1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2011 STRATO. All rights reserved.
4 */
5
6 #include <linux/mm.h>
7 #include <linux/rbtree.h>
8 #include <trace/events/btrfs.h>
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "backref.h"
12 #include "ulist.h"
13 #include "transaction.h"
14 #include "delayed-ref.h"
15 #include "locking.h"
16 #include "misc.h"
17 #include "tree-mod-log.h"
18
19 /* Just an arbitrary number so we can be sure this happened */
20 #define BACKREF_FOUND_SHARED 6
21
22 struct extent_inode_elem {
23 u64 inum;
24 u64 offset;
25 struct extent_inode_elem *next;
26 };
27
check_extent_in_eb(const struct btrfs_key * key,const struct extent_buffer * eb,const struct btrfs_file_extent_item * fi,u64 extent_item_pos,struct extent_inode_elem ** eie,bool ignore_offset)28 static int check_extent_in_eb(const struct btrfs_key *key,
29 const struct extent_buffer *eb,
30 const struct btrfs_file_extent_item *fi,
31 u64 extent_item_pos,
32 struct extent_inode_elem **eie,
33 bool ignore_offset)
34 {
35 u64 offset = 0;
36 struct extent_inode_elem *e;
37
38 if (!ignore_offset &&
39 !btrfs_file_extent_compression(eb, fi) &&
40 !btrfs_file_extent_encryption(eb, fi) &&
41 !btrfs_file_extent_other_encoding(eb, fi)) {
42 u64 data_offset;
43 u64 data_len;
44
45 data_offset = btrfs_file_extent_offset(eb, fi);
46 data_len = btrfs_file_extent_num_bytes(eb, fi);
47
48 if (extent_item_pos < data_offset ||
49 extent_item_pos >= data_offset + data_len)
50 return 1;
51 offset = extent_item_pos - data_offset;
52 }
53
54 e = kmalloc(sizeof(*e), GFP_NOFS);
55 if (!e)
56 return -ENOMEM;
57
58 e->next = *eie;
59 e->inum = key->objectid;
60 e->offset = key->offset + offset;
61 *eie = e;
62
63 return 0;
64 }
65
free_inode_elem_list(struct extent_inode_elem * eie)66 static void free_inode_elem_list(struct extent_inode_elem *eie)
67 {
68 struct extent_inode_elem *eie_next;
69
70 for (; eie; eie = eie_next) {
71 eie_next = eie->next;
72 kfree(eie);
73 }
74 }
75
find_extent_in_eb(const struct extent_buffer * eb,u64 wanted_disk_byte,u64 extent_item_pos,struct extent_inode_elem ** eie,bool ignore_offset)76 static int find_extent_in_eb(const struct extent_buffer *eb,
77 u64 wanted_disk_byte, u64 extent_item_pos,
78 struct extent_inode_elem **eie,
79 bool ignore_offset)
80 {
81 u64 disk_byte;
82 struct btrfs_key key;
83 struct btrfs_file_extent_item *fi;
84 int slot;
85 int nritems;
86 int extent_type;
87 int ret;
88
89 /*
90 * from the shared data ref, we only have the leaf but we need
91 * the key. thus, we must look into all items and see that we
92 * find one (some) with a reference to our extent item.
93 */
94 nritems = btrfs_header_nritems(eb);
95 for (slot = 0; slot < nritems; ++slot) {
96 btrfs_item_key_to_cpu(eb, &key, slot);
97 if (key.type != BTRFS_EXTENT_DATA_KEY)
98 continue;
99 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
100 extent_type = btrfs_file_extent_type(eb, fi);
101 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
102 continue;
103 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
104 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
105 if (disk_byte != wanted_disk_byte)
106 continue;
107
108 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
109 if (ret < 0)
110 return ret;
111 }
112
113 return 0;
114 }
115
116 struct preftree {
117 struct rb_root_cached root;
118 unsigned int count;
119 };
120
121 #define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 }
122
123 struct preftrees {
124 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
125 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
126 struct preftree indirect_missing_keys;
127 };
128
129 /*
130 * Checks for a shared extent during backref search.
131 *
132 * The share_count tracks prelim_refs (direct and indirect) having a
133 * ref->count >0:
134 * - incremented when a ref->count transitions to >0
135 * - decremented when a ref->count transitions to <1
136 */
137 struct share_check {
138 u64 root_objectid;
139 u64 inum;
140 int share_count;
141 bool have_delayed_delete_refs;
142 };
143
extent_is_shared(struct share_check * sc)144 static inline int extent_is_shared(struct share_check *sc)
145 {
146 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
147 }
148
149 static struct kmem_cache *btrfs_prelim_ref_cache;
150
btrfs_prelim_ref_init(void)151 int __init btrfs_prelim_ref_init(void)
152 {
153 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
154 sizeof(struct prelim_ref),
155 0,
156 SLAB_MEM_SPREAD,
157 NULL);
158 if (!btrfs_prelim_ref_cache)
159 return -ENOMEM;
160 return 0;
161 }
162
btrfs_prelim_ref_exit(void)163 void __cold btrfs_prelim_ref_exit(void)
164 {
165 kmem_cache_destroy(btrfs_prelim_ref_cache);
166 }
167
free_pref(struct prelim_ref * ref)168 static void free_pref(struct prelim_ref *ref)
169 {
170 kmem_cache_free(btrfs_prelim_ref_cache, ref);
171 }
172
173 /*
174 * Return 0 when both refs are for the same block (and can be merged).
175 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
176 * indicates a 'higher' block.
177 */
prelim_ref_compare(struct prelim_ref * ref1,struct prelim_ref * ref2)178 static int prelim_ref_compare(struct prelim_ref *ref1,
179 struct prelim_ref *ref2)
180 {
181 if (ref1->level < ref2->level)
182 return -1;
183 if (ref1->level > ref2->level)
184 return 1;
185 if (ref1->root_id < ref2->root_id)
186 return -1;
187 if (ref1->root_id > ref2->root_id)
188 return 1;
189 if (ref1->key_for_search.type < ref2->key_for_search.type)
190 return -1;
191 if (ref1->key_for_search.type > ref2->key_for_search.type)
192 return 1;
193 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
194 return -1;
195 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
196 return 1;
197 if (ref1->key_for_search.offset < ref2->key_for_search.offset)
198 return -1;
199 if (ref1->key_for_search.offset > ref2->key_for_search.offset)
200 return 1;
201 if (ref1->parent < ref2->parent)
202 return -1;
203 if (ref1->parent > ref2->parent)
204 return 1;
205
206 return 0;
207 }
208
update_share_count(struct share_check * sc,int oldcount,int newcount)209 static void update_share_count(struct share_check *sc, int oldcount,
210 int newcount)
211 {
212 if ((!sc) || (oldcount == 0 && newcount < 1))
213 return;
214
215 if (oldcount > 0 && newcount < 1)
216 sc->share_count--;
217 else if (oldcount < 1 && newcount > 0)
218 sc->share_count++;
219 }
220
221 /*
222 * Add @newref to the @root rbtree, merging identical refs.
223 *
224 * Callers should assume that newref has been freed after calling.
225 */
prelim_ref_insert(const struct btrfs_fs_info * fs_info,struct preftree * preftree,struct prelim_ref * newref,struct share_check * sc)226 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
227 struct preftree *preftree,
228 struct prelim_ref *newref,
229 struct share_check *sc)
230 {
231 struct rb_root_cached *root;
232 struct rb_node **p;
233 struct rb_node *parent = NULL;
234 struct prelim_ref *ref;
235 int result;
236 bool leftmost = true;
237
238 root = &preftree->root;
239 p = &root->rb_root.rb_node;
240
241 while (*p) {
242 parent = *p;
243 ref = rb_entry(parent, struct prelim_ref, rbnode);
244 result = prelim_ref_compare(ref, newref);
245 if (result < 0) {
246 p = &(*p)->rb_left;
247 } else if (result > 0) {
248 p = &(*p)->rb_right;
249 leftmost = false;
250 } else {
251 /* Identical refs, merge them and free @newref */
252 struct extent_inode_elem *eie = ref->inode_list;
253
254 while (eie && eie->next)
255 eie = eie->next;
256
257 if (!eie)
258 ref->inode_list = newref->inode_list;
259 else
260 eie->next = newref->inode_list;
261 trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
262 preftree->count);
263 /*
264 * A delayed ref can have newref->count < 0.
265 * The ref->count is updated to follow any
266 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
267 */
268 update_share_count(sc, ref->count,
269 ref->count + newref->count);
270 ref->count += newref->count;
271 free_pref(newref);
272 return;
273 }
274 }
275
276 update_share_count(sc, 0, newref->count);
277 preftree->count++;
278 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
279 rb_link_node(&newref->rbnode, parent, p);
280 rb_insert_color_cached(&newref->rbnode, root, leftmost);
281 }
282
283 /*
284 * Release the entire tree. We don't care about internal consistency so
285 * just free everything and then reset the tree root.
286 */
prelim_release(struct preftree * preftree)287 static void prelim_release(struct preftree *preftree)
288 {
289 struct prelim_ref *ref, *next_ref;
290
291 rbtree_postorder_for_each_entry_safe(ref, next_ref,
292 &preftree->root.rb_root, rbnode) {
293 free_inode_elem_list(ref->inode_list);
294 free_pref(ref);
295 }
296
297 preftree->root = RB_ROOT_CACHED;
298 preftree->count = 0;
299 }
300
301 /*
302 * the rules for all callers of this function are:
303 * - obtaining the parent is the goal
304 * - if you add a key, you must know that it is a correct key
305 * - if you cannot add the parent or a correct key, then we will look into the
306 * block later to set a correct key
307 *
308 * delayed refs
309 * ============
310 * backref type | shared | indirect | shared | indirect
311 * information | tree | tree | data | data
312 * --------------------+--------+----------+--------+----------
313 * parent logical | y | - | - | -
314 * key to resolve | - | y | y | y
315 * tree block logical | - | - | - | -
316 * root for resolving | y | y | y | y
317 *
318 * - column 1: we've the parent -> done
319 * - column 2, 3, 4: we use the key to find the parent
320 *
321 * on disk refs (inline or keyed)
322 * ==============================
323 * backref type | shared | indirect | shared | indirect
324 * information | tree | tree | data | data
325 * --------------------+--------+----------+--------+----------
326 * parent logical | y | - | y | -
327 * key to resolve | - | - | - | y
328 * tree block logical | y | y | y | y
329 * root for resolving | - | y | y | y
330 *
331 * - column 1, 3: we've the parent -> done
332 * - column 2: we take the first key from the block to find the parent
333 * (see add_missing_keys)
334 * - column 4: we use the key to find the parent
335 *
336 * additional information that's available but not required to find the parent
337 * block might help in merging entries to gain some speed.
338 */
add_prelim_ref(const struct btrfs_fs_info * fs_info,struct preftree * preftree,u64 root_id,const struct btrfs_key * key,int level,u64 parent,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)339 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
340 struct preftree *preftree, u64 root_id,
341 const struct btrfs_key *key, int level, u64 parent,
342 u64 wanted_disk_byte, int count,
343 struct share_check *sc, gfp_t gfp_mask)
344 {
345 struct prelim_ref *ref;
346
347 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
348 return 0;
349
350 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
351 if (!ref)
352 return -ENOMEM;
353
354 ref->root_id = root_id;
355 if (key)
356 ref->key_for_search = *key;
357 else
358 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
359
360 ref->inode_list = NULL;
361 ref->level = level;
362 ref->count = count;
363 ref->parent = parent;
364 ref->wanted_disk_byte = wanted_disk_byte;
365 prelim_ref_insert(fs_info, preftree, ref, sc);
366 return extent_is_shared(sc);
367 }
368
369 /* direct refs use root == 0, key == NULL */
add_direct_ref(const struct btrfs_fs_info * fs_info,struct preftrees * preftrees,int level,u64 parent,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)370 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
371 struct preftrees *preftrees, int level, u64 parent,
372 u64 wanted_disk_byte, int count,
373 struct share_check *sc, gfp_t gfp_mask)
374 {
375 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
376 parent, wanted_disk_byte, count, sc, gfp_mask);
377 }
378
379 /* indirect refs use parent == 0 */
add_indirect_ref(const struct btrfs_fs_info * fs_info,struct preftrees * preftrees,u64 root_id,const struct btrfs_key * key,int level,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)380 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
381 struct preftrees *preftrees, u64 root_id,
382 const struct btrfs_key *key, int level,
383 u64 wanted_disk_byte, int count,
384 struct share_check *sc, gfp_t gfp_mask)
385 {
386 struct preftree *tree = &preftrees->indirect;
387
388 if (!key)
389 tree = &preftrees->indirect_missing_keys;
390 return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
391 wanted_disk_byte, count, sc, gfp_mask);
392 }
393
is_shared_data_backref(struct preftrees * preftrees,u64 bytenr)394 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
395 {
396 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
397 struct rb_node *parent = NULL;
398 struct prelim_ref *ref = NULL;
399 struct prelim_ref target = {};
400 int result;
401
402 target.parent = bytenr;
403
404 while (*p) {
405 parent = *p;
406 ref = rb_entry(parent, struct prelim_ref, rbnode);
407 result = prelim_ref_compare(ref, &target);
408
409 if (result < 0)
410 p = &(*p)->rb_left;
411 else if (result > 0)
412 p = &(*p)->rb_right;
413 else
414 return 1;
415 }
416 return 0;
417 }
418
add_all_parents(struct btrfs_root * root,struct btrfs_path * path,struct ulist * parents,struct preftrees * preftrees,struct prelim_ref * ref,int level,u64 time_seq,const u64 * extent_item_pos,bool ignore_offset)419 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
420 struct ulist *parents,
421 struct preftrees *preftrees, struct prelim_ref *ref,
422 int level, u64 time_seq, const u64 *extent_item_pos,
423 bool ignore_offset)
424 {
425 int ret = 0;
426 int slot;
427 struct extent_buffer *eb;
428 struct btrfs_key key;
429 struct btrfs_key *key_for_search = &ref->key_for_search;
430 struct btrfs_file_extent_item *fi;
431 struct extent_inode_elem *eie = NULL, *old = NULL;
432 u64 disk_byte;
433 u64 wanted_disk_byte = ref->wanted_disk_byte;
434 u64 count = 0;
435 u64 data_offset;
436 u8 type;
437
438 if (level != 0) {
439 eb = path->nodes[level];
440 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
441 if (ret < 0)
442 return ret;
443 return 0;
444 }
445
446 /*
447 * 1. We normally enter this function with the path already pointing to
448 * the first item to check. But sometimes, we may enter it with
449 * slot == nritems.
450 * 2. We are searching for normal backref but bytenr of this leaf
451 * matches shared data backref
452 * 3. The leaf owner is not equal to the root we are searching
453 *
454 * For these cases, go to the next leaf before we continue.
455 */
456 eb = path->nodes[0];
457 if (path->slots[0] >= btrfs_header_nritems(eb) ||
458 is_shared_data_backref(preftrees, eb->start) ||
459 ref->root_id != btrfs_header_owner(eb)) {
460 if (time_seq == BTRFS_SEQ_LAST)
461 ret = btrfs_next_leaf(root, path);
462 else
463 ret = btrfs_next_old_leaf(root, path, time_seq);
464 }
465
466 while (!ret && count < ref->count) {
467 eb = path->nodes[0];
468 slot = path->slots[0];
469
470 btrfs_item_key_to_cpu(eb, &key, slot);
471
472 if (key.objectid != key_for_search->objectid ||
473 key.type != BTRFS_EXTENT_DATA_KEY)
474 break;
475
476 /*
477 * We are searching for normal backref but bytenr of this leaf
478 * matches shared data backref, OR
479 * the leaf owner is not equal to the root we are searching for
480 */
481 if (slot == 0 &&
482 (is_shared_data_backref(preftrees, eb->start) ||
483 ref->root_id != btrfs_header_owner(eb))) {
484 if (time_seq == BTRFS_SEQ_LAST)
485 ret = btrfs_next_leaf(root, path);
486 else
487 ret = btrfs_next_old_leaf(root, path, time_seq);
488 continue;
489 }
490 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
491 type = btrfs_file_extent_type(eb, fi);
492 if (type == BTRFS_FILE_EXTENT_INLINE)
493 goto next;
494 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
495 data_offset = btrfs_file_extent_offset(eb, fi);
496
497 if (disk_byte == wanted_disk_byte) {
498 eie = NULL;
499 old = NULL;
500 if (ref->key_for_search.offset == key.offset - data_offset)
501 count++;
502 else
503 goto next;
504 if (extent_item_pos) {
505 ret = check_extent_in_eb(&key, eb, fi,
506 *extent_item_pos,
507 &eie, ignore_offset);
508 if (ret < 0)
509 break;
510 }
511 if (ret > 0)
512 goto next;
513 ret = ulist_add_merge_ptr(parents, eb->start,
514 eie, (void **)&old, GFP_NOFS);
515 if (ret < 0)
516 break;
517 if (!ret && extent_item_pos) {
518 while (old->next)
519 old = old->next;
520 old->next = eie;
521 }
522 eie = NULL;
523 }
524 next:
525 if (time_seq == BTRFS_SEQ_LAST)
526 ret = btrfs_next_item(root, path);
527 else
528 ret = btrfs_next_old_item(root, path, time_seq);
529 }
530
531 if (ret > 0)
532 ret = 0;
533 else if (ret < 0)
534 free_inode_elem_list(eie);
535 return ret;
536 }
537
538 /*
539 * resolve an indirect backref in the form (root_id, key, level)
540 * to a logical address
541 */
resolve_indirect_ref(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 time_seq,struct preftrees * preftrees,struct prelim_ref * ref,struct ulist * parents,const u64 * extent_item_pos,bool ignore_offset)542 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
543 struct btrfs_path *path, u64 time_seq,
544 struct preftrees *preftrees,
545 struct prelim_ref *ref, struct ulist *parents,
546 const u64 *extent_item_pos, bool ignore_offset)
547 {
548 struct btrfs_root *root;
549 struct extent_buffer *eb;
550 int ret = 0;
551 int root_level;
552 int level = ref->level;
553 struct btrfs_key search_key = ref->key_for_search;
554
555 /*
556 * If we're search_commit_root we could possibly be holding locks on
557 * other tree nodes. This happens when qgroups does backref walks when
558 * adding new delayed refs. To deal with this we need to look in cache
559 * for the root, and if we don't find it then we need to search the
560 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
561 * here.
562 */
563 if (path->search_commit_root)
564 root = btrfs_get_fs_root_commit_root(fs_info, path, ref->root_id);
565 else
566 root = btrfs_get_fs_root(fs_info, ref->root_id, false);
567 if (IS_ERR(root)) {
568 ret = PTR_ERR(root);
569 goto out_free;
570 }
571
572 if (!path->search_commit_root &&
573 test_bit(BTRFS_ROOT_DELETING, &root->state)) {
574 ret = -ENOENT;
575 goto out;
576 }
577
578 if (btrfs_is_testing(fs_info)) {
579 ret = -ENOENT;
580 goto out;
581 }
582
583 if (path->search_commit_root)
584 root_level = btrfs_header_level(root->commit_root);
585 else if (time_seq == BTRFS_SEQ_LAST)
586 root_level = btrfs_header_level(root->node);
587 else
588 root_level = btrfs_old_root_level(root, time_seq);
589
590 if (root_level + 1 == level)
591 goto out;
592
593 /*
594 * We can often find data backrefs with an offset that is too large
595 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
596 * subtracting a file's offset with the data offset of its
597 * corresponding extent data item. This can happen for example in the
598 * clone ioctl.
599 *
600 * So if we detect such case we set the search key's offset to zero to
601 * make sure we will find the matching file extent item at
602 * add_all_parents(), otherwise we will miss it because the offset
603 * taken form the backref is much larger then the offset of the file
604 * extent item. This can make us scan a very large number of file
605 * extent items, but at least it will not make us miss any.
606 *
607 * This is an ugly workaround for a behaviour that should have never
608 * existed, but it does and a fix for the clone ioctl would touch a lot
609 * of places, cause backwards incompatibility and would not fix the
610 * problem for extents cloned with older kernels.
611 */
612 if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
613 search_key.offset >= LLONG_MAX)
614 search_key.offset = 0;
615 path->lowest_level = level;
616 if (time_seq == BTRFS_SEQ_LAST)
617 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
618 else
619 ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
620
621 btrfs_debug(fs_info,
622 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
623 ref->root_id, level, ref->count, ret,
624 ref->key_for_search.objectid, ref->key_for_search.type,
625 ref->key_for_search.offset);
626 if (ret < 0)
627 goto out;
628
629 eb = path->nodes[level];
630 while (!eb) {
631 if (WARN_ON(!level)) {
632 ret = 1;
633 goto out;
634 }
635 level--;
636 eb = path->nodes[level];
637 }
638
639 ret = add_all_parents(root, path, parents, preftrees, ref, level,
640 time_seq, extent_item_pos, ignore_offset);
641 out:
642 btrfs_put_root(root);
643 out_free:
644 path->lowest_level = 0;
645 btrfs_release_path(path);
646 return ret;
647 }
648
649 static struct extent_inode_elem *
unode_aux_to_inode_list(struct ulist_node * node)650 unode_aux_to_inode_list(struct ulist_node *node)
651 {
652 if (!node)
653 return NULL;
654 return (struct extent_inode_elem *)(uintptr_t)node->aux;
655 }
656
free_leaf_list(struct ulist * ulist)657 static void free_leaf_list(struct ulist *ulist)
658 {
659 struct ulist_node *node;
660 struct ulist_iterator uiter;
661
662 ULIST_ITER_INIT(&uiter);
663 while ((node = ulist_next(ulist, &uiter)))
664 free_inode_elem_list(unode_aux_to_inode_list(node));
665
666 ulist_free(ulist);
667 }
668
669 /*
670 * We maintain three separate rbtrees: one for direct refs, one for
671 * indirect refs which have a key, and one for indirect refs which do not
672 * have a key. Each tree does merge on insertion.
673 *
674 * Once all of the references are located, we iterate over the tree of
675 * indirect refs with missing keys. An appropriate key is located and
676 * the ref is moved onto the tree for indirect refs. After all missing
677 * keys are thus located, we iterate over the indirect ref tree, resolve
678 * each reference, and then insert the resolved reference onto the
679 * direct tree (merging there too).
680 *
681 * New backrefs (i.e., for parent nodes) are added to the appropriate
682 * rbtree as they are encountered. The new backrefs are subsequently
683 * resolved as above.
684 */
resolve_indirect_refs(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 time_seq,struct preftrees * preftrees,const u64 * extent_item_pos,struct share_check * sc,bool ignore_offset)685 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
686 struct btrfs_path *path, u64 time_seq,
687 struct preftrees *preftrees,
688 const u64 *extent_item_pos,
689 struct share_check *sc, bool ignore_offset)
690 {
691 int err;
692 int ret = 0;
693 struct ulist *parents;
694 struct ulist_node *node;
695 struct ulist_iterator uiter;
696 struct rb_node *rnode;
697
698 parents = ulist_alloc(GFP_NOFS);
699 if (!parents)
700 return -ENOMEM;
701
702 /*
703 * We could trade memory usage for performance here by iterating
704 * the tree, allocating new refs for each insertion, and then
705 * freeing the entire indirect tree when we're done. In some test
706 * cases, the tree can grow quite large (~200k objects).
707 */
708 while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
709 struct prelim_ref *ref;
710
711 ref = rb_entry(rnode, struct prelim_ref, rbnode);
712 if (WARN(ref->parent,
713 "BUG: direct ref found in indirect tree")) {
714 ret = -EINVAL;
715 goto out;
716 }
717
718 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
719 preftrees->indirect.count--;
720
721 if (ref->count == 0) {
722 free_pref(ref);
723 continue;
724 }
725
726 if (sc && sc->root_objectid &&
727 ref->root_id != sc->root_objectid) {
728 free_pref(ref);
729 ret = BACKREF_FOUND_SHARED;
730 goto out;
731 }
732 err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
733 ref, parents, extent_item_pos,
734 ignore_offset);
735 /*
736 * we can only tolerate ENOENT,otherwise,we should catch error
737 * and return directly.
738 */
739 if (err == -ENOENT) {
740 prelim_ref_insert(fs_info, &preftrees->direct, ref,
741 NULL);
742 continue;
743 } else if (err) {
744 free_pref(ref);
745 ret = err;
746 goto out;
747 }
748
749 /* we put the first parent into the ref at hand */
750 ULIST_ITER_INIT(&uiter);
751 node = ulist_next(parents, &uiter);
752 ref->parent = node ? node->val : 0;
753 ref->inode_list = unode_aux_to_inode_list(node);
754
755 /* Add a prelim_ref(s) for any other parent(s). */
756 while ((node = ulist_next(parents, &uiter))) {
757 struct prelim_ref *new_ref;
758
759 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
760 GFP_NOFS);
761 if (!new_ref) {
762 free_pref(ref);
763 ret = -ENOMEM;
764 goto out;
765 }
766 memcpy(new_ref, ref, sizeof(*ref));
767 new_ref->parent = node->val;
768 new_ref->inode_list = unode_aux_to_inode_list(node);
769 prelim_ref_insert(fs_info, &preftrees->direct,
770 new_ref, NULL);
771 }
772
773 /*
774 * Now it's a direct ref, put it in the direct tree. We must
775 * do this last because the ref could be merged/freed here.
776 */
777 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
778
779 ulist_reinit(parents);
780 cond_resched();
781 }
782 out:
783 /*
784 * We may have inode lists attached to refs in the parents ulist, so we
785 * must free them before freeing the ulist and its refs.
786 */
787 free_leaf_list(parents);
788 return ret;
789 }
790
791 /*
792 * read tree blocks and add keys where required.
793 */
add_missing_keys(struct btrfs_fs_info * fs_info,struct preftrees * preftrees,bool lock)794 static int add_missing_keys(struct btrfs_fs_info *fs_info,
795 struct preftrees *preftrees, bool lock)
796 {
797 struct prelim_ref *ref;
798 struct extent_buffer *eb;
799 struct preftree *tree = &preftrees->indirect_missing_keys;
800 struct rb_node *node;
801
802 while ((node = rb_first_cached(&tree->root))) {
803 ref = rb_entry(node, struct prelim_ref, rbnode);
804 rb_erase_cached(node, &tree->root);
805
806 BUG_ON(ref->parent); /* should not be a direct ref */
807 BUG_ON(ref->key_for_search.type);
808 BUG_ON(!ref->wanted_disk_byte);
809
810 eb = read_tree_block(fs_info, ref->wanted_disk_byte,
811 ref->root_id, 0, ref->level - 1, NULL);
812 if (IS_ERR(eb)) {
813 free_pref(ref);
814 return PTR_ERR(eb);
815 } else if (!extent_buffer_uptodate(eb)) {
816 free_pref(ref);
817 free_extent_buffer(eb);
818 return -EIO;
819 }
820 if (lock)
821 btrfs_tree_read_lock(eb);
822 if (btrfs_header_level(eb) == 0)
823 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
824 else
825 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
826 if (lock)
827 btrfs_tree_read_unlock(eb);
828 free_extent_buffer(eb);
829 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
830 cond_resched();
831 }
832 return 0;
833 }
834
835 /*
836 * add all currently queued delayed refs from this head whose seq nr is
837 * smaller or equal that seq to the list
838 */
add_delayed_refs(const struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_head * head,u64 seq,struct preftrees * preftrees,struct share_check * sc)839 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
840 struct btrfs_delayed_ref_head *head, u64 seq,
841 struct preftrees *preftrees, struct share_check *sc)
842 {
843 struct btrfs_delayed_ref_node *node;
844 struct btrfs_key key;
845 struct rb_node *n;
846 int count;
847 int ret = 0;
848
849 spin_lock(&head->lock);
850 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
851 node = rb_entry(n, struct btrfs_delayed_ref_node,
852 ref_node);
853 if (node->seq > seq)
854 continue;
855
856 switch (node->action) {
857 case BTRFS_ADD_DELAYED_EXTENT:
858 case BTRFS_UPDATE_DELAYED_HEAD:
859 WARN_ON(1);
860 continue;
861 case BTRFS_ADD_DELAYED_REF:
862 count = node->ref_mod;
863 break;
864 case BTRFS_DROP_DELAYED_REF:
865 count = node->ref_mod * -1;
866 break;
867 default:
868 BUG();
869 }
870 switch (node->type) {
871 case BTRFS_TREE_BLOCK_REF_KEY: {
872 /* NORMAL INDIRECT METADATA backref */
873 struct btrfs_delayed_tree_ref *ref;
874 struct btrfs_key *key_ptr = NULL;
875
876 if (head->extent_op && head->extent_op->update_key) {
877 btrfs_disk_key_to_cpu(&key, &head->extent_op->key);
878 key_ptr = &key;
879 }
880
881 ref = btrfs_delayed_node_to_tree_ref(node);
882 ret = add_indirect_ref(fs_info, preftrees, ref->root,
883 key_ptr, ref->level + 1,
884 node->bytenr, count, sc,
885 GFP_ATOMIC);
886 break;
887 }
888 case BTRFS_SHARED_BLOCK_REF_KEY: {
889 /* SHARED DIRECT METADATA backref */
890 struct btrfs_delayed_tree_ref *ref;
891
892 ref = btrfs_delayed_node_to_tree_ref(node);
893
894 ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
895 ref->parent, node->bytenr, count,
896 sc, GFP_ATOMIC);
897 break;
898 }
899 case BTRFS_EXTENT_DATA_REF_KEY: {
900 /* NORMAL INDIRECT DATA backref */
901 struct btrfs_delayed_data_ref *ref;
902 ref = btrfs_delayed_node_to_data_ref(node);
903
904 key.objectid = ref->objectid;
905 key.type = BTRFS_EXTENT_DATA_KEY;
906 key.offset = ref->offset;
907
908 /*
909 * If we have a share check context and a reference for
910 * another inode, we can't exit immediately. This is
911 * because even if this is a BTRFS_ADD_DELAYED_REF
912 * reference we may find next a BTRFS_DROP_DELAYED_REF
913 * which cancels out this ADD reference.
914 *
915 * If this is a DROP reference and there was no previous
916 * ADD reference, then we need to signal that when we
917 * process references from the extent tree (through
918 * add_inline_refs() and add_keyed_refs()), we should
919 * not exit early if we find a reference for another
920 * inode, because one of the delayed DROP references
921 * may cancel that reference in the extent tree.
922 */
923 if (sc && count < 0)
924 sc->have_delayed_delete_refs = true;
925
926 ret = add_indirect_ref(fs_info, preftrees, ref->root,
927 &key, 0, node->bytenr, count, sc,
928 GFP_ATOMIC);
929 break;
930 }
931 case BTRFS_SHARED_DATA_REF_KEY: {
932 /* SHARED DIRECT FULL backref */
933 struct btrfs_delayed_data_ref *ref;
934
935 ref = btrfs_delayed_node_to_data_ref(node);
936
937 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
938 node->bytenr, count, sc,
939 GFP_ATOMIC);
940 break;
941 }
942 default:
943 WARN_ON(1);
944 }
945 /*
946 * We must ignore BACKREF_FOUND_SHARED until all delayed
947 * refs have been checked.
948 */
949 if (ret && (ret != BACKREF_FOUND_SHARED))
950 break;
951 }
952 if (!ret)
953 ret = extent_is_shared(sc);
954
955 spin_unlock(&head->lock);
956 return ret;
957 }
958
959 /*
960 * add all inline backrefs for bytenr to the list
961 *
962 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
963 */
add_inline_refs(const struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 bytenr,int * info_level,struct preftrees * preftrees,struct share_check * sc)964 static int add_inline_refs(const struct btrfs_fs_info *fs_info,
965 struct btrfs_path *path, u64 bytenr,
966 int *info_level, struct preftrees *preftrees,
967 struct share_check *sc)
968 {
969 int ret = 0;
970 int slot;
971 struct extent_buffer *leaf;
972 struct btrfs_key key;
973 struct btrfs_key found_key;
974 unsigned long ptr;
975 unsigned long end;
976 struct btrfs_extent_item *ei;
977 u64 flags;
978 u64 item_size;
979
980 /*
981 * enumerate all inline refs
982 */
983 leaf = path->nodes[0];
984 slot = path->slots[0];
985
986 item_size = btrfs_item_size_nr(leaf, slot);
987 BUG_ON(item_size < sizeof(*ei));
988
989 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
990 flags = btrfs_extent_flags(leaf, ei);
991 btrfs_item_key_to_cpu(leaf, &found_key, slot);
992
993 ptr = (unsigned long)(ei + 1);
994 end = (unsigned long)ei + item_size;
995
996 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
997 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
998 struct btrfs_tree_block_info *info;
999
1000 info = (struct btrfs_tree_block_info *)ptr;
1001 *info_level = btrfs_tree_block_level(leaf, info);
1002 ptr += sizeof(struct btrfs_tree_block_info);
1003 BUG_ON(ptr > end);
1004 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
1005 *info_level = found_key.offset;
1006 } else {
1007 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1008 }
1009
1010 while (ptr < end) {
1011 struct btrfs_extent_inline_ref *iref;
1012 u64 offset;
1013 int type;
1014
1015 iref = (struct btrfs_extent_inline_ref *)ptr;
1016 type = btrfs_get_extent_inline_ref_type(leaf, iref,
1017 BTRFS_REF_TYPE_ANY);
1018 if (type == BTRFS_REF_TYPE_INVALID)
1019 return -EUCLEAN;
1020
1021 offset = btrfs_extent_inline_ref_offset(leaf, iref);
1022
1023 switch (type) {
1024 case BTRFS_SHARED_BLOCK_REF_KEY:
1025 ret = add_direct_ref(fs_info, preftrees,
1026 *info_level + 1, offset,
1027 bytenr, 1, NULL, GFP_NOFS);
1028 break;
1029 case BTRFS_SHARED_DATA_REF_KEY: {
1030 struct btrfs_shared_data_ref *sdref;
1031 int count;
1032
1033 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1034 count = btrfs_shared_data_ref_count(leaf, sdref);
1035
1036 ret = add_direct_ref(fs_info, preftrees, 0, offset,
1037 bytenr, count, sc, GFP_NOFS);
1038 break;
1039 }
1040 case BTRFS_TREE_BLOCK_REF_KEY:
1041 ret = add_indirect_ref(fs_info, preftrees, offset,
1042 NULL, *info_level + 1,
1043 bytenr, 1, NULL, GFP_NOFS);
1044 break;
1045 case BTRFS_EXTENT_DATA_REF_KEY: {
1046 struct btrfs_extent_data_ref *dref;
1047 int count;
1048 u64 root;
1049
1050 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1051 count = btrfs_extent_data_ref_count(leaf, dref);
1052 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1053 dref);
1054 key.type = BTRFS_EXTENT_DATA_KEY;
1055 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1056
1057 if (sc && sc->inum && key.objectid != sc->inum &&
1058 !sc->have_delayed_delete_refs) {
1059 ret = BACKREF_FOUND_SHARED;
1060 break;
1061 }
1062
1063 root = btrfs_extent_data_ref_root(leaf, dref);
1064
1065 ret = add_indirect_ref(fs_info, preftrees, root,
1066 &key, 0, bytenr, count,
1067 sc, GFP_NOFS);
1068
1069 break;
1070 }
1071 default:
1072 WARN_ON(1);
1073 }
1074 if (ret)
1075 return ret;
1076 ptr += btrfs_extent_inline_ref_size(type);
1077 }
1078
1079 return 0;
1080 }
1081
1082 /*
1083 * add all non-inline backrefs for bytenr to the list
1084 *
1085 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1086 */
add_keyed_refs(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 bytenr,int info_level,struct preftrees * preftrees,struct share_check * sc)1087 static int add_keyed_refs(struct btrfs_fs_info *fs_info,
1088 struct btrfs_path *path, u64 bytenr,
1089 int info_level, struct preftrees *preftrees,
1090 struct share_check *sc)
1091 {
1092 struct btrfs_root *extent_root = fs_info->extent_root;
1093 int ret;
1094 int slot;
1095 struct extent_buffer *leaf;
1096 struct btrfs_key key;
1097
1098 while (1) {
1099 ret = btrfs_next_item(extent_root, path);
1100 if (ret < 0)
1101 break;
1102 if (ret) {
1103 ret = 0;
1104 break;
1105 }
1106
1107 slot = path->slots[0];
1108 leaf = path->nodes[0];
1109 btrfs_item_key_to_cpu(leaf, &key, slot);
1110
1111 if (key.objectid != bytenr)
1112 break;
1113 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1114 continue;
1115 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1116 break;
1117
1118 switch (key.type) {
1119 case BTRFS_SHARED_BLOCK_REF_KEY:
1120 /* SHARED DIRECT METADATA backref */
1121 ret = add_direct_ref(fs_info, preftrees,
1122 info_level + 1, key.offset,
1123 bytenr, 1, NULL, GFP_NOFS);
1124 break;
1125 case BTRFS_SHARED_DATA_REF_KEY: {
1126 /* SHARED DIRECT FULL backref */
1127 struct btrfs_shared_data_ref *sdref;
1128 int count;
1129
1130 sdref = btrfs_item_ptr(leaf, slot,
1131 struct btrfs_shared_data_ref);
1132 count = btrfs_shared_data_ref_count(leaf, sdref);
1133 ret = add_direct_ref(fs_info, preftrees, 0,
1134 key.offset, bytenr, count,
1135 sc, GFP_NOFS);
1136 break;
1137 }
1138 case BTRFS_TREE_BLOCK_REF_KEY:
1139 /* NORMAL INDIRECT METADATA backref */
1140 ret = add_indirect_ref(fs_info, preftrees, key.offset,
1141 NULL, info_level + 1, bytenr,
1142 1, NULL, GFP_NOFS);
1143 break;
1144 case BTRFS_EXTENT_DATA_REF_KEY: {
1145 /* NORMAL INDIRECT DATA backref */
1146 struct btrfs_extent_data_ref *dref;
1147 int count;
1148 u64 root;
1149
1150 dref = btrfs_item_ptr(leaf, slot,
1151 struct btrfs_extent_data_ref);
1152 count = btrfs_extent_data_ref_count(leaf, dref);
1153 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1154 dref);
1155 key.type = BTRFS_EXTENT_DATA_KEY;
1156 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1157
1158 if (sc && sc->inum && key.objectid != sc->inum &&
1159 !sc->have_delayed_delete_refs) {
1160 ret = BACKREF_FOUND_SHARED;
1161 break;
1162 }
1163
1164 root = btrfs_extent_data_ref_root(leaf, dref);
1165 ret = add_indirect_ref(fs_info, preftrees, root,
1166 &key, 0, bytenr, count,
1167 sc, GFP_NOFS);
1168 break;
1169 }
1170 default:
1171 WARN_ON(1);
1172 }
1173 if (ret)
1174 return ret;
1175
1176 }
1177
1178 return ret;
1179 }
1180
1181 /*
1182 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1183 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1184 * indirect refs to their parent bytenr.
1185 * When roots are found, they're added to the roots list
1186 *
1187 * If time_seq is set to BTRFS_SEQ_LAST, it will not search delayed_refs, and
1188 * behave much like trans == NULL case, the difference only lies in it will not
1189 * commit root.
1190 * The special case is for qgroup to search roots in commit_transaction().
1191 *
1192 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1193 * shared extent is detected.
1194 *
1195 * Otherwise this returns 0 for success and <0 for an error.
1196 *
1197 * If ignore_offset is set to false, only extent refs whose offsets match
1198 * extent_item_pos are returned. If true, every extent ref is returned
1199 * and extent_item_pos is ignored.
1200 *
1201 * FIXME some caching might speed things up
1202 */
find_parent_nodes(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 time_seq,struct ulist * refs,struct ulist * roots,const u64 * extent_item_pos,struct share_check * sc,bool ignore_offset)1203 static int find_parent_nodes(struct btrfs_trans_handle *trans,
1204 struct btrfs_fs_info *fs_info, u64 bytenr,
1205 u64 time_seq, struct ulist *refs,
1206 struct ulist *roots, const u64 *extent_item_pos,
1207 struct share_check *sc, bool ignore_offset)
1208 {
1209 struct btrfs_key key;
1210 struct btrfs_path *path;
1211 struct btrfs_delayed_ref_root *delayed_refs = NULL;
1212 struct btrfs_delayed_ref_head *head;
1213 int info_level = 0;
1214 int ret;
1215 struct prelim_ref *ref;
1216 struct rb_node *node;
1217 struct extent_inode_elem *eie = NULL;
1218 struct preftrees preftrees = {
1219 .direct = PREFTREE_INIT,
1220 .indirect = PREFTREE_INIT,
1221 .indirect_missing_keys = PREFTREE_INIT
1222 };
1223
1224 key.objectid = bytenr;
1225 key.offset = (u64)-1;
1226 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1227 key.type = BTRFS_METADATA_ITEM_KEY;
1228 else
1229 key.type = BTRFS_EXTENT_ITEM_KEY;
1230
1231 path = btrfs_alloc_path();
1232 if (!path)
1233 return -ENOMEM;
1234 if (!trans) {
1235 path->search_commit_root = 1;
1236 path->skip_locking = 1;
1237 }
1238
1239 if (time_seq == BTRFS_SEQ_LAST)
1240 path->skip_locking = 1;
1241
1242 /*
1243 * grab both a lock on the path and a lock on the delayed ref head.
1244 * We need both to get a consistent picture of how the refs look
1245 * at a specified point in time
1246 */
1247 again:
1248 head = NULL;
1249
1250 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1251 if (ret < 0)
1252 goto out;
1253 if (ret == 0) {
1254 /* This shouldn't happen, indicates a bug or fs corruption. */
1255 ASSERT(ret != 0);
1256 ret = -EUCLEAN;
1257 goto out;
1258 }
1259
1260 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1261 if (trans && likely(trans->type != __TRANS_DUMMY) &&
1262 time_seq != BTRFS_SEQ_LAST) {
1263 #else
1264 if (trans && time_seq != BTRFS_SEQ_LAST) {
1265 #endif
1266 /*
1267 * look if there are updates for this ref queued and lock the
1268 * head
1269 */
1270 delayed_refs = &trans->transaction->delayed_refs;
1271 spin_lock(&delayed_refs->lock);
1272 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1273 if (head) {
1274 if (!mutex_trylock(&head->mutex)) {
1275 refcount_inc(&head->refs);
1276 spin_unlock(&delayed_refs->lock);
1277
1278 btrfs_release_path(path);
1279
1280 /*
1281 * Mutex was contended, block until it's
1282 * released and try again
1283 */
1284 mutex_lock(&head->mutex);
1285 mutex_unlock(&head->mutex);
1286 btrfs_put_delayed_ref_head(head);
1287 goto again;
1288 }
1289 spin_unlock(&delayed_refs->lock);
1290 ret = add_delayed_refs(fs_info, head, time_seq,
1291 &preftrees, sc);
1292 mutex_unlock(&head->mutex);
1293 if (ret)
1294 goto out;
1295 } else {
1296 spin_unlock(&delayed_refs->lock);
1297 }
1298 }
1299
1300 if (path->slots[0]) {
1301 struct extent_buffer *leaf;
1302 int slot;
1303
1304 path->slots[0]--;
1305 leaf = path->nodes[0];
1306 slot = path->slots[0];
1307 btrfs_item_key_to_cpu(leaf, &key, slot);
1308 if (key.objectid == bytenr &&
1309 (key.type == BTRFS_EXTENT_ITEM_KEY ||
1310 key.type == BTRFS_METADATA_ITEM_KEY)) {
1311 ret = add_inline_refs(fs_info, path, bytenr,
1312 &info_level, &preftrees, sc);
1313 if (ret)
1314 goto out;
1315 ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1316 &preftrees, sc);
1317 if (ret)
1318 goto out;
1319 }
1320 }
1321
1322 btrfs_release_path(path);
1323
1324 ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1325 if (ret)
1326 goto out;
1327
1328 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1329
1330 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1331 extent_item_pos, sc, ignore_offset);
1332 if (ret)
1333 goto out;
1334
1335 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1336
1337 /*
1338 * This walks the tree of merged and resolved refs. Tree blocks are
1339 * read in as needed. Unique entries are added to the ulist, and
1340 * the list of found roots is updated.
1341 *
1342 * We release the entire tree in one go before returning.
1343 */
1344 node = rb_first_cached(&preftrees.direct.root);
1345 while (node) {
1346 ref = rb_entry(node, struct prelim_ref, rbnode);
1347 node = rb_next(&ref->rbnode);
1348 /*
1349 * ref->count < 0 can happen here if there are delayed
1350 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1351 * prelim_ref_insert() relies on this when merging
1352 * identical refs to keep the overall count correct.
1353 * prelim_ref_insert() will merge only those refs
1354 * which compare identically. Any refs having
1355 * e.g. different offsets would not be merged,
1356 * and would retain their original ref->count < 0.
1357 */
1358 if (roots && ref->count && ref->root_id && ref->parent == 0) {
1359 if (sc && sc->root_objectid &&
1360 ref->root_id != sc->root_objectid) {
1361 ret = BACKREF_FOUND_SHARED;
1362 goto out;
1363 }
1364
1365 /* no parent == root of tree */
1366 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1367 if (ret < 0)
1368 goto out;
1369 }
1370 if (ref->count && ref->parent) {
1371 if (extent_item_pos && !ref->inode_list &&
1372 ref->level == 0) {
1373 struct extent_buffer *eb;
1374
1375 eb = read_tree_block(fs_info, ref->parent, 0,
1376 0, ref->level, NULL);
1377 if (IS_ERR(eb)) {
1378 ret = PTR_ERR(eb);
1379 goto out;
1380 } else if (!extent_buffer_uptodate(eb)) {
1381 free_extent_buffer(eb);
1382 ret = -EIO;
1383 goto out;
1384 }
1385
1386 if (!path->skip_locking)
1387 btrfs_tree_read_lock(eb);
1388 ret = find_extent_in_eb(eb, bytenr,
1389 *extent_item_pos, &eie, ignore_offset);
1390 if (!path->skip_locking)
1391 btrfs_tree_read_unlock(eb);
1392 free_extent_buffer(eb);
1393 if (ret < 0)
1394 goto out;
1395 ref->inode_list = eie;
1396 /*
1397 * We transferred the list ownership to the ref,
1398 * so set to NULL to avoid a double free in case
1399 * an error happens after this.
1400 */
1401 eie = NULL;
1402 }
1403 ret = ulist_add_merge_ptr(refs, ref->parent,
1404 ref->inode_list,
1405 (void **)&eie, GFP_NOFS);
1406 if (ret < 0)
1407 goto out;
1408 if (!ret && extent_item_pos) {
1409 /*
1410 * We've recorded that parent, so we must extend
1411 * its inode list here.
1412 *
1413 * However if there was corruption we may not
1414 * have found an eie, return an error in this
1415 * case.
1416 */
1417 ASSERT(eie);
1418 if (!eie) {
1419 ret = -EUCLEAN;
1420 goto out;
1421 }
1422 while (eie->next)
1423 eie = eie->next;
1424 eie->next = ref->inode_list;
1425 }
1426 eie = NULL;
1427 /*
1428 * We have transferred the inode list ownership from
1429 * this ref to the ref we added to the 'refs' ulist.
1430 * So set this ref's inode list to NULL to avoid
1431 * use-after-free when our caller uses it or double
1432 * frees in case an error happens before we return.
1433 */
1434 ref->inode_list = NULL;
1435 }
1436 cond_resched();
1437 }
1438
1439 out:
1440 btrfs_free_path(path);
1441
1442 prelim_release(&preftrees.direct);
1443 prelim_release(&preftrees.indirect);
1444 prelim_release(&preftrees.indirect_missing_keys);
1445
1446 if (ret < 0)
1447 free_inode_elem_list(eie);
1448 return ret;
1449 }
1450
1451 /*
1452 * Finds all leafs with a reference to the specified combination of bytenr and
1453 * offset. key_list_head will point to a list of corresponding keys (caller must
1454 * free each list element). The leafs will be stored in the leafs ulist, which
1455 * must be freed with ulist_free.
1456 *
1457 * returns 0 on success, <0 on error
1458 */
1459 int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1460 struct btrfs_fs_info *fs_info, u64 bytenr,
1461 u64 time_seq, struct ulist **leafs,
1462 const u64 *extent_item_pos, bool ignore_offset)
1463 {
1464 int ret;
1465
1466 *leafs = ulist_alloc(GFP_NOFS);
1467 if (!*leafs)
1468 return -ENOMEM;
1469
1470 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1471 *leafs, NULL, extent_item_pos, NULL, ignore_offset);
1472 if (ret < 0 && ret != -ENOENT) {
1473 free_leaf_list(*leafs);
1474 return ret;
1475 }
1476
1477 return 0;
1478 }
1479
1480 /*
1481 * walk all backrefs for a given extent to find all roots that reference this
1482 * extent. Walking a backref means finding all extents that reference this
1483 * extent and in turn walk the backrefs of those, too. Naturally this is a
1484 * recursive process, but here it is implemented in an iterative fashion: We
1485 * find all referencing extents for the extent in question and put them on a
1486 * list. In turn, we find all referencing extents for those, further appending
1487 * to the list. The way we iterate the list allows adding more elements after
1488 * the current while iterating. The process stops when we reach the end of the
1489 * list. Found roots are added to the roots list.
1490 *
1491 * returns 0 on success, < 0 on error.
1492 */
1493 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1494 struct btrfs_fs_info *fs_info, u64 bytenr,
1495 u64 time_seq, struct ulist **roots,
1496 bool ignore_offset)
1497 {
1498 struct ulist *tmp;
1499 struct ulist_node *node = NULL;
1500 struct ulist_iterator uiter;
1501 int ret;
1502
1503 tmp = ulist_alloc(GFP_NOFS);
1504 if (!tmp)
1505 return -ENOMEM;
1506 *roots = ulist_alloc(GFP_NOFS);
1507 if (!*roots) {
1508 ulist_free(tmp);
1509 return -ENOMEM;
1510 }
1511
1512 ULIST_ITER_INIT(&uiter);
1513 while (1) {
1514 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1515 tmp, *roots, NULL, NULL, ignore_offset);
1516 if (ret < 0 && ret != -ENOENT) {
1517 ulist_free(tmp);
1518 ulist_free(*roots);
1519 *roots = NULL;
1520 return ret;
1521 }
1522 node = ulist_next(tmp, &uiter);
1523 if (!node)
1524 break;
1525 bytenr = node->val;
1526 cond_resched();
1527 }
1528
1529 ulist_free(tmp);
1530 return 0;
1531 }
1532
1533 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1534 struct btrfs_fs_info *fs_info, u64 bytenr,
1535 u64 time_seq, struct ulist **roots,
1536 bool skip_commit_root_sem)
1537 {
1538 int ret;
1539
1540 if (!trans && !skip_commit_root_sem)
1541 down_read(&fs_info->commit_root_sem);
1542 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1543 time_seq, roots, false);
1544 if (!trans && !skip_commit_root_sem)
1545 up_read(&fs_info->commit_root_sem);
1546 return ret;
1547 }
1548
1549 /**
1550 * Check if an extent is shared or not
1551 *
1552 * @root: root inode belongs to
1553 * @inum: inode number of the inode whose extent we are checking
1554 * @bytenr: logical bytenr of the extent we are checking
1555 * @roots: list of roots this extent is shared among
1556 * @tmp: temporary list used for iteration
1557 *
1558 * btrfs_check_shared uses the backref walking code but will short
1559 * circuit as soon as it finds a root or inode that doesn't match the
1560 * one passed in. This provides a significant performance benefit for
1561 * callers (such as fiemap) which want to know whether the extent is
1562 * shared but do not need a ref count.
1563 *
1564 * This attempts to attach to the running transaction in order to account for
1565 * delayed refs, but continues on even when no running transaction exists.
1566 *
1567 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1568 */
1569 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1570 struct ulist *roots, struct ulist *tmp)
1571 {
1572 struct btrfs_fs_info *fs_info = root->fs_info;
1573 struct btrfs_trans_handle *trans;
1574 struct ulist_iterator uiter;
1575 struct ulist_node *node;
1576 struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem);
1577 int ret = 0;
1578 struct share_check shared = {
1579 .root_objectid = root->root_key.objectid,
1580 .inum = inum,
1581 .share_count = 0,
1582 .have_delayed_delete_refs = false,
1583 };
1584
1585 ulist_init(roots);
1586 ulist_init(tmp);
1587
1588 trans = btrfs_join_transaction_nostart(root);
1589 if (IS_ERR(trans)) {
1590 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1591 ret = PTR_ERR(trans);
1592 goto out;
1593 }
1594 trans = NULL;
1595 down_read(&fs_info->commit_root_sem);
1596 } else {
1597 btrfs_get_tree_mod_seq(fs_info, &elem);
1598 }
1599
1600 ULIST_ITER_INIT(&uiter);
1601 while (1) {
1602 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1603 roots, NULL, &shared, false);
1604 if (ret == BACKREF_FOUND_SHARED) {
1605 /* this is the only condition under which we return 1 */
1606 ret = 1;
1607 break;
1608 }
1609 if (ret < 0 && ret != -ENOENT)
1610 break;
1611 ret = 0;
1612 node = ulist_next(tmp, &uiter);
1613 if (!node)
1614 break;
1615 bytenr = node->val;
1616 shared.share_count = 0;
1617 shared.have_delayed_delete_refs = false;
1618 cond_resched();
1619 }
1620
1621 if (trans) {
1622 btrfs_put_tree_mod_seq(fs_info, &elem);
1623 btrfs_end_transaction(trans);
1624 } else {
1625 up_read(&fs_info->commit_root_sem);
1626 }
1627 out:
1628 ulist_release(roots);
1629 ulist_release(tmp);
1630 return ret;
1631 }
1632
1633 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1634 u64 start_off, struct btrfs_path *path,
1635 struct btrfs_inode_extref **ret_extref,
1636 u64 *found_off)
1637 {
1638 int ret, slot;
1639 struct btrfs_key key;
1640 struct btrfs_key found_key;
1641 struct btrfs_inode_extref *extref;
1642 const struct extent_buffer *leaf;
1643 unsigned long ptr;
1644
1645 key.objectid = inode_objectid;
1646 key.type = BTRFS_INODE_EXTREF_KEY;
1647 key.offset = start_off;
1648
1649 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1650 if (ret < 0)
1651 return ret;
1652
1653 while (1) {
1654 leaf = path->nodes[0];
1655 slot = path->slots[0];
1656 if (slot >= btrfs_header_nritems(leaf)) {
1657 /*
1658 * If the item at offset is not found,
1659 * btrfs_search_slot will point us to the slot
1660 * where it should be inserted. In our case
1661 * that will be the slot directly before the
1662 * next INODE_REF_KEY_V2 item. In the case
1663 * that we're pointing to the last slot in a
1664 * leaf, we must move one leaf over.
1665 */
1666 ret = btrfs_next_leaf(root, path);
1667 if (ret) {
1668 if (ret >= 1)
1669 ret = -ENOENT;
1670 break;
1671 }
1672 continue;
1673 }
1674
1675 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1676
1677 /*
1678 * Check that we're still looking at an extended ref key for
1679 * this particular objectid. If we have different
1680 * objectid or type then there are no more to be found
1681 * in the tree and we can exit.
1682 */
1683 ret = -ENOENT;
1684 if (found_key.objectid != inode_objectid)
1685 break;
1686 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1687 break;
1688
1689 ret = 0;
1690 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1691 extref = (struct btrfs_inode_extref *)ptr;
1692 *ret_extref = extref;
1693 if (found_off)
1694 *found_off = found_key.offset;
1695 break;
1696 }
1697
1698 return ret;
1699 }
1700
1701 /*
1702 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1703 * Elements of the path are separated by '/' and the path is guaranteed to be
1704 * 0-terminated. the path is only given within the current file system.
1705 * Therefore, it never starts with a '/'. the caller is responsible to provide
1706 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1707 * the start point of the resulting string is returned. this pointer is within
1708 * dest, normally.
1709 * in case the path buffer would overflow, the pointer is decremented further
1710 * as if output was written to the buffer, though no more output is actually
1711 * generated. that way, the caller can determine how much space would be
1712 * required for the path to fit into the buffer. in that case, the returned
1713 * value will be smaller than dest. callers must check this!
1714 */
1715 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1716 u32 name_len, unsigned long name_off,
1717 struct extent_buffer *eb_in, u64 parent,
1718 char *dest, u32 size)
1719 {
1720 int slot;
1721 u64 next_inum;
1722 int ret;
1723 s64 bytes_left = ((s64)size) - 1;
1724 struct extent_buffer *eb = eb_in;
1725 struct btrfs_key found_key;
1726 struct btrfs_inode_ref *iref;
1727
1728 if (bytes_left >= 0)
1729 dest[bytes_left] = '\0';
1730
1731 while (1) {
1732 bytes_left -= name_len;
1733 if (bytes_left >= 0)
1734 read_extent_buffer(eb, dest + bytes_left,
1735 name_off, name_len);
1736 if (eb != eb_in) {
1737 if (!path->skip_locking)
1738 btrfs_tree_read_unlock(eb);
1739 free_extent_buffer(eb);
1740 }
1741 ret = btrfs_find_item(fs_root, path, parent, 0,
1742 BTRFS_INODE_REF_KEY, &found_key);
1743 if (ret > 0)
1744 ret = -ENOENT;
1745 if (ret)
1746 break;
1747
1748 next_inum = found_key.offset;
1749
1750 /* regular exit ahead */
1751 if (parent == next_inum)
1752 break;
1753
1754 slot = path->slots[0];
1755 eb = path->nodes[0];
1756 /* make sure we can use eb after releasing the path */
1757 if (eb != eb_in) {
1758 path->nodes[0] = NULL;
1759 path->locks[0] = 0;
1760 }
1761 btrfs_release_path(path);
1762 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1763
1764 name_len = btrfs_inode_ref_name_len(eb, iref);
1765 name_off = (unsigned long)(iref + 1);
1766
1767 parent = next_inum;
1768 --bytes_left;
1769 if (bytes_left >= 0)
1770 dest[bytes_left] = '/';
1771 }
1772
1773 btrfs_release_path(path);
1774
1775 if (ret)
1776 return ERR_PTR(ret);
1777
1778 return dest + bytes_left;
1779 }
1780
1781 /*
1782 * this makes the path point to (logical EXTENT_ITEM *)
1783 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1784 * tree blocks and <0 on error.
1785 */
1786 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1787 struct btrfs_path *path, struct btrfs_key *found_key,
1788 u64 *flags_ret)
1789 {
1790 int ret;
1791 u64 flags;
1792 u64 size = 0;
1793 u32 item_size;
1794 const struct extent_buffer *eb;
1795 struct btrfs_extent_item *ei;
1796 struct btrfs_key key;
1797
1798 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1799 key.type = BTRFS_METADATA_ITEM_KEY;
1800 else
1801 key.type = BTRFS_EXTENT_ITEM_KEY;
1802 key.objectid = logical;
1803 key.offset = (u64)-1;
1804
1805 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1806 if (ret < 0)
1807 return ret;
1808
1809 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1810 if (ret) {
1811 if (ret > 0)
1812 ret = -ENOENT;
1813 return ret;
1814 }
1815 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1816 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1817 size = fs_info->nodesize;
1818 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1819 size = found_key->offset;
1820
1821 if (found_key->objectid > logical ||
1822 found_key->objectid + size <= logical) {
1823 btrfs_debug(fs_info,
1824 "logical %llu is not within any extent", logical);
1825 return -ENOENT;
1826 }
1827
1828 eb = path->nodes[0];
1829 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1830 BUG_ON(item_size < sizeof(*ei));
1831
1832 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1833 flags = btrfs_extent_flags(eb, ei);
1834
1835 btrfs_debug(fs_info,
1836 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1837 logical, logical - found_key->objectid, found_key->objectid,
1838 found_key->offset, flags, item_size);
1839
1840 WARN_ON(!flags_ret);
1841 if (flags_ret) {
1842 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1843 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1844 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1845 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1846 else
1847 BUG();
1848 return 0;
1849 }
1850
1851 return -EIO;
1852 }
1853
1854 /*
1855 * helper function to iterate extent inline refs. ptr must point to a 0 value
1856 * for the first call and may be modified. it is used to track state.
1857 * if more refs exist, 0 is returned and the next call to
1858 * get_extent_inline_ref must pass the modified ptr parameter to get the
1859 * next ref. after the last ref was processed, 1 is returned.
1860 * returns <0 on error
1861 */
1862 static int get_extent_inline_ref(unsigned long *ptr,
1863 const struct extent_buffer *eb,
1864 const struct btrfs_key *key,
1865 const struct btrfs_extent_item *ei,
1866 u32 item_size,
1867 struct btrfs_extent_inline_ref **out_eiref,
1868 int *out_type)
1869 {
1870 unsigned long end;
1871 u64 flags;
1872 struct btrfs_tree_block_info *info;
1873
1874 if (!*ptr) {
1875 /* first call */
1876 flags = btrfs_extent_flags(eb, ei);
1877 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1878 if (key->type == BTRFS_METADATA_ITEM_KEY) {
1879 /* a skinny metadata extent */
1880 *out_eiref =
1881 (struct btrfs_extent_inline_ref *)(ei + 1);
1882 } else {
1883 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1884 info = (struct btrfs_tree_block_info *)(ei + 1);
1885 *out_eiref =
1886 (struct btrfs_extent_inline_ref *)(info + 1);
1887 }
1888 } else {
1889 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1890 }
1891 *ptr = (unsigned long)*out_eiref;
1892 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1893 return -ENOENT;
1894 }
1895
1896 end = (unsigned long)ei + item_size;
1897 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1898 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1899 BTRFS_REF_TYPE_ANY);
1900 if (*out_type == BTRFS_REF_TYPE_INVALID)
1901 return -EUCLEAN;
1902
1903 *ptr += btrfs_extent_inline_ref_size(*out_type);
1904 WARN_ON(*ptr > end);
1905 if (*ptr == end)
1906 return 1; /* last */
1907
1908 return 0;
1909 }
1910
1911 /*
1912 * reads the tree block backref for an extent. tree level and root are returned
1913 * through out_level and out_root. ptr must point to a 0 value for the first
1914 * call and may be modified (see get_extent_inline_ref comment).
1915 * returns 0 if data was provided, 1 if there was no more data to provide or
1916 * <0 on error.
1917 */
1918 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1919 struct btrfs_key *key, struct btrfs_extent_item *ei,
1920 u32 item_size, u64 *out_root, u8 *out_level)
1921 {
1922 int ret;
1923 int type;
1924 struct btrfs_extent_inline_ref *eiref;
1925
1926 if (*ptr == (unsigned long)-1)
1927 return 1;
1928
1929 while (1) {
1930 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1931 &eiref, &type);
1932 if (ret < 0)
1933 return ret;
1934
1935 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1936 type == BTRFS_SHARED_BLOCK_REF_KEY)
1937 break;
1938
1939 if (ret == 1)
1940 return 1;
1941 }
1942
1943 /* we can treat both ref types equally here */
1944 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1945
1946 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1947 struct btrfs_tree_block_info *info;
1948
1949 info = (struct btrfs_tree_block_info *)(ei + 1);
1950 *out_level = btrfs_tree_block_level(eb, info);
1951 } else {
1952 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1953 *out_level = (u8)key->offset;
1954 }
1955
1956 if (ret == 1)
1957 *ptr = (unsigned long)-1;
1958
1959 return 0;
1960 }
1961
1962 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1963 struct extent_inode_elem *inode_list,
1964 u64 root, u64 extent_item_objectid,
1965 iterate_extent_inodes_t *iterate, void *ctx)
1966 {
1967 struct extent_inode_elem *eie;
1968 int ret = 0;
1969
1970 for (eie = inode_list; eie; eie = eie->next) {
1971 btrfs_debug(fs_info,
1972 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1973 extent_item_objectid, eie->inum,
1974 eie->offset, root);
1975 ret = iterate(eie->inum, eie->offset, root, ctx);
1976 if (ret) {
1977 btrfs_debug(fs_info,
1978 "stopping iteration for %llu due to ret=%d",
1979 extent_item_objectid, ret);
1980 break;
1981 }
1982 }
1983
1984 return ret;
1985 }
1986
1987 /*
1988 * calls iterate() for every inode that references the extent identified by
1989 * the given parameters.
1990 * when the iterator function returns a non-zero value, iteration stops.
1991 */
1992 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1993 u64 extent_item_objectid, u64 extent_item_pos,
1994 int search_commit_root,
1995 iterate_extent_inodes_t *iterate, void *ctx,
1996 bool ignore_offset)
1997 {
1998 int ret;
1999 struct btrfs_trans_handle *trans = NULL;
2000 struct ulist *refs = NULL;
2001 struct ulist *roots = NULL;
2002 struct ulist_node *ref_node = NULL;
2003 struct ulist_node *root_node = NULL;
2004 struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem);
2005 struct ulist_iterator ref_uiter;
2006 struct ulist_iterator root_uiter;
2007
2008 btrfs_debug(fs_info, "resolving all inodes for extent %llu",
2009 extent_item_objectid);
2010
2011 if (!search_commit_root) {
2012 trans = btrfs_attach_transaction(fs_info->extent_root);
2013 if (IS_ERR(trans)) {
2014 if (PTR_ERR(trans) != -ENOENT &&
2015 PTR_ERR(trans) != -EROFS)
2016 return PTR_ERR(trans);
2017 trans = NULL;
2018 }
2019 }
2020
2021 if (trans)
2022 btrfs_get_tree_mod_seq(fs_info, &seq_elem);
2023 else
2024 down_read(&fs_info->commit_root_sem);
2025
2026 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
2027 seq_elem.seq, &refs,
2028 &extent_item_pos, ignore_offset);
2029 if (ret)
2030 goto out;
2031
2032 ULIST_ITER_INIT(&ref_uiter);
2033 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
2034 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
2035 seq_elem.seq, &roots,
2036 ignore_offset);
2037 if (ret)
2038 break;
2039 ULIST_ITER_INIT(&root_uiter);
2040 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
2041 btrfs_debug(fs_info,
2042 "root %llu references leaf %llu, data list %#llx",
2043 root_node->val, ref_node->val,
2044 ref_node->aux);
2045 ret = iterate_leaf_refs(fs_info,
2046 (struct extent_inode_elem *)
2047 (uintptr_t)ref_node->aux,
2048 root_node->val,
2049 extent_item_objectid,
2050 iterate, ctx);
2051 }
2052 ulist_free(roots);
2053 }
2054
2055 free_leaf_list(refs);
2056 out:
2057 if (trans) {
2058 btrfs_put_tree_mod_seq(fs_info, &seq_elem);
2059 btrfs_end_transaction(trans);
2060 } else {
2061 up_read(&fs_info->commit_root_sem);
2062 }
2063
2064 return ret;
2065 }
2066
2067 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
2068 {
2069 struct btrfs_data_container *inodes = ctx;
2070 const size_t c = 3 * sizeof(u64);
2071
2072 if (inodes->bytes_left >= c) {
2073 inodes->bytes_left -= c;
2074 inodes->val[inodes->elem_cnt] = inum;
2075 inodes->val[inodes->elem_cnt + 1] = offset;
2076 inodes->val[inodes->elem_cnt + 2] = root;
2077 inodes->elem_cnt += 3;
2078 } else {
2079 inodes->bytes_missing += c - inodes->bytes_left;
2080 inodes->bytes_left = 0;
2081 inodes->elem_missed += 3;
2082 }
2083
2084 return 0;
2085 }
2086
2087 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2088 struct btrfs_path *path,
2089 void *ctx, bool ignore_offset)
2090 {
2091 int ret;
2092 u64 extent_item_pos;
2093 u64 flags = 0;
2094 struct btrfs_key found_key;
2095 int search_commit_root = path->search_commit_root;
2096
2097 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2098 btrfs_release_path(path);
2099 if (ret < 0)
2100 return ret;
2101 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2102 return -EINVAL;
2103
2104 extent_item_pos = logical - found_key.objectid;
2105 ret = iterate_extent_inodes(fs_info, found_key.objectid,
2106 extent_item_pos, search_commit_root,
2107 build_ino_list, ctx, ignore_offset);
2108
2109 return ret;
2110 }
2111
2112 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2113 struct extent_buffer *eb, void *ctx);
2114
2115 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2116 struct btrfs_path *path,
2117 iterate_irefs_t *iterate, void *ctx)
2118 {
2119 int ret = 0;
2120 int slot;
2121 u32 cur;
2122 u32 len;
2123 u32 name_len;
2124 u64 parent = 0;
2125 int found = 0;
2126 struct extent_buffer *eb;
2127 struct btrfs_item *item;
2128 struct btrfs_inode_ref *iref;
2129 struct btrfs_key found_key;
2130
2131 while (!ret) {
2132 ret = btrfs_find_item(fs_root, path, inum,
2133 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2134 &found_key);
2135
2136 if (ret < 0)
2137 break;
2138 if (ret) {
2139 ret = found ? 0 : -ENOENT;
2140 break;
2141 }
2142 ++found;
2143
2144 parent = found_key.offset;
2145 slot = path->slots[0];
2146 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2147 if (!eb) {
2148 ret = -ENOMEM;
2149 break;
2150 }
2151 btrfs_release_path(path);
2152
2153 item = btrfs_item_nr(slot);
2154 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2155
2156 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2157 name_len = btrfs_inode_ref_name_len(eb, iref);
2158 /* path must be released before calling iterate()! */
2159 btrfs_debug(fs_root->fs_info,
2160 "following ref at offset %u for inode %llu in tree %llu",
2161 cur, found_key.objectid,
2162 fs_root->root_key.objectid);
2163 ret = iterate(parent, name_len,
2164 (unsigned long)(iref + 1), eb, ctx);
2165 if (ret)
2166 break;
2167 len = sizeof(*iref) + name_len;
2168 iref = (struct btrfs_inode_ref *)((char *)iref + len);
2169 }
2170 free_extent_buffer(eb);
2171 }
2172
2173 btrfs_release_path(path);
2174
2175 return ret;
2176 }
2177
2178 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2179 struct btrfs_path *path,
2180 iterate_irefs_t *iterate, void *ctx)
2181 {
2182 int ret;
2183 int slot;
2184 u64 offset = 0;
2185 u64 parent;
2186 int found = 0;
2187 struct extent_buffer *eb;
2188 struct btrfs_inode_extref *extref;
2189 u32 item_size;
2190 u32 cur_offset;
2191 unsigned long ptr;
2192
2193 while (1) {
2194 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2195 &offset);
2196 if (ret < 0)
2197 break;
2198 if (ret) {
2199 ret = found ? 0 : -ENOENT;
2200 break;
2201 }
2202 ++found;
2203
2204 slot = path->slots[0];
2205 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2206 if (!eb) {
2207 ret = -ENOMEM;
2208 break;
2209 }
2210 btrfs_release_path(path);
2211
2212 item_size = btrfs_item_size_nr(eb, slot);
2213 ptr = btrfs_item_ptr_offset(eb, slot);
2214 cur_offset = 0;
2215
2216 while (cur_offset < item_size) {
2217 u32 name_len;
2218
2219 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2220 parent = btrfs_inode_extref_parent(eb, extref);
2221 name_len = btrfs_inode_extref_name_len(eb, extref);
2222 ret = iterate(parent, name_len,
2223 (unsigned long)&extref->name, eb, ctx);
2224 if (ret)
2225 break;
2226
2227 cur_offset += btrfs_inode_extref_name_len(eb, extref);
2228 cur_offset += sizeof(*extref);
2229 }
2230 free_extent_buffer(eb);
2231
2232 offset++;
2233 }
2234
2235 btrfs_release_path(path);
2236
2237 return ret;
2238 }
2239
2240 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2241 struct btrfs_path *path, iterate_irefs_t *iterate,
2242 void *ctx)
2243 {
2244 int ret;
2245 int found_refs = 0;
2246
2247 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2248 if (!ret)
2249 ++found_refs;
2250 else if (ret != -ENOENT)
2251 return ret;
2252
2253 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2254 if (ret == -ENOENT && found_refs)
2255 return 0;
2256
2257 return ret;
2258 }
2259
2260 /*
2261 * returns 0 if the path could be dumped (probably truncated)
2262 * returns <0 in case of an error
2263 */
2264 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2265 struct extent_buffer *eb, void *ctx)
2266 {
2267 struct inode_fs_paths *ipath = ctx;
2268 char *fspath;
2269 char *fspath_min;
2270 int i = ipath->fspath->elem_cnt;
2271 const int s_ptr = sizeof(char *);
2272 u32 bytes_left;
2273
2274 bytes_left = ipath->fspath->bytes_left > s_ptr ?
2275 ipath->fspath->bytes_left - s_ptr : 0;
2276
2277 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2278 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2279 name_off, eb, inum, fspath_min, bytes_left);
2280 if (IS_ERR(fspath))
2281 return PTR_ERR(fspath);
2282
2283 if (fspath > fspath_min) {
2284 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2285 ++ipath->fspath->elem_cnt;
2286 ipath->fspath->bytes_left = fspath - fspath_min;
2287 } else {
2288 ++ipath->fspath->elem_missed;
2289 ipath->fspath->bytes_missing += fspath_min - fspath;
2290 ipath->fspath->bytes_left = 0;
2291 }
2292
2293 return 0;
2294 }
2295
2296 /*
2297 * this dumps all file system paths to the inode into the ipath struct, provided
2298 * is has been created large enough. each path is zero-terminated and accessed
2299 * from ipath->fspath->val[i].
2300 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2301 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2302 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2303 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2304 * have been needed to return all paths.
2305 */
2306 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2307 {
2308 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2309 inode_to_path, ipath);
2310 }
2311
2312 struct btrfs_data_container *init_data_container(u32 total_bytes)
2313 {
2314 struct btrfs_data_container *data;
2315 size_t alloc_bytes;
2316
2317 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2318 data = kvmalloc(alloc_bytes, GFP_KERNEL);
2319 if (!data)
2320 return ERR_PTR(-ENOMEM);
2321
2322 if (total_bytes >= sizeof(*data)) {
2323 data->bytes_left = total_bytes - sizeof(*data);
2324 data->bytes_missing = 0;
2325 } else {
2326 data->bytes_missing = sizeof(*data) - total_bytes;
2327 data->bytes_left = 0;
2328 }
2329
2330 data->elem_cnt = 0;
2331 data->elem_missed = 0;
2332
2333 return data;
2334 }
2335
2336 /*
2337 * allocates space to return multiple file system paths for an inode.
2338 * total_bytes to allocate are passed, note that space usable for actual path
2339 * information will be total_bytes - sizeof(struct inode_fs_paths).
2340 * the returned pointer must be freed with free_ipath() in the end.
2341 */
2342 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2343 struct btrfs_path *path)
2344 {
2345 struct inode_fs_paths *ifp;
2346 struct btrfs_data_container *fspath;
2347
2348 fspath = init_data_container(total_bytes);
2349 if (IS_ERR(fspath))
2350 return ERR_CAST(fspath);
2351
2352 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2353 if (!ifp) {
2354 kvfree(fspath);
2355 return ERR_PTR(-ENOMEM);
2356 }
2357
2358 ifp->btrfs_path = path;
2359 ifp->fspath = fspath;
2360 ifp->fs_root = fs_root;
2361
2362 return ifp;
2363 }
2364
2365 void free_ipath(struct inode_fs_paths *ipath)
2366 {
2367 if (!ipath)
2368 return;
2369 kvfree(ipath->fspath);
2370 kfree(ipath);
2371 }
2372
2373 struct btrfs_backref_iter *btrfs_backref_iter_alloc(
2374 struct btrfs_fs_info *fs_info, gfp_t gfp_flag)
2375 {
2376 struct btrfs_backref_iter *ret;
2377
2378 ret = kzalloc(sizeof(*ret), gfp_flag);
2379 if (!ret)
2380 return NULL;
2381
2382 ret->path = btrfs_alloc_path();
2383 if (!ret->path) {
2384 kfree(ret);
2385 return NULL;
2386 }
2387
2388 /* Current backref iterator only supports iteration in commit root */
2389 ret->path->search_commit_root = 1;
2390 ret->path->skip_locking = 1;
2391 ret->fs_info = fs_info;
2392
2393 return ret;
2394 }
2395
2396 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2397 {
2398 struct btrfs_fs_info *fs_info = iter->fs_info;
2399 struct btrfs_path *path = iter->path;
2400 struct btrfs_extent_item *ei;
2401 struct btrfs_key key;
2402 int ret;
2403
2404 key.objectid = bytenr;
2405 key.type = BTRFS_METADATA_ITEM_KEY;
2406 key.offset = (u64)-1;
2407 iter->bytenr = bytenr;
2408
2409 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
2410 if (ret < 0)
2411 return ret;
2412 if (ret == 0) {
2413 ret = -EUCLEAN;
2414 goto release;
2415 }
2416 if (path->slots[0] == 0) {
2417 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2418 ret = -EUCLEAN;
2419 goto release;
2420 }
2421 path->slots[0]--;
2422
2423 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2424 if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2425 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2426 ret = -ENOENT;
2427 goto release;
2428 }
2429 memcpy(&iter->cur_key, &key, sizeof(key));
2430 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2431 path->slots[0]);
2432 iter->end_ptr = (u32)(iter->item_ptr +
2433 btrfs_item_size_nr(path->nodes[0], path->slots[0]));
2434 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2435 struct btrfs_extent_item);
2436
2437 /*
2438 * Only support iteration on tree backref yet.
2439 *
2440 * This is an extra precaution for non skinny-metadata, where
2441 * EXTENT_ITEM is also used for tree blocks, that we can only use
2442 * extent flags to determine if it's a tree block.
2443 */
2444 if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2445 ret = -ENOTSUPP;
2446 goto release;
2447 }
2448 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2449
2450 /* If there is no inline backref, go search for keyed backref */
2451 if (iter->cur_ptr >= iter->end_ptr) {
2452 ret = btrfs_next_item(fs_info->extent_root, path);
2453
2454 /* No inline nor keyed ref */
2455 if (ret > 0) {
2456 ret = -ENOENT;
2457 goto release;
2458 }
2459 if (ret < 0)
2460 goto release;
2461
2462 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2463 path->slots[0]);
2464 if (iter->cur_key.objectid != bytenr ||
2465 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2466 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2467 ret = -ENOENT;
2468 goto release;
2469 }
2470 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2471 path->slots[0]);
2472 iter->item_ptr = iter->cur_ptr;
2473 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size_nr(
2474 path->nodes[0], path->slots[0]));
2475 }
2476
2477 return 0;
2478 release:
2479 btrfs_backref_iter_release(iter);
2480 return ret;
2481 }
2482
2483 /*
2484 * Go to the next backref item of current bytenr, can be either inlined or
2485 * keyed.
2486 *
2487 * Caller needs to check whether it's inline ref or not by iter->cur_key.
2488 *
2489 * Return 0 if we get next backref without problem.
2490 * Return >0 if there is no extra backref for this bytenr.
2491 * Return <0 if there is something wrong happened.
2492 */
2493 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2494 {
2495 struct extent_buffer *eb = btrfs_backref_get_eb(iter);
2496 struct btrfs_path *path = iter->path;
2497 struct btrfs_extent_inline_ref *iref;
2498 int ret;
2499 u32 size;
2500
2501 if (btrfs_backref_iter_is_inline_ref(iter)) {
2502 /* We're still inside the inline refs */
2503 ASSERT(iter->cur_ptr < iter->end_ptr);
2504
2505 if (btrfs_backref_has_tree_block_info(iter)) {
2506 /* First tree block info */
2507 size = sizeof(struct btrfs_tree_block_info);
2508 } else {
2509 /* Use inline ref type to determine the size */
2510 int type;
2511
2512 iref = (struct btrfs_extent_inline_ref *)
2513 ((unsigned long)iter->cur_ptr);
2514 type = btrfs_extent_inline_ref_type(eb, iref);
2515
2516 size = btrfs_extent_inline_ref_size(type);
2517 }
2518 iter->cur_ptr += size;
2519 if (iter->cur_ptr < iter->end_ptr)
2520 return 0;
2521
2522 /* All inline items iterated, fall through */
2523 }
2524
2525 /* We're at keyed items, there is no inline item, go to the next one */
2526 ret = btrfs_next_item(iter->fs_info->extent_root, iter->path);
2527 if (ret)
2528 return ret;
2529
2530 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2531 if (iter->cur_key.objectid != iter->bytenr ||
2532 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2533 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2534 return 1;
2535 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2536 path->slots[0]);
2537 iter->cur_ptr = iter->item_ptr;
2538 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size_nr(path->nodes[0],
2539 path->slots[0]);
2540 return 0;
2541 }
2542
2543 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
2544 struct btrfs_backref_cache *cache, int is_reloc)
2545 {
2546 int i;
2547
2548 cache->rb_root = RB_ROOT;
2549 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2550 INIT_LIST_HEAD(&cache->pending[i]);
2551 INIT_LIST_HEAD(&cache->changed);
2552 INIT_LIST_HEAD(&cache->detached);
2553 INIT_LIST_HEAD(&cache->leaves);
2554 INIT_LIST_HEAD(&cache->pending_edge);
2555 INIT_LIST_HEAD(&cache->useless_node);
2556 cache->fs_info = fs_info;
2557 cache->is_reloc = is_reloc;
2558 }
2559
2560 struct btrfs_backref_node *btrfs_backref_alloc_node(
2561 struct btrfs_backref_cache *cache, u64 bytenr, int level)
2562 {
2563 struct btrfs_backref_node *node;
2564
2565 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
2566 node = kzalloc(sizeof(*node), GFP_NOFS);
2567 if (!node)
2568 return node;
2569
2570 INIT_LIST_HEAD(&node->list);
2571 INIT_LIST_HEAD(&node->upper);
2572 INIT_LIST_HEAD(&node->lower);
2573 RB_CLEAR_NODE(&node->rb_node);
2574 cache->nr_nodes++;
2575 node->level = level;
2576 node->bytenr = bytenr;
2577
2578 return node;
2579 }
2580
2581 struct btrfs_backref_edge *btrfs_backref_alloc_edge(
2582 struct btrfs_backref_cache *cache)
2583 {
2584 struct btrfs_backref_edge *edge;
2585
2586 edge = kzalloc(sizeof(*edge), GFP_NOFS);
2587 if (edge)
2588 cache->nr_edges++;
2589 return edge;
2590 }
2591
2592 /*
2593 * Drop the backref node from cache, also cleaning up all its
2594 * upper edges and any uncached nodes in the path.
2595 *
2596 * This cleanup happens bottom up, thus the node should either
2597 * be the lowest node in the cache or a detached node.
2598 */
2599 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
2600 struct btrfs_backref_node *node)
2601 {
2602 struct btrfs_backref_node *upper;
2603 struct btrfs_backref_edge *edge;
2604
2605 if (!node)
2606 return;
2607
2608 BUG_ON(!node->lowest && !node->detached);
2609 while (!list_empty(&node->upper)) {
2610 edge = list_entry(node->upper.next, struct btrfs_backref_edge,
2611 list[LOWER]);
2612 upper = edge->node[UPPER];
2613 list_del(&edge->list[LOWER]);
2614 list_del(&edge->list[UPPER]);
2615 btrfs_backref_free_edge(cache, edge);
2616
2617 /*
2618 * Add the node to leaf node list if no other child block
2619 * cached.
2620 */
2621 if (list_empty(&upper->lower)) {
2622 list_add_tail(&upper->lower, &cache->leaves);
2623 upper->lowest = 1;
2624 }
2625 }
2626
2627 btrfs_backref_drop_node(cache, node);
2628 }
2629
2630 /*
2631 * Release all nodes/edges from current cache
2632 */
2633 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
2634 {
2635 struct btrfs_backref_node *node;
2636 int i;
2637
2638 while (!list_empty(&cache->detached)) {
2639 node = list_entry(cache->detached.next,
2640 struct btrfs_backref_node, list);
2641 btrfs_backref_cleanup_node(cache, node);
2642 }
2643
2644 while (!list_empty(&cache->leaves)) {
2645 node = list_entry(cache->leaves.next,
2646 struct btrfs_backref_node, lower);
2647 btrfs_backref_cleanup_node(cache, node);
2648 }
2649
2650 cache->last_trans = 0;
2651
2652 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2653 ASSERT(list_empty(&cache->pending[i]));
2654 ASSERT(list_empty(&cache->pending_edge));
2655 ASSERT(list_empty(&cache->useless_node));
2656 ASSERT(list_empty(&cache->changed));
2657 ASSERT(list_empty(&cache->detached));
2658 ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
2659 ASSERT(!cache->nr_nodes);
2660 ASSERT(!cache->nr_edges);
2661 }
2662
2663 /*
2664 * Handle direct tree backref
2665 *
2666 * Direct tree backref means, the backref item shows its parent bytenr
2667 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
2668 *
2669 * @ref_key: The converted backref key.
2670 * For keyed backref, it's the item key.
2671 * For inlined backref, objectid is the bytenr,
2672 * type is btrfs_inline_ref_type, offset is
2673 * btrfs_inline_ref_offset.
2674 */
2675 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
2676 struct btrfs_key *ref_key,
2677 struct btrfs_backref_node *cur)
2678 {
2679 struct btrfs_backref_edge *edge;
2680 struct btrfs_backref_node *upper;
2681 struct rb_node *rb_node;
2682
2683 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
2684
2685 /* Only reloc root uses backref pointing to itself */
2686 if (ref_key->objectid == ref_key->offset) {
2687 struct btrfs_root *root;
2688
2689 cur->is_reloc_root = 1;
2690 /* Only reloc backref cache cares about a specific root */
2691 if (cache->is_reloc) {
2692 root = find_reloc_root(cache->fs_info, cur->bytenr);
2693 if (!root)
2694 return -ENOENT;
2695 cur->root = root;
2696 } else {
2697 /*
2698 * For generic purpose backref cache, reloc root node
2699 * is useless.
2700 */
2701 list_add(&cur->list, &cache->useless_node);
2702 }
2703 return 0;
2704 }
2705
2706 edge = btrfs_backref_alloc_edge(cache);
2707 if (!edge)
2708 return -ENOMEM;
2709
2710 rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
2711 if (!rb_node) {
2712 /* Parent node not yet cached */
2713 upper = btrfs_backref_alloc_node(cache, ref_key->offset,
2714 cur->level + 1);
2715 if (!upper) {
2716 btrfs_backref_free_edge(cache, edge);
2717 return -ENOMEM;
2718 }
2719
2720 /*
2721 * Backrefs for the upper level block isn't cached, add the
2722 * block to pending list
2723 */
2724 list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2725 } else {
2726 /* Parent node already cached */
2727 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
2728 ASSERT(upper->checked);
2729 INIT_LIST_HEAD(&edge->list[UPPER]);
2730 }
2731 btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
2732 return 0;
2733 }
2734
2735 /*
2736 * Handle indirect tree backref
2737 *
2738 * Indirect tree backref means, we only know which tree the node belongs to.
2739 * We still need to do a tree search to find out the parents. This is for
2740 * TREE_BLOCK_REF backref (keyed or inlined).
2741 *
2742 * @ref_key: The same as @ref_key in handle_direct_tree_backref()
2743 * @tree_key: The first key of this tree block.
2744 * @path: A clean (released) path, to avoid allocating path every time
2745 * the function get called.
2746 */
2747 static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache,
2748 struct btrfs_path *path,
2749 struct btrfs_key *ref_key,
2750 struct btrfs_key *tree_key,
2751 struct btrfs_backref_node *cur)
2752 {
2753 struct btrfs_fs_info *fs_info = cache->fs_info;
2754 struct btrfs_backref_node *upper;
2755 struct btrfs_backref_node *lower;
2756 struct btrfs_backref_edge *edge;
2757 struct extent_buffer *eb;
2758 struct btrfs_root *root;
2759 struct rb_node *rb_node;
2760 int level;
2761 bool need_check = true;
2762 int ret;
2763
2764 root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
2765 if (IS_ERR(root))
2766 return PTR_ERR(root);
2767 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2768 cur->cowonly = 1;
2769
2770 if (btrfs_root_level(&root->root_item) == cur->level) {
2771 /* Tree root */
2772 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
2773 /*
2774 * For reloc backref cache, we may ignore reloc root. But for
2775 * general purpose backref cache, we can't rely on
2776 * btrfs_should_ignore_reloc_root() as it may conflict with
2777 * current running relocation and lead to missing root.
2778 *
2779 * For general purpose backref cache, reloc root detection is
2780 * completely relying on direct backref (key->offset is parent
2781 * bytenr), thus only do such check for reloc cache.
2782 */
2783 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
2784 btrfs_put_root(root);
2785 list_add(&cur->list, &cache->useless_node);
2786 } else {
2787 cur->root = root;
2788 }
2789 return 0;
2790 }
2791
2792 level = cur->level + 1;
2793
2794 /* Search the tree to find parent blocks referring to the block */
2795 path->search_commit_root = 1;
2796 path->skip_locking = 1;
2797 path->lowest_level = level;
2798 ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
2799 path->lowest_level = 0;
2800 if (ret < 0) {
2801 btrfs_put_root(root);
2802 return ret;
2803 }
2804 if (ret > 0 && path->slots[level] > 0)
2805 path->slots[level]--;
2806
2807 eb = path->nodes[level];
2808 if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
2809 btrfs_err(fs_info,
2810 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
2811 cur->bytenr, level - 1, root->root_key.objectid,
2812 tree_key->objectid, tree_key->type, tree_key->offset);
2813 btrfs_put_root(root);
2814 ret = -ENOENT;
2815 goto out;
2816 }
2817 lower = cur;
2818
2819 /* Add all nodes and edges in the path */
2820 for (; level < BTRFS_MAX_LEVEL; level++) {
2821 if (!path->nodes[level]) {
2822 ASSERT(btrfs_root_bytenr(&root->root_item) ==
2823 lower->bytenr);
2824 /* Same as previous should_ignore_reloc_root() call */
2825 if (btrfs_should_ignore_reloc_root(root) &&
2826 cache->is_reloc) {
2827 btrfs_put_root(root);
2828 list_add(&lower->list, &cache->useless_node);
2829 } else {
2830 lower->root = root;
2831 }
2832 break;
2833 }
2834
2835 edge = btrfs_backref_alloc_edge(cache);
2836 if (!edge) {
2837 btrfs_put_root(root);
2838 ret = -ENOMEM;
2839 goto out;
2840 }
2841
2842 eb = path->nodes[level];
2843 rb_node = rb_simple_search(&cache->rb_root, eb->start);
2844 if (!rb_node) {
2845 upper = btrfs_backref_alloc_node(cache, eb->start,
2846 lower->level + 1);
2847 if (!upper) {
2848 btrfs_put_root(root);
2849 btrfs_backref_free_edge(cache, edge);
2850 ret = -ENOMEM;
2851 goto out;
2852 }
2853 upper->owner = btrfs_header_owner(eb);
2854 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2855 upper->cowonly = 1;
2856
2857 /*
2858 * If we know the block isn't shared we can avoid
2859 * checking its backrefs.
2860 */
2861 if (btrfs_block_can_be_shared(root, eb))
2862 upper->checked = 0;
2863 else
2864 upper->checked = 1;
2865
2866 /*
2867 * Add the block to pending list if we need to check its
2868 * backrefs, we only do this once while walking up a
2869 * tree as we will catch anything else later on.
2870 */
2871 if (!upper->checked && need_check) {
2872 need_check = false;
2873 list_add_tail(&edge->list[UPPER],
2874 &cache->pending_edge);
2875 } else {
2876 if (upper->checked)
2877 need_check = true;
2878 INIT_LIST_HEAD(&edge->list[UPPER]);
2879 }
2880 } else {
2881 upper = rb_entry(rb_node, struct btrfs_backref_node,
2882 rb_node);
2883 ASSERT(upper->checked);
2884 INIT_LIST_HEAD(&edge->list[UPPER]);
2885 if (!upper->owner)
2886 upper->owner = btrfs_header_owner(eb);
2887 }
2888 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
2889
2890 if (rb_node) {
2891 btrfs_put_root(root);
2892 break;
2893 }
2894 lower = upper;
2895 upper = NULL;
2896 }
2897 out:
2898 btrfs_release_path(path);
2899 return ret;
2900 }
2901
2902 /*
2903 * Add backref node @cur into @cache.
2904 *
2905 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
2906 * links aren't yet bi-directional. Needs to finish such links.
2907 * Use btrfs_backref_finish_upper_links() to finish such linkage.
2908 *
2909 * @path: Released path for indirect tree backref lookup
2910 * @iter: Released backref iter for extent tree search
2911 * @node_key: The first key of the tree block
2912 */
2913 int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
2914 struct btrfs_path *path,
2915 struct btrfs_backref_iter *iter,
2916 struct btrfs_key *node_key,
2917 struct btrfs_backref_node *cur)
2918 {
2919 struct btrfs_fs_info *fs_info = cache->fs_info;
2920 struct btrfs_backref_edge *edge;
2921 struct btrfs_backref_node *exist;
2922 int ret;
2923
2924 ret = btrfs_backref_iter_start(iter, cur->bytenr);
2925 if (ret < 0)
2926 return ret;
2927 /*
2928 * We skip the first btrfs_tree_block_info, as we don't use the key
2929 * stored in it, but fetch it from the tree block
2930 */
2931 if (btrfs_backref_has_tree_block_info(iter)) {
2932 ret = btrfs_backref_iter_next(iter);
2933 if (ret < 0)
2934 goto out;
2935 /* No extra backref? This means the tree block is corrupted */
2936 if (ret > 0) {
2937 ret = -EUCLEAN;
2938 goto out;
2939 }
2940 }
2941 WARN_ON(cur->checked);
2942 if (!list_empty(&cur->upper)) {
2943 /*
2944 * The backref was added previously when processing backref of
2945 * type BTRFS_TREE_BLOCK_REF_KEY
2946 */
2947 ASSERT(list_is_singular(&cur->upper));
2948 edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
2949 list[LOWER]);
2950 ASSERT(list_empty(&edge->list[UPPER]));
2951 exist = edge->node[UPPER];
2952 /*
2953 * Add the upper level block to pending list if we need check
2954 * its backrefs
2955 */
2956 if (!exist->checked)
2957 list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2958 } else {
2959 exist = NULL;
2960 }
2961
2962 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
2963 struct extent_buffer *eb;
2964 struct btrfs_key key;
2965 int type;
2966
2967 cond_resched();
2968 eb = btrfs_backref_get_eb(iter);
2969
2970 key.objectid = iter->bytenr;
2971 if (btrfs_backref_iter_is_inline_ref(iter)) {
2972 struct btrfs_extent_inline_ref *iref;
2973
2974 /* Update key for inline backref */
2975 iref = (struct btrfs_extent_inline_ref *)
2976 ((unsigned long)iter->cur_ptr);
2977 type = btrfs_get_extent_inline_ref_type(eb, iref,
2978 BTRFS_REF_TYPE_BLOCK);
2979 if (type == BTRFS_REF_TYPE_INVALID) {
2980 ret = -EUCLEAN;
2981 goto out;
2982 }
2983 key.type = type;
2984 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
2985 } else {
2986 key.type = iter->cur_key.type;
2987 key.offset = iter->cur_key.offset;
2988 }
2989
2990 /*
2991 * Parent node found and matches current inline ref, no need to
2992 * rebuild this node for this inline ref
2993 */
2994 if (exist &&
2995 ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
2996 exist->owner == key.offset) ||
2997 (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
2998 exist->bytenr == key.offset))) {
2999 exist = NULL;
3000 continue;
3001 }
3002
3003 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */
3004 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
3005 ret = handle_direct_tree_backref(cache, &key, cur);
3006 if (ret < 0)
3007 goto out;
3008 continue;
3009 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
3010 ret = -EINVAL;
3011 btrfs_print_v0_err(fs_info);
3012 btrfs_handle_fs_error(fs_info, ret, NULL);
3013 goto out;
3014 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
3015 continue;
3016 }
3017
3018 /*
3019 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
3020 * means the root objectid. We need to search the tree to get
3021 * its parent bytenr.
3022 */
3023 ret = handle_indirect_tree_backref(cache, path, &key, node_key,
3024 cur);
3025 if (ret < 0)
3026 goto out;
3027 }
3028 ret = 0;
3029 cur->checked = 1;
3030 WARN_ON(exist);
3031 out:
3032 btrfs_backref_iter_release(iter);
3033 return ret;
3034 }
3035
3036 /*
3037 * Finish the upwards linkage created by btrfs_backref_add_tree_node()
3038 */
3039 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
3040 struct btrfs_backref_node *start)
3041 {
3042 struct list_head *useless_node = &cache->useless_node;
3043 struct btrfs_backref_edge *edge;
3044 struct rb_node *rb_node;
3045 LIST_HEAD(pending_edge);
3046
3047 ASSERT(start->checked);
3048
3049 /* Insert this node to cache if it's not COW-only */
3050 if (!start->cowonly) {
3051 rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
3052 &start->rb_node);
3053 if (rb_node)
3054 btrfs_backref_panic(cache->fs_info, start->bytenr,
3055 -EEXIST);
3056 list_add_tail(&start->lower, &cache->leaves);
3057 }
3058
3059 /*
3060 * Use breadth first search to iterate all related edges.
3061 *
3062 * The starting points are all the edges of this node
3063 */
3064 list_for_each_entry(edge, &start->upper, list[LOWER])
3065 list_add_tail(&edge->list[UPPER], &pending_edge);
3066
3067 while (!list_empty(&pending_edge)) {
3068 struct btrfs_backref_node *upper;
3069 struct btrfs_backref_node *lower;
3070
3071 edge = list_first_entry(&pending_edge,
3072 struct btrfs_backref_edge, list[UPPER]);
3073 list_del_init(&edge->list[UPPER]);
3074 upper = edge->node[UPPER];
3075 lower = edge->node[LOWER];
3076
3077 /* Parent is detached, no need to keep any edges */
3078 if (upper->detached) {
3079 list_del(&edge->list[LOWER]);
3080 btrfs_backref_free_edge(cache, edge);
3081
3082 /* Lower node is orphan, queue for cleanup */
3083 if (list_empty(&lower->upper))
3084 list_add(&lower->list, useless_node);
3085 continue;
3086 }
3087
3088 /*
3089 * All new nodes added in current build_backref_tree() haven't
3090 * been linked to the cache rb tree.
3091 * So if we have upper->rb_node populated, this means a cache
3092 * hit. We only need to link the edge, as @upper and all its
3093 * parents have already been linked.
3094 */
3095 if (!RB_EMPTY_NODE(&upper->rb_node)) {
3096 if (upper->lowest) {
3097 list_del_init(&upper->lower);
3098 upper->lowest = 0;
3099 }
3100
3101 list_add_tail(&edge->list[UPPER], &upper->lower);
3102 continue;
3103 }
3104
3105 /* Sanity check, we shouldn't have any unchecked nodes */
3106 if (!upper->checked) {
3107 ASSERT(0);
3108 return -EUCLEAN;
3109 }
3110
3111 /* Sanity check, COW-only node has non-COW-only parent */
3112 if (start->cowonly != upper->cowonly) {
3113 ASSERT(0);
3114 return -EUCLEAN;
3115 }
3116
3117 /* Only cache non-COW-only (subvolume trees) tree blocks */
3118 if (!upper->cowonly) {
3119 rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3120 &upper->rb_node);
3121 if (rb_node) {
3122 btrfs_backref_panic(cache->fs_info,
3123 upper->bytenr, -EEXIST);
3124 return -EUCLEAN;
3125 }
3126 }
3127
3128 list_add_tail(&edge->list[UPPER], &upper->lower);
3129
3130 /*
3131 * Also queue all the parent edges of this uncached node
3132 * to finish the upper linkage
3133 */
3134 list_for_each_entry(edge, &upper->upper, list[LOWER])
3135 list_add_tail(&edge->list[UPPER], &pending_edge);
3136 }
3137 return 0;
3138 }
3139
3140 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3141 struct btrfs_backref_node *node)
3142 {
3143 struct btrfs_backref_node *lower;
3144 struct btrfs_backref_node *upper;
3145 struct btrfs_backref_edge *edge;
3146
3147 while (!list_empty(&cache->useless_node)) {
3148 lower = list_first_entry(&cache->useless_node,
3149 struct btrfs_backref_node, list);
3150 list_del_init(&lower->list);
3151 }
3152 while (!list_empty(&cache->pending_edge)) {
3153 edge = list_first_entry(&cache->pending_edge,
3154 struct btrfs_backref_edge, list[UPPER]);
3155 list_del(&edge->list[UPPER]);
3156 list_del(&edge->list[LOWER]);
3157 lower = edge->node[LOWER];
3158 upper = edge->node[UPPER];
3159 btrfs_backref_free_edge(cache, edge);
3160
3161 /*
3162 * Lower is no longer linked to any upper backref nodes and
3163 * isn't in the cache, we can free it ourselves.
3164 */
3165 if (list_empty(&lower->upper) &&
3166 RB_EMPTY_NODE(&lower->rb_node))
3167 list_add(&lower->list, &cache->useless_node);
3168
3169 if (!RB_EMPTY_NODE(&upper->rb_node))
3170 continue;
3171
3172 /* Add this guy's upper edges to the list to process */
3173 list_for_each_entry(edge, &upper->upper, list[LOWER])
3174 list_add_tail(&edge->list[UPPER],
3175 &cache->pending_edge);
3176 if (list_empty(&upper->upper))
3177 list_add(&upper->list, &cache->useless_node);
3178 }
3179
3180 while (!list_empty(&cache->useless_node)) {
3181 lower = list_first_entry(&cache->useless_node,
3182 struct btrfs_backref_node, list);
3183 list_del_init(&lower->list);
3184 if (lower == node)
3185 node = NULL;
3186 btrfs_backref_drop_node(cache, lower);
3187 }
3188
3189 btrfs_backref_cleanup_node(cache, node);
3190 ASSERT(list_empty(&cache->useless_node) &&
3191 list_empty(&cache->pending_edge));
3192 }
3193