1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * PF_INET protocol family socket handler.
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Florian La Roche, <flla@stud.uni-sb.de>
12 * Alan Cox, <A.Cox@swansea.ac.uk>
13 *
14 * Changes (see also sock.c)
15 *
16 * piggy,
17 * Karl Knutson : Socket protocol table
18 * A.N.Kuznetsov : Socket death error in accept().
19 * John Richardson : Fix non blocking error in connect()
20 * so sockets that fail to connect
21 * don't return -EINPROGRESS.
22 * Alan Cox : Asynchronous I/O support
23 * Alan Cox : Keep correct socket pointer on sock
24 * structures
25 * when accept() ed
26 * Alan Cox : Semantics of SO_LINGER aren't state
27 * moved to close when you look carefully.
28 * With this fixed and the accept bug fixed
29 * some RPC stuff seems happier.
30 * Niibe Yutaka : 4.4BSD style write async I/O
31 * Alan Cox,
32 * Tony Gale : Fixed reuse semantics.
33 * Alan Cox : bind() shouldn't abort existing but dead
34 * sockets. Stops FTP netin:.. I hope.
35 * Alan Cox : bind() works correctly for RAW sockets.
36 * Note that FreeBSD at least was broken
37 * in this respect so be careful with
38 * compatibility tests...
39 * Alan Cox : routing cache support
40 * Alan Cox : memzero the socket structure for
41 * compactness.
42 * Matt Day : nonblock connect error handler
43 * Alan Cox : Allow large numbers of pending sockets
44 * (eg for big web sites), but only if
45 * specifically application requested.
46 * Alan Cox : New buffering throughout IP. Used
47 * dumbly.
48 * Alan Cox : New buffering now used smartly.
49 * Alan Cox : BSD rather than common sense
50 * interpretation of listen.
51 * Germano Caronni : Assorted small races.
52 * Alan Cox : sendmsg/recvmsg basic support.
53 * Alan Cox : Only sendmsg/recvmsg now supported.
54 * Alan Cox : Locked down bind (see security list).
55 * Alan Cox : Loosened bind a little.
56 * Mike McLagan : ADD/DEL DLCI Ioctls
57 * Willy Konynenberg : Transparent proxying support.
58 * David S. Miller : New socket lookup architecture.
59 * Some other random speedups.
60 * Cyrus Durgin : Cleaned up file for kmod hacks.
61 * Andi Kleen : Fix inet_stream_connect TCP race.
62 */
63
64 #define pr_fmt(fmt) "IPv4: " fmt
65
66 #include <linux/err.h>
67 #include <linux/errno.h>
68 #include <linux/types.h>
69 #include <linux/socket.h>
70 #include <linux/in.h>
71 #include <linux/kernel.h>
72 #include <linux/kmod.h>
73 #include <linux/sched.h>
74 #include <linux/timer.h>
75 #include <linux/string.h>
76 #include <linux/sockios.h>
77 #include <linux/net.h>
78 #include <linux/capability.h>
79 #include <linux/fcntl.h>
80 #include <linux/mm.h>
81 #include <linux/interrupt.h>
82 #include <linux/stat.h>
83 #include <linux/init.h>
84 #include <linux/poll.h>
85 #include <linux/netfilter_ipv4.h>
86 #include <linux/random.h>
87 #include <linux/slab.h>
88
89 #include <linux/uaccess.h>
90
91 #include <linux/inet.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/netdevice.h>
95 #include <net/checksum.h>
96 #include <net/ip.h>
97 #include <net/protocol.h>
98 #include <net/arp.h>
99 #include <net/route.h>
100 #include <net/ip_fib.h>
101 #include <net/inet_connection_sock.h>
102 #include <net/tcp.h>
103 #include <net/udp.h>
104 #include <net/udplite.h>
105 #include <net/ping.h>
106 #include <linux/skbuff.h>
107 #include <net/sock.h>
108 #include <net/raw.h>
109 #include <net/icmp.h>
110 #include <net/inet_common.h>
111 #include <net/ip_tunnels.h>
112 #include <net/xfrm.h>
113 #include <net/net_namespace.h>
114 #include <net/secure_seq.h>
115 #ifdef CONFIG_IP_MROUTE
116 #include <linux/mroute.h>
117 #endif
118 #include <net/l3mdev.h>
119 #include <net/compat.h>
120
121 #include <trace/events/sock.h>
122
123 /* The inetsw table contains everything that inet_create needs to
124 * build a new socket.
125 */
126 static struct list_head inetsw[SOCK_MAX];
127 static DEFINE_SPINLOCK(inetsw_lock);
128
129 /* New destruction routine */
130
inet_sock_destruct(struct sock * sk)131 void inet_sock_destruct(struct sock *sk)
132 {
133 struct inet_sock *inet = inet_sk(sk);
134
135 __skb_queue_purge(&sk->sk_receive_queue);
136 if (sk->sk_rx_skb_cache) {
137 __kfree_skb(sk->sk_rx_skb_cache);
138 sk->sk_rx_skb_cache = NULL;
139 }
140 __skb_queue_purge(&sk->sk_error_queue);
141
142 sk_mem_reclaim(sk);
143
144 if (sk->sk_type == SOCK_STREAM && sk->sk_state != TCP_CLOSE) {
145 pr_err("Attempt to release TCP socket in state %d %p\n",
146 sk->sk_state, sk);
147 return;
148 }
149 if (!sock_flag(sk, SOCK_DEAD)) {
150 pr_err("Attempt to release alive inet socket %p\n", sk);
151 return;
152 }
153
154 WARN_ON(atomic_read(&sk->sk_rmem_alloc));
155 WARN_ON(refcount_read(&sk->sk_wmem_alloc));
156 WARN_ON(sk->sk_wmem_queued);
157 WARN_ON(sk->sk_forward_alloc);
158
159 kfree(rcu_dereference_protected(inet->inet_opt, 1));
160 dst_release(rcu_dereference_protected(sk->sk_dst_cache, 1));
161 dst_release(rcu_dereference_protected(sk->sk_rx_dst, 1));
162 sk_refcnt_debug_dec(sk);
163 }
164 EXPORT_SYMBOL(inet_sock_destruct);
165
166 /*
167 * The routines beyond this point handle the behaviour of an AF_INET
168 * socket object. Mostly it punts to the subprotocols of IP to do
169 * the work.
170 */
171
172 /*
173 * Automatically bind an unbound socket.
174 */
175
inet_autobind(struct sock * sk)176 static int inet_autobind(struct sock *sk)
177 {
178 struct inet_sock *inet;
179 /* We may need to bind the socket. */
180 lock_sock(sk);
181 inet = inet_sk(sk);
182 if (!inet->inet_num) {
183 if (sk->sk_prot->get_port(sk, 0)) {
184 release_sock(sk);
185 return -EAGAIN;
186 }
187 inet->inet_sport = htons(inet->inet_num);
188 }
189 release_sock(sk);
190 return 0;
191 }
192
193 /*
194 * Move a socket into listening state.
195 */
inet_listen(struct socket * sock,int backlog)196 int inet_listen(struct socket *sock, int backlog)
197 {
198 struct sock *sk = sock->sk;
199 unsigned char old_state;
200 int err, tcp_fastopen;
201
202 lock_sock(sk);
203
204 err = -EINVAL;
205 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
206 goto out;
207
208 old_state = sk->sk_state;
209 if (!((1 << old_state) & (TCPF_CLOSE | TCPF_LISTEN)))
210 goto out;
211
212 WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
213 /* Really, if the socket is already in listen state
214 * we can only allow the backlog to be adjusted.
215 */
216 if (old_state != TCP_LISTEN) {
217 /* Enable TFO w/o requiring TCP_FASTOPEN socket option.
218 * Note that only TCP sockets (SOCK_STREAM) will reach here.
219 * Also fastopen backlog may already been set via the option
220 * because the socket was in TCP_LISTEN state previously but
221 * was shutdown() rather than close().
222 */
223 tcp_fastopen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen);
224 if ((tcp_fastopen & TFO_SERVER_WO_SOCKOPT1) &&
225 (tcp_fastopen & TFO_SERVER_ENABLE) &&
226 !inet_csk(sk)->icsk_accept_queue.fastopenq.max_qlen) {
227 fastopen_queue_tune(sk, backlog);
228 tcp_fastopen_init_key_once(sock_net(sk));
229 }
230
231 err = inet_csk_listen_start(sk, backlog);
232 if (err)
233 goto out;
234 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_LISTEN_CB, 0, NULL);
235 }
236 err = 0;
237
238 out:
239 release_sock(sk);
240 return err;
241 }
242 EXPORT_SYMBOL(inet_listen);
243
244 /*
245 * Create an inet socket.
246 */
247
inet_create(struct net * net,struct socket * sock,int protocol,int kern)248 static int inet_create(struct net *net, struct socket *sock, int protocol,
249 int kern)
250 {
251 struct sock *sk;
252 struct inet_protosw *answer;
253 struct inet_sock *inet;
254 struct proto *answer_prot;
255 unsigned char answer_flags;
256 int try_loading_module = 0;
257 int err;
258
259 if (protocol < 0 || protocol >= IPPROTO_MAX)
260 return -EINVAL;
261
262 sock->state = SS_UNCONNECTED;
263
264 /* Look for the requested type/protocol pair. */
265 lookup_protocol:
266 err = -ESOCKTNOSUPPORT;
267 rcu_read_lock();
268 list_for_each_entry_rcu(answer, &inetsw[sock->type], list) {
269
270 err = 0;
271 /* Check the non-wild match. */
272 if (protocol == answer->protocol) {
273 if (protocol != IPPROTO_IP)
274 break;
275 } else {
276 /* Check for the two wild cases. */
277 if (IPPROTO_IP == protocol) {
278 protocol = answer->protocol;
279 break;
280 }
281 if (IPPROTO_IP == answer->protocol)
282 break;
283 }
284 err = -EPROTONOSUPPORT;
285 }
286
287 if (unlikely(err)) {
288 if (try_loading_module < 2) {
289 rcu_read_unlock();
290 /*
291 * Be more specific, e.g. net-pf-2-proto-132-type-1
292 * (net-pf-PF_INET-proto-IPPROTO_SCTP-type-SOCK_STREAM)
293 */
294 if (++try_loading_module == 1)
295 request_module("net-pf-%d-proto-%d-type-%d",
296 PF_INET, protocol, sock->type);
297 /*
298 * Fall back to generic, e.g. net-pf-2-proto-132
299 * (net-pf-PF_INET-proto-IPPROTO_SCTP)
300 */
301 else
302 request_module("net-pf-%d-proto-%d",
303 PF_INET, protocol);
304 goto lookup_protocol;
305 } else
306 goto out_rcu_unlock;
307 }
308
309 err = -EPERM;
310 if (sock->type == SOCK_RAW && !kern &&
311 !ns_capable(net->user_ns, CAP_NET_RAW))
312 goto out_rcu_unlock;
313
314 sock->ops = answer->ops;
315 answer_prot = answer->prot;
316 answer_flags = answer->flags;
317 rcu_read_unlock();
318
319 WARN_ON(!answer_prot->slab);
320
321 err = -ENOMEM;
322 sk = sk_alloc(net, PF_INET, GFP_KERNEL, answer_prot, kern);
323 if (!sk)
324 goto out;
325
326 err = 0;
327 if (INET_PROTOSW_REUSE & answer_flags)
328 sk->sk_reuse = SK_CAN_REUSE;
329
330 if (INET_PROTOSW_ICSK & answer_flags)
331 inet_init_csk_locks(sk);
332
333 inet = inet_sk(sk);
334 inet->is_icsk = (INET_PROTOSW_ICSK & answer_flags) != 0;
335
336 inet->nodefrag = 0;
337
338 if (SOCK_RAW == sock->type) {
339 inet->inet_num = protocol;
340 if (IPPROTO_RAW == protocol)
341 inet->hdrincl = 1;
342 }
343
344 if (READ_ONCE(net->ipv4.sysctl_ip_no_pmtu_disc))
345 inet->pmtudisc = IP_PMTUDISC_DONT;
346 else
347 inet->pmtudisc = IP_PMTUDISC_WANT;
348
349 inet->inet_id = 0;
350
351 sock_init_data(sock, sk);
352
353 sk->sk_destruct = inet_sock_destruct;
354 sk->sk_protocol = protocol;
355 sk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
356
357 inet->uc_ttl = -1;
358 inet->mc_loop = 1;
359 inet->mc_ttl = 1;
360 inet->mc_all = 1;
361 inet->mc_index = 0;
362 inet->mc_list = NULL;
363 inet->rcv_tos = 0;
364
365 sk_refcnt_debug_inc(sk);
366
367 if (inet->inet_num) {
368 /* It assumes that any protocol which allows
369 * the user to assign a number at socket
370 * creation time automatically
371 * shares.
372 */
373 inet->inet_sport = htons(inet->inet_num);
374 /* Add to protocol hash chains. */
375 err = sk->sk_prot->hash(sk);
376 if (err) {
377 sk_common_release(sk);
378 goto out;
379 }
380 }
381
382 if (sk->sk_prot->init) {
383 err = sk->sk_prot->init(sk);
384 if (err) {
385 sk_common_release(sk);
386 goto out;
387 }
388 }
389
390 if (!kern) {
391 err = BPF_CGROUP_RUN_PROG_INET_SOCK(sk);
392 if (err) {
393 sk_common_release(sk);
394 goto out;
395 }
396 }
397 out:
398 return err;
399 out_rcu_unlock:
400 rcu_read_unlock();
401 goto out;
402 }
403
404
405 /*
406 * The peer socket should always be NULL (or else). When we call this
407 * function we are destroying the object and from then on nobody
408 * should refer to it.
409 */
inet_release(struct socket * sock)410 int inet_release(struct socket *sock)
411 {
412 struct sock *sk = sock->sk;
413
414 if (sk) {
415 long timeout;
416
417 if (!sk->sk_kern_sock)
418 BPF_CGROUP_RUN_PROG_INET_SOCK_RELEASE(sk);
419
420 /* Applications forget to leave groups before exiting */
421 ip_mc_drop_socket(sk);
422
423 /* If linger is set, we don't return until the close
424 * is complete. Otherwise we return immediately. The
425 * actually closing is done the same either way.
426 *
427 * If the close is due to the process exiting, we never
428 * linger..
429 */
430 timeout = 0;
431 if (sock_flag(sk, SOCK_LINGER) &&
432 !(current->flags & PF_EXITING))
433 timeout = sk->sk_lingertime;
434 sk->sk_prot->close(sk, timeout);
435 sock->sk = NULL;
436 }
437 return 0;
438 }
439 EXPORT_SYMBOL(inet_release);
440
inet_bind(struct socket * sock,struct sockaddr * uaddr,int addr_len)441 int inet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
442 {
443 struct sock *sk = sock->sk;
444 u32 flags = BIND_WITH_LOCK;
445 int err;
446
447 /* If the socket has its own bind function then use it. (RAW) */
448 if (sk->sk_prot->bind) {
449 return sk->sk_prot->bind(sk, uaddr, addr_len);
450 }
451 if (addr_len < sizeof(struct sockaddr_in))
452 return -EINVAL;
453
454 /* BPF prog is run before any checks are done so that if the prog
455 * changes context in a wrong way it will be caught.
456 */
457 err = BPF_CGROUP_RUN_PROG_INET_BIND_LOCK(sk, uaddr,
458 CGROUP_INET4_BIND, &flags);
459 if (err)
460 return err;
461
462 return __inet_bind(sk, uaddr, addr_len, flags);
463 }
464 EXPORT_SYMBOL(inet_bind);
465
__inet_bind(struct sock * sk,struct sockaddr * uaddr,int addr_len,u32 flags)466 int __inet_bind(struct sock *sk, struct sockaddr *uaddr, int addr_len,
467 u32 flags)
468 {
469 struct sockaddr_in *addr = (struct sockaddr_in *)uaddr;
470 struct inet_sock *inet = inet_sk(sk);
471 struct net *net = sock_net(sk);
472 unsigned short snum;
473 int chk_addr_ret;
474 u32 tb_id = RT_TABLE_LOCAL;
475 int err;
476
477 if (addr->sin_family != AF_INET) {
478 /* Compatibility games : accept AF_UNSPEC (mapped to AF_INET)
479 * only if s_addr is INADDR_ANY.
480 */
481 err = -EAFNOSUPPORT;
482 if (addr->sin_family != AF_UNSPEC ||
483 addr->sin_addr.s_addr != htonl(INADDR_ANY))
484 goto out;
485 }
486
487 tb_id = l3mdev_fib_table_by_index(net, sk->sk_bound_dev_if) ? : tb_id;
488 chk_addr_ret = inet_addr_type_table(net, addr->sin_addr.s_addr, tb_id);
489
490 /* Not specified by any standard per-se, however it breaks too
491 * many applications when removed. It is unfortunate since
492 * allowing applications to make a non-local bind solves
493 * several problems with systems using dynamic addressing.
494 * (ie. your servers still start up even if your ISDN link
495 * is temporarily down)
496 */
497 err = -EADDRNOTAVAIL;
498 if (!inet_can_nonlocal_bind(net, inet) &&
499 addr->sin_addr.s_addr != htonl(INADDR_ANY) &&
500 chk_addr_ret != RTN_LOCAL &&
501 chk_addr_ret != RTN_MULTICAST &&
502 chk_addr_ret != RTN_BROADCAST)
503 goto out;
504
505 snum = ntohs(addr->sin_port);
506 err = -EPERM;
507 if (snum && inet_is_local_unbindable_port(net, snum))
508 goto out;
509
510 err = -EACCES;
511 if (!(flags & BIND_NO_CAP_NET_BIND_SERVICE) &&
512 snum && inet_port_requires_bind_service(net, snum) &&
513 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
514 goto out;
515
516 /* We keep a pair of addresses. rcv_saddr is the one
517 * used by hash lookups, and saddr is used for transmit.
518 *
519 * In the BSD API these are the same except where it
520 * would be illegal to use them (multicast/broadcast) in
521 * which case the sending device address is used.
522 */
523 if (flags & BIND_WITH_LOCK)
524 lock_sock(sk);
525
526 /* Check these errors (active socket, double bind). */
527 err = -EINVAL;
528 if (sk->sk_state != TCP_CLOSE || inet->inet_num)
529 goto out_release_sock;
530
531 inet->inet_rcv_saddr = inet->inet_saddr = addr->sin_addr.s_addr;
532 if (chk_addr_ret == RTN_MULTICAST || chk_addr_ret == RTN_BROADCAST)
533 inet->inet_saddr = 0; /* Use device */
534
535 /* Make sure we are allowed to bind here. */
536 if (snum || !(inet->bind_address_no_port ||
537 (flags & BIND_FORCE_ADDRESS_NO_PORT))) {
538 if (sk->sk_prot->get_port(sk, snum)) {
539 inet->inet_saddr = inet->inet_rcv_saddr = 0;
540 err = -EADDRINUSE;
541 goto out_release_sock;
542 }
543 if (!(flags & BIND_FROM_BPF)) {
544 err = BPF_CGROUP_RUN_PROG_INET4_POST_BIND(sk);
545 if (err) {
546 inet->inet_saddr = inet->inet_rcv_saddr = 0;
547 goto out_release_sock;
548 }
549 }
550 }
551
552 if (inet->inet_rcv_saddr)
553 sk->sk_userlocks |= SOCK_BINDADDR_LOCK;
554 if (snum)
555 sk->sk_userlocks |= SOCK_BINDPORT_LOCK;
556 inet->inet_sport = htons(inet->inet_num);
557 inet->inet_daddr = 0;
558 inet->inet_dport = 0;
559 sk_dst_reset(sk);
560 err = 0;
561 out_release_sock:
562 if (flags & BIND_WITH_LOCK)
563 release_sock(sk);
564 out:
565 return err;
566 }
567
inet_dgram_connect(struct socket * sock,struct sockaddr * uaddr,int addr_len,int flags)568 int inet_dgram_connect(struct socket *sock, struct sockaddr *uaddr,
569 int addr_len, int flags)
570 {
571 struct sock *sk = sock->sk;
572 int err;
573
574 if (addr_len < sizeof(uaddr->sa_family))
575 return -EINVAL;
576 if (uaddr->sa_family == AF_UNSPEC)
577 return sk->sk_prot->disconnect(sk, flags);
578
579 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) {
580 err = sk->sk_prot->pre_connect(sk, uaddr, addr_len);
581 if (err)
582 return err;
583 }
584
585 if (data_race(!inet_sk(sk)->inet_num) && inet_autobind(sk))
586 return -EAGAIN;
587 return sk->sk_prot->connect(sk, uaddr, addr_len);
588 }
589 EXPORT_SYMBOL(inet_dgram_connect);
590
inet_wait_for_connect(struct sock * sk,long timeo,int writebias)591 static long inet_wait_for_connect(struct sock *sk, long timeo, int writebias)
592 {
593 DEFINE_WAIT_FUNC(wait, woken_wake_function);
594
595 add_wait_queue(sk_sleep(sk), &wait);
596 sk->sk_write_pending += writebias;
597
598 /* Basic assumption: if someone sets sk->sk_err, he _must_
599 * change state of the socket from TCP_SYN_*.
600 * Connect() does not allow to get error notifications
601 * without closing the socket.
602 */
603 while ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
604 release_sock(sk);
605 timeo = wait_woken(&wait, TASK_INTERRUPTIBLE, timeo);
606 lock_sock(sk);
607 if (signal_pending(current) || !timeo)
608 break;
609 }
610 remove_wait_queue(sk_sleep(sk), &wait);
611 sk->sk_write_pending -= writebias;
612 return timeo;
613 }
614
615 /*
616 * Connect to a remote host. There is regrettably still a little
617 * TCP 'magic' in here.
618 */
__inet_stream_connect(struct socket * sock,struct sockaddr * uaddr,int addr_len,int flags,int is_sendmsg)619 int __inet_stream_connect(struct socket *sock, struct sockaddr *uaddr,
620 int addr_len, int flags, int is_sendmsg)
621 {
622 struct sock *sk = sock->sk;
623 int err;
624 long timeo;
625
626 /*
627 * uaddr can be NULL and addr_len can be 0 if:
628 * sk is a TCP fastopen active socket and
629 * TCP_FASTOPEN_CONNECT sockopt is set and
630 * we already have a valid cookie for this socket.
631 * In this case, user can call write() after connect().
632 * write() will invoke tcp_sendmsg_fastopen() which calls
633 * __inet_stream_connect().
634 */
635 if (uaddr) {
636 if (addr_len < sizeof(uaddr->sa_family))
637 return -EINVAL;
638
639 if (uaddr->sa_family == AF_UNSPEC) {
640 err = sk->sk_prot->disconnect(sk, flags);
641 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED;
642 goto out;
643 }
644 }
645
646 switch (sock->state) {
647 default:
648 err = -EINVAL;
649 goto out;
650 case SS_CONNECTED:
651 err = -EISCONN;
652 goto out;
653 case SS_CONNECTING:
654 if (inet_sk(sk)->defer_connect)
655 err = is_sendmsg ? -EINPROGRESS : -EISCONN;
656 else
657 err = -EALREADY;
658 /* Fall out of switch with err, set for this state */
659 break;
660 case SS_UNCONNECTED:
661 err = -EISCONN;
662 if (sk->sk_state != TCP_CLOSE)
663 goto out;
664
665 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) {
666 err = sk->sk_prot->pre_connect(sk, uaddr, addr_len);
667 if (err)
668 goto out;
669 }
670
671 err = sk->sk_prot->connect(sk, uaddr, addr_len);
672 if (err < 0)
673 goto out;
674
675 sock->state = SS_CONNECTING;
676
677 if (!err && inet_sk(sk)->defer_connect)
678 goto out;
679
680 /* Just entered SS_CONNECTING state; the only
681 * difference is that return value in non-blocking
682 * case is EINPROGRESS, rather than EALREADY.
683 */
684 err = -EINPROGRESS;
685 break;
686 }
687
688 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
689
690 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
691 int writebias = (sk->sk_protocol == IPPROTO_TCP) &&
692 tcp_sk(sk)->fastopen_req &&
693 tcp_sk(sk)->fastopen_req->data ? 1 : 0;
694
695 /* Error code is set above */
696 if (!timeo || !inet_wait_for_connect(sk, timeo, writebias))
697 goto out;
698
699 err = sock_intr_errno(timeo);
700 if (signal_pending(current))
701 goto out;
702 }
703
704 /* Connection was closed by RST, timeout, ICMP error
705 * or another process disconnected us.
706 */
707 if (sk->sk_state == TCP_CLOSE)
708 goto sock_error;
709
710 /* sk->sk_err may be not zero now, if RECVERR was ordered by user
711 * and error was received after socket entered established state.
712 * Hence, it is handled normally after connect() return successfully.
713 */
714
715 sock->state = SS_CONNECTED;
716 err = 0;
717 out:
718 return err;
719
720 sock_error:
721 err = sock_error(sk) ? : -ECONNABORTED;
722 sock->state = SS_UNCONNECTED;
723 if (sk->sk_prot->disconnect(sk, flags))
724 sock->state = SS_DISCONNECTING;
725 goto out;
726 }
727 EXPORT_SYMBOL(__inet_stream_connect);
728
inet_stream_connect(struct socket * sock,struct sockaddr * uaddr,int addr_len,int flags)729 int inet_stream_connect(struct socket *sock, struct sockaddr *uaddr,
730 int addr_len, int flags)
731 {
732 int err;
733
734 lock_sock(sock->sk);
735 err = __inet_stream_connect(sock, uaddr, addr_len, flags, 0);
736 release_sock(sock->sk);
737 return err;
738 }
739 EXPORT_SYMBOL(inet_stream_connect);
740
741 /*
742 * Accept a pending connection. The TCP layer now gives BSD semantics.
743 */
744
inet_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)745 int inet_accept(struct socket *sock, struct socket *newsock, int flags,
746 bool kern)
747 {
748 struct sock *sk1 = sock->sk;
749 int err = -EINVAL;
750 struct sock *sk2 = sk1->sk_prot->accept(sk1, flags, &err, kern);
751
752 if (!sk2)
753 goto do_err;
754
755 lock_sock(sk2);
756
757 sock_rps_record_flow(sk2);
758 WARN_ON(!((1 << sk2->sk_state) &
759 (TCPF_ESTABLISHED | TCPF_SYN_RECV |
760 TCPF_CLOSE_WAIT | TCPF_CLOSE)));
761
762 sock_graft(sk2, newsock);
763
764 newsock->state = SS_CONNECTED;
765 err = 0;
766 release_sock(sk2);
767 do_err:
768 return err;
769 }
770 EXPORT_SYMBOL(inet_accept);
771
772 /*
773 * This does both peername and sockname.
774 */
inet_getname(struct socket * sock,struct sockaddr * uaddr,int peer)775 int inet_getname(struct socket *sock, struct sockaddr *uaddr,
776 int peer)
777 {
778 struct sock *sk = sock->sk;
779 struct inet_sock *inet = inet_sk(sk);
780 DECLARE_SOCKADDR(struct sockaddr_in *, sin, uaddr);
781
782 sin->sin_family = AF_INET;
783 lock_sock(sk);
784 if (peer) {
785 if (!inet->inet_dport ||
786 (((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_SYN_SENT)) &&
787 peer == 1)) {
788 release_sock(sk);
789 return -ENOTCONN;
790 }
791 sin->sin_port = inet->inet_dport;
792 sin->sin_addr.s_addr = inet->inet_daddr;
793 BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin,
794 CGROUP_INET4_GETPEERNAME);
795 } else {
796 __be32 addr = inet->inet_rcv_saddr;
797 if (!addr)
798 addr = inet->inet_saddr;
799 sin->sin_port = inet->inet_sport;
800 sin->sin_addr.s_addr = addr;
801 BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin,
802 CGROUP_INET4_GETSOCKNAME);
803 }
804 release_sock(sk);
805 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
806 return sizeof(*sin);
807 }
808 EXPORT_SYMBOL(inet_getname);
809
inet_send_prepare(struct sock * sk)810 int inet_send_prepare(struct sock *sk)
811 {
812 sock_rps_record_flow(sk);
813
814 /* We may need to bind the socket. */
815 if (data_race(!inet_sk(sk)->inet_num) && !sk->sk_prot->no_autobind &&
816 inet_autobind(sk))
817 return -EAGAIN;
818
819 return 0;
820 }
821 EXPORT_SYMBOL_GPL(inet_send_prepare);
822
inet_sendmsg(struct socket * sock,struct msghdr * msg,size_t size)823 int inet_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
824 {
825 struct sock *sk = sock->sk;
826
827 if (unlikely(inet_send_prepare(sk)))
828 return -EAGAIN;
829
830 return INDIRECT_CALL_2(sk->sk_prot->sendmsg, tcp_sendmsg, udp_sendmsg,
831 sk, msg, size);
832 }
833 EXPORT_SYMBOL(inet_sendmsg);
834
inet_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)835 ssize_t inet_sendpage(struct socket *sock, struct page *page, int offset,
836 size_t size, int flags)
837 {
838 struct sock *sk = sock->sk;
839
840 if (unlikely(inet_send_prepare(sk)))
841 return -EAGAIN;
842
843 if (sk->sk_prot->sendpage)
844 return sk->sk_prot->sendpage(sk, page, offset, size, flags);
845 return sock_no_sendpage(sock, page, offset, size, flags);
846 }
847 EXPORT_SYMBOL(inet_sendpage);
848
849 INDIRECT_CALLABLE_DECLARE(int udp_recvmsg(struct sock *, struct msghdr *,
850 size_t, int, int, int *));
inet_recvmsg(struct socket * sock,struct msghdr * msg,size_t size,int flags)851 int inet_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
852 int flags)
853 {
854 struct sock *sk = sock->sk;
855 int addr_len = 0;
856 int err;
857
858 if (likely(!(flags & MSG_ERRQUEUE)))
859 sock_rps_record_flow(sk);
860
861 err = INDIRECT_CALL_2(sk->sk_prot->recvmsg, tcp_recvmsg, udp_recvmsg,
862 sk, msg, size, flags & MSG_DONTWAIT,
863 flags & ~MSG_DONTWAIT, &addr_len);
864 if (err >= 0)
865 msg->msg_namelen = addr_len;
866 return err;
867 }
868 EXPORT_SYMBOL(inet_recvmsg);
869
inet_shutdown(struct socket * sock,int how)870 int inet_shutdown(struct socket *sock, int how)
871 {
872 struct sock *sk = sock->sk;
873 int err = 0;
874
875 /* This should really check to make sure
876 * the socket is a TCP socket. (WHY AC...)
877 */
878 how++; /* maps 0->1 has the advantage of making bit 1 rcvs and
879 1->2 bit 2 snds.
880 2->3 */
881 if ((how & ~SHUTDOWN_MASK) || !how) /* MAXINT->0 */
882 return -EINVAL;
883
884 lock_sock(sk);
885 if (sock->state == SS_CONNECTING) {
886 if ((1 << sk->sk_state) &
887 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))
888 sock->state = SS_DISCONNECTING;
889 else
890 sock->state = SS_CONNECTED;
891 }
892
893 switch (sk->sk_state) {
894 case TCP_CLOSE:
895 err = -ENOTCONN;
896 /* Hack to wake up other listeners, who can poll for
897 EPOLLHUP, even on eg. unconnected UDP sockets -- RR */
898 fallthrough;
899 default:
900 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | how);
901 if (sk->sk_prot->shutdown)
902 sk->sk_prot->shutdown(sk, how);
903 break;
904
905 /* Remaining two branches are temporary solution for missing
906 * close() in multithreaded environment. It is _not_ a good idea,
907 * but we have no choice until close() is repaired at VFS level.
908 */
909 case TCP_LISTEN:
910 if (!(how & RCV_SHUTDOWN))
911 break;
912 fallthrough;
913 case TCP_SYN_SENT:
914 err = sk->sk_prot->disconnect(sk, O_NONBLOCK);
915 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED;
916 break;
917 }
918
919 /* Wake up anyone sleeping in poll. */
920 sk->sk_state_change(sk);
921 release_sock(sk);
922 return err;
923 }
924 EXPORT_SYMBOL(inet_shutdown);
925
926 /*
927 * ioctl() calls you can issue on an INET socket. Most of these are
928 * device configuration and stuff and very rarely used. Some ioctls
929 * pass on to the socket itself.
930 *
931 * NOTE: I like the idea of a module for the config stuff. ie ifconfig
932 * loads the devconfigure module does its configuring and unloads it.
933 * There's a good 20K of config code hanging around the kernel.
934 */
935
inet_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)936 int inet_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
937 {
938 struct sock *sk = sock->sk;
939 int err = 0;
940 struct net *net = sock_net(sk);
941 void __user *p = (void __user *)arg;
942 struct ifreq ifr;
943 struct rtentry rt;
944
945 switch (cmd) {
946 case SIOCADDRT:
947 case SIOCDELRT:
948 if (copy_from_user(&rt, p, sizeof(struct rtentry)))
949 return -EFAULT;
950 err = ip_rt_ioctl(net, cmd, &rt);
951 break;
952 case SIOCRTMSG:
953 err = -EINVAL;
954 break;
955 case SIOCDARP:
956 case SIOCGARP:
957 case SIOCSARP:
958 err = arp_ioctl(net, cmd, (void __user *)arg);
959 break;
960 case SIOCGIFADDR:
961 case SIOCGIFBRDADDR:
962 case SIOCGIFNETMASK:
963 case SIOCGIFDSTADDR:
964 case SIOCGIFPFLAGS:
965 if (get_user_ifreq(&ifr, NULL, p))
966 return -EFAULT;
967 err = devinet_ioctl(net, cmd, &ifr);
968 if (!err && put_user_ifreq(&ifr, p))
969 err = -EFAULT;
970 break;
971
972 case SIOCSIFADDR:
973 case SIOCSIFBRDADDR:
974 case SIOCSIFNETMASK:
975 case SIOCSIFDSTADDR:
976 case SIOCSIFPFLAGS:
977 case SIOCSIFFLAGS:
978 if (get_user_ifreq(&ifr, NULL, p))
979 return -EFAULT;
980 err = devinet_ioctl(net, cmd, &ifr);
981 break;
982 default:
983 if (sk->sk_prot->ioctl)
984 err = sk->sk_prot->ioctl(sk, cmd, arg);
985 else
986 err = -ENOIOCTLCMD;
987 break;
988 }
989 return err;
990 }
991 EXPORT_SYMBOL(inet_ioctl);
992
993 #ifdef CONFIG_COMPAT
inet_compat_routing_ioctl(struct sock * sk,unsigned int cmd,struct compat_rtentry __user * ur)994 static int inet_compat_routing_ioctl(struct sock *sk, unsigned int cmd,
995 struct compat_rtentry __user *ur)
996 {
997 compat_uptr_t rtdev;
998 struct rtentry rt;
999
1000 if (copy_from_user(&rt.rt_dst, &ur->rt_dst,
1001 3 * sizeof(struct sockaddr)) ||
1002 get_user(rt.rt_flags, &ur->rt_flags) ||
1003 get_user(rt.rt_metric, &ur->rt_metric) ||
1004 get_user(rt.rt_mtu, &ur->rt_mtu) ||
1005 get_user(rt.rt_window, &ur->rt_window) ||
1006 get_user(rt.rt_irtt, &ur->rt_irtt) ||
1007 get_user(rtdev, &ur->rt_dev))
1008 return -EFAULT;
1009
1010 rt.rt_dev = compat_ptr(rtdev);
1011 return ip_rt_ioctl(sock_net(sk), cmd, &rt);
1012 }
1013
inet_compat_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)1014 static int inet_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1015 {
1016 void __user *argp = compat_ptr(arg);
1017 struct sock *sk = sock->sk;
1018
1019 switch (cmd) {
1020 case SIOCADDRT:
1021 case SIOCDELRT:
1022 return inet_compat_routing_ioctl(sk, cmd, argp);
1023 default:
1024 if (!sk->sk_prot->compat_ioctl)
1025 return -ENOIOCTLCMD;
1026 return sk->sk_prot->compat_ioctl(sk, cmd, arg);
1027 }
1028 }
1029 #endif /* CONFIG_COMPAT */
1030
1031 const struct proto_ops inet_stream_ops = {
1032 .family = PF_INET,
1033 .owner = THIS_MODULE,
1034 .release = inet_release,
1035 .bind = inet_bind,
1036 .connect = inet_stream_connect,
1037 .socketpair = sock_no_socketpair,
1038 .accept = inet_accept,
1039 .getname = inet_getname,
1040 .poll = tcp_poll,
1041 .ioctl = inet_ioctl,
1042 .gettstamp = sock_gettstamp,
1043 .listen = inet_listen,
1044 .shutdown = inet_shutdown,
1045 .setsockopt = sock_common_setsockopt,
1046 .getsockopt = sock_common_getsockopt,
1047 .sendmsg = inet_sendmsg,
1048 .recvmsg = inet_recvmsg,
1049 #ifdef CONFIG_MMU
1050 .mmap = tcp_mmap,
1051 #endif
1052 .sendpage = inet_sendpage,
1053 .splice_read = tcp_splice_read,
1054 .read_sock = tcp_read_sock,
1055 .sendmsg_locked = tcp_sendmsg_locked,
1056 .sendpage_locked = tcp_sendpage_locked,
1057 .peek_len = tcp_peek_len,
1058 #ifdef CONFIG_COMPAT
1059 .compat_ioctl = inet_compat_ioctl,
1060 #endif
1061 .set_rcvlowat = tcp_set_rcvlowat,
1062 };
1063 EXPORT_SYMBOL(inet_stream_ops);
1064
1065 const struct proto_ops inet_dgram_ops = {
1066 .family = PF_INET,
1067 .owner = THIS_MODULE,
1068 .release = inet_release,
1069 .bind = inet_bind,
1070 .connect = inet_dgram_connect,
1071 .socketpair = sock_no_socketpair,
1072 .accept = sock_no_accept,
1073 .getname = inet_getname,
1074 .poll = udp_poll,
1075 .ioctl = inet_ioctl,
1076 .gettstamp = sock_gettstamp,
1077 .listen = sock_no_listen,
1078 .shutdown = inet_shutdown,
1079 .setsockopt = sock_common_setsockopt,
1080 .getsockopt = sock_common_getsockopt,
1081 .sendmsg = inet_sendmsg,
1082 .read_sock = udp_read_sock,
1083 .recvmsg = inet_recvmsg,
1084 .mmap = sock_no_mmap,
1085 .sendpage = inet_sendpage,
1086 .set_peek_off = sk_set_peek_off,
1087 #ifdef CONFIG_COMPAT
1088 .compat_ioctl = inet_compat_ioctl,
1089 #endif
1090 };
1091 EXPORT_SYMBOL(inet_dgram_ops);
1092
1093 /*
1094 * For SOCK_RAW sockets; should be the same as inet_dgram_ops but without
1095 * udp_poll
1096 */
1097 static const struct proto_ops inet_sockraw_ops = {
1098 .family = PF_INET,
1099 .owner = THIS_MODULE,
1100 .release = inet_release,
1101 .bind = inet_bind,
1102 .connect = inet_dgram_connect,
1103 .socketpair = sock_no_socketpair,
1104 .accept = sock_no_accept,
1105 .getname = inet_getname,
1106 .poll = datagram_poll,
1107 .ioctl = inet_ioctl,
1108 .gettstamp = sock_gettstamp,
1109 .listen = sock_no_listen,
1110 .shutdown = inet_shutdown,
1111 .setsockopt = sock_common_setsockopt,
1112 .getsockopt = sock_common_getsockopt,
1113 .sendmsg = inet_sendmsg,
1114 .recvmsg = inet_recvmsg,
1115 .mmap = sock_no_mmap,
1116 .sendpage = inet_sendpage,
1117 #ifdef CONFIG_COMPAT
1118 .compat_ioctl = inet_compat_ioctl,
1119 #endif
1120 };
1121
1122 static const struct net_proto_family inet_family_ops = {
1123 .family = PF_INET,
1124 .create = inet_create,
1125 .owner = THIS_MODULE,
1126 };
1127
1128 /* Upon startup we insert all the elements in inetsw_array[] into
1129 * the linked list inetsw.
1130 */
1131 static struct inet_protosw inetsw_array[] =
1132 {
1133 {
1134 .type = SOCK_STREAM,
1135 .protocol = IPPROTO_TCP,
1136 .prot = &tcp_prot,
1137 .ops = &inet_stream_ops,
1138 .flags = INET_PROTOSW_PERMANENT |
1139 INET_PROTOSW_ICSK,
1140 },
1141
1142 {
1143 .type = SOCK_DGRAM,
1144 .protocol = IPPROTO_UDP,
1145 .prot = &udp_prot,
1146 .ops = &inet_dgram_ops,
1147 .flags = INET_PROTOSW_PERMANENT,
1148 },
1149
1150 {
1151 .type = SOCK_DGRAM,
1152 .protocol = IPPROTO_ICMP,
1153 .prot = &ping_prot,
1154 .ops = &inet_sockraw_ops,
1155 .flags = INET_PROTOSW_REUSE,
1156 },
1157
1158 {
1159 .type = SOCK_RAW,
1160 .protocol = IPPROTO_IP, /* wild card */
1161 .prot = &raw_prot,
1162 .ops = &inet_sockraw_ops,
1163 .flags = INET_PROTOSW_REUSE,
1164 }
1165 };
1166
1167 #define INETSW_ARRAY_LEN ARRAY_SIZE(inetsw_array)
1168
inet_register_protosw(struct inet_protosw * p)1169 void inet_register_protosw(struct inet_protosw *p)
1170 {
1171 struct list_head *lh;
1172 struct inet_protosw *answer;
1173 int protocol = p->protocol;
1174 struct list_head *last_perm;
1175
1176 spin_lock_bh(&inetsw_lock);
1177
1178 if (p->type >= SOCK_MAX)
1179 goto out_illegal;
1180
1181 /* If we are trying to override a permanent protocol, bail. */
1182 last_perm = &inetsw[p->type];
1183 list_for_each(lh, &inetsw[p->type]) {
1184 answer = list_entry(lh, struct inet_protosw, list);
1185 /* Check only the non-wild match. */
1186 if ((INET_PROTOSW_PERMANENT & answer->flags) == 0)
1187 break;
1188 if (protocol == answer->protocol)
1189 goto out_permanent;
1190 last_perm = lh;
1191 }
1192
1193 /* Add the new entry after the last permanent entry if any, so that
1194 * the new entry does not override a permanent entry when matched with
1195 * a wild-card protocol. But it is allowed to override any existing
1196 * non-permanent entry. This means that when we remove this entry, the
1197 * system automatically returns to the old behavior.
1198 */
1199 list_add_rcu(&p->list, last_perm);
1200 out:
1201 spin_unlock_bh(&inetsw_lock);
1202
1203 return;
1204
1205 out_permanent:
1206 pr_err("Attempt to override permanent protocol %d\n", protocol);
1207 goto out;
1208
1209 out_illegal:
1210 pr_err("Ignoring attempt to register invalid socket type %d\n",
1211 p->type);
1212 goto out;
1213 }
1214 EXPORT_SYMBOL(inet_register_protosw);
1215
inet_unregister_protosw(struct inet_protosw * p)1216 void inet_unregister_protosw(struct inet_protosw *p)
1217 {
1218 if (INET_PROTOSW_PERMANENT & p->flags) {
1219 pr_err("Attempt to unregister permanent protocol %d\n",
1220 p->protocol);
1221 } else {
1222 spin_lock_bh(&inetsw_lock);
1223 list_del_rcu(&p->list);
1224 spin_unlock_bh(&inetsw_lock);
1225
1226 synchronize_net();
1227 }
1228 }
1229 EXPORT_SYMBOL(inet_unregister_protosw);
1230
inet_sk_reselect_saddr(struct sock * sk)1231 static int inet_sk_reselect_saddr(struct sock *sk)
1232 {
1233 struct inet_sock *inet = inet_sk(sk);
1234 __be32 old_saddr = inet->inet_saddr;
1235 __be32 daddr = inet->inet_daddr;
1236 struct flowi4 *fl4;
1237 struct rtable *rt;
1238 __be32 new_saddr;
1239 struct ip_options_rcu *inet_opt;
1240
1241 inet_opt = rcu_dereference_protected(inet->inet_opt,
1242 lockdep_sock_is_held(sk));
1243 if (inet_opt && inet_opt->opt.srr)
1244 daddr = inet_opt->opt.faddr;
1245
1246 /* Query new route. */
1247 fl4 = &inet->cork.fl.u.ip4;
1248 rt = ip_route_connect(fl4, daddr, 0, RT_CONN_FLAGS(sk),
1249 sk->sk_bound_dev_if, sk->sk_protocol,
1250 inet->inet_sport, inet->inet_dport, sk);
1251 if (IS_ERR(rt))
1252 return PTR_ERR(rt);
1253
1254 sk_setup_caps(sk, &rt->dst);
1255
1256 new_saddr = fl4->saddr;
1257
1258 if (new_saddr == old_saddr)
1259 return 0;
1260
1261 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_dynaddr) > 1) {
1262 pr_info("%s(): shifting inet->saddr from %pI4 to %pI4\n",
1263 __func__, &old_saddr, &new_saddr);
1264 }
1265
1266 inet->inet_saddr = inet->inet_rcv_saddr = new_saddr;
1267
1268 /*
1269 * XXX The only one ugly spot where we need to
1270 * XXX really change the sockets identity after
1271 * XXX it has entered the hashes. -DaveM
1272 *
1273 * Besides that, it does not check for connection
1274 * uniqueness. Wait for troubles.
1275 */
1276 return __sk_prot_rehash(sk);
1277 }
1278
inet_sk_rebuild_header(struct sock * sk)1279 int inet_sk_rebuild_header(struct sock *sk)
1280 {
1281 struct inet_sock *inet = inet_sk(sk);
1282 struct rtable *rt = (struct rtable *)__sk_dst_check(sk, 0);
1283 __be32 daddr;
1284 struct ip_options_rcu *inet_opt;
1285 struct flowi4 *fl4;
1286 int err;
1287
1288 /* Route is OK, nothing to do. */
1289 if (rt)
1290 return 0;
1291
1292 /* Reroute. */
1293 rcu_read_lock();
1294 inet_opt = rcu_dereference(inet->inet_opt);
1295 daddr = inet->inet_daddr;
1296 if (inet_opt && inet_opt->opt.srr)
1297 daddr = inet_opt->opt.faddr;
1298 rcu_read_unlock();
1299 fl4 = &inet->cork.fl.u.ip4;
1300 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, inet->inet_saddr,
1301 inet->inet_dport, inet->inet_sport,
1302 sk->sk_protocol, RT_CONN_FLAGS(sk),
1303 sk->sk_bound_dev_if);
1304 if (!IS_ERR(rt)) {
1305 err = 0;
1306 sk_setup_caps(sk, &rt->dst);
1307 } else {
1308 err = PTR_ERR(rt);
1309
1310 /* Routing failed... */
1311 sk->sk_route_caps = 0;
1312 /*
1313 * Other protocols have to map its equivalent state to TCP_SYN_SENT.
1314 * DCCP maps its DCCP_REQUESTING state to TCP_SYN_SENT. -acme
1315 */
1316 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_dynaddr) ||
1317 sk->sk_state != TCP_SYN_SENT ||
1318 (sk->sk_userlocks & SOCK_BINDADDR_LOCK) ||
1319 (err = inet_sk_reselect_saddr(sk)) != 0)
1320 sk->sk_err_soft = -err;
1321 }
1322
1323 return err;
1324 }
1325 EXPORT_SYMBOL(inet_sk_rebuild_header);
1326
inet_sk_set_state(struct sock * sk,int state)1327 void inet_sk_set_state(struct sock *sk, int state)
1328 {
1329 trace_inet_sock_set_state(sk, sk->sk_state, state);
1330 sk->sk_state = state;
1331 }
1332 EXPORT_SYMBOL(inet_sk_set_state);
1333
inet_sk_state_store(struct sock * sk,int newstate)1334 void inet_sk_state_store(struct sock *sk, int newstate)
1335 {
1336 trace_inet_sock_set_state(sk, sk->sk_state, newstate);
1337 smp_store_release(&sk->sk_state, newstate);
1338 }
1339
inet_gso_segment(struct sk_buff * skb,netdev_features_t features)1340 struct sk_buff *inet_gso_segment(struct sk_buff *skb,
1341 netdev_features_t features)
1342 {
1343 bool udpfrag = false, fixedid = false, gso_partial, encap;
1344 struct sk_buff *segs = ERR_PTR(-EINVAL);
1345 const struct net_offload *ops;
1346 unsigned int offset = 0;
1347 struct iphdr *iph;
1348 int proto, tot_len;
1349 int nhoff;
1350 int ihl;
1351 int id;
1352
1353 skb_reset_network_header(skb);
1354 nhoff = skb_network_header(skb) - skb_mac_header(skb);
1355 if (unlikely(!pskb_may_pull(skb, sizeof(*iph))))
1356 goto out;
1357
1358 iph = ip_hdr(skb);
1359 ihl = iph->ihl * 4;
1360 if (ihl < sizeof(*iph))
1361 goto out;
1362
1363 id = ntohs(iph->id);
1364 proto = iph->protocol;
1365
1366 /* Warning: after this point, iph might be no longer valid */
1367 if (unlikely(!pskb_may_pull(skb, ihl)))
1368 goto out;
1369 __skb_pull(skb, ihl);
1370
1371 encap = SKB_GSO_CB(skb)->encap_level > 0;
1372 if (encap)
1373 features &= skb->dev->hw_enc_features;
1374 SKB_GSO_CB(skb)->encap_level += ihl;
1375
1376 skb_reset_transport_header(skb);
1377
1378 segs = ERR_PTR(-EPROTONOSUPPORT);
1379
1380 if (!skb->encapsulation || encap) {
1381 udpfrag = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP);
1382 fixedid = !!(skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID);
1383
1384 /* fixed ID is invalid if DF bit is not set */
1385 if (fixedid && !(ip_hdr(skb)->frag_off & htons(IP_DF)))
1386 goto out;
1387 }
1388
1389 ops = rcu_dereference(inet_offloads[proto]);
1390 if (likely(ops && ops->callbacks.gso_segment)) {
1391 segs = ops->callbacks.gso_segment(skb, features);
1392 if (!segs)
1393 skb->network_header = skb_mac_header(skb) + nhoff - skb->head;
1394 }
1395
1396 if (IS_ERR_OR_NULL(segs))
1397 goto out;
1398
1399 gso_partial = !!(skb_shinfo(segs)->gso_type & SKB_GSO_PARTIAL);
1400
1401 skb = segs;
1402 do {
1403 iph = (struct iphdr *)(skb_mac_header(skb) + nhoff);
1404 if (udpfrag) {
1405 iph->frag_off = htons(offset >> 3);
1406 if (skb->next)
1407 iph->frag_off |= htons(IP_MF);
1408 offset += skb->len - nhoff - ihl;
1409 tot_len = skb->len - nhoff;
1410 } else if (skb_is_gso(skb)) {
1411 if (!fixedid) {
1412 iph->id = htons(id);
1413 id += skb_shinfo(skb)->gso_segs;
1414 }
1415
1416 if (gso_partial)
1417 tot_len = skb_shinfo(skb)->gso_size +
1418 SKB_GSO_CB(skb)->data_offset +
1419 skb->head - (unsigned char *)iph;
1420 else
1421 tot_len = skb->len - nhoff;
1422 } else {
1423 if (!fixedid)
1424 iph->id = htons(id++);
1425 tot_len = skb->len - nhoff;
1426 }
1427 iph->tot_len = htons(tot_len);
1428 ip_send_check(iph);
1429 if (encap)
1430 skb_reset_inner_headers(skb);
1431 skb->network_header = (u8 *)iph - skb->head;
1432 skb_reset_mac_len(skb);
1433 } while ((skb = skb->next));
1434
1435 out:
1436 return segs;
1437 }
1438
ipip_gso_segment(struct sk_buff * skb,netdev_features_t features)1439 static struct sk_buff *ipip_gso_segment(struct sk_buff *skb,
1440 netdev_features_t features)
1441 {
1442 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_IPXIP4))
1443 return ERR_PTR(-EINVAL);
1444
1445 return inet_gso_segment(skb, features);
1446 }
1447
inet_gro_receive(struct list_head * head,struct sk_buff * skb)1448 struct sk_buff *inet_gro_receive(struct list_head *head, struct sk_buff *skb)
1449 {
1450 const struct net_offload *ops;
1451 struct sk_buff *pp = NULL;
1452 const struct iphdr *iph;
1453 struct sk_buff *p;
1454 unsigned int hlen;
1455 unsigned int off;
1456 unsigned int id;
1457 int flush = 1;
1458 int proto;
1459
1460 off = skb_gro_offset(skb);
1461 hlen = off + sizeof(*iph);
1462 iph = skb_gro_header_fast(skb, off);
1463 if (skb_gro_header_hard(skb, hlen)) {
1464 iph = skb_gro_header_slow(skb, hlen, off);
1465 if (unlikely(!iph))
1466 goto out;
1467 }
1468
1469 proto = iph->protocol;
1470
1471 rcu_read_lock();
1472 ops = rcu_dereference(inet_offloads[proto]);
1473 if (!ops || !ops->callbacks.gro_receive)
1474 goto out_unlock;
1475
1476 if (*(u8 *)iph != 0x45)
1477 goto out_unlock;
1478
1479 if (ip_is_fragment(iph))
1480 goto out_unlock;
1481
1482 if (unlikely(ip_fast_csum((u8 *)iph, 5)))
1483 goto out_unlock;
1484
1485 id = ntohl(*(__be32 *)&iph->id);
1486 flush = (u16)((ntohl(*(__be32 *)iph) ^ skb_gro_len(skb)) | (id & ~IP_DF));
1487 id >>= 16;
1488
1489 list_for_each_entry(p, head, list) {
1490 struct iphdr *iph2;
1491 u16 flush_id;
1492
1493 if (!NAPI_GRO_CB(p)->same_flow)
1494 continue;
1495
1496 iph2 = (struct iphdr *)(p->data + off);
1497 /* The above works because, with the exception of the top
1498 * (inner most) layer, we only aggregate pkts with the same
1499 * hdr length so all the hdrs we'll need to verify will start
1500 * at the same offset.
1501 */
1502 if ((iph->protocol ^ iph2->protocol) |
1503 ((__force u32)iph->saddr ^ (__force u32)iph2->saddr) |
1504 ((__force u32)iph->daddr ^ (__force u32)iph2->daddr)) {
1505 NAPI_GRO_CB(p)->same_flow = 0;
1506 continue;
1507 }
1508
1509 /* All fields must match except length and checksum. */
1510 NAPI_GRO_CB(p)->flush |=
1511 (iph->ttl ^ iph2->ttl) |
1512 (iph->tos ^ iph2->tos) |
1513 ((iph->frag_off ^ iph2->frag_off) & htons(IP_DF));
1514
1515 NAPI_GRO_CB(p)->flush |= flush;
1516
1517 /* We need to store of the IP ID check to be included later
1518 * when we can verify that this packet does in fact belong
1519 * to a given flow.
1520 */
1521 flush_id = (u16)(id - ntohs(iph2->id));
1522
1523 /* This bit of code makes it much easier for us to identify
1524 * the cases where we are doing atomic vs non-atomic IP ID
1525 * checks. Specifically an atomic check can return IP ID
1526 * values 0 - 0xFFFF, while a non-atomic check can only
1527 * return 0 or 0xFFFF.
1528 */
1529 if (!NAPI_GRO_CB(p)->is_atomic ||
1530 !(iph->frag_off & htons(IP_DF))) {
1531 flush_id ^= NAPI_GRO_CB(p)->count;
1532 flush_id = flush_id ? 0xFFFF : 0;
1533 }
1534
1535 /* If the previous IP ID value was based on an atomic
1536 * datagram we can overwrite the value and ignore it.
1537 */
1538 if (NAPI_GRO_CB(skb)->is_atomic)
1539 NAPI_GRO_CB(p)->flush_id = flush_id;
1540 else
1541 NAPI_GRO_CB(p)->flush_id |= flush_id;
1542 }
1543
1544 NAPI_GRO_CB(skb)->is_atomic = !!(iph->frag_off & htons(IP_DF));
1545 NAPI_GRO_CB(skb)->flush |= flush;
1546 skb_set_network_header(skb, off);
1547 /* The above will be needed by the transport layer if there is one
1548 * immediately following this IP hdr.
1549 */
1550
1551 /* Note : No need to call skb_gro_postpull_rcsum() here,
1552 * as we already checked checksum over ipv4 header was 0
1553 */
1554 skb_gro_pull(skb, sizeof(*iph));
1555 skb_set_transport_header(skb, skb_gro_offset(skb));
1556
1557 pp = indirect_call_gro_receive(tcp4_gro_receive, udp4_gro_receive,
1558 ops->callbacks.gro_receive, head, skb);
1559
1560 out_unlock:
1561 rcu_read_unlock();
1562
1563 out:
1564 skb_gro_flush_final(skb, pp, flush);
1565
1566 return pp;
1567 }
1568
ipip_gro_receive(struct list_head * head,struct sk_buff * skb)1569 static struct sk_buff *ipip_gro_receive(struct list_head *head,
1570 struct sk_buff *skb)
1571 {
1572 if (NAPI_GRO_CB(skb)->encap_mark) {
1573 NAPI_GRO_CB(skb)->flush = 1;
1574 return NULL;
1575 }
1576
1577 NAPI_GRO_CB(skb)->encap_mark = 1;
1578
1579 return inet_gro_receive(head, skb);
1580 }
1581
1582 #define SECONDS_PER_DAY 86400
1583
1584 /* inet_current_timestamp - Return IP network timestamp
1585 *
1586 * Return milliseconds since midnight in network byte order.
1587 */
inet_current_timestamp(void)1588 __be32 inet_current_timestamp(void)
1589 {
1590 u32 secs;
1591 u32 msecs;
1592 struct timespec64 ts;
1593
1594 ktime_get_real_ts64(&ts);
1595
1596 /* Get secs since midnight. */
1597 (void)div_u64_rem(ts.tv_sec, SECONDS_PER_DAY, &secs);
1598 /* Convert to msecs. */
1599 msecs = secs * MSEC_PER_SEC;
1600 /* Convert nsec to msec. */
1601 msecs += (u32)ts.tv_nsec / NSEC_PER_MSEC;
1602
1603 /* Convert to network byte order. */
1604 return htonl(msecs);
1605 }
1606 EXPORT_SYMBOL(inet_current_timestamp);
1607
inet_recv_error(struct sock * sk,struct msghdr * msg,int len,int * addr_len)1608 int inet_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len)
1609 {
1610 unsigned int family = READ_ONCE(sk->sk_family);
1611
1612 if (family == AF_INET)
1613 return ip_recv_error(sk, msg, len, addr_len);
1614 #if IS_ENABLED(CONFIG_IPV6)
1615 if (family == AF_INET6)
1616 return pingv6_ops.ipv6_recv_error(sk, msg, len, addr_len);
1617 #endif
1618 return -EINVAL;
1619 }
1620
inet_gro_complete(struct sk_buff * skb,int nhoff)1621 int inet_gro_complete(struct sk_buff *skb, int nhoff)
1622 {
1623 __be16 newlen = htons(skb->len - nhoff);
1624 struct iphdr *iph = (struct iphdr *)(skb->data + nhoff);
1625 const struct net_offload *ops;
1626 int proto = iph->protocol;
1627 int err = -ENOSYS;
1628
1629 if (skb->encapsulation) {
1630 skb_set_inner_protocol(skb, cpu_to_be16(ETH_P_IP));
1631 skb_set_inner_network_header(skb, nhoff);
1632 }
1633
1634 csum_replace2(&iph->check, iph->tot_len, newlen);
1635 iph->tot_len = newlen;
1636
1637 rcu_read_lock();
1638 ops = rcu_dereference(inet_offloads[proto]);
1639 if (WARN_ON(!ops || !ops->callbacks.gro_complete))
1640 goto out_unlock;
1641
1642 /* Only need to add sizeof(*iph) to get to the next hdr below
1643 * because any hdr with option will have been flushed in
1644 * inet_gro_receive().
1645 */
1646 err = INDIRECT_CALL_2(ops->callbacks.gro_complete,
1647 tcp4_gro_complete, udp4_gro_complete,
1648 skb, nhoff + sizeof(*iph));
1649
1650 out_unlock:
1651 rcu_read_unlock();
1652
1653 return err;
1654 }
1655
ipip_gro_complete(struct sk_buff * skb,int nhoff)1656 static int ipip_gro_complete(struct sk_buff *skb, int nhoff)
1657 {
1658 skb->encapsulation = 1;
1659 skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP4;
1660 return inet_gro_complete(skb, nhoff);
1661 }
1662
inet_ctl_sock_create(struct sock ** sk,unsigned short family,unsigned short type,unsigned char protocol,struct net * net)1663 int inet_ctl_sock_create(struct sock **sk, unsigned short family,
1664 unsigned short type, unsigned char protocol,
1665 struct net *net)
1666 {
1667 struct socket *sock;
1668 int rc = sock_create_kern(net, family, type, protocol, &sock);
1669
1670 if (rc == 0) {
1671 *sk = sock->sk;
1672 (*sk)->sk_allocation = GFP_ATOMIC;
1673 /*
1674 * Unhash it so that IP input processing does not even see it,
1675 * we do not wish this socket to see incoming packets.
1676 */
1677 (*sk)->sk_prot->unhash(*sk);
1678 }
1679 return rc;
1680 }
1681 EXPORT_SYMBOL_GPL(inet_ctl_sock_create);
1682
snmp_get_cpu_field(void __percpu * mib,int cpu,int offt)1683 u64 snmp_get_cpu_field(void __percpu *mib, int cpu, int offt)
1684 {
1685 return *(((unsigned long *)per_cpu_ptr(mib, cpu)) + offt);
1686 }
1687 EXPORT_SYMBOL_GPL(snmp_get_cpu_field);
1688
snmp_fold_field(void __percpu * mib,int offt)1689 unsigned long snmp_fold_field(void __percpu *mib, int offt)
1690 {
1691 unsigned long res = 0;
1692 int i;
1693
1694 for_each_possible_cpu(i)
1695 res += snmp_get_cpu_field(mib, i, offt);
1696 return res;
1697 }
1698 EXPORT_SYMBOL_GPL(snmp_fold_field);
1699
1700 #if BITS_PER_LONG==32
1701
snmp_get_cpu_field64(void __percpu * mib,int cpu,int offt,size_t syncp_offset)1702 u64 snmp_get_cpu_field64(void __percpu *mib, int cpu, int offt,
1703 size_t syncp_offset)
1704 {
1705 void *bhptr;
1706 struct u64_stats_sync *syncp;
1707 u64 v;
1708 unsigned int start;
1709
1710 bhptr = per_cpu_ptr(mib, cpu);
1711 syncp = (struct u64_stats_sync *)(bhptr + syncp_offset);
1712 do {
1713 start = u64_stats_fetch_begin_irq(syncp);
1714 v = *(((u64 *)bhptr) + offt);
1715 } while (u64_stats_fetch_retry_irq(syncp, start));
1716
1717 return v;
1718 }
1719 EXPORT_SYMBOL_GPL(snmp_get_cpu_field64);
1720
snmp_fold_field64(void __percpu * mib,int offt,size_t syncp_offset)1721 u64 snmp_fold_field64(void __percpu *mib, int offt, size_t syncp_offset)
1722 {
1723 u64 res = 0;
1724 int cpu;
1725
1726 for_each_possible_cpu(cpu) {
1727 res += snmp_get_cpu_field64(mib, cpu, offt, syncp_offset);
1728 }
1729 return res;
1730 }
1731 EXPORT_SYMBOL_GPL(snmp_fold_field64);
1732 #endif
1733
1734 #ifdef CONFIG_IP_MULTICAST
1735 static const struct net_protocol igmp_protocol = {
1736 .handler = igmp_rcv,
1737 };
1738 #endif
1739
1740 static const struct net_protocol tcp_protocol = {
1741 .handler = tcp_v4_rcv,
1742 .err_handler = tcp_v4_err,
1743 .no_policy = 1,
1744 .icmp_strict_tag_validation = 1,
1745 };
1746
1747 static const struct net_protocol udp_protocol = {
1748 .handler = udp_rcv,
1749 .err_handler = udp_err,
1750 .no_policy = 1,
1751 };
1752
1753 static const struct net_protocol icmp_protocol = {
1754 .handler = icmp_rcv,
1755 .err_handler = icmp_err,
1756 .no_policy = 1,
1757 };
1758
ipv4_mib_init_net(struct net * net)1759 static __net_init int ipv4_mib_init_net(struct net *net)
1760 {
1761 int i;
1762
1763 net->mib.tcp_statistics = alloc_percpu(struct tcp_mib);
1764 if (!net->mib.tcp_statistics)
1765 goto err_tcp_mib;
1766 net->mib.ip_statistics = alloc_percpu(struct ipstats_mib);
1767 if (!net->mib.ip_statistics)
1768 goto err_ip_mib;
1769
1770 for_each_possible_cpu(i) {
1771 struct ipstats_mib *af_inet_stats;
1772 af_inet_stats = per_cpu_ptr(net->mib.ip_statistics, i);
1773 u64_stats_init(&af_inet_stats->syncp);
1774 }
1775
1776 net->mib.net_statistics = alloc_percpu(struct linux_mib);
1777 if (!net->mib.net_statistics)
1778 goto err_net_mib;
1779 net->mib.udp_statistics = alloc_percpu(struct udp_mib);
1780 if (!net->mib.udp_statistics)
1781 goto err_udp_mib;
1782 net->mib.udplite_statistics = alloc_percpu(struct udp_mib);
1783 if (!net->mib.udplite_statistics)
1784 goto err_udplite_mib;
1785 net->mib.icmp_statistics = alloc_percpu(struct icmp_mib);
1786 if (!net->mib.icmp_statistics)
1787 goto err_icmp_mib;
1788 net->mib.icmpmsg_statistics = kzalloc(sizeof(struct icmpmsg_mib),
1789 GFP_KERNEL);
1790 if (!net->mib.icmpmsg_statistics)
1791 goto err_icmpmsg_mib;
1792
1793 tcp_mib_init(net);
1794 return 0;
1795
1796 err_icmpmsg_mib:
1797 free_percpu(net->mib.icmp_statistics);
1798 err_icmp_mib:
1799 free_percpu(net->mib.udplite_statistics);
1800 err_udplite_mib:
1801 free_percpu(net->mib.udp_statistics);
1802 err_udp_mib:
1803 free_percpu(net->mib.net_statistics);
1804 err_net_mib:
1805 free_percpu(net->mib.ip_statistics);
1806 err_ip_mib:
1807 free_percpu(net->mib.tcp_statistics);
1808 err_tcp_mib:
1809 return -ENOMEM;
1810 }
1811
ipv4_mib_exit_net(struct net * net)1812 static __net_exit void ipv4_mib_exit_net(struct net *net)
1813 {
1814 kfree(net->mib.icmpmsg_statistics);
1815 free_percpu(net->mib.icmp_statistics);
1816 free_percpu(net->mib.udplite_statistics);
1817 free_percpu(net->mib.udp_statistics);
1818 free_percpu(net->mib.net_statistics);
1819 free_percpu(net->mib.ip_statistics);
1820 free_percpu(net->mib.tcp_statistics);
1821 #ifdef CONFIG_MPTCP
1822 /* allocated on demand, see mptcp_init_sock() */
1823 free_percpu(net->mib.mptcp_statistics);
1824 #endif
1825 }
1826
1827 static __net_initdata struct pernet_operations ipv4_mib_ops = {
1828 .init = ipv4_mib_init_net,
1829 .exit = ipv4_mib_exit_net,
1830 };
1831
init_ipv4_mibs(void)1832 static int __init init_ipv4_mibs(void)
1833 {
1834 return register_pernet_subsys(&ipv4_mib_ops);
1835 }
1836
inet_init_net(struct net * net)1837 static __net_init int inet_init_net(struct net *net)
1838 {
1839 /*
1840 * Set defaults for local port range
1841 */
1842 seqlock_init(&net->ipv4.ip_local_ports.lock);
1843 net->ipv4.ip_local_ports.range[0] = 32768;
1844 net->ipv4.ip_local_ports.range[1] = 60999;
1845
1846 seqlock_init(&net->ipv4.ping_group_range.lock);
1847 /*
1848 * Sane defaults - nobody may create ping sockets.
1849 * Boot scripts should set this to distro-specific group.
1850 */
1851 net->ipv4.ping_group_range.range[0] = make_kgid(&init_user_ns, 1);
1852 net->ipv4.ping_group_range.range[1] = make_kgid(&init_user_ns, 0);
1853
1854 /* Default values for sysctl-controlled parameters.
1855 * We set them here, in case sysctl is not compiled.
1856 */
1857 net->ipv4.sysctl_ip_default_ttl = IPDEFTTL;
1858 net->ipv4.sysctl_ip_fwd_update_priority = 1;
1859 net->ipv4.sysctl_ip_dynaddr = 0;
1860 net->ipv4.sysctl_ip_early_demux = 1;
1861 net->ipv4.sysctl_udp_early_demux = 1;
1862 net->ipv4.sysctl_tcp_early_demux = 1;
1863 net->ipv4.sysctl_nexthop_compat_mode = 1;
1864 #ifdef CONFIG_SYSCTL
1865 net->ipv4.sysctl_ip_prot_sock = PROT_SOCK;
1866 #endif
1867
1868 /* Some igmp sysctl, whose values are always used */
1869 net->ipv4.sysctl_igmp_max_memberships = 20;
1870 net->ipv4.sysctl_igmp_max_msf = 10;
1871 /* IGMP reports for link-local multicast groups are enabled by default */
1872 net->ipv4.sysctl_igmp_llm_reports = 1;
1873 net->ipv4.sysctl_igmp_qrv = 2;
1874
1875 net->ipv4.sysctl_fib_notify_on_flag_change = 0;
1876
1877 return 0;
1878 }
1879
1880 static __net_initdata struct pernet_operations af_inet_ops = {
1881 .init = inet_init_net,
1882 };
1883
init_inet_pernet_ops(void)1884 static int __init init_inet_pernet_ops(void)
1885 {
1886 return register_pernet_subsys(&af_inet_ops);
1887 }
1888
1889 static int ipv4_proc_init(void);
1890
1891 /*
1892 * IP protocol layer initialiser
1893 */
1894
1895 static struct packet_offload ip_packet_offload __read_mostly = {
1896 .type = cpu_to_be16(ETH_P_IP),
1897 .callbacks = {
1898 .gso_segment = inet_gso_segment,
1899 .gro_receive = inet_gro_receive,
1900 .gro_complete = inet_gro_complete,
1901 },
1902 };
1903
1904 static const struct net_offload ipip_offload = {
1905 .callbacks = {
1906 .gso_segment = ipip_gso_segment,
1907 .gro_receive = ipip_gro_receive,
1908 .gro_complete = ipip_gro_complete,
1909 },
1910 };
1911
ipip_offload_init(void)1912 static int __init ipip_offload_init(void)
1913 {
1914 return inet_add_offload(&ipip_offload, IPPROTO_IPIP);
1915 }
1916
ipv4_offload_init(void)1917 static int __init ipv4_offload_init(void)
1918 {
1919 /*
1920 * Add offloads
1921 */
1922 if (udpv4_offload_init() < 0)
1923 pr_crit("%s: Cannot add UDP protocol offload\n", __func__);
1924 if (tcpv4_offload_init() < 0)
1925 pr_crit("%s: Cannot add TCP protocol offload\n", __func__);
1926 if (ipip_offload_init() < 0)
1927 pr_crit("%s: Cannot add IPIP protocol offload\n", __func__);
1928
1929 dev_add_offload(&ip_packet_offload);
1930 return 0;
1931 }
1932
1933 fs_initcall(ipv4_offload_init);
1934
1935 static struct packet_type ip_packet_type __read_mostly = {
1936 .type = cpu_to_be16(ETH_P_IP),
1937 .func = ip_rcv,
1938 .list_func = ip_list_rcv,
1939 };
1940
inet_init(void)1941 static int __init inet_init(void)
1942 {
1943 struct inet_protosw *q;
1944 struct list_head *r;
1945 int rc;
1946
1947 sock_skb_cb_check_size(sizeof(struct inet_skb_parm));
1948
1949 rc = proto_register(&tcp_prot, 1);
1950 if (rc)
1951 goto out;
1952
1953 rc = proto_register(&udp_prot, 1);
1954 if (rc)
1955 goto out_unregister_tcp_proto;
1956
1957 rc = proto_register(&raw_prot, 1);
1958 if (rc)
1959 goto out_unregister_udp_proto;
1960
1961 rc = proto_register(&ping_prot, 1);
1962 if (rc)
1963 goto out_unregister_raw_proto;
1964
1965 /*
1966 * Tell SOCKET that we are alive...
1967 */
1968
1969 (void)sock_register(&inet_family_ops);
1970
1971 #ifdef CONFIG_SYSCTL
1972 ip_static_sysctl_init();
1973 #endif
1974
1975 /*
1976 * Add all the base protocols.
1977 */
1978
1979 if (inet_add_protocol(&icmp_protocol, IPPROTO_ICMP) < 0)
1980 pr_crit("%s: Cannot add ICMP protocol\n", __func__);
1981 if (inet_add_protocol(&udp_protocol, IPPROTO_UDP) < 0)
1982 pr_crit("%s: Cannot add UDP protocol\n", __func__);
1983 if (inet_add_protocol(&tcp_protocol, IPPROTO_TCP) < 0)
1984 pr_crit("%s: Cannot add TCP protocol\n", __func__);
1985 #ifdef CONFIG_IP_MULTICAST
1986 if (inet_add_protocol(&igmp_protocol, IPPROTO_IGMP) < 0)
1987 pr_crit("%s: Cannot add IGMP protocol\n", __func__);
1988 #endif
1989
1990 /* Register the socket-side information for inet_create. */
1991 for (r = &inetsw[0]; r < &inetsw[SOCK_MAX]; ++r)
1992 INIT_LIST_HEAD(r);
1993
1994 for (q = inetsw_array; q < &inetsw_array[INETSW_ARRAY_LEN]; ++q)
1995 inet_register_protosw(q);
1996
1997 /*
1998 * Set the ARP module up
1999 */
2000
2001 arp_init();
2002
2003 /*
2004 * Set the IP module up
2005 */
2006
2007 ip_init();
2008
2009 /* Initialise per-cpu ipv4 mibs */
2010 if (init_ipv4_mibs())
2011 panic("%s: Cannot init ipv4 mibs\n", __func__);
2012
2013 /* Setup TCP slab cache for open requests. */
2014 tcp_init();
2015
2016 /* Setup UDP memory threshold */
2017 udp_init();
2018
2019 /* Add UDP-Lite (RFC 3828) */
2020 udplite4_register();
2021
2022 raw_init();
2023
2024 ping_init();
2025
2026 /*
2027 * Set the ICMP layer up
2028 */
2029
2030 if (icmp_init() < 0)
2031 panic("Failed to create the ICMP control socket.\n");
2032
2033 /*
2034 * Initialise the multicast router
2035 */
2036 #if defined(CONFIG_IP_MROUTE)
2037 if (ip_mr_init())
2038 pr_crit("%s: Cannot init ipv4 mroute\n", __func__);
2039 #endif
2040
2041 if (init_inet_pernet_ops())
2042 pr_crit("%s: Cannot init ipv4 inet pernet ops\n", __func__);
2043
2044 ipv4_proc_init();
2045
2046 ipfrag_init();
2047
2048 dev_add_pack(&ip_packet_type);
2049
2050 ip_tunnel_core_init();
2051
2052 rc = 0;
2053 out:
2054 return rc;
2055 out_unregister_raw_proto:
2056 proto_unregister(&raw_prot);
2057 out_unregister_udp_proto:
2058 proto_unregister(&udp_prot);
2059 out_unregister_tcp_proto:
2060 proto_unregister(&tcp_prot);
2061 goto out;
2062 }
2063
2064 fs_initcall(inet_init);
2065
2066 /* ------------------------------------------------------------------------ */
2067
2068 #ifdef CONFIG_PROC_FS
ipv4_proc_init(void)2069 static int __init ipv4_proc_init(void)
2070 {
2071 int rc = 0;
2072
2073 if (raw_proc_init())
2074 goto out_raw;
2075 if (tcp4_proc_init())
2076 goto out_tcp;
2077 if (udp4_proc_init())
2078 goto out_udp;
2079 if (ping_proc_init())
2080 goto out_ping;
2081 if (ip_misc_proc_init())
2082 goto out_misc;
2083 out:
2084 return rc;
2085 out_misc:
2086 ping_proc_exit();
2087 out_ping:
2088 udp4_proc_exit();
2089 out_udp:
2090 tcp4_proc_exit();
2091 out_tcp:
2092 raw_proc_exit();
2093 out_raw:
2094 rc = -ENOMEM;
2095 goto out;
2096 }
2097
2098 #else /* CONFIG_PROC_FS */
ipv4_proc_init(void)2099 static int __init ipv4_proc_init(void)
2100 {
2101 return 0;
2102 }
2103 #endif /* CONFIG_PROC_FS */
2104