbn_bits;
1406
1407 /* Read buffer into memory. */
1408 err = indx_read(indx, ni, next_used_vbn, &n);
1409 if (err)
1410 return err;
1411
1412 e = hdr_first_de(&n->index->ihdr);
1413 fnd_push(fnd, n, e);
1414 if (!e)
1415 return -EINVAL;
1416 }
1417
1418 ok:
1419 /* Return offset to restore enumerator if necessary. */
1420 if (!n) {
1421 /* 'e' points in root, */
1422 *off = PtrOffset(&root->ihdr, e);
1423 } else {
1424 /* 'e' points in index, */
1425 *off = (le64_to_cpu(n->index->vbn) << indx->vbn2vbo_bits) +
1426 record_size + PtrOffset(&n->index->ihdr, e);
1427 }
1428
1429 *entry = e;
1430 return 0;
1431 }
1432
1433 /*
1434 * indx_create_allocate - Create "Allocation + Bitmap" attributes.
1435 */
indx_create_allocate(struct ntfs_index * indx,struct ntfs_inode * ni,CLST * vbn)1436 static int indx_create_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1437 CLST *vbn)
1438 {
1439 int err;
1440 struct ntfs_sb_info *sbi = ni->mi.sbi;
1441 struct ATTRIB *bitmap;
1442 struct ATTRIB *alloc;
1443 u32 data_size = 1u << indx->index_bits;
1444 u32 alloc_size = ntfs_up_cluster(sbi, data_size);
1445 CLST len = alloc_size >> sbi->cluster_bits;
1446 const struct INDEX_NAMES *in = &s_index_names[indx->type];
1447 CLST alen;
1448 struct runs_tree run;
1449
1450 run_init(&run);
1451
1452 err = attr_allocate_clusters(sbi, &run, 0, 0, len, NULL, 0, &alen, 0,
1453 NULL);
1454 if (err)
1455 goto out;
1456
1457 err = ni_insert_nonresident(ni, ATTR_ALLOC, in->name, in->name_len,
1458 &run, 0, len, 0, &alloc, NULL);
1459 if (err)
1460 goto out1;
1461
1462 alloc->nres.valid_size = alloc->nres.data_size = cpu_to_le64(data_size);
1463
1464 err = ni_insert_resident(ni, bitmap_size(1), ATTR_BITMAP, in->name,
1465 in->name_len, &bitmap, NULL, NULL);
1466 if (err)
1467 goto out2;
1468
1469 if (in->name == I30_NAME) {
1470 ni->vfs_inode.i_size = data_size;
1471 inode_set_bytes(&ni->vfs_inode, alloc_size);
1472 }
1473
1474 memcpy(&indx->alloc_run, &run, sizeof(run));
1475
1476 *vbn = 0;
1477
1478 return 0;
1479
1480 out2:
1481 mi_remove_attr(NULL, &ni->mi, alloc);
1482
1483 out1:
1484 run_deallocate(sbi, &run, false);
1485
1486 out:
1487 return err;
1488 }
1489
1490 /*
1491 * indx_add_allocate - Add clusters to index.
1492 */
indx_add_allocate(struct ntfs_index * indx,struct ntfs_inode * ni,CLST * vbn)1493 static int indx_add_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1494 CLST *vbn)
1495 {
1496 int err;
1497 size_t bit;
1498 u64 data_size;
1499 u64 bmp_size, bmp_size_v;
1500 struct ATTRIB *bmp, *alloc;
1501 struct mft_inode *mi;
1502 const struct INDEX_NAMES *in = &s_index_names[indx->type];
1503
1504 err = indx_find_free(indx, ni, &bit, &bmp);
1505 if (err)
1506 goto out1;
1507
1508 if (bit != MINUS_ONE_T) {
1509 bmp = NULL;
1510 } else {
1511 if (bmp->non_res) {
1512 bmp_size = le64_to_cpu(bmp->nres.data_size);
1513 bmp_size_v = le64_to_cpu(bmp->nres.valid_size);
1514 } else {
1515 bmp_size = bmp_size_v = le32_to_cpu(bmp->res.data_size);
1516 }
1517
1518 bit = bmp_size << 3;
1519 }
1520
1521 data_size = (u64)(bit + 1) << indx->index_bits;
1522
1523 if (bmp) {
1524 /* Increase bitmap. */
1525 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1526 &indx->bitmap_run, bitmap_size(bit + 1),
1527 NULL, true, NULL);
1528 if (err)
1529 goto out1;
1530 }
1531
1532 alloc = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, in->name, in->name_len,
1533 NULL, &mi);
1534 if (!alloc) {
1535 err = -EINVAL;
1536 if (bmp)
1537 goto out2;
1538 goto out1;
1539 }
1540
1541 /* Increase allocation. */
1542 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
1543 &indx->alloc_run, data_size, &data_size, true,
1544 NULL);
1545 if (err) {
1546 if (bmp)
1547 goto out2;
1548 goto out1;
1549 }
1550
1551 *vbn = bit << indx->idx2vbn_bits;
1552
1553 return 0;
1554
1555 out2:
1556 /* Ops. No space? */
1557 attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1558 &indx->bitmap_run, bmp_size, &bmp_size_v, false, NULL);
1559
1560 out1:
1561 return err;
1562 }
1563
1564 /*
1565 * indx_insert_into_root - Attempt to insert an entry into the index root.
1566 *
1567 * @undo - True if we undoing previous remove.
1568 * If necessary, it will twiddle the index b-tree.
1569 */
indx_insert_into_root(struct ntfs_index * indx,struct ntfs_inode * ni,const struct NTFS_DE * new_de,struct NTFS_DE * root_de,const void * ctx,struct ntfs_fnd * fnd,bool undo)1570 static int indx_insert_into_root(struct ntfs_index *indx, struct ntfs_inode *ni,
1571 const struct NTFS_DE *new_de,
1572 struct NTFS_DE *root_de, const void *ctx,
1573 struct ntfs_fnd *fnd, bool undo)
1574 {
1575 int err = 0;
1576 struct NTFS_DE *e, *e0, *re;
1577 struct mft_inode *mi;
1578 struct ATTRIB *attr;
1579 struct INDEX_HDR *hdr;
1580 struct indx_node *n;
1581 CLST new_vbn;
1582 __le64 *sub_vbn, t_vbn;
1583 u16 new_de_size;
1584 u32 hdr_used, hdr_total, asize, to_move;
1585 u32 root_size, new_root_size;
1586 struct ntfs_sb_info *sbi;
1587 int ds_root;
1588 struct INDEX_ROOT *root, *a_root;
1589
1590 /* Get the record this root placed in. */
1591 root = indx_get_root(indx, ni, &attr, &mi);
1592 if (!root)
1593 return -EINVAL;
1594
1595 /*
1596 * Try easy case:
1597 * hdr_insert_de will succeed if there's
1598 * room the root for the new entry.
1599 */
1600 hdr = &root->ihdr;
1601 sbi = ni->mi.sbi;
1602 new_de_size = le16_to_cpu(new_de->size);
1603 hdr_used = le32_to_cpu(hdr->used);
1604 hdr_total = le32_to_cpu(hdr->total);
1605 asize = le32_to_cpu(attr->size);
1606 root_size = le32_to_cpu(attr->res.data_size);
1607
1608 ds_root = new_de_size + hdr_used - hdr_total;
1609
1610 /* If 'undo' is set then reduce requirements. */
1611 if ((undo || asize + ds_root < sbi->max_bytes_per_attr) &&
1612 mi_resize_attr(mi, attr, ds_root)) {
1613 hdr->total = cpu_to_le32(hdr_total + ds_root);
1614 e = hdr_insert_de(indx, hdr, new_de, root_de, ctx);
1615 WARN_ON(!e);
1616 fnd_clear(fnd);
1617 fnd->root_de = e;
1618
1619 return 0;
1620 }
1621
1622 /* Make a copy of root attribute to restore if error. */
1623 a_root = kmemdup(attr, asize, GFP_NOFS);
1624 if (!a_root)
1625 return -ENOMEM;
1626
1627 /*
1628 * Copy all the non-end entries from
1629 * the index root to the new buffer.
1630 */
1631 to_move = 0;
1632 e0 = hdr_first_de(hdr);
1633
1634 /* Calculate the size to copy. */
1635 for (e = e0;; e = hdr_next_de(hdr, e)) {
1636 if (!e) {
1637 err = -EINVAL;
1638 goto out_free_root;
1639 }
1640
1641 if (de_is_last(e))
1642 break;
1643 to_move += le16_to_cpu(e->size);
1644 }
1645
1646 if (!to_move) {
1647 re = NULL;
1648 } else {
1649 re = kmemdup(e0, to_move, GFP_NOFS);
1650 if (!re) {
1651 err = -ENOMEM;
1652 goto out_free_root;
1653 }
1654 }
1655
1656 sub_vbn = NULL;
1657 if (de_has_vcn(e)) {
1658 t_vbn = de_get_vbn_le(e);
1659 sub_vbn = &t_vbn;
1660 }
1661
1662 new_root_size = sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE) +
1663 sizeof(u64);
1664 ds_root = new_root_size - root_size;
1665
1666 if (ds_root > 0 && asize + ds_root > sbi->max_bytes_per_attr) {
1667 /* Make root external. */
1668 err = -EOPNOTSUPP;
1669 goto out_free_re;
1670 }
1671
1672 if (ds_root)
1673 mi_resize_attr(mi, attr, ds_root);
1674
1675 /* Fill first entry (vcn will be set later). */
1676 e = (struct NTFS_DE *)(root + 1);
1677 memset(e, 0, sizeof(struct NTFS_DE));
1678 e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
1679 e->flags = NTFS_IE_HAS_SUBNODES | NTFS_IE_LAST;
1680
1681 hdr->flags = 1;
1682 hdr->used = hdr->total =
1683 cpu_to_le32(new_root_size - offsetof(struct INDEX_ROOT, ihdr));
1684
1685 fnd->root_de = hdr_first_de(hdr);
1686 mi->dirty = true;
1687
1688 /* Create alloc and bitmap attributes (if not). */
1689 err = run_is_empty(&indx->alloc_run)
1690 ? indx_create_allocate(indx, ni, &new_vbn)
1691 : indx_add_allocate(indx, ni, &new_vbn);
1692
1693 /* Layout of record may be changed, so rescan root. */
1694 root = indx_get_root(indx, ni, &attr, &mi);
1695 if (!root) {
1696 /* Bug? */
1697 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1698 err = -EINVAL;
1699 goto out_free_re;
1700 }
1701
1702 if (err) {
1703 /* Restore root. */
1704 if (mi_resize_attr(mi, attr, -ds_root)) {
1705 memcpy(attr, a_root, asize);
1706 } else {
1707 /* Bug? */
1708 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1709 }
1710 goto out_free_re;
1711 }
1712
1713 e = (struct NTFS_DE *)(root + 1);
1714 *(__le64 *)(e + 1) = cpu_to_le64(new_vbn);
1715 mi->dirty = true;
1716
1717 /* Now we can create/format the new buffer and copy the entries into. */
1718 n = indx_new(indx, ni, new_vbn, sub_vbn);
1719 if (IS_ERR(n)) {
1720 err = PTR_ERR(n);
1721 goto out_free_re;
1722 }
1723
1724 hdr = &n->index->ihdr;
1725 hdr_used = le32_to_cpu(hdr->used);
1726 hdr_total = le32_to_cpu(hdr->total);
1727
1728 /* Copy root entries into new buffer. */
1729 hdr_insert_head(hdr, re, to_move);
1730
1731 /* Update bitmap attribute. */
1732 indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1733
1734 /* Check if we can insert new entry new index buffer. */
1735 if (hdr_used + new_de_size > hdr_total) {
1736 /*
1737 * This occurs if MFT record is the same or bigger than index
1738 * buffer. Move all root new index and have no space to add
1739 * new entry classic case when MFT record is 1K and index
1740 * buffer 4K the problem should not occurs.
1741 */
1742 kfree(re);
1743 indx_write(indx, ni, n, 0);
1744
1745 put_indx_node(n);
1746 fnd_clear(fnd);
1747 err = indx_insert_entry(indx, ni, new_de, ctx, fnd, undo);
1748 goto out_free_root;
1749 }
1750
1751 /*
1752 * Now root is a parent for new index buffer.
1753 * Insert NewEntry a new buffer.
1754 */
1755 e = hdr_insert_de(indx, hdr, new_de, NULL, ctx);
1756 if (!e) {
1757 err = -EINVAL;
1758 goto out_put_n;
1759 }
1760 fnd_push(fnd, n, e);
1761
1762 /* Just write updates index into disk. */
1763 indx_write(indx, ni, n, 0);
1764
1765 n = NULL;
1766
1767 out_put_n:
1768 put_indx_node(n);
1769 out_free_re:
1770 kfree(re);
1771 out_free_root:
1772 kfree(a_root);
1773 return err;
1774 }
1775
1776 /*
1777 * indx_insert_into_buffer
1778 *
1779 * Attempt to insert an entry into an Index Allocation Buffer.
1780 * If necessary, it will split the buffer.
1781 */
1782 static int
indx_insert_into_buffer(struct ntfs_index * indx,struct ntfs_inode * ni,struct INDEX_ROOT * root,const struct NTFS_DE * new_de,const void * ctx,int level,struct ntfs_fnd * fnd)1783 indx_insert_into_buffer(struct ntfs_index *indx, struct ntfs_inode *ni,
1784 struct INDEX_ROOT *root, const struct NTFS_DE *new_de,
1785 const void *ctx, int level, struct ntfs_fnd *fnd)
1786 {
1787 int err;
1788 const struct NTFS_DE *sp;
1789 struct NTFS_DE *e, *de_t, *up_e = NULL;
1790 struct indx_node *n2 = NULL;
1791 struct indx_node *n1 = fnd->nodes[level];
1792 struct INDEX_HDR *hdr1 = &n1->index->ihdr;
1793 struct INDEX_HDR *hdr2;
1794 u32 to_copy, used;
1795 CLST new_vbn;
1796 __le64 t_vbn, *sub_vbn;
1797 u16 sp_size;
1798
1799 /* Try the most easy case. */
1800 e = fnd->level - 1 == level ? fnd->de[level] : NULL;
1801 e = hdr_insert_de(indx, hdr1, new_de, e, ctx);
1802 fnd->de[level] = e;
1803 if (e) {
1804 /* Just write updated index into disk. */
1805 indx_write(indx, ni, n1, 0);
1806 return 0;
1807 }
1808
1809 /*
1810 * No space to insert into buffer. Split it.
1811 * To split we:
1812 * - Save split point ('cause index buffers will be changed)
1813 * - Allocate NewBuffer and copy all entries <= sp into new buffer
1814 * - Remove all entries (sp including) from TargetBuffer
1815 * - Insert NewEntry into left or right buffer (depending on sp <=>
1816 * NewEntry)
1817 * - Insert sp into parent buffer (or root)
1818 * - Make sp a parent for new buffer
1819 */
1820 sp = hdr_find_split(hdr1);
1821 if (!sp)
1822 return -EINVAL;
1823
1824 sp_size = le16_to_cpu(sp->size);
1825 up_e = kmalloc(sp_size + sizeof(u64), GFP_NOFS);
1826 if (!up_e)
1827 return -ENOMEM;
1828 memcpy(up_e, sp, sp_size);
1829
1830 if (!hdr1->flags) {
1831 up_e->flags |= NTFS_IE_HAS_SUBNODES;
1832 up_e->size = cpu_to_le16(sp_size + sizeof(u64));
1833 sub_vbn = NULL;
1834 } else {
1835 t_vbn = de_get_vbn_le(up_e);
1836 sub_vbn = &t_vbn;
1837 }
1838
1839 /* Allocate on disk a new index allocation buffer. */
1840 err = indx_add_allocate(indx, ni, &new_vbn);
1841 if (err)
1842 goto out;
1843
1844 /* Allocate and format memory a new index buffer. */
1845 n2 = indx_new(indx, ni, new_vbn, sub_vbn);
1846 if (IS_ERR(n2)) {
1847 err = PTR_ERR(n2);
1848 goto out;
1849 }
1850
1851 hdr2 = &n2->index->ihdr;
1852
1853 /* Make sp a parent for new buffer. */
1854 de_set_vbn(up_e, new_vbn);
1855
1856 /* Copy all the entries <= sp into the new buffer. */
1857 de_t = hdr_first_de(hdr1);
1858 to_copy = PtrOffset(de_t, sp);
1859 hdr_insert_head(hdr2, de_t, to_copy);
1860
1861 /* Remove all entries (sp including) from hdr1. */
1862 used = le32_to_cpu(hdr1->used) - to_copy - sp_size;
1863 memmove(de_t, Add2Ptr(sp, sp_size), used - le32_to_cpu(hdr1->de_off));
1864 hdr1->used = cpu_to_le32(used);
1865
1866 /*
1867 * Insert new entry into left or right buffer
1868 * (depending on sp <=> new_de).
1869 */
1870 hdr_insert_de(indx,
1871 (*indx->cmp)(new_de + 1, le16_to_cpu(new_de->key_size),
1872 up_e + 1, le16_to_cpu(up_e->key_size),
1873 ctx) < 0
1874 ? hdr2
1875 : hdr1,
1876 new_de, NULL, ctx);
1877
1878 indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1879
1880 indx_write(indx, ni, n1, 0);
1881 indx_write(indx, ni, n2, 0);
1882
1883 put_indx_node(n2);
1884
1885 /*
1886 * We've finished splitting everybody, so we are ready to
1887 * insert the promoted entry into the parent.
1888 */
1889 if (!level) {
1890 /* Insert in root. */
1891 err = indx_insert_into_root(indx, ni, up_e, NULL, ctx, fnd, 0);
1892 if (err)
1893 goto out;
1894 } else {
1895 /*
1896 * The target buffer's parent is another index buffer.
1897 * TODO: Remove recursion.
1898 */
1899 err = indx_insert_into_buffer(indx, ni, root, up_e, ctx,
1900 level - 1, fnd);
1901 if (err)
1902 goto out;
1903 }
1904
1905 out:
1906 kfree(up_e);
1907
1908 return err;
1909 }
1910
1911 /*
1912 * indx_insert_entry - Insert new entry into index.
1913 *
1914 * @undo - True if we undoing previous remove.
1915 */
indx_insert_entry(struct ntfs_index * indx,struct ntfs_inode * ni,const struct NTFS_DE * new_de,const void * ctx,struct ntfs_fnd * fnd,bool undo)1916 int indx_insert_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
1917 const struct NTFS_DE *new_de, const void *ctx,
1918 struct ntfs_fnd *fnd, bool undo)
1919 {
1920 int err;
1921 int diff;
1922 struct NTFS_DE *e;
1923 struct ntfs_fnd *fnd_a = NULL;
1924 struct INDEX_ROOT *root;
1925
1926 if (!fnd) {
1927 fnd_a = fnd_get();
1928 if (!fnd_a) {
1929 err = -ENOMEM;
1930 goto out1;
1931 }
1932 fnd = fnd_a;
1933 }
1934
1935 root = indx_get_root(indx, ni, NULL, NULL);
1936 if (!root) {
1937 err = -EINVAL;
1938 goto out;
1939 }
1940
1941 if (fnd_is_empty(fnd)) {
1942 /*
1943 * Find the spot the tree where we want to
1944 * insert the new entry.
1945 */
1946 err = indx_find(indx, ni, root, new_de + 1,
1947 le16_to_cpu(new_de->key_size), ctx, &diff, &e,
1948 fnd);
1949 if (err)
1950 goto out;
1951
1952 if (!diff) {
1953 err = -EEXIST;
1954 goto out;
1955 }
1956 }
1957
1958 if (!fnd->level) {
1959 /*
1960 * The root is also a leaf, so we'll insert the
1961 * new entry into it.
1962 */
1963 err = indx_insert_into_root(indx, ni, new_de, fnd->root_de, ctx,
1964 fnd, undo);
1965 if (err)
1966 goto out;
1967 } else {
1968 /*
1969 * Found a leaf buffer, so we'll insert the new entry into it.
1970 */
1971 err = indx_insert_into_buffer(indx, ni, root, new_de, ctx,
1972 fnd->level - 1, fnd);
1973 if (err)
1974 goto out;
1975 }
1976
1977 out:
1978 fnd_put(fnd_a);
1979 out1:
1980 return err;
1981 }
1982
1983 /*
1984 * indx_find_buffer - Locate a buffer from the tree.
1985 */
indx_find_buffer(struct ntfs_index * indx,struct ntfs_inode * ni,const struct INDEX_ROOT * root,__le64 vbn,struct indx_node * n)1986 static struct indx_node *indx_find_buffer(struct ntfs_index *indx,
1987 struct ntfs_inode *ni,
1988 const struct INDEX_ROOT *root,
1989 __le64 vbn, struct indx_node *n)
1990 {
1991 int err;
1992 const struct NTFS_DE *e;
1993 struct indx_node *r;
1994 const struct INDEX_HDR *hdr = n ? &n->index->ihdr : &root->ihdr;
1995
1996 /* Step 1: Scan one level. */
1997 for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
1998 if (!e)
1999 return ERR_PTR(-EINVAL);
2000
2001 if (de_has_vcn(e) && vbn == de_get_vbn_le(e))
2002 return n;
2003
2004 if (de_is_last(e))
2005 break;
2006 }
2007
2008 /* Step2: Do recursion. */
2009 e = Add2Ptr(hdr, le32_to_cpu(hdr->de_off));
2010 for (;;) {
2011 if (de_has_vcn_ex(e)) {
2012 err = indx_read(indx, ni, de_get_vbn(e), &n);
2013 if (err)
2014 return ERR_PTR(err);
2015
2016 r = indx_find_buffer(indx, ni, root, vbn, n);
2017 if (r)
2018 return r;
2019 }
2020
2021 if (de_is_last(e))
2022 break;
2023
2024 e = Add2Ptr(e, le16_to_cpu(e->size));
2025 }
2026
2027 return NULL;
2028 }
2029
2030 /*
2031 * indx_shrink - Deallocate unused tail indexes.
2032 */
indx_shrink(struct ntfs_index * indx,struct ntfs_inode * ni,size_t bit)2033 static int indx_shrink(struct ntfs_index *indx, struct ntfs_inode *ni,
2034 size_t bit)
2035 {
2036 int err = 0;
2037 u64 bpb, new_data;
2038 size_t nbits;
2039 struct ATTRIB *b;
2040 struct ATTR_LIST_ENTRY *le = NULL;
2041 const struct INDEX_NAMES *in = &s_index_names[indx->type];
2042
2043 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
2044 NULL, NULL);
2045
2046 if (!b)
2047 return -ENOENT;
2048
2049 if (!b->non_res) {
2050 unsigned long pos;
2051 const unsigned long *bm = resident_data(b);
2052
2053 nbits = (size_t)le32_to_cpu(b->res.data_size) * 8;
2054
2055 if (bit >= nbits)
2056 return 0;
2057
2058 pos = find_next_bit(bm, nbits, bit);
2059 if (pos < nbits)
2060 return 0;
2061 } else {
2062 size_t used = MINUS_ONE_T;
2063
2064 nbits = le64_to_cpu(b->nres.data_size) * 8;
2065
2066 if (bit >= nbits)
2067 return 0;
2068
2069 err = scan_nres_bitmap(ni, b, indx, bit, &scan_for_used, &used);
2070 if (err)
2071 return err;
2072
2073 if (used != MINUS_ONE_T)
2074 return 0;
2075 }
2076
2077 new_data = (u64)bit << indx->index_bits;
2078
2079 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
2080 &indx->alloc_run, new_data, &new_data, false, NULL);
2081 if (err)
2082 return err;
2083
2084 bpb = bitmap_size(bit);
2085 if (bpb * 8 == nbits)
2086 return 0;
2087
2088 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
2089 &indx->bitmap_run, bpb, &bpb, false, NULL);
2090
2091 return err;
2092 }
2093
indx_free_children(struct ntfs_index * indx,struct ntfs_inode * ni,const struct NTFS_DE * e,bool trim)2094 static int indx_free_children(struct ntfs_index *indx, struct ntfs_inode *ni,
2095 const struct NTFS_DE *e, bool trim)
2096 {
2097 int err;
2098 struct indx_node *n = NULL;
2099 struct INDEX_HDR *hdr;
2100 CLST vbn = de_get_vbn(e);
2101 size_t i;
2102
2103 err = indx_read(indx, ni, vbn, &n);
2104 if (err)
2105 return err;
2106
2107 hdr = &n->index->ihdr;
2108 /* First, recurse into the children, if any. */
2109 if (hdr_has_subnode(hdr)) {
2110 for (e = hdr_first_de(hdr); e; e = hdr_next_de(hdr, e)) {
2111 indx_free_children(indx, ni, e, false);
2112 if (de_is_last(e))
2113 break;
2114 }
2115 }
2116
2117 put_indx_node(n);
2118
2119 i = vbn >> indx->idx2vbn_bits;
2120 /*
2121 * We've gotten rid of the children; add this buffer to the free list.
2122 */
2123 indx_mark_free(indx, ni, i);
2124
2125 if (!trim)
2126 return 0;
2127
2128 /*
2129 * If there are no used indexes after current free index
2130 * then we can truncate allocation and bitmap.
2131 * Use bitmap to estimate the case.
2132 */
2133 indx_shrink(indx, ni, i + 1);
2134 return 0;
2135 }
2136
2137 /*
2138 * indx_get_entry_to_replace
2139 *
2140 * Find a replacement entry for a deleted entry.
2141 * Always returns a node entry:
2142 * NTFS_IE_HAS_SUBNODES is set the flags and the size includes the sub_vcn.
2143 */
indx_get_entry_to_replace(struct ntfs_index * indx,struct ntfs_inode * ni,const struct NTFS_DE * de_next,struct NTFS_DE ** de_to_replace,struct ntfs_fnd * fnd)2144 static int indx_get_entry_to_replace(struct ntfs_index *indx,
2145 struct ntfs_inode *ni,
2146 const struct NTFS_DE *de_next,
2147 struct NTFS_DE **de_to_replace,
2148 struct ntfs_fnd *fnd)
2149 {
2150 int err;
2151 int level = -1;
2152 CLST vbn;
2153 struct NTFS_DE *e, *te, *re;
2154 struct indx_node *n;
2155 struct INDEX_BUFFER *ib;
2156
2157 *de_to_replace = NULL;
2158
2159 /* Find first leaf entry down from de_next. */
2160 vbn = de_get_vbn(de_next);
2161 for (;;) {
2162 n = NULL;
2163 err = indx_read(indx, ni, vbn, &n);
2164 if (err)
2165 goto out;
2166
2167 e = hdr_first_de(&n->index->ihdr);
2168 fnd_push(fnd, n, e);
2169
2170 if (!de_is_last(e)) {
2171 /*
2172 * This buffer is non-empty, so its first entry
2173 * could be used as the replacement entry.
2174 */
2175 level = fnd->level - 1;
2176 }
2177
2178 if (!de_has_vcn(e))
2179 break;
2180
2181 /* This buffer is a node. Continue to go down. */
2182 vbn = de_get_vbn(e);
2183 }
2184
2185 if (level == -1)
2186 goto out;
2187
2188 n = fnd->nodes[level];
2189 te = hdr_first_de(&n->index->ihdr);
2190 /* Copy the candidate entry into the replacement entry buffer. */
2191 re = kmalloc(le16_to_cpu(te->size) + sizeof(u64), GFP_NOFS);
2192 if (!re) {
2193 err = -ENOMEM;
2194 goto out;
2195 }
2196
2197 *de_to_replace = re;
2198 memcpy(re, te, le16_to_cpu(te->size));
2199
2200 if (!de_has_vcn(re)) {
2201 /*
2202 * The replacement entry we found doesn't have a sub_vcn.
2203 * increase its size to hold one.
2204 */
2205 le16_add_cpu(&re->size, sizeof(u64));
2206 re->flags |= NTFS_IE_HAS_SUBNODES;
2207 } else {
2208 /*
2209 * The replacement entry we found was a node entry, which
2210 * means that all its child buffers are empty. Return them
2211 * to the free pool.
2212 */
2213 indx_free_children(indx, ni, te, true);
2214 }
2215
2216 /*
2217 * Expunge the replacement entry from its former location,
2218 * and then write that buffer.
2219 */
2220 ib = n->index;
2221 e = hdr_delete_de(&ib->ihdr, te);
2222
2223 fnd->de[level] = e;
2224 indx_write(indx, ni, n, 0);
2225
2226 /* Check to see if this action created an empty leaf. */
2227 if (ib_is_leaf(ib) && ib_is_empty(ib))
2228 return 0;
2229
2230 out:
2231 fnd_clear(fnd);
2232 return err;
2233 }
2234
2235 /*
2236 * indx_delete_entry - Delete an entry from the index.
2237 */
indx_delete_entry(struct ntfs_index * indx,struct ntfs_inode * ni,const void * key,u32 key_len,const void * ctx)2238 int indx_delete_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
2239 const void *key, u32 key_len, const void *ctx)
2240 {
2241 int err, diff;
2242 struct INDEX_ROOT *root;
2243 struct INDEX_HDR *hdr;
2244 struct ntfs_fnd *fnd, *fnd2;
2245 struct INDEX_BUFFER *ib;
2246 struct NTFS_DE *e, *re, *next, *prev, *me;
2247 struct indx_node *n, *n2d = NULL;
2248 __le64 sub_vbn;
2249 int level, level2;
2250 struct ATTRIB *attr;
2251 struct mft_inode *mi;
2252 u32 e_size, root_size, new_root_size;
2253 size_t trim_bit;
2254 const struct INDEX_NAMES *in;
2255
2256 fnd = fnd_get();
2257 if (!fnd) {
2258 err = -ENOMEM;
2259 goto out2;
2260 }
2261
2262 fnd2 = fnd_get();
2263 if (!fnd2) {
2264 err = -ENOMEM;
2265 goto out1;
2266 }
2267
2268 root = indx_get_root(indx, ni, &attr, &mi);
2269 if (!root) {
2270 err = -EINVAL;
2271 goto out;
2272 }
2273
2274 /* Locate the entry to remove. */
2275 err = indx_find(indx, ni, root, key, key_len, ctx, &diff, &e, fnd);
2276 if (err)
2277 goto out;
2278
2279 if (!e || diff) {
2280 err = -ENOENT;
2281 goto out;
2282 }
2283
2284 level = fnd->level;
2285
2286 if (level) {
2287 n = fnd->nodes[level - 1];
2288 e = fnd->de[level - 1];
2289 ib = n->index;
2290 hdr = &ib->ihdr;
2291 } else {
2292 hdr = &root->ihdr;
2293 e = fnd->root_de;
2294 n = NULL;
2295 }
2296
2297 e_size = le16_to_cpu(e->size);
2298
2299 if (!de_has_vcn_ex(e)) {
2300 /* The entry to delete is a leaf, so we can just rip it out. */
2301 hdr_delete_de(hdr, e);
2302
2303 if (!level) {
2304 hdr->total = hdr->used;
2305
2306 /* Shrink resident root attribute. */
2307 mi_resize_attr(mi, attr, 0 - e_size);
2308 goto out;
2309 }
2310
2311 indx_write(indx, ni, n, 0);
2312
2313 /*
2314 * Check to see if removing that entry made
2315 * the leaf empty.
2316 */
2317 if (ib_is_leaf(ib) && ib_is_empty(ib)) {
2318 fnd_pop(fnd);
2319 fnd_push(fnd2, n, e);
2320 }
2321 } else {
2322 /*
2323 * The entry we wish to delete is a node buffer, so we
2324 * have to find a replacement for it.
2325 */
2326 next = de_get_next(e);
2327
2328 err = indx_get_entry_to_replace(indx, ni, next, &re, fnd2);
2329 if (err)
2330 goto out;
2331
2332 if (re) {
2333 de_set_vbn_le(re, de_get_vbn_le(e));
2334 hdr_delete_de(hdr, e);
2335
2336 err = level ? indx_insert_into_buffer(indx, ni, root,
2337 re, ctx,
2338 fnd->level - 1,
2339 fnd)
2340 : indx_insert_into_root(indx, ni, re, e,
2341 ctx, fnd, 0);
2342 kfree(re);
2343
2344 if (err)
2345 goto out;
2346 } else {
2347 /*
2348 * There is no replacement for the current entry.
2349 * This means that the subtree rooted at its node
2350 * is empty, and can be deleted, which turn means
2351 * that the node can just inherit the deleted
2352 * entry sub_vcn.
2353 */
2354 indx_free_children(indx, ni, next, true);
2355
2356 de_set_vbn_le(next, de_get_vbn_le(e));
2357 hdr_delete_de(hdr, e);
2358 if (level) {
2359 indx_write(indx, ni, n, 0);
2360 } else {
2361 hdr->total = hdr->used;
2362
2363 /* Shrink resident root attribute. */
2364 mi_resize_attr(mi, attr, 0 - e_size);
2365 }
2366 }
2367 }
2368
2369 /* Delete a branch of tree. */
2370 if (!fnd2 || !fnd2->level)
2371 goto out;
2372
2373 /* Reinit root 'cause it can be changed. */
2374 root = indx_get_root(indx, ni, &attr, &mi);
2375 if (!root) {
2376 err = -EINVAL;
2377 goto out;
2378 }
2379
2380 n2d = NULL;
2381 sub_vbn = fnd2->nodes[0]->index->vbn;
2382 level2 = 0;
2383 level = fnd->level;
2384
2385 hdr = level ? &fnd->nodes[level - 1]->index->ihdr : &root->ihdr;
2386
2387 /* Scan current level. */
2388 for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
2389 if (!e) {
2390 err = -EINVAL;
2391 goto out;
2392 }
2393
2394 if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2395 break;
2396
2397 if (de_is_last(e)) {
2398 e = NULL;
2399 break;
2400 }
2401 }
2402
2403 if (!e) {
2404 /* Do slow search from root. */
2405 struct indx_node *in;
2406
2407 fnd_clear(fnd);
2408
2409 in = indx_find_buffer(indx, ni, root, sub_vbn, NULL);
2410 if (IS_ERR(in)) {
2411 err = PTR_ERR(in);
2412 goto out;
2413 }
2414
2415 if (in)
2416 fnd_push(fnd, in, NULL);
2417 }
2418
2419 /* Merge fnd2 -> fnd. */
2420 for (level = 0; level < fnd2->level; level++) {
2421 fnd_push(fnd, fnd2->nodes[level], fnd2->de[level]);
2422 fnd2->nodes[level] = NULL;
2423 }
2424 fnd2->level = 0;
2425
2426 hdr = NULL;
2427 for (level = fnd->level; level; level--) {
2428 struct indx_node *in = fnd->nodes[level - 1];
2429
2430 ib = in->index;
2431 if (ib_is_empty(ib)) {
2432 sub_vbn = ib->vbn;
2433 } else {
2434 hdr = &ib->ihdr;
2435 n2d = in;
2436 level2 = level;
2437 break;
2438 }
2439 }
2440
2441 if (!hdr)
2442 hdr = &root->ihdr;
2443
2444 e = hdr_first_de(hdr);
2445 if (!e) {
2446 err = -EINVAL;
2447 goto out;
2448 }
2449
2450 if (hdr != &root->ihdr || !de_is_last(e)) {
2451 prev = NULL;
2452 while (!de_is_last(e)) {
2453 if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2454 break;
2455 prev = e;
2456 e = hdr_next_de(hdr, e);
2457 if (!e) {
2458 err = -EINVAL;
2459 goto out;
2460 }
2461 }
2462
2463 if (sub_vbn != de_get_vbn_le(e)) {
2464 /*
2465 * Didn't find the parent entry, although this buffer
2466 * is the parent trail. Something is corrupt.
2467 */
2468 err = -EINVAL;
2469 goto out;
2470 }
2471
2472 if (de_is_last(e)) {
2473 /*
2474 * Since we can't remove the end entry, we'll remove
2475 * its predecessor instead. This means we have to
2476 * transfer the predecessor's sub_vcn to the end entry.
2477 * Note: This index block is not empty, so the
2478 * predecessor must exist.
2479 */
2480 if (!prev) {
2481 err = -EINVAL;
2482 goto out;
2483 }
2484
2485 if (de_has_vcn(prev)) {
2486 de_set_vbn_le(e, de_get_vbn_le(prev));
2487 } else if (de_has_vcn(e)) {
2488 le16_sub_cpu(&e->size, sizeof(u64));
2489 e->flags &= ~NTFS_IE_HAS_SUBNODES;
2490 le32_sub_cpu(&hdr->used, sizeof(u64));
2491 }
2492 e = prev;
2493 }
2494
2495 /*
2496 * Copy the current entry into a temporary buffer (stripping
2497 * off its down-pointer, if any) and delete it from the current
2498 * buffer or root, as appropriate.
2499 */
2500 e_size = le16_to_cpu(e->size);
2501 me = kmemdup(e, e_size, GFP_NOFS);
2502 if (!me) {
2503 err = -ENOMEM;
2504 goto out;
2505 }
2506
2507 if (de_has_vcn(me)) {
2508 me->flags &= ~NTFS_IE_HAS_SUBNODES;
2509 le16_sub_cpu(&me->size, sizeof(u64));
2510 }
2511
2512 hdr_delete_de(hdr, e);
2513
2514 if (hdr == &root->ihdr) {
2515 level = 0;
2516 hdr->total = hdr->used;
2517
2518 /* Shrink resident root attribute. */
2519 mi_resize_attr(mi, attr, 0 - e_size);
2520 } else {
2521 indx_write(indx, ni, n2d, 0);
2522 level = level2;
2523 }
2524
2525 /* Mark unused buffers as free. */
2526 trim_bit = -1;
2527 for (; level < fnd->level; level++) {
2528 ib = fnd->nodes[level]->index;
2529 if (ib_is_empty(ib)) {
2530 size_t k = le64_to_cpu(ib->vbn) >>
2531 indx->idx2vbn_bits;
2532
2533 indx_mark_free(indx, ni, k);
2534 if (k < trim_bit)
2535 trim_bit = k;
2536 }
2537 }
2538
2539 fnd_clear(fnd);
2540 /*fnd->root_de = NULL;*/
2541
2542 /*
2543 * Re-insert the entry into the tree.
2544 * Find the spot the tree where we want to insert the new entry.
2545 */
2546 err = indx_insert_entry(indx, ni, me, ctx, fnd, 0);
2547 kfree(me);
2548 if (err)
2549 goto out;
2550
2551 if (trim_bit != -1)
2552 indx_shrink(indx, ni, trim_bit);
2553 } else {
2554 /*
2555 * This tree needs to be collapsed down to an empty root.
2556 * Recreate the index root as an empty leaf and free all
2557 * the bits the index allocation bitmap.
2558 */
2559 fnd_clear(fnd);
2560 fnd_clear(fnd2);
2561
2562 in = &s_index_names[indx->type];
2563
2564 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
2565 &indx->alloc_run, 0, NULL, false, NULL);
2566 err = ni_remove_attr(ni, ATTR_ALLOC, in->name, in->name_len,
2567 false, NULL);
2568 run_close(&indx->alloc_run);
2569
2570 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
2571 &indx->bitmap_run, 0, NULL, false, NULL);
2572 err = ni_remove_attr(ni, ATTR_BITMAP, in->name, in->name_len,
2573 false, NULL);
2574 run_close(&indx->bitmap_run);
2575
2576 root = indx_get_root(indx, ni, &attr, &mi);
2577 if (!root) {
2578 err = -EINVAL;
2579 goto out;
2580 }
2581
2582 root_size = le32_to_cpu(attr->res.data_size);
2583 new_root_size =
2584 sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE);
2585
2586 if (new_root_size != root_size &&
2587 !mi_resize_attr(mi, attr, new_root_size - root_size)) {
2588 err = -EINVAL;
2589 goto out;
2590 }
2591
2592 /* Fill first entry. */
2593 e = (struct NTFS_DE *)(root + 1);
2594 e->ref.low = 0;
2595 e->ref.high = 0;
2596 e->ref.seq = 0;
2597 e->size = cpu_to_le16(sizeof(struct NTFS_DE));
2598 e->flags = NTFS_IE_LAST; // 0x02
2599 e->key_size = 0;
2600 e->res = 0;
2601
2602 hdr = &root->ihdr;
2603 hdr->flags = 0;
2604 hdr->used = hdr->total = cpu_to_le32(
2605 new_root_size - offsetof(struct INDEX_ROOT, ihdr));
2606 mi->dirty = true;
2607 }
2608
2609 out:
2610 fnd_put(fnd2);
2611 out1:
2612 fnd_put(fnd);
2613 out2:
2614 return err;
2615 }
2616
2617 /*
2618 * Update duplicated information in directory entry
2619 * 'dup' - info from MFT record
2620 */
indx_update_dup(struct ntfs_inode * ni,struct ntfs_sb_info * sbi,const struct ATTR_FILE_NAME * fname,const struct NTFS_DUP_INFO * dup,int sync)2621 int indx_update_dup(struct ntfs_inode *ni, struct ntfs_sb_info *sbi,
2622 const struct ATTR_FILE_NAME *fname,
2623 const struct NTFS_DUP_INFO *dup, int sync)
2624 {
2625 int err, diff;
2626 struct NTFS_DE *e = NULL;
2627 struct ATTR_FILE_NAME *e_fname;
2628 struct ntfs_fnd *fnd;
2629 struct INDEX_ROOT *root;
2630 struct mft_inode *mi;
2631 struct ntfs_index *indx = &ni->dir;
2632
2633 fnd = fnd_get();
2634 if (!fnd)
2635 return -ENOMEM;
2636
2637 root = indx_get_root(indx, ni, NULL, &mi);
2638 if (!root) {
2639 err = -EINVAL;
2640 goto out;
2641 }
2642
2643 /* Find entry in directory. */
2644 err = indx_find(indx, ni, root, fname, fname_full_size(fname), sbi,
2645 &diff, &e, fnd);
2646 if (err)
2647 goto out;
2648
2649 if (!e) {
2650 err = -EINVAL;
2651 goto out;
2652 }
2653
2654 if (diff) {
2655 err = -EINVAL;
2656 goto out;
2657 }
2658
2659 e_fname = (struct ATTR_FILE_NAME *)(e + 1);
2660
2661 if (!memcmp(&e_fname->dup, dup, sizeof(*dup))) {
2662 /*
2663 * Nothing to update in index! Try to avoid this call.
2664 */
2665 goto out;
2666 }
2667
2668 memcpy(&e_fname->dup, dup, sizeof(*dup));
2669
2670 if (fnd->level) {
2671 /* Directory entry in index. */
2672 err = indx_write(indx, ni, fnd->nodes[fnd->level - 1], sync);
2673 } else {
2674 /* Directory entry in directory MFT record. */
2675 mi->dirty = true;
2676 if (sync)
2677 err = mi_write(mi, 1);
2678 else
2679 mark_inode_dirty(&ni->vfs_inode);
2680 }
2681
2682 out:
2683 fnd_put(fnd);
2684 return err;
2685 }
2686