1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Support for INET connection oriented protocols.
8 *
9 * Authors: See the TCP sources
10 */
11
12 #include <linux/module.h>
13 #include <linux/jhash.h>
14
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
25
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_sk*_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses
28 * if IPv6 only, and any IPv4 addresses
29 * if not IPv6 only
30 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32 * and 0.0.0.0 equals to 0.0.0.0 only
33 */
ipv6_rcv_saddr_equal(const struct in6_addr * sk1_rcv_saddr6,const struct in6_addr * sk2_rcv_saddr6,__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk1_ipv6only,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35 const struct in6_addr *sk2_rcv_saddr6,
36 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37 bool sk1_ipv6only, bool sk2_ipv6only,
38 bool match_sk1_wildcard,
39 bool match_sk2_wildcard)
40 {
41 int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43
44 /* if both are mapped, treat as IPv4 */
45 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46 if (!sk2_ipv6only) {
47 if (sk1_rcv_saddr == sk2_rcv_saddr)
48 return true;
49 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50 (match_sk2_wildcard && !sk2_rcv_saddr);
51 }
52 return false;
53 }
54
55 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56 return true;
57
58 if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60 return true;
61
62 if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64 return true;
65
66 if (sk2_rcv_saddr6 &&
67 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68 return true;
69
70 return false;
71 }
72 #endif
73
74 /* match_sk*_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
75 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76 * 0.0.0.0 only equals to 0.0.0.0
77 */
ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79 bool sk2_ipv6only, bool match_sk1_wildcard,
80 bool match_sk2_wildcard)
81 {
82 if (!sk2_ipv6only) {
83 if (sk1_rcv_saddr == sk2_rcv_saddr)
84 return true;
85 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86 (match_sk2_wildcard && !sk2_rcv_saddr);
87 }
88 return false;
89 }
90
inet_rcv_saddr_equal(const struct sock * sk,const struct sock * sk2,bool match_wildcard)91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92 bool match_wildcard)
93 {
94 #if IS_ENABLED(CONFIG_IPV6)
95 if (sk->sk_family == AF_INET6)
96 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97 inet6_rcv_saddr(sk2),
98 sk->sk_rcv_saddr,
99 sk2->sk_rcv_saddr,
100 ipv6_only_sock(sk),
101 ipv6_only_sock(sk2),
102 match_wildcard,
103 match_wildcard);
104 #endif
105 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106 ipv6_only_sock(sk2), match_wildcard,
107 match_wildcard);
108 }
109 EXPORT_SYMBOL(inet_rcv_saddr_equal);
110
inet_rcv_saddr_any(const struct sock * sk)111 bool inet_rcv_saddr_any(const struct sock *sk)
112 {
113 #if IS_ENABLED(CONFIG_IPV6)
114 if (sk->sk_family == AF_INET6)
115 return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116 #endif
117 return !sk->sk_rcv_saddr;
118 }
119
inet_get_local_port_range(struct net * net,int * low,int * high)120 void inet_get_local_port_range(struct net *net, int *low, int *high)
121 {
122 unsigned int seq;
123
124 do {
125 seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
126
127 *low = net->ipv4.ip_local_ports.range[0];
128 *high = net->ipv4.ip_local_ports.range[1];
129 } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
130 }
131 EXPORT_SYMBOL(inet_get_local_port_range);
132
inet_csk_bind_conflict(const struct sock * sk,const struct inet_bind_bucket * tb,bool relax,bool reuseport_ok)133 static int inet_csk_bind_conflict(const struct sock *sk,
134 const struct inet_bind_bucket *tb,
135 bool relax, bool reuseport_ok)
136 {
137 struct sock *sk2;
138 bool reuseport_cb_ok;
139 bool reuse = sk->sk_reuse;
140 bool reuseport = !!sk->sk_reuseport;
141 struct sock_reuseport *reuseport_cb;
142 kuid_t uid = sock_i_uid((struct sock *)sk);
143
144 rcu_read_lock();
145 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
146 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
147 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
148 rcu_read_unlock();
149
150 /*
151 * Unlike other sk lookup places we do not check
152 * for sk_net here, since _all_ the socks listed
153 * in tb->owners list belong to the same net - the
154 * one this bucket belongs to.
155 */
156
157 sk_for_each_bound(sk2, &tb->owners) {
158 int bound_dev_if2;
159
160 if (sk == sk2)
161 continue;
162 bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
163 if ((!sk->sk_bound_dev_if ||
164 !bound_dev_if2 ||
165 sk->sk_bound_dev_if == bound_dev_if2)) {
166 if (reuse && sk2->sk_reuse &&
167 sk2->sk_state != TCP_LISTEN) {
168 if ((!relax ||
169 (!reuseport_ok &&
170 reuseport && sk2->sk_reuseport &&
171 reuseport_cb_ok &&
172 (sk2->sk_state == TCP_TIME_WAIT ||
173 uid_eq(uid, sock_i_uid(sk2))))) &&
174 inet_rcv_saddr_equal(sk, sk2, true))
175 break;
176 } else if (!reuseport_ok ||
177 !reuseport || !sk2->sk_reuseport ||
178 !reuseport_cb_ok ||
179 (sk2->sk_state != TCP_TIME_WAIT &&
180 !uid_eq(uid, sock_i_uid(sk2)))) {
181 if (inet_rcv_saddr_equal(sk, sk2, true))
182 break;
183 }
184 }
185 }
186 return sk2 != NULL;
187 }
188
189 /*
190 * Find an open port number for the socket. Returns with the
191 * inet_bind_hashbucket lock held.
192 */
193 static struct inet_bind_hashbucket *
inet_csk_find_open_port(struct sock * sk,struct inet_bind_bucket ** tb_ret,int * port_ret)194 inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret)
195 {
196 struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
197 int port = 0;
198 struct inet_bind_hashbucket *head;
199 struct net *net = sock_net(sk);
200 bool relax = false;
201 int i, low, high, attempt_half;
202 struct inet_bind_bucket *tb;
203 u32 remaining, offset;
204 int l3mdev;
205
206 l3mdev = inet_sk_bound_l3mdev(sk);
207 ports_exhausted:
208 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
209 other_half_scan:
210 inet_get_local_port_range(net, &low, &high);
211 high++; /* [32768, 60999] -> [32768, 61000[ */
212 if (high - low < 4)
213 attempt_half = 0;
214 if (attempt_half) {
215 int half = low + (((high - low) >> 2) << 1);
216
217 if (attempt_half == 1)
218 high = half;
219 else
220 low = half;
221 }
222 remaining = high - low;
223 if (likely(remaining > 1))
224 remaining &= ~1U;
225
226 offset = prandom_u32() % remaining;
227 /* __inet_hash_connect() favors ports having @low parity
228 * We do the opposite to not pollute connect() users.
229 */
230 offset |= 1U;
231
232 other_parity_scan:
233 port = low + offset;
234 for (i = 0; i < remaining; i += 2, port += 2) {
235 if (unlikely(port >= high))
236 port -= remaining;
237 if (inet_is_local_reserved_port(net, port))
238 continue;
239 head = &hinfo->bhash[inet_bhashfn(net, port,
240 hinfo->bhash_size)];
241 spin_lock_bh(&head->lock);
242 inet_bind_bucket_for_each(tb, &head->chain)
243 if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
244 tb->port == port) {
245 if (!inet_csk_bind_conflict(sk, tb, relax, false))
246 goto success;
247 goto next_port;
248 }
249 tb = NULL;
250 goto success;
251 next_port:
252 spin_unlock_bh(&head->lock);
253 cond_resched();
254 }
255
256 offset--;
257 if (!(offset & 1))
258 goto other_parity_scan;
259
260 if (attempt_half == 1) {
261 /* OK we now try the upper half of the range */
262 attempt_half = 2;
263 goto other_half_scan;
264 }
265
266 if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) {
267 /* We still have a chance to connect to different destinations */
268 relax = true;
269 goto ports_exhausted;
270 }
271 return NULL;
272 success:
273 *port_ret = port;
274 *tb_ret = tb;
275 return head;
276 }
277
sk_reuseport_match(struct inet_bind_bucket * tb,struct sock * sk)278 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
279 struct sock *sk)
280 {
281 kuid_t uid = sock_i_uid(sk);
282
283 if (tb->fastreuseport <= 0)
284 return 0;
285 if (!sk->sk_reuseport)
286 return 0;
287 if (rcu_access_pointer(sk->sk_reuseport_cb))
288 return 0;
289 if (!uid_eq(tb->fastuid, uid))
290 return 0;
291 /* We only need to check the rcv_saddr if this tb was once marked
292 * without fastreuseport and then was reset, as we can only know that
293 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
294 * owners list.
295 */
296 if (tb->fastreuseport == FASTREUSEPORT_ANY)
297 return 1;
298 #if IS_ENABLED(CONFIG_IPV6)
299 if (tb->fast_sk_family == AF_INET6)
300 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
301 inet6_rcv_saddr(sk),
302 tb->fast_rcv_saddr,
303 sk->sk_rcv_saddr,
304 tb->fast_ipv6_only,
305 ipv6_only_sock(sk), true, false);
306 #endif
307 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
308 ipv6_only_sock(sk), true, false);
309 }
310
inet_csk_update_fastreuse(struct inet_bind_bucket * tb,struct sock * sk)311 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
312 struct sock *sk)
313 {
314 kuid_t uid = sock_i_uid(sk);
315 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
316
317 if (hlist_empty(&tb->owners)) {
318 tb->fastreuse = reuse;
319 if (sk->sk_reuseport) {
320 tb->fastreuseport = FASTREUSEPORT_ANY;
321 tb->fastuid = uid;
322 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
323 tb->fast_ipv6_only = ipv6_only_sock(sk);
324 tb->fast_sk_family = sk->sk_family;
325 #if IS_ENABLED(CONFIG_IPV6)
326 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
327 #endif
328 } else {
329 tb->fastreuseport = 0;
330 }
331 } else {
332 if (!reuse)
333 tb->fastreuse = 0;
334 if (sk->sk_reuseport) {
335 /* We didn't match or we don't have fastreuseport set on
336 * the tb, but we have sk_reuseport set on this socket
337 * and we know that there are no bind conflicts with
338 * this socket in this tb, so reset our tb's reuseport
339 * settings so that any subsequent sockets that match
340 * our current socket will be put on the fast path.
341 *
342 * If we reset we need to set FASTREUSEPORT_STRICT so we
343 * do extra checking for all subsequent sk_reuseport
344 * socks.
345 */
346 if (!sk_reuseport_match(tb, sk)) {
347 tb->fastreuseport = FASTREUSEPORT_STRICT;
348 tb->fastuid = uid;
349 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
350 tb->fast_ipv6_only = ipv6_only_sock(sk);
351 tb->fast_sk_family = sk->sk_family;
352 #if IS_ENABLED(CONFIG_IPV6)
353 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
354 #endif
355 }
356 } else {
357 tb->fastreuseport = 0;
358 }
359 }
360 }
361
362 /* Obtain a reference to a local port for the given sock,
363 * if snum is zero it means select any available local port.
364 * We try to allocate an odd port (and leave even ports for connect())
365 */
inet_csk_get_port(struct sock * sk,unsigned short snum)366 int inet_csk_get_port(struct sock *sk, unsigned short snum)
367 {
368 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
369 struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
370 int ret = 1, port = snum;
371 struct inet_bind_hashbucket *head;
372 struct net *net = sock_net(sk);
373 struct inet_bind_bucket *tb = NULL;
374 int l3mdev;
375
376 l3mdev = inet_sk_bound_l3mdev(sk);
377
378 if (!port) {
379 head = inet_csk_find_open_port(sk, &tb, &port);
380 if (!head)
381 return ret;
382 if (!tb)
383 goto tb_not_found;
384 goto success;
385 }
386 head = &hinfo->bhash[inet_bhashfn(net, port,
387 hinfo->bhash_size)];
388 spin_lock_bh(&head->lock);
389 inet_bind_bucket_for_each(tb, &head->chain)
390 if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
391 tb->port == port)
392 goto tb_found;
393 tb_not_found:
394 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep,
395 net, head, port, l3mdev);
396 if (!tb)
397 goto fail_unlock;
398 tb_found:
399 if (!hlist_empty(&tb->owners)) {
400 if (sk->sk_reuse == SK_FORCE_REUSE)
401 goto success;
402
403 if ((tb->fastreuse > 0 && reuse) ||
404 sk_reuseport_match(tb, sk))
405 goto success;
406 if (inet_csk_bind_conflict(sk, tb, true, true))
407 goto fail_unlock;
408 }
409 success:
410 inet_csk_update_fastreuse(tb, sk);
411
412 if (!inet_csk(sk)->icsk_bind_hash)
413 inet_bind_hash(sk, tb, port);
414 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
415 ret = 0;
416
417 fail_unlock:
418 spin_unlock_bh(&head->lock);
419 return ret;
420 }
421 EXPORT_SYMBOL_GPL(inet_csk_get_port);
422
423 /*
424 * Wait for an incoming connection, avoid race conditions. This must be called
425 * with the socket locked.
426 */
inet_csk_wait_for_connect(struct sock * sk,long timeo)427 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
428 {
429 struct inet_connection_sock *icsk = inet_csk(sk);
430 DEFINE_WAIT(wait);
431 int err;
432
433 /*
434 * True wake-one mechanism for incoming connections: only
435 * one process gets woken up, not the 'whole herd'.
436 * Since we do not 'race & poll' for established sockets
437 * anymore, the common case will execute the loop only once.
438 *
439 * Subtle issue: "add_wait_queue_exclusive()" will be added
440 * after any current non-exclusive waiters, and we know that
441 * it will always _stay_ after any new non-exclusive waiters
442 * because all non-exclusive waiters are added at the
443 * beginning of the wait-queue. As such, it's ok to "drop"
444 * our exclusiveness temporarily when we get woken up without
445 * having to remove and re-insert us on the wait queue.
446 */
447 for (;;) {
448 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
449 TASK_INTERRUPTIBLE);
450 release_sock(sk);
451 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
452 timeo = schedule_timeout(timeo);
453 sched_annotate_sleep();
454 lock_sock(sk);
455 err = 0;
456 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
457 break;
458 err = -EINVAL;
459 if (sk->sk_state != TCP_LISTEN)
460 break;
461 err = sock_intr_errno(timeo);
462 if (signal_pending(current))
463 break;
464 err = -EAGAIN;
465 if (!timeo)
466 break;
467 }
468 finish_wait(sk_sleep(sk), &wait);
469 return err;
470 }
471
472 /*
473 * This will accept the next outstanding connection.
474 */
inet_csk_accept(struct sock * sk,int flags,int * err,bool kern)475 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
476 {
477 struct inet_connection_sock *icsk = inet_csk(sk);
478 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
479 struct request_sock *req;
480 struct sock *newsk;
481 int error;
482
483 lock_sock(sk);
484
485 /* We need to make sure that this socket is listening,
486 * and that it has something pending.
487 */
488 error = -EINVAL;
489 if (sk->sk_state != TCP_LISTEN)
490 goto out_err;
491
492 /* Find already established connection */
493 if (reqsk_queue_empty(queue)) {
494 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
495
496 /* If this is a non blocking socket don't sleep */
497 error = -EAGAIN;
498 if (!timeo)
499 goto out_err;
500
501 error = inet_csk_wait_for_connect(sk, timeo);
502 if (error)
503 goto out_err;
504 }
505 req = reqsk_queue_remove(queue, sk);
506 newsk = req->sk;
507
508 if (sk->sk_protocol == IPPROTO_TCP &&
509 tcp_rsk(req)->tfo_listener) {
510 spin_lock_bh(&queue->fastopenq.lock);
511 if (tcp_rsk(req)->tfo_listener) {
512 /* We are still waiting for the final ACK from 3WHS
513 * so can't free req now. Instead, we set req->sk to
514 * NULL to signify that the child socket is taken
515 * so reqsk_fastopen_remove() will free the req
516 * when 3WHS finishes (or is aborted).
517 */
518 req->sk = NULL;
519 req = NULL;
520 }
521 spin_unlock_bh(&queue->fastopenq.lock);
522 }
523
524 out:
525 release_sock(sk);
526 if (newsk && mem_cgroup_sockets_enabled) {
527 int amt;
528
529 /* atomically get the memory usage, set and charge the
530 * newsk->sk_memcg.
531 */
532 lock_sock(newsk);
533
534 /* The socket has not been accepted yet, no need to look at
535 * newsk->sk_wmem_queued.
536 */
537 amt = sk_mem_pages(newsk->sk_forward_alloc +
538 atomic_read(&newsk->sk_rmem_alloc));
539 mem_cgroup_sk_alloc(newsk);
540 if (newsk->sk_memcg && amt)
541 mem_cgroup_charge_skmem(newsk->sk_memcg, amt,
542 GFP_KERNEL | __GFP_NOFAIL);
543
544 release_sock(newsk);
545 }
546 if (req)
547 reqsk_put(req);
548
549 if (newsk)
550 inet_init_csk_locks(newsk);
551
552 return newsk;
553 out_err:
554 newsk = NULL;
555 req = NULL;
556 *err = error;
557 goto out;
558 }
559 EXPORT_SYMBOL(inet_csk_accept);
560
561 /*
562 * Using different timers for retransmit, delayed acks and probes
563 * We may wish use just one timer maintaining a list of expire jiffies
564 * to optimize.
565 */
inet_csk_init_xmit_timers(struct sock * sk,void (* retransmit_handler)(struct timer_list * t),void (* delack_handler)(struct timer_list * t),void (* keepalive_handler)(struct timer_list * t))566 void inet_csk_init_xmit_timers(struct sock *sk,
567 void (*retransmit_handler)(struct timer_list *t),
568 void (*delack_handler)(struct timer_list *t),
569 void (*keepalive_handler)(struct timer_list *t))
570 {
571 struct inet_connection_sock *icsk = inet_csk(sk);
572
573 timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
574 timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
575 timer_setup(&sk->sk_timer, keepalive_handler, 0);
576 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
577 }
578 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
579
inet_csk_clear_xmit_timers(struct sock * sk)580 void inet_csk_clear_xmit_timers(struct sock *sk)
581 {
582 struct inet_connection_sock *icsk = inet_csk(sk);
583
584 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
585
586 sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
587 sk_stop_timer(sk, &icsk->icsk_delack_timer);
588 sk_stop_timer(sk, &sk->sk_timer);
589 }
590 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
591
inet_csk_delete_keepalive_timer(struct sock * sk)592 void inet_csk_delete_keepalive_timer(struct sock *sk)
593 {
594 sk_stop_timer(sk, &sk->sk_timer);
595 }
596 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
597
inet_csk_reset_keepalive_timer(struct sock * sk,unsigned long len)598 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
599 {
600 sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
601 }
602 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
603
inet_csk_route_req(const struct sock * sk,struct flowi4 * fl4,const struct request_sock * req)604 struct dst_entry *inet_csk_route_req(const struct sock *sk,
605 struct flowi4 *fl4,
606 const struct request_sock *req)
607 {
608 const struct inet_request_sock *ireq = inet_rsk(req);
609 struct net *net = read_pnet(&ireq->ireq_net);
610 struct ip_options_rcu *opt;
611 struct rtable *rt;
612
613 rcu_read_lock();
614 opt = rcu_dereference(ireq->ireq_opt);
615
616 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
617 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
618 sk->sk_protocol, inet_sk_flowi_flags(sk),
619 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
620 ireq->ir_loc_addr, ireq->ir_rmt_port,
621 htons(ireq->ir_num), sk->sk_uid);
622 security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
623 rt = ip_route_output_flow(net, fl4, sk);
624 if (IS_ERR(rt))
625 goto no_route;
626 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
627 goto route_err;
628 rcu_read_unlock();
629 return &rt->dst;
630
631 route_err:
632 ip_rt_put(rt);
633 no_route:
634 rcu_read_unlock();
635 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
636 return NULL;
637 }
638 EXPORT_SYMBOL_GPL(inet_csk_route_req);
639
inet_csk_route_child_sock(const struct sock * sk,struct sock * newsk,const struct request_sock * req)640 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
641 struct sock *newsk,
642 const struct request_sock *req)
643 {
644 const struct inet_request_sock *ireq = inet_rsk(req);
645 struct net *net = read_pnet(&ireq->ireq_net);
646 struct inet_sock *newinet = inet_sk(newsk);
647 struct ip_options_rcu *opt;
648 struct flowi4 *fl4;
649 struct rtable *rt;
650
651 opt = rcu_dereference(ireq->ireq_opt);
652 fl4 = &newinet->cork.fl.u.ip4;
653
654 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
655 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
656 sk->sk_protocol, inet_sk_flowi_flags(sk),
657 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
658 ireq->ir_loc_addr, ireq->ir_rmt_port,
659 htons(ireq->ir_num), sk->sk_uid);
660 security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
661 rt = ip_route_output_flow(net, fl4, sk);
662 if (IS_ERR(rt))
663 goto no_route;
664 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
665 goto route_err;
666 return &rt->dst;
667
668 route_err:
669 ip_rt_put(rt);
670 no_route:
671 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
672 return NULL;
673 }
674 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
675
676 /* Decide when to expire the request and when to resend SYN-ACK */
syn_ack_recalc(struct request_sock * req,const int max_syn_ack_retries,const u8 rskq_defer_accept,int * expire,int * resend)677 static void syn_ack_recalc(struct request_sock *req,
678 const int max_syn_ack_retries,
679 const u8 rskq_defer_accept,
680 int *expire, int *resend)
681 {
682 if (!rskq_defer_accept) {
683 *expire = req->num_timeout >= max_syn_ack_retries;
684 *resend = 1;
685 return;
686 }
687 *expire = req->num_timeout >= max_syn_ack_retries &&
688 (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
689 /* Do not resend while waiting for data after ACK,
690 * start to resend on end of deferring period to give
691 * last chance for data or ACK to create established socket.
692 */
693 *resend = !inet_rsk(req)->acked ||
694 req->num_timeout >= rskq_defer_accept - 1;
695 }
696
inet_rtx_syn_ack(const struct sock * parent,struct request_sock * req)697 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
698 {
699 int err = req->rsk_ops->rtx_syn_ack(parent, req);
700
701 if (!err)
702 req->num_retrans++;
703 return err;
704 }
705 EXPORT_SYMBOL(inet_rtx_syn_ack);
706
inet_reqsk_clone(struct request_sock * req,struct sock * sk)707 static struct request_sock *inet_reqsk_clone(struct request_sock *req,
708 struct sock *sk)
709 {
710 struct sock *req_sk, *nreq_sk;
711 struct request_sock *nreq;
712
713 nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN);
714 if (!nreq) {
715 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
716
717 /* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */
718 sock_put(sk);
719 return NULL;
720 }
721
722 req_sk = req_to_sk(req);
723 nreq_sk = req_to_sk(nreq);
724
725 memcpy(nreq_sk, req_sk,
726 offsetof(struct sock, sk_dontcopy_begin));
727 memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end,
728 req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end));
729
730 sk_node_init(&nreq_sk->sk_node);
731 nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping;
732 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
733 nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping;
734 #endif
735 nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu;
736
737 nreq->rsk_listener = sk;
738
739 /* We need not acquire fastopenq->lock
740 * because the child socket is locked in inet_csk_listen_stop().
741 */
742 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener)
743 rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq);
744
745 return nreq;
746 }
747
reqsk_queue_migrated(struct request_sock_queue * queue,const struct request_sock * req)748 static void reqsk_queue_migrated(struct request_sock_queue *queue,
749 const struct request_sock *req)
750 {
751 if (req->num_timeout == 0)
752 atomic_inc(&queue->young);
753 atomic_inc(&queue->qlen);
754 }
755
reqsk_migrate_reset(struct request_sock * req)756 static void reqsk_migrate_reset(struct request_sock *req)
757 {
758 req->saved_syn = NULL;
759 #if IS_ENABLED(CONFIG_IPV6)
760 inet_rsk(req)->ipv6_opt = NULL;
761 inet_rsk(req)->pktopts = NULL;
762 #else
763 inet_rsk(req)->ireq_opt = NULL;
764 #endif
765 }
766
767 /* return true if req was found in the ehash table */
reqsk_queue_unlink(struct request_sock * req)768 static bool reqsk_queue_unlink(struct request_sock *req)
769 {
770 struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo;
771 bool found = false;
772
773 if (sk_hashed(req_to_sk(req))) {
774 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
775
776 spin_lock(lock);
777 found = __sk_nulls_del_node_init_rcu(req_to_sk(req));
778 spin_unlock(lock);
779 }
780 if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
781 reqsk_put(req);
782 return found;
783 }
784
inet_csk_reqsk_queue_drop(struct sock * sk,struct request_sock * req)785 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
786 {
787 bool unlinked = reqsk_queue_unlink(req);
788
789 if (unlinked) {
790 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
791 reqsk_put(req);
792 }
793 return unlinked;
794 }
795 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
796
inet_csk_reqsk_queue_drop_and_put(struct sock * sk,struct request_sock * req)797 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
798 {
799 inet_csk_reqsk_queue_drop(sk, req);
800 reqsk_put(req);
801 }
802 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
803
reqsk_timer_handler(struct timer_list * t)804 static void reqsk_timer_handler(struct timer_list *t)
805 {
806 struct request_sock *req = from_timer(req, t, rsk_timer);
807 struct request_sock *nreq = NULL, *oreq = req;
808 struct sock *sk_listener = req->rsk_listener;
809 struct inet_connection_sock *icsk;
810 struct request_sock_queue *queue;
811 struct net *net;
812 int max_syn_ack_retries, qlen, expire = 0, resend = 0;
813
814 if (inet_sk_state_load(sk_listener) != TCP_LISTEN) {
815 struct sock *nsk;
816
817 nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL);
818 if (!nsk)
819 goto drop;
820
821 nreq = inet_reqsk_clone(req, nsk);
822 if (!nreq)
823 goto drop;
824
825 /* The new timer for the cloned req can decrease the 2
826 * by calling inet_csk_reqsk_queue_drop_and_put(), so
827 * hold another count to prevent use-after-free and
828 * call reqsk_put() just before return.
829 */
830 refcount_set(&nreq->rsk_refcnt, 2 + 1);
831 timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
832 reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req);
833
834 req = nreq;
835 sk_listener = nsk;
836 }
837
838 icsk = inet_csk(sk_listener);
839 net = sock_net(sk_listener);
840 max_syn_ack_retries = READ_ONCE(icsk->icsk_syn_retries) ? :
841 READ_ONCE(net->ipv4.sysctl_tcp_synack_retries);
842 /* Normally all the openreqs are young and become mature
843 * (i.e. converted to established socket) for first timeout.
844 * If synack was not acknowledged for 1 second, it means
845 * one of the following things: synack was lost, ack was lost,
846 * rtt is high or nobody planned to ack (i.e. synflood).
847 * When server is a bit loaded, queue is populated with old
848 * open requests, reducing effective size of queue.
849 * When server is well loaded, queue size reduces to zero
850 * after several minutes of work. It is not synflood,
851 * it is normal operation. The solution is pruning
852 * too old entries overriding normal timeout, when
853 * situation becomes dangerous.
854 *
855 * Essentially, we reserve half of room for young
856 * embrions; and abort old ones without pity, if old
857 * ones are about to clog our table.
858 */
859 queue = &icsk->icsk_accept_queue;
860 qlen = reqsk_queue_len(queue);
861 if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
862 int young = reqsk_queue_len_young(queue) << 1;
863
864 while (max_syn_ack_retries > 2) {
865 if (qlen < young)
866 break;
867 max_syn_ack_retries--;
868 young <<= 1;
869 }
870 }
871 syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
872 &expire, &resend);
873 req->rsk_ops->syn_ack_timeout(req);
874 if (!expire &&
875 (!resend ||
876 !inet_rtx_syn_ack(sk_listener, req) ||
877 inet_rsk(req)->acked)) {
878 unsigned long timeo;
879
880 if (req->num_timeout++ == 0)
881 atomic_dec(&queue->young);
882 timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX);
883 mod_timer(&req->rsk_timer, jiffies + timeo);
884
885 if (!nreq)
886 return;
887
888 if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) {
889 /* delete timer */
890 inet_csk_reqsk_queue_drop(sk_listener, nreq);
891 goto no_ownership;
892 }
893
894 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS);
895 reqsk_migrate_reset(oreq);
896 reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq);
897 reqsk_put(oreq);
898
899 reqsk_put(nreq);
900 return;
901 }
902
903 /* Even if we can clone the req, we may need not retransmit any more
904 * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another
905 * CPU may win the "own_req" race so that inet_ehash_insert() fails.
906 */
907 if (nreq) {
908 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE);
909 no_ownership:
910 reqsk_migrate_reset(nreq);
911 reqsk_queue_removed(queue, nreq);
912 __reqsk_free(nreq);
913 }
914
915 drop:
916 inet_csk_reqsk_queue_drop_and_put(oreq->rsk_listener, oreq);
917 }
918
reqsk_queue_hash_req(struct request_sock * req,unsigned long timeout)919 static void reqsk_queue_hash_req(struct request_sock *req,
920 unsigned long timeout)
921 {
922 timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
923 mod_timer(&req->rsk_timer, jiffies + timeout);
924
925 inet_ehash_insert(req_to_sk(req), NULL, NULL);
926 /* before letting lookups find us, make sure all req fields
927 * are committed to memory and refcnt initialized.
928 */
929 smp_wmb();
930 refcount_set(&req->rsk_refcnt, 2 + 1);
931 }
932
inet_csk_reqsk_queue_hash_add(struct sock * sk,struct request_sock * req,unsigned long timeout)933 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
934 unsigned long timeout)
935 {
936 reqsk_queue_hash_req(req, timeout);
937 inet_csk_reqsk_queue_added(sk);
938 }
939 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
940
inet_clone_ulp(const struct request_sock * req,struct sock * newsk,const gfp_t priority)941 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
942 const gfp_t priority)
943 {
944 struct inet_connection_sock *icsk = inet_csk(newsk);
945
946 if (!icsk->icsk_ulp_ops)
947 return;
948
949 if (icsk->icsk_ulp_ops->clone)
950 icsk->icsk_ulp_ops->clone(req, newsk, priority);
951 }
952
953 /**
954 * inet_csk_clone_lock - clone an inet socket, and lock its clone
955 * @sk: the socket to clone
956 * @req: request_sock
957 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
958 *
959 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
960 */
inet_csk_clone_lock(const struct sock * sk,const struct request_sock * req,const gfp_t priority)961 struct sock *inet_csk_clone_lock(const struct sock *sk,
962 const struct request_sock *req,
963 const gfp_t priority)
964 {
965 struct sock *newsk = sk_clone_lock(sk, priority);
966
967 if (newsk) {
968 struct inet_connection_sock *newicsk = inet_csk(newsk);
969
970 inet_sk_set_state(newsk, TCP_SYN_RECV);
971 newicsk->icsk_bind_hash = NULL;
972
973 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
974 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
975 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
976
977 /* listeners have SOCK_RCU_FREE, not the children */
978 sock_reset_flag(newsk, SOCK_RCU_FREE);
979
980 inet_sk(newsk)->mc_list = NULL;
981
982 newsk->sk_mark = inet_rsk(req)->ir_mark;
983 atomic64_set(&newsk->sk_cookie,
984 atomic64_read(&inet_rsk(req)->ir_cookie));
985
986 newicsk->icsk_retransmits = 0;
987 newicsk->icsk_backoff = 0;
988 newicsk->icsk_probes_out = 0;
989 newicsk->icsk_probes_tstamp = 0;
990
991 /* Deinitialize accept_queue to trap illegal accesses. */
992 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
993
994 inet_clone_ulp(req, newsk, priority);
995
996 security_inet_csk_clone(newsk, req);
997 }
998 return newsk;
999 }
1000 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
1001
1002 /*
1003 * At this point, there should be no process reference to this
1004 * socket, and thus no user references at all. Therefore we
1005 * can assume the socket waitqueue is inactive and nobody will
1006 * try to jump onto it.
1007 */
inet_csk_destroy_sock(struct sock * sk)1008 void inet_csk_destroy_sock(struct sock *sk)
1009 {
1010 WARN_ON(sk->sk_state != TCP_CLOSE);
1011 WARN_ON(!sock_flag(sk, SOCK_DEAD));
1012
1013 /* It cannot be in hash table! */
1014 WARN_ON(!sk_unhashed(sk));
1015
1016 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
1017 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
1018
1019 sk->sk_prot->destroy(sk);
1020
1021 sk_stream_kill_queues(sk);
1022
1023 xfrm_sk_free_policy(sk);
1024
1025 sk_refcnt_debug_release(sk);
1026
1027 this_cpu_dec(*sk->sk_prot->orphan_count);
1028
1029 sock_put(sk);
1030 }
1031 EXPORT_SYMBOL(inet_csk_destroy_sock);
1032
1033 /* This function allows to force a closure of a socket after the call to
1034 * tcp/dccp_create_openreq_child().
1035 */
inet_csk_prepare_forced_close(struct sock * sk)1036 void inet_csk_prepare_forced_close(struct sock *sk)
1037 __releases(&sk->sk_lock.slock)
1038 {
1039 /* sk_clone_lock locked the socket and set refcnt to 2 */
1040 bh_unlock_sock(sk);
1041 sock_put(sk);
1042 inet_csk_prepare_for_destroy_sock(sk);
1043 inet_sk(sk)->inet_num = 0;
1044 }
1045 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
1046
inet_ulp_can_listen(const struct sock * sk)1047 static int inet_ulp_can_listen(const struct sock *sk)
1048 {
1049 const struct inet_connection_sock *icsk = inet_csk(sk);
1050
1051 if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone)
1052 return -EINVAL;
1053
1054 return 0;
1055 }
1056
inet_csk_listen_start(struct sock * sk,int backlog)1057 int inet_csk_listen_start(struct sock *sk, int backlog)
1058 {
1059 struct inet_connection_sock *icsk = inet_csk(sk);
1060 struct inet_sock *inet = inet_sk(sk);
1061 int err;
1062
1063 err = inet_ulp_can_listen(sk);
1064 if (unlikely(err))
1065 return err;
1066
1067 reqsk_queue_alloc(&icsk->icsk_accept_queue);
1068
1069 sk->sk_ack_backlog = 0;
1070 inet_csk_delack_init(sk);
1071
1072 /* There is race window here: we announce ourselves listening,
1073 * but this transition is still not validated by get_port().
1074 * It is OK, because this socket enters to hash table only
1075 * after validation is complete.
1076 */
1077 err = -EADDRINUSE;
1078 inet_sk_state_store(sk, TCP_LISTEN);
1079 if (!sk->sk_prot->get_port(sk, inet->inet_num)) {
1080 inet->inet_sport = htons(inet->inet_num);
1081
1082 sk_dst_reset(sk);
1083 err = sk->sk_prot->hash(sk);
1084
1085 if (likely(!err))
1086 return 0;
1087 }
1088
1089 inet_sk_set_state(sk, TCP_CLOSE);
1090 return err;
1091 }
1092 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
1093
inet_child_forget(struct sock * sk,struct request_sock * req,struct sock * child)1094 static void inet_child_forget(struct sock *sk, struct request_sock *req,
1095 struct sock *child)
1096 {
1097 sk->sk_prot->disconnect(child, O_NONBLOCK);
1098
1099 sock_orphan(child);
1100
1101 this_cpu_inc(*sk->sk_prot->orphan_count);
1102
1103 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
1104 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
1105 BUG_ON(sk != req->rsk_listener);
1106
1107 /* Paranoid, to prevent race condition if
1108 * an inbound pkt destined for child is
1109 * blocked by sock lock in tcp_v4_rcv().
1110 * Also to satisfy an assertion in
1111 * tcp_v4_destroy_sock().
1112 */
1113 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1114 }
1115 inet_csk_destroy_sock(child);
1116 }
1117
inet_csk_reqsk_queue_add(struct sock * sk,struct request_sock * req,struct sock * child)1118 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1119 struct request_sock *req,
1120 struct sock *child)
1121 {
1122 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1123
1124 spin_lock(&queue->rskq_lock);
1125 if (unlikely(sk->sk_state != TCP_LISTEN)) {
1126 inet_child_forget(sk, req, child);
1127 child = NULL;
1128 } else {
1129 req->sk = child;
1130 req->dl_next = NULL;
1131 if (queue->rskq_accept_head == NULL)
1132 WRITE_ONCE(queue->rskq_accept_head, req);
1133 else
1134 queue->rskq_accept_tail->dl_next = req;
1135 queue->rskq_accept_tail = req;
1136 sk_acceptq_added(sk);
1137 }
1138 spin_unlock(&queue->rskq_lock);
1139 return child;
1140 }
1141 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1142
inet_csk_complete_hashdance(struct sock * sk,struct sock * child,struct request_sock * req,bool own_req)1143 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1144 struct request_sock *req, bool own_req)
1145 {
1146 if (own_req) {
1147 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
1148 reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
1149
1150 if (sk != req->rsk_listener) {
1151 /* another listening sk has been selected,
1152 * migrate the req to it.
1153 */
1154 struct request_sock *nreq;
1155
1156 /* hold a refcnt for the nreq->rsk_listener
1157 * which is assigned in inet_reqsk_clone()
1158 */
1159 sock_hold(sk);
1160 nreq = inet_reqsk_clone(req, sk);
1161 if (!nreq) {
1162 inet_child_forget(sk, req, child);
1163 goto child_put;
1164 }
1165
1166 refcount_set(&nreq->rsk_refcnt, 1);
1167 if (inet_csk_reqsk_queue_add(sk, nreq, child)) {
1168 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS);
1169 reqsk_migrate_reset(req);
1170 reqsk_put(req);
1171 return child;
1172 }
1173
1174 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
1175 reqsk_migrate_reset(nreq);
1176 __reqsk_free(nreq);
1177 } else if (inet_csk_reqsk_queue_add(sk, req, child)) {
1178 return child;
1179 }
1180 }
1181 /* Too bad, another child took ownership of the request, undo. */
1182 child_put:
1183 bh_unlock_sock(child);
1184 sock_put(child);
1185 return NULL;
1186 }
1187 EXPORT_SYMBOL(inet_csk_complete_hashdance);
1188
1189 /*
1190 * This routine closes sockets which have been at least partially
1191 * opened, but not yet accepted.
1192 */
inet_csk_listen_stop(struct sock * sk)1193 void inet_csk_listen_stop(struct sock *sk)
1194 {
1195 struct inet_connection_sock *icsk = inet_csk(sk);
1196 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1197 struct request_sock *next, *req;
1198
1199 /* Following specs, it would be better either to send FIN
1200 * (and enter FIN-WAIT-1, it is normal close)
1201 * or to send active reset (abort).
1202 * Certainly, it is pretty dangerous while synflood, but it is
1203 * bad justification for our negligence 8)
1204 * To be honest, we are not able to make either
1205 * of the variants now. --ANK
1206 */
1207 while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1208 struct sock *child = req->sk, *nsk;
1209 struct request_sock *nreq;
1210
1211 local_bh_disable();
1212 bh_lock_sock(child);
1213 WARN_ON(sock_owned_by_user(child));
1214 sock_hold(child);
1215
1216 nsk = reuseport_migrate_sock(sk, child, NULL);
1217 if (nsk) {
1218 nreq = inet_reqsk_clone(req, nsk);
1219 if (nreq) {
1220 refcount_set(&nreq->rsk_refcnt, 1);
1221
1222 if (inet_csk_reqsk_queue_add(nsk, nreq, child)) {
1223 __NET_INC_STATS(sock_net(nsk),
1224 LINUX_MIB_TCPMIGRATEREQSUCCESS);
1225 reqsk_migrate_reset(req);
1226 } else {
1227 __NET_INC_STATS(sock_net(nsk),
1228 LINUX_MIB_TCPMIGRATEREQFAILURE);
1229 reqsk_migrate_reset(nreq);
1230 __reqsk_free(nreq);
1231 }
1232
1233 /* inet_csk_reqsk_queue_add() has already
1234 * called inet_child_forget() on failure case.
1235 */
1236 goto skip_child_forget;
1237 }
1238 }
1239
1240 inet_child_forget(sk, req, child);
1241 skip_child_forget:
1242 reqsk_put(req);
1243 bh_unlock_sock(child);
1244 local_bh_enable();
1245 sock_put(child);
1246
1247 cond_resched();
1248 }
1249 if (queue->fastopenq.rskq_rst_head) {
1250 /* Free all the reqs queued in rskq_rst_head. */
1251 spin_lock_bh(&queue->fastopenq.lock);
1252 req = queue->fastopenq.rskq_rst_head;
1253 queue->fastopenq.rskq_rst_head = NULL;
1254 spin_unlock_bh(&queue->fastopenq.lock);
1255 while (req != NULL) {
1256 next = req->dl_next;
1257 reqsk_put(req);
1258 req = next;
1259 }
1260 }
1261 WARN_ON_ONCE(sk->sk_ack_backlog);
1262 }
1263 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1264
inet_csk_addr2sockaddr(struct sock * sk,struct sockaddr * uaddr)1265 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1266 {
1267 struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1268 const struct inet_sock *inet = inet_sk(sk);
1269
1270 sin->sin_family = AF_INET;
1271 sin->sin_addr.s_addr = inet->inet_daddr;
1272 sin->sin_port = inet->inet_dport;
1273 }
1274 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1275
inet_csk_rebuild_route(struct sock * sk,struct flowi * fl)1276 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1277 {
1278 const struct inet_sock *inet = inet_sk(sk);
1279 const struct ip_options_rcu *inet_opt;
1280 __be32 daddr = inet->inet_daddr;
1281 struct flowi4 *fl4;
1282 struct rtable *rt;
1283
1284 rcu_read_lock();
1285 inet_opt = rcu_dereference(inet->inet_opt);
1286 if (inet_opt && inet_opt->opt.srr)
1287 daddr = inet_opt->opt.faddr;
1288 fl4 = &fl->u.ip4;
1289 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1290 inet->inet_saddr, inet->inet_dport,
1291 inet->inet_sport, sk->sk_protocol,
1292 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1293 if (IS_ERR(rt))
1294 rt = NULL;
1295 if (rt)
1296 sk_setup_caps(sk, &rt->dst);
1297 rcu_read_unlock();
1298
1299 return &rt->dst;
1300 }
1301
inet_csk_update_pmtu(struct sock * sk,u32 mtu)1302 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1303 {
1304 struct dst_entry *dst = __sk_dst_check(sk, 0);
1305 struct inet_sock *inet = inet_sk(sk);
1306
1307 if (!dst) {
1308 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1309 if (!dst)
1310 goto out;
1311 }
1312 dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1313
1314 dst = __sk_dst_check(sk, 0);
1315 if (!dst)
1316 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1317 out:
1318 return dst;
1319 }
1320 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);
1321